WO2022116314A1 - 智能电网中的轻量级主动式跨层认证方法 - Google Patents
智能电网中的轻量级主动式跨层认证方法 Download PDFInfo
- Publication number
- WO2022116314A1 WO2022116314A1 PCT/CN2020/138739 CN2020138739W WO2022116314A1 WO 2022116314 A1 WO2022116314 A1 WO 2022116314A1 CN 2020138739 W CN2020138739 W CN 2020138739W WO 2022116314 A1 WO2022116314 A1 WO 2022116314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- intelligent gateway
- signal
- authentication
- encrypted
- area network
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 238000012795 verification Methods 0.000 title abstract 10
- 238000012360 testing method Methods 0.000 claims description 35
- 238000004891 communication Methods 0.000 abstract description 41
- 230000008054 signal transmission Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 4
- 238000005562 fading Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3236—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/085—Secret sharing or secret splitting, e.g. threshold schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0861—Generation of secret information including derivation or calculation of cryptographic keys or passwords
- H04L9/0869—Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/80—Wireless
- H04L2209/805—Lightweight hardware, e.g. radio-frequency identification [RFID] or sensor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/20—Information technology specific aspects, e.g. CAD, simulation, modelling, system security
Definitions
- the present disclosure particularly relates to a lightweight active cross-layer authentication method in a smart grid.
- the smart grid system is an integrated network that enables end users to participate in power transmission and distribution through two-way communication. It has very good convenience and flexibility, and can greatly improve the efficiency of power transmission.
- system security is an unavoidable problem, and both the security of nodes and the security of information transmission need to be guaranteed.
- the identity of each entity needs to be authenticated to ensure the security of the smart grid system, because not all entities are trusted. If the smart grid system does not have strict access authentication, illegal parties may maliciously collect end-user data or maliciously consume power resources. Verifying the authenticity of the corresponding sender is a basic requirement.
- the authentication technology of the traditional scheme is based on the encryption mechanism and performs identity authentication at the upper layer.
- the authentication technology of the traditional scheme has some problems, which has high communication overhead and high computational complexity.
- the present disclosure is proposed in view of the above situation, and its purpose is to provide a lightweight active cross-layer authentication method in a smart grid that reduces computational complexity and communication overhead in a smart grid system.
- the present disclosure provides a lightweight active cross-layer authentication method in a smart grid, characterized in that the lightweight active cross-layer authentication method corresponds to any adjacent level network in a multi-level network.
- the authentication method for mutual authentication between the intelligent gateways, any adjacent network in the multi-level network includes an upper-level network and a lower-level network, the intelligent gateway corresponding to the lower-level network is the first intelligent gateway, and the upper-level network corresponds to the first intelligent gateway.
- the intelligent gateway is a second intelligent gateway, the authentication method includes upper-layer authentication and physical layer authentication, and the upper-layer authentication includes: the first intelligent gateway reports to the first intelligent gateway based on the public key of the second intelligent gateway and the first authentication information
- the second intelligent gateway sends a first encrypted signal; the second intelligent gateway receives the first encrypted signal and obtains the first authentication information based on the private key of the second intelligent gateway, and obtains the first authentication information based on the private key of the second intelligent gateway
- the public key, the first authentication information and the second authentication information obtain a second encrypted signal and send it to the first intelligent gateway, and the second intelligent gateway is based on the first authentication information and the second authentication information information to obtain a shared key;
- the first intelligent gateway receives the second encrypted signal, if the first intelligent gateway obtains the first authentication based on the second encrypted signal and the private key of the first intelligent gateway information, the first intelligent gateway passes the authentication of the second intelligent gateway, and the first intelligent gateway obtains the second authentication information based on the second encrypted signal;
- the physical layer authentication
- the first intelligent gateway obtains a first superimposed signal based on the first authentication label and the first encrypted target signal, and then obtains a first target information signal and send it to the second intelligent gateway, the second intelligent gateway receives the first target information signal, obtains a first residual signal based on the first target information signal, and based on the first residual signal
- the difference signal is subjected to a first threshold test, and if the first threshold test passes, the second intelligent gateway passes the authentication of the first intelligent gateway; and the second intelligent gateway is based on the second target signal and the shared
- the key obtains a second encrypted target signal, obtains a second authentication label based on the shared key, the second encrypted target signal and the hash function, and the second intelligent gateway obtains a second authentication label based on the second authentication label and the hash function.
- the second encrypted target signal obtains a second superimposed signal, and then obtains a second target information signal and sends it to the first intelligent gateway, and the first intelligent gateway receives the second target information signal, based on the second target information signal
- the information signal obtains a second residual signal, and performs a second threshold test based on the second residual signal, if the second threshold test passes, the first intelligent gateway passes the authentication of the second intelligent gateway,
- the upper layer authentication is based on the first intelligent gateway and the second intelligent gateway
- the physical layer authentication is implemented based on the physical layers of the first intelligent gateway and the second intelligent gateway.
- intelligent gateways corresponding to adjacent sub-networks in a multi-level network may authenticate each other, and upper-layer authentication and physical-layer authentication are performed between intelligent gateways corresponding to adjacent sub-networks.
- the identity authentication of the upper layer and the message authentication of the physical layer can be realized at the same time, the computational complexity and communication overhead can be reduced, and mutual authentication can be performed between the first intelligent gateway and the second intelligent gateway.
- the first intelligent gateway has a corresponding public key and a private key
- the second intelligent gateway has a corresponding public key and a private key.
- the first intelligent gateway obtains the first authentication information based on a and the prime order group, where a is the first intelligent gateway The selected random number, and satisfies: a ⁇ Z q
- the second intelligent gateway obtains the second authentication information based on the random number b and the prime order group, where b is the random number selected by the second intelligent gateway, And satisfy: b ⁇ Z q , Z q is represented as a data set.
- the first authentication information and the second authentication information can be obtained.
- the multi-level network includes multiple area networks, multiple building area networks, and multiple home area networks, wherein each area network corresponds to several Each building area network corresponds to several home area networks, and the building area network is the corresponding home area network.
- the upper-level network of the network, the home area network is the lower-level network of the building area network. Therefore, the corresponding intelligent gateways between the local area network and the building area network, and between the building area network and the home area network can perform signal transmission to each other.
- each of the area networks has an intelligent gateway
- each of the building area networks has an intelligent gateway
- each of the home area networks has an intelligent gateway. Has an intelligent gateway. Therefore, the corresponding intelligent gateways between the local area network and the building area network, and between the building area network and the home area network can perform signal transmission to each other.
- the multi-level network further includes multiple end users, each home area network corresponds to several end users, and any end user includes multiple devices , any terminal user and the corresponding home area network perform mutual authentication through the authentication method, wherein the terminal user is the lower-level network of the home area network, the home area network is the upper-level network of the terminal user, and the terminal user corresponds to
- the multiple devices in the home area network are used as the first intelligent gateway, and the intelligent gateway corresponding to the home area network is used as the second intelligent gateway. This enables mutual authentication and signal transmission between the home area network and the end user.
- t i c(s i ,k)
- the first superimposed signal can be obtained.
- a lightweight active cross-layer authentication method in a smart grid that reduces computational complexity and communication overhead in a smart grid system can be provided.
- FIG. 1 is a schematic diagram illustrating an application scenario of a lightweight active cross-layer authentication method in a smart grid according to an example of the present disclosure.
- FIG. 2 is a schematic diagram illustrating a basic frame packet structure of a signal involved in an example of the present disclosure.
- FIG. 3 is a schematic flowchart illustrating a lightweight active cross-layer authentication method in a smart grid according to an example of the present disclosure.
- FIG. 4 is a schematic diagram illustrating an application scenario of signal transmission between intelligent gateways involved in an example of the present disclosure.
- FIG. 5 is a schematic diagram illustrating the distribution of a lightweight active cross-layer authentication method in a smart grid according to an example of the present disclosure.
- FIG. 6 is a waveform diagram illustrating that the communication overhead corresponding to FIG. 5 according to the example of the present disclosure varies with the number of end users and the number of transmitted frame packets.
- FIG. 7 is a waveform diagram illustrating the average delay corresponding to FIG. 5 as a function of the number of end users and the number of transmitted frame packets, according to an example of the present disclosure.
- FIG. 8 is a waveform diagram illustrating information entropy and total information entropy as a function of energy coefficients corresponding to FIG. 5 involved in an example of the present disclosure.
- the present disclosure provides a lightweight active cross-layer authentication method (also referred to as an "authentication method") in a smart grid.
- the lightweight active cross-layer authentication method in the smart grid can be applied to the smart grid system, which can realize mutual authentication and signal transmission between the smart gateways in the smart grid system, and can significantly reduce the Computational complexity and communication overhead.
- FIG. 1 is a schematic diagram illustrating an application scenario of a lightweight active cross-layer authentication method in a smart grid according to an example of the present disclosure.
- the lightweight active cross-layer authentication method may be an authentication method with a multi-level network, and can provide an authentication method that reduces computational complexity and communication overhead in a smart grid system.
- a smart grid system (also referred to as “smart grid” and “system”) may be divided into a multi-level network.
- the power transmission substation near the power plant and the distribution network can be connected by a mesh network, and communication can be realized through optical fiber technology.
- all lower level network communications are accomplished through wireless communication technology due to the great convenience and flexibility that wireless communication technology can provide.
- the lower distribution network in a smart grid system may be divided into multiple levels of networks, including area networks, building area networks, home area networks, and end users (described later), where each area network may include multiple Each building area network may include multiple home area networks.
- each power distribution station covers only one cell, and one area network can be used to manage the communication traffic for that cell.
- Each local area network, building area network and home area network can each have an intelligent gateway. Therefore, the corresponding intelligent gateways between the local area network and the building area network, and between the building area network and the home area network can perform signal transmission to each other. For example, as shown in FIG.
- the area network of the cell corresponds to the intelligent gateway 101
- each building area network included in the area network corresponds to the intelligent gateway 201, the intelligent gateway 202, the intelligent gateway 203, etc.
- one of the building area networks That is, the building area network corresponding to the intelligent gateway 201 includes the intelligent gateway 301 , the intelligent gateway 302 and the intelligent gateway 303 respectively corresponding to each home area network.
- Other building area networks may also include multiple home area networks (not shown).
- each smart gateway can have two different ports, one of which can be used to obtain power resources, and the other port can be used as a communication gateway, based on which the mutual signal transmission between the two smart gateways can be implemented ( described later).
- each home area network may include multiple end users, and each layer of the network has intelligent gateways that can support two-way communication between end users and power suppliers. certain devices to change their power usage.
- the functions of the intelligent gateways corresponding to each layer of the network may be different.
- the intelligent gateway 101 corresponding to the local area network may have the most powerful function, and the intelligent gateway corresponding to the building area network (such as the intelligent gateway 201, etc.)
- the function possessed may be second, and the function of the intelligent gateway corresponding to the home area network (for example, the intelligent gateway 301, etc.) may be the worst.
- any adjacent-level sub-network in the multi-level network includes an upper-level network and a lower-level network, and signal transmission can be performed between respective intelligent gateways corresponding to the upper-level network and the lower-level network.
- the multi-level network includes multiple area networks, multiple building area networks, and multiple home area networks, wherein each area network may include several building area networks, and the area networks may be the corresponding building area networks.
- the upper-level network, the building area network can be the lower-level network of the local area network, each building area network can include several home area networks, the building area network can be the upper-level network of the corresponding home area network, and the home area network can be the building area network The subordinate network of the network.
- the corresponding intelligent gateways between the local area network and the building area network, and between the building area network and the home area network can perform signal transmission to each other.
- the intelligent gateway 101 corresponding to the local area network may perform signal transmission (also called the intelligent gateway 201 , the intelligent gateway 202 , the intelligent gateway 203 , etc.) corresponding to the multiple building area networks included in the local area network. called "two-way communication"), wherein the intelligent gateway 201 corresponding to one building area network can perform signal transmission with the intelligent gateway 301, intelligent gateway 302, and intelligent gateway 303 corresponding to multiple home area networks included in the building area network. .
- signal transmission between the first intelligent gateway and the second intelligent gateway may be performed through Worldwide Interoperability for Microwave Access Technology (ie WiMax) and/or Low Power Local Area Network Protocol (also known as ZigBee Protocol, or ZigBee). .
- WiMax Worldwide Interoperability for Microwave Access Technology
- ZigBee Protocol also known as ZigBee Protocol, or ZigBee
- the respective corresponding intelligent gateways between the local area network and the building area network, and the building area network and the home area network may perform signal transmission through Worldwide Interoperability for Microwave Access (ie, WiMax).
- the intelligent gateways corresponding to each home area network may perform signal transmission with multiple end users through a low-power consumption local area network protocol (also referred to as a Zigbee protocol, that is, ZigBee).
- the respective intelligent gateways between the area network and the building area network, and the building area network and the home area network may be signaled through the World Interoperability for Microwave Access technology. Thereby, signal transmission between the intelligent gateway corresponding to the upper-level network and the intelligent gateway corresponding to the lower-level network can be realized.
- the intelligent gateway corresponding to the lower-level network may be the first intelligent gateway
- the intelligent gateway corresponding to the upper-level network may be the second intelligent gateway.
- the multi-level network further includes multiple end users, each home area network corresponds to several end users, any end user includes multiple devices, and any end user and the corresponding home area network perform mutual authentication through an authentication method , where the terminal user is the lower-level network of the home area network, the home area network is the upper-level network of the terminal user, multiple devices corresponding to the terminal user can be used as the first intelligent gateway, and the intelligent gateway corresponding to the home area network can be as the second intelligent gateway. This enables mutual authentication and signal transmission between the home area network and the end user.
- the intelligent gateways corresponding to each home area network may perform signal transmission with multiple end users through the Zigbee protocol.
- the dotted circle 401 in FIG. 1 can indicate that the smart gateway 301 corresponding to the home area network can correspond to multiple devices, one of which corresponds to a different end user, and each device (each end user) can As the first intelligent gateway, the intelligent gateway 301 can function as the second intelligent gateway, and the intelligent gateway 301 can communicate (ie, transmit signals) with multiple devices (ie multiple end users) through the Zigbee protocol.
- FIG. 2 is a schematic diagram illustrating a basic frame packet structure of a signal involved in an example of the present disclosure.
- signal transmission in a smart grid system wherein the basic frame packet structure of the signal may include: a security header, a TCP/IP header, and a message header, where the security header may be a security packet It can include all security information, such as key identification, security level indication, checksum and digital signature; the TCP/IP header can include the sending address of the signal and the address corresponding to the sender of the signal; the message header can include the meter ID Address, device status and message type; raw information.
- the frame packet structure of the signal may include a hash header (see Figure 4) in this embodiment.
- FIG. 3 is a schematic flowchart illustrating a lightweight active cross-layer authentication method in a smart grid according to an example of the present disclosure.
- FIG. 4 is a schematic diagram illustrating an application scenario of mutual authentication and signal transmission between intelligent gateways involved in an example of the present disclosure.
- steps S10 to S40 in FIG. 3 may correspond one-to-one with the signal transmission process in FIG. 4 .
- the authentication method may be an authentication method for performing signal transmission and mutual authentication between intelligent gateways corresponding to any adjacent secondary networks (for example, a first intelligent gateway and a second intelligent gateway).
- the authentication method may include the following steps: the first intelligent gateway may send a first encrypted signal to the second intelligent gateway based on the public key of the second intelligent gateway and the first authentication information, and the second intelligent gateway may receive the first encrypted signal Encrypt the signal and obtain the first authentication information based on the private key of the second intelligent gateway (step S10); the second intelligent gateway may obtain the second encrypted signal based on the public key, the first authentication information and the second authentication information of the first intelligent gateway and send it to the first intelligent gateway, and the second intelligent gateway can obtain the shared key based on the first authentication information and the second authentication information.
- the first intelligent gateway may receive the second encrypted signal. If the first intelligent gateway obtains the first authentication information based on the second encrypted signal and the private key of the first intelligent gateway, the first intelligent gateway passes the authentication of the second intelligent gateway, and the first intelligent gateway passes the authentication.
- An intelligent gateway may obtain the second authentication information based on the second encrypted signal (step S20); the first intelligent gateway may obtain the shared key based on the second authentication information and the first authentication information, and may obtain the shared key based on the shared key and the first target signal the first encrypted target signal, and then the first authentication label can be obtained based on the shared key, the first encrypted target signal and the hash function, and the first intelligent gateway can be obtained based on the first authentication label and the first encrypted target signal.
- the first superimposed signal Further, the first target information signal can be obtained and sent to the second intelligent gateway, and the second intelligent gateway can receive the first target information signal, obtain the first residual signal based on the first target information signal, and perform the processing based on the first residual signal.
- the first threshold test if the first threshold test passes, the second intelligent gateway passes the authentication of the first intelligent gateway (step S30); the second intelligent gateway can obtain the second encrypted target signal based on the second target signal and the shared key, The second authentication label is obtained based on the shared key, the second encrypted target signal and the hash function, the second intelligent gateway can obtain the second superimposed signal based on the second authentication label and the second encrypted target signal, and then the second target information signal can be obtained and send it to the first intelligent gateway, the first intelligent gateway can receive the second target information signal, can obtain the second residual signal based on the second target information signal, and perform the second threshold test based on the second residual signal, if the second If the threshold test is passed, the first intelligent gateway can pass the authentication of the second intelligent gateway (step S40).
- adjacent sub-networks in a multi-level network send information to each other (that is, information transmission) for mutual authentication of their respective legitimacy, wherein any adjacent sub-network includes an upper-level network and a lower-level network, and the lower-level network corresponds to
- the intelligent gateway is the first intelligent gateway
- the intelligent gateway corresponding to the upper-level network is the second intelligent gateway.
- the first intelligent gateway may perform signal transmission with the second intelligent gateway.
- the first intelligent gateway may send the first encrypted signal to the second intelligent gateway based on the public key of the second intelligent gateway and the first authentication information.
- the second intelligent gateway can receive the first encrypted signal and obtain the first authentication information based on its private key, and then obtain the second encrypted signal based on its public key and the second authentication information and send it to the first intelligent gateway, wherein the second intelligent gateway can The shared key is obtained based on the first authentication information and the second authentication information. If the first intelligent gateway obtains the first authentication information based on the second encrypted signal, the first intelligent gateway passes the authentication of the second intelligent gateway, wherein the first intelligent gateway passes the authentication.
- the second authentication information may be obtained based on the second encrypted signal.
- the first intelligent gateway may obtain the shared key based on the first authentication information and the second authentication information, obtain the first encrypted target signal based on the shared key and the first target signal, and then obtain the first encrypted target signal based on the shared key, the first encrypted target signal and the hash
- the function obtains the first authentication label
- the first intelligent gateway can obtain the first superimposed signal based on the first authentication label and the first encrypted target signal, and then obtain the first target information signal and send it to the second intelligent gateway
- the second intelligent gateway receives the first target information signal and obtain the first residual signal therefrom
- the second intelligent gateway may perform a first threshold test based on the first residual signal, and if the first threshold test passes, the second intelligent gateway may authenticate the first intelligent gateway Pass, ie the first target information signal may be legal.
- the second intelligent gateway may obtain the second encrypted target signal based on the second target signal and the shared key, obtain the second authentication label based on the shared key, the second encrypted target signal and the hash function, the second authentication label and the second encrypted target
- the signal obtains a second superimposed signal, and then obtains a second target information signal and sends it to the first intelligent gateway.
- the first intelligent gateway receives the second target information signal, obtains a second residual signal based on the second target information signal, and based on the second target information signal
- the residual signal is subjected to a second threshold test, and if the second threshold test passes, the first intelligent gateway can pass the authentication of the second intelligent gateway, that is, the second target information signal can be legal. This enables the first intelligent gateway and the second intelligent gateway to perform mutual authentication and signal transmission.
- the party that sends the signal may be the transmitter, and the party that receives the signal may be the receiver.
- the first intelligent gateway may send the first encrypted signal to the second intelligent gateway, wherein the first intelligent gateway is the party that sends the signal, and the second intelligent gateway is the party that receives the signal, so at this time the first intelligent gateway
- the gateway can be used as a transmitter, and the second intelligent gateway can be used as a receiver.
- the signal sent by the transmitter to the receiver in each step includes only one data packet (also called "frame packet"), that is, the transmitter only sends one data packet in each step.
- the authentication method may include upper layer authentication and physical layer authentication, wherein the upper layer authentication may include steps S10 to S20, and the physical layer authentication may include steps S30 to S40.
- the upper layer authentication may be implemented based on the upper layer network (eg, network layer) of the first intelligent gateway and the second intelligent gateway, and the physical layer authentication may be implemented based on the physical layer of the first intelligent gateway and the second intelligent gateway of.
- an upper layer may refer to an upper layer concept in a computer, which may be divided according to a computer network architecture. In the computer network architecture, the bottom layer can be the physical layer, and the layers above the physical layer are collectively referred to as the upper layer.
- the upper layer authentication may be implemented by the network layers corresponding to the first intelligent gateway and the second intelligent gateway.
- the upper layer authentication may implement upper layer identity authentication between the first intelligent gateway and the second intelligent gateway
- the physical layer authentication may implement physical layer message authentication between the first intelligent gateway and the second intelligent gateway.
- the first intelligent gateway and the second intelligent gateway have respective public-private key pairs (also referred to as public and private keys).
- the public key may be known by both the first intelligent gateway and the second intelligent gateway.
- the private key can only be known by the corresponding smart gateway.
- the first intelligent gateway can learn the public key of the second intelligent gateway, but cannot learn the private key of the second intelligent gateway.
- the second intelligent gateway can obtain the public key of the first intelligent gateway, but cannot obtain the private key of the first intelligent gateway.
- the first intelligent gateway may be the intelligent gateway 300
- the second intelligent gateway may be the intelligent gateway 200 .
- the intelligent gateway 300 may correspond to the intelligent gateway 200 .
- the public-private key pair of the intelligent gateway 300 can be expressed as PubHAN i and PriHAN i respectively, and the public-private key pair of the intelligent gateway 200 can be expressed as PubBAN j and PriBAN j , respectively.
- the preliminary authentication between the first intelligent gateway and the second intelligent gateway may use an upper-layer protocol to establish a key, such as Diffie-Hertz Mann Key Exchange Protocol.
- the transmitting end and the receiving end in steps S10 to S20 may use two pairs of asymmetric protocols (for example, PubHAN i /PriHAN i and PubBAN j /PriBAN j ) to perform decryption and encryption, thereby implementing the first intelligent gateway and preliminary authentication of the second intelligent gateway.
- the first intelligent gateway and the second intelligent gateway can use the physical layer authentication mechanism to achieve the purpose of information authentication (ie, the message authentication of the physical layer) in the mutual signal transmission (two-way communication) (see steps S30 to S30 to Step S40, described later).
- the authentication scheme of the physical layer (described later) may be used in steps S30 to S40 to enable the receiving end to authenticate the transmitting end, thereby ensuring security.
- the prime order group G can satisfy the computable Diffie-Hellman assumption, that is, in a,b ⁇ Z q , where a and b can be random numbers, Z q is represented as a data set, based on The prime order group G generates g a and g b , and it is not easy to obtain (g a ) b ⁇ G .
- g represents a value taken from the prime order group G, and g a and g b belong to the set of G.
- the first intelligent gateway may send the first encrypted signal to the second intelligent gateway based on the public key of the second intelligent gateway and the first authentication information, and the second intelligent gateway receives the first encrypted signal and based on the second intelligent gateway's public key The private key obtains the first authentication information.
- the first intelligent gateway may select a random number a satisfying: a ⁇ Z q , and generate ga based on the prime order group G to obtain the first authentication information. Thereby, the first authentication information can be obtained.
- the first intelligent gateway may encrypt the first authentication information based on the public key possessed by the second intelligent gateway to obtain the encrypted first authentication information and then obtain the first encrypted signal.
- the encrypted first authentication information may be encrypted.
- the authentication information is put into a data packet (also called "frame packet") to obtain the first encrypted signal.
- the first encrypted signal may include a security header, a TCP/IP header, a message header and encrypted first authentication information.
- the encrypted first authentication information may be the original information in the frame packet structure of the sent first encrypted signal.
- the first intelligent gateway may send the first encrypted signal to the second intelligent gateway, and the second intelligent gateway may receive the first encrypted signal and decrypt the first encrypted signal based on the private key possessed by the second intelligent gateway, and may The first authentication information ga is obtained from the first encrypted signal. For example, as shown in FIG.
- the intelligent gateway 300 can encrypt the first authentication information ga based on the public key PubBAN j (that is, the public key of the intelligent gateway 200 ) to obtain the encrypted first authentication information, which can be expressed as Then to obtain the first encrypted signal, the intelligent gateway 300 can send the first encrypted signal to the intelligent gateway 200 and receive the first encrypted signal by the intelligent gateway 200, and the intelligent gateway 200 can encrypt the first encrypted signal based on the private key PriBAN j (that is, the private key of the intelligent gateway 200). Decryption is performed to obtain the first authentication information.
- the second intelligent gateway obtains a second encrypted signal based on the public key of the first intelligent gateway, the first authentication information and the second authentication information and sends it to the first intelligent gateway, wherein the second intelligent gateway is based on the first authentication information and the second authentication information to obtain a shared key, the first intelligent gateway receives the second encrypted signal, and if the first intelligent gateway obtains the first authentication information based on the second encrypted signal and the private key of the first intelligent gateway, the first intelligent gateway The authentication of the second intelligent gateway is passed. That is, the second intelligent gateway can obtain the second encrypted signal based on the first authentication information, the second authentication information and the public key possessed by the first intelligent gateway and send it to the first intelligent gateway. If the first intelligent gateway obtains the first authentication information based on the second encrypted signal and the private key of the first intelligent gateway, the first intelligent gateway passes the authentication of the second intelligent gateway.
- the second intelligent gateway may select a random number b satisfying: b ⁇ Z q , and generate g b based on the prime order group G to obtain the second authentication information. Thereby, the second authentication information can be obtained.
- the second intelligent gateway may combine the second authentication information and the first authentication information obtained in step S10 into a sequence (ie, sequence information), and perform an analysis on the sequence information based on the public key possessed by the first intelligent gateway.
- the encrypted sequence information is obtained by encryption, and then the second encrypted signal is obtained.
- the encrypted sequence information can be put into a data packet to obtain the second encrypted signal.
- the second encrypted signal may include a security header, a TCP/IP header, a message header, and encrypted sequence information.
- the encrypted sequence information may be the original information in the frame packet structure of the sent second encrypted signal.
- the second intelligent gateway can send the second encrypted signal to the first intelligent gateway, and the first intelligent gateway can receive the second encrypted signal and decrypt the second encrypted signal based on the private key possessed by the first intelligent gateway. If the first intelligent gateway can obtain the first authentication information ga from the second encrypted signal, that is, the first intelligent gateway can decrypt the second encrypted signal and recover the first authentication information ga from the second encrypted signal, then The first intelligent gateway may pass the preliminary authentication of the second intelligent gateway.
- the first intelligent gateway may decrypt the second encrypted signal based on the private key possessed by the first intelligent gateway and obtain the second authentication information g b from the second encrypted signal.
- the smart gateway 200 can combine the second authentication information g b and the first authentication information ga into a sequence (ie sequence information), and based on the public key PubHAN i (ie the public key of the smart meter 300 ) ) encrypts the sequence information, which can be expressed as
- a second encrypted signal can be generated and sent to the smart gateway 300, and the smart gateway 300 can decrypt the second encrypted signal based on the private key PriHAN i (that is, the private key of the smart meter 300).
- the intelligent gateway 300 can pass the authentication to the intelligent gateway 200 , and the intelligent gateway 300 can obtain the second authentication information g b from the second encrypted signal.
- the first intelligent gateway may obtain the shared key based on the second authentication information and the first authentication information, and may obtain the first authentication label based on the shared key, the first encrypted target signal and the hash function, and the first intelligent gateway
- the first superimposed signal can be obtained based on the first authentication label and the first encrypted target signal, and then the first target information signal can be obtained and sent to the second intelligent gateway, and the second intelligent gateway can receive the first target information signal, and can obtain the first target information signal based on the first
- the target information signal obtains a first residual signal, and performs a first threshold test based on the first residual signal. If the first threshold test passes, the second intelligent gateway passes the authentication of the first intelligent gateway, that is, the first target information signal can be is legal.
- the first intelligent gateway may encrypt the first target signal based on the shared key, and then obtain the first encrypted target signal through channel coding and channel modulation.
- the first target signal may include information to be transmitted by the first intelligent gateway to the second intelligent gateway.
- the first intelligent gateway may use a hash function to generate the first authentication tag based on the first encrypted target signal and the shared key, where the hash function may be c( ⁇ ).
- the first intelligent gateway may construct the first superimposed signal based on the first authentication tag and the first encrypted target signal.
- the first intelligent gateway may obtain the first target information signal based on the first superimposed signal.
- the first superimposed signal may be added to the data packet to obtain the first target information signal, and the first target information signal may include a security header. , a TCP/IP header, a message header, and a first overlay signal.
- the first superimposed signal may be used as the original information in the frame packet structure of the first target information signal.
- the intelligent gateway 300 can encrypt the first target signal mi based on the shared key k, which can be expressed as ⁇ m i ⁇ k , and then the first encrypted target can be obtained through channel coding and channel modulation signal s i .
- the intelligent gateway 300 may add the first superimposed signal xi to the data packet to obtain the first target information signal.
- the first encrypted target signal si and the first authentication tag ti may satisfy: where E ⁇ is the expectation operator.
- the first intelligent gateway can send the first target information signal to the second intelligent gateway, and the second intelligent gateway can receive the first target information signal and obtain the first residual signal therefrom.
- the first residual signal may be a signal containing the first authentication tag.
- the first residual signal may be a signal that does not contain the first authentication tag if it is not valid.
- the second intelligent gateway may perform the first threshold test based on the first residual signal, that is, the second intelligent gateway may perform the first threshold test based on hypothesis testing based on the first residual signal. Certification.
- the intelligent gateway 300 can send the first target information signal to the intelligent gateway 200, the intelligent gateway 200 can receive the first target information signal and obtain the first residual signal r i therefrom, and the intelligent gateway 200 can A residual signal constructs a first threshold test based on hypothesis testing, which can be satisfied by in, It is indicated that the sender of the first target information signal in step S30 (i.e.
- the intelligent gateway 300 is illegal for the intelligent gateway 200, that is, the transmitting end in step S30 is illegal for the receiving end in step S30, that is, this
- the signal received by the intelligent gateway 200 is illegal, that is, the first target information signal is illegal.
- the sender of the first target information signal in step S30 is legal to the intelligent gateway 200, that is, the transmitting end in step S30 is legal to the receiving end in step S30, that is, the intelligent gateway 200 passes the authentication to the intelligent gateway 300 , that is to say, the signal received by the intelligent gateway 200 is legal at this time, that is, the first target information signal is legal. Thereby, the validity of the first target information signal can be detected through authentication.
- the optimal decision of Equation (1) can be obtained, that is, when P FA ⁇ ⁇ PFA , the optimal threshold can be determined by the maximum detection probability, where ⁇ PFA is the system allowable upper limit of false alarm rate.
- the second intelligent gateway may obtain the second encrypted target signal based on the second target signal and the shared key, and obtain the second authentication label based on the shared key, the second encrypted target signal and the hash function, and the second intelligent gateway
- the second superimposed signal can be obtained based on the second authentication label and the second encrypted target signal, and then the second target information signal can be obtained and sent to the first intelligent gateway, and the first intelligent gateway can receive the second target information signal, and can obtain the second target information signal based on the second
- a second residual signal is obtained from the target information signal, and a second threshold test is performed based on the second residual signal. If the second threshold test passes, the first intelligent gateway can pass the authentication of the second intelligent gateway.
- the second intelligent gateway may encrypt the second target signal based on the shared key, and then obtain the second encrypted target signal through channel coding and channel modulation.
- the second intelligent gateway may generate the second authentication tag using a hash function based on the second encrypted target signal and the shared key, wherein the hash function may be c( ⁇ ).
- the first intelligent gateway may construct the second overlay signal based on the second authentication tag and the second encrypted target signal.
- the second intelligent gateway may obtain the second target information signal based on the second superimposed signal.
- the second superimposed signal may be added to the data packet to obtain the second target information signal, and the second target information signal may include a security header. , a TCP/IP header, a message header, and a second overlay signal.
- the second superimposed signal can be used as the original information in the frame packet structure of the second target information signal.
- the intelligent gateway 200 can encrypt the second target signal m j based on the shared key k, which can be expressed as ⁇ m j ⁇ k , and then channel coding and channel modulation can be performed to obtain the second encrypted target signal signal s j .
- the intelligent gateway 200 may add x j to the data packet to obtain the second target information signal.
- the second encrypted target signal s j and the second authentication tag t j may satisfy: where E ⁇ is the expectation operator.
- the second intelligent gateway may send the second target information signal to the first intelligent gateway, the first intelligent gateway may receive the second target information signal and obtain the second residual signal therefrom, and the first intelligent gateway may be based on the second A second threshold test is performed on the residual signal and the second authentication tag, that is, the first intelligent gateway can perform a second threshold test based on hypothesis testing based on the second residual signal to authenticate the second intelligent gateway. For example, as shown in FIG.
- the intelligent gateway 200 can send the second target information signal to the intelligent gateway 300, the intelligent gateway 300 can receive the second target information signal and obtain the second residual signal r j therefrom, and the intelligent gateway 300 can Two residual signals construct a second threshold test based on hypothesis testing, which can be satisfied with in, It is indicated that the sender of the second target information signal in step S40 (that is, the intelligent gateway 200) is illegal for the intelligent gateway 300, that is, the transmitting end in step S40 is illegal for the receiving end in step S40, that is, this When the signal received by the intelligent gateway 300 is illegal, that is, the second target information signal is illegal.
- the sender of the second target information signal in step S40 is illegal for the intelligent gateway 300, that is, the transmitting end in step S40 is legal for the receiving end in step S40, that is, the intelligent gateway 300 passes the authentication to the intelligent gateway 200 , that is to say, the signal received by the intelligent gateway 300 is legal at this time, that is, the second target information signal is legal. Thereby, the legitimacy of the second target information signal can be detected through authentication.
- the optimal decision of Equation (1) can be obtained, that is, when P FA ⁇ ⁇ PFA , the optimal threshold can be determined by the maximum detection probability, where ⁇ PFA is the system allowable upper limit of false alarm rate.
- step S10 and step S20 may be implemented in an upper layer network (eg, network layer) corresponding to the first intelligent gateway and the second intelligent gateway.
- Steps S30 and S40 may be implemented at the physical layer of the first intelligent gateway and the second intelligent gateway.
- the application of the physical layer to the upper layers may be reliable and transparent.
- channel modulation and channel coding correction capabilities can correct for errors caused by channel losses such as channel fading and receive noise. Therefore the channel loss in step S10 and step S20 can be ignored.
- step S30 can be used to verify the target method of the present disclosure, where the system performs two-way authentication.
- the smart gateway 200 ie the second smart gateway in step S30 may receive the first target information signal sent by the smart gateway 300 (ie the first smart gateway), and may remove the first target information
- the variance may be ⁇ d is the channel route fading coefficient and satisfies: ⁇ d ⁇ 2, d is the distance between the
- the signal-to-noise ratio of the first target information signal is expressed as
- the intelligent gateway 200 obtains the estimated value of the first channel response based on the channel estimation
- the intelligent gateway 200 can obtain the estimated value of the first superimposed signal from the message signal and satisfy: where ( ) * is the conjugate operator.
- the intelligent gateway 200 can obtain a perfect channel estimate, i.e. Channel demodulation and channel decoding may be performed on the estimated value of the first superimposed signal, and channel coding and channel modulation may be performed again. In this case, the intelligent gateway 200 can estimate the first encrypted target signal. In some examples, if The value of is small enough, or the error correction capability of the demodulation and decoding of the intelligent gateway 200 is strong enough, the intelligent gateway 200 can estimate the first encrypted target signal without error, that is In some examples, the intelligent gateway 200 may obtain the shared key k based on the first authentication information and the second authentication information, and the intelligent gateway 200 may obtain the shared key k based on the first authentication information and the second authentication information. and k to obtain an estimate of the first authentication label Can satisfy:
- the intelligent gateway 200 may obtain the residual signal r i from the message signal, which may satisfy: Thus, the intelligent gateway 200 can be authenticated to the intelligent gateway 300 .
- the intelligent gateway 200 can perform the threshold test based on the formula (1), and can obtain the real number test statistic ⁇ i , which can satisfy: where R ⁇ is expressed as the real part.
- the test statistic ⁇ i under different assumptions can satisfy: Wherein, L represents the length of the first superimposed signal, and s i,k , t i,k and ni,k represent s i , t i , and ni of the k-th symbol, respectively. In some examples, due to can get and Therefore, where E ⁇ is the expectation operator.
- test statistic ⁇ i under another hypothesis may satisfy: Referring to the above, it can be obtained, and Therefore,
- equation (2) can be converted into:
- the false alarm rate of the detection of the first authentication tag can be expressed as: where ⁇ i is the test threshold and Q( ⁇ ) is the tail probability function of the standard normal distribution.
- the average false alarm rate for a zero-mean complex Gaussian channel can be obtained based on an optimal threshold ⁇ 0 , which can satisfy: in, Expressed as the average signal-to-noise ratio and satisfies:
- the optimal threshold ⁇ 0 can be obtained and can satisfy:
- the detection probability of the first authentication tag may satisfy:
- explicit closed-loop formulations for the average false alarm rate and the average detection probability can be obtained.
- the public key encryption technology of the present disclosure may be secure.
- the first intelligent gateway may encrypt the information including g a and/or g b through the public key possessed by the second intelligent gateway, and only the first intelligent gateway may encrypt the information including g a and/or g b .
- the second intelligent gateway can decrypt only through the private key possessed by the second intelligent gateway.
- the second intelligent gateway can encrypt the information including g a and/or g b through the public key possessed by the first intelligent gateway, and can only be decrypted by the first intelligent gateway through the private key possessed by the first intelligent gateway.
- the intelligent gateway of the present disclosure and the end user may share a prime order group, and the prime order group may satisfy the computable Diffie-Hellman assumption, where In this case, a relatively secure shared key can be established, the security of the system can be improved, and the illegal attacker can be prevented from distinguishing the correct shared key from the keys randomly extracted from the key space. In some examples, even if the private key of the first smart gateway or the second smart gateway is obtained by the illegal attacker, the illegal attacker cannot obtain the shared key, that is, the authentication method of the present disclosure can achieve perfect forward secrecy .
- both the first intelligent gateway and the second intelligent gateway can act as legal transmitters and can also act as legal receivers.
- the first intelligent gateway can act as a legal transmitter
- the second intelligent gateway can act as a legal receiver, and vice versa.
- the first intelligent gateway or the second intelligent gateway obtains an authentication tag (eg, the first authentication tag or the second authentication tag) based on the shared key and the transmitted original information, and can superimpose the obtained authentication tag on the transmission
- the signal (such as the first encrypted target signal or the second encrypted target signal) is sent to the corresponding receiving end (for example, the second intelligent gateway or the first intelligent gateway), and then the receiving end can information is authenticated. Therefore, the authentication method of the present disclosure can provide two-way information authentication.
- the authentication tag can only be generated based on the complete received information. If the received information is modified, the receiving end of the received information cannot restore the authentication label according to formula (3), and cannot perform information authentication. And in the authentication method of the present disclosure, encryption processing (eg, the first encrypted target signal and the second encrypted target signal) can be performed on the transmitted information. In this case, the integrity and privacy of the information can be guaranteed.
- the rogue receiver can eavesdrop on any signal from the legitimate transmitter and can send wireless signals, assuming that the rogue receiver can implement the authentication methods of the present disclosure but not the shared key.
- errors in estimating propagation delay, multipath, etc. generated by the physical layer authentication employed in this embodiment may lead to discontinuous interruptions. In this case, the illegal attacking end can be prevented from continuously interfering with legitimate signals.
- this embodiment may assume that the first authentication tag obtained based on equation (1) is time-varying, and the legitimate receiver may not receive the repeated wireless signal sent by the illegal attacking end, wherein the wireless signal may be legitimate The signal sent by the transmitter. In this case, the legitimate receiver can be prevented from receiving the repeated wireless signals sent by the illegal attacker.
- the illegal receiver can forge a third authentication tag and superimpose it on the wireless signal it sends, so that the legitimate receiver can receive it.
- the authentication tag (the first authentication tag or the second authentication tag) may be constructed based on the securely encrypted hash function c( ) (for example, the first authentication tag in step S30 ), the securely encrypted hash function c( ) It can be used as a pseudo-random number generator, so that the authentication label can not be easily predicted by the illegal attacker. In this case, it can prevent the illegal attacker from forging an authentication label and superimposing it on the wireless signal to be legally received by the receiving end ( For example, the intelligent gateway 300 or the intelligent gateway 200) receives it.
- an illegitimate receiver can perform an attack by eavesdropping on enough signals and obtain a shared secret from it, which can be an eavesdropping attack. But in a wireless environment, the authentication tag will be noisy, and the correct recovery of the shared key will be a probabilistic event. In this case, even if the illegal attacker has high concealment and eavesdrops enough signals, the correct recovery of the shared key by the illegal attacker can be suppressed.
- the concept of entropy can be introduced in this embodiment to measure the eavesdropping attack, that is, the information entropy of the shared key has been observed for all observations, and the recovery probability of the shared key can be more accurately represented.
- the value of entropy can be zero and the shared key can be recovered in a finite time.
- the value of entropy may be non-zero, and the probability of recovery of the shared key will be less than one.
- t i,k represents the k-th symbol of the authentication label, Represented as the k-th symbol of the estimated value of the authentication tag.
- the average symbol error rate of the authentication tag may satisfy: in, is expressed as the average label-to-noise ratio and satisfies:
- the entropy value of t i,k can satisfy: where H( ⁇ ) is represented as a binary entropy operator.
- the illegal attacker will be able to estimate the estimated value of 2 L different authentication tags.
- the physical layer of the authentication method of the present disclosure introduces uncertainty, thereby enabling a very large search space for shared keys. when If the value of is very small, it will be more difficult for the illegal attacker to recover the shared key, which will make the shared key have enough entropy to suppress the attack of the illegal attacker.
- FIG. 5 is a schematic diagram illustrating the distribution of a lightweight active cross-layer authentication method in a smart grid according to an example of the present disclosure.
- the abscissa X and the ordinate Y represent the spatial distribution of the smart grid system.
- A represents the end user
- B is the intelligent gateway corresponding to the home area network
- C is the intelligent gateway corresponding to the building area network
- D is the intelligent gateway corresponding to the area network.
- the smart grid consists of a local area network including 3 building area networks, each building area network including 3 home area networks, and each home area network may include 12
- Each end user wherein each area network, building area network, and home area network may each have an intelligent gateway, assuming that each end user is only connected to one device. All end users can follow an independent Poisson distribution and are randomly distributed around their respective home area networks.
- the Zigbee protocol can be used as the communication protocol between the intelligent gateway corresponding to the home area network and the corresponding end user, and the carrier frequency is set to 2.4 GHz and the bandwidth to be 2 MHz.
- the global microwave access interoperability technology can be used as the communication protocol between the home area network and the corresponding building area network, and between the building area network and the corresponding area network, and the carrier frequency is set to 2.3GHz, and the bandwidth is 2.3 GHz. 5MHz and 10MHz respectively.
- the size of the security header in the frame packet structure of the signal is 16 bytes
- the size of the TCP/IP header is 20 bytes
- the size of the message header is 50 bytes
- the size of the original information is 32 bytes.
- the size of g a or g b is 2 bytes
- the size of the hash header is 16 bytes.
- the present disclosure introduces communication overhead, average delay, average error probability of transmitted information, and information entropy to evaluate the authentication methods and conventional schemes of the present disclosure.
- the experimental data of different schemes can be obtained by averaging the results of more than 2000 independent experiments.
- FIG. 6 is a waveform diagram illustrating that the communication overhead corresponding to FIG. 5 according to the example of the present disclosure varies with the number of end users and the number of transmitted frame packets.
- A is the change curve of the communication overhead corresponding to the traditional solution with the number of terminal users
- B is the change curve of the communication overhead corresponding to the authentication method of the present disclosure with the number of terminal users.
- A is the change curve of the communication overhead corresponding to the traditional scheme with the number of transmitted frame packets
- B is the change curve of the communication overhead corresponding to the disclosed authentication method with the number of transmitted frame packets.
- Figure 6(a) shows the impact of the number of end users included in each home area network on the communication overhead, that is, the number of devices connected to each home area network The impact of communication overhead, where only one frame packet can be transmitted per signal transmission.
- the communication overhead of the authentication method of the present disclosure and the traditional scheme increases, but the communication overhead of the authentication method of the present disclosure increases.
- the overhead is significantly lower than the traditional scheme, specifically, the communication overhead is reduced by 27%.
- the traditional scheme requires an extra frame packet for initial authentication, and the traditional scheme requires a hash-based message authentication coding algorithm (MAC) to ensure the integrity of the information, this will introduce additional communication overhead to the traditional scheme.
- MAC message authentication coding algorithm
- FIG. 6( b ) shows the influence of the number of frame packets sent at one time on the communication overhead during signal transmission.
- each home area network includes 12 end users, that is, each home area network is connected to 12 devices.
- the communication overhead of the authentication method of the present disclosure and the traditional scheme increases, but the communication overhead of the traditional scheme is significantly greater than that of the authentication method of the present disclosure.
- FIG. 7 is a waveform diagram illustrating the average delay corresponding to FIG. 5 as a function of the number of end users and the number of transmitted frame packets, according to an example of the present disclosure.
- A is the curve of the average delay corresponding to the traditional solution with the number of end users
- B is the curve of the average delay corresponding to the authentication method of the present disclosure with the number of end users.
- A is the variation curve of the average delay corresponding to the traditional scheme with the number of transmitted frame packets
- B is the variation curve of the average delay corresponding to the disclosed authentication method with the number of transmitted frame packets.
- the average delay may consist of processing delay and transmission delay.
- Processing delay represents the delay caused by decrypting encrypted information and can be evaluated by the Secure Sockets Layer Cryptography Library (OpenSSL package).
- OpenSSL package Secure Sockets Layer Cryptography Library
- the authentication methods of the present disclosure may use the same symmetric encryption algorithm and the same asymmetric encryption algorithm, in which case the authentication methods of the present disclosure may have similar processing delays. Thereby, the average delay can be expressed using the propagation delay.
- Figure 7(a) which shows the effect of the number of end users included in each home area network on the average delay, where only one frame packet may be transmitted per signal transmission .
- Figure 7(a) shows the communication overhead of the authentication method of the present disclosure and the traditional scheme increases, which is similar to that of Figure 6(a) Similar to the conclusion of the communication overhead in the present disclosure, the authentication method of the present disclosure has a much lower average delay than the traditional scheme. Specifically, the authentication method of the present disclosure is about 20% lower than the average delay of the conventional scheme.
- the authentication method of the present disclosure does not require additional frame packets to complete the initial authentication, nor does it require a hash-based Message Authentication Coding Algorithm (MAC) to ensure the integrity of the information, which the traditional scheme requires, both of which are unavoidable. Grounding will introduce additional propagation delay, making the average delay of the conventional scheme higher, for the same reason as in Figure 6(a).
- MAC Message Authentication Coding Algorithm
- FIG. 7(b) shows the effect of the number of frame packets transmitted at one time on the average delay during signal transmission.
- each home area network includes 12 end users, that is, each home area network is connected to 12 devices.
- the average delay of the authentication method of the present disclosure and the conventional scheme increases, but the average delay of the conventional scheme is significantly larger than that of the authentication method of the present disclosure.
- Table 1 shows the signal-to-noise ratio versus energy coefficient in the case of FIG. 5
- the influence on the average error probability of the transmitted information includes demodulation error and decoding error, wherein the channel coding scheme can use convolutional coding, and the authentication method of the present disclosure can use binary phase shift keying modulation. See Table 1 below for details.
- the energy coefficient As the value of , increases, the authentication accuracy of the authentication method of the present disclosure becomes higher and higher, but also increases the average error probability of the transmitted information. in the energy coefficient When the value of is not too large or the signal-to-noise ratio is not too small, the energy coefficient The effect on the average error probability of the transmitted information is acceptable. For example, when the signal-to-noise ratio reaches 14dB, the demodulation error is 0; when the signal-to-noise ratio reaches 10dB, the decoding error is 0.
- FIG. 8 is a waveform diagram illustrating information entropy and total information entropy as a function of energy coefficients corresponding to FIG. 5 involved in an example of the present disclosure.
- a in Figure 8(a) is the information entropy corresponding to the energy coefficient corresponding to the traditional scheme Change curve
- B is the information entropy corresponding to the energy coefficient corresponding to the authentication method of the present disclosure Curve.
- A is the total information entropy with the energy coefficient corresponding to the traditional scheme Change curve
- B is the total information entropy corresponding to the energy coefficient corresponding to the authentication method of the present disclosure Curve.
- Figure 8(a) shows the energy coefficient The effect on information entropy
- Figure 8(b) shows the energy coefficient Effect on total information entropy, where the signal-to-noise ratio is 20dB and the signal length is 32 bits.
- the information entropy of Fig. 8(a) can be obtained by formula (6)
- the total information entropy of Fig. 8(b) can be obtained by formula (7).
- the authentication method of the present disclosure has higher information entropy than the traditional scheme.
- FIG. 8(a) and FIG. 8(b) the authentication method of the present disclosure has higher security than the conventional scheme.
- a lightweight active cross-layer authentication method in a smart grid with less communication overhead, delay and demodulation decoding error and higher security can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开涉及一种智能电网中的轻量级主动式跨层认证方法,其特征在于,该轻量级主动式跨层认证方法是多级网络中的任意相邻级次网络对应的智能网关之间进行相互认证的认证方法,多级网络中的任意相邻级次网络包括上级网络和下级网络,下级网络对应的智能网关为第一智能网关,上级网络对应的智能网关为第二智能网关,认证方法包括上层认证和物理层认证。在这种情况下,能够同时实现上层的身份认证和物理层的消息认证,能够减小计算复杂度和通信开销且使第一智能网关和第二智能网关之间进行相互认证。
Description
本公开具体涉及一种智能电网中的轻量级主动式跨层认证方法。
智能电网系统是一种集成网络,通过双向通信使终端用户参与进电力传输与分配中,具有非常好的便捷性和灵活性,可以极大的提高电力传输的效率。在智能电网系统中,系统安全是一个无法回避的问题,节点的安全和传输信息的安全都需要得到保障。
在智能电网系统中需要对每个实体的身份进行认证,以此来保证智能电网系统的安全性,因为不是所有实体都是可信的。如果智能电网系统没有严格的访问认证,非法端可能会恶意收集终端用户数据或恶意损耗电力资源。验证对应的发送端的真实性是一项基本的要求。传统方案的认证技术是基于加密机制并在上层进行身份认证。
然而,传统方案的认证技术存在一些问题,其具有较高的通信开销和较高的计算复杂度。
发明内容
本公开是有鉴于上述的状况而提出的,其目的在于提供一种在智能电网系统中减小计算复杂度和通信开销的智能电网中的轻量级主动式跨层认证方法。
为此,本公开提供了一种智能电网中的轻量级主动式跨层认证方法,其特征在于,该轻量级主动式跨层认证方法是多级网络中的任意相邻级次网络对应的智能网关之间进行相互认证的认证方法,多级网络中的任意相邻级次网络包括上级网络和下级网络,所述下级网络对应的智能网关为第一智能网关,所述上级网络对应的智能网关为第二智能网关,所述认证方法包括上层认证和物理层认证,所述上层认证包括:所述第一智能网关基于所述第二智能网关的公钥和第一认证信 息向所述第二智能网关发送第一加密信号;所述第二智能网关接收所述第一加密信号并基于所述第二智能网关的私钥获得所述第一认证信息,并基于所述第一智能网关的公钥、所述第一认证信息和第二认证信息获得第二加密信号并发送给所述第一智能网关,且所述第二智能网关基于所述第一认证信息和所述第二认证信息获得共享密钥;所述第一智能网关接收所述第二加密信号,若所述第一智能网关基于所述第二加密信号和所述第一智能网关的私钥获得所述第一认证信息,则所述第一智能网关对所述第二智能网关认证通过,且所述第一智能网关基于所述第二加密信号获得所述第二认证信息;并且所述物理层认证包括:所述第一智能网关基于所述第一认证信息和所述第二认证信息获得所述共享密钥,基于所述共享密钥和第一目标信号获得第一加密目标信号,进而基于所述共享密钥、所述第一加密目标信号和哈希函数获得第一认证标签,所述第一智能网关基于所述第一认证标签和所述第一加密目标信号获得第一叠加信号,进而获得第一目标信息信号并向所述第二智能网关发送,所述第二智能网关接收所述第一目标信息信号,基于所述第一目标信息信号获得第一残差信号,并基于所述第一残差信号进行第一阈值测试,若所述第一阈值测试通过,则所述第二智能网关对所述第一智能网关认证通过;并且所述第二智能网关基于第二目标信号和所述共享密钥获得第二加密目标信号,基于所述共享密钥、所述第二加密目标信号和所述哈希函数获得第二认证标签,所述第二智能网关基于所述第二认证标签和所述第二加密目标信号获得第二叠加信号,进而获得第二目标信息信号并向所述第一智能网关发送,所述第一智能网关接收所述第二目标信息信号,基于所述第二目标信息信号获得第二残差信号,并基于所述第二残差信号进行第二阈值测试,若所述第二阈值测试通过,则所述第一智能网关对所述第二智能网关认证通过,其中,所述上层认证是基于所述第一智能网关和所述第二智能网关的上层网络实现的,所述物理层认证是基于所述第一智能网关和所述第二智能网关的物理层实现的。
在本公开中,多级网络中的相邻级次网络对应的智能网关之间可以相互认证,相邻级次网络对应的智能网关之间分别进行上层认证和物理层认证。在这种情况下,能够同时实现上层的身份认证和物理层 的消息认证,能够减小计算复杂度和通信开销且使第一智能网关和第二智能网关之间进行相互认证。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,所述第一智能网关具有对应的公钥和私钥,所述第二智能网关具有对应的公钥和私钥。由此,能够便于对各自对应的智能网关进行认证。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,所有的智能网关共享一个素数阶群G=<g>,素数阶为q。由此,能够便于后续获得第一认证信息和第二认证信息。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,所述第一智能网关基于a和所述素数阶群获得所述第一认证信息,其中,a为第一智能网关选择的随机数,且满足:a∈Z
q,所述第二智能网关基于随机数b和所述素数阶群获得所述第二认证信息,其中,b为第二智能网关选择的随机数,且满足:b∈Z
q,Z
q表示为一个数据集合。由此,能够获得第一认证信息和第二认证信息。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,所述共享密钥满足k=c((g
a)
b),其中,c(·)是一个安全加密的哈希函数。由此,能够获得共享密钥。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,所述多级网络包括多个区域网、多个楼域网和多个家域网,其中,各个区域网对应若干个楼域网,该区域网为对应的楼域网的上级网络,该楼域网为该区域网的下级网络,各个楼域网对应若干个家域网,该楼域网为对应的家域网的上级网络,该家域网为该楼域网的下级网络。由此能够实现区域网与楼域网、楼域网与家域网之间各自对应的智能网关相互进行信号传输。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,各个所述区域网分别具有一个智能网关,各个所述楼域网分别具有一个智能网关,各个所述家域网分别具有一个智能网关。由此能够实现区域网与楼域网、楼域网与家域网之间各自对应的智能网关相互进行信号传输。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,所述多 级网络还包括多个终端用户,各个家域网对应若干个终端用户,任一终端用户包括多个设备,任一终端用户和对应的家域网通过所述认证方法进行相互认证,其中,该终端用户为该家域网的下级网络,该家域网为该终端用户的上级网络,该终端用户对应的多个设备作为所述第一智能网关,该家域网对应智能网关作为所述第二智能网关。由此能够使家域网与终端用户之间进行相互认证,并进行信号传输。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,所述第一认证标签满足:t
i=c(s
i,k),其中,s
i表示为第一加密目标信号,k表示为共享密钥,c(·)是一个安全加密的哈希函数。由此能够获得第一认证标签。
本公开所涉及的轻量级主动式跨层认证方法中,可选地,所述第一叠加信号满足:x
i=ρ
ss
i+ρ
tt
i,其中,s
i表示为第一加密目标信号,ρ
s表示为第一加密目标信号的能量系数,t
i表示为第一认证标签,ρ
t表示为第一认证标签的能量系数,ρ
s和ρ
t满足:
s
i和t
i满足:
E{·}是期望算子。由此能够获得第一叠加信号。
根据本公开,能够提供一种在智能电网系统中减小计算复杂度和通信开销的智能电网中的轻量级主动式跨层认证方法。
图1是示出了本公开的示例所涉及的智能电网中的轻量级主动式跨层认证方法的应用场景示意图。
图2是示出了本公开的示例所涉及的信号的基本帧包结构示意图。
图3是示出了本公开的示例所涉及的智能电网中的轻量级主动式跨层认证方法的流程示意图。
图4是示出了本公开的示例所涉及的智能网关之间信号传输的应用场景示意图。
图5是示出了本公开的示例所涉及的智能电网中的轻量级主动式跨层认证方法的分布示意图。
图6是示出了本公开的示例所涉及的图5对应的通信开销随终端用户的数量和传输的帧包的数量变化的波形图。
图7是示出了本公开的示例所涉及的图5对应的平均延迟随终端用户的数量和传输的帧包的数量变化的波形图。
图8是示出了本公开的示例所涉及的图5对应的信息熵和总信息熵随能量系数变化的波形图。
以下,参考附图,详细地说明本公开的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
本公开提供一种智能电网中的轻量级主动式跨层认证方法(也可以简称“认证方法”)。在本公开中,智能电网中的轻量级主动式跨层认证方法可以应用在智能电网系统,能够实现智能电网系统中的智能网关之间进行相互认证和信号传输,并能够较为明显地减小计算复杂度和的通信开销。以下结合附图进行详细描述本公开。
图1是示出了本公开的示例所涉及的智能电网中的轻量级主动式跨层认证方法的应用场景示意图。轻量级主动式跨层认证方法可以是具有多级网络的认证方法,并且能够提供一种在智能电网系统中减小计算复杂度和通信开销的认证方法。
在一些示例中,智能电网系统(也称“智能电网”和“系统”)可以划分为多级网络。其中,发电厂附近的输电变电站与配电网之间可以采用网状网络连接,可以通过光纤技术实现通信。在一些示例中,由于无线通信技术可以提供极大的方便和灵活性,所有的下级网络通信都是通过无线通信技术实现。在一些示例中,智能电网系统中的较低的分销网络可以划分为多级网络,包括区域网、楼域网、家域网和终端用户(稍后描述),其中每个区域网可以包括多个楼域网,每个楼域网可以包括多个家域网。
在一些示例中,假设每个配电所只覆盖一个小区,可以让一个区域网管理该小区的通信业务。各个区域网、楼域网和家域网都可以分别具有一个智能网关。由此能够实现区域网与楼域网、楼域网与家域网之间各自对应的智能网关相互进行信号传输。例如,如图1所示, 该小区的区域网对应的智能网关101,该区域网包括的各个楼域网分别对应的智能网关201、智能网关202和智能网关203等,其中一个楼域网(即智能网关201对应的楼域网)包括的各个家域网分别对应的智能网关301、智能网关302和智能网关303等,其他楼域网也可以包括多个家域网(未图示)。
在一些示例中,各个智能网关可以具有两个不同的端口,其中一个端口可以用于获取电力资源,另一个端口可以作为通信网关,可以基于该端口实现两个智能网关之间相互的信号传输(稍后描述)。在一些示例中,各个家域网可以包括多个终端用户,各层网络具有的智能网关可以支持终端用户与供电商之间的双向通信,例如,该终端用户可以基于这些智能网关通过运行或关闭某些设备来改变其用电情况。在一些示例中,各层网络对应的智能网关具有的功能可以是不同的,例如区域网对应的智能网关101可以具有最强大的功能,楼域网对应的智能网关(例如智能网关201等)具有的功能可以次之,家域网对应的智能网关(例如智能网关301等)具有的功能可以最差。
在一些示例中,多级网络中的任意相邻级次网络包括上级网络和下级网络,上级网络和下级网络各自对应的智能网关之间可以进行信号传输。在一些示例中,多级网络包括多个区域网、多个楼域网和多个家域网,其中,各个区域网可以包括若干个楼域网,该区域网可以为对应的楼域网的上级网络,楼域网可以为该区域网的下级网络,各个楼域网可以包括若干个家域网,该楼域网可以为对应的家域网的上级网络,家域网可以为该楼域网的下级网络。由此能够实现区域网与楼域网、楼域网与家域网之间各自对应的智能网关相互进行信号传输。例如,如图1所示,区域网对应的智能网关101可以分别和该区域网包括的多个楼域网对应的智能网关201、智能网关202和智能网关203等之间相互进行信号传输(也称“双向通信”),其中一个楼域网对应的智能网关201可以和该楼域网包括的多个家域网对应的智能网关301、智能网关302和智能网关303等之间相互进行信号传输。
在一些示例中,第一智能网关和第二智能网关之间可以通过全球微波接入互操作性技术(即WiMax)和/或低功耗局域网协议(也称紫峰协议,即ZigBee)进行信号传输。由此能够实现第一智能网关和第 二智能网关之间的信号传输。例如在一些示例中,区域网与楼域网、楼域网与家域网之间各自对应的智能网关可以通过全球微波接入互操作性技术(即WiMax)进行信号传输。在一些示例中,各个家域网对应的智能网关可以和多个终端用户通过低功耗局域网协议(也称紫峰协议,即ZigBee)进行信号传输。
在一些示例中,如上所述,区域网与楼域网、楼域网与家域网之间各自对应的智能网关可以通过全球微波接入互操作性技术进行信号传输。由此能够实现上级网络对应的智能网关和下级网络对应的智能网关之间的信号传输。在一些示例中,下级网络对应的智能网关可以为第一智能网关,上级网络对应的智能网关可以为第二智能网关。
在一些示例中,多级网络还包括多个终端用户,各个家域网对应若干个终端用户,任一终端用户包括多个设备,任一终端用户和对应的家域网通过认证方法进行相互认证,其中,该终端用户为该家域网的下级网络,该家域网为该终端用户的上级网络,该终端用户对应的多个设备可以作为第一智能网关,该家域网对应智能网关可以作为第二智能网关。由此能够使家域网与终端用户之间进行相互认证,并进行信号传输。
在一些示例中,如上所述,各个家域网对应的智能网关可以和多个终端用户通过紫蜂协议进行信号传输。例如,如图1所示,图1中的虚线圆圈401内可以示出家域网对应的智能网关301可以对应多个设备,其中一个设备对应一个不同的终端用户,各个设备(各个终端用户)可以作为第一智能网关,智能网关301可以作为第二智能网关,智能网关301可以和多个设备(也即多个终端用户)通过紫蜂协议进行通信(也即信号传输)。
图2是示出了本公开的示例所涉及的信号的基本帧包结构示意图。
在一些示例中,如图2所示,智能电网系统中的信号传输,其中,信号的基本帧包结构可以包括:安全报头、TCP/IP报头和消息报头,其中,安全报头可以是安全包的一部分,可以包括所有安全信息,如密钥标识、安全级别指示、校验和数字签名;TCP/IP报头可以包括信号的发送地址及其该信号的发送者对应的地址;消息报头可以包括电表ID地址、设备状态和消息类型;原始信息。在一些示例中,本实施 方式中可以使信号的帧包结构包括哈希报头(参见图4)。
图3是示出了本公开的示例所涉及的智能电网中的轻量级主动式跨层认证方法的流程示意图。图4是示出了本公开的示例所涉及的智能网关之间相互认证和信号传输的应用场景示意图。
在一些示例中,如图3和图4所示,图3中的步骤S10~步骤S40可以和图4中的信号传输过程一一对应。
在本实施方式中,认证方法可以是任意相邻级次网络对应的智能网关之间(例如,第一智能网关和第二智能网关)进行信号传输和相互认证的认证方法。如图3所示,认证方法可以包括以下步骤:第一智能网关可以基于第二智能网关的公钥和第一认证信息向第二智能网关发送第一加密信号,第二智能网关可以接收第一加密信号并可以基于第二智能网关的私钥获得第一认证信息(步骤S10);第二智能网关可以基于第一智能网关的公钥、第一认证信息和第二认证信息获得第二加密信号并发送给第一智能网关,且第二智能网关可以基于第一认证信息和第二认证信息获得共享密钥。第一智能网关可以接收第二加密信号,若第一智能网关基于第二加密信号和第一智能网关的私钥获得第一认证信息,则第一智能网关对第二智能网关认证通过,且第一智能网关可以基于第二加密信号获得第二认证信息(步骤S20);第一智能网关可以基于第二认证信息和第一认证信息获得共享密钥,可以基于共享密钥和第一目标信号获得第一加密目标信号,进而可以基于共享密钥、第一加密目标信号和哈希函数获得第一认证标签,第一智能网关可以基于第一认证标签和第一加密目标信号获得第一叠加信号,进而可以获得第一目标信息信号并向第二智能网关发送,第二智能网关可以接收第一目标信息信号,可以基于第一目标信息信号获得第一残差信号,并基于第一残差信号进行第一阈值测试,若第一阈值测试通过,则第二智能网关对第一智能网关认证通过(步骤S30);第二智能网关可以基于第二目标信号和共享密钥获得第二加密目标信号,基于共享密钥、第二加密目标信号和哈希函数获得第二认证标签,第二智能网关可以基于第二认证标签和第二加密目标信号获得第二叠加信号,进而可以获得第二目标信息信号并向第一智能网关发送,第一智能网关可以接收第二目标信息信号,可以基于第二目标信息信号获得 第二残差信号,并基于第二残差信号进行第二阈值测试,若第二阈值测试通过,则第一智能网关可以对第二智能网关认证通过(步骤S40)。
在本公开中,多级网络中的相邻级次网络互相发送信息(即信息传输)用于相互认证各自的合法性,其中,任意相邻级次网络包括上级网络和下级网络,下级网络对应的智能网关为第一智能网关,上级网络对应的智能网关为第二智能网关。第一智能网关可以和第二智能网关之间进行信号传输。第一智能网关可以基于第二智能网关的公钥和第一认证信息向第二智能网关发送第一加密信号。第二智能网关可以接收第一加密信号并基于其私钥获得第一认证信息,进而基于其公钥和第二认证信息获得第二加密信号并发送给第一智能网关,其中第二智能网关可以基于第一认证信息和第二认证信息获得共享密钥,若第一智能网关基于第二加密信号获得第一认证信息,则第一智能网关对第二智能网关认证通过,其中,第一智能网关可以基于第二加密信号获得第二认证信息。第一智能网关可以基于第一认证信息和第二认证信息获得共享密钥,基于共享密钥和第一目标信号获得第一加密目标信号,进而基于共享密钥、第一加密目标信号和哈希函数获得第一认证标签,第一智能网关可以基于第一认证标签和第一加密目标信号获得第一叠加信号,进而可以获得第一目标信息信号并向第二智能网关发送,第二智能网关接收第一目标信息信号并从中获得第一残差信号,第二智能网关可以基于第一残差信号进行第一阈值测试,若第一阈值测试通过,则第二智能网关可以对第一智能网关认证通过,即第一目标信息信号可以是合法的。第二智能网关可以基于第二目标信号、共享密钥获得第二加密目标信号,基于共享密钥、第二加密目标信号和哈希函数获得第二认证标签,第二认证标签和第二加密目标信号获得第二叠加信号,进而获得第二目标信息信号并向第一智能网关发送,第一智能网关接收第二目标信息信号,基于第二目标信息信号获得第二残差信号,并基于第二残差信号进行第二阈值测试,若第二阈值测试通过,则第一智能网关可以对第二智能网关认证通过,即第二目标信息信号可以是合法的。由此能够使第一智能网关和第二智能网关进行相互认证并进行信号传输。
在一些示例中,各个步骤(步骤S10~步骤S40)中发送信号的一 方可以分别作为发射端,接收信号的一方可以分别作为接收端。例如,在步骤S10中,第一智能网关可以向第二智能网关发送第一加密信号,其中,第一智能网关为发送信号的一方,第二智能网关为接收信号的一方,故此时第一智能网关可以作为发射端,第二智能网关可以作为接收端。在一些示例中,可以假设各个步骤中发射端向接收端发送的信号仅包括一个数据包(也称“帧包”),即各个步骤中发射端仅发送一个数据包。
在一些示例中,认证方法可以包括上层认证和物理层认证,其中,上层认证可以包括步骤S10~步骤S20,物理层认证可以包括步骤S30~步骤S40。在一些示例中,上层认证可以是基于第一智能网关和第二智能网关的上层网络(例如,网络层)实现的,物理层认证可以是基于第一智能网关和第二智能网关的物理层实现的。在一些示例中,上层可以指的是计算机中的上层概念,可以是按照计算机网络体系结构来划分的。在计算机网络体系结构中,最底层的可以是物理层,物理层之上的统称为上层。例如,上层认证可以由第一智能网关和第二智能网关对应的网络层来实现。在一些示例中,上层认证可以实现第一智能网关和第二智能网关之间的上层的身份认证,物理层认证可以实现第一智能网关和第二智能网关之间的物理层的消息认证。
在一些示例中,假设第一智能网关和第二智能网关具有各自的公私密钥对(也称公钥和私钥)。在一些示例中,公钥可以由第一智能网关和第二智能网关双方获知。私钥可以仅由对应的智能网关获知。例如,第一智能网关可以获知第二智能网关的公钥,但不可获知第二智能网关的私钥。第二智能网关可以获知第一智能网关的公钥,但不可获知第一智能网关的私钥。在一些示例中,如图4所示,第一智能网关可以为智能网关300,第二智能网关可以为智能网关200。智能网关300可以和智能网关200相对应。其中,智能网关300的公私密钥对可以分别表示为PubHAN
i和PriHAN
i,智能网关200的公私密钥对可以分别表示为PubBAN
j和PriBAN
j。
在一些示例中,第一智能网关和第二智能网关之间的初步认证(即上层的身份认证,参见步骤S10和步骤S20,稍后描述)可以采用上层协议建立密钥,例如迪菲-赫尔曼密钥交换协议。在一些示例中,步骤 S10~步骤S20中的发射端和接收端可以利用两对非对称协议(例如,PubHAN
i/PriHAN
i和PubBAN
j/PriBAN
j)进行解密和加密,从而实现第一智能网关和第二智能网关的初步认证。在一些示例中,第一智能网关和第二智能网关可以采用物理层认证机制在相互的信号传输(双向通信)中实现信息认证(也即,物理层的消息认证)的目的(参见步骤S30至步骤S40,稍后描述)。在一些示例中,步骤S30~步骤S40中可以利用物理层的认证方案(稍后描述),使接收端对发射端进行认证,由此能够保证安全性。
在一些示例中,假设第一智能网关和第二智能网关包括终端用户(也即终端用户对应的设备)可以共享一个素数阶群G=<g>,素数阶为q。在一些示例中,素数阶群G可以满足可计算的迪菲-赫尔曼假设,即在a,b∈Z
q,其中a和b可以为随机数,Z
q表示为一个数据集合,在基于素数阶群G生成g
a和g
b,不容易获得(g
a)
b∈G。其中,g表示为从素数阶群G中取的一个值,g
a和g
b属于G的集合。由此,能够便于获得第一认证信息和第二认证信息(稍后描述)。
在步骤S10中,第一智能网关可以基于第二智能网关的公钥和第一认证信息向第二智能网关发送第一加密信号,第二智能网关接收第一加密信号并基于第二智能网关的私钥获得第一认证信息。
在一些示例中,第一智能网关可以选择一个随机数a且满足:a∈Z
q,并基于素数阶群G生成g
a获得第一认证信息。由此,能够获得第一认证信息。在一些示例中,第一智能网关可以基于第二智能网关具有的公钥对第一认证信息进行加密获得加密后的第一认证信息进而获得第一加密信号,例如,可以将加密后的第一认证信息放入数据包(也称“帧包”)中获得第一加密信号。第一加密信号可以包括安全报头、TCP/IP报头、消息报头和加密后的第一认证信息。其中,加密后的第一认证信息可以为发送的第一加密信号的帧包结构中的原始信息。在一些示例中,第一智能网关可以向第二智能网关发送第一加密信号,第二智能网关可以接收第一加密信号并基于第二智能网关具有的私钥对第一加密信号进行解密,可以从第一加密信号中获得第一认证信息g
a。例如,如图4所示,智能网关300可以基于公钥PubBAN
j(即智 能网关200的公钥)对第一认证信息g
a进行加密获得加密后的第一认证信息,可以表示为
进而获得第一加密信号,智能网关300可以向智能网关200发送第一加密信号并被智能网关200接收,智能网关200可以基于私钥PriBAN
j(即智能网关200的私钥)对第一加密信号进行解密获得第一认证信息。
在步骤S20中,第二智能网关基于第一智能网关的公钥、第一认证信息和第二认证信息获得第二加密信号并发送给第一智能网关,其中,第二智能网关基于第一认证信息和第二认证信息获得共享密钥,第一智能网关接收第二加密信号,若第一智能网关基于第二加密信号和第一智能网关的私钥获得第一认证信息,则第一智能网关对第二智能网关认证通过。也就是说,第二智能网关可以基于第一认证信息、第二认证信息和第一智能网关具有的公钥获得第二加密信号并发送给第一智能网关。若第一智能网关基于第二加密信号和第一智能网关的私钥获得第一认证信息,则第一智能网关对第二智能网关认证通过。
在一些示例中,第二智能网关可以选择一个随机数b且满足:b∈Z
q,并基于素数阶群G生成g
b获得第二认证信息。由此,能够获得第二认证信息。
在一些示例中,第二智能网关可以将第二认证信息和在步骤S10中获得的第一认证信息组合成一个序列(即序列信息),并基于第一智能网关具有的公钥对序列信息进行加密获得加密后的序列信息,进而获得第二加密信号,例如,可以将加密后的序列信息放入数据包中获得第二加密信号。第二加密信号可以包括安全报头、TCP/IP报头、消息报头和加密后的序列信息。其中,加密后的序列信息可以为发送的第二加密信号的帧包结构中的原始信息。
在一些示例中,第二智能网关可以基于第一认证信息g
a和第二认证信息g
b获得共享密钥,共享密钥可以满足:k=c((g
a)
b),其中,c(·)是一个安全加密的哈希函数(单向且抗碰撞)。由此,能够获得共享密钥。
在一些示例中,第二智能网关可以向第一智能网关发送第二加密信号,第一智能网关可以接收第二加密信号并基于第一智能网关具有的私钥对第二加密信号进行解密。若第一智能网关可以从第二加密信 号中获得第一认证信息g
a,即第一智能网关可以对第二加密信号进行解密并从第二加密信号中恢复出第一认证信息g
a,则第一智能网关可以对第二智能网关初步认证通过。
在一些示例中,第一智能网关可以基于第一智能网关具有的私钥对第二加密信号进行解密并从第二加密信号中获得第二认证信息g
b。例如,如图4所示,智能网关200可以将第二认证信息g
b和第一认证信息g
a组合成一个序列(即序列信息),并基于公钥PubHAN
i(即智能电表300的公钥)对序列信息进行加密,可以表示为
进而可以生成第二加密信号并向智能网关300发送,智能网关300可以基于私钥PriHAN
i(即智能电表300的私钥)对第二加密信号进行解密,若智能网关300可以从第二加密信号恢复出第一认证信息g
a,则智能网关300可以对智能网关200认证通过,并且智能网关300可以从第二加密信号中获得第二认证信息g
b。
在步骤S30中,第一智能网关可以基于第二认证信息和第一认证信息获得共享密钥,可以基于共享密钥、第一加密目标信号和哈希函数获得第一认证标签,第一智能网关可以基于第一认证标签和第一加密目标信号获得第一叠加信号,进而可以获得第一目标信息信号并向第二智能网关发送,第二智能网关可以接收第一目标信息信号,可以基于第一目标信息信号获得第一残差信号,并基于第一残差信号进行第一阈值测试,若第一阈值测试通过,则第二智能网关对第一智能网关认证通过,即第一目标信息信号可以是合法的。
在一些示例中,第一智能网关可以基于第二认证信息g
b和第一认证信息获得共享密钥,其中,共享密钥可以满足:k=c((g
a)
b)。
在一些示例中,第一智能网关可以基于共享密钥对第一目标信号进行加密,之后经过信道编码和信道调制获得第一加密目标信号。其中,第一目标信号可以包含第一智能网关所要传输给第二智能网关的信息。第一智能网关可以基于第一加密目标信号和共享密钥使用哈希函数生成第一认证标签,其中,哈希函数可以为c(·)。在一些示例中,第一智能网关可以基于第一认证标签和第一加密目标信号构建出第一叠加信号。在一些示例中,第一智能网关可以基于第一叠加信号获得 第一目标信息信号,例如,可以将第一叠加信号加入数据包中获得第一目标信息信号,第一目标信息信号可以包括安全报头、TCP/IP报头、消息报头和第一叠加信号。第一叠加信号可以作为第一目标信息信号的帧包结构中的原始信息。例如,如图4所示,智能网关300可以基于共享密钥k对第一目标信号m
i进行加密,可以表示为{m
i}
k,之后进过信道编码和信道调制可以获得第一加密目标信号s
i。智能网关300可以基于s
i和k使用哈希函数c(·)生成第一认证标签t
i,第一认证标签可以满足:t
i=c(s
i,k)(1)。由此能够获得第一认证标签。智能网关300可以基于t
i和s
i构建出第一叠加信号并满足:x
i=ρ
ss
i+ρ
tt
i,其中,s
i表示为第一加密目标信号,ρ
s表示为第一加密目标信号的能量系数,t
i表示为第一认证标签,ρ
t表示为第一认证标签的能量系数,ρ
s和ρ
t满足:
由此能够获得第一叠加信号。智能网关300可以将第一叠加信号x
i加入数据包中获得第一目标信息信号。在一些示例中,第一加密目标信号s
i和第一认证标签t
i可以满足:
其中,E{·}是期望算子。
在一些示例中,第一智能网关可以向第二智能网关发送第一目标信息信号,第二智能网关可以接收第一目标信息信号并从中获得第一残差信号。在一些示例中,在合法的情况下,第一残差信号可以是包含第一认证标签的信号。例如,在合法的情况下,第一残差信号可以和第一认证标签相同,满足:r
i=t
i。在一些示例中,在不合法的情况下,第一残差信号可以是未包含第一认证标签的信号。例如,在不合法的情况下,第一残差信号可以满足:r
i=0。在一些示例中,第二智能网关可以基于第一残差信号进行第一阈值测试,也即第二智能网关可以基于第一残差信号进行基于假设检验的第一阈值测试对第一智能网关进行认证。例如,如图4所示,智能网关300可以向智能网关200发送第一目标信息信号,智能网关200可以接收第一目标信息信号并从中获得第一残差信号r
i,智能网关200可以基于第一残差信号构建基于假设检验的第一阈值测试,可以满足于
其中,
表示为步骤S30中第一目标信息信号的发送者(即智能网关300) 对于智能网关200是非法的,即步骤S30中的发射端对于步骤S30中的接收端是非法的,也就是说,此时智能网关200接收的信号是非法的,即第一目标信息信号是非法的。
表示为步骤S30中第一目标信息信号的发送者对于智能网关200是合法的,即步骤S30中的发射端对于步骤S30中的接收端是合法的,也即智能网关200对智能网关300认证通过,也就是说,此时智能网关200接收的信号是合法的,即第一目标信息信号是合法的。由此能够通过认证以检测第一目标信息信号的合法性。
在一些示例中,
可以误判成
若
误判成
则称为虚警,虚警率可以由P
FA表示。基于奈曼一皮尔逊(Neyman-Pearson)定理,可以获得式(1)的最佳决策,即当P
FA≤ε
PFA时,最佳阈值可以由最大检测概率确定,其中,ε
PFA是系统容许的虚警率上限。
在步骤S40中,第二智能网关可以基于第二目标信号和共享密钥获得第二加密目标信号,基于共享密钥、第二加密目标信号和哈希函数获得第二认证标签,第二智能网关可以基于第二认证标签和第二加密目标信号获得第二叠加信号,进而可以获得第二目标信息信号并向第一智能网关发送,第一智能网关可以接收第二目标信息信号,可以基于第二目标信息信号获得第二残差信号,并基于第二残差信号进行第二阈值测试,若第二阈值测试通过,则第一智能网关可以对第二智能网关认证通过。
在一些示例中,第二智能网关可以基于共享密钥对第二目标信号进行加密,之后经过信道编码和信道调制获得第二加密目标信号。第二智能网关可以基于第二加密目标信号和共享密钥使用哈希函数生成第二认证标签,其中,哈希函数可以为c(·)。在一些示例中,第一智能网关可以基于第二认证标签和第二加密目标信号构建出第二叠加信号。在一些示例中,第二智能网关可以基于第二叠加信号获得第二目标信息信号,例如,可以将第二叠加信号加入数据包中获得第二目标信息信号,第二目标信息信号可以包括安全报头、TCP/IP报头、消息报头和第二叠加信号。第二叠加信号可以作为第二目标信息信号的帧包结构中的原始信息。例如,如图4所示,智能网关200可以基于共享密 钥k对第二目标信号m
j进行加密,可以表示为{m
j}
k,之后进过信道编码和信道调制可以获得第二加密目标信号s
j。智能网关200可以基于s
j和k使用哈希函数c(·)生成第二认证标签t
j,第二认证标签可以满足:t
j=c(s
j,k)。由此能够获得第二认证标签。智能网关200可以基于t
j和s
j构建出第二叠加信号并满足:x
j=ρ
ss
j+ρ
tt
j,其中,s
j表示为第二加密目标信号,ρ
s表示为第二加密目标信号的能量系数,t
j表示为第二认证标签,ρ
t表示为第二认证标签的能量系数,ρ
s和ρ
t满足:
由此能够获得第二叠加信号。智能网关200可以将x
j加入数据包中获得第二目标信息信号。在一些示例中,第二加密目标信号s
j和第二认证标签t
j可以满足:
其中,E{·}是期望算子。
在一些示例中,第二智能网关可以向第一智能网关发送第二目标信息信号,第一智能网关可以接收第二目标信息信号并从中获得第二残差信号,第一智能网关可以基于第二残差信号和第二认证标签进行第二阈值测试,也即第一智能网关可以基于第二残差信号进行基于假设检验的第二阈值测试对第二智能网关进行认证。例如,如图4所示,智能网关200可以向智能网关300发送第二目标信息信号,智能网关300可以接收第二目标信息信号并从中获得第二残差信号r
j,智能网关300可以基于第二残差信号构建基于假设检验的第二阈值测试,可以满足于
其中,
表示为步骤S40中第二目标信息信号的发送者(即智能网关200)对于智能网关300是非法的,即步骤S40中的发射端对于步骤S40中的接收端是非法的,也就是说,此时智能网关300接收的信号是非法的,即第二目标信息信号是非法的。
表示为步骤S40中第二目标信息信号的发送者对于智能网关300是非法的,即步骤S40中的发射端对于步骤S40中的接收端是合法的,也即智能网关300对智能网关200认证通过,也就是说,此时智能网关300接收的信号是合法的,即第二目标信息信号是合法的。由此能够通过认证检测第二目标信息信号的合法性。
在一些示例中,
可以误判成
若
误判成
则称为虚警, 虚警率可以由P
FA表示。基于奈曼一皮尔逊(Neyman-Pearson)定理,可以获得式(1)的最佳决策,即当P
FA≤ε
PFA时,最佳阈值可以由最大检测概率确定,其中,ε
PFA是系统容许的虚警率上限。
在一些示例中,步骤S10和步骤S20可以在第一智能网关和第二智能网关对应的上层网络(例如网络层)实现。步骤S30和步骤S40可以在第一智能网关和第二智能网关的物理层实现。在一些示例中,物理层对上层的应用可以是可靠的和透明的。在一些示例中,信道调制和信道编码的修正能力可以修正信道衰落和接收噪声等信道损耗导致的误差。因此在步骤S10和步骤S20中的信道损耗可以忽略。
在一些示例中,可以以步骤S30分析系统进行双向认证的情况用于验证本公开的目标方法。在一些示例中,在无线衰落信道中,步骤S30中智能网关200(即第二智能网关)可以接收智能网关300(即第一智能网关)发送的第一目标信息信号,可以去除第一目标信息信号中的多种报头(例如,安全报头、TCP/IP报头、消息报头等),由此能够获得消息信号满足:y
i=h
ix
i+n
i,其中,h
i表示为智能网关200和智能网关300之间的第一信道响应,x
i表示为第一叠加信号,n
i表示为零均值复高斯白噪声,方差为
在一些示例中,假设第一信道响应h
i为零均值复高斯随机变量,方差可以为
α
d是信道路线衰落系数且满足:α
d≥2,d是智能网关200和智能网关300之间的距离,λ是第一叠加信号的波长满足:λ=c/f
c,c=3×10
8m/s,f
c是第一叠加信号的载波频率。
在一些示例中,假设智能网关200可以获得完美的信道估计,即
可以对第一叠加信号的估计值进行信道解调和信道解码并重新进行信道编码和信道调制。在这种情况下,智能网关200能够估计出 第一加密目标信号
在一些示例中,若
的值足够小,或智能网关200的解调和解码的纠错能力足够强,智能网关200可以无误地估计出第一加密目标信号,即
在一些示例中,智能网关200可以基于第一认证信息和第二认证信息获得共享密钥k,智能网关200可以基于
和k获得第一认证标签的估计值
可以满足:
在一些示例中,智能网关200可以从消息信号中获得残差信号r
i,可以满足:
从而可以使智能网关200对智能网关300进行认证。智能网关200可以基于式(1)进行阈值测试,可以获得实数测试统计量δ
i,可以满足:
其中,R{·}表示为取实部。
在一些示例中,基于式(1),不同假设下的测试统计量τ
i可以满足:
其中,L表示为第一叠加信号的长度,s
i,k、t
i,k和n
i,k分别表示第k个符号的s
i、t
i,和n
i。在一些示例中,由于
可以获得
和
由此可得,
其中,E{·}是期望算子。
如上,可以将式(2)转换为:
第一认证标签的检测的虚警率可以表示为:
其中,θ
i表示为测试阈值,Q(·)表示为标准正态分布的尾概率函数。在一些示例中,可以基于最佳阈值θ
0获得零均值复高斯信道的平均虚警率,可以满足:
其中,
表示为平均信噪比且满足:
在一些示例中,假设虚警率的上限为ε
PFA,可以获得最佳阈值θ
0且可以满足:
在一些示例中,第一认证标签的检测概率可以满足:
并基于最佳阈值θ
0可以获得零均值复高斯信道的平均检测概率,可以满足:
其中,sign(x)表示为符号函数。当x≥0时,sign(x)=1,否则,sign(x)=-1。
在一些示例中,如上所述,可以获得平均虚警率和平均检测概率的显式闭环公式。
在一些示例中,本公开的公钥加密技术可以是安全的,例如,第一智能网关可以通过第二智能网关具有的公钥对包含g
a和/或g
b的信息进行加密,可以只有第二智能网关通过第二智能网关具有的私钥才能解密。相似的,第二智能网关可以通过第一智能网关具有的公钥对包含g
a和/或g
b的信息进行加密,可以只有第一智能网关通过第一智能网关具有的私钥才能解密。
在一些示例中,本公开的智能网关和终端用户(也即终端用户对应的多个设备)可以共享一个素数阶群,并且该素数阶群可以满足可计算的迪菲-赫尔曼假设,在这种情况下,能够建立一个较为安全的共享密钥,能够提高系统的安全性,能够抑制非法攻击端从密钥空间中随机抽取的密钥中区分出正确的共享密钥。在一些示例中,即使第一智能网关或第二智能网关的私钥被非法攻击端获得,但也可以使非法攻击端无法获得共享密钥,即本公开的认证方法可以实现完美的正向保密。
在一些示例中,第一智能网关和第二智能网关均可以作为合法的发射端,也可以作为合法的接收端。例如,第一智能网关发送信息给第二智能网关,则此时第一智能网关可以作为合法的发射端,第二智能网关可以作为合法的接收端,反之亦然。在一些示例中,第一智能网关或第二智能网关基于共享密钥和传输的原始信息获得认证标签(例如,第一认证标签或第二认证标签),并可以将获得的认证标签叠加在传输的信号(例如第一加密目标信号或第二目标加密信号)上进而发送给各自对应的接收端(例如,第二智能网关或第一智能网关),之后接收端可以根据认证标签对接收到的信息进行认证。因此,本公开的认证方法可以提供双向信息认证。
在一些示例中,从式(1)可知,基于完整的接收信息才能生成认证标签。如果接收到的信息是被修改的,接收信息的接收端无法根据式(3)恢复认证标签,无法进行信息认证。并且在本公开的认证方法中可以对传输的信息进行加密处理(例如,第一加密目标信号和第二加密目标信号)。在这种情况下,能够保证信息的完整性和隐私性。
在一些示例中,假设非法接收端可以实现知道本公开的认证方法但不知道共享密钥,非法接收端可以从合法的发射端窃听到任何信号并可以发送无线信号。在一些示例中,本实施方式中采用的物理层认证在估计传播延迟、多径等产生的错误可以导致非连续的中断,在这种情况下,能够抑制非法攻击端连续地干扰合法信号。
在一些示例中,本实施方式可以假设基于式(1)获得的第一认证标签是时变的,合法的接收端可以不再次接收非法攻击端发送的重复的无线信号,其中无线信号可以为合法的发射端发送的信号。在这种情况下,能够抑制合法的接收端接收非法攻击端发送重复的无线信号。
在一些示例中,非法接收端可以伪造一个第三认证标签并叠加到其发送的无线信号上,以使合法的接收端进行接收。认证标签(第一认证标签或第二认证标签)可以基于安全加密的哈希函数c(·)来构建(例如,步骤S30中的第一认证标签),安全加密的哈希函数c(·)可以作为一个伪随机数生成器,由此能够使认证标签不容易被非法攻击端预测到,在这种情况下,能够抑制非法攻击端伪造一个认证标签并叠 加到无线信号中被合法接收端(例如智能网关300或智能网关200)接收到。
在一些示例中,非法接收端可以通过窃听到足够多的信号并从中获得共享密钥进行攻击,可以成为窃听攻击。但无线环境中,认证标签将会带有噪声,共享密钥的正确恢复将会是一个概率性事件。在这种情况下,即使非法攻击端具有很高的隐蔽性并窃听到足够多的信号,也能够抑制非法攻击端对共享密钥的正确恢复。
在一些示例中,本实施方式中可以引入熵的概念来衡量窃听攻击,即去过所有观测共享密钥的信息熵,进而可以较为准确的表示共享密钥的恢复概率。在一些示例中,当对认证标签进行无噪声的观测且观测的信号长度足够长时,熵的值可以为零,共享密钥可以在有限时间内被恢复。在一些示例中,在有噪声的情况下,对于有限多的观测,熵的值可以为不为零,共享密钥的恢复概率将会小于1。在一些示例中,假设非法攻击端从观测到的信号y
i中获得认证标签的估计值
非法攻击端将可以计算每个认证标签的符号汉明距离,可以满足:
其中,t
i,k表示为认证标签的第k个符号,
表示为认证标签的估计值的第k个符号。
在一些示例中,认证标签的平均符号错误率可以满足:
其中,
表示为平均标签噪声比且满足:
在一些示例中,t
i,k的熵值可以满足:
其中,H(·)表示为二进制熵算子。在一些示例中,对于一个信号长度为L的认证标签,非法攻击端将可以估计出2
L个不同的认证标签的估计值。在这种情况下可以获得总信息熵,可以满足:ψ=2
LH(t
i,k|y
i)。在一些示例中,本公开的认证方法的物理层引入了不确定性,由此能够使共享密钥的搜索空间非常大。当
的值非常小时,非法攻击端恢复共享密钥将会变得较为困难,将会使共享密钥具有足够大的熵抑制非法攻击端的攻击。
图5是示出了本公开的示例所涉及的智能电网中的轻量级主动式跨层认证方法的分布示意图。其中,横坐标X和纵坐标Y表示智能电 网系统的空间分布。A表示为终端用户,B是家域网对应的智能网关,C是楼域网对应的智能网关,D是区域网对应的智能网关。在一些示例中,如图5所示,该智能电网由一个区域网组成,该区域网包括3个楼域网,每个楼域网包括3个家域网,每个家域网可以包括12个终端用户,其中,各个区域网、楼域网、家域网可以各自具有一个智能网关,假设每个终端用户仅连接一个设备。所有的终端用户可以遵循独立的泊松分布,随机分布在各自对应的家域网的周围。在本实施方式中可以利用紫蜂协议作为家域网对应的智能网关与对应的终端用户之间的通信协议,并设定载波频率为2.4GHz,带宽为2MHz。在本实施方式中可以利用全球微波接入互操作性技术作为家域网与对应的楼域网、楼域网与对应的区域网之间的通信协议,并设定载波频率为2.3GHz,带宽分别为5MHz和10MHz。本智能电网中,信号的帧包结构中安全报头的大小为16字节,TCP/IP报头的大小为20字节,消息报头的大小为50字节,原始信息的大小为32字节,除此之外,g
a或g
b的大小为2字节,哈希报头的大小为16字节。
在一些示例中,本公开引入了通信开销、平均延迟、传输信息的平均错误概率和信息熵评估本公开的认证方法和传统方案。如图6~图8以及表1所示,其中,可以通过2000多个独立实验的结果进行平均获得不同方案的实验数据。
图6是示出了本公开的示例所涉及的图5对应的通信开销随终端用户的数量和传输的帧包的数量变化的波形图。其中,图6(a)中A为传统方案对应的通信开销随终端用户的数量变化曲线,B为本公开的认证方法对应的通信开销随终端用户的数量变化曲线。图6(b)中A为传统方案对应的通信开销随传输的帧包的数量变化曲线,B为本公开的认证方法对应的通信开销随传输的帧包的数量变化曲线。
在一些示例中,如图6(a)所示,图6(a)为每个家域网包括的终端用户的数量对通信开销的影响,也即每个家域网连接的设备的数量对通信开销的影响,其中每次信号传输可以只传输一个帧包。如图6(a)所示,随着家域网对应的终端用户(连接的设备的数量)增加,本公开的认证方法和传统方案的通信开销都在增加,但本公开的认证方法的通信开销明显低于传统方案,具体来说,通信开销降低了27%。 因为传统方案需要一个额外的帧包进行初始认证,并且传统方案需要基于哈希的消息认证编码算法(MAC)来确保信息的完整性,这将使传统方案引入额外的通信开销。随着家域网对应的终端用户的数量增加,本公开的认证方法和传统方案的通信开销差异越来越大。例如,当每个家域网只包括4个终端用户时,通信开销差异为0.536Kbytes;当每个家域网包括10个终端用户时,通信开销差异为1.340Kbyte。
在一些示例中,如图6(b)所示,图6(b)示出了信号传输过程中,一次发送的帧包的数量对通信开销的影响。其中,每个家域网包括12个终端用户,也即每个家域网连接12个设备。随着传输的帧包的数量的增加,本公开的认证方法和传统方案的通信开销都在增加,但传统方案的通信开销明显大于本公开的认证方法。
图7是示出了本公开的示例所涉及的图5对应的平均延迟随终端用户的数量和传输的帧包的数量变化的波形图。其中,图7(a)中A为传统方案对应的平均延迟随终端用户的数量变化曲线,B为本公开的认证方法对应的平均延迟随终端用户的数量变化曲线。图7(b)中A为传统方案对应的平均延迟随传输的帧包的数量变化曲线,B为本公开的认证方法对应的平均延迟随传输的帧包的数量变化曲线。
在一些示例中,平均延迟可以由处理延迟和传输延迟组成。处理延迟表示解密加密信息所导致的延迟,可以通过安全套接字层密码库(OpenSSL包)来评估。在一些示例中,本公开的认证方法可以使用相同的对称加密算法和相同的非对称加密算法,在这种情况下,本公开的认证方法可以具有相似的处理延迟。由此能够使用传输延迟来表示平均延迟。
在一些示例中,如图7(a)所示,图7(a)示出了每个家域网包括的终端用户的数量对平均延迟的影响,其中每次信号传输可以只传输一个帧包。如图7(a)所示,随着家域网对应的终端用户(连接的设备的数量)的数量增加,本公开的认证方法和传统方案的通信开销都在增加,与图6(a)中的通信开销的结论相似,本公开的认证方法比传统方案的平均延迟要低得多。具体来说,本公开的认证方法比传统方案的平均延迟低20%左右。因为本公开的认证方法不需要额外的帧包来完成初始认证,同时也不需要基于哈希的消息认证编码算法(MAC) 来确保信息的完整性,而传统方案需要,这两者都不可避免地会引入额外的传输延迟,从而使传统方案的平均延迟较高,与图6(a)的原因相同。如图7(a)所示,随着家域网对应的终端用户的数量增加,本公开的认证方法与传统方案的平均延迟差异越来越大,例如,当每个家域网只包括4个终端用户时,平均延迟差异为0.708ms;当每个家域网包括10个终端用户时,平均延迟差异为1.440ms。
在一些示例中,如图7(b)所示,图7(b)示出了信号传输过程中,一次传输的帧包的数量对平均延迟的影响。其中,每个家域网包括12个终端用户,也即每个家域网连接12个设备。如图7(b)所示,随着传输的帧包的数量的增加,本公开的认证方法和传统方案的平均延迟都在增加,但传统方案的平均延迟明显大于本公开的认证方法。
在一些示例中,表1示出了在图5的情况下信噪比与能量系数
对传输信息的平均错误概率的影响,包括解调误差和解码误差,其中的信道编码的方案可以采用卷积编码,本公开的认证方法可以采用二进制相移键控调制。详见下表1。
表1
在一些示例中。如表1所示,随着能量系数
的值增加,本公开的认证方法的认证的准确性越来越高,但是也提高了传输信息的平均错误概率。在能量系数
的值不太大或者信噪比不太小的情况下,能量系数
对于传输信息的平均错误概率的影响是可以接收的。例如,当信噪比达到14dB时,解调误差为0;当信噪比达到10dB时,解码误差为0。
图8是示出了本公开的示例所涉及的图5对应的信息熵和总信息熵随能量系数变化的波形图。其中,图8(a)中A为传统方案对应的信息熵随能量系数
变化曲线,B为本公开的认证方法对应的信息熵随能量系数
变化曲线。图8(b)中A为传统方案对应的总信息熵随能量系数
变化曲线,B为本公开的认证方法对应的总信息熵随能量系数
变化曲线。
在一些示例中,如图8所示,图8(a)示出了能量系数
对信息熵的影响,图8(b)示出了能量系数
对总信息熵的影响,其中信噪比为20dB,信号长度为32比特。图8(a)的信息熵可以由式(6)获得,图8(b)的总信息熵可以由式(7)获得。如图8(a)所示,随着能量系数
的值减小,本公开的认证方法比传统方案具有更高的信息熵。如图8(a)和图8(b)所示,本公开的认证方法比传统方案具有更高的安全性。
在本公开中,如上所述,能够提供一种具有较小的通信开销、延迟和解调解码错误以及较高的安全性的智能电网中的轻量级主动式跨层认证方法。
虽然以上结合附图和实施例对本公开进行了具体说明,但是可以理解,上述说明不以任何形式限制本公开。本领域技术人员在不偏离本公开的实质精神和范围的情况下可以根据需要对本公开进行变形和变化,这些变形和变化均落入本公开的范围内。
Claims (10)
- 一种智能电网中的轻量级主动式跨层认证方法,其特征在于,该轻量级主动式跨层认证方法是多级网络中的任意相邻级次网络对应的智能网关之间进行相互认证的认证方法,多级网络中的任意相邻级次网络包括上级网络和下级网络,所述下级网络对应的智能网关为第一智能网关,所述上级网络对应的智能网关为第二智能网关,所述认证方法包括上层认证和物理层认证,所述上层认证包括:所述第一智能网关基于所述第二智能网关的公钥和第一认证信息向所述第二智能网关发送第一加密信号;所述第二智能网关接收所述第一加密信号并基于所述第二智能网关的私钥获得所述第一认证信息,并基于所述第一智能网关的公钥、所述第一认证信息和第二认证信息获得第二加密信号并发送给所述第一智能网关,且所述第二智能网关基于所述第一认证信息和所述第二认证信息获得共享密钥;所述第一智能网关接收所述第二加密信号,若所述第一智能网关基于所述第二加密信号和所述第一智能网关的私钥获得所述第一认证信息,则所述第一智能网关对所述第二智能网关认证通过,且所述第一智能网关基于所述第二加密信号获得所述第二认证信息;并且所述物理层认证包括:所述第一智能网关基于所述第一认证信息和所述第二认证信息获得所述共享密钥,基于所述共享密钥和第一目标信号获得第一加密目标信号,进而基于所述共享密钥、所述第一加密目标信号和哈希函数获得第一认证标签,所述第一智能网关基于所述第一认证标签和所述第一加密目标信号获得第一叠加信号,进而获得第一目标信息信号并向所述第二智能网关发送,所述第二智能网关接收所述第一目标信息信号,基于所述第一目标信息信号获得第一残差信号,并基于所述第一残差信号进行第一阈值测试,若所述第一阈值测试通过,则所述第二智能网关对所述第一智能网关认证通过;并且所述第二智能网关基于第二目标信号和所述共享密钥获得第二加密目标信号,基于所述共享密钥、所述第二加密目标信号和所述哈希函数获得第二认证标签,所述第二智能网关基于所述第二认证标签和所述第二加密目标信号获得第二叠加信号,进而获得第二目标信息信号并向所述第一智能网关发送,所述第一智能网关接收所述第二目标信息信号,基于所述第二目标信息信号获得第二残差信号,并基于所述第二残差信号进行第二阈值测试,若所述第二阈值测试通过,则所述第一智能网关对所述第二智能网关认证通过,其中,所述上层认证是基于所述第一智能网关 和所述第二智能网关的上层网络实现的,所述物理层认证是基于所述第一智能网关和所述第二智能网关的物理层实现的。
- 根据权利要求1的轻量级主动式跨层认证方法,其特征在于:所述第一智能网关具有对应的公钥和私钥,所述第二智能网关具有对应的公钥和私钥。
- 根据权利要求1的轻量级主动式跨层认证方法,其特征在于:所有的智能网关共享一个素数阶群G=<g>,素数阶为q,所述素数阶群满足可计算的迪菲-赫尔曼假设。
- 根据权利要求3的轻量级主动式跨层认证方法,其特征在于:所述第一智能网关基于a和所述素数阶群获得所述第一认证信息,其中,a为第一智能网关选择的随机数,且满足:a∈Z q,所述第二智能网关基于随机数b和所述素数阶群获得所述第二认证信息,其中,b为第二智能网关选择的随机数,且满足:b∈Z q,Z q表示为一个数据集合。
- 根据权利要求4的轻量级主动式跨层认证方法,其特征在于:所述共享密钥满足k=c((g a) b),其中,k表示共享密钥,c(·)是一个安全加密的哈希函数。
- 根据权利要求1的轻量级主动式跨层认证方法,其特征在于:所述多级网络包括多个区域网、多个楼域网和多个家域网,其中,各个区域网对应若干个楼域网,该区域网为对应的楼域网的上级网络,该楼域网为该区域网的下级网络,各个楼域网对应若干个家域网,该楼域网为对应的家域网的上级网络,该家域网为该楼域网的下级网络。
- 根据权利要求6的轻量级主动式跨层认证方法,其特征在于:各个所述区域网分别具有一个智能网关,各个所述楼域网分别具有一个智能网关,各个所述家域网分别具有一个智能网关。
- 根据权利要求6的轻量级主动式跨层认证方法,其特征在于:所述多级网络还包括多个终端用户,各个家域网对应若干个终端用户,任一终端用户包括多个设备,任一终端用户和对应的家域网通过所述认证方法进行相互认证,其中,该终端用户为该家域网的下级网络,该家域网为该终端用户的上级网络,该终端用户对应的多个设备作为所述第一智能网关,该家域网对应智能网关作为所述第二智能网关。
- 根据权利要求1的轻量级主动式跨层认证方法,其特征在于:所述第一认证标签满足:t i=c(s i,k),其中,s i表示为第一加密目标信号,k表示为共享密钥,c(·)是一个安全加密的哈希函数。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011398339.3A CN112564918B (zh) | 2020-12-03 | 2020-12-03 | 智能电网中的轻量级主动式跨层认证方法 |
CN202011398339.3 | 2020-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022116314A1 true WO2022116314A1 (zh) | 2022-06-09 |
Family
ID=75047731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/138739 WO2022116314A1 (zh) | 2020-12-03 | 2020-12-23 | 智能电网中的轻量级主动式跨层认证方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112564918B (zh) |
WO (1) | WO2022116314A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103618610A (zh) * | 2013-12-06 | 2014-03-05 | 上海千贯节能科技有限公司 | 一种基于智能电网中能量信息网关的信息安全算法 |
WO2017028323A1 (zh) * | 2015-08-19 | 2017-02-23 | 电子科技大学 | 基于射频指纹的跨层认证方法 |
CN111082920A (zh) * | 2019-12-27 | 2020-04-28 | 西南石油大学 | 面向智能电网的非交互式可验证的多类型加密数据聚合方法 |
CN111835752A (zh) * | 2020-07-09 | 2020-10-27 | 国网山西省电力公司信息通信分公司 | 基于设备身份标识的轻量级认证方法及网关 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2922705B1 (fr) * | 2007-10-23 | 2011-12-09 | Sagem Defense Securite | Passerelle bidirectionnelle a niveau de securite renforce |
CN105873042A (zh) * | 2016-05-31 | 2016-08-17 | 西安大唐电信有限公司 | 一种轻量级的5g接入认证方法 |
CN108966232B (zh) * | 2018-09-28 | 2021-04-20 | 深圳大学 | 基于服务网络的无线物联网物理层混合认证方法及系统 |
CN109168166B (zh) * | 2018-11-22 | 2020-08-18 | 深圳大学 | 物理层认证系统的安全性检测方法 |
CN109819444B (zh) * | 2019-01-11 | 2021-07-30 | 杭州电子科技大学 | 一种基于无线信道特征的物理层初始认证方法及系统 |
CN111130802A (zh) * | 2019-12-27 | 2020-05-08 | 沈阳航空航天大学 | 基于物理层激励-响应机制的物理层安全认证算法 |
CN111147228B (zh) * | 2019-12-28 | 2022-04-01 | 西安电子科技大学 | 基于以太坊IoT实体轻量级认证方法、系统、智能终端 |
-
2020
- 2020-12-03 CN CN202011398339.3A patent/CN112564918B/zh active Active
- 2020-12-23 WO PCT/CN2020/138739 patent/WO2022116314A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103618610A (zh) * | 2013-12-06 | 2014-03-05 | 上海千贯节能科技有限公司 | 一种基于智能电网中能量信息网关的信息安全算法 |
WO2017028323A1 (zh) * | 2015-08-19 | 2017-02-23 | 电子科技大学 | 基于射频指纹的跨层认证方法 |
CN111082920A (zh) * | 2019-12-27 | 2020-04-28 | 西南石油大学 | 面向智能电网的非交互式可验证的多类型加密数据聚合方法 |
CN111835752A (zh) * | 2020-07-09 | 2020-10-27 | 国网山西省电力公司信息通信分公司 | 基于设备身份标识的轻量级认证方法及网关 |
Non-Patent Citations (2)
Title |
---|
MA, TING: "Research on Lightweight Physical Layer Assist Authentication Technique in Smart Grid", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE, 15 February 2016 (2016-02-15), pages 1 - 117, XP055937759 * |
P.L. YU ; J.S. BARAS ; B.M. SADLER: "Physical-Layer Authentication", IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, vol. 2, no. 1, 1 March 2008 (2008-03-01), USA, pages 38 - 51, XP011204158, ISSN: 1556-6013 * |
Also Published As
Publication number | Publication date |
---|---|
CN112564918A (zh) | 2021-03-26 |
CN112564918B (zh) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10356054B2 (en) | Method for establishing a secure private interconnection over a multipath network | |
US11595359B2 (en) | Method for establishing a secure private interconnection over a multipath network | |
JP4734344B2 (ja) | 他と共有されないジョイント乱数性(jrnso)を用いて暗号鍵を導出する方法とシステム | |
Alagheband et al. | Dynamic and secure key management model for hierarchical heterogeneous sensor networks | |
EP4055770A1 (en) | Quantum key distribution protocol | |
US11516655B2 (en) | Physical layer key generation | |
Sudharson et al. | Security Protocol Function Using Quantum Elliptic Curve Cryptography Algorithm. | |
US7421075B2 (en) | Wireless online cryptographic key generation method | |
WO2010011127A2 (en) | Quantum network relay | |
Abdelgader et al. | Exploiting the physical layer security for providing a simple user privacy security system for vehicular networks | |
WO2022116314A1 (zh) | 智能电网中的轻量级主动式跨层认证方法 | |
Song et al. | Improvement of key exchange protocol to prevent man-in-the-middle attack in the satellite environment | |
CN112637837B (zh) | 智能电网中的轻量级被动式跨层认证方法 | |
CN111786789B (zh) | 一种基于随机波束和边缘计算的物理层密钥分发方法 | |
Hu et al. | Modulated symbol-based one-time pad secure transmission scheme using physical layer keys | |
Kakkar et al. | Secret key generation using OFDM samples | |
US7680278B2 (en) | Domino scheme for wireless cryptographic communication and communication method incorporating same | |
Mostefaoui et al. | A robust image-encryption approach against transmission errors in Communicating Things Networks | |
Wan et al. | SRDA: A Secure Routing and Data Aggregation Approach for Wireless Smart Meter. | |
Zhao et al. | The Cooperative Authentication Mechanism and Performance Evaluation for Unmanned Systems | |
Buhari et al. | A quantum based challenge-response user authentication scheme over noiseless channel | |
Mishra et al. | Transmission of encrypted data in WSN: An implementation of hybridized RSA-TDES algorithm | |
Ma et al. | Physical Layer Authentication for Two-User Two-Way Large-Scale Antennas Relay Systems | |
Bartoli et al. | Optimizing energy-efficiency of PHY-Layer authentication in machine-to-machine networks | |
Kesavulu et al. | Enhanced packet delivery techniques using crypto-logic riddle on jamming attacks for wireless communication medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20964159 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.09.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20964159 Country of ref document: EP Kind code of ref document: A1 |