WO2022116339A1 - 一种ald加工设备以及加工方法 - Google Patents

一种ald加工设备以及加工方法 Download PDF

Info

Publication number
WO2022116339A1
WO2022116339A1 PCT/CN2020/141154 CN2020141154W WO2022116339A1 WO 2022116339 A1 WO2022116339 A1 WO 2022116339A1 CN 2020141154 W CN2020141154 W CN 2020141154W WO 2022116339 A1 WO2022116339 A1 WO 2022116339A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
processing equipment
reaction chamber
equipment according
ald processing
Prior art date
Application number
PCT/CN2020/141154
Other languages
English (en)
French (fr)
Inventor
万军
廖海涛
王斌
王辉
Original Assignee
无锡邑文电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011412184.4A external-priority patent/CN112481604B/zh
Priority claimed from CN202022904146.2U external-priority patent/CN214937792U/zh
Application filed by 无锡邑文电子科技有限公司 filed Critical 无锡邑文电子科技有限公司
Publication of WO2022116339A1 publication Critical patent/WO2022116339A1/zh
Priority to US18/325,094 priority Critical patent/US20230304152A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the present disclosure relates to the technical field of semiconductor nano-film deposition, and in particular, to an ALD processing equipment and a processing method.
  • Atomic Layer Deposition has the characteristics of excellent three-dimensional conformality, large-area uniformity and precise sub-monolayer film thickness control, and is favored by the microelectronics industry and nanotechnology fields.
  • the technical scheme of atomic layer deposition processing is as follows: the substrate is placed in a sealed reactor, and then the gas-phase precursor sources are alternately passed into the reactor to chemically adsorb and react on the substrate to form a deposition film. .
  • the technical scheme of passing the gas-phase precursor source into the reactor alternately in pulses is difficult to ensure that the precursor source fully covers the entire substrate, and defects such as pinholes are easily formed, resulting in uneven contact between the precursor source and the substrate, resulting in deposition.
  • the uniformity of the film is poor, and the quality is difficult to guarantee.
  • due to incomplete reaction and a large amount of precursor sources a large amount of precursor sources will be left, resulting in low film formation efficiency, long cycle, and waste of precursor sources.
  • the present disclosure provides an ALD processing equipment and a processing method, which solve or partially solve the problems in the prior art that the deposited film has poor uniformity, difficult quality assurance, low film formation efficiency, long cycle, and waste of precursor sources. question.
  • an ALD processing apparatus comprising:
  • a reactor the reactor includes a vacuum chamber and a reaction chamber, the reaction chamber is placed in the vacuum chamber, the top of the reaction chamber is open, and the bottom of the reaction chamber is provided with an air inlet channel and an air outlet channel, the air inlet channel and the air outlet channel are arranged opposite to the center line of the first direction of the bottom of the reaction chamber; a lifting device, the lifting device is arranged on the reactor, the lifting device The output end of the device is vertically retractable, a cover is provided on the output end of the lifting device, and the cover is operable to seal the top of the reaction chamber; a conveying device is used for conveying the substrate into the vacuum chamber; a grasping device, the grasping device is arranged on the cover, and the grasping device is used for grasping the substrate conveyed into the vacuum chamber.
  • the air inlet channel is in the shape of a hole, a plurality of the air inlet channels are provided, and the plurality of air inlet channels are arranged on one side of the bottom of the reaction chamber;
  • the air outlet channel is In the shape of a hole, there are also a plurality of the gas outlet channels, and the plurality of the gas outlet channels are arranged on the other side of the bottom of the reaction chamber.
  • the multiple groups of the intake passages are arranged in sequence along the second direction, the intake passages in each group are arc-shaped, and the intake passages in each group are in an arc shape.
  • the aperture of each air inlet channel decreases in turn in the direction close to the center line of the first direction at the bottom of the reaction chamber;
  • the air outlet channels are arranged in multiple groups, and the plurality of groups of the air outlet channels are arranged in sequence along the second direction,
  • Each group of the gas outlet channels is arc-shaped, and the apertures of the respective gas inlet channels of each group of the gas outlet channels decrease in turn in a direction close to the centerline of the first direction of the bottom of the reaction chamber.
  • the air inlet channel is strip-shaped, there are multiple air inlet channels, and the plurality of air inlet channels are arranged on one side of the bottom of the reaction chamber;
  • the air outlet channel is In the shape of a strip, there are also a plurality of the gas outlet channels, and the plurality of the gas outlet channels are arranged on the other side of the bottom of the reaction chamber.
  • the size of the air inlet channel in the second direction decreases sequentially toward the centerline of the first direction near the bottom of the reaction chamber; the size of the air outlet channel in the second direction decreases The direction of the centerline of the first direction near the bottom of the reaction chamber decreases sequentially.
  • the reaction chamber is provided with two uniform gas plates, and the two gas uniform plates are arranged opposite to each other with the center line of the bottom of the reaction chamber in the first direction, and the two gas uniform plates are opposite to each other.
  • the plate is arranged between the air inlet channel and the air outlet channel, and the two uniform plates divide the reaction chamber into an air inlet chamber, a reaction chamber and an air outlet chamber along the second direction.
  • a plurality of through holes are arranged on the uniform air plate.
  • the bottom of the reaction chamber is fixedly provided with a transfer chamber
  • the top of the transfer chamber is open
  • the bottom of the reaction chamber is covered on the top of the transfer chamber
  • the Two partitions are arranged in the transfer chamber, and the two partitions divide the transfer chamber into a first chamber, a second chamber and a third chamber along the second direction.
  • the first chamber is in communication
  • the air outlet channel is in communication with the third chamber
  • the bottom of the first chamber is provided with an air inlet main hole
  • the bottom of the third chamber is provided with an air outlet main hole.
  • two of the baffles are arranged between the air inlet passage and the air outlet passage, and the main air inlet hole is arranged between the inlet passage and the baffles on the same side, so
  • the gas outlet main hole is arranged between the gas outlet channel and the partition plate on the same side, and the air inlet main hole and the gas outlet main hole are arranged opposite to the center line of the first direction of the bottom of the reaction chamber .
  • the bottom of the transfer chamber is provided with two opposite protrusions; the bottom of the transfer chamber and the bottom of the vacuum chamber are provided with two opposite connection blocks, the The top of the connecting block is provided with a positioning groove, and the protrusion is fixedly embedded in the corresponding positioning groove of the connecting block.
  • the two protrusions are respectively arranged at the bottom of the main air inlet hole and the main air outlet hole;
  • the processing equipment further includes an air inlet pipe and an air outlet pipe, wherein: one end of the air inlet pipe Passing through the bottom of the vacuum chamber, the connecting block located at the bottom of the main inlet hole and the protrusion in sequence, one end of the inlet pipe is communicated with the main inlet hole, and the end of the inlet pipe is connected to the main inlet hole.
  • the other end is used to communicate with the air inlet device; one end of the air outlet pipe passes through the bottom of the vacuum chamber, the connecting block located at the bottom of the main air outlet hole and the protrusion in sequence, and the One end is communicated with the air outlet main hole, and the other end of the air outlet pipe is used for communication with the air outlet device.
  • the processing equipment further comprises: a first heater disposed on the top of the cover, the output end of the first heater acting on the cover ; a second heater, the second heater is arranged between the outer side wall of the reaction chamber and the inner side wall of the vacuum chamber, and the output end of the second heater acts on the reaction chamber on the side wall of the chamber; a third heater, the third heater is arranged between the bottom of the reaction chamber and the bottom of the vacuum chamber, and the third heater acts on the reaction chamber on the bottom.
  • a first mounting plate is fixedly disposed on the top of the cover, the first heater includes a plurality of first heating wires, and the plurality of first heating wires are arranged in concentric corrugations, and a plurality of all the first heating wires are arranged in concentric corrugations.
  • the first heating wires are all fixed on the bottom surface of the first mounting plate.
  • the outer edge of the first mounting plate is bent downward to form a first limiting rib.
  • the processing equipment further includes a first heat reflection component, and the first heat reflection component is fixedly disposed on the top surface of the first mounting plate.
  • a fixing block is provided on the top surface of the first mounting plate, and the first heat reflecting component is arranged between the first mounting plate and the fixing block; the first heat reflecting The assembly includes a plurality of heat reflecting plates arranged in sequence, and the contact form of two adjacent heat reflecting plates is multi-point contact.
  • a second mounting plate is disposed between the outer side wall of the reaction chamber and the inner side wall of the vacuum chamber, and both ends of the peripheral surface of the second mounting plate are closed loops, and the second mounting plate is The plate is fixedly arranged on the top surface of the bottom of the vacuum chamber, the second heater includes a plurality of second heating wires, each of the second heating wires is arranged in a coaxial ring, and each of the second heating wires is arranged in a coaxial ring.
  • the second heating wires are vertically fixed on the inner side wall of the second mounting plate, and each of the second heating wires is sleeved on the outer side wall of the reaction chamber.
  • both ends of the second mounting plate are turned inward to form a second limiting rib.
  • the processing equipment further includes a second heat reflection component, and the second heat reflection component is fixedly disposed on the outer side of the second mounting plate.
  • the processing equipment further includes a third mounting plate, the third mounting plate is fixedly disposed between the second mounting plate and the inner wall of the vacuum chamber, the third mounting plate is in the shape of closed loop, the second heat reflection assembly is arranged between the third mounting plate and the second mounting plate; the second heat reflection assembly includes a number of heat reflection plates arranged in sequence, two adjacent ones of the The contact form of the heat reflection plate is multi-point contact.
  • annular groove is provided on the top surface of the bottom of the vacuum chamber, and both the third mounting plate and the second heat reflection component are fixedly disposed in the annular groove.
  • the processing equipment further includes a third heat emitting component, the third heat reflecting component is fixedly arranged on the outer side of the third mounting plate; the third heat reflecting component includes a plurality of heat reflecting components arranged in sequence The contact form of two adjacent heat reflection plates is multi-point contact.
  • a first step is provided on the top surface of the bottom of the vacuum chamber, the first step is located outside the annular groove, and the bottom of the third heat reflection component is fixed on the bottom of the vacuum chamber. on the first step.
  • a fourth mounting plate is disposed between the bottom of the reaction chamber and the bottom of the vacuum chamber, the third heater includes a plurality of third heating filaments, a plurality of the third The heating wires are arranged in concentric corrugations, and a plurality of the third heating wires are all fixed on the top surface of the fourth mounting plate.
  • the outer edge of the fourth mounting plate is bent upward to form a third limiting rib.
  • the processing equipment further includes a fourth heat reflection component, the fourth heat reflection component is fixedly arranged on the bottom surface of the fourth mounting plate; the fourth heat reflection component includes a plurality of sequentially arranged heat reflection components.
  • the contact form of two adjacent heat reflection plates is multi-point contact.
  • two second steps are arranged on the peripheral surface of each connection block in sequence along the vertical direction
  • the fourth mounting plate is fixedly arranged on the second step located above
  • the fourth reflector The assembly is fixedly arranged between the lower second step and the fourth mounting plate.
  • the processing equipment further includes a thermocouple installation mechanism, the thermocouple installation mechanism includes: a fixing sleeve, the fixing sleeve is fixedly arranged on the top surface of the vacuum chamber; a first corrugated The upper end of the first bellows is fixedly connected to the top of the inner wall of the fixed sleeve, and the lower end of the first bellows moves through the lower end of the fixed sleeve and the vacuum chamber in turn.
  • the top, the lower end of the first bellows is located in the vacuum chamber; the connecting sleeve is fixedly arranged in the vacuum chamber, and the lower end of the first bellows is connected to the connecting sleeve
  • the heating wire of the first heating assembly arranged on the top of the cover and the thermocouple for measuring the temperature of the top of the cover are fixedly arranged in the connection sleeve.
  • the top of the fixing sleeve is provided with a first connecting flange, the first connecting flange is annular, and the inner side of the first connecting flange protrudes from the inner wall of the fixing sleeve, The upper end of the first bellows is connected to the inner side of the first connecting flange.
  • the top of the fixing sleeve is provided with a first sealing groove, a first sealing ring is provided in the first sealing groove, and the first connecting flange is covered on the first sealing groove .
  • a second sealing groove is provided on the top surface of the vacuum chamber, and a second sealing ring is provided in the second sealing groove; and a second connecting flange is provided at the bottom of the fixing sleeve , the second connecting flange cover is arranged on the second sealing groove.
  • the top of the connection sleeve is provided with a third connection flange, and the lower end of the first bellows is connected to the top of the third connection flange.
  • connection cover plate the inside of the connection sleeve is sealed by a connection cover plate
  • the three thermocouples are all arranged on the connection cover plate
  • the heating element of the first heating element arranged on the top of the cover is heated Both the wire and the thermocouple that measures the temperature of the top of the cover are fixed in the connection sleeve.
  • the edge of the bottom of the cover is provided with a first stop; the top opening of the reaction chamber is provided with a boss, and the boss can be embedded in the first stop.
  • the lifting device includes a lifting unit, a connecting frame and a connecting rod, wherein: the lifting unit is fixedly arranged on the top of the vacuum container, and the output end of the lifting unit is vertically retractable; the The connecting frame is located above the vacuum container, and the connecting frame is connected with the output end of the lifting unit; the upper end of the connecting rod is fixedly connected with the connecting frame, and the lower end of the connecting rod is sealed through the vacuum On the top of the container, the cover is fixedly arranged on the lower end of the connecting rod.
  • two lifting units are arranged opposite to each other, two connecting rods are arranged opposite to each other, and the connecting line of the two lifting units is located on the mid-perpendicular line of the connecting line of the two connecting rods. .
  • each of the connecting rods is configured with a sealing device
  • each of the sealing devices includes: a first sleeve, the first sleeve is fixedly arranged on the peripheral surface of the connecting rod , the first sleeve is located above the vacuum chamber; the second sleeve is fixedly arranged on the top surface of the top of the vacuum chamber, and the other end of the connecting rod is movable Pass through the second sleeve to enter the vacuum chamber; a second bellows, the first sleeve and the second sleeve are connected through the second bellows, the second bellows The bellows is sleeved on the peripheral surface of the connecting rod.
  • a fourth sealing groove is provided on the top surface of the top of the vacuum chamber, a bottom cover of the second sleeve is provided on the sealing groove, and a fourth sealing groove is provided in the fourth sealing groove sealing ring.
  • the top of the vacuum chamber is provided with a through hole for the connecting rod to pass through, the through hole is arranged on the inner side of the fourth sealing groove, and a guide sleeve is arranged in the through hole , the connecting rod is slidably fitted through the guide sleeve.
  • a second stop is provided on the top surface of the through hole; a guide cap is provided on the top of the guide sleeve, and the guide cap is fixed on the second stop.
  • both axial ends of the inner wall of the guide sleeve are provided with notches.
  • the grasping device includes: a frame, which is fixedly arranged on the bottom of the cover; and two grippers are arranged opposite to each other, and the two grippers are arranged along the first The two directions are opposite to each other.
  • Each of the grippers includes two connecting arms and a supporting arm. The upper ends of the two connecting arms are fixedly connected to the ends of the frame in the first direction. The lower ends are provided with connecting protrusions extending toward the other gripper, and the two connecting protrusions are connected by the supporting arms.
  • the middle parts of the two connecting arms are also connected by a reinforcing arm.
  • detachable enclosure plates are further provided on both sides of the vacuum chamber in the first direction.
  • the material of the enclosure plate is a transparent material.
  • the conveying device includes a conveying chamber and a conveying plate
  • the conveying chamber is disposed on one side of the vacuum chamber in the second direction
  • the conveying chamber and the vacuum chamber may be In operative communication
  • the transfer plate is disposed within the transfer chamber, the transfer plate is operatively entered into the vacuum chamber, and the transfer plate is disposed above the reaction chamber.
  • a first drive unit is disposed in the conveying chamber, the output end of the first drive unit can perform linear reciprocating motion, and the conveying plate is fixedly connected to the output end of the first drive unit .
  • two guide assemblies are vertically disposed on both side walls in the second direction of the conveying chamber, and each guide assembly includes a plurality of rollers spaced along the second direction , the roller is rotatably connected to the side wall of the conveying chamber in the second direction, and the two sides of the conveying plate in the second direction are respectively arranged between the two guide assemblies.
  • a conveying groove is provided on the top surface of the conveying plate.
  • one side of the vacuum chamber in the second direction is provided with an openable sealing door.
  • a slot is provided at the butt joint of the vacuum chamber and the conveying chamber, the top of the slot is open, and the sealing door is operably inserted into the slot, so as to One side of the vacuum chamber in the second direction is sealed; a support frame is arranged on the vacuum chamber, a second drive mechanism is arranged on the support frame, and the output end of the second drive mechanism reciprocates vertically Moving, the sealing door is connected to the output end of the second driving mechanism.
  • the support frame includes two butted connecting plates, the two connecting plates are butted to form a sealed chamber, the second driving mechanism is fixedly arranged on the top of the sealed chamber, so The bottom of the sealed chamber is open, and the dimension in the width direction of the sealed chamber is consistent with the thickness of the sealed door.
  • the present disclosure also provides an ALD processing method, the processing method being performed in the above-mentioned ALD processing equipment, the processing method comprising: conveying the base body into a vacuum chamber by a conveying device, and transporting the base body Transfer to the grabbing device; operate the conveying device to evacuate the vacuum chamber, the vacuum chamber is sealed, and the vacuum chamber is evacuated for disposal; operate the lifting device, set the cover on the top of the reaction chamber, and the base is located in the sealed In the reaction chamber; the precursor source is injected from the inlet channel of the reaction chamber. After the precursor source is purged to the substrate in the reaction chamber, it is discharged from the outlet channel of the reaction chamber, that is, the ALD processing of the substrate is completed.
  • the precursor source is injected into the reaction chamber from the gas inlet channel of the reaction chamber, and discharged from the gas outlet channel of the reaction chamber, since the gas inlet channel and the gas outlet channel are at the bottom of the reaction chamber with the first The centerlines in one direction are set opposite to each other. Therefore, the fluid field in the reaction chamber is laminar, and the intake and exhaust of the precursor source are directly connected to the reaction chamber, avoiding the risk of leakage of the precursor source at the butt joint.
  • the precursor source flows in the reaction chamber along the second direction, which can not only reduce the volume of the reaction chamber, but also increase the length of the uniform gas, improve the uniformity of the gas flow, reduce the phenomenon of turbulent gas, and ensure the precursor
  • the source covers the entire substrate, so that the precursor source and the substrate are in uniform contact, and the uniformity of the deposited film is improved to ensure the quality and consistency of the deposited film. It is suitable for mass production and has good practical value.
  • FIG. 1 is a schematic structural diagram of an ALD processing apparatus according to one or more embodiments of the present disclosure
  • Fig. 2 is the front view schematic diagram of Fig. 1;
  • FIG. 3 is a schematic cross-sectional view of FIG. 2 in a second direction
  • FIG. 4 is a schematic structural diagram of a reaction chamber according to one or more embodiments.
  • Example 5 is a schematic structural diagram of the reaction chamber of Example 3.
  • FIG. 6 is a schematic cross-sectional view of a reactor
  • thermocouple installation mechanism 7 is a schematic structural diagram of a thermocouple installation mechanism
  • FIG. 8 is a schematic structural diagram of the lifting device in FIG. 1;
  • FIG. 9 is a schematic diagram of the structural arrangement of the grabbing device.
  • FIG. 10 is a schematic diagram of the structural arrangement of the conveying device
  • FIG. 11 is a schematic flow diagram of an ALD processing method in accordance with one or more disclosed embodiments.
  • This embodiment discloses an ALD processing equipment.
  • the ALD processing apparatus of this embodiment includes a reactor a, a lifting device b, a conveying device c, and a grabbing device d.
  • FIG. 2 is a schematic front view of FIG. 1
  • FIG. 3 is a schematic cross-sectional view of FIG. 2 in the second direction.
  • the reactor a of this embodiment includes a vacuum chamber 1 and a reaction chamber 2 .
  • the reaction chamber 2 is built in the vacuum chamber 1, and the top of the reaction chamber 2 is open.
  • the lifting device b of this embodiment is arranged on the reactor a, the output end of the lifting device b is vertically retractable, and the output end of the lifting device b is provided with a cover 5, and the cover 5 is operable
  • the top of the reaction chamber 2 is sealed so that the reaction chamber 2 is in a sealed environment.
  • the conveying device c is used to convey the substrate into the vacuum chamber 1
  • the grabbing device b is arranged on the cover 5
  • the conveying device c conveys the substrate into the vacuum chamber 1
  • the substrate can be transferred by the grabbing device b
  • the lifting device b is operated to drive the cover 5 to seal on the top of the reaction chamber 2
  • the grabbing device b with the substrate can be moved to the reaction chamber 2 simultaneously. to be processed inside.
  • This embodiment provides a reaction chamber, which is suitable for the ALD processing equipment shown in Embodiment 1.
  • FIG. 4 is a schematic structural diagram of a reaction chamber according to one or more embodiments. With reference to FIGS. 3 and 4 , an inlet channel 3 and an outlet channel 4 are opened at the bottom of the reaction chamber 2 in this embodiment. The inlet channel 3 The centerline of the bottom of the reaction chamber 2 is opposite to the gas outlet channel 4 in the first direction.
  • the precursor source is injected into the reaction chamber 2 from the inlet channel 3 of the reaction chamber 2, and discharged from the outlet channel 4 of the reaction chamber 2. Since the inlet channel 3 and the outlet channel 4 are separated by The centerlines of the first direction of the bottom of the reaction chamber 2 are opposite to each other. Therefore, the fluid field in the reaction chamber 2 is laminar flow, and the intake and exhaust of the precursor source are directly connected to the reaction chamber, avoiding the need for The risk of leakage of the precursor source at the docking point.
  • the precursor source flows in the reaction chamber 2 along the second direction, which not only reduces the volume of the reaction chamber, but also increases the length of the uniform gas and improves the uniformity of the gas flow.
  • the precursor source In order to reduce the phenomenon of turbulent gas, it can ensure that the precursor source fully covers the entire substrate, make the precursor source and the substrate evenly contact, and improve the uniformity of the deposited film to ensure the quality and consistency of the deposited film. High, short cycle, improve the utilization rate of precursor source, suitable for mass production, has good practical value.
  • the second direction and the first direction in this embodiment are two directions perpendicular to each other on the horizontal plane.
  • the air inlet channels 3 in this embodiment are hole-shaped, and there are multiple air inlet channels 3 , and the plurality of air inlet channels 3 are arranged on one side of the bottom of the reaction chamber 2 .
  • the air outlet channels 4 Also in the shape of a hole, a plurality of gas outlet channels 4 are also provided, and the plurality of gas outlet channels 4 are arranged on the other side of the bottom of the reaction chamber 2 .
  • the multiple groups of intake passages 3 there are multiple groups of intake passages 3 in this embodiment, and the multiple groups of intake passages 3 are arranged in sequence along the second direction.
  • the aperture of the gas channel 3 decreases in turn in the direction of the center line of the first direction close to the bottom of the reaction chamber 2.
  • the gas outlet channels 4 are provided in multiple groups, and the plurality of groups of gas outlet channels 4 are arranged in sequence along the second direction.
  • the gas outlet channels 4 of the groups are all arc-shaped, and the aperture of each gas inlet channel 4 of each group of gas outlet channels 4 decreases in turn in the direction of the center line of the first direction close to the bottom of the reaction chamber 2, which can further improve the precursor source.
  • the uniformity of the purging of the substrate improves the forming quality of the deposited film.
  • the air inlet passages 3 and the air outlet passages 4 in this embodiment can also be in other shapes, such as strips and squares. It is arranged on one side of the bottom of the reaction chamber 2, and there are also multiple gas outlet channels 4. The multiple gas outlet channels 4 are arranged on the other side of the bottom of the reaction chamber 2.
  • the size of the second direction of the air inlet channel 3 decreases in turn toward the centerline of the first direction near the bottom of the reaction chamber 2, and the size of the second direction of the gas outlet channel 4 decreases toward the bottom of the reaction chamber 2.
  • the direction of the center line of the first direction decreases sequentially.
  • This embodiment provides a reaction chamber, which is suitable for the ALD processing equipment shown in Embodiment 1 or 2.
  • FIG. 5 is a schematic structural diagram of the reaction chamber of Embodiment 3.
  • the difference between the reaction chamber shown in this embodiment and the reaction chamber shown in Embodiment 2 is that the reaction chamber 2 is provided with two uniform gas plates. 6.
  • the two air distribution plates 6 are arranged opposite to each other with the center line of the first direction at the bottom of the reaction chamber 2.
  • the two air distribution plates 6 are arranged between the air inlet channel 3 and the air outlet channel 4.
  • the two air distribution plates 6 The reaction chamber is divided into an air inlet chamber, a reaction chamber and an air outlet chamber along the second direction, and a plurality of through holes are provided on each of the air distribution plates 6 .
  • the precursor source can enter the intake chamber through the intake channel 3, and then enter the reaction chamber through the uniform gas plate 6 on the same side as the intake chamber, purge the substrate, and then pass through the gas outlet chamber.
  • the air distribution plates 6 on the same side are discharged into the air outlet chamber and discharged through the air outlet channel 4.
  • the two air distribution plates 6 provided can further improve the uniformity of the flow of the precursor source.
  • the central axes of the through holes on the two air distribution plates 6 can be inclined to form a symmetrical figure-eight shape, so that the purging effect will be better.
  • This embodiment provides a reaction chamber, which is suitable for the ALD processing equipment of Embodiments 1-3.
  • FIG. 6 is a schematic cross-sectional view of the reactor of this embodiment.
  • a transfer chamber 7 is fixed at the bottom of the reaction chamber 2 , and the top of the transfer chamber 7 is open.
  • the bottom of the chamber 2 is covered on the top of the transfer chamber 7, so that the transfer chamber 7 forms a sealed cavity.
  • the transfer chamber 7 is provided with two partitions 8, and the two partitions 8 connect the transfer chamber 7 along the way.
  • the second direction is divided into a first chamber 701, a second chamber 702, and a third chamber 703.
  • the air inlet channel 3 communicates with the first chamber 701, and the air outlet channel 4 communicates with the third chamber 703.
  • the bottom of the chamber 701 is provided with an air inlet main hole 9
  • the bottom of the third chamber 703 is provided with an air outlet main hole 10 .
  • the air inlet device can inject the precursor source into the first chamber 701 through the air inlet main hole 9, and then transfer it into the reaction chamber 2 through the first chamber 701, and the precursor source is in the reaction chamber. After the chamber 2 is purged, it enters the third chamber 703 and transfers to the main outlet port 10, and is drawn out through the air extraction device, which can increase the uniform air time of the precursor source and improve the purging efficiency.
  • the top-view section of the first chamber 701 and the third chamber 703 may be fan-shaped, of course, they may also be other shapes, such as square, oval, etc., which are not limited in this embodiment, and the second The chamber 702 can be solid to improve the strength of the transfer chamber 7 .
  • two partitions 8 are arranged between the intake passage 3 and the outlet passage 4
  • the main inlet hole 9 is arranged between the inlet passage 3 and the partition 8 on the same side
  • the main gas outlet hole 10 is arranged between the gas outlet channel 4 and the partition plate 8 on the same side
  • the main gas inlet hole 9 and the main gas outlet hole 10 are arranged opposite to the center line of the first direction of the bottom of the reaction chamber 2, that is, this embodiment
  • the distance between the main inlet hole 9 and the main outlet hole 10 is smaller than the distance between the inlet passage 3 and the outlet passage 4, which can further increase the uniform gas time of the precursor source and improve the purging efficiency.
  • the bottom of the transfer chamber 7 is provided with two opposite protrusions 11 , and two opposite connections are provided between the bottom of the transfer chamber 7 and the bottom of the vacuum chamber 1 Block 12, the top of the connecting block 12 is provided with a positioning groove, and the protrusion 11 is fixedly embedded in the positioning groove of the corresponding connecting block 12, so that the reaction chamber 2 with the transfer chamber 7 can be realized in the vacuum chamber 1.
  • the reaction chamber 2 with the transfer chamber 7 and the vacuum chamber 1 are also detachably connected, so that the reaction chamber 2 with the transfer chamber 7 can be easily taken out from the vacuum chamber 1. In order to perform maintenance cleaning on the reaction chamber 2 of the transfer chamber 7 .
  • the two protrusions 11 can be respectively disposed at the bottom of the main air inlet hole 9 and the main air outlet hole 10
  • the processing equipment further includes an air inlet pipe 13 and an air outlet pipe 14 , wherein, One end of the intake pipe 13 passes through the bottom of the vacuum chamber 1, the connecting block 12 at the bottom of the main intake hole, and the protrusion 11 in turn.
  • One end of the intake pipe 13 is connected to the main intake hole 9, and the other end of the In order to communicate with the air inlet device 15, one end of the air outlet pipe 14 sequentially passes through the bottom of the vacuum chamber 1, the connecting block 12 at the bottom of the main air outlet hole 10, and the protrusion 11, and one end of the air outlet pipe 14 is communicated with the main air outlet hole 10.
  • the other end of the air outlet pipe 14 is used to communicate with the air outlet device 16 .
  • the air inlet pipe 13 connected to the air inlet device 15 and the air outlet pipe 14 connected to the air outlet device 16 are integrated into the corresponding protrusions 11 and the connecting block 12, which can simplify the structure and facilitate manufacturing.
  • this embodiment also A protrusion 11 and a connecting block 12 may be additionally provided to fix the reaction chamber 2 with the transfer chamber 7 in the vacuum chamber 1 , which is not limited in this embodiment.
  • the bottom of the vacuum chamber 1 in this embodiment is connected to one end of the vacuum tube 77, and the other end of the vacuum tube 77 is connected to the vacuum device 78.
  • the sealed vacuum chamber can be 1 Vacuum treatment.
  • This embodiment is applicable to the ALD processing equipment of Embodiments 1-4.
  • the processing equipment of this embodiment further includes a first heater 17 , a second heater 18 and a third heater 19 .
  • the first heater 17 is arranged on the top of the cover 5 , and the first heater The output end of the heater 17 acts on the cover 5, the second heater 18 is arranged between the outer side wall of the reaction chamber 2 and the inner side wall of the vacuum chamber 1, and the output end of the second heater 18 acts on the reaction chamber 2, the third heater 19 is arranged between the bottom of the reaction chamber 2 and the bottom of the vacuum chamber 1, and the third heater 19 acts on the bottom of the reaction chamber 2.
  • the output end of the first heater 17 acts on the cover 5
  • the output end of the second heater 18 acts on the side wall of the reaction chamber 2
  • the third heater 19 acts on the reaction chamber 2 Therefore, independent radiation heating and temperature control of the top, side and bottom regions of the reaction chamber 2 can be achieved, forming a uniform temperature field in a large space, so that the heating temperature of the precursor source can be rapidly increased to Demand temperature, high heating efficiency.
  • the parameters of the first heater 17 may be 380V, 700°C, and the power is 3.5KW
  • the parameters of the second heater 18 may be 380V, 700°C, and the power is 6KW
  • the parameters of the third heater 19 It is 380V, 700°C, and the power is 5KW.
  • the parameters of each heater can also be selected as required, which is not limited in this embodiment.
  • the top of the cover 5 is fixedly provided with a first mounting plate 20
  • the first heater 17 includes a plurality of first heating wires, and the plurality of first heating wires are arranged in concentric corrugations, The plurality of first heating wires are all fixed on the bottom surface of the first mounting plate 20 .
  • two opposite support blocks 21 are arranged on the top of the cover 5 , and the two support blocks 21 can be symmetrically arranged on the center line of the cover 5 in the first direction.
  • the first mounting plate 20 is welded or screwed.
  • the plurality of first heating wires of the first heater 17 can be assembled on the bottom surface of the first mounting plate 20 by welding or embedding, which is not limited in this embodiment.
  • the outer edge of the first mounting plate 20 is bent downward to form a first limiting rib 22 , and the first limiting rib 22 can heat the first heater 17 .
  • the direction is limited to further improve the heating efficiency of the first heater 17 .
  • the processing equipment in this embodiment further includes a first heat reflection component 23 , the first heat reflection component 23 is fixedly arranged on the top surface of the first mounting plate 20 , and the first heat reflection component 23 is used for The heat from the operation of the first heater 17 is reflected to the cover 5 to further increase the heating rate of the precursor source.
  • a fixing block 24 is provided on the top surface of the first mounting plate 20 , and the first heat reflection component 23 is arranged between the first mounting plate 20 and the fixing block 24 , which can be achieved Assembly of the first heat reflection assembly 23 on the first mounting plate 20 .
  • a second mounting plate 25 is arranged between the outer side wall of the reaction chamber 2 and the inner side wall of the vacuum chamber 1 , and both ends of the peripheral surface of the second mounting plate 25 are closed loops.
  • the two mounting plates 25 are fixedly arranged on the top surface of the bottom of the vacuum chamber 1
  • the second heater 18 includes a plurality of second heating wires, each of which is arranged in a coaxial ring shape, and each second heating wire is arranged in a coaxial ring.
  • the heating wires are vertically fixed on the inner side wall of the second mounting plate 25 , and each second heating wire is sleeved on the outer side wall of the reaction chamber 2 to heat the side wall of the reaction chamber 2 .
  • both ends of the second mounting plate 25 are flanged inward to form a second limiting rib 26 .
  • the heating direction is limited to further improve the heating efficiency of the second heater 18 .
  • annular groove 27 is provided on the top surface of the bottom of the vacuum chamber 1 , and the annular groove 27 is arranged between the vacuum chamber 1 and the reaction chamber 2 .
  • the second limiting ribs 6 at the lower ends of the two mounting plates 25 can be fixed in the annular groove 27 by welding or bolting, that is, the assembly of the second mounting plates 25 in the vacuum chamber 1 is realized.
  • the processing equipment of this embodiment further includes a second heat reflection component 28 , the second heat reflection component 28 is fixedly arranged on the outer side of the second mounting plate 25 , and the second heat reflection component 28 is used to When the second heater 18 operates, the heat is reflected to the side wall of the reaction chamber 2 to further increase the heating rate of the precursor source.
  • the processing equipment in this embodiment further includes a third mounting plate 29 , the third mounting plate 29 is fixedly arranged between the second mounting plate 25 and the inner wall of the vacuum chamber 1 , and the third mounting plate 29 is in the shape of a In a closed loop, the second heat reflecting assembly 28 is disposed between the third mounting plate 29 and the second mounting plate 25 to realize the assembly of the second heat reflecting assembly 28 between the vacuum chamber 1 and the reaction chamber 2 .
  • the lower end of the third mounting plate 29 can be fixedly attached to the side wall of the annular groove 27 , and the lower end of the second heat reflection component 28 is located in the annular groove 27 .
  • the processing apparatus of this embodiment further includes a third heat emitting component 30 , the third heat reflecting component 30 is fixedly arranged on the outer side of the third mounting plate 29 , the third heat reflecting component 30 and the second heat reflecting component 30 are The heat reflecting components 28 work together to reflect the heat generated by the second heater 18 to the side walls of the reaction chamber 2 to further increase the heating rate of the precursor source.
  • a first step 31 is provided on the top surface of the bottom of the vacuum chamber 1 , the first step 31 is located outside the annular groove 27 , and the bottom of the third heat reflection component 30 is It is fixed on the first step 31 to realize the assembly of the third heat reflection component 30 in the vacuum chamber 1 .
  • a fourth mounting plate 32 is disposed between the bottom of the reaction chamber 2 and the bottom of the vacuum chamber 1, and the third heater 19 includes a plurality of third heating wires, a plurality of The third heating wires are arranged in concentric corrugations, and a plurality of third heating wires are all fixed on the top surface of the fourth mounting plate 32 .
  • the outer edge of the fourth mounting plate 32 is bent upward to form a third limit rib 33 , and the third limit rib 33 can adjust the heating direction of the third heater 19 Certain restrictions are made to further improve the heating efficiency of the third heater 19 .
  • the processing equipment in this embodiment further includes a fourth heat reflection component 34 , the fourth heat reflection component 34 is fixedly arranged on the bottom surface of the fourth mounting plate 32 , and the fourth heat reflection component 34 is used to The heat from the operation of the third heater 19 is reflected to the bottom of the reaction chamber 2 to further increase the heating rate of the precursor source.
  • two second steps 35 are arranged on the peripheral surface of each connecting block 12 in sequence along the vertical direction, and the fourth mounting plate 32 is fixedly arranged on the second step 35 located above.
  • the fourth reflecting component 33 is fixedly arranged between the second step 32 and the fourth mounting plate 34 located below, so that the fourth mounting plate 32 and the fourth reflecting component 33 can be assembled in the vacuum chamber 1 .
  • the first heat reflection assembly 23 , the second heat reflection assembly 28 , the third heat reflection assembly 30 and the fourth heat reflection assembly 34 all include a plurality of heat reflection plates arranged in sequence, and two adjacent heat reflection plates
  • the contact form is multi-point contact, which has the characteristics of high heat reflection efficiency, energy saving, and improvement of the uniformity of the temperature field.
  • each heat reflection plate in this embodiment may be 0.04-1 mm, and the distance between every two adjacent heat reflection plates is 0.05-0.1 mm, so as to reduce the space size.
  • the heating direction of the corresponding heater can be limited by using each heat reflection component, so that only the reaction chamber 2 is heated, while the temperature of the vacuum chamber 1 can be maintained at normal temperature, and there is no need to use cooling facilities such as water cooling to heat the vacuum chamber. 1. Cool down to simplify the structure and have good practicability.
  • This embodiment is applicable to the ALD processing equipment of Embodiments 1-5.
  • the first heater 17 in this embodiment is arranged on the top of the cover 5, and the cover 5 is connected to the lifting device b, in addition, after the substrate is transported into the reaction chamber 2, the vacuum chamber 1 needs to be Therefore, how to ensure the airtightness of the vacuum chamber during the ALD process without hindering the operation of the heating assembly on the top of the cover 5 and the thermocouple measuring the temperature on the top of the cover is a technical problem that needs to be solved.
  • thermocouple installation mechanism to solve the above problems.
  • FIG. 7 is a schematic structural diagram of a thermocouple installation mechanism.
  • the thermocouple installation mechanism of this embodiment includes a fixed sleeve 36 , a first bellows 37 and a connection sleeve 38 .
  • the fixing sleeve 36 is fixedly arranged on the top surface of the vacuum chamber 1 , and the upper end of the first bellows 37 is fixedly connected to the top of the inner wall of the fixing sleeve 36 , the lower end of the first bellows 37 moves through the lower end of the fixed sleeve 36 and the top of the vacuum chamber 1 in turn, the lower end of the first bellows 37 is located in the vacuum chamber 1, and the connecting sleeve 38 is fixedly arranged in the vacuum chamber 1, the lower end of the first bellows 37 is connected to the top surface of the connecting sleeve 38, and the thermocouples 39 are respectively connected to the first heater 17, the second heater 18 and the third heater 19 to measure the temperature of the top of the cover
  • the thermocouple 39 and the heating wire on the top of the cover 5 are fixedly arranged in the connection sleeve 38 .
  • the connecting sleeve 38 rises and falls along with it, driving the first bellows 37 to expand and contract in the fixed sleeve 36 , because the two ends of the first bellows 37 are connected to the fixed sleeve 36 and the connecting sleeve 38, therefore, the first bellows 37 and the fixing sleeve 36 are sealed, and the inside of the first bellows 37 is communicated with the outside world, so as to ensure the vacuum chamber during ALD processing.
  • the sealing property does not hinder the working of the heating assembly on the top of the cover and the thermocouple for measuring the temperature on the top of the cover, which has good practicability.
  • the top of the fixing sleeve 36 is provided with a first connecting flange 40 , the first connecting flange 40 is annular, and the inner side of the first connecting flange 40 protrudes from the fixing sleeve 36
  • the upper end of the first corrugated pipe 37 is connected to the inner side of the first connecting flange 40 to realize the assembly of the upper end of the first corrugated pipe 37 on the fixed sleeve 36 .
  • the top of the fixing sleeve 36 is provided with a first sealing groove 41
  • the first sealing groove 41 is provided with a first sealing ring 42
  • the first connecting flange 40 is covered with a first sealing groove 41. on the sealing groove 41 to improve the sealing between the fixing sleeve 36 and the first connecting flange 40 .
  • the first connecting flange 40 can be assembled on the top of the fixing sleeve 36 by means of bolt connection, so as to facilitate the replacement and maintenance of the first sealing ring 42 .
  • a second sealing groove 43 is provided on the top surface of the vacuum chamber 1
  • a second sealing ring 44 is provided in the second sealing groove 43
  • the bottom of the fixing sleeve 36 is provided with
  • There is a second connecting flange 45 and the second connecting flange 45 is covered on the second sealing groove 43 to improve the sealing between the fixing sleeve 36 and the top of the vacuum chamber 1 .
  • the second connection flange 45 can be assembled on the top of the vacuum chamber 1 by bolt connection, so as to facilitate the replacement and maintenance of the second sealing ring 42 .
  • the top of the connection sleeve 38 is provided with a third connection flange 46, and the lower end of the first corrugated pipe 37 is connected to the top of the third connection flange 46 to realize the first corrugation
  • the pipe 37 is connected and assembled with the connecting sleeve 38 .
  • connection sleeve 38 and the third connection flange 46 may be welded or integrally formed to improve the sealing effect.
  • connection cover plate 47 the interior of the connection sleeve 38 is sealed by the connection cover plate 47 , the three thermocouples 39 are all arranged on the connection cover plate 47 , and the heating element disposed on the top of the cover 5 is sealed. Both the heating wire and the thermocouple 39 measuring the temperature at the top of the cover 5 are sealed through the connecting cover plate 47 to achieve the assembly of the heating wire of the heating assembly at the top of the cover 5 and the thermocouple 39 measuring the temperature at the top of the cover 5 .
  • connection sleeve 38 is provided with a fourth connection flange 48, and the fourth connection flange 48 is fixedly connected to the connection cover plate 47 to realize the connection between the connection sleeve 38 and the connection. Assembly of the cover plate 47 .
  • connection sleeve 38 and the fourth connection flange 48 can be integrally formed to improve the sealing performance between them.
  • a third sealing groove 49 is provided on the top of the connecting cover plate 47 , a third sealing ring 50 is provided in the third sealing groove 49 , and the fourth connecting flange 48 is covered on the third sealing groove 49 .
  • Three sealing grooves 49 to improve the sealing between the fourth connecting flange 48 and the connecting cover plate 47 .
  • connection flange 48 can be assembled on the connection cover plate 47 by means of bolt connection, so as to facilitate the replacement and maintenance of the third sealing ring 50 .
  • heating wires of the second heating assembly and the third heating assembly and the heating wires used to test the side walls of the reaction chamber and the bottom of the reaction chamber can directly pass through the side walls and the bottom of the vacuum chamber. bottom, which is not limited in this embodiment.
  • This embodiment is applicable to the ALD processing equipment of Embodiments 1-6.
  • the edge of the bottom of the cover 5 is provided with a first stop 51
  • the top opening of the reaction chamber 2 is provided with a boss 52 .
  • the boss 52 can be embedded in the first stop 51 to improve the sealing effect of the reaction chamber 2 .
  • edge of the cover 5 and the top of the reaction chamber 2 may also be in plane contact, which is not limited in this embodiment.
  • FIG. 8 is a schematic structural diagram of the lifting device in FIG. 1 , in conjunction with FIG. 1 , FIG. 2 , FIG. 3 and FIG. 8 , the lifting device b of this embodiment includes a lifting unit 53 , a connecting frame 54 and a connecting rod 55 , wherein the lifting unit 53 is fixedly arranged on the top of the vacuum container 1, the output end of the lifting unit 53 is vertically retractable, the connecting frame 54 is located above the vacuum container 1, and the connecting frame 54 is connected with the output end of the lifting unit 53, that is, the connecting frame 54 can be connected with the lifting unit 53.
  • the output end of the unit 53 rises and falls synchronously, the upper end of the connecting rod 55 is fixedly connected to the connecting frame 54, the lower end of the connecting rod 55 is sealed and passes through the top of the vacuum container 1, and the cover 5 is fixedly arranged on the lower end of the connecting rod 55, and the lifting operation is performed.
  • the unit 53 can drive the cover 5 up and down, thereby realizing the opening or closing of the reaction chamber 2 .
  • two lifting units 53 may be arranged opposite to each other, and two connecting rods 55 may be arranged opposite to each other, and the connecting line of the two lifting units 53 is located in the middle of the connecting line of the two connecting rods 55 On the line, the synchronous operation of the two lifting units 53 can drive the two connecting rods 55 to rise and fall synchronously, so that the moving force of the cover 5 is more balanced, and the lifting and lowering of the cover 5 is more stable.
  • each connecting rod 55 in this embodiment is equipped with a sealing device,
  • Each sealing device includes a first sleeve 56, a second sleeve 57 and a second bellows 58, wherein the first sleeve 56 is fixedly arranged on the peripheral surface of the connecting rod 55, and the first sleeve 54 is located in the vacuum chamber Above the chamber 1, the second sleeve 57 is fixedly arranged on the top surface of the top of the vacuum chamber 1, and the other end of the connecting rod 55 moves through the second sleeve 57 to enter the vacuum chamber 1.
  • the first set of The cylinder 56 and the second sleeve 57 are connected by a second corrugated pipe 58, and the second corrugated pipe 58 is sleeved on the peripheral surface of the connecting rod 55.
  • the connecting rod 55 is raised and lowered, the second corrugated pipe 58 can be driven to expand and contract. To ensure the tightness of the vacuum chamber 1 .
  • a fourth sealing groove 60 is provided on the top surface of the top of the vacuum chamber 1, the bottom cover of the second sleeve 57 is provided on the fourth sealing groove 60, and the fourth sealing A fourth sealing ring 59 is provided in the groove 60 .
  • the top of the vacuum chamber 1 is provided with a through hole for the connecting rod 55 to pass through, the through hole is arranged inside the fourth sealing groove 60 , and a guide sleeve 61 is arranged in the through hole , the connecting rod 55 passes through the guide sleeve 61 in a sliding fit.
  • the guide sleeve 61 can improve the smoothness of the sliding of the connecting rod 55 , and can reduce the wear on the passage hole and improve the service life.
  • a second stop 62 is provided on the top surface of the through hole, and a guide cap 63 is provided on the top of the guide sleeve 61, and the guide cap 63 can be fixedly arranged on the first
  • the second stop port 62 is used to realize the assembly of the guide sleeve 61 in the through hole, and to facilitate the replacement of the guide sleeve 61 .
  • both ends of the inner wall of the guide sleeve 61 in the axial direction are provided with notches 64 to facilitate the assembly of the connecting rod 55 in the guide sleeve 61 .
  • the lower ends of the two connecting rods 55 can be connected to the fixing block 24 by means of bolt connection, so as to realize the assembly of the connecting rods 55 and the cover 5 .
  • the elevating unit 53 in this embodiment can be selected from a mechanism with linear reciprocating motion, such as a ball screw, a linear guide rail, etc., preferably an air cylinder, which has the characteristics of corresponding rapidity.
  • This embodiment is applicable to the ALD processing equipment of Embodiments 1-7.
  • This embodiment discloses a grabbing device d for grabbing the substrate conveyed by the conveying device.
  • FIG. 9 is a schematic diagram of the structural arrangement of the grabbing device.
  • the grabbing device in this embodiment includes a frame 65 and a gripper 66 , wherein the frame 65 can be fixed on the cover by welding or bolting. 5, two grippers 66 are arranged opposite each other, and the two grippers 66 are arranged opposite to each other along the second direction.
  • Each gripper 66 includes two connecting arms 661 and a supporting arm 662. The upper ends of the two connecting arms 661 It is fixedly connected to the end of the frame 65 in the first direction. The lower ends of the two connecting arms 661 are both provided with connecting protrusions 663 extending toward the other gripper.
  • the two connecting protrusions 663 are connected by a supporting arm 662.
  • the conveying device c can convey the substrate to the support arms 662 of the two grippers 66, and then, the conveying device c returns to the position, and the substrate is transferred to the support arms 662 of the two grippers 66, and then the lifting device b is operated, and the substrate follows the The same cover 5 is lowered into the reaction chamber 2 .
  • the middle portions of the two connecting arms 661 are also connected by a reinforcing arm 664 to improve the connection strength of the gripper 66 .
  • the various components constituting the gripper 66 may be connected by welding.
  • This embodiment is applicable to the ALD processing equipment of Embodiments 1-8.
  • detachable enclosure plates 67 are also provided on both sides of the vacuum chamber 1 in the first direction.
  • the enclosure plates 67 can be connected to the vacuum chamber 1 by means of bolts, etc. When the enclosure plate 67 is removed, the components in the vacuum chamber 1 can be maintained and cleaned.
  • the material of the enclosure plate 67 in this embodiment is a transparent material, so as to facilitate the observation of the components in the vacuum chamber 1 .
  • This embodiment is applicable to the ALD processing equipment of Embodiments 1-9.
  • This embodiment discloses the conveying device c of the ALD processing equipment.
  • FIG. 10 is a schematic diagram of the structural arrangement of the conveying device.
  • the conveying device c in this embodiment includes a conveying chamber 68 and a conveying plate 69 .
  • the transfer chamber 68 and the vacuum chamber 1 are in operative communication, the transfer plate 69 is arranged in the transfer chamber 68, the transfer plate 69 is operatively entered into the vacuum chamber 1, and the transfer plate 69 is arranged in the reaction chamber Above the chamber 2, after the substrate is transported on the conveying plate 69 into the vacuum chamber 1, and then falls onto the gripper 66 of the gripping device d, the conveying plate 69 returns to its original position.
  • a first drive unit 70 is provided in the conveying chamber 68 , the output end of the first drive unit 70 can perform linear reciprocating motion, and the conveying plate 69 is fixedly connected to the output end of the first drive unit 70 superior.
  • the first drive unit 70 in this embodiment can be selected from a mechanism with linear reciprocating motion such as a ball screw and a linear guide, preferably an air cylinder, which has the characteristics of corresponding rapidity.
  • two guide assemblies are vertically disposed on both side walls of the conveying chamber 68 in the second direction, and each guide assembly includes a plurality of rollers spaced along the second direction 71.
  • the roller 71 is rotatably connected to the side wall of the conveying chamber 68 in the second direction, and the two sides of the conveying plate 69 in the second direction are respectively arranged between the two guide assemblies.
  • the conveying plate 69 moves, the conveying The plate 69 can roll between the rollers 71 of the two guide assemblies to guide the moving direction of the conveying plate 69 .
  • a conveying groove 72 can be provided on the top surface of the conveying plate 69, and a plurality of substrates can be placed on a supporting frame, and the supporting frame is disposed on the conveying groove 72, which can be used once It can complete the conveying work of multiple substrates, which is suitable for mass production and processing of products.
  • This embodiment is applicable to the ALD processing equipment of Embodiments 1-10.
  • an openable openable is provided on the side of the vacuum chamber 1 in the second direction. Sealing door, when the conveying plate needs to be moved into the vacuum chamber 1, the sealing door is opened, and after the conveying plate 69 is returned, the sealing door can be closed.
  • a slot 73 is provided at the butt joint of the vacuum chamber 1 and the conveying chamber 68 , the top of the slot 73 is open, and the sealing door is operably inserted into the slot 73 to connect the vacuum chamber One side of the chamber 1 in the second direction is sealed.
  • a support frame 74 is provided on the vacuum chamber 1
  • a second drive mechanism 74 is provided on the support frame 74
  • the output end of the second drive mechanism 74 is along the Vertical reciprocating movement
  • the sealing door is connected to the output end of the second driving mechanism 74, and operating the second driving mechanism 74, the sealing door can open or seal one side of the vacuum chamber 1 in the second direction.
  • the second driving unit 75 in this embodiment may be a mechanism with linear reciprocating motion, such as a ball screw and a linear guide, preferably an air cylinder, which has the characteristics of corresponding rapidity.
  • the support frame includes two butted connecting plates 76 , the two connecting plates 76 are butted to form a sealed chamber, the second driving mechanism 74 is fixedly arranged on the top of the sealed chamber, and the sealed chamber The bottom of the sealing chamber is open, and the size of the sealing chamber in the width direction is consistent with the thickness of the sealing door, and the sealing door moves in the sealing chamber 1 .
  • This embodiment discloses an ALD processing method, which is performed on the ALD processing equipment based on the embodiments 1-11.
  • FIG. 11 is a schematic flow diagram of an ALD processing method according to one or more disclosed embodiments, the processing method comprising:
  • the precursor source is injected from the inlet channel of the reaction chamber 2. After the precursor source is purged to the substrate in the reaction chamber 2, the precursor source is discharged from the outlet channel of the reaction chamber 2, that is, the ALD processing of the substrate is completed.
  • S3 further includes heating the reaction chamber 2, and the heating temperature can be set according to processing requirements, which is not limited in this embodiment.
  • S4 in this embodiment specifically includes:
  • the precursor source is injected into the reaction chamber 2 from the inlet channel of the reaction chamber 2 by alternating pulses in turn, and the precursor source in the reaction chamber 2 alternately undergoes chemical adsorption reactions on the surface of the substrate. After the purging is completed, it is discharged from the gas outlet channel of the reaction chamber 2, and the above-mentioned sequential pulses are repeatedly fed into the precursor source to complete the surface self-limited chemical adsorption reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本公开内容涉及一种ALD加工设备以及加工方法。其中的加工设备的反应器包括真空腔室以及反应腔室,反应腔室内置于真空腔室内,反应腔室顶部敞口,反应腔室的底部开设有进气通道及出气通道,进气通道和出气通道以反应腔室的底部的第一方向的中心线相对设置,升降装置设置在反应器上,升降装置的输出端沿竖向伸缩,升降装置的输出端上设置有封盖,封盖可操作地将反应腔室顶部密封,输送装置用于将基体输送至真空腔室内,抓取装置设置在封盖上,抓取装置用于抓取输送至真空腔室内的基体。本公开内容保证沉积膜的成型质量和一致性,成膜效率高,周期短,提高前驱体源的利用率,适合批量性生产,具有很好的实用价值。

Description

一种ALD加工设备以及加工方法
相关申请的交叉引用
本申请要求于2020年12月03日提交、申请号为2020114121844且名称为“一种ALD加工设备以及加工方法”以及申请号为2020229041462且名称为“一种ALD加工设备”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开内容涉及半导体纳米薄膜沉积技术领域,特别涉及一种ALD加工设备以及加工方法。
背景技术
随着IC复杂程度的不断提高,按照著名的摩尔定律和国际半导体行业协会公布的国际半导体技术发展路线图,硅基半导体集成电路中金属-氧化物-半导体场效应晶体管器件的特征尺寸将达到纳米尺度。原子层沉积(Atomic Layer Deposition,ALD)具有优异的三维共形性、大面积的均匀性和精确的亚单层膜厚控制等特点,受到微电子行业和纳米科技领域的青睐。
现有技术中,原子层沉积加工的技术方案为:将基体放置在一个密封的反应器中,再通过将气相前驱体源交替地通入反应器,以在基体上化学吸附并反应形成沉积膜。
在实现本公开内容的技术方案中,申请人发现现有技术中至少存在以下不足:
现有技术中将气相前驱体源交替脉冲地通入反应器的技术方案,难以保证前驱体源对整个基体全面覆盖,容易形成针孔等缺陷,造成前驱体源与基体接触不均匀,导致沉积膜的均匀性差,质量难以保证,同时由于反应不全,前驱体源的大量充入,会造成前驱体源大量残余,成膜效率低,周期长,并且造成前驱体源的浪费。
因此,需对现有技术进行改进。
发明内容
本公开内容提供一种ALD加工设备以及加工方法,解决了或部分解决了现有技术中沉积膜的均匀性差,质量难以保证,且成膜效率低,周期长,造成前驱体源的浪费的技术问题。
在一个方面,本公开内容提供了一种ALD加工设备,所述加工设备包括:
反应器,所述反应器包括真空腔室以及反应腔室,所述反应腔室内置于所述真空腔室内,所述反应腔室顶部敞口,所述反应腔室的底部开设有进气通道及出气通道,所述进气通道和所述出气通道以所述反应腔室的底部的第一方向的中心线相对设置;升降装置,所述升降装置设置在所述反应器上,所述升降装置的输出端沿竖向伸缩,所述升降装置的输出端上设置有封盖,所述封盖可操作地将所述反应腔室顶部密封;输送装置,所述输送装置用于将基体输送至所述真空腔室内;抓取装置,所述抓取装置设置在所述封盖上,所述抓取 装置用于抓取输送至所述真空腔室内的基体。
在一些实施方式中,所述进气通道为孔状,所述进气通道设置有多个,多个所述进气通道设置在所述反应腔室的底部的一侧;所述出气通道为孔状,所述出气通道也设置有多个,多个所述出气通道设置在所述反应腔室的底部的另一侧。
在一些实施方式中,所述进气通道设置有多组,多组所述进气通道沿第二方向依次设置,每组所述进气通道均呈弧形,每组所述进气通道的各个进气通道的孔径向靠近所述反应腔室的底部的第一方向的中心线的方向依次减小;所述出气通道设置有多组,多组所述出气通道沿第二方向依次设置,每组所述出气通道均呈弧形,每组所述出气通道的各个进气通道的孔径向靠近所述反应腔室的底部的第一方向的中心线的方向依次减小。
在一些实施方式中,所述进气通道为条状,所述进气通道设置有多个,多个所述进气通道设置在所述反应腔室的底部的一侧;所述出气通道为条状,所述出气通道也设置有多个,多个所述出气通道设置在所述反应腔室的底部的另一侧。
在一些实施方式中,所述进气通道的第二方向的尺寸向靠近所述反应腔室的底部的第一方向的中心线的方向依次减小;所述出气通道的第二方向的尺寸向靠近所述反应腔室的底部的第一方向的中心线的方向依次减小。
在一些实施方式中,所述反应腔室内设置有两个匀气板,两个所述匀气板以所述反应腔室的底部的第一方向的中心线相对设置,两个所述匀气板设置在所述进气通道及出气通道之间,两个所述匀气板将所述反应腔室沿第二方向分割成进气腔室、反应腔室以及出气腔室,每个所述匀气板上均设置多个通孔。
在一些实施方式中,所述反应腔室的底部固定设置有中转腔室,所述中转腔室的顶部敞口,所述反应腔室的底部覆盖在所述中转腔室的顶部上,所述中转腔室内设置有两个隔板,两个所述隔板将所述中转腔室沿第二方向分割成第一腔室、第二腔室以及第三腔室,所述进气通道和所述第一腔室连通,所述出气通道和所述第三腔室连通,所述第一腔室的底部设置有进气主孔,所述第三腔室的底部设置有出气主孔。
在一些实施方式中,两个所述隔板设置在所述进气通道及出气通道之间,所述进气主孔设置在所述进气通道和同侧的所述隔板之间,所述出气主孔设置在所述出气通道和同侧的所述隔板之间,所述进气主孔和所述出气主孔以所述反应腔室的底部的第一方向的中心线相对设置。
在一些实施方式中,所述中转腔室的底部设置有两个相对的凸起;所述中转腔室的底部和所述真空腔室的底部之间设置有两个相对的连接块,所述连接块顶部设置有定位槽,所述凸起固定嵌设在对应的所述连接块的定位槽中。
在一些实施方式中,两个所述凸起分别设置在所述进气主孔和所述出气主孔的底部;所述加工设备还包括进气管和出气管,其中:所述进气管的一端依次穿过所述真空腔室的底部、位于所述进气主孔底部的所述连接块以及所述凸起,所述进气管的一端与所述进气主孔连通,所述进气管的另一端用于与进气装置连通;所述出气管的一端依次穿过所述真空腔室的底部、位于所述出气主孔底部的所述连接块以及所述凸起,所述出气管的一端与所述出气主孔连通,所述出气管的另一端用于与出气装置连通。
在一些实施方式中,所述加工设备还包括:第一加热器,所述第一加热器设置在所述封盖的顶部上,所述第一加热器的输出端作用在所述封盖上;第二加热器,所述第二加热器设置在所述反应腔室的外侧壁和所述真空腔室的内侧壁之间,所述第二加热器的输出端作用在所述反应腔室的侧壁上;第三加热器,所述第三加热器设置在所述反应腔室的底部和所述真空腔室的底部之间,所述第三加热器作用在所述反应腔室的底部上。
在一些实施方式中,所述封盖的顶部固定设置有第一安装板,所述第一加热器包括多个第一加热丝,多个所述第一加热丝呈同心波纹设置,多个所述第一加热丝均固定在所述第一安装板的底面上。
在一些实施方式中,所述第一安装板的外沿向下折弯,形成第一限位挡边。
在一些实施方式中,所述加工设备还包括第一热反射组件,所述第一热反射组件固定设置在所述第一安装板的顶面上。
在一些实施方式中,所述第一安装板的顶面上设置有固定块,所述第一热反射组件设置在所述第一安装板和所述固定块之间;所述第一热反射组件包括若干依次设置的热反射板,相邻的两个所述热反射板的接触形式为多点接触。
在一些实施方式中,所述反应腔室的外侧壁和所述真空腔室的内侧壁之间设置有第二安装板,所述第二安装板周面两端为闭环,所述第二安装板固定设置在所述真空腔室的底部的顶面上,所述第二加热器包括多个第二加热丝,每个所述第二加热丝均呈同轴的环状设置,每个所述第二加热丝沿竖向固定设置在所述第二安装板的内侧壁上,每个所述第二加热丝均套装在所述反应腔室的外侧壁上。
在一些实施方式中,所述第二安装板的两端均向内侧翻边,形成第二限位挡边。
在一些实施方式中,所述加工设备还包括第二热反射组件,所述第二热反射组件固定设置在所述第二安装板的外侧面上。
在一些实施方式中,所述加工设备还包括第三安装板,所述第三安装板固定设置在所述第二安装板和所述真空腔室的内壁之间,所述第三安装板呈闭环,所述第二热反射组件设置在所述第三安装板以及所述第二安装板之间;所述第二热反射组件包括若干依次设置的热反射板,相邻的两个所述热反射板的接触形式为多点接触。
在一些实施方式中,所述真空腔室的底部的顶面上设置有环状凹槽,所述第三安装板以及所述第二热反射组件均固定设置在所述环状凹槽中。
在一些实施方式中,所述加工设备还包括第三热发射组件,所述第三热反射组件固定设置在所述第三安装板的外侧面上;所述第三热反射组件包括若干依次设置的热反射板,相邻的两个所述热反射板的接触形式为多点接触。
在一些实施方式中,所述真空腔室的底部的顶面上设置有第一台阶,所述第一台阶位于所述环状凹槽的外侧,所述第三热反射组件的底部固定在所述第一台阶上。
在一些实施方式中,所述反应腔室的底部和所述真空腔室的底部之间设置有第四安装板,所述第三加热器包括多个第三加热丝,多个所述第三加热丝呈同心波纹设置,多个所述第三加热丝均固定在所述第四安装板的顶面上。
在一些实施方式中,所述第四安装板的外沿向上折弯,形成第三限位挡边。
在一些实施方式中,所述加工设备还包括第四热反射组件,所述第四热反射组件固定设置在所述第四安装板的底面上;所述第四热反射组件包括若干依次设置的热反射板,相邻的两个所述热反射板的接触形式为多点接触。
在一些实施方式中,每个所述连接块的周面上沿竖向依次设置有两级第二台阶,所述第四安装板固定设置在位于上方的第二台阶上,所述第四反射组件固定设置在位于下方的所述第二台阶和所述第四安装板之间。
在一些实施方式中,所述加工设备还包括热电偶安装机构,所述热电偶安装机构包括:固定套筒,所述固定套管固定设置在所述真空腔室的顶面上;第一波纹管,所述第一波纹管的上端固定连接在所述固定套筒的内壁的顶部上,所述第一波纹管的下端依次活动穿过所述固定套筒的下端以及所述真空腔室的顶部,所述第一波纹管的下端位于所述真空腔室内;连接套筒,所述连接套筒固定设置在所述真空腔室内,所述第一波纹管的下端连接在所述连接套筒的顶面上,设置在所述封盖的顶部的第一加热组件的加热丝和测量所述封盖顶部温度的热电偶均固定设置在所述连接套筒内。
在一些实施方式中,所述固定套管的顶部设置有第一连接法兰,所述第一连接法兰呈环状,所述第一连接法兰的内侧突出所述固定套筒的内壁,所述第一波纹管的上端连接在所述第一连接法兰的内侧。
在一些实施方式中,所述固定套筒的顶部设置有第一密封槽,所述第一密封槽内设置有第一密封圈,所述第一连接法兰盖设所述第一密封槽上。
在一些实施方式中,所述真空腔室的顶面上设置有第二密封槽,所述第二密封槽内设置有第二密封圈;所述固定套筒的底部设置有第二连接法兰,所述第二连接法兰盖设在所述第二密封槽上。
在一些实施方式中,所述连接套筒的顶部设置有第三连接法兰,所述第一波纹管的下端连接在所述第三连接法兰的顶部。
在一些实施方式中,所述连接套筒的内部通过连接盖板密封,三个所述热电偶均设置在所述连接盖板上,设置在所述封盖的顶部的第一加热组件的加热丝和测量所述封盖顶部温度的热电偶均固定设置在所述连接套筒内。
在一些实施方式中,所述封盖的底部的边缘设置有第一止口;所述反应腔室的顶部敞口处设置有凸台,所述凸台可嵌入所述第一止口内。
在一些实施方式中,所述升降装置包括升降单元、连接架以及连接杆,其中:所述升降单元固定设置在所述真空容器的顶部,所述升降单元的输出端沿竖向伸缩;所述连接架位于所述真空容器的上方,所述连接架和所述升降单元的输出端连接;所述连接杆的上端和所述连接架固定连接,所述连接杆的下端密封穿过所述真空容器的顶部,所述封盖固定设置在所述连接杆的下端上。
在一些实施方式中,所述升降单元相对设置有两个,所述连接杆相对设置有两个,两个所述升降单元的连线位于两个所述连接杆的连线的中垂线上。
在一些实施方式中,每个所述连接杆均配置有一个密封装置,每个所述密封装置均包括:第一套筒,所述第一套筒固定设置在所述连接杆的周面上,所述第一套筒位于所 述真空腔室的上方;第二套筒,所述第二套筒固定设置在所述真空腔室的顶部的顶面上,所述连接杆的另一端活动穿过所述第二套筒,以进入所述真空腔室内;第二波纹管,所述第一套筒和所述第二套筒之间通过所述第二波纹管连接,所述第二波纹管套装在所述连接杆的周面上。
在一些实施方式中,所述真空腔室的顶部的顶面上设置有第四密封槽,所述第二套筒的底部盖设在所述密封槽上,所述第四密封槽内设置有密封圈。
在一些实施方式中,所述真空腔室的顶部设置有供所述连接杆穿过的通过孔,所述通过孔设置在所述第四密封槽的内侧,所述通过孔内设置有导套,所述连接杆滑动配合地穿过所述导套。
在一些实施方式中,所述通过孔的顶面上设置有第二止口;所述导套的顶部设置有导帽,所述导帽固定设置在所述第二止口上。
在一些实施方式中,所述导套的内壁的轴向两端均设置有切口。
在一些实施方式中,所述抓取装置包括:框架,所述框架固定设置在所述封盖的底部上;抓手,所述抓手相对设置有两个,两个所述抓手沿第二方向相对设置,每个所述抓手均包括两个连接臂以及支撑臂,两个所述连接臂的上端固定连接在所述框架的第一方向的端部,两个所述连接臂的下端均设置有向另一个所述抓手方向延伸的连接凸起,两个所述连接凸起之间通过所述支撑臂连接。
在一些实施方式中,两个所述连接臂的中部之间还通过加强臂连接。
在一些实施方式中,所述真空腔室的第一方向的两侧还设置有可拆卸的围板。
在一些实施方式中,所述围板的材质为透明材质。
在一些实施方式中,所述输送装置包括输送腔室及输送板,所述输送腔室设置在所述真空腔室的第二方向的一侧,所述输送腔室和所述真空腔室可操作地连通,所述输送板设置在所述输送腔室内,所述输送板可操作地进入所述真空腔室内,所述输送板设置在所述反应腔室的上方。
在一些实施方式中,所述输送腔室内设置有第一驱动单元,所述第一驱动单元的输出端可做直线往返运动,所述输送板固定连接在所述第一驱动单元的输出端上。
在一些实施方式中,所述输送腔室的第二方向的两个侧壁上均沿竖向设置有两个导向组件,每个所述导向组件均包括多个沿第二方向间隔设置的滚轮,所述滚轮可转动地连接在所述输送腔室的第二方向的侧壁上,所述输送板的第二方向的两侧分别设置在两个所述导向组件之间。
在一些实施方式中,所述输送板的顶面上设置有输送凹槽。
在一些实施方式中,所述真空腔室的第二方向的一侧设置有可开启的密封门。
在一些实施方式中,所述真空腔室和所述输送腔室对接处设置有插槽,所述插槽的顶部开口,所述密封门可操作地插设在所述插槽中,以将所述真空腔室的第二方向的一侧密封;所述真空腔室上设置有支撑架,所述支撑架上设置有第二驱动机构,所述第二驱动机构的输出端沿竖向往返移动,所述密封门连接在所述第二驱动机构的输出端上。
在一些实施方式中,所述支撑架包括两个对接的连接板,两个所述连接板对接以 形成一个密封腔室,所述第二驱动机构固定设置在所述密封腔室的顶部,所述密封腔室的底部敞口,所述密封腔室的宽度方向的尺寸和所述密封门的厚度相一致。
在另一方面,本公开内容还提供了一种ALD加工方法,所述加工方法是在上述ALD加工设备进行的,所述加工方法包括:通过输送装置将基体输送至真空腔室内,并将基体转运至抓取装置上;操作输送装置撤离真空腔室,真空腔室密封,并将真空腔室抽真空处置;操作升降装置,将封盖盖设在反应腔室的顶部上,基体位于密封的反应腔室内;从反应腔室的进气通道注入前驱体源,前驱体源在反应腔室内对基体吹扫完毕后,从反应腔室的出气通道排出,即完成基体的ALD加工。
本公开内容中,由于前驱体源是从反应腔室的进气通道注入到反应腔室内的,并从反应腔室的出气通道排出,由于进气通道和出气通道以反应腔室的底部的第一方向的中心线相对设置,因此,反应腔室内的流体场为层流,且前驱体源的进气和抽气直接与反应腔室连通的,避免了前驱体源在对接处泄露的风险,且前驱体源沿第二方向在反应腔室内流动,不仅可减小反应腔室的体积,还增加了匀气的长度,提高了气流的均匀性,以减少乱气的现象,可保证前驱体源对整个基体全面覆盖,使前驱体源与基体接触均匀,提高沉积膜的均匀性,以保证沉积膜的成型质量和一致性,成膜效率高,周期短,提高前驱体源的利用率,适合批量性生产,具有很好的实用价值。
附图说明
为了更清楚地说明本公开内容实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开内容的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为依据本公开的一个或多个实施例的ALD加工设备的结构示意图;
图2为图1的正视示意图;
图3为图2的第二方向的剖面示意图;
图4为依据一个或多个实施例的反应腔室的结构示意图;
图5为实施例3的反应腔室的结构示意图;
图6为反应器的剖面示意图;
图7为热电偶安装机构的结构示意图;
图8为图1中的升降装置的结构示意图;
图9为抓取装置的结构布置示意图;
图10为输送装置的结构布置示意图;
图11为依据公开的一个或多个实施例的ALD加工方法的流程示意图。
附图中:
a-反应器、b-升降装置、c-输送装置,d-抓取装置,基体e,1-真空腔室,2-反应腔室,3-进气通道,4-出气通道,5-封盖,6-匀气板,7-中转腔室,701-第一腔室,702-第二腔室,703-第三腔室,8-隔板,9-进气主孔,10-出气主孔,11-凸起,12-连接块,13-进气管,14- 出气管,15-进气装置,16-出气装置,17-第一加热器,18-第二加热器,19-第三加热器,20-第一安装板,21-支撑块,22-第一限位挡边,23-第一热反射组件,24-固定块,25-第二安装板,26-第二限位挡边,27-环状凹槽,28-第二热反射组件,29-第三安装板,30-第三热反射组件,31-第一台阶,32-第四安装板,33-第三限位挡边,34-第四热反射组件,35-第二台阶,36-固定套筒、37-第一波纹管、38-连接套筒、39-热电偶,40-第一连接法兰,41-第一密封槽,42-第一密封圈,43-第二密封槽,44-第二密封圈,45-第二连接法兰,46-第三连接法兰,47-连接盖板,48-第四连接法兰,49-第三密封槽,50-第三密封圈,51-第一止口,52-凸台,53-升降单元,54-连接架,55-连接杆,56-第一套筒,57-第二套筒,58-第二波纹管,59-第四密封槽,60-第四密封槽,61-导套,62-第二止口,63-导帽,64-切口,65-框架,66-抓手,661-连接臂,662-支撑臂,663-连接凸起,664-加强臂,67-围板,68-输送腔室,69-输送板,70-第一驱动单元,71-滚轮,72-输送凹槽,73-插槽,74-支撑架,75-第二驱动单元,76-连接板,77-真空管,78-抽真空装置。
具体实施方式
需要说明的是,在不冲突的情况下,本公开内容中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开内容。
实施例1:
本实施例公开了一种ALD加工设备。
图1为依据本公开的一个或多个实施例的ALD加工设备的结构示意图,结合图1,本实施例的ALD加工设备包括反应器a、升降装置b、输送装置c以及抓取装置d。
图2为图1的正视示意图,图3为图2的第二方向的剖面示意图,结合图1-图3,本实施例的反应器a包括真空腔室1以及反应腔室2,反应腔室2内置于真空腔室1内,反应腔室2顶部敞口。
结合图1-图3,本实施例的升降装置b设置在反应器a上,升降装置b的输出端沿竖向伸缩,升降装置b的输出端上设置有封盖5,封盖5可操作地将反应腔室2顶部密封,以使反应腔室2处于一个密封环境。
结合图1以及图2,本实施例中,输送装置c用于将基体输送至真空腔室1内,抓取装置b设置在封盖5上,输送装置c将基体输送至真空腔室1内后,可通过抓取装置b将基体中转,随后,操作升降装置b,带动封盖5密封在反应腔室2的顶部上,同步可将带有基体的抓取装置b移动至反应腔室2内进行待加工。
实施例2:
本实施例提供了一种反应腔室,适用于实施例1所示的ALD加工设备。
图4为依据一个或多个实施例的反应腔室的结构示意图,结合图3以及图4,本实施例的反应腔室2的底部开设有进气通道3及出气通道4,进气通道3和出气通道4以反应腔室2的底部的第一方向的中心线相对设置。
本实施例中,前驱体源是从反应腔室2的进气通道3注入到反应腔室2内的,并从反应腔室2的出气通道4排出,由于进气通道3和出气通道4以反应腔室2的底部的第 一方向的中心线相对设置,因此,反应腔室2内的流体场为层流,且前驱体源的进气和抽气直接与反应腔室连通的,避免了前驱体源在对接处泄露的风险,另外,前驱体源沿第二方向在反应腔室2内流动,不仅可减小反应腔室的体积,还增加了匀气的长度,提高了气流的均匀性,以减少乱气的现象,可保证前驱体源对整个基体全面覆盖,使前驱体源与基体接触均匀,提高沉积膜的均匀性,以保证沉积膜的成型质量和一致性,成膜效率高,周期短,提高前驱体源的利用率,适合批量性生产,具有很好的实用价值。
需要说明的是,本实施例的第二方向和第一方向为水平面的相互垂直的两个方向。
结合图4,本实施例中的进气通道3为孔状,进气通道3设置有多个,多个进气通道3设置在反应腔室2的底部的一侧,相应地,出气通道4也为孔状,出气通道4也设置有多个,多个出气通道4设置在反应腔室2的底部的另一侧。
结合图4,本实施例的进气通道3设置有多组,多组进气通道3沿第二方向依次设置,每组进气通道3均呈弧形,每组进气通道3的各个进气通道3的孔径向靠近反应腔室2的底部的第一方向的中心线的方向依次减小,相应地,出气通道4设置有多组,多组出气通道4沿第二方向依次设置,每组出气通道4均呈弧形,每组出气通道4的各个进气通道4的孔径向靠近反应腔室2的底部的第一方向的中心线的方向依次减小,这样可进一步提高前驱体源对基体吹扫的均匀性,提高沉积膜的成型质量。
当然,本实施例中的进气通道3和出气通道4也可以为其他形状,例如条状以及方形等,在条状的前提下,进气通道3设置有多个,多个进气通道3设置在反应腔室2的底部的一侧,出气通道4也设置有多个,多个出气通道4设置在反应腔室2的底部的另一侧,而为了保证吹扫的均匀性,本实施例的进气通道3的第二方向的尺寸向靠近反应腔室2的底部的第一方向的中心线的方向依次减小,出气通道4的第二方向的尺寸向靠近反应腔室2的底部的第一方向的中心线的方向依次减小。
实施例3:
本实施例提供了一种反应腔室,适用于实施例1或2所示的ALD加工设备。
图5为实施例3的反应腔室的结构示意图,本实施例所示的反应腔室和实施例2所示的反应腔室的区别在于:该反应腔室2内设置有两个匀气板6,两个匀气板6以反应腔室2的底部的第一方向的中心线相对设置,两个匀气板6设置在进气通道3及出气通道4之间,两个匀气板6将反应腔室沿第二方向分割成进气腔室、反应腔室以及出气腔室,每个匀气板6上均设置多个通孔。
前驱体源可通过进气通道3进入到进气腔室中,再通过和进气腔室同一侧的匀气板6进入到反应腔室中,对基体进行吹扫,随后通过和出气腔室同一侧的匀气板6排至出气腔室中,并通过出气通道4排出,设置的两个匀气板6可进一步提高前驱体源流动的均匀性。
另外,本实施例中,两个匀气板6上的通孔的中心轴可倾斜设置,可形成对称的八字形,这样吹扫效果会更好。
实施例4:
本实施例提供了一种反应腔室,适用于实施例1-3的ALD加工设备。
图6为本实施例的反应器的剖面示意图,结合图3以及图6,本实施例中,反应腔室2的底部固定设置有中转腔室7,中转腔室7的顶部敞口,反应腔室2的底部覆盖在中转腔室7的顶部上,以使中转腔室7形成一个密封腔体,中转腔室7内设置有两个隔板8,两个隔板8将中转腔室7沿第二方向分割成第一腔室701、第二腔室702以及第三腔室703,进气通道3和第一腔室701连通,出气通道4和第三腔室703连通,第一腔室701的底部设置有进气主孔9,第三腔室703的底部设置有出气主孔10。
在具体实施时,进气装置可通过进气主孔9将前驱体源注入到第一腔室701内,再通过第一腔室701中转输入到反应腔室2内,前驱体源在反应腔室2内吹扫后,进入到第三腔室703内中转至出气主孔10,并通过抽气装置引出,这样可增加前驱体源的匀气时间,提高吹扫效率。
本实施例中,第一腔室701和第三腔室703的俯视截面可以呈扇形,当然,其也可以为其他形状,例如方形、椭圆形等,本实施例对此不作限制,而第二腔室702可为实心,提高中转腔室7的强度。
结合图3以及图6,本实施例中,两个隔板8设置在进气通道3及出气通道4之间,进气主孔9设置在进气通道3和同侧的隔板8之间,出气主孔10设置在出气通道4和同侧的隔板8之间,进气主孔9和出气主孔10以反应腔室2的底部的第一方向的中心线相对设置,即本实施例的进气主孔9和出气主孔10之间的距离小于进气通道3及出气通道4之间的距离,这样可进一步增加前驱体源的匀气时间,提高吹扫效率。
结合图3以及图6,本实施例中,中转腔室7的底部设置有两个相对的凸起11,中转腔室7的底部和真空腔室1的底部之间设置有两个相对的连接块12,连接块12顶部设置有定位槽,凸起11固定嵌设在对应的连接块12的定位槽中,这样即可实现带中转腔室7的反应腔室2在真空腔室1内的固定,另外,带中转腔室7的反应腔室2和真空腔室1也是一种可拆卸的连接方式,这样可方便将带中转腔室7的反应腔室2从真空腔室1内取出,以对中转腔室7的反应腔室2进行维护清扫。
结合图3以及图6,本实施例中,两个凸起11可分别设置在进气主孔9和出气主孔10的底部,而该加工设备还包括进气管13和出气管14,其中,进气管13的一端依次穿过真空腔室1的底部、位于进气主孔底部的连接块12以及凸起11,进气管13的一端与进气主孔9连通,进气管13的另一端用于与进气装置15连通,而出气管14的一端依次穿过真空腔室1的底部、位于出气主孔10底部的连接块12以及凸起11,出气管14的一端与出气主孔10连通,出气管14的另一端用于与出气装置16连通。通过对进气装置15和出气装置16的操作,即可实现前驱体源在反应腔室2内的吹扫。
本实施例将和进气装置15连通的进气管13以及和出气装置16连接的出气管14集成在对应的凸起11以及连接块12中,可精简结构,方便制造,当然,本实施例还可以另设凸起11以及连接块12,以将带中转腔室7的反应腔室2在真空腔室1内固定,本实施例对此不作限制。
结合图1-图3,本实施例的真空腔室1的底部和真空管77的一端连通,真空管77的另一端和抽真空装置78连接,通过操作抽真空装置78,可将密封的真空腔室1抽真空 处理。
实施例5:
本实施例可适用于实施例1-4的ALD加工设备。
结合图3以及图6,本实施例的加工设备还包括第一加热器17、第二加热器18以及第三加热器19,第一加热器17设置在封盖5的顶部上,第一加热器17的输出端作用在封盖5上,第二加热器18设置在反应腔室2的外侧壁和真空腔室1的内侧壁之间,第二加热器18的输出端作用在反应腔室2的侧壁上,第三加热器19设置在反应腔室2的底部和真空腔室1的底部之间,第三加热器19作用在反应腔室2的底部上。
本实施例中,由于第一加热器17的输出端作用在封盖5上,第二加热器18的输出端作用在反应腔室2的侧壁上,第三加热器19作用在反应腔室2的底部上,因此,可实现反应腔室2的顶部、侧部及底部三个区域独立辐射加热和控温,在大空间内形成均匀温度场,以使前驱体源的加热温度快速升温至需求温度,加热效率高。
具体到本实施例中,第一加热器17的参数可以为380V,700℃,功率为3.5KW,第二加热器18的参数为380V,700℃,功率为6KW,第三加热器19的参数为380V,700℃,功率为5KW,当然,各个加热器的参数也可以根据需要进行选择,本实施例对此不作限制。
结合图3以及图6,本实施例中,封盖5的顶部固定设置有第一安装板20,第一加热器17包括多个第一加热丝,多个第一加热丝呈同心波纹设置,多个第一加热丝均固定在第一安装板20的底面上。
本实施例中,封盖5的顶部上设置有两个相对的支撑块21,两个支撑块21可以封盖5的第一方向的中心线对称设置,第一安装板20采用焊接或者螺钉的方式装配在两个支撑块21上,而第一加热器17的多个第一加热丝可采用焊接或者嵌设的方式装配在第一安装板20的底面上,本实施例对此不作限制。
结合图3以及图6,本实施例中,第一安装板20的外沿向下折弯,形成第一限位挡边22,第一限位挡边22可对第一加热器17的加热方向进行一定限制,以进一步提高第一加热器17的加热效率。
结合图3以及图6,本实施例中的加工设备还包括第一热反射组件23,第一热反射组件23固定设置在第一安装板20的顶面上,第一热反射组件23用于将第一加热器17工作时的热量反射至封盖5上,以进一步提高前驱体源的加热速率。
结合图3以及图6,本实施例中,第一安装板20的顶面上设置有固定块24,第一热反射组件23设置在第一安装板20和固定块24之间,即可实现第一热反射组件23在第一安装板20上的装配。
结合图3以及图6,本实施例中,反应腔室2的外侧壁和真空腔室1的内侧壁之间设置有第二安装板25,第二安装板25周面两端为闭环,第二安装板25固定设置在真空腔室1的底部的顶面上,第二加热器18包括多个第二加热丝,每个第二加热丝均呈同轴的环状设置,每个第二加热丝沿竖向固定设置在第二安装板25的内侧壁上,每个第二加热丝均套装在反应腔室2的外侧壁上,以对反应腔室2的侧壁进行加热。
结合图3以及图6,本实施例中,第二安装板25的两端均向内侧翻边,形成第二 限位挡边26,第二限位挡边26可对第二加热器18的加热方向进行一定限制,以进一步提高第二加热器18的加热效率。
结合图3以及图6,本实施例中,真空腔室1的底部的顶面上设置有环状凹槽27,环状凹槽27设置在真空腔室1和反应腔室2之间,第二安装板25的下端的第二限位挡边6可通过焊接或螺栓连接的方式固定在该环状凹槽27中,即实现了第二安装板25在真空腔室1内的装配。
结合图3以及图6,本实施例的加工设备还包括第二热反射组件28,第二热反射组件28固定设置在第二安装板25的外侧面上,第二热反射组件28用于将第二加热器18工作时的热量反射至反应腔室2的侧壁上,以进一步提高前驱体源的加热速率。
结合图3以及图6,本实施例的加工设备还包括第三安装板29,第三安装板29固定设置在第二安装板25和真空腔室1的内壁之间,第三安装板29呈闭环,第二热反射组件28设置在第三安装板29和第二安装板25之间,以实现第二热反射组件28在真空腔室1和反应腔室2之间的装配。
本实施例中,第三安装板29的下端可固定贴设在环状凹槽27的侧壁上,而第二热反射组件28的下端位于环状凹槽27中。
结合图3以及图6,本实施例的加工设备还包括第三热发射组件30,第三热反射组件30固定设置在第三安装板29的外侧面上,第三热反射组件30和第二热反射组件28共同作用,以将第二加热器18工作时的热量反射至反应腔室2的侧壁上,以进一步提高前驱体源的加热速率。
结合图3以及图6,本实施例中,真空腔室1的底部的顶面上设置有第一台阶31,第一台阶31位于环状凹槽27的外侧,第三热反射组件30的底部固定在第一台阶31上,以实现第三热反射组件30在真空腔室1内的装配。
结合图3以及图6,本实施例中,反应腔室2的底部和真空腔室1的底部之间设置有第四安装板32,第三加热器19包括多个第三加热丝,多个第三加热丝呈同心波纹设置,多个第三加热丝均固定在第四安装板32的顶面上。
结合图3以及图6,本实施例中,第四安装板32的外沿向上折弯,形成第三限位挡边33,第三限位挡边33可对第三加热器19的加热方向进行一定限制,以进一步提高第三加热器19的加热效率。
结合图3以及图6,本实施例中的加工设备还包括第四热反射组件34,第四热反射组件34固定设置在第四安装板32的底面上,第四热反射组件34用于将第三加热器19工作时的热量反射至反应腔室2的底部上,以进一步提高前驱体源的加热速率。
结合图3以及图6,本实施例中,每个连接块12的周面上沿竖向依次设置有两级第二台阶35,第四安装板32固定设置在位于上方的第二台阶35上,第四反射组件33固定设置在位于下方的第二台阶32和第四安装板34之间,即可实现第四安装板32以及第四反射组件33在真空腔室1内的装配。
本实施例中,第一热反射组件23、第二热反射组件28、第三热反射组件30以及第四热反射组件34均包括若干依次设置的热反射板,相邻的两个热反射板的接触形式为 多点接触,具有热反射效率高,节约能源,提高温度场的均匀性的特点。
本实施例的各个热反射板的厚度可以为0.04-1mm,每两个相邻的所述热反射板之间的间距为0.05-0.1mm,以减小空间尺寸。
本实施例利用各个热反射组件可限制对应的加热器的加热方向,这样只对反应腔室2进行加热,而真空腔室1的温度可保持常温,不需要采用水冷等降温设施对真空腔室1进行降温,以精简结构,具有很好的实用性。
实施例6:
本实施例可适用于实施例1-5的ALD加工设备。
由于本实施例的第一加热器17布置在封盖5的顶部,而封盖5是和升降装置b连接的,另外,当基体被输送至反应腔室2内后,需将真空腔室1抽真空,因此,如何保证ALD加工过程中真空腔室的密封性,又不妨碍封盖5的顶部的加热组件和测量封盖顶部温度的热电偶工作,是即需解决的技术问题。
基于此,本实施例设置了热电偶安装机构,以解决上述问题。
图7为热电偶安装机构的结构示意图,结合图6以及图7,本实施例的热电偶安装机构包括固定套筒36、第一波纹管37以及连接套筒38。
结合图1、图2以及图7,本实施例中,固定套筒36固定设置在真空腔室1的顶面上,第一波纹管37的上端固定连接在固定套筒36的内壁的顶部上,第一波纹管37的下端依次活动穿过固定套筒36的下端以及真空腔室1的顶部,第一波纹管37的下端位于真空腔室1内,连接套筒38固定设置在真空腔室1内,第一波纹管37的下端连接在连接套筒38的顶面上,热电偶39分别和第一加热器17、第二加热器18以及第三加热器19连接,测量封盖顶部温度的热电偶39以及封盖5的顶部的加热丝均固定设置在连接套筒38内。
当第一加热器17随着封盖5升降时,连接套筒38随同升降,带动第一波纹管37在固定套筒36内伸缩,由于第一波纹管37的两端是和固定套筒36以及连接套筒38的,因此,第一波纹管37和固定套筒36之间是密封设置的,而第一波纹管37内部是和外界相通的,从而可保证在ALD加工时真空腔室的密封性,又不妨碍封盖的顶部的加热组件和测量封盖顶部温度的热电偶工作,具有很好的实用性。
结合图6以及图7,本实施例中,固定套筒36的顶部设置有第一连接法兰40,第一连接法兰40呈环状,第一连接法兰40的内侧突出固定套筒36的内壁,第一波纹管37的上端连接在第一连接法兰40的内侧,以实现第一波纹管37的上端在固定套筒36上的装配。
结合图6以及图7,本实施例中,固定套筒36的顶部设置有第一密封槽41,第一密封槽41内设置有第一密封圈42,第一连接法兰40盖设第一密封槽41上,以提高固定套筒36和第一连接法兰40之间的密封性。
本实施例中,第一连接法兰40可采用螺栓连接的方式装配在固定套筒36的顶部上,以方便对第一密封圈42的更换维护。
结合图6以及图7,本实施例中,真空腔室1的顶面上设置有第二密封槽43,第 二密封槽43内设置有第二密封圈44,而固定套筒36的底部设置有第二连接法兰45,第二连接法兰45盖设在第二密封槽43上,以提高固定套筒36和真空腔室1的顶部之间的密封性。
本实施例中,第二连接法兰45可采用螺栓连接的方式装配在真空腔室1的顶部上,以方便对第二密封圈42的更换维护。
结合图6以及图7,本实施例中,连接套筒38的顶部设置有第三连接法兰46,第一波纹管37的下端连接在第三连接法兰46的顶部,以实现第一波纹管37同连接套筒38连接装配。
本实施例中,连接套筒38的顶部可以和第三连接法兰46采用焊接或者一体成型,以提高密封效果。
结合图6以及图7,本实施例中,连接套筒38的内部通过连接盖板47密封,三个热电偶39均设置在连接盖板47上,设置在封盖5的顶部的加热组件的加热丝和测量封盖5顶部温度的热电偶39均密封穿过该连接盖板47,以实现封盖5的顶部的加热组件的加热丝和测量封盖5顶部温度的热电偶39的装配。
结合图6以及图7,本实施例中,连接套筒38的底部设置有第四连接法兰48,第四连接法兰48固定连接在连接盖板47上,以实现连接套筒38和连接盖板47的装配。
本实施例中,连接套筒38的底部和第四连接法兰48可一体成型,以提高二者之间的密封性。
结合图6以及图7,本实施例中,连接盖板47的顶部设置有第三密封槽49,第三密封槽49内设置有第三密封圈50,第四连接法兰48盖设在第三密封槽49内,以提高第四连接法兰48和连接盖板47之间的密封性。
本实施例中,第四连接法兰48可采用螺栓连接的方式装配在连接盖板47上,以方便对第三密封圈50的更换维护。
需要说明的是,第二加热组件和第三加热组件的电热丝和用于测试反应腔室的侧壁和反应腔室底部的加热丝可直接穿过真空腔室的侧壁和真空腔室的底部,本实施例对此不作限制。
实施例7:
本实施例可适用于实施例1-6的ALD加工设备。
结合图3,本实施例中,封盖5的底部的边缘设置有第一止口51,而反应腔室2的顶部敞口处设置有凸台52,当封盖5将反应腔室2的顶部敞口密封时,凸台52可嵌入到第一止口51内,以提高反应腔室2的密封效果。
当然,本实施例中,封盖5的边缘和反应腔室2的顶部也可以为平面接触,本实施例对此不作限制。
图8为图1中的升降装置的结构示意图,结合图1、图2、图3以及图8,本实施例的升降装置b包括升降单元53、连接架54以及连接杆55,其中,升降单元53固定设置在真空容器1的顶部,升降单元53的输出端沿竖向伸缩,连接架54位于真空容器1的上方,连接架54和升降单元53的输出端连接,即连接架54可和升降单元53的输出端同 步升降,连接杆55的上端和连接架54固定连接,连接杆55的下端密封穿过真空容器1的顶部,封盖5即固定设置在连接杆55的下端上,操作升降单元53,即可带动的封盖5升降,进而实现反应腔室2的打开或封闭。
结合图1,具体到本实施例中,升降单元53可相对设置有两个,连接杆55相对设置有两个,两个升降单元53的连线位于两个连接杆55的连线的中垂线上,两个升降单元53的同步工作,可带动两个连接杆55同步升降,使封盖5的移动受力更加均衡,封盖5的升降更加稳定。
结合图2、图3以及图8,由于连接杆55穿过真空腔室1的顶面,为了保证真空腔室1的密封性,本实施例的每个连接杆55均配置有一个密封装置,每个密封装置均包括第一套筒56、第二套筒57以及第二波纹管58,其中,第一套筒56固定设置在连接杆55的周面上,第一套筒54位于真空腔室1的上方,第二套筒57固定设置在真空腔室1的顶部的顶面上,连接杆55的另一端活动穿过第二套筒57,以进入真空腔室1内,第一套筒56和第二套筒57之间通过第二波纹管58连接,第二波纹管58套装在连接杆55的周面上,当连接杆55在升降时,可带动第二波纹管58伸缩,以保证真空腔室1的密封性。
结合图3以及图8,本实施例中,真空腔室1的顶部的顶面上设置有第四密封槽60,第二套筒57的底部盖设在第四密封槽60上,第四密封槽60内设置有第四密封圈59。
结合图3以及图8,本实施例中,真空腔室1的顶部设置有供连接杆55穿过的通过孔,通过孔设置在第四密封槽60的内侧,通过孔内设置有导套61,连接杆55滑动配合地穿过导套61。导套61可提高连接杆55滑动的顺畅度,并可减少对通过孔的磨损,提高使用寿命。
结合图3以及图8,本实施例中,通过孔的顶面上设置有第二止口62,导套61的顶部设置有导帽63,导帽63可通过螺栓连接的方式固定设置在第二止口62上,以实现导套61在通过孔内的装配,并方便导套61的更换。
结合图8,本实施例中,导套61的内壁的轴向两端均设置有切口64,以方便连接杆55在导套61内的装配。
结合图8,本实施例中,两个连接杆55的下端可通过螺栓连接的方式连接在固定块24上,以实现连接杆55同封盖5的装配。
需要说明的是,本实施例的升降单元53可选用具有直线往返运动的机构,例如滚珠丝杠、线性导轨等,优选为气缸,具有相应迅速的特点。
实施例8:
本实施例可适用于实施例1-7的ALD加工设备。
本实施例公开了一种抓取装置d,以用于将输送装置输送的基体抓取。
图9为抓取装置的结构布置示意图,结合图2、图3以及图9,本实施例抓取装置包括框架65以及抓手66,其中,框架65可采用焊接或者螺栓连接固定设置在封盖5的底部上,抓手66相对设置有两个,两个抓手66沿第二方向相对设置,每个抓手66均包括两个连接臂661以及支撑臂662,两个连接臂661的上端固定连接在框架65的第一方向的端部,两个连接臂661的下端均设置有向另一个抓手方向延伸的连接凸起663,两个连接 凸起663之间通过支撑臂662连接,输送装置c可将基体输送至两个抓手66的支撑臂662上,随后,输送装置c回位,基体即转运至两个抓手66的支撑臂662上,再操作升降装置b,基体随同封盖5下降至反应腔室2中。
结合图9,本实施例中,两个连接臂661的中部之间还通过加强臂664连接,以提高抓手66的连接强度。
本实施例中,构成抓手66的各个构件可采用焊接的方式连接。
实施例9:
本实施例可适用于实施例1-8的ALD加工设备。
结合图1以及图2,本实施例中,真空腔室1的第一方向的两侧还设置有可拆卸的围板67,围板67可通过螺栓等方式连接在真空腔室1上,当将围板67拆卸下来时,可对真空腔室1内的构件进行维护清扫。
本实施例的围板67的材质为透明材质,以方便对真空腔室1内的构件进行观察。
实施例10:
本实施例可适用于实施例1-9的ALD加工设备。
本实施例公开了ALD加工设备的输送装置c。
图10为输送装置的结构布置示意图,结合图1、图2以及图10,本实施例的输送装置c包括输送腔室68及输送板69,输送腔室68设置在真空腔室1的第二方向的一侧,输送腔室68和真空腔室1可操作地连通,输送板69设置在输送腔室68内,输送板69可操作地进入真空腔室1内,输送板69设置在反应腔室2的上方,当基体在输送板69上输送至真空腔室1内后,再落入到抓取装置d的抓手66上后,输送板69即回复原位。
结合图10,本实施例中,输送腔室68内设置有第一驱动单元70,第一驱动单元70的输出端可做直线往返运动,输送板69固定连接在第一驱动单元70的输出端上。
需要说明的是,本实施例的第一驱动单元70可选用滚珠丝杠、线性导轨等具有直线往返运动的机构,优选为气缸,具有相应迅速的特点。
结合图10,本实施例中,输送腔室68的第二方向的两个侧壁上均沿竖向设置有两个导向组件,每个导向组件均包括多个沿第二方向间隔设置的滚轮71,滚轮71可转动地连接在输送腔室68的第二方向的侧壁上,输送板69的第二方向的两侧分别设置在两个导向组件之间,当输送板69移动时,输送板69可在两个导向组件的滚轮71之间滚动,以对输送板69的移动方向进行导向。
结合图11,本实施例中,输送板69的顶面上可设置有输送凹槽72,多个基体可放置在一个支撑框架上,该支撑框架设置在该输送凹槽72上,即可一次性完成多个基体的输送工作,适合产品的批量性生产加工。
实施例11:
本实施例可适用于实施例1-10的ALD加工设备。
由于输送板69需进入到真空腔室1内,但真空腔室1需要保证密封,以进行抽真空,基于此,本实施例在真空腔室1的第二方向的一侧设置有可开启的密封门,当输送板需要移动至真空腔室1内时,将密封门开启,输送板69回位后,将密封门关闭即可。
结合图10,本实施例中,真空腔室1和输送腔室68对接处设置有插槽73,插槽73的顶部开口,密封门可操作地插设在插槽73中,以将真空腔室1的第二方向的一侧密封。
结合图1、图2、图3以及图10,本实施例中,真空腔室1上设置有支撑架74,支撑架74上设置有第二驱动机构74,第二驱动机构74的输出端沿竖向往返移动,密封门连接在第二驱动机构74的输出端上,操作第二驱动机构74,即可使密封门将真空腔室1的第二方向的一侧开启或密封。
需要说明的是,本实施例的第二驱动单元75可选用滚珠丝杠、线性导轨等具有直线往返运动的机构,优选为气缸,具有相应迅速的特点。
结合图10,本实施例中,支撑架包括两个对接的连接板76,两个连接板76对接以形成一个密封腔室,第二驱动机构74固定设置在密封腔室的顶部,密封腔室的底部敞口,密封腔室的宽度方向的尺寸和密封门的厚度相一致,密封门即在该密封腔室1内移动。
实施例12:
本实施例公开了一种ALD加工方法,该加工方法是在基于实施例1-11的ALD加工设备进行的。
图11为依据公开的一个或多个实施例的ALD加工方法的流程示意图,该加工方法包括:
S1:通过输送装置c将基体输送至真空腔室1内,并将基体转运至抓取装置d上;
S2:操作输送装置c撤离真空腔室1,真空腔室1密封,并将真空腔室1抽真空处置;
S3:操作升降装置b,将封盖5盖设在反应腔室2的顶部上,基体位于密封的反应腔室2内;
S4:从反应腔室2的进气通道注入前驱体源,前驱体源在反应腔室2内对基体吹扫完毕后,从反应腔室2的出气通道排出,即完成基体的ALD加工。
本实施例中,S3还包括对反应腔室2进行加热,加热温度可根据加工需求进行设定,本实施例对此不作限制。
本实施例的S4具体包括:
依次交替脉冲从反应腔室2的进气通道向反应腔室2内注入前驱体源,前驱体源在反应腔室2内在基体表面依次交替发生化学吸附反应,多余前驱体源及反应副产物经吹扫完毕后,从反应腔室2的出气通道排出,重复上述依次脉冲通入前驱体源完成表面自限制化学吸附反应,通过控制重复次数得到精确厚度的膜层,即完成基体的ALD加工。
最后所应说明的是,以上具体实施方式仅用以说明本公开内容的技术方案而非限制,尽管参照实例对本公开内容进行了详细说明,本领域的普通技术人员应当理解,可以对本公开内容的技术方案进行修改或者等同替换,而不脱离本公开内容技术方案的精神和范围,其均应涵盖在本公开内容的权利要求范围当中。

Claims (52)

  1. 一种ALD加工设备,包括:
    反应器,所述反应器包括真空腔室以及反应腔室,所述反应腔室内置于所述真空腔室内,所述反应腔室顶部敞口,所述反应腔室的底部开设有进气通道及出气通道,所述进气通道和所述出气通道以所述反应腔室的底部的第一方向的中心线相对设置;
    升降装置,所述升降装置设置在所述反应器上,所述升降装置的输出端沿竖向伸缩,所述升降装置的输出端上设置有封盖,所述封盖可操作地将所述反应腔室顶部密封;
    输送装置,所述输送装置用于将基体输送至所述真空腔室内;
    抓取装置,所述抓取装置设置在所述封盖上,所述抓取装置用于抓取输送至所述真空腔室内的基体。
  2. 根据权利要求1所述的ALD加工设备,其中:所述进气通道为孔状,所述进气通道设置有多个,多个所述进气通道设置在所述反应腔室的底部的一侧;
    所述出气通道为孔状,所述出气通道也设置有多个,多个所述出气通道设置在所述反应腔室的底部的另一侧。
  3. 根据权利要求2所述的ALD加工设备,其中:所述进气通道设置有多组,多组所述进气通道沿第二方向依次设置,每组所述进气通道均呈弧形,每组所述进气通道的各个进气通道的孔径向靠近所述反应腔室的底部的第一方向的中心线的方向依次减小;
    所述出气通道设置有多组,多组所述出气通道沿第二方向依次设置,每组所述出气通道均呈弧形,每组所述出气通道的各个进气通道的孔径向靠近所述反应腔室的底部的第一方向的中心线的方向依次减小。
  4. 根据权利要求1所述的ALD加工设备,其中:所述进气通道为条状,所述进气通道设置有多个,多个所述进气通道设置在所述反应腔室的底部的一侧;
    所述出气通道为条状,所述出气通道也设置有多个,多个所述出气通道设置在所述反应腔室的底部的另一侧。
  5. 根据权利要求4所述的ALD加工设备,其中:所述进气通道的第二方向的尺寸向靠近所述反应腔室的底部的第一方向的中心线的方向依次减小;
    所述出气通道的第二方向的尺寸向靠近所述反应腔室的底部的第一方向的中心线的方向依次减小。
  6. 根据权利要求1所述的ALD加工设备,其中:所述反应腔室内设置有两个匀气板,两个所述匀气板以所述反应腔室的底部的第一方向的中心线相对设置,两个所述匀气板设置在所述进气通道及出气通道之间,两个所述匀气板将所述反应腔室沿第二方向分割成进气腔室、反应腔室以及出气腔室,每个所述匀气板上均设置多个通孔。
  7. 根据权利要求1所述的ALD加工设备,其中:所述反应腔室的底部固定设置有中转腔室,所述中转腔室的顶部敞口,所述反应腔室的底部覆盖在所述中转腔室的顶部上,所述中转腔室内设置有两个隔板,两个所述隔板将所述中转腔室沿第二方向分割成第一腔室、第二腔室以及第三腔室,所述进气通道和所述第一腔室连通,所述出气通道和所述第三腔室连通,所述第一腔室的底部设置有进气主孔,所述第三腔室的底部设置有出气主孔。
  8. 根据权利要求7所述的ALD加工设备,其中:两个所述隔板设置在所述进气通道及出气通道之间,所述进气主孔设置在所述进气通道和同侧的所述隔板之间,所述出气主孔设置在所述出气通道和同侧的所述隔板之间,所述进气主孔和所述出气主孔以所述反应腔室的底部的第一方向的中心线相对设置。
  9. 根据权利要求7所述的ALD加工设备,其中:所述中转腔室的底部设置有两个相对的凸起;
    所述中转腔室的底部和所述真空腔室的底部之间设置有两个相对的连接块,所述连接块顶部设置有定位槽,所述凸起固定嵌设在对应的所述连接块的定位槽中。
  10. 根据权利要求9所述的ALD加工设备,其中:两个所述凸起分别设置在所述进气主孔和所述出气主孔的底部;
    所述加工设备还包括进气管和出气管,其中:
    所述进气管的一端依次穿过所述真空腔室的底部、位于所述进气主孔底部的所述连接块以及所述凸起,所述进气管的一端与所述进气主孔连通,所述进气管的另一端用于与进气装置连通;
    所述出气管的一端依次穿过所述真空腔室的底部、位于所述出气主孔底部的所述连接块以及所述凸起,所述出气管的一端与所述出气主孔连通,所述出气管的另一端用于与出气装置连通。
  11. 根据权利要求1所述的ALD加工设备,其中:所述加工设备还包括:
    第一加热器,所述第一加热器设置在所述封盖的顶部上,所述第一加热器的输出端作用在所述封盖上;
    第二加热器,所述第二加热器设置在所述反应腔室的外侧壁和所述真空腔室的内侧壁之间,所述第二加热器的输出端作用在所述反应腔室的侧壁上;
    第三加热器,所述第三加热器设置在所述反应腔室的底部和所述真空腔室的底部之间,所述第三加热器作用在所述反应腔室的底部上。
  12. 根据权利要求11所述的ALD加工设备,其中:所述封盖的顶部固定设置有第一安装板,所述第一加热器包括多个第一加热丝,多个所述第一加热丝呈同心波纹设置,多个所述第一加热丝均固定在所述第一安装板的底面上。
  13. 根据权利要求12所述的ALD加工设备,其中:所述第一安装板的外沿向下折弯,形成第一限位挡边。
  14. 根据权利要求12所述的ALD加工设备,其中:所述加工设备还包括第一热反射组件,所述第一热反射组件固定设置在所述第一安装板的顶面上。
  15. 根据权利要求14所述的ALD加工设备,其中:所述第一安装板的顶面上设置有固定块,所述第一热反射组件设置在所述第一安装板和所述固定块之间;
    所述第一热反射组件包括若干依次设置的热反射板,相邻的两个所述热反射板的接触形式为多点接触。
  16. 根据权利要求11所述的ALD加工设备,其中:所述反应腔室的外侧壁和所述真空腔室的内侧壁之间设置有第二安装板,所述第二安装板周面两端为闭环,所述第二安装 板固定设置在所述真空腔室的底部的顶面上,所述第二加热器包括多个第二加热丝,每个所述第二加热丝均呈同轴的环状设置,每个所述第二加热丝沿竖向固定设置在所述第二安装板的内侧壁上,每个所述第二加热丝均套装在所述反应腔室的外侧壁上。
  17. 根据权利要求16所述的ALD加工设备,其中:所述第二安装板的两端均向内侧翻边,形成第二限位挡边。
  18. 根据权利要求16所述的ALD加工设备,其中:所述加工设备还包括第二热反射组件,所述第二热反射组件固定设置在所述第二安装板的外侧面上。
  19. 根据权利要求18所述的ALD加工设备,其中:所述加工设备还包括第三安装板,所述第三安装板固定设置在所述第二安装板和所述真空腔室的内壁之间,所述第三安装板呈闭环,所述第二热反射组件设置在所述第三安装板和所述第二安装板之间;
    所述第二热反射组件包括若干依次设置的热反射板,相邻的两个所述热反射板的接触形式为多点接触。
  20. 根据权利要求19所述的ALD加工设备,其中:所述真空腔室的底部的顶面上设置有环状凹槽,所述第三安装板以及所述第二热反射组件均固定设置在所述环状凹槽中。
  21. 根据权利要求20所述的ALD加工设备,其中:所述加工设备还包括第三热发射组件,所述第三热反射组件固定设置在所述第三安装板的外侧面上;
    所述第三热反射组件包括若干依次设置的热反射板,相邻的两个所述热反射板的接触形式为多点接触。
  22. 根据权利要求21所述的ALD加工设备,其中:所述真空腔室的底部的顶面上设置有第一台阶,所述第一台阶位于所述环状凹槽的外侧,所述第三热反射组件的底部固定在所述第一台阶上。
  23. 根据权利要求11所述的ALD加工设备,其中:所述反应腔室的底部和所述真空腔室的底部之间设置有第四安装板,所述第三加热器包括多个第三加热丝,多个所述第三加热丝呈同心波纹设置,多个所述第三加热丝均固定在所述第四安装板的顶面上。
  24. 根据权利要求23所述的ALD加工设备,其中:所述第四安装板的外沿向上折弯,形成第三限位挡边。
  25. 根据权利要求23所述的ALD加工设备,其中:所述加工设备还包括第四热反射组件,所述第四热反射组件固定设置在所述第四安装板的底面上;
    所述第四热反射组件包括若干依次设置的热反射板,相邻的两个所述热反射板的接触形式为多点接触。
  26. 根据权利要求25所述的ALD加工设备,其中:每个所述连接块的周面上沿竖向依次设置有两级第二台阶,所述第四安装板固定设置在位于上方的第二台阶上,所述第四反射组件固定设置在位于下方的所述第二台阶和所述第四安装板之间。
  27. 根据权利要求11所述的ALD加工设备,其中:所述加工设备还包括热电偶安装机构,所述热电偶安装机构包括:
    固定套筒,所述固定套管固定设置在所述真空腔室的顶面上;
    第一波纹管,所述第一波纹管的上端固定连接在所述固定套筒的内壁的顶部上,所述 第一波纹管的下端依次活动穿过所述固定套筒的下端以及所述真空腔室的顶部,所述第一波纹管的下端位于所述真空腔室内;
    连接套筒,所述连接套筒固定设置在所述真空腔室内,所述第一波纹管的下端连接在所述连接套筒的顶面上,设置在所述封盖的顶部的第一加热组件的加热丝和测量所述封盖顶部温度的热电偶均固定设置在所述连接套筒内。
  28. 根据权利要求27所述的ALD加工设备,其中:所述固定套管的顶部设置有第一连接法兰,所述第一连接法兰呈环状,所述第一连接法兰的内侧突出所述固定套筒的内壁,所述第一波纹管的上端连接在所述第一连接法兰的内侧。
  29. 根据权利要求28所述的ALD加工设备,其中:所述固定套筒的顶部设置有第一密封槽,所述第一密封槽内设置有第一密封圈,所述第一连接法兰盖设所述第一密封槽上。
  30. 根据权利要求27所述的ALD加工设备,其中:所述真空腔室的顶面上设置有第二密封槽,所述第二密封槽内设置有第二密封圈;
    所述固定套筒的底部设置有第二连接法兰,所述第二连接法兰盖设在所述第二密封槽上。
  31. 根据权利要求27所述的ALD加工设备,其中:所述连接套筒的顶部设置有第三连接法兰,所述第一波纹管的下端连接在所述第三连接法兰的顶部。
  32. 根据权利要求27所述的ALD加工设备,其中:所述连接套筒的内部通过连接盖板密封,设置在所述封盖的顶部的加热组件的加热丝和测量所述封盖顶部温度的热电偶均密封穿过所述连接盖板。
  33. 根据权利要求1所述的ALD加工设备,其中:所述封盖的底部的边缘设置有第一止口;
    所述反应腔室的顶部敞口处设置有凸台,所述凸台可嵌入所述第一止口内。
  34. 根据权利要求1所述的ALD加工设备,其中:所述升降装置包括升降单元、连接架以及连接杆,其中:
    所述升降单元固定设置在所述真空容器的顶部,所述升降单元的输出端沿竖向伸缩;
    所述连接架位于所述真空容器的上方,所述连接架和所述升降单元的输出端连接;
    所述连接杆的上端和所述连接架固定连接,所述连接杆的下端密封穿过所述真空容器的顶部,所述封盖固定设置在所述连接杆的下端上。
  35. 根据权利要求34所述的ALD加工设备,其中:所述升降单元相对设置有两个,所述连接杆相对设置有两个,两个所述升降单元的连线位于两个所述连接杆的连线的中垂线上。
  36. 根据权利要求35所述的ALD加工设备,其中:每个所述连接杆均配置有一个密封装置,每个所述密封装置均包括:
    第一套筒,所述第一套筒固定设置在所述连接杆的周面上,所述第一套筒位于所述真空腔室的上方;
    第二套筒,所述第二套筒固定设置在所述真空腔室的顶部的顶面上,所述连接杆的另一端活动穿过所述第二套筒,以进入所述真空腔室内;
    第二波纹管,所述第一套筒和所述第二套筒之间通过所述第二波纹管连接,所述第二波纹管套装在所述连接杆的周面上。
  37. 根据权利要求34所述的ALD加工设备,其中:所述真空腔室的顶部的顶面上设置有第四密封槽,所述第二套筒的底部盖设在所述第四密封槽上,所述第四密封槽内设置有第四密封圈。
  38. 根据权利要求34所述的ALD加工设备,其中:所述真空腔室的顶部设置有供所述连接杆穿过的通过孔,所述通过孔设置在所述第四密封槽的内侧,所述通过孔内设置有导套,所述连接杆滑动配合地穿过所述导套。
  39. 根据权利要求38所述的ALD加工设备,其中:所述通过孔的顶面上设置有第二止口;
    所述导套的顶部设置有导帽,所述导帽固定设置在所述第二止口上。
  40. 根据权利要求38所述的ALD加工设备,其中:所述导套的内壁的轴向两端均设置有切口。
  41. 根据权利要求1所述的ALD加工设备,其中:所述抓取装置包括:
    框架,所述框架固定设置在所述封盖的底部上;
    抓手,所述抓手相对设置有两个,两个所述抓手沿第二方向相对设置,每个所述抓手均包括两个连接臂以及支撑臂,两个所述连接臂的上端固定连接在所述框架的第一方向的端部,两个所述连接臂的下端均设置有向另一个所述抓手方向延伸的连接凸起,两个所述连接凸起之间通过所述支撑臂连接。
  42. 根据权利要求41所述的ALD加工设备,其中:两个所述连接臂的中部之间还通过加强臂连接。
  43. 根据权利要求1所述的ALD加工设备,其中:所述真空腔室的第一方向的两侧还设置有可拆卸的围板。
  44. 根据权利要求43所述的ALD加工设备,其中:所述围板的材质为透明材质。
  45. 根据权利要求1所述的ALD加工设备,其中:所述输送装置包括输送腔室及输送板,所述输送腔室设置在所述真空腔室的第二方向的一侧,所述输送腔室和所述真空腔室可操作地连通,所述输送板设置在所述输送腔室内,所述输送板可操作地进入所述真空腔室内,所述输送板设置在所述反应腔室的上方。
  46. 根据权利要求45所述的ALD加工设备,其中:所述输送腔室内设置有第一驱动单元,所述第一驱动单元的输出端可做直线往返运动,所述输送板固定连接在所述第一驱动单元的输出端上。
  47. 根据权利要求46所述的ALD加工设备,其中:所述输送腔室的第二方向的两个侧壁上均沿竖向设置有两个导向组件,每个所述导向组件均包括多个沿第二方向间隔设置的滚轮,所述滚轮可转动地连接在所述输送腔室的第二方向的侧壁上,所述输送板的第二方向的两侧分别设置在两个所述导向组件之间。
  48. 根据权利要求45所述的ALD加工设备,其中:所述输送板的顶面上设置有输送凹槽。
  49. 根据权利要求45所述的ALD加工设备,其中:所述真空腔室的第二方向的一侧设置有可开启的密封门。
  50. 根据权利要求49所述的ALD加工设备,其中:所述真空腔室和所述输送腔室对接处设置有插槽,所述插槽的顶部开口,所述密封门可操作地插设在所述插槽中,以将所述真空腔室的第二方向的一侧密封;
    所述真空腔室上设置有支撑架,所述支撑架上设置有第二驱动机构,所述第二驱动机构的输出端沿竖向往返移动,所述密封门连接在所述第二驱动机构的输出端上。
  51. 根据权利要求50所述的ALD加工设备,其中:所述支撑架包括两个对接的连接板,两个所述连接板对接以形成一个密封腔室,所述第二驱动机构固定设置在所述密封腔室的顶部,所述密封腔室的底部敞口,所述密封腔室的宽度方向的尺寸和所述密封门的厚度相一致。
  52. 一种ALD加工方法,所述加工方法是在权利要求1-51任一项所述的ALD加工设备进行的,所述加工方法包括:
    通过输送装置将基体输送至真空腔室内,并将基体转运至抓取装置上;
    操作输送装置撤离真空腔室,真空腔室密封,并将真空腔室抽真空处置;
    操作升降装置,将封盖盖设在反应腔室的顶部上,基体位于密封的反应腔室内;
    从反应腔室的进气通道注入前驱体源,前驱体源在反应腔室内对基体吹扫完毕后,从反应腔室的出气通道排出,即完成基体的ALD加工。
PCT/CN2020/141154 2020-12-03 2020-12-30 一种ald加工设备以及加工方法 WO2022116339A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/325,094 US20230304152A1 (en) 2020-12-03 2023-05-29 Ald processing apparatus and processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011412184.4A CN112481604B (zh) 2020-12-03 2020-12-03 一种ald加工设备以及加工方法
CN202022904146.2U CN214937792U (zh) 2020-12-03 2020-12-03 一种ald加工设备
CN202022904146.2 2020-12-03
CN202011412184.4 2020-12-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/325,094 Continuation-In-Part US20230304152A1 (en) 2020-12-03 2023-05-29 Ald processing apparatus and processing method

Publications (1)

Publication Number Publication Date
WO2022116339A1 true WO2022116339A1 (zh) 2022-06-09

Family

ID=81853789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141154 WO2022116339A1 (zh) 2020-12-03 2020-12-30 一种ald加工设备以及加工方法

Country Status (2)

Country Link
US (1) US20230304152A1 (zh)
WO (1) WO2022116339A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055064B1 (ko) * 2011-07-08 2011-08-05 송기훈 엘이디 제조 장치
US20150059981A1 (en) * 2013-08-30 2015-03-05 Applied Materials, Inc. Hot wall reactor with cooled vacuum containment
CN109689930A (zh) * 2016-09-16 2019-04-26 皮考逊公司 用于原子层沉积的设备和方法
CN210030882U (zh) * 2019-04-26 2020-02-07 厦门韫茂科技有限公司 一种用于粉末包覆的原子层沉积装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055064B1 (ko) * 2011-07-08 2011-08-05 송기훈 엘이디 제조 장치
US20150059981A1 (en) * 2013-08-30 2015-03-05 Applied Materials, Inc. Hot wall reactor with cooled vacuum containment
CN109689930A (zh) * 2016-09-16 2019-04-26 皮考逊公司 用于原子层沉积的设备和方法
CN210030882U (zh) * 2019-04-26 2020-02-07 厦门韫茂科技有限公司 一种用于粉末包覆的原子层沉积装置

Also Published As

Publication number Publication date
US20230304152A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
CN112481604B (zh) 一种ald加工设备以及加工方法
US20200300465A1 (en) Rotary furnace
CN112359346A (zh) 一种ald加热组件
CN112899657A (zh) 一种ald加工设备以及加工方法
TWI564430B (zh) 處理模組
KR101301471B1 (ko) 챔버타입의 원자층 고속 증착장치
WO2022116339A1 (zh) 一种ald加工设备以及加工方法
CN214937792U (zh) 一种ald加工设备
CN214694358U (zh) 一种ald加热组件
CN214458309U (zh) 一种ald反应腔室
CN214400710U (zh) 一种ald加工设备
CN112458436A (zh) 一种ald反应器
CN112323045A (zh) 一种ald反应腔室
CN112853321A (zh) 一种ald加工设备以及加工方法
JPWO2019128064A5 (zh)
CN112853322A (zh) 一种ald加工设备以及加工方法
CN213816054U (zh) 一种封盖升降装置
CN214458308U (zh) 一种ald反应器
CN213579828U (zh) 一种热电偶安装机构
CN214400711U (zh) 一种ald加工设备
CN214400709U (zh) 一种ald加工设备
CN112899658A (zh) 一种ald加工设备以及加工方法
CN214400713U (zh) 一种ald加工设备
CN114411247A (zh) 一种外延反应设备
KR20070073395A (ko) 탄소나노튜브 합성을 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964184

Country of ref document: EP

Kind code of ref document: A1