WO2022116143A1 - Pet成像方法、装置与设备 - Google Patents

Pet成像方法、装置与设备 Download PDF

Info

Publication number
WO2022116143A1
WO2022116143A1 PCT/CN2020/133878 CN2020133878W WO2022116143A1 WO 2022116143 A1 WO2022116143 A1 WO 2022116143A1 CN 2020133878 W CN2020133878 W CN 2020133878W WO 2022116143 A1 WO2022116143 A1 WO 2022116143A1
Authority
WO
WIPO (PCT)
Prior art keywords
pet
data
algorithm
image reconstruction
parametric image
Prior art date
Application number
PCT/CN2020/133878
Other languages
English (en)
French (fr)
Inventor
郑海荣
刘新
张娜
胡战利
杨永峰
梁栋
毛鑫
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/133878 priority Critical patent/WO2022116143A1/zh
Publication of WO2022116143A1 publication Critical patent/WO2022116143A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation

Definitions

  • the present application relates to the technical field of positron emission tomography (Positron Emission Tomography, PET) imaging, and in particular, to a PET imaging method, device and equipment.
  • PET positron emission tomography
  • PET is a type of emission imaging technology, which is a relatively advanced clinical examination imaging technology in the field of nuclear medicine. This technology has been widely used in disease diagnosis, clinical examination and treatment effect evaluation in the medical field.
  • PET technology performs imaging by injecting a drug with a radiotracer into the patient's body and then measuring the distribution of the radiotracer in the patient's body.
  • PET imaging includes static PET imaging and dynamic PET imaging, wherein dynamic PET imaging can provide tracer distribution maps at successive time points. In order to have a more precise and clear judgment on the lesion location and degree of the patient, PET imaging gradually changes from static to dynamic.
  • embodiments of the present application provide a PET imaging method, device, and device, which are used to reduce imaging noise and improve PET imaging quality.
  • an embodiment of the present application provides a PET imaging method, including:
  • Noise filtering is performed on the PET data to obtain target PET data
  • a sparse matrix of the second PET parameter image is determined, and guided filtering is performed on the first PET parameter image by using the sparse matrix to obtain a target PET parameter image.
  • the PET imaging method while reconstructing a first PET parameter image based on PET data, the PET data is noise filtered to reconstruct a second PET parameter image, and then a sparse matrix of the second PET parameter image is used. Guided filtering is performed on the first PET parameter image to obtain the target PET parameter image. In this way, the advantages of the high precision of the first PET parameter image and the high signal-to-noise ratio of the second PET parameter image can be combined, so that the obtained target PET data has higher image quality.
  • performing noise filtering on the PET data to obtain target PET data includes:
  • Gaussian noise filtering is performed on the converted PET data
  • inverse transform is performed on the filtered PET data to obtain the target PET data.
  • the advantage of easy filtering of Gaussian noise can be used to improve the noise filtering effect.
  • the transform algorithm is an Anscom transform algorithm
  • the algorithm used for the Gaussian noise filtering is a three-dimensional block matched filter algorithm.
  • the use of the sparse matrix to perform guided filtering on the first PET parameter image to obtain a target PET parameter image includes:
  • the sparse matrix is normalized, and the normalized sparse matrix is used to conduct guided filtering on the first PET parameter image to obtain a target PET parameter image.
  • the image accuracy of the established parameter image can be improved.
  • the method before the parametric image reconstruction is performed on the PET data by using a preset parametric image reconstruction algorithm, the method further includes: performing attenuation correction on the PET scan data to obtain the PET data.
  • the parametric image reconstruction algorithm is a direct parametric image reconstruction algorithm based on a kinetic compartment model (Patlak).
  • the parameter estimation accuracy of the reconstructed parametric image can be improved.
  • the parametric image reconstruction algorithm is an expectation-maximization direct parametric image reconstruction algorithm based on a kinetic compartment model.
  • an embodiment of the present application provides a PET imaging device, including: a parametric image reconstruction module, a noise filtering module, and a guided filtering module, wherein:
  • the parametric image reconstruction module is used for: using a preset parametric image reconstruction algorithm to perform parametric image reconstruction on the PET data to obtain a first PET parametric image;
  • the noise filtering module is used for: performing noise filtering on the PET data to obtain target PET data;
  • the parametric image reconstruction module is further configured to: use the parametric image reconstruction algorithm to perform parametric image reconstruction on the target PET data to obtain a second PET parametric image;
  • the guided filtering module is configured to: determine a sparse matrix of the second PET parameter image, and use the sparse matrix to perform guided filtering on the first PET parameter image to obtain a target PET parameter image.
  • the noise filtering module is specifically configured to:
  • Gaussian noise filtering is performed on the converted PET data
  • inverse transform is performed on the filtered PET data to obtain the target PET data.
  • the transform algorithm is an Anscom transform algorithm
  • the algorithm used for the Gaussian noise filtering is a three-dimensional block matched filter algorithm.
  • the guided filtering module is specifically configured to:
  • the sparse matrix is normalized, and the normalized sparse matrix is used to conduct guided filtering on the first PET parameter image to obtain a target PET parameter image.
  • the device further includes:
  • the attenuation correction module is configured to perform attenuation correction on the PET scan data to obtain the PET data before the parametric image reconstruction module uses a preset parametric image reconstruction algorithm to reconstruct the parametric image of the PET data.
  • the parametric image reconstruction algorithm is a direct parametric image reconstruction algorithm based on a kinetic compartment model.
  • the parametric image reconstruction algorithm is an expectation-maximization direct parametric image reconstruction algorithm based on a kinetic compartment model.
  • an embodiment of the present application provides a PET imaging device, including: a memory and a processor, where the memory is used to store a computer program; the processor is used to execute the first aspect or any implementation of the first aspect when the computer program is invoked method described.
  • embodiments of the present application provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the method described in the first aspect or any implementation manner of the first aspect.
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a PET imaging device, causes the PET imaging device to perform the method described in any one of the above-mentioned first aspects.
  • an embodiment of the present application provides a chip system, including a processor, the processor is coupled to a memory, and the processor executes a computer program stored in the memory to implement the first aspect or any of the first aspect.
  • the chip system may be a single chip or a chip module composed of multiple chips.
  • FIG. 1 is a schematic structural diagram of a PET scanning system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a PET imaging method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the principle of the PET imaging method provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a PET imaging device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a PET imaging device provided by an embodiment of the present application.
  • the embodiment of the present application provides a PET imaging technique, which reconstructs a PET parametric image by combining the parametric image reconstruction technique and the guided filtering technique to achieve An image with high signal-to-noise ratio and good detail is obtained.
  • FIG. 1 is a schematic structural diagram of a PET scanning system provided in an embodiment of the present application.
  • the PET scanning system may include: a PET control system.
  • Apparatus 100 PET scanning apparatus 200 and PET imaging apparatus 300 .
  • the PET control device 100 , the PET scanning device 200 and the PET imaging device 300 may be connected in a wired or wireless manner.
  • the PET control apparatus 100 may send control commands to the PET scanning apparatus 200 and the PET imaging apparatus 300 , and may display medical images, store PET scanning data collected by the PET scanning apparatus 200 and images generated by the PET imaging apparatus 300 .
  • the PET scanning device 200 can receive the control instructions sent by the PET control device 100, collect PET scan data through a data acquisition module (including a detector) in the PET scanning device, and can transmit the PET scan data to the PET control device 100 and the PET imaging device 300.
  • the PET scan data may be projection data in a sinogram format, or may be a coincidence event in a list mode (list mode).
  • the PET imaging device 300 can receive the control command sent by the PET control device 100 and the PET scan data sent by the PET scanning device 200 , and can analyze the PET scan data and reconstruct the image, and then transmit the reconstructed image to the PET control device 100 for display. .
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the PET scanning system.
  • the PET scanning system may include more or less components than shown, or some components may be combined, or some components may be split, or different component arrangements, such as the PET control device 100 and PET imaging apparatus 300 may also be combined into one apparatus.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the image reconstruction process of the PET imaging apparatus 300 is described below.
  • FIG. 2 is a schematic flowchart of a PET imaging method provided by an embodiment of the present application
  • FIG. 3 is a schematic schematic diagram of a principle of a PET imaging method provided by an embodiment of the present application. As shown in FIGS. 2 and 3 , the method may include the following steps:
  • the PET scan data may be simulated data or data scanned by a PET scan device. It can be in sinogram format or list format.
  • PET imaging relies on the decay of the positron emission of the radiotracer.
  • the positron emitted by the radiotracer combines with the negative electron in the tissue to produce annihilation radiation in the body, producing two equal energies and opposite directions. of high-energy photon pairs. Pairs of photons are detected as they arrive at detectors in the PET scanning device to form scan data. Before reaching the detector, the photon pair may be absorbed by tissue (such as bone) and attenuate, which can affect the quality of PET imaging.
  • Attenuation correction may be performed on the PET scan data.
  • the attenuation correction process can be expressed by the following formula:
  • y0 represents the PET scan data
  • ai represents the attenuation coefficient
  • y represents the PET data obtained after the PET scan data is subjected to attenuation correction.
  • ai can be obtained by using an empirical value or a certain algorithm.
  • the specific algorithm please refer to the current related algorithm for determining the attenuation coefficient, which is not particularly limited here.
  • the parametric image reconstruction process can be performed.
  • an indirect parametric image reconstruction method or a direct parametric image reconstruction method can be used; among them, the parametric image reconstruction method can use a linear model. (eg Kinetic Compartment Model (Patlak)), non-linear models can also be used.
  • a direct parametric image reconstruction method based on Patlak is adopted to improve the parameter estimation accuracy of the reconstructed parametric image.
  • the image reconstruction algorithm used for parametric image reconstruction may be Filtered Back Projection (FBP), Maximum A Posterior (MAP), Expectation Maximized (EM) algorithm etc., among them, the EM algorithm includes the Maximum Likelihood Expectation Maximized (MLEM) and the Ordered Subset Expectation Maximization (OSEM) and so on.
  • FBP Filtered Back Projection
  • MAP Maximum A Posterior
  • EM Expectation Maximized
  • MLEM Maximum Likelihood Expectation Maximized
  • OSEM Ordered Subset Expectation Maximization
  • EM_Patlak Patlak-based expectation-maximization direct parametric image reconstruction algorithm
  • the EM algorithm is a process of multiple iterations, ⁇ EM represents the parameter image to be determined (ie, the first PET parameter image), n represents the number of iterations, A represents the kinetic parameter matrix, G represents the system matrix, and 1 M represents M order identity matrix, represents the Kronecker product, y represents the PET data, and r represents random and scattering events.
  • the system matrix corresponding to the analog system matrix can be used; in the case that the PET scan data is obtained by scanning the PET scanning device, the system matrix can be calculated according to the geometric structure information of the PET scanning device.
  • the PET data may contain some noise information.
  • some filtering algorithms may be used to filter the PET data, so as to improve the signal-to-noise ratio of the PET data.
  • the PET data roughly obeys the Poisson distribution.
  • a filtering algorithm for filtering out Poisson noise can be used for filtering.
  • the PET data may be converted and then filtered, so as to improve the noise filtering effect.
  • FIG. 4 is a schematic flowchart of noise filtering provided by an embodiment of the present application. As shown in FIG. 4 , the method may include the following steps:
  • the Anscombe transform algorithm can be used to convert the PET data that obeys the Poisson distribution into the PET data that obeys the Gaussian distribution.
  • the calculation formula of the Anscombe algorithm is as follows:
  • f(y) represents the converted PET data
  • the filtering algorithm for filtering out the Poisson noise can be used for filtering.
  • a non-local mean (Non-Local Means, NLM) filtering algorithm or a three-dimensional block matching filtering algorithm (Block-Matching 3D filtering, BM3D) may be used.
  • NLM Non-Local Means
  • BM3D filtering algorithm is a multi-scale, non-local denoising technology with good adaptability. Using this algorithm for Gaussian noise filtering can improve the noise filtering effect.
  • the BM3D filtering algorithm is used as example to illustrate.
  • the inverse transformation algorithm of the Anscombe algorithm can be used to convert the PET data that obeys the Gaussian distribution back to the PET data that obeys the Poisson distribution.
  • the formula corresponding to the inverse transformation algorithm is:
  • BM3D(f(y)) represents the filtered PET data
  • y' represents the target PET data obtained by inverse transformation
  • the same algorithm as the parametric image reconstruction algorithm in step S120 can be used to reconstruct the parametric image of the target PET data obtained after filtering, and the parametric image obtained in this way can obtain a better denoising effect.
  • the specific calculation formula can be as follows:
  • ⁇ TD represents the parameter image to be obtained (ie, the second PET parameter image).
  • the second PET parameter image obtains a better denoising effect at the expense of lacking certain detail information.
  • the two images can be fused, so that the obtained target PET parameter image has better image quality.
  • the nearest neighbor algorithm or other sparse matrix extraction algorithm can be used to extract the sparse matrix of the second PET parameter image, and then the first PET parameter image can be guided filtering based on the sparse matrix to obtain the target PET parameter image.
  • the specific formula As follows:
  • K represents the sparse matrix and ⁇ represents the target PET parameter image.
  • the sparse matrix contains the distance information of the voxels in the guide image (ie ⁇ TD ).
  • the sparse matrix can be normalized first, and then the normalized sparse matrix can be used. Guided filtering is performed on the first PET parameter image.
  • the specific normalization processing method may adopt any current related algorithm, which is not particularly limited here.
  • the PET imaging method while the first PET parameter image is reconstructed based on the PET data, the PET data is subjected to noise filtering to reconstruct the second PET parameter image, and then the sparse matrix of the second PET parameter image is used to The first PET parameter image is subjected to guided filtering to obtain the target PET parameter image.
  • the advantages of the high precision of the first PET parameter image and the high signal-to-noise ratio of the second PET parameter image can be combined, so that the obtained target PET data has higher image quality.
  • an embodiment of the present application provides a PET imaging device, which corresponds to the foregoing method embodiment.
  • this device embodiment does not refer to the foregoing method embodiment.
  • the detailed contents are described one by one, but it should be clear that the apparatus in this embodiment can correspondingly implement all the contents in the foregoing method embodiments.
  • FIG. 5 is a schematic structural diagram of a PET imaging device provided by an embodiment of the present application.
  • the device provided by this embodiment includes: a parametric image reconstruction module 110, a noise filtering module 120, and a guided filtering module 130, wherein:
  • the parametric image reconstruction module 110 is configured to: use a preset parametric image reconstruction algorithm to perform parametric image reconstruction on the PET data to obtain a first PET parametric image;
  • the noise filtering module 120 is used for: performing noise filtering on the PET data to obtain target PET data;
  • the parametric image reconstruction module 110 is further configured to: perform parametric image reconstruction on the target PET data by using a parametric image reconstruction algorithm to obtain a second PET parametric image;
  • the guided filtering module 130 is configured to: determine a sparse matrix of the second PET parameter image, and use the sparse matrix to perform guided filtering on the first PET parameter image to obtain a target PET parameter image.
  • the noise filtering module 120 is specifically configured to:
  • Gaussian noise filtering is performed on the converted PET data
  • the inverse transformation algorithm corresponding to the change algorithm is used to inversely transform the filtered PET data to obtain the target PET data.
  • the transform algorithm is Anscom transform algorithm
  • the algorithm used for Gaussian noise filtering is a three-dimensional block matched filter algorithm.
  • the guided filtering module 130 is specifically configured to:
  • the sparse matrix is normalized, and the normalized sparse matrix is used to conduct guided filtering on the first PET parameter image to obtain the target PET parameter image.
  • the device further includes:
  • the attenuation correction module 140 is configured to perform attenuation correction on the PET scan data to obtain the PET data before the parametric image reconstruction module 110 uses a preset parametric image reconstruction algorithm to reconstruct the parametric image of the PET data.
  • the parametric image reconstruction algorithm is a direct parametric image reconstruction algorithm based on a kinetic compartment model.
  • the parametric image reconstruction algorithm is an expectation-maximization direct parametric image reconstruction algorithm based on a kinetic compartment model.
  • the PET imaging apparatus provided in this embodiment can execute the above method embodiments, and the implementation principle and technical effect thereof are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a PET imaging device provided by an embodiment of the present application.
  • the PET imaging device provided by this embodiment includes: a memory 210 and a processor 220, where the memory 210 is used to store a computer program; the processor 220 The method is used to execute the method described in the above method embodiment when the computer program is invoked.
  • the PET imaging device provided in this embodiment can execute the foregoing method embodiments, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • Embodiments of the present application further provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the method described in the foregoing method embodiment is implemented.
  • the embodiments of the present application further provide a computer program product, when the computer program product runs on the PET imaging device, the PET imaging device executes the method described in the above method embodiments.
  • An embodiment of the present application further provides a chip system, including a processor, where the processor is coupled to a memory, and the processor executes a computer program stored in the memory to implement the method described in the above method embodiments.
  • the chip system may be a single chip or a chip module composed of multiple chips.
  • the above-mentioned integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments can be implemented by a computer program to instruct the relevant hardware.
  • the computer program can be stored in a computer-readable storage medium, and the computer program When executed by the processor, the steps of the above-mentioned various method embodiments may be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable storage medium may include at least: any entity or device capable of carrying the computer program code to the photographing device/terminal device, recording medium, computer memory, read-only memory (Read-Only Memory, ROM), random access Memory (Random Access Memory, RAM), electrical carrier signal, telecommunication signal and software distribution medium.
  • computer readable media may not be electrical carrier signals and telecommunications signals.
  • the disclosed apparatus/device and method may be implemented in other manners.
  • the apparatus/device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrases “if it is determined” or “if the [described condition or event] is detected” may be interpreted, depending on the context, to mean “once it is determined” or “in response to the determination” or “once the [described condition or event] is detected. ]” or “in response to detection of the [described condition or event]”.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种PET成像方法、装置与设备(300),涉及PET成像技术领域,其中,方法包括:采用预设的参数图像重建算法对PET数据进行参数图像重建,得到第一PET参数图像(S120);对PET数据进行噪声滤波,得到目标PET数据(S130);采用参数图像重建算法对目标PET数据进行参数图像重建,得到第二PET参数图像(S140);确定第二PET参数图像的稀疏矩阵,并采用稀疏矩阵对第一PET参数图像进行引导滤波,得到目标PET参数图像(S150)。可以降低成像噪声,提高PET成像质量。

Description

PET成像方法、装置与设备 技术领域
本申请涉及正电子发射断层显像(Positron Emission Tomography,PET)成像技术领域,尤其涉及一种PET成像方法、装置与设备。
背景技术
PET是一种发射型成像技术是核医学领域比较先进的临床检查影像技术,该技术已被广泛应用于医学领域的疾病诊断、临床检查和治疗效果评价等方面。
PET技术是通过向病人体内注射携带放射性示踪剂的药物,然后测量病人体内放射性示踪剂的分布来进行成像的。PET成像包括静态PET成像和动态PET成像,其中,动态PET成像可以提供连续时间点上的示踪剂分布图。为了对病人的病变部位、病变程度等有更加精准明确的判断,PET成像逐渐从静态向动态转变。
然而长时间的信号采集不可避免的会提高噪声;另外,大剂量放射性药物会对人体造成不可逆的伤害。因此,在采集时间和注射药物剂量的制约下,动态PET重建的图像信噪比低。而过高的噪声会使图像无法显示病人的真实病情,使得医疗诊断的难度增大,精度降低。因此,降低成像噪声,提高成像质量,在科研和临床诊断中有着重要的意义。
发明内容
有鉴于此,本申请实施例提供一种PET成像方法、装置与设备,用于降低成像噪声,提高PET成像质量。
为了实现上述目的,第一方面,本申请实施例提供一种PET成像方法,包括:
采用预设的参数图像重建算法对PET数据进行参数图像重建,得到第一PET参数图像;
对所述PET数据进行噪声滤波,得到目标PET数据;
采用所述参数图像重建算法对所述目标PET数据进行参数图像重建,得到第二PET参数图像;
确定所述第二PET参数图像的稀疏矩阵,并采用所述稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像。
本申请实施例提供的PET成像方法,在基于PET数据重建出第一PET参数图像的同时,对该PET数据进行噪声滤波后重建出第二PET参数图像,然后采用第二PET参数图像的稀疏矩阵对第一PET参数图像进行引导滤波,得到目标PET参数图像。这样可以结合第一PET参数图像精度高的优点和第二PET参数图像信噪比高的优点,使得到的目标PET数据具有较高的图像质量。
在第一方面的一种可能的实施方式中,所述对所述PET数据进行噪声滤波,得到目标PET数据,包括:
采用预设的变换算法将所述PET数据转换为服从高斯分布的PET数据;
对转换后的PET数据进行高斯噪声滤波;
采用所述变化算法对应的逆变换算法,对滤波后的PET数据进行逆变换,得到所述目标PET数据。
上述实施方式中,通过将PET数据转换为服从高斯分布的PET数据后再滤波,可以利用高斯噪声易滤除的优势,提高噪声滤波效果。
在第一方面的一种可能的实施方式中,所述变换算法为安斯科姆变换算法,进行所述高斯噪声滤波采用的算法为三维块匹配滤波算法。
上述实施方式中,通过采用安斯科姆变换算法进行PET数据的转换,可以获得较好的转换效果;另外,通过采用三维块匹配滤波算法进行高斯噪声滤波,可以提高噪声滤波效果。
在第一方面的一种可能的实施方式中,所述采用所述稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像,包括:
对所述稀疏矩阵进行归一化处理,采用归一化处理后的稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像。
上述实施方式中,通过先对稀疏矩阵进行归一化处理后,再采用归一化处理后的稀疏矩阵对第一PET参数图像进行引导滤波,可以提高建立的参数图像的图像精度。
在第一方面的一种可能的实施方式中,在所述采用预设的参数图像重建算法对PET数据进行参数图像重建之前,所述方法还包括:对PET扫描数据 进行衰减校正,得到所述PET数据。
通过对PET扫描数据进行衰减校正,可以提高PET成像质量。
在第一方面的一种可能的实施方式中,所述参数图像重建算法为基于动力学房室模型(Patlak)的直接参数图像重建算法。
通过采用基于Patlak的直接参数图像重建算法进行参数图像重建,可以提高重建的参数图像的参数估计准确度。
在第一方面的一种可能的实施方式中,所述参数图像重建算法为基于动力学房室模型的期望最大化直接参数图像重建算法。
通过采用基于Patlak的期望最大化直接参数图像重建算法进行参数图像重建,可以提高重建的参数图像的图像精度和参数估计准确度。
第二方面,本申请实施例提供一种PET成像装置,包括:参数图像重建模块、噪声滤波模块和引导滤波模块,其中:
所述参数图像重建模块用于:采用预设的参数图像重建算法对PET数据进行参数图像重建,得到第一PET参数图像;
所述噪声滤波模块用于:对所述PET数据进行噪声滤波,得到目标PET数据;
所述参数图像重建模块还用于:采用所述参数图像重建算法对所述目标PET数据进行参数图像重建,得到第二PET参数图像;
所述引导滤波模块用于:确定所述第二PET参数图像的稀疏矩阵,并采用所述稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像。
在第二方面的一种可能的实施方式中,所述噪声滤波模块具体用于:
采用预设的变换算法将所述PET数据转换为服从高斯分布的PET数据;
对转换后的PET数据进行高斯噪声滤波;
采用所述变化算法对应的逆变换算法,对滤波后的PET数据进行逆变换,得到所述目标PET数据。
在第二方面的一种可能的实施方式中,所述变换算法为安斯科姆变换算法,进行所述高斯噪声滤波采用的算法为三维块匹配滤波算法。
在第二方面的一种可能的实施方式中,所述引导滤波模块具体用于:
对所述稀疏矩阵进行归一化处理,采用归一化处理后的稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像。
在第二方面的一种可能的实施方式中,所述装置还包括:
衰减校正模块,用于在所述参数图像重建模块采用预设的参数图像重建算法对PET数据进行参数图像重建之前,对PET扫描数据进行衰减校正,得到所述PET数据。
在第二方面的一种可能的实施方式中,所述参数图像重建算法为基于动力学房室模型的直接参数图像重建算法。
在第二方面的一种可能的实施方式中,所述参数图像重建算法为基于动力学房室模型的期望最大化直接参数图像重建算法。
第三方面,本申请实施例提供一种PET成像设备,包括:存储器和处理器,存储器用于存储计算机程序;处理器用于在调用计算机程序时执行上述第一方面或第一方面的任一实施方式所述的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述第一方面或第一方面的任一实施方式所述的方法。
第五方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在PET成像设备上运行时,使得PET成像设备执行上述第一方面中任一项所述的方法。
第六方面,本申请实施例提供一种芯片系统,包括处理器,所述处理器与存储器耦合,所述处理器执行存储器中存储的计算机程序,以实现上述第一方面或第一方面的任一实施方式所述的方法。其中,所述芯片系统可以为单个芯片,或者多个芯片组成的芯片模组。
可以理解的是,上述第二方面至第六方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
图1为本申请实施例提供的PET扫描系统的结构示意图;
图2为本申请实施例提供的PET成像方法的流程示意图;
图3为本申请实施例提供的PET成像方法的原理示意图;
图4为本申请实施例提供的噪声滤波的流程示意图;
图5为本申请实施例提供的PET成像装置的结构示意图;
图6为本申请实施例提供的PET成像设备的结构示意图。
具体实施方式
针对目前的动态PET成像方法重建的图像质量不高,且信噪比低的技术问题,本申请实施例提供一种PET成像技术,通过结合参数图像重建技术和引导滤波技术重建PET参数图像,来得到信噪比高且细节性好的图像。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本申请实施例中所述的PET扫描技术可以应用于PET扫描系统中,图1为本申请实施例提供的PET扫描系统的结构示意图,如图1所示,该PET扫描系统可以包括:PET控制设备100、PET扫描设备200和PET成像设备300。
其中,PET控制设备100、PET扫描设备200和PET成像设备300之间可以通过有线或无线方式连接。
PET控制设备100可以向PET扫描设备200和PET成像设备300发送控制命令,并可以显示医学图像、存储PET扫描设备200采集的PET扫描数据和PET成像设备300生成的图像。
PET扫描设备200可以接收PET控制设备100发送的控制指令,通过PET扫描设备中的数据采集模块(包括探测器)采集PET扫描数据,并可以将PET扫描数据传输至PET控制设备100和PET成像设备300。其中,PET扫描数据可以是正弦图格式(sinogram)的投影数据,也可以是列表格式(list mode)的符合事件。
PET成像设备300可以接收PET控制设备100发送的控制命令和PET扫描设备200发送的PET扫描数据,并可以对PET扫描数据进行解析以及图像重建,然后将重建的图像传输至PET控制设备100进行显示。
可以理解的是,本申请实施例示意的结构并不构成对PET扫描系统的具体限定。在本申请另一些实施例中,PET扫描系统可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置,例如:PET控制设备100和PET成像设备300也可以合并为一个设备。图示的部件可以以硬件、软件或软件和硬件的组合实现。
另外,本申请实施例还可以应用到其他场景中,本实施例对此不做特别限制。
下面介绍PET成像设备300的图像重建过程。
图2为本申请实施例提供的PET成像方法的流程示意图,图3为本申请实施例提供的PET成像方法的原理示意图,如图2和图3所示,该方法可以包括如下步骤:
S110、对PET扫描数据进行衰减校正,得到PET数据。
具体的,PET扫描数据可以是模拟的数据,也可以是PET扫描设备扫描的数据。其可以是正弦图格式,也可以是列表格式。
PET成像依赖于放射性示踪剂的正电子发射衰变,在PET扫描过程中,放射性示踪剂发射出的正电子在体内与组织中的负电子结合发生湮灭辐射,产生两个能量相等、方向相反的高能量光子对。光子对在到达PET扫描设备中的探测器时被检测到而形成扫描数据。而光子对在到达探测器之前,可能被组织(如骨头)吸收而发生衰减,这会影响PET成像质量。
为了提高PET成像质量,本实施例中,可以对PET扫描数据进行衰减校正。其中,衰减校正过程可以采用如下公式表示:
y=ai*y0
其中,y0表示PET扫描数据,ai表示衰减系数,y表示PET扫描数据经过衰减校正后得到的PET数据。ai可以采用经验值,也可以采用一定的算法得出,具体的算法可以参见目前的确定衰减系数的相关算法,此处不做特别限定。
可以理解的是,上述衰减校正方法只是一种示例,在具体实现时,可以采用目前的各种衰减校正方法对PET扫描数据进行衰减校正,本实施例对此不做特别限定。
S120、采用预设的参数图像重建算法对PET数据进行参数图像重建,得到第一PET参数图像。
对PET扫描数据进行衰减校正后,可以进行参数图像重建过程,在进行参数图像重建时,可以采用间接参数图像重建方法,也可以采用直接参数图像重建方法;其中,参数图像重建方法可以采用线性模型(例如动力学房室模型(Patlak)),也可以采用非线性模型。在本申请的一个实施例中,采用基于Patlak的直接参数图像重建方法,以提高重建的参数图像的参数估计准 确度。
具体的,进行参数图像重建采用的图像重建算法,可以是滤波反投影法(Filtered Back Projection,FBP)、最大后验概率算法(Maximum A Posterior,MAP)、期望最大化(Expectation Maximized,EM)算法等,其中,EM算法包括最大似然期望最大算法(Maximum Likelihood Expectation Maximized,MLEM)和有序子集期望值最大算法(Ordered Subset Expectation Maximization,OSEM)等。在本申请的一个实施例中,采用基于Patlak的期望最大化直接参数图像重建算法(EM_Patlak),以提高重建的参数图像的图像精度。该算法的实现公式如下:
Figure PCTCN2020133878-appb-000001
其中,EM算法是一个多次迭代的过程,θ EM表示待求的参数图像(即第一PET参数图像),n表示迭代次数,A表示动力学参数矩阵,G表示系统矩阵,1 M表示M阶单位矩阵,
Figure PCTCN2020133878-appb-000002
表示克罗内克(Kronecker)积,y表示PET数据,r表示随机和散射事件。
在PET扫描数据为模拟数据的情况下,系统矩阵对应可以采用模拟的系统矩阵;在PET扫描数据为PET扫描设备扫描获得的情况下,系统矩阵可以根据PET扫描设备的几何结构信息计算得到。
S130、对PET数据进行噪声滤波,得到目标PET数据。
PET数据中会含有一些噪声信息,本实施例中,可以采用一些滤波算法对PET数据进行滤波,以提高PET数据的信噪比。
具体的,PET数据大致服从泊松分布,在进行噪声滤波时,可以采用用于滤除泊松噪声的滤波算法进行滤波。
考虑到泊松噪声较难滤除,本实施例中,可以对PET数据进行转换后再滤波,以提高噪声滤波效果。具体实现方法可以参见图4,图4为本申请实施例提供的噪声滤波的流程示意图,如图4所示,该方法可以包括如下步骤:
S131、采用预设的变换算法将PET数据转换为服从高斯分布的PET数据。
具体的,可以采用安斯科姆(Anscombe)变换算法将服从泊松分布的PET数据转换为服从高斯分布的PET数据,Anscombe算法的计算公式如下所示:
Figure PCTCN2020133878-appb-000003
其中,f(y)表示转换后的PET数据。
S132、对转换后的PET数据进行高斯噪声滤波。
在得到服从高斯分布的PET数据后,就可以采用用于滤除泊松噪声的滤波算法进行滤波。
具体的,可以采用非局部均值(Non-Local Means,NLM)滤波算法或三维块匹配滤波算法(Block-Matching 3D filtering,BM3D)。其中,BM3D滤波算法是一种多尺度、非局部的去噪技术,具有良好的自适应性,采用该算法进行高斯噪声滤波,可以提升噪声滤波效果,本申请实施例即以采用BM3D滤波算法为例进行示例性说明。
S133、采用变化算法对应的逆变换算法,对滤波后的PET数据进行逆变换,得到目标PET数据。
在对服从高斯分布的PET数据进行噪声滤波后,可以采用Anscombe算法的逆变换算法,将服从高斯分布的PET数据再转换回服从泊松分布的PET数据。逆变换算法对应的公式即为:
Figure PCTCN2020133878-appb-000004
其中,BM3D(f(y))表示滤波后的PET数据,y′表示经过逆变换得到的目标PET数据。
S140、采用上述参数图像重建算法对目标PET数据进行参数图像重建,得到第二PET参数图像。
对PET数据进行噪声滤波后,可以采用与步骤S120中的参数图像重建算法相同的算法对滤波后得到的目标PET数据进行参数图像重建,这样得到的参数图像可以获得较好的去噪效果。具体的计算公式可以如下所示:
Figure PCTCN2020133878-appb-000005
其中,θ TD表示待求的参数图像(即第二PET参数图像)。
S150、确定第二PET参数图像的稀疏矩阵,并采用稀疏矩阵对第一PET参数图像进行引导滤波,得到目标PET参数图像。
上述第一PET参数图像虽然噪声较大,但是具有较佳的细节信息;第二PET参数图像以缺失一定的细节信息为代价,获得了更好的去噪效果。本实施例中,可以通过将这两个图像进行融合,以使得到的目标PET参数图像具 有较佳的图像质量。
具体的,可以先采用最近邻算法或者其他稀疏矩阵提取算法提取第二PET参数图像的稀疏矩阵,然后可以基于该稀疏矩阵对第一PET参数图像进行引导滤波,得到目标PET参数图像,具体的公式如下所示:
θ=K*θ EM
其中,K表示稀疏矩阵,θ表示目标PET参数图像。
稀疏矩阵中包含了引导图像(即θ TD)中体素的距离信息,为了提高建立的参数图像的图像精度,可以先对稀疏矩阵进行归一化处理,然后采用归一化处理后的稀疏矩阵对第一PET参数图像进行引导滤波。
具体的归一化处理方法可以采用目前的任意一种相关算法,此处不做特别限定。
本领域技术人员可以理解,以上实施例是示例性的,并非用于限定本申请。在可能的情况下,以上步骤中的一个或者几个步骤的执行顺序可以进行调整,也可以进行选择性组合,得到一个或多个其他实施例。本领域技术人员可以根据需要从上述步骤中任意进行选择组合,凡是未脱离本申请方案实质的,都落入本申请的保护范围。
本实施例提供的PET成像方法,在基于PET数据重建出第一PET参数图像的同时,对该PET数据进行噪声滤波后重建出第二PET参数图像,然后采用第二PET参数图像的稀疏矩阵对第一PET参数图像进行引导滤波,得到目标PET参数图像。这样可以结合第一PET参数图像精度高的优点和第二PET参数图像信噪比高的优点,使得到的目标PET数据具有较高的图像质量。
基于同一发明构思,作为对上述方法的实现,本申请实施例提供了一种PET成像装置,该装置实施例与前述方法实施例对应,为便于阅读,本装置实施例不再对前述方法实施例中的细节内容进行逐一赘述,但应当明确,本实施例中的装置能够对应实现前述方法实施例中的全部内容。
图5为本申请实施例提供的PET成像装置的结构示意图,如图5所示,本实施例提供的装置包括:参数图像重建模块110、噪声滤波模块120和引导滤波模块130,其中:
参数图像重建模块110用于:采用预设的参数图像重建算法对PET数据进行参数图像重建,得到第一PET参数图像;
噪声滤波模块120用于:对PET数据进行噪声滤波,得到目标PET数据;
参数图像重建模块110还用于:采用参数图像重建算法对目标PET数据进行参数图像重建,得到第二PET参数图像;
引导滤波模块130用于:确定第二PET参数图像的稀疏矩阵,并采用稀疏矩阵对第一PET参数图像进行引导滤波,得到目标PET参数图像。
作为本申请实施例一种可选的实施方式,噪声滤波模块120具体用于:
采用预设的变换算法将PET数据转换为服从高斯分布的PET数据;
对转换后的PET数据进行高斯噪声滤波;
采用变化算法对应的逆变换算法,对滤波后的PET数据进行逆变换,得到目标PET数据。
作为本申请实施例一种可选的实施方式,变换算法为安斯科姆变换算法,进行高斯噪声滤波采用的算法为三维块匹配滤波算法。
作为本申请实施例一种可选的实施方式,引导滤波模块130具体用于:
对稀疏矩阵进行归一化处理,采用归一化处理后的稀疏矩阵对第一PET参数图像进行引导滤波,得到目标PET参数图像。
作为本申请实施例一种可选的实施方式,该装置还包括:
衰减校正模块140,用于在参数图像重建模块110采用预设的参数图像重建算法对PET数据进行参数图像重建之前,对PET扫描数据进行衰减校正,得到PET数据。
作为本申请实施例一种可选的实施方式,参数图像重建算法为基于动力学房室模型的直接参数图像重建算法。
作为本申请实施例一种可选的实施方式,参数图像重建算法为基于动力学房室模型的期望最大化直接参数图像重建算法。
本实施例提供的PET成像装置可以执行上述方法实施例,其实现原理与技术效果类似,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外, 各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
基于同一发明构思,本申请实施例还提供了一种PET成像设备。图6为本申请实施例提供的PET成像设备的结构示意图,如图6所示,本实施例提供的PET成像设备包括:存储器210和处理器220,存储器210用于存储计算机程序;处理器220用于在调用计算机程序时执行上述方法实施例所述的方法。
本实施例提供的PET成像设备可以执行上述方法实施例,其实现原理与技术效果类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述方法实施例所述的方法。
本申请实施例还提供一种计算机程序产品,当计算机程序产品在PET成像设备上运行时,使得PET成像设备执行时实现上述方法实施例所述的方法。
本申请实施例还提供一种芯片系统,包括处理器,所述处理器与存储器耦合,所述处理器执行存储器中存储的计算机程序,以实现上述方法实施例所述的方法。其中,所述芯片系统可以为单个芯片,或者多个芯片组成的芯片模组。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、 “在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种正电子发射断层显像PET成像方法,其特征在于,包括:
    采用预设的参数图像重建算法对PET数据进行参数图像重建,得到第一PET参数图像;
    对所述PET数据进行噪声滤波,得到目标PET数据;
    采用所述参数图像重建算法对所述目标PET数据进行参数图像重建,得到第二PET参数图像;
    确定所述第二PET参数图像的稀疏矩阵,并采用所述稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述PET数据进行噪声滤波,得到目标PET数据,包括:
    采用预设的变换算法将所述PET数据转换为服从高斯分布的PET数据;
    对转换后的PET数据进行高斯噪声滤波;
    采用所述变化算法对应的逆变换算法,对滤波后的PET数据进行逆变换,得到所述目标PET数据。
  3. 根据权利要求2所述的方法,其特征在于,所述变换算法为安斯科姆变换算法,进行所述高斯噪声滤波采用的算法为三维块匹配滤波算法。
  4. 根据权利要求1所述的方法,其特征在于,所述采用所述稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像,包括:
    对所述稀疏矩阵进行归一化处理,采用归一化处理后的稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像。
  5. 根据权利要求1所述的方法,其特征在于,在所述采用预设的参数图像重建算法对PET数据进行参数图像重建之前,所述方法还包括:
    对PET扫描数据进行衰减校正,得到所述PET数据。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述参数图像重建算法为基于动力学房室模型的直接参数图像重建算法。
  7. 根据权利要求6所述的方法,其特征在于,所述参数图像重建算法为基于动力学房室模型的期望最大化直接参数图像重建算法。
  8. 一种正电子发射断层显像PET成像装置,其特征在于,包括:参数图像重建模块、噪声滤波模块和引导滤波模块,其中:
    所述参数图像重建模块用于:采用预设的参数图像重建算法对PET数据进行参数图像重建,得到第一PET参数图像;
    所述噪声滤波模块用于:对所述PET数据进行噪声滤波,得到目标PET数据;
    所述参数图像重建模块还用于:采用所述参数图像重建算法对所述目标PET数据进行参数图像重建,得到第二PET参数图像;
    所述引导滤波模块用于:确定所述第二PET参数图像的稀疏矩阵,并采用所述稀疏矩阵对所述第一PET参数图像进行引导滤波,得到目标PET参数图像。
  9. 一种正电子发射断层显像PET成像设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序;所述处理器用于在调用所述计算机程序时执行如权利要求1-7任一项所述的方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-7任一项所述的方法。
PCT/CN2020/133878 2020-12-04 2020-12-04 Pet成像方法、装置与设备 WO2022116143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133878 WO2022116143A1 (zh) 2020-12-04 2020-12-04 Pet成像方法、装置与设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133878 WO2022116143A1 (zh) 2020-12-04 2020-12-04 Pet成像方法、装置与设备

Publications (1)

Publication Number Publication Date
WO2022116143A1 true WO2022116143A1 (zh) 2022-06-09

Family

ID=81852884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133878 WO2022116143A1 (zh) 2020-12-04 2020-12-04 Pet成像方法、装置与设备

Country Status (1)

Country Link
WO (1) WO2022116143A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150287223A1 (en) * 2014-04-04 2015-10-08 The Board Of Trustees Of The University Of Illinois Highly accelerated imaging and image reconstruction using adaptive sparsifying transforms
CN107845120A (zh) * 2017-09-27 2018-03-27 深圳先进技术研究院 Pet图像重建方法、系统、终端和可读存储介质
CN109712209A (zh) * 2018-12-14 2019-05-03 深圳先进技术研究院 Pet图像的重建方法、计算机存储介质、计算机设备
CN111709897A (zh) * 2020-06-18 2020-09-25 深圳先进技术研究院 一种基于域变换的正电子发射断层图像的重建方法
CN111882499A (zh) * 2020-07-15 2020-11-03 上海联影医疗科技有限公司 Pet图像的降噪方法、装置以及计算机设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150287223A1 (en) * 2014-04-04 2015-10-08 The Board Of Trustees Of The University Of Illinois Highly accelerated imaging and image reconstruction using adaptive sparsifying transforms
CN107845120A (zh) * 2017-09-27 2018-03-27 深圳先进技术研究院 Pet图像重建方法、系统、终端和可读存储介质
CN109712209A (zh) * 2018-12-14 2019-05-03 深圳先进技术研究院 Pet图像的重建方法、计算机存储介质、计算机设备
CN111709897A (zh) * 2020-06-18 2020-09-25 深圳先进技术研究院 一种基于域变换的正电子发射断层图像的重建方法
CN111882499A (zh) * 2020-07-15 2020-11-03 上海联影医疗科技有限公司 Pet图像的降噪方法、装置以及计算机设备

Similar Documents

Publication Publication Date Title
JP3373720B2 (ja) X線断層撮影装置
CN107123095B (zh) 一种pet图像重建方法、成像系统
US8457380B2 (en) PET local tomography
TWI535422B (zh) 動態單光子放射電腦斷層攝影或是單光子放射電腦斷層攝影/電腦斷層攝影成像之心肌血流量化系統及方法
US20190073802A1 (en) System and computer-implemented method for improving image quality
Farquhar et al. ROC and localization ROC analyses of lesion detection in whole-body FDG PET: effects of acquisition mode, attenuation correction and reconstruction algorithm
CN109215093B (zh) 低剂量pet图像重建方法、装置、设备及存储介质
CN110415311B (zh) Pet图像重建方法、系统、可读存储介质和设备
US8488850B2 (en) Isotropic resolution image reconstruction
WO2023142781A1 (zh) 图像三维重建方法、装置、电子设备及存储介质
WO1997036189A1 (en) Medical image reconstruction only within body boundary
Ma et al. An encoder-decoder network for direct image reconstruction on sinograms of a long axial field of view PET
CN111445550B (zh) Pet图像的迭代重建方法、装置和计算机可读存储介质
CN110136076A (zh) 医学扫描成像方法、装置、存储介质及计算机设备
WO2022120692A1 (zh) Pet图像的重建方法及重建终端、计算机可读存储介质
US7242004B2 (en) Image correction method, image correction apparatus, and image correction program
US11164344B2 (en) PET image reconstruction using TOF data and neural network
US20230386036A1 (en) Methods and systems for medical imaging
WO2022116143A1 (zh) Pet成像方法、装置与设备
CN112652029A (zh) Pet成像方法、装置与设备
EP4148680A1 (en) Attenuation correction-based weighting for tomographic inconsistency detection
WO2012066443A1 (en) Fast computation of the sensitivity matrix in iterative algorithms
JP2007248121A (ja) 断層画像の輪郭抽出方法、プログラム、および装置
Caldeira et al. Maximum a Posteriori Reconstruction using PRESTO and PET/MR data acquired Simultaneously with the 3TMR-BrainPET
CN114730476A (zh) 有限角度重建的网络确定

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963989

Country of ref document: EP

Kind code of ref document: A1