WO2022116216A1 - 执行机构及手术机器人 - Google Patents

执行机构及手术机器人 Download PDF

Info

Publication number
WO2022116216A1
WO2022116216A1 PCT/CN2020/134117 CN2020134117W WO2022116216A1 WO 2022116216 A1 WO2022116216 A1 WO 2022116216A1 CN 2020134117 W CN2020134117 W CN 2020134117W WO 2022116216 A1 WO2022116216 A1 WO 2022116216A1
Authority
WO
WIPO (PCT)
Prior art keywords
instrument
locking
actuator
rod
sliding
Prior art date
Application number
PCT/CN2020/134117
Other languages
English (en)
French (fr)
Inventor
潘鲁锋
黄善灯
柳建飞
闫泳利
Original Assignee
诺创智能医疗科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺创智能医疗科技(杭州)有限公司 filed Critical 诺创智能医疗科技(杭州)有限公司
Priority to PCT/CN2020/134117 priority Critical patent/WO2022116216A1/zh
Publication of WO2022116216A1 publication Critical patent/WO2022116216A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present application relates to the field of medical devices, and in particular, to an actuator and a surgical robot.
  • Minimally invasive surgery refers to opening a tiny wound on the patient's body. Part of the actuator of the surgical robot passes through the tiny wound and enters the lesion position, and makes the telecentric fixed point of the actuator coincide with the position of the wound. The robotic arm part of the robot is controlled to drive the actuator to swing in space within a certain angle range with the telecentric fixed point as the hinge point, assisting the action of the actuator itself to complete the minimally invasive surgery. Minimally invasive surgery is gradually gaining favor among medical staff and patients in recent years due to its small incision and less bleeding.
  • the structure of the actuator generally includes: a surgical instrument for extending into the lesion position, and a driving component for driving the surgical instrument to rotate, open and close, etc. Driven by the driving component, the surgical instrument extends into the human body. The surgical tool completes the preset surgical action. Similar to the structure of the Da Vinci surgical robot, a special steel cable is used as the driving structure of the surgical instrument. However, the steel wire is prone to elongation and deformation after repeated use, which affects the motion accuracy of the operating end of the surgical instrument and increases creep.
  • the embodiments of the present application provide an actuator and a surgical robot, and the actuator can enable the surgical tool at the operating end to have a greater degree of freedom of movement.
  • Embodiments of the present application first provide an actuator of a surgical robot, including a surgical instrument and a drive assembly, wherein: the surgical instrument includes an outer sheath, two instrument rods and a surgical tool, and a A sliding chamber extending axially of the sheath, two of the instrument rods are slidably arranged in the sliding chamber, and the surgical tool includes a pair of swinging pieces rotatably connected to one end side of the surgical outer sheath, each of which is The instrument rod is drivingly connected to one of the swing pieces, and the sliding of the instrument rod in the sliding chamber can independently drive the corresponding swing pieces to swing;
  • the driving assemblies include two groups corresponding to the instrument rods, and each group of the driving assemblies includes a linear driving device for driving the instrument rods to slide in the sliding chamber along the axis direction of the instrument rods.
  • the linear driving device in the driving assembly drives the instrument rod to slide in the sliding chamber respectively, and the pair of swinging members in the surgical instrument can swing under the driving of one instrument rod, respectively.
  • the swings of the swinging members do not interfere with each other, and each swinging member can obtain a greater degree of freedom of movement and swinging range.
  • the instrument rod does not have a series of elongation and deformation caused by the deformation. Therefore, the surgical tool can flexibly complete the preset surgical action within a large range.
  • the drive assembly further includes two load bases, each of which is connected to a corresponding one of the linear drive devices and used to drive the instrument rod to slide in the sliding chamber .
  • the linear drive device is configured as a linear motor
  • the drive assembly further includes a guide member for restricting the rotation of the load base with the linear motor.
  • the linear motor drives the load base to move in a straight line
  • the load base is used to drive the instrument rod to move in a straight line, so that the push rod can be telescopically slipped with high precision.
  • the motor and the rotation-to-translation motion conversion mechanism, such as the lead screw nut assembly therefore, the setting of the guide can limit the rotation of the load base, so that the load base can only move in a straight line.
  • the guide member includes a bushing fixed on the load base, and a guide shaft fixed on the machine base, and the bushing can follow the guide shaft under the guidance of the guide shaft.
  • the load base is driven by the linear motor to slide.
  • the actuator further includes an instrument rod limit assembly for locking/unlocking the instrument rod, and an outer sheath limit assembly for locking/unlocking the outer sheath.
  • the instrument rod limiting assembly includes instrument rod locking sleeves respectively provided corresponding to each of the instrument rods, and a sliding sleeve device, and the instrument rods are locked by the corresponding instrument rods
  • the sleeve is connected to the corresponding linear drive device, and the sliding sleeve device can slide relative to the instrument rod locking sleeve, so that the instrument rod locking sleeve locks/unlocks the corresponding instrument rod.
  • the sliding sleeve device includes a sliding sleeve body correspondingly slidably sleeved outside each of the instrument rod locking sleeves, and sliding relative to the instrument rod locking sleeve along the sliding sleeve body
  • the sliding sleeve body has a locking section and an unlocking section.
  • the instrument rod limiting assembly further includes locking pieces, and each of the instrument rods corresponds to at least one of the locking pieces; the locking pieces are constrained in the sliding sleeve body, and when all When the locking section corresponds to the instrument rod locking sleeve, the locking member locks the instrument rod, and when the unlocking section corresponds to the instrument rod locking sleeve, the locking member releases the lock on the instrument rod. locking.
  • a locking hole is formed on the instrument rod locking sleeve, and a locking groove is formed on the rod body of the instrument rod inserted into the instrument rod locking sleeve , the locking piece is movably arranged in the locking hole, when the locking segment corresponds to the locking sleeve of the instrument rod, the wall surface of the locking segment presses the locking piece into the locking hole the locking groove.
  • the hole diameter of one end of the lock hole close to the locking sleeve of the instrument rod is larger than the hole diameter of the end close to the sliding sleeve body.
  • the locking member is configured as a spherical member, and the spherical locking member can roll and slide in the locking hole.
  • the locking piece arranged in the form of a spherical piece moves more flexibly in the locking hole, which can prevent the locking piece from being stuck in the locking hole, at the same time, it can also reduce the friction between the locking piece and the locking hole, and prolong the locking piece, equipment, etc. The service life of the rod and instrument rod locking sleeves.
  • the instrument rod limiting assembly further includes a stopper for limiting the relative extreme position of the sliding sleeve device and the instrument rod locking sleeve, the stopper being installed on the
  • the instrument rod locking sleeve is fitted on and can block one end side of the sliding sleeve device.
  • the stopper can limit the maximum stroke position of the sliding sleeve device, so as to prevent the locking piece from coming out of the sliding sleeve device due to overtravel of the sliding sleeve device.
  • a first spring is further arranged between the instrument rod locking sleeve and the sliding sleeve device, and the elastic force of the first spring enables the sliding sleeve device to be kept in the locked position of the sliding sleeve device. The position of the instrument rod. In this way, after the user reinstalls the instrument rod, the sliding sleeve device can be reset to the position where the instrument rod is locked by the elastic force of the first spring, and the structural reliability of the actuator is higher.
  • a spring seat is provided on the instrument rod locking sleeve and/or the sliding sleeve device, and the first spring is mounted on the spring seat and can follow the direction of the spring seat.
  • the extension direction is stretched and deformed.
  • the spring seat can guide the deformation direction of the first spring to avoid accidental lateral bending of the first spring during expansion and contraction.
  • a guide structure for guiding the relative sliding direction of the two is further provided between the sliding sleeve device and the instrument rod locking sleeve.
  • the arrangement of the guide structure can make the moving direction of the sliding sleeve device relative to the locking sleeve of the instrument rod more certain, so as to reliably unlock the instrument rod.
  • the actuator further includes a machine base and an instrument rod unlocking assembly slidably disposed on the machine base, the instrument rod unlocking assembly including a mechanism for driving the sliding sleeve device relative to the The instrument shaft locking sleeve slides to unlock the unlocking member of the instrument shaft.
  • the instrument lever unlocking assembly further includes a return spring, and the elastic force of the return spring keeps the unlocking member away from the sliding sleeve device.
  • the return spring can keep the unlocking piece away from the sliding sleeve device, so as to prevent the user from forgetting to reset the unlocking piece after reinstalling the surgical instrument and causing the surgical instrument to not be installed properly.
  • the unlocking member is sleeved outside the surgical instrument, and is provided with a notch penetrating the surgical instrument;
  • the machine base is provided with a sliding direction perpendicular to the outer sheath
  • the outer sheath limiting assembly includes a limiting element slidably connected to the sliding hole and used to limit the installation position of the outer sheath, the limiting element passes through the slot and is connected with the outer sheath. Limit fit.
  • the setting of the notch not only avoids positional interference between the unlocking piece and the limiting element, but at the same time, the side wall of the notch can interfere with the limiting element before the unlocking piece moves in the unlocking direction, so as to constrain and limit the limiting element to a certain extent.
  • This arrangement can give The sequence of unlocking the surgical instrument unlocking structure.
  • a guide structure for guiding the sliding direction of the unlocking member is further provided between the outer sheath and the unlocking member.
  • an alignment structure for aligning the installation orientation of the unlocking member with respect to the circumferential direction of the base is further provided between the base and the unlocking member.
  • the setting of the alignment structure can determine the relative position of the unlocking piece and the machine base in the circumferential direction, so that the unlocking piece is installed according to the preset orientation, so as to unlock the instrument rod more reliably.
  • the unlocking member has a trigger portion for contacting and pushing the sliding sleeve device to slide
  • the instrument rod locking sleeve is provided with a trigger portion for restricting the sliding sleeve device and the instrument rod
  • the triggering parts are arranged in two and distributed at intervals along the circumferential direction to stagger the stopper.
  • a second aspect of the embodiments of the present application further provides a surgical robot, including the execution mechanism of any of the foregoing embodiments.
  • FIG. 1 is a schematic structural diagram of an actuator according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an embodiment of a surgical instrument.
  • FIG. 3 is a schematic structural diagram of another embodiment of a surgical instrument.
  • FIG. 4 is a schematic diagram of an exploded structure of the actuator in FIG. 1 .
  • Figure 5 is an exploded structural view of the actuator after removing the casing, and the focus is on the drive assembly in the figure.
  • FIG. 6 is a schematic diagram of the exploded structure of the actuator after removing half of the drive assembly and related assemblies.
  • FIG. 7 is a schematic diagram of the assembly structure between the surgical instrument and the instrument rod limiting assembly and the instrument rod unlocking assembly.
  • FIG. 8 is a schematic diagram of an exploded structure of the structure shown in FIG. 7 .
  • FIG. 9 is a schematic structural diagram of an instrument rod locking sleeve according to an embodiment.
  • Fig. 10 is a half cross-sectional view of the assembly structure between the surgical instrument and the instrument rod limiting assembly and the instrument rod unlocking assembly.
  • FIG. 11 is a schematic diagram of the assembly structure between the surgical instrument, the instrument rod limiting assembly and the instrument rod unlocking assembly, with some structures removed in the figure.
  • FIG. 12 is a schematic structural diagram of a sliding sleeve body according to an embodiment.
  • FIG. 13 is a part of a schematic diagram of an exploded structure at the outer sheath limiting assembly.
  • FIG. 14 is a schematic structural diagram of a machine base according to an embodiment.
  • FIG. 15 is a top view of the stand shown in FIG. 14 .
  • FIG. 16 is a schematic structural diagram of a surgical robot according to an embodiment, in which multiple sets of the actuators shown in FIG. 1 are assembled.
  • a component when referred to as being “mounted on” another component, it can be directly mounted on the other component or there may also be an intervening component.
  • a component When a component is considered to be “set on” another component, it may be directly set on the other component or there may be a co-existing centered component.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may also be an intervening component.
  • the surgical robot involved in this application can be used to assist doctors in completing minimally invasive surgery.
  • this type of minimally invasive surgery there is only one tiny incision on the patient's body, and the surgical tool at the far end of the surgical robot extends into the patient's body from the tiny incision to reach the lesion, and drives the surgical tool to complete the preset through the corresponding driving structure. surgical action.
  • the surgical instrument In order to prevent the wound from being pulled during the operation, the surgical instrument needs to swing in space with the wound as the telecentric fixed point. In this case, the range of motion and freedom of the surgical tool to reach the lesion through the wound is crucial.
  • the design of the driving structure must not only consider the freedom of movement of the surgical tool, but also take into account size constraints.
  • a wire rope driven by a motor is used as the driving structure of the surgical tool.
  • the motor pulls the wire rope in two directions to drive the surgical tool through a structure similar to a pulley, so as to drive the surgical tool to deflect or open and close.
  • the wire rope is stretched for many times, it will stretch and deform to a certain extent.
  • the movement relationship between the wire rope pulling distance and the movement range of the surgical tool changes, and the movement accuracy of the surgical tool decreases;
  • the solutions given in the related traditional technologies include the following two types: one is to start from the steel cable itself, that is, to improve the material of the steel cable or improve its heat treatment process, etc., to reduce the The elongation of the small wire rope, however, the problem with this solution is that it greatly increases the manufacturing cost of the surgical instrument; another type of solution is to replace the wire rope with a single rigid rod, two of the surgical tools The swing piece and the two connecting roots together form an approximate parallelogram mechanism, and the rigid rod is pivotally connected to one end of the parallelogram mechanism to drive the two swing pieces to open and close through the sliding of the rigid rod.
  • the rigid rod replaces the steel cable, it can solve the problem caused by the elongation of the steel cable, but in this driving mode, the surgical tool only has two movements of opening and closing.
  • this driving form is obviously not flexible enough.
  • To increase the freedom of movement of the link mechanism it is necessary to increase the number of links and the number of driving sources, etc. The space occupied by these structures and the problem of motion accuracy restrict the design of the driving structure.
  • the actuator 100 includes a surgical instrument 11 and a driving assembly 12, wherein: the surgical instrument 11 includes an outer sheath 111, two instrument rods 112 slidably arranged in the outer sheath 111, and a surgical tool for performing a surgical action.
  • a sliding chamber is formed in the outer sheath 111 along its axial direction, and the two instrument rods 112 can slide in the sliding chamber.
  • a guide limiter may be installed or integrally provided in the sliding chamber, so that the instrument rod can be installed in the sliding hole of the guide limiter, to make it slide along the preset fixed axis direction.
  • the surgical tool includes a pair of swinging members 113 rotatably connected to one end side of the outer sheath 111 .
  • Each swinging member 113 corresponds to an instrument rod 112 , so that the two swinging members 113 can swing independently without interfering with each other.
  • a preset surgical action needs to be completed, such as opening and closing, swinging in a clamped state, etc.
  • the movement distance and movement direction of the two instrument rods 112 cooperate with each other, so that the two swing members 113 swing to a preset posture.
  • FIGS. 2 and 3 two embodiments of the surgical instrument 11 are shown in FIGS. 2 and 3 .
  • the instrument rod 112 and the swinging member 113 are connected by a connecting rod 114 , one end of the connecting rod 114 is rotatably connected with the instrument rod 112 , and the other end is rotatably connected with the swinging member 113 through the connecting portion 115 .
  • the pair of swinging members 113 are rotatably connected to the outer sheath 111 through the central shaft 116 , and the rotational connection of the connecting portion 115 is staggered from the penetration of the central shaft 116 .
  • the connecting rod 114 can be driven to slide and/or deflect relative to the instrument rod 112 , so that the connecting rod 114 can be driven by the connecting portion 115
  • the swinging member 113 rotates around the central axis 116 through a predetermined angle.
  • the two ends of the connecting rod 114 are respectively rotatably connected with the instrument rod 112 and the swinging member 113 .
  • the degree of freedom of the entire motion mechanism is increased, and the movement of the swinging member 113 is more flexible and the movement The range is also larger.
  • the connecting rod 114 does not exist in the surgical instrument in FIG. 3 , but a connecting portion 115 is provided at the end of the instrument rod 112 , corresponding to the swinging
  • a sliding slot 1131 slidably connected to the connecting portion 115 is defined on the member 113 .
  • connection structure formed by the connecting part 115 and the chute 1131 in FIG. 3 can be regarded as a motion high pair, while in FIG. 2
  • the connection structure at the rotating connection at both ends of the connecting rod 114 is a low-motion pair. Therefore, compared with the connecting rod structure shown in FIG. 2 , the structure shown in FIG. 3 is more compact and the transmission accuracy is higher.
  • the swinging motion range of the swinging member 113 in FIG. 3 depends on the length of the chute 1131, and the size of the swinging member 113 itself cannot be designed to be large. Therefore, the length of the chute 1131 has a certain range, as shown in FIG. 2 .
  • the structure shown in FIG. 2 has no such limitation. Therefore, the swinging member of the structure shown in FIG. 2 can obtain a larger swinging range.
  • other equivalent alternative forms may also be used on the basis of the structures shown in FIG. 2 and FIG. 3 to obtain the same or similar motion law of the pendulum.
  • the drive assemblies 12 are also arranged in two groups corresponding to the two instrument rods 112, and each group of the drive assemblies 12 includes a linear drive device, each linear The driving devices respectively drive the corresponding instrument rods 112 .
  • the driving assembly 12 may further include a load base 123 , and each linear driving device drives an instrument rod 112 to slide in the outer sheath 111 through a load base 123 correspondingly.
  • the linear drive device is configured as a linear motor 121
  • the linear motor 121 can be fixedly mounted on the machine base 16 through the mounting seat 122 .
  • the driving assembly 12 may further include a guide member 124 .
  • the guide member 124 is used to limit the rotational movement of the load base 123 so that it can only move linearly with the lead screw nut.
  • the general structure of the linear motor 121 includes a set of ordinary stepping motors/servo motors and a screw nut assembly.
  • the precise linear motor 121 can use a ball screw nut assembly as a motion conversion assembly, and the motor outputs rotational motion to drive the ball screw
  • the lead screw in the screw nut assembly rotates, and the nut moves linearly along the axial direction of the lead screw through the cooperation of the lead screw nut.
  • the instrument shaft 112 is fixed relative to the load base 123 directly or indirectly, so as to slide relative to the outer sheath 111 with the linear movement of the load base 123 .
  • the guide member 124 includes a bushing 1241 embedded and fixed on the load base 123 , and a guide shaft 1242 fixed on the base 161 of the machine base 16 .
  • the guide shaft 1242 is fixed, and when a straight line When the motor 121 drives the load base 123 to slide, the bushing 1241 is slidably matched with the guide shaft 1242, so that the load base 123 can only move linearly in one direction.
  • the guide member 124 can also be replaced with a structure similar to a guide rail, as long as the limiting and guiding purpose of the guide member 124 described above can be achieved, and the guide member 124 can also have various other equivalent alternative forms. I won't go into details.
  • the surgical instrument 11 When the surgical robot performs different surgical tasks, the surgical instrument 11 needs to be quickly disassembled and replaced. Therefore, a structure for quick disassembly and replacement of the surgical instrument 11 needs to be provided between the surgical instrument 11 and the driving assembly 12 .
  • some surgical robots employ a wire cable as the driving member of the surgical tool.
  • the structure for quick disassembly and assembly of the surgical instrument is typically a disposable end assembly. After the instrument rod 112 is used instead, the disassembly and assembly structure of the surgical instrument 11 also needs to be redesigned. Therefore, relevant structures for realizing the disassembly and assembly of the surgical instrument 11 are given below.
  • the actuator 100 further includes an instrument shaft limit assembly 13 for locking/unlocking the instrument shaft 112 , and an outer sheath limit assembly 14 for locking/unlocking the outer sheath 111 .
  • an instrument shaft limit assembly 13 for locking/unlocking the instrument shaft 112
  • an outer sheath limit assembly 14 for locking/unlocking the outer sheath 111 .
  • the instrument rod limiting assembly 13 includes an instrument rod locking sleeve 131 corresponding to each instrument rod 112 , and a sliding sleeve device 134 .
  • the instrument rod locking sleeve 131 is used for inserting the instrument rod 112 , and the instrument rod 112 can be connected to the load base 123 in the driving assembly 12 through the instrument rod locking sleeve 131 .
  • the end of the instrument rod locking sleeve 131 for connecting the load base 123 is provided with a connection end 1311 , the function of the connection end 1311 is similar to a flange structure, and it can form a similar method with the load base 123 .
  • the connection structure of the blue connection is provided with a connection end 1311 , the function of the connection end 1311 is similar to a flange structure, and it can form a similar method with the load base 123 .
  • the sliding sleeve device 134 is fitted on the outside of the instrument shaft locking sleeve 131 and can slide relative to the instrument shaft locking sleeve 131 to lock/unlock the instrument shaft 112 .
  • the sliding sleeve device 134 includes two sliding sleeve bodies 1341 respectively correspondingly installed outside each instrument rod locking sleeve 131 .
  • the instrument rod limiting assembly 13 further includes a locking member 135 , and each instrument rod 112 corresponds to at least one locking member 135 .
  • the locking pieces 135 are constrained in the corresponding sliding sleeve bodies 1341 and can move toward the direction close to the instrument shaft 112 to lock the instrument shaft 112 .
  • the locking sleeve 131 of the instrument rod is provided with a locking hole 1314 .
  • the locking piece 135 can be set as a spherical piece, and the spherical locking piece 135 is movably arranged in the locking hole 1314 , and the movement includes rolling and sliding in the locking hole 1314 .
  • the locking hole 1314 is configured as a variable diameter hole, so that the locking member 135 can expose less than half of the volume from the opening of the locking hole 1314 near the insertion side of the instrument shaft 112 , in order to realize the locking of the instrument rod 112; the locking piece 135 can also easily move toward the inner wall of the sliding sleeve body 1341 from the other side of the lock hole 1314 with a slightly larger aperture, so that when the sliding sleeve body 1341 slides to the position where the instrument rod 112 is unlocked , the locking member 135 can respond quickly and realize the unlocking of the instrument shaft 112 sensitively.
  • the locking pieces 135 have a pressing force on the instrument rod 112 when locking the instrument rod 112, in order to make the instrument rod 112 be parallel to the force, the locking pieces 135 are arranged in pairs and symmetrically distributed on both sides of the instrument rod 112 in the axial direction.
  • two locking members 135 are correspondingly provided on each instrument shaft 112 , and the two locking members 135 are arranged axially symmetrically with respect to the axis of the instrument shaft 112 .
  • each pair of locking pieces 135 is evenly spaced in the circumferential direction.
  • the instrument shaft 112 is provided with a locking groove 1121 into which a partial locking member 135 is inserted.
  • a partial locking member 135 As described above, when the sliding sleeve body 1341 is in the position of locking the instrument shaft 112 , it can lock the instrument shaft 112 toward the instrument shaft 112 .
  • Push the locking piece 135 in the direction of the locking groove 1121 in the embodiment provided with the locking groove 1121 , the part of the locking piece 135 extending out of the locking hole 1314 can be inserted into the locking groove 1121 to lock the instrument shaft 112 more reliably.
  • the number and arrangement positions of the locking grooves 1121 correspond to the number and installation positions of the locking pieces 135 .
  • the sliding sleeve body 1341 has a relative sliding direction along the instrument rod locking sleeve 131 thereof.
  • the locking segment 13411 and the unlocking segment 13412 are provided, and the inner diameter of the sliding sleeve body 1341 corresponding to the unlocking segment 13412 is larger than the inner diameter of the corresponding locking segment 13411 .
  • the inner wall of the sliding sleeve body 1341 at the locking section 13411 can substantially slide against the outer wall of the instrument rod locking sleeve 131 to ensure that the locking member 135 is reliably pressed into the locking groove 1121 .
  • the guide rib 1313 is protruded from the outer wall of the instrument rod locking sleeve 131.
  • the guide groove 13413 is formed on the inner surface of the sliding sleeve body 1341 and extends through the locking section 13411 and the unlocking section 13412 .
  • the lower end of the first spring 132 abuts on the upper surface of the connecting end 1311 of the instrument rod locking sleeve 131, the upper end of the first spring 132 abuts on the lower end surface of the sliding sleeve body 1341, the first The spring 132 is in a compressed state in the assembled state, and its elastic restoring force always keeps pushing upward against the sliding sleeve body 1341 to the position where the instrument rod 112 is locked.
  • the upper surface of the connecting end 1311 and the lower end surface of the sliding sleeve body 1341 may also be provided with a first spring seat 1312 and a second spring seat 1342, respectively.
  • the two may also only be provided with one of them.
  • the first spring seat 1312 and/or the second spring seat 1342 can deform the first spring 132 only in a predetermined direction, reducing the possibility of lateral bending.
  • the first spring seat 1312 and the second spring seat 1342 may be integrally formed with the instrument rod locking sleeve 131 and the sliding sleeve body 1341, respectively, or may be separate components assembled to the two.
  • a plurality of the first spring seat 1312 , the second spring seat 1342 and the first spring 132 can be provided correspondingly, and the plurality of mutually matched structures are evenly distributed in the circumferential direction of the sliding sleeve body 1341 to balance the force of the sliding sleeve body 1341 .
  • the first spring seat 1312 and the second spring seat 1342 do not contact each other to avoid interference with the sliding process of the sliding sleeve body 1341 .
  • a pin hole 1315 may also be opened on the instrument rod locking sleeve 131 , and a stopper 133 is installed in the pin hole 1315 .
  • the stopper 133 abuts the upper end surface of the sliding sleeve body 1341 and is used to prevent the sliding sleeve body 1341 from sliding upwards further. It can be understood that, relative to the orientation shown in FIG. 10 , the stopper 133 restricts the sliding sleeve body 1341 to continue to slide upward.
  • the stopper 133 and the matching pin hole 1315 may also adopt other structures, as long as the upper end position that restricts the sliding sleeve body 1341 from sliding upward can be achieved.
  • the machine base 16 is also provided with an instrument lever unlocking assembly 15
  • the instrument lever unlocking assembly 15 includes a device capable of sliding relative to the machine base 16 to drive the sliding sleeve body 1341 to lock relative to the instrument lever
  • the unlocking member 151 of the tight sleeve 131 slides.
  • a triggering portion 1511 is provided on the side of the unlocking member 151 close to the sliding sleeve body 1341.
  • the triggering portion 1511 pushes against the sliding sleeve body 1341, and then it can be driven to slide relative to the instrument shaft locking sleeve 131 to the position of unlocking the instrument shaft 112.
  • the triggering parts 1511 include two spaced apart in the circumferential direction, and during installation, the two triggering parts 1511 should be staggered by two stoppers 133 in the circumferential direction to avoid the stoppers 133 The action of the trigger part 1511 to push the sliding sleeve body 1341 is hindered.
  • the unlocking member 151 is sleeved on the outside of the surgical instrument 11 , and is provided with a notch 1512 penetrating the outer wall of the surgical instrument 11 for limiting the outer sheath limit of locking/unlocking the outer sheath 111 Part of the structure of the assembly 14 is correspondingly installed at the slot 1512 .
  • the base 16 includes a base body 161 and a support portion 162 .
  • the sliding hole 163 in the sliding direction.
  • the outer sheath limiting assembly 14 includes a limiting element 141 slidably installed in the sliding hole 163 , a limiting hole 1411 is defined on the limiting element 141 , and the limiting hole 1411 is used for matching with the limiting ring groove on the outer sheath 111 . 1111 , so that the limiting element 141 can limit the axial position of the outer sheath 111 .
  • the portion of the limiting element 141 with the limiting hole 1411 protrudes into the slot 1512 , and engages with the outer sheath 111 within the unlocking member 151 in a limited position.
  • the outer sheath limiting assembly 14 may further include a second spring (not shown), a blocking piece 142 and a detection element 143.
  • the lower end of the limiting element 141 protrudes from the notch 1512 on the lower side, and the second spring is mounted on the blocking piece. 142 and the limiting element 141, and is used to push the limiting element 141 away from the blocking piece 142, so that it can be kept at the position of locking the outer sheath 111 under the action of the spring force.
  • the detection element 143 is used to detect the stop position of the limit element 141.
  • the external force overcomes the elastic force of the second spring and pushes the limit element 141 in the direction of the blocking piece 142.
  • the detection element 143 detects the limit
  • a light signal, a sound signal, etc. can be sent out to remind the user that the current outer sheath 111 can be removed, thereby eliminating the risk of accidental removal.
  • the support portion 162 of the base 16 is provided with protruding openings 165 for accommodating the two trigger portions 1511 of the unlocking member 151 , in order to align the unlocking member 151 and the unlocking member 151 during assembly.
  • the relative positions in the circumferential direction of the base 16 are such that the two triggering parts 1511 are aligned with the protruding openings 165 , the unlocking member 151 is protruded with an alignment protrusion 1515 , and the supporting portion 162 is used for inserting the opening edge of the unlocking member 151
  • An alignment groove 164 is provided on the top.
  • a sliding block 1514 is provided in the sliding hole on the unlocking member 151 for inserting the outer sheath 111
  • the outer wall of the outer sheath 111 is provided with a guide chute 1112 that accommodates the slider 1514 to extend into. The sliding of the slider 1514 in the guide chute 1112 can perform the relative sliding of the unlocking member 151 and the outer sheath 111. Circumferential limit and guide.
  • the instrument lever unlocking assembly 15 further includes a return spring 152 for pushing the unlocking member 151 in a reverse direction to a position away from the sliding sleeve body 1341 .
  • One end of the unlocking member 151 is also provided with a blocking edge 1513. In the assembled state, the blocking edge 1513 is kept outside the housing 17.
  • the unlocking member 151 can be pushed through the blocking edge 1513 until the blocking edge 1513 is used.
  • the stop edge 1513 abuts against the housing 17, the instrument lever 112 is unlocked.
  • the aforementioned notch 1512 on the unlocking member 151 avoids movement interference between the unlocking member 151 and the sheath limiting assembly 14 during the sliding process of the unlocking member 151 .
  • the side edge of the notch 1512 and the side surface of the limiting element 141 may be pressed against each other to limit each other, thereby hindering the limiting element 141 to a certain extent. Sliding, after the unlocking piece 151 slides, the side of the notch 1512 is no longer in contact with the limiting element 141.
  • the limiting element 141 can slide freely within the range of the notch 1512, so that when the unlocking piece 151 is set, the surgical instrument The disassembly process of 11 is given an order, which can reduce the risk of accidental disassembly.
  • a second aspect of the present application further provides a surgical robot, including the actuator 100 of the foregoing embodiment, a telecentric manipulation mechanism 200 , a preoperative positioning mechanism 300 , a frame 400 and a base 500 .
  • a plurality of sets of racks 400 are arranged on the base 500 , and a group of preoperative positioning mechanisms 300 , telecentric control mechanisms 200 and actuators 100 are correspondingly installed on each rack 400 .
  • a possible implementation of the telecentric control mechanism 200 includes a moving platform, a static platform, and a plurality of telescopic units, two ends of each telescopic unit are respectively connected to the moving platform and the static platform in rotation, and the plurality of telescopic units expand and contract cooperatively to control The moving platform moves relative to the static platform.
  • the actuator 100 is arranged on the moving platform, and the aforementioned surgical instrument 11 has a preset telecentric fixed point, and the deflection of the moving platform can drive the surgical instrument 11 to swing around the telecentric fixed point.
  • the preoperative positioning mechanism 300 is used to control the actuator 100 so that the telecentric fixed point on the surgical instrument 11 is coincident with the tiny wound on the patient's body.
  • the surgical instrument 11 oscillates in space with the telecentric fixed point as a fixed point. Therefore, the surgical instrument 11 does not pull the wound.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种执行机构(100)及手术机器人,执行机构(100)包括手术器械(11)及驱动组件(12),其中:手术器械(11)包括外鞘(111)、两根器械杆(112)及手术工具,两根器械杆(112)可滑动地设置于外鞘(111)内,手术工具包括一对转动连接于外鞘(111)一端侧的摆动件(113),每根器械杆(112)驱动连接一个摆动件(113);驱动组件(12)包括两组直线驱动装置。

Description

执行机构及手术机器人 技术领域
本申请涉及医疗器械领域,尤其涉及一种执行机构及手术机器人。
背景技术
微创手术是指在病人身体上开一个微小创口,手术机器人的部分执行机构穿过该微小创口并进入病灶位置,并使执行机构的远心不动点与创口位置重合,操作者通过对手术机器人的机械臂部分进行控制,带动执行机构以远心不动点为铰点做一定角度范围内的空间摆动,辅助以执行机构自身的动作,完成微创手术。微创手术由于创口小、出血少,近年来正逐步获得医务人员和患者的青睐。
执行机构的结构一般包括:用于伸入至病灶位置的手术器械,以及用于驱动手术器械进行旋转、开合等动作的驱动组件,在驱动组件的带动下,手术器械上伸入人体内的手术工具完成预设的手术动作。类似于达芬奇手术机械人的结构中,采用特制的钢索作为手术器械的驱动结构。然而,钢丝在多次使用后容易发生伸长变形,手术器械的操作端的动作精度随之受到影响,蠕变增大。
为了改善上述由于钢索使用而导致的问题,一些传统方案中提出采用单根硬质杆作为驱动件,然而,这种方案会很大程度的限制手术工具的运动自由度。
发明内容
有鉴于此,本申请实施例提供一种执行机构及手术机器人,该执行机构能够使操作端的手术工具具有更大的运动自由度。
本申请实施例首先提供一种手术机器人的执行机构,包括手术器械及驱动组件,其中:所述手术器械包括外鞘、两根器械杆及手术工具,所述外鞘内形成有沿所述外鞘轴向延伸的滑移腔室,两根所述器械杆可滑动地设置于所述滑移腔室内,所述手术工具包括一对转动连接于手术外鞘一端侧的摆动件,每根所述器械杆驱动连接一个所述摆动件,所述器械杆在所述滑移腔室内的滑动能够分别独立驱动对应的所述摆动件摆动;
所述驱动组件包括两组并对应所述器械杆,每组所述驱动组件均包括用于驱动所述器械杆在所述滑移腔室内沿所述器械杆轴线方向滑动的直线驱动装置。
上述执行机构中,驱动组件中的直线驱动装置分别带动器械杆在所述滑移腔室内滑移,而手术器械中的一对摆动件能够分别在一根器械杆的驱动下摆动,因此,两个摆动件的摆动互不干涉,每个摆动件均可以获得较大的运动自由度及摆动范围,而器械杆相比于钢索作为驱动构件的形式,不存在伸长变形后导致的一系列问题,因此,手术工具能够灵活地在较大范围内完成预设的手术动作。
在一种可行的方案中,所述驱动组件还包括两个负载座,每个所述负载座连接于对应的一个所述直线驱动装置并用于带动所述器械杆在所述滑移腔室内滑动。
在一种可行的方案中,所述直线驱动装置设置为直线电机,所述驱动组件还包括导向件,所述导向件用于限制所述负载座随所述直线电机的转动。直线电机带动负载座做直线运动,而负载座用于驱动器械杆随之直线运动,这样可以以较高地精度带动推杆伸缩滑移,一般而言,直线电机至少包括用于输出旋转运动的普通电机及转动变平移的运动转换机构,如丝杠螺母组件,因此,导向件的设置可以限制负载座的转动,使负载座仅能够发生直线运动。
在一种可行的方案中,所述导向件包括嵌固于所述负载座的衬套,以及固设于机座的导向轴,所述衬套能够在所述导向轴的导向下随所述负载座在所述直线电机驱动下滑动。
在一种可行的方案中,所述执行机构还包括用于锁定/解锁所述器械杆的器械杆限位组件,以及用于锁定/解锁所述外鞘的外鞘限位组件。
在一种可行的方案中,所述器械杆限位组件包括分别对应每个所述器械杆设置的器械杆锁紧套,以及滑套装置,所述器械杆通过对应的所述器械杆锁紧套连接对应的所述直线驱动装置,所述滑套装置能够相对于所述器械杆锁紧套滑动,以使得器械杆锁紧套锁定/解锁对应的所述器械杆。
在一种可行的方案中,所述滑套装置包括对应滑动套接于每个所述器械杆锁紧套外的滑套体,沿所述滑套体与所述器械杆锁紧套相对滑动的方向,所述滑套体具有锁止段和解锁段,当所述锁止段对应所述器械杆锁紧套时,所述器械杆被锁定,当所述解锁段对应所述器械杆锁紧套时,所述器械杆被解锁。
在一种可行的方案中,所述器械杆限位组件还包括锁定件,且每个所述器械杆至少对应一个所述锁定件;所述锁定件被约束于所述滑套体内,当所述锁止段对应所述器械杆锁紧套时,所述锁定件锁定所述器械杆,当所述解锁段对应所述器械杆锁紧套时,所述锁定件解除对所述器械杆的锁定。
在一种可行的方案中,沿所述器械杆的径向,所述器械杆锁紧套上开设有锁孔,所述器械杆插入所述器械杆锁紧套的杆体上开设有锁定凹槽,所述锁定件可动设置于所述锁孔内,当所述锁止段对应所述器械杆锁紧套时,所述锁止段的壁面将所述锁定件沿所述锁孔压入所述锁定凹槽。
在一种可行的方案中,沿所述锁孔的开设方向,所述锁孔靠近所述器械杆锁紧套一端的孔径大于靠近所述滑套体一端的孔径。这样,锁定件能够灵活地运动至解锁器械杆的位置,和可靠地被约束于锁定器械杆的位置,这样,器械杆的锁定可靠、解锁灵活。
在一种可行的方案中,所述锁定件设置为球形件,所述球形的锁定件能够在所述锁孔内滚动和滑动。呈球形件设置的锁定件在锁孔内的运动更为灵活,可以避免锁定件被卡死于锁孔内,同时,也可以减小锁定件与锁孔之间的摩擦,延长锁定件、器械杆及器械杆锁紧套 的使用寿命。
在一种可行的方案中,所述器械杆限位组件还包括用于限制所述滑套装置与所述器械杆锁紧套相对极限位置的挡止件,所述挡止件装设于所述器械杆锁紧套上并能够挡止所述滑套装置的一端侧。挡止件能够限制滑套装置的最大行程位置,从而避免滑套装置运动超程导致锁定件脱出滑套装置外。
在一种可行的方案中,所述器械杆锁紧套与所述滑套装置之间还设置有第一弹簧,所述第一弹簧的弹性力使得所述滑套装置被保持于锁定所述器械杆的位置。这样,用户在重新安装器械杆后,滑套装置能够被第一弹簧的弹性力复位至锁定器械杆的位置,执行机构的结构可靠性更高。
在一种可行的方案中,所述器械杆锁紧套和/或所述滑套装置上设置有弹簧座,所述第一弹簧装设于所述弹簧座上并能够沿所述弹簧座的延伸方向伸缩变形。弹簧座能够对第一弹簧的形变方向进行导向,避免第一弹簧在伸缩过程中发生意外的侧向弯曲。
在一种可行的方案中,所述滑套装置与所述器械杆锁紧套之间还设置有用于对两者相对滑动的方向进行导向的导向结构。导向结构的设置可以使滑套装置相对于器械杆锁紧套的运动方向更为确定,以可靠解锁器械杆。
在一种可行的方案中,所述执行机构还包括机座以及滑动设置于所述机座上的器械杆解锁组件,所述器械杆解锁组件包括用于驱动所述滑套装置相对于所述器械杆锁紧套滑动以解锁所述器械杆的解锁件。
在一种可行的方案中,所述器械杆解锁组件还包括复位弹簧,所述复位弹簧的弹性力使得所述解锁件保持于远离所述滑套装置处。复位弹簧可以使解锁件远离滑套装置,避免在重新安装手术器械后,用户由于忘记复位解锁件而导致手术器械安装不到位。
在一种可行的方案中,所述解锁件套设于所述手术器械外,并开设有穿透至所述手术器械的槽口;所述机座设有垂直于所述外鞘滑移方向的滑孔;所述外鞘限位组件包括滑动连接于所述滑孔并用于限制所述外鞘安装位置的限位元件,所述限位元件穿过所述槽口并与所述外鞘限位配合。
槽口的设置不仅避免了解锁件与限位元件之间发生位置干涉,同时,槽口的侧壁可以在解锁件向解锁方向运动前抵触限位元件,以在一定程度上约束和限制限位元件的滑移,而在其被推动以解锁器械杆后,限位元件与槽口的侧壁不再接触,限位元件此时能够自由在滑孔内滑动解锁外鞘,这种设置可以赋予手术器械解锁结构解锁的顺序性。
在一种可行的方案中,所述外鞘与所述解锁件之间还设置有用于对所述解锁件滑移方向进行导向的导向结构。
在一种可行的方案中,所述机座与所述解锁件之间还设置有用于对正所述解锁件相对于所述机座周向安装方位的对位结构。对位结构的设置可以使解锁件与机座的周向相对位置 确定,从而使解锁件按照预设方位安装,以更可靠的解锁器械杆。
在一种可行的方案中,所述解锁件具有用于接触并推动所述滑套装置滑动的触发部,所述器械杆锁紧套上装设有用于限制所述滑套装置与所述器械杆锁紧套相对极限位置的挡止件,所述触发部设置为两个并沿周向间隔分布以错开所述挡止件。
本申请实施例第二方面还提供一种手术机器人,包括上述任一实施方式的执行机构。
附图说明
为了更好地描述和说明这里公开的那些申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的这些申请的最佳模式中的热河一者的范围的限制。
图1为本申请提供一种实施方式的执行机构的结构示意图。
图2为手术器械一种实施方式的结构示意图。
图3为手术器械另一种实施方式的结构示意图。
图4为图1中的执行机构的分解结构示意图。
图5为执行机构去掉外壳后的分解结构图,图中重点对驱动组件处做了分解。
图6为执行机构移除一半驱动组件及相关组件后的分解结构示意图。
图7为手术器械及器械杆限位组件和器械杆解锁组件之间的装配结构示意图。
图8为图7中所示结构的分解结构示意图。
图9为一种实施方式的器械杆锁紧套的结构示意图。
图10为手术器械及器械杆限位组件和器械杆解锁组件之间的装配结构半剖视图。
图11为手术器械、器械杆限位组件和器械杆解锁组件之间的装配结构示意图,图中去除了部分结构。
图12为一种实施方式的滑套体的结构示意图。
图13为外鞘限位组件处的分解结构示意图的局部。
图14为一种实施方式的机座的结构示意图。
图15为图14中所示机座的俯视图。
图16为一种实施方式的手术机器人的结构示意图,图中装配有多组图1中所示的执行机构。
图中:100表示执行机构;200表示远心操控机构;300表示术前摆位机构;400表示机架;500表示基座;11表示手术器械;111表示外鞘;1111表示限位环槽;1112表示导向滑槽;112表示器械杆;1121表示锁定凹槽;113表示摆动件;1131表示滑槽;114表示连杆;115表示连接部;116表示中心转轴;12表示驱动组件;121表示直线电机;122表示安装座;123表示负载座;124表示导向件;1241表示衬套;1242表示导向轴;13表示器械杆限位 组件;131表示器械杆锁紧套;1311表示连接端;1312表示第一弹簧座;1313表示导向筋;1314表示锁孔;1315表示销孔;132表示第一弹簧;133表示挡止件;134表示滑套装置;1341表示滑套体;13411表示锁止段;13412表示解锁段;13413表示导槽;1342表示第二弹簧座;135表示锁定件;14表示外鞘限位组件;141表示限位元件;1411表示限位孔;142表示挡片;143表示检测元件;15表示器械杆解锁组件;151表示解锁件;1511表示触发部;1512表示槽口;1513表示挡止缘;1514表示滑块;1515表示对位凸起;152表示复位弹簧;16表示机座;161表示基体;162表示支撑部;163表示滑孔;164表示对位槽;165表示伸出口;17表示外壳。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
需要说明的是,当组件被称为“装设于”另一个组件,它可以直接装设在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请所涉及的手术机器人,可以用于辅助医生完成微创手术。在这类微创手术中,患者身体上仅开有一个微小创口,手术机器人远端的手术工具自该微小创口伸入患者体内并达到病灶,并通过相应的驱动结构驱动手术工具完成预设的手术动作。为了避免创口在手术过程受到拉扯,手术器械需要以创口处为远心不动点进行空间摆动,即,手术器械在摆动过程中,创口处手术器械不存在位移而始终保持不动。在这种情况下,通过创口到达病灶处的手术工具的运动范围及自由度,至关重要。而受制于手术工具所适配的手术器械本身设计尺寸有限,因此,驱动结构的设计不仅要考虑手术工具的运动自由度,还要兼顾尺寸的限制。
一些手术机器人中,以电机驱动的钢索作为手术工具的驱动结构,电机通过类似滑轮的结构使钢索两向牵拉驱动手术工具,以带动手术工具进行偏转或开合运动。然而,钢索在多次牵拉后,自身会发生一定程度的伸长变形,此后,钢索的牵拉距离与手术工具的运动幅度之间的运动关系发生变化,手术工具的运动精度下降;同时,想要使手术工具运动相同的 幅度,需要牵拉钢索运动更大的距离,手术器械的传动效率低、蠕变大。
为了克服钢索的伸长问题,相关传统技术中给出的解决方案包括以下两类:一类是从钢索本身出发,即,对钢索的材料进行改进或者改进其热处理工艺等,以减小钢索的伸长,然而,这种解决方案带来的问题是大大增加了手术器械的制造成本;另一类解决方案则是将钢索替换为单根硬质杆,手术工具的两个摆动件与两根连根共同形成一个近似的平行四边形机构,硬质杆枢转连接于该平行四边形机构的一端,以通过硬质杆的滑移驱动两个摆动件开合。第二类方案中,由于硬质杆取代了钢索,因此,其可以解决钢索伸长带来的问题,但是,在这种驱动方式中,手术工具仅具有开合两个运动。由前所述,在微创手术中期望的是手术工具能够灵活的在较大范围内运动,这种驱动形式显然不够灵活。而增加连杆机构的运动自由度,势必需要增加连杆的数量及驱动源的数量等,这些结构所占用的空间问题、运动精度问题均制约着驱动结构的设计。
为了消除钢索作为驱动件的问题,并保证手术工具具有足够的自由度,同时,保持结构小型化以减少空间占用,首先参考图1中所示,本申请实施例首先提供一种手术机器人的执行机构100,包括手术器械11以及驱动组件12,其中:手术器械11包括外鞘111、可滑动地设置于外鞘111内的两根器械杆112,以及用于完成手术动作的手术工具。外鞘111内形成有沿其轴向布置的滑移腔室,两个器械杆112能够在滑移腔室内滑动。在一些实施方式中,为了对器械杆112进行滑动导向,滑移腔室内还可以装设或一体设置有导向限位件,这样,器械杆可以装设至导向限位件的滑移孔内,以使其沿预设的固定轴线方向滑移。
手术工具包括一对转动连接于外鞘111一端侧的摆动件113。每个摆动件113对应一根器械杆112,以使得两个摆动件113能够独立摆动而彼此互不干涉。当需要完成预设手术动作,如开合、以夹持状态摆动等时,两根器械杆112的运动距离、运动方向相互配合,以使两个摆动件113的摆动至预设的位姿。
参考图2和图3中所示,图2和图3中给出了手术器械11的两种实施方式。首先参考图2中所示,器械杆112与摆动件113之间通过连杆114连接,连杆114的一端与器械杆112可转动的连接,另一端与摆动件113通过连接部115可转动的连接,一对摆动件113通过中心转轴116可转动的连接至外鞘111上,并且,连接部115的转动连接处错开中心转轴116的穿设处。这样,当器械杆112在外鞘111内腔中沿自身轴线方向伸缩滑移时,能够带动连杆114随之滑动和/或相对于器械杆112偏转,这样,连杆114能够通过连接部115带动摆动件113绕中心转轴116转过预设角度。
连杆114的两端分别与器械杆112和摆动件113转动连接,相比于直接将器械杆112与摆动件113转动连接,整个运动机构的自由度增加,摆动件113的运动更加灵活,运动范围也更大。
参考图3中所示,相比于图2中所示的实施方式,图3中的手术器械中不存在连杆 114,而是在器械杆112的端部设置连接部115,并对应在摆动件113上开设与该连接部115滑动连接的滑槽1131。当器械杆112在外鞘111内腔中沿自身轴线方向伸缩滑移时,装设在器械杆112上的连接部115的位置随之变化,通过连接部115与滑槽1131的滑动配合,带动摆动件113绕中心转轴116摆动。
图2和图3中的结构均可以实现器械杆112与摆动件113的驱动连接,图3中的连接部115与滑槽1131形成的连接结构可以看做是一个运动高副,而图2中的连杆114两端转动连接处的连接结构为运动低副,因此,相比于图2中全部以连杆结构连接的形式,图3中所示结构更为紧凑,传动精度也更高。
此外,图3中摆动件113的摆动运动范围取决于滑槽1131的长度,而摆动件113本身的尺寸并不能设计的很大,因此,滑槽1131的长度有一定的范围,图2中所示的结构则无此限制,因此,图2中结构的摆动件可以获得更大的摆动范围。在实际设计手术器械11时,还可以在图2和图3中所示的结构基础上改为采用其他的等同替代形式,以获得相同或近似的摆动件运动规律。
为了实现器械杆112的伸缩滑移,参考图4和图5中所示,驱动组件12对应于两根器械杆112也设置为两组,每组驱动组件12均包括直线驱动装置,每个直线驱动装置分别驱动对应器械杆112。驱动组件12还可以包括负载座123,每个直线驱动装置通过一个负载座123对应驱动一根器械杆112在外鞘111内滑动。
继续参考图5中所示,在图示的实施方式中,直线驱动装置设置为直线电机121,直线电机121可以通过安装座122固定安装至机座16上。在采用直线电机121作为直线驱动装置时,驱动组件12还可以包括导向件124。导向件124用于限制负载座123的转动运动,使其只能够随丝杠螺母做直线运动。直线电机121的一般结构包括一组普通的步进电机/伺服电机以及一个丝杠螺母组件,精密的直线电机121可以采用滚珠丝杠螺母组件作为运动转化的组件,电机输出旋转运动,带动滚珠丝杠螺母组件中的丝杠转动,进而通过丝杠螺母配合使得螺母沿丝杠的轴向做直线运动。
器械杆112直接或间接与负载座123相对固定,以随负载座123的直线运动相对于外鞘111滑移。在一种实施方式中,导向件124包括嵌装固定于负载座123上的衬套1241,以及固定装设于机座16的基体161上的导向轴1242,导向轴1242固定不动,当直线电机121驱动负载座123滑动时,衬套1241与导向轴1242滑动配合,使得负载座123仅能够沿一个方向做直线运动。在其他实施方式中,导向件124也可以更换为类似导轨的结构,只要能够实现前述记载的导向件124的限位导向目的即可,导向件124还可以有多种其他等同替代形式,此处不做赘述。
在手术机器人执行不同的手术任务时,手术器械11存在着快速拆装更换的需要,因此,在手术器械11与驱动组件12之间需要设置有用于快速拆卸更换手术器械11的结构。如 前所示,一些手术机器人中采用钢索作为手术工具的驱动构件,在这类手术机器人中,用于快速拆装手术器械的结构一般为一个可丢弃的端部组件。而改用器械杆112后,手术器械11的拆装结构也需要重新设计。因此,下面给出用于实现手术器械11拆装的相关结构。
参考图6和图7中所示,执行机构100还包括用于锁定/解锁器械杆112的器械杆限位组件13,以及用于锁定/解锁外鞘111的外鞘限位组件14。在进行手术器械11的拆卸更换时,需要先后或同时控制两个限位组件做动,然后再相对于机座16拔出手术器械11整体。
结合图9和图10中所示,器械杆限位组件13包括分别对应每个器械杆112设置的器械杆锁紧套131,以及滑套装置134。其中:器械杆锁紧套131用于插装器械杆112,并且,器械杆112能够通过该器械杆锁紧套131与驱动组件12中的负载座123连接。在一种实施方式中,器械杆锁紧套131上用于连接负载座123的一端设置有连接端1311,该连接端1311的作用类似于法兰结构,其能够与负载座123形成类似于法兰连接的连接结构。
参考图8中所示,滑套装置134套装于器械杆锁紧套131外侧,并能够相对于器械杆锁紧套131滑动,以锁定/解锁器械杆112。滑套装置134包括分别对应装设于每个器械杆锁紧套131外的两个滑套体1341。这样,当器械杆112处于被锁定的位置随器械杆锁紧套131伸缩滑移时,对应的滑套体1341随之滑移,两者不产生相对滑移;而当需要拆卸器械杆112时,两个滑套体1341可以被驱动相对于两个器械杆锁紧套131滑动,从而解锁器械杆112。
进一步地,参考图6中所示,器械杆限位组件13还包括锁定件135,每根器械杆112至少对应一个锁定件135。锁定件135被约束于对应的滑套体1341内,并能够向靠近器械杆112的方向运动以锁定器械杆112。
结合图9中所示,器械杆锁紧套131上开设有锁孔1314。锁定件135可以设置为球形件,球形的锁定件135活动设置于该锁孔1314内,这个活动包括在锁孔1314内的滚动和滑动。
继续参考图9中所示,在一种实施方式中,锁孔1314配置为变径孔,以使得锁定件135能够自锁孔1314靠近器械杆112插装一侧的孔口露出小于一半的体积,以实现器械杆112的锁定;锁定件135还能够自锁孔1314孔径稍大的另一侧容易地向滑套体1341内壁方向运动,这样当滑套体1341滑动至解锁器械杆112的位置时,锁定件135能够迅速响应,灵敏地实现器械杆112的解锁。
由于锁定件135在锁定器械杆112时,对器械杆112有压紧的力,为了使器械杆112受力平行,在器械杆112轴线方向的两侧,锁定件135成对布置并对称分布。例如,图示的实施方式中,每个器械杆112上对应设置有两个锁定件135,且两个锁定件135相对于器械杆112的轴线呈轴对称布置。当锁定件135有多对时,每对锁定件135沿周向均匀间隔布置。
返回参考图6中所示,器械杆112上开设有容部分锁定件135嵌入的锁定凹槽1121,由前所述,当滑套体1341处于锁定器械杆112的位置时,能够向器械杆112的方向推动锁定 件135,在设置有锁定凹槽1121的实施方式中,伸出锁孔1314的部分锁定件135可以地嵌入该锁定凹槽1121内,以更为可靠地锁定器械杆112。可以理解,当锁定件135成对布置时,锁定凹槽1121的数量和设置位置均对应于锁定件135的数量与安装位置。
在图8的基础上结合图10和图12中所示,以其中的一个滑套体1341为例,在一种实施方式中,滑套体1341具有沿其器械杆锁紧套131相对滑动方向设置的锁止段13411和解锁段13412,解锁段13412对应处滑套体1341的内径大于锁止段13411对应处内径。
这样,当锁止段13411对应器械杆锁紧套131时,锁止段13411处滑套体1341的内壁将锁孔1314内的锁定件135推挤至嵌入器械杆112的锁定凹槽1121内;而当解锁段13412对应器械杆锁紧套131时,滑套体1341的内壁与器械杆锁紧套131的外壁之间形成间隙,此时锁定件135能够在图9中的锁孔1314内向远离锁定凹槽1121一侧的孔口运动,器械杆112由于锁定件135与锁定凹槽1121的脱离而被解锁。在一种实施方式中,锁止段13411处滑套体1341的内壁可以基本滑动贴合器械杆锁紧套131的外壁,以保证锁定件135被可靠挤压至锁定凹槽1121内。
进一步地,结合图9和图12中所示,为了使器械杆锁紧套131与对应的滑套体1341之间仅存在一个方向(即沿器械杆112轴向)的相对滑动,两者中的一者上设置有导向筋1313,另一者上设置有与该导向筋1313滑动配合的导槽13413,在图示的实施方式中,导向筋1313凸设于器械杆锁紧套131的外壁上,而导槽13413开设于滑套体1341的内侧面上,并延伸经过锁止段13411和解锁段13412。
参考图7和图8中所示,在解锁器械杆112时,需要外力沿图示方向下压两个滑套体1341,以使解锁段13412对应于锁定件135所在处;而在安装器械杆112的过程中,又需要向上滑动两个滑套体1341,以使锁止段13411对应锁定件135所在处。为了使滑套体1341能够在安装器械杆112时自动上滑复位,滑套体1341与器械杆锁紧套131之间设置有第一弹簧132。
进一步地,在图示的实施方式中,第一弹簧132的下端抵接器械杆锁紧套131的连接端1311上表面,第一弹簧132的上端抵接滑套体1341的下端面,第一弹簧132在装配状态下处于压缩状态,其弹性复位力始终保持向上推抵滑套体1341至锁定器械杆112的位置。
为了约束第一弹簧132的伸缩变形方向,连接端1311上表面和滑套体1341的下端面还可以分别装设有第一弹簧座1312和第二弹簧座1342,当然,两者也可以仅设置其中之一。这样,第一弹簧132在压缩过程中,第一弹簧座1312和/或第二弹簧座1342可以对约束第一弹簧132仅发生预设方向的变形,减少其发生侧向弯曲的可能。第一弹簧座1312和第二弹簧座1342可以分别与器械杆锁紧套131和滑套体1341一体成型,也可以为装配至两者上的单独构件。
第一弹簧座1312、第二弹簧座1342以及第一弹簧132均可以对应设置多个,并且, 多个相互配合的结构在滑套体1341的周向均布,以使滑套体1341受力平衡。并且,在滑套体1341滑动至解锁段13412对应器械杆锁紧套131外壁前,第一弹簧座1312和第二弹簧座1342互不接触,以避免与滑套体1341的滑动过程干涉。
参考图8至图10中所示,器械杆锁紧套131上还可以开设有销孔1315,该销孔1315内装设有挡止件133。在滑套体1341处于锁定器械杆112的位置时,挡止件133抵接滑套体1341的上端面,并用于阻止滑套体1341的进一步向上滑动。可以理解,相对于图10所示的方位,挡止件133限制滑套体1341继续向上滑动,在第一弹簧132向上弹性推压滑套体1341下端面时,滑套体1341不会由于滑动超程而导致锁定件135脱落。在其他实施方式中,挡止件133与配合的销孔1315也可以采用其他形式的结构,只要能够实现限制滑套体1341上滑的上端位置即可。
参考图7和图8中所示,机座16上还装设有器械杆解锁组件15,该器械杆解锁组件15包括能够相对于机座16滑动,以驱动滑套体1341相对于器械杆锁紧套131滑动的解锁件151。沿解锁件151相对于机座16滑动的方向,解锁件151靠近滑套体1341的一侧设置有触发部1511,当解锁件151朝向滑套体1341滑动时,触发部1511推抵滑套体1341,进而可以驱动其相对于器械杆锁紧套131滑动至解锁器械杆112的位置。在图示的实施方式中,触发部1511包括沿周向间隔布置的两个,并且,在安装时,两个触发部1511应当在周向上错开两个挡止件133,以避免挡止件133阻碍触发部1511推动滑套体1341的动作。
参考图11和图13中所示,解锁件151套设于手术器械11外,并开设有穿透至手术器械11外壁的槽口1512,用于限制锁定/解锁外鞘111的外鞘限位组件14的部分结构对应装设于槽口1512处。
具体地,在图11和图13的基础上,结合图14和图15中所示,机座16包括基体161以及支撑部162,机座16的支撑部162上开设有垂直于外鞘111拆卸时滑移方向的滑孔163。
外鞘限位组件14包括滑动装设于该滑孔163内的限位元件141,限位元件141上开设有限位孔1411,该限位孔1411用于配合外鞘111上的限位环槽1111,以使得限位元件141能够限制外鞘111的轴向位置。限位元件141上具有该限位孔1411的部分自槽口1512伸入,并在解锁件151内部与外鞘111限位配合。
外鞘限位组件14还可以包括第二弹簧(图未示)、挡片142以及检测元件143,限位元件141的下端自下侧的槽口1512伸出,第二弹簧装设于挡片142与限位元件141之间,并用于向远离挡片142的方向推动限位元件141,以使其能够在弹簧力作用下保持于锁定外鞘111的位置。
检测元件143用于检测限位元件141的停止位置,在拆卸外鞘111时,外力克服第二弹簧的弹性力想挡片142的方向下压限位元件141,当检测元件143检测到限位元件141的端部伸入时,可以发出光信号、声音信号等,提示用户当前外鞘111可以被拆除,从而消除 误拆风险。
参考图11、图14和图15中所示,机座16的支撑部162上开设有容解锁件151的两个触发部1511伸出的伸出口165,为了在装配时对正解锁件151与机座16的周向相对位置,以使两个触发部1511对准伸出口165,解锁件151上凸设有对位凸起1515,支撑部162上用于插装该解锁件151的孔缘上设置有对位槽164,在向机座16安装解锁件151时,首先将对位凸起1515对准对位槽164,然后再向机座16内推动解锁件151。
此外,结合图11和图13中所示,为了使解锁件151与外鞘111相对滑动时周向相对位置确定,解锁件151上用于插装外鞘111的滑孔内设置有滑块1514,对应地,外鞘111的外壁上开设有容该滑块1514伸入的导向滑槽1112,滑块1514在导向滑槽1112内的滑动,可以对解锁件151与外鞘111的相对滑动进行周向限位和导向。
继续参考图11中所示,器械杆解锁组件15还包括复位弹簧152,该复位弹簧152用于反向推动解锁件151至远离滑套体1341的位置。解锁件151的一端还设置有挡止缘1513,在装配状态下,挡止缘1513保持于外壳17的外部,在解锁器械杆112时,可以通过该挡止缘1513推动解锁件151,直至挡止缘1513抵触外壳17时,器械杆112被解锁。
可以理解,前述描述的解锁件151上的槽口1512,在解锁件151滑动的过程中,避免了解锁件151与外鞘限位组件14之间发生运动干涉。尤其是,在解锁件151被驱动向解锁器械杆112的方向滑动前,槽口1512的侧边还可以与限位元件141侧面存在相互抵压限位,从而在一定程度上阻碍限位元件141滑动,当解锁件151滑动后,槽口1512的侧边与限位元件141不再接触,此时,限位元件141能够在槽口1512范围内自由滑动,这样设置解锁件151时,手术器械11的拆装过程被赋予顺序,可以降低误拆风险。
参考图16中所示,本申请第二方面还提供一种手术机器人,包括前述实施方式的执行机构100,以及远心操控机构200、术前摆位机构300、机架400和基座500。基座500上配置有多组机架400,每个机架400上对应装设一组术前摆位机构300、远心操控机构200及执行机构100。
远心操控机构200的一种可能的实施方式包括动平台、静平台以及多个伸缩单元,每个伸缩单元的两端均分别转动连接至动平台和静平台,多个伸缩单元协同伸缩以控制动平台相对于静平台运动。
执行机构100设置于动平台上,并且,前述的手术器械11具有预设的远心不动点,动平台的偏转能够带动手术器械11绕该远心不动点摆动。在微创手术进行时,通过术前摆位机构300操控执行机构100,以使手术器械11上的远心不动点重合于患者身体上的微小创口,这样,在后续的手术过程中,由于手术器械11以该远心不动点为定点进行空间摆动,因此,手术器械11不会对创口造成拉扯。
以上所述实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施 方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围内。

Claims (22)

  1. 一种手术机器人的执行机构,其特征在于,包括手术器械及驱动组件,其中:
    所述手术器械包括外鞘、两根器械杆及手术工具,所述外鞘内形成有沿所述外鞘轴向延伸的滑移腔室,两根所述器械杆可滑动地设置于所述滑移腔室内,所述手术工具包括一对转动连接于手术外鞘一端侧的摆动件,每根所述器械杆驱动连接一个所述摆动件,所述器械杆在所述滑移腔室内的滑动能够分别独立驱动对应的所述摆动件摆动;
    所述驱动组件包括两组并对应所述器械杆,每组所述驱动组件均包括用于驱动所述器械杆在所述滑移腔室内沿所述器械杆轴线方向滑动的直线驱动装置。
  2. 根据权利要求1所述的手术机器人的执行机构,其特征在于,所述驱动组件还包括两个负载座,每个所述负载座连接于对应的一个所述直线驱动装置并用于带动所述器械杆在所述滑移腔室内滑动。
  3. 根据权利要求2所述的手术机器人的执行机构,其特征在于,所述直线驱动装置设置为直线电机,所述驱动组件还包括导向件,所述导向件用于限制所述负载座随所述直线电机的转动。
  4. 根据权利要求3所述的手术机器人的执行机构,其特征在于,所述导向件包括嵌固于所述负载座的衬套,以及固设于机座的导向轴,所述衬套能够在所述导向轴的导向下随所述负载座在所述直线电机驱动下滑动。
  5. 根据权利要求1-4中任意一项所述的手术机器人的执行机构,其特征在于,所述执行机构还包括用于锁定/解锁所述器械杆的器械杆限位组件,以及用于锁定/解锁所述外鞘的外鞘限位组件。
  6. 根据权利要求5所述的手术机器人的执行机构,其特征在于,所述器械杆限位组件包括分别对应每个所述器械杆设置的器械杆锁紧套,以及滑套装置,所述器械杆通过对应的所述器械杆锁紧套连接对应的所述直线驱动装置,所述滑套装置能够相对于所述器械杆锁紧套滑动,以使得器械杆锁紧套锁定/解锁对应的所述器械杆。
  7. 根据权利要求6所述的手术机器人的执行机构,其特征在于,所述滑套装置包括对应滑动套接于每个所述器械杆锁紧套外的滑套体,沿所述滑套体与所述器械杆锁紧套相对滑动的方向,所述滑套体具有锁止段和解锁段,当所述锁止段对应所述器械杆锁紧套时,所述器械杆被锁定,当所述解锁段对应所述器械杆锁紧套时,所述器械杆被解锁。
  8. 根据权利要求7所述的手术机器人的执行机构,其特征在于,所述器械杆限位组件还包括锁定件,且每个所述器械杆至少对应一个所述锁定件;
    所述锁定件被约束于所述滑套体内,当所述锁止段对应所述器械杆锁紧套时,所述锁定件锁定所述器械杆,当所述解锁段对应所述器械杆锁紧套时,所述锁定件解除对所述器械杆的锁定。
  9. 根据权利要求8所述的手术机器人的执行机构,其特征在于,沿所述器械杆的径向,所述器械杆锁紧套上开设有锁孔,所述器械杆插入所述器械杆锁紧套的杆体上开设有锁定凹槽,所述锁定件可动设置于所述锁孔内,当所述锁止段对应所述器械杆锁紧套时,所述锁止段的壁面将所述锁定件沿所述锁孔压入所述锁定凹槽。
  10. 根据权利要求9所述的手术机器人的执行机构,其特征在于,沿所述锁孔的开设方向,所述锁孔靠近所述器械杆锁紧套一端的孔径大于靠近所述滑套体一端的孔径。
  11. 根据权利要求10所述的手术机器人的执行机构,其特征在于,所述锁定件设置为球形件,所述球形的锁定件能够在所述锁孔内滚动和滑动。
  12. 根据权利要求6所述的手术机器人的执行机构,其特征在于,所述器械杆限位组件还包括用于限制所述滑套装置与所述器械杆锁紧套相对极限位置的挡止件,所述挡止件装设于所述器械杆锁紧套上并能够挡止所述滑套装置的一端侧。
  13. 根据权利要求6所述的手术机器人的执行机构,其特征在于,所述器械杆锁紧套与所述滑套装置之间还设置有第一弹簧,所述第一弹簧的弹性力使得所述滑套装置被保持于锁定所述器械杆的位置。
  14. 根据权利要求13所述的手术机器人的执行机构,其特征在于,所述器械杆锁紧套和/或所述滑套装置上设置有弹簧座,所述第一弹簧装设于所述弹簧座上并能够沿所述弹簧座的延伸方向伸缩变形。
  15. 根据权利要求6所述的手术机器人的执行机构,其特征在于,所述滑套装置与所述器械杆锁紧套之间还设置有用于对两者相对滑动的方向进行导向的导向结构。
  16. 根据权利要求6所述的手术机器人的执行机构,其特征在于,所述执行机构还包括机座以及滑动设置于所述机座上的器械杆解锁组件,所述器械杆解锁组件包括用于驱动所述滑套装置相对于所述器械杆锁紧套滑动以解锁所述器械杆的解锁件。
  17. 根据权利要求16所述的手术机器人的执行机构,其特征在于,所述器械杆解锁组件还包括复位弹簧,所述复位弹簧的弹性力使得所述解锁件保持于远离所述滑套装置处。
  18. 根据权利要求16所述的手术机器人的执行机构,其特征在于,所述解锁件套设于所述手术器械外,并开设有穿透至所述手术器械的槽口;
    所述机座设有垂直于所述外鞘滑移方向的滑孔;所述外鞘限位组件包括滑动连接于所述滑孔并用于限制所述外鞘安装位置的限位元件,所述限位元件穿过所述槽口并与所述外鞘限位配合。
  19. 根据权利要求16所述的手术机器人的执行机构,其特征在于,所述外鞘与所述解锁件之间还设置有用于对所述解锁件滑移方向进行导向的导向结构。
  20. 根据权利要求16所述的手术机器人的执行机构,其特征在于,所述机座与所述解锁件之间还设置有用于对正所述解锁件相对于所述机座周向安装方位的对位结构。
  21. 根据权利要求16所述的手术机器人的执行机构,其特征在于,所述解锁件具有用于接触并推动所述滑套装置滑动的触发部,所述器械杆锁紧套上装设有用于限制所述滑套装置与所述器械杆锁紧套相对极限位置的挡止件,所述触发部设置为两个并沿周向间隔分布以错开所述挡止件。
  22. 一种手术机器人,其特征在于,包括权利要求1-21中任意一项所述的执行机构。
PCT/CN2020/134117 2020-12-05 2020-12-05 执行机构及手术机器人 WO2022116216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134117 WO2022116216A1 (zh) 2020-12-05 2020-12-05 执行机构及手术机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134117 WO2022116216A1 (zh) 2020-12-05 2020-12-05 执行机构及手术机器人

Publications (1)

Publication Number Publication Date
WO2022116216A1 true WO2022116216A1 (zh) 2022-06-09

Family

ID=81853700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134117 WO2022116216A1 (zh) 2020-12-05 2020-12-05 执行机构及手术机器人

Country Status (1)

Country Link
WO (1) WO2022116216A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117814922A (zh) * 2024-03-05 2024-04-05 北京中科鸿泰医疗科技有限公司 伸缩管结构及手术器械夹持装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150216605A1 (en) * 2014-02-06 2015-08-06 Faculty Physicians And Surgeons Of Loma Linda University School Of Medicine Methods and devices for performing abdominal surgery
CN110022787A (zh) * 2016-11-29 2019-07-16 奥林巴斯株式会社 屈曲机构以及医疗用机械手
CN110840563A (zh) * 2019-12-24 2020-02-28 锐志微创医疗科技(常州)有限公司 一种开合机构及手术机器人
CN111012384A (zh) * 2018-10-09 2020-04-17 成都博恩思医学机器人有限公司 一种用于微创手术器械的器械传动座
CN211156230U (zh) * 2019-08-15 2020-08-04 微创(上海)医疗机器人有限公司 手术机器人及手术器械
CN111685876A (zh) * 2019-12-17 2020-09-22 成都博恩思医学机器人有限公司 手术器械及手术机器人
CN211723418U (zh) * 2020-01-23 2020-10-23 诺创智能医疗科技(杭州)有限公司 操作组件及手术机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150216605A1 (en) * 2014-02-06 2015-08-06 Faculty Physicians And Surgeons Of Loma Linda University School Of Medicine Methods and devices for performing abdominal surgery
CN110022787A (zh) * 2016-11-29 2019-07-16 奥林巴斯株式会社 屈曲机构以及医疗用机械手
CN111012384A (zh) * 2018-10-09 2020-04-17 成都博恩思医学机器人有限公司 一种用于微创手术器械的器械传动座
CN211156230U (zh) * 2019-08-15 2020-08-04 微创(上海)医疗机器人有限公司 手术机器人及手术器械
CN111685876A (zh) * 2019-12-17 2020-09-22 成都博恩思医学机器人有限公司 手术器械及手术机器人
CN110840563A (zh) * 2019-12-24 2020-02-28 锐志微创医疗科技(常州)有限公司 一种开合机构及手术机器人
CN211723418U (zh) * 2020-01-23 2020-10-23 诺创智能医疗科技(杭州)有限公司 操作组件及手术机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117814922A (zh) * 2024-03-05 2024-04-05 北京中科鸿泰医疗科技有限公司 伸缩管结构及手术器械夹持装置

Similar Documents

Publication Publication Date Title
US10753439B2 (en) Tension management apparatus for cable-driven transmission
US8591397B2 (en) System for positioning on a patient an observation and/or intervention device
US7273488B2 (en) High-rigidity forceps tip assembly for active forceps and active forceps equipped with the same
WO2022001994A1 (en) Flexible endoscope with detachable head and handle
JP2016131773A (ja) 多関節構造の鉗子
WO2022116216A1 (zh) 执行机构及手术机器人
US20180333164A1 (en) Manipulator
JP2023525746A (ja) 3アームクランプ
EP4027929A1 (en) A driver module
US20190254763A1 (en) Instrument release
CN109975971B (zh) 内窥镜动力锁紧与调节机构及内窥镜持镜系统
CN113288430A (zh) 无菌板组件、手术器械、动力盒及手术机器人系统
CN214434483U (zh) 执行机构及手术机器人
CN113784826B (zh) 滑动器以及手术工具
CN114587596A (zh) 快速插拔装置、执行机构及手术机器人
CN109965827B (zh) 内窥镜动力锁紧与调节机构及内窥镜持镜系统
CN214434487U (zh) 手术器械、执行机构及手术机器人
US20040196546A1 (en) Manipulator having arm mechanism for hand
CN114587597A (zh) 执行机构及手术机器人
WO2022116214A1 (zh) 快速插拔装置、执行机构及手术机器人
CN214434482U (zh) 快速插拔装置、执行机构及手术机器人
CN214128776U (zh) 传动件、驱动组件、执行机构及手术机器人
CN114587595A (zh) 手术器械、执行机构及手术机器人
US11690688B2 (en) Compact actuation configuration and expandable instrument receiver for robotically controlled surgical instruments
CN214434486U (zh) 执行机构及手术机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964061

Country of ref document: EP

Kind code of ref document: A1