WO2022114714A1 - Hybrid composite comprising metal-organic framework (mof) and two-dimensional sheet - Google Patents

Hybrid composite comprising metal-organic framework (mof) and two-dimensional sheet Download PDF

Info

Publication number
WO2022114714A1
WO2022114714A1 PCT/KR2021/017228 KR2021017228W WO2022114714A1 WO 2022114714 A1 WO2022114714 A1 WO 2022114714A1 KR 2021017228 W KR2021017228 W KR 2021017228W WO 2022114714 A1 WO2022114714 A1 WO 2022114714A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
carbide
oxide
formula
group
Prior art date
Application number
PCT/KR2021/017228
Other languages
French (fr)
Korean (ko)
Inventor
김태우
김현욱
유정준
변세기
한성옥
이학주
Original Assignee
재단법인 파동에너지 극한제어 연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 파동에너지 극한제어 연구단 filed Critical 재단법인 파동에너지 극한제어 연구단
Publication of WO2022114714A1 publication Critical patent/WO2022114714A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/04Nickel compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a hybrid composite including a metal-organic framework (MOF) and a two-dimensional sheet, wherein the two-dimensional sheet includes a metal oxide sheet or a metal carbide sheet.
  • MOF metal-organic framework
  • MOFs Metal-Organic Frameworks
  • Numerous studies on the synthesis of MOFs have been conducted over the past few decades due to the abundance of different types of building blocks.
  • the basic synthesis protocol of the MOF is by self-assembly of building blocks such as metal nodes and organic interconnects, and has a relatively simple synthesis method.
  • MOF metal-organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic ligand-containing organic a gas storage material because of its very wide specific surface area.
  • the combinations of metal precursors and organic ligands included in MOF are very diverse, thousands of crystal structures are registered in the database, and various functional groups can also be included, so it is spotlighted as a promising material in various industries. have.
  • electrochemicals due to the low conductivity of the MOF itself, its utility is falling, and research for synthesizing the MOF having conductivity is being actively conducted.
  • a super capacitor is a capacitor with a very large capacitance, and is called an ultra capacitor or an ultra-high-capacitance capacitor in Korean. In scientific terms, it is called an electrochemical capacitor to distinguish it from the conventional electrostatic or electrolytic capacitors. Unlike a battery that uses a chemical reaction, a supercapacitor uses a simple movement of ions to the electrode and electrolyte interface or a charging phenomenon by a surface chemical reaction. Accordingly, it is receiving attention as a next-generation energy storage device that can be used as a substitute for an auxiliary battery or battery due to its rapid charge/discharge capability, high charge/discharge efficiency, and semi-permanent cycle life characteristics.
  • Supercapacitors have been commercialized since the 1980s and have a relatively short history of development, but their development is due to the development of hybrid-type product design technology that uses asymmetric electrodes and new electrode materials such as metal oxides and conductive polymers, including activated carbon, which have been traditionally used. The speed is very fast. Some of the recently announced products have energy density that exceeds that of Ni-MH batteries.
  • Supercapacitors a next-generation energy storage device, can quickly store and take out large-capacity electricity, have 100 times higher output than secondary batteries, and can be used semi-permanently, so there are various application fields such as mobile phones, digital camera flashes, and hybrid vehicles. do.
  • supercapacitors are important as renewable energy storage devices such as solar power, wind power, and hydrogen fuel cells, which are eco-friendly, clean alternative energy that does not emit carbon dioxide by replacing petroleum.
  • the carbon-based electrode material mainly stores energy in the electric double layer, so it has a relatively high output characteristic, but has a disadvantage in that the energy storage amount is low.
  • the advantage of showing high storage capacity it has many problems such as the disadvantage of being difficult to use in mass production because the material is expensive. Therefore, in order to improve the energy density and power density of the supercapacitor, it is urgent to develop an electrode having high porosity and electrical conductivity, which is inexpensive and has high electrical conductivity.
  • the present inventors prepared a hybrid composite in which a plurality of metal-organic frameworks (MOFs) and a plurality of two-dimensional metal oxide or metal carbide sheets were randomly mixed while studying to solve the above problems, When applied as an electrode of a supercapacitor or a secondary battery, it was confirmed that the performance of a supercapacitor or a secondary battery can be improved due to the characteristic high porosity and electrical conductivity characteristics of the hybrid composite, thereby completing the present invention.
  • MOFs metal-organic frameworks
  • the hybrid complex is applied in various fields, such as a catalyst for water purification, an anticancer agent, an immunodeficiency virus treatment, a treatment for fungal and bacterial infections, a treatment for malaria, various drug delivery materials, photocatalysts, sensors, and aerospace materials, in addition to supercapacitors or secondary batteries. As this is possible, it can be used as a commercially very useful material.
  • Korean Patent Laid-Open No. 10-2019-0013629 discloses an antibacterial agent containing MOF and an antibacterial filter containing the same.
  • the present invention has been devised to solve the above problems, and an embodiment of the present invention provides a hybrid composite including a plurality of metal-organic frameworks (MOFs) and a plurality of two-dimensional metal oxide or metal carbide sheets.
  • MOFs metal-organic frameworks
  • another embodiment of the present invention provides an electrode active material including the hybrid composite.
  • one aspect of the present invention is,
  • MOFs metal-organic frameworks
  • two-dimensional nanosheets a two-dimensional nanosheet selected from the group consisting of a metal oxide sheet, a metal carbide sheet, and a metal hydroxide sheet, wherein the metal-organic framework has a three-dimensional shape, and the plurality of It provides a hybrid composite, characterized in that the two-dimensional nanosheet is laminated on the surface of the metal-organic framework.
  • the metal-organic framework may include a structure of Formula 1 below.
  • M is a metal
  • L is an organic ligand and includes any one of the structures of Chemical Formulas 2 to 4 below.
  • X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH), or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are same or different from each other
  • X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH) or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are They are the same as or different from each other, and n is an integer from 0 to 5.
  • X1 to X6 are each independently an amine group (NH2), a carboxy group (COOH), or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X5 and X6 are are identical to each other, X1, X3 and X5 are the same as or different from each other, and Y1 to Y6 are each independently carbon or nitrogen.
  • M is Ni, Cu, Fe, Sc, Ti, V, Cr, Mn, Co, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re , Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Uub, and may be one containing a metal selected from the group consisting of combinations thereof.
  • the metal oxide sheet is manganese oxide, cobalt oxide, rubidium oxide, titanium oxide, vanadium oxide, iron oxide, nickel oxide ( nickel oxide, copper oxide, zinc oxide, zirconium dioxide, molybdenum oxide, tantalum oxide and a metal oxide selected from the group consisting of combinations thereof.
  • the metal carbide sheet is titanium carbide, aluminum carbide, chromium carbide, zinc carbide, copper carbide, magnesium carbide, zirconium carbide ( zirconium carbide, molybdenum carbide, vanadium carbide, niobium carbide, iron carbide, manganese carbide, cobalt carbide, nickel carbide (nickel carbide), tantalum carbide (tantalum carbide), and may include a metal carbide selected from the group consisting of combinations thereof.
  • the metal hydroxide sheet may be a peeled metal double layer hydroxide (LDH) nanosheet, and the peeled metal double layer hydroxide nanosheet may be a compound represented by the following [Formula 5]:
  • M II is selected from the group consisting of Ca 2+ , Mg 2+ , Zn 2+ , Ni 2+ , Mn 2+ , Co 2+ , Fe 2+ , Cu 2+ and mixed metals thereof
  • M III is selected from the group consisting of Fe 3+ , Al 3+ , Cr 3+ , Mn 3+ , Ga 3+ , Co 3+ , Ni 3+ and mixed metals thereof
  • a n- is a hydroxide ion ( OH - ), nitrate ions (NO 3 - ), PO 4 3- , HPO 4 2- , H 2 PO 4 - and combinations thereof, 0 ⁇ x ⁇ 1, and z is 0.1 to 15 may be a mistake in
  • the metal-organic framework and the two-dimensional nanosheet each include a plurality of nanopores, and the size of the nanopores may be 0.5 nm to 20 nm.
  • the content of the two-dimensional nanosheet relative to 100 parts by weight of the metal-organic framework may be 10 parts by weight to 300 parts by weight.
  • the porosity of the hybrid composite may be 30 vol% to 70 vol%.
  • the electrical conductivity of the hybrid composite may be 0.01 S ⁇ cm ⁇ 1 or more.
  • Another aspect of the present invention provides a catalyst including the hybrid complex.
  • Another aspect of the present invention provides an electrode for a device including the hybrid composite.
  • the hybrid composite includes both the characteristic porosity of the metal-organic framework (MOF) and the characteristic porosity of the metal oxide sheet or metal carbide sheet, and the metal-organic framework (MOF) and the metal oxide or metal carbide sheet may have very high porosity because they also include three-dimensional pores that are randomly mixed. Therefore, since the hybrid composite has high porosity and excellent electrical conductivity, when it is used in electrodes such as supercapacitors or secondary batteries, energy density and output characteristics of the device can be improved.
  • MOF metal-organic framework
  • the metal oxide or metal carbide sheet may have very high porosity because they also include three-dimensional pores that are randomly mixed. Therefore, since the hybrid composite has high porosity and excellent electrical conductivity, when it is used in electrodes such as supercapacitors or secondary batteries, energy density and output characteristics of the device can be improved.
  • the hybrid composite is relatively easy to manufacture, it can be mass-produced and thus can be highly useful industrially.
  • FIG. 1 is a schematic diagram showing a manufacturing process of a hybrid composite according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a metal-organic framework (MOF) according to an embodiment of the present invention.
  • MOF metal-organic framework
  • FIG 3 shows an SEM image of a metal-organic framework (MOF) according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a manufacturing process of a metal oxide sheet according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a manufacturing process of a metal carbide sheet according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a manufacturing process of a metal hydroxide sheet according to an embodiment of the present invention.
  • FIG. 7A is a photograph showing a solution including a metal oxide sheet prepared according to an embodiment of the present invention
  • FIG. 7B is a TEM image of a metal oxide nanosheet prepared according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram (FIG. 8a) showing a two-dimensional Mxene structure according to an embodiment of the present invention and XRD data (FIG. 8b) of a metal carbide sheet manufactured according to an embodiment of the present invention, an embodiment of the present invention TEM and SAED patterns showing bulk metal carbide (FIG. 8c), expanded metal carbide (FIG. 8d) and exfoliated metal carbide sheet (FIG. 8e) according to the example, and a photograph showing a solution containing the prepared metal carbide sheet ( 8f).
  • FIG. 9A is a photograph showing a solution including a metal hydroxide sheet prepared according to an embodiment of the present invention
  • FIG. 9B is a TEM image of the exfoliated metal hydroxide nanosheet prepared according to an embodiment of the present invention will be.
  • FIG. 10 is a photograph showing a manufacturing process of a hybrid composite according to an embodiment of the present invention.
  • FIG. 12 is an SEM photograph showing a Ni-MOF (top) and a hybrid composite (bottom) prepared according to an embodiment of the present invention.
  • FIG 13 shows electron mapping of the Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention.
  • Ni-HITP powder which is Ni-MOF
  • Ni-MOF Ni-HITP powder
  • FIG. 2 A photograph of the metal-organic framework SEM image obtained through the above preparation method is shown in FIG. 2 . Referring to FIG. 2 , it can be confirmed that a porous MOF is formed.
  • a metal oxide sheet according to the present invention In order to prepare a metal oxide sheet according to the present invention, first, bulk K 0.45 MnO 2 having a two-dimensional structure was synthesized by solid-state synthesis. Thereafter, K+ ions in the layer were removed by treatment with 1M HCl three or more times. Then, the acid-treated sample was reacted with TBAOH to obtain a MnO2 nanosheet colloid. The dose of TBAOH applied in relation to the amount of exchangeable protons H at 0.13 MnO*0.7H 2 O. That is, the molar ratio of TBA+/H+ was changed to about 3 by changing the concentration of TBA hydroxide. Laminated manganese dioxide (MnO 2 ) was prepared, and each manganese dioxide layer was exfoliated by swelling the stacked manganese dioxide to obtain an exfoliated manganese dioxide sheet.
  • MnO 2 Laminated manganese dioxide
  • FIG. 7 is a photograph (FIG. 7A) showing a solution containing a metal oxide sheet according to an embodiment of the present invention, and a photograph and graph (FIG. 7B) showing the characteristics of the prepared metal oxide sheet.
  • FIG. 7A it can be seen that the Tyndall phenomenon appears, and it can be confirmed that the manganese oxide nanosheets are well dispersed, and referring to FIG. 7B , it can be confirmed that the exfoliated nanosheets of manganese oxide are well formed.
  • a high-purity Ti 3 AlC 2 block was prepared by pressureless sintering.
  • An initial powder of TiH 2 , Al, and TiC in a 1:1.1:2 ratio was ball milled for 12 hours, treated at 1400 °C for 2 hours in an argon atmosphere, and then the block was crushed and passed through a 325-mesh sieve. Then, 1 g of Ti 3 AlC 2 powder was added to the HF solution and the mixture was stirred at 60 °C for a predetermined time.
  • Ti 3 AlC 2 after acid treatment is put in a solution such as Formamide, Di-water, Methanol, Dimethyformamide and dispersed.
  • Formamide solution + Ti 3 C 2 and methanol solution + Ti 3 C 2 with the best dispersion were analyzed through TEM analysis.
  • FIG. 8f A photograph of the solution including the obtained Ti 3 C 2 nanosheet is shown in FIG. 8f .
  • the SEM photograph of Ti 3 AlC 2 in the bulk form is shown in FIG. 8c
  • the SEM image of Ti 3 C 2 in the expanded bulk form is shown in FIG. 8d
  • the SEM of the finally obtained Ti 3 C 2 nanosheet A photograph is shown in FIG. 8E .
  • FIGS. 8c to 8e it was confirmed that the bulk of Ti 3 AlC 2 was expanded between layers during HF treatment, which was confirmed that Al in the layer was removed and expanded due to the electrical repulsive force between the layers.
  • the gap between each sheet was widened to have a layered structure.
  • the finally obtained Ti 3 C 2 nanosheet exhibited a peeled sheet shape.
  • the pH was slowly adjusted to 5.5 ⁇ 0.5 using a 2M NaOH solution, and N2 gas was continuously flowed to prevent the synthesis of carbonate-type LDH.
  • the temperature of the solution was maintained at 60° C. and stirred vigorously for 24 hours.
  • the purple sample was separated through a centrifuge and washed several times with distilled water to remove unreacted remaining ions. The separated wet powder was dried in an oven at 60° C. for one day to obtain a final Zn-Cr LDH powder.
  • Figure 9a is a photograph showing a solution containing a metal hydroxide sheet prepared according to an embodiment of the present invention
  • Figure 9b is a TEM image of the exfoliated metal oxide nanosheet prepared according to an embodiment of the present invention will be.
  • FIG. 9A it can be seen that the Tyndall phenomenon of the colloidal colloid of ZrCr-LDH exfoliated ZnCr-LDH can be confirmed, and it can be seen that the metal hydroxide nanosheet is well dispersed.
  • FIG. 9B the exfoliated ZnCr - It can be confirmed that the LDH nanosheet was well formed.
  • the XRD analysis of the bulk Ti 3 AlC 2 and Ti 3 C 2 nanosheet metal carbide of Preparation Example 3 was performed and the results are shown in FIG. 8b, from below, simulated Ni-MOF, Ni-MOF synthesized by reflux method , layered bulk K 0.45 MnO 2 , exfoliated MnO 2 nanosheets, and Ni-MOF/MnO 2 XRD analysis of the hybrid composite was performed, and the results are shown in FIG. 11 .
  • FIG. 8b the peaks of Ti 3 AlC 2 and Ti 3 C 2 nanosheets in the bulk form of Preparation Example 3 were confirmed, and it was confirmed that they were consistent with the theoretical peaks.
  • FIG. 8b the peaks of Ti 3 AlC 2 and Ti 3 C 2 nanosheets in the bulk form of Preparation Example 3 were confirmed, and it was confirmed that they were consistent with the theoretical peaks.
  • FIG. 8b the peaks of Ti 3 AlC 2 and Ti 3 C 2 nanosheets in the bulk form of Preparation Example 3 were confirmed
  • the SEM photograph of the obtained hybrid composite is shown in FIG. 12 (below), and as shown in FIG. 12, the hybrid composite is randomly mixed in a porous metal-organic framework with a metal oxide or metal carbide sheet covering the surface. It was confirmed that it has a three-dimensional porous structure.
  • FIG. 13 shows electron mapping of the Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention
  • FIG. 14 is an EDS spectrum of the Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention. is shown.
  • FIG. 15 and 16 show the charging/discharging performance results according to the current for the Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention.
  • FIG. 15 shows the charging/discharging performance results according to the current of the Ni-MOF (0.05 g)/MnO 2 composite
  • FIG. 16 is the charging/discharging performance according to the current of the Ni-MOF (0.1 g)/MnO 2 composite.
  • the results are shown.
  • 17 shows a comparison of the performance of the Ni-MOF/MnO 2 hybrid composite prepared according to an embodiment of the present invention with respect to the current density of Ni-MOF
  • FIG. 18 is prepared according to an embodiment of the present invention It shows the cycle performance results for the Ni-MOF / MnO 2 hybrid composite (Ni-MOF (0.05 g) / MnO 2 ).
  • the first aspect of the present application is a first aspect of the present application.
  • MOFs metal-organic frameworks
  • two-dimensional nanosheets a two-dimensional nanosheet selected from the group consisting of a metal oxide sheet, a metal carbide sheet, and a metal hydroxide sheet, wherein the metal-organic framework has a three-dimensional shape, and the plurality of It provides a hybrid composite, characterized in that the two-dimensional nanosheet is laminated on the surface of the metal-organic framework.
  • the hybrid composite includes a plurality of metal-organic frameworks (MOFs) and a plurality of two-dimensional metal oxide or metal carbide sheets as shown in FIG. 1 .
  • the hybrid composite includes both the characteristic porosity of the metal-organic framework (MOF) (see the SEM image of FIG. 2 ) and the characteristic porosity of the metal oxide sheet or metal carbide sheet, and the metal-organic framework
  • the sieve (MOF) and the metal oxide or metal carbide sheet may have very high porosity because they also include three-dimensional pores that are randomly mixed.
  • the metal-organic framework has a three-dimensional shape, and the plurality of two-dimensional nanosheets are randomly stacked on the surface of the metal-organic framework to form a core-shell (Core-). shell) structure.
  • the metal-organic framework may have a one-dimensional, two-dimensional, or three-dimensional form, and may specifically include the structure of Formula 1 below.
  • M is a metal
  • L is an organic ligand
  • the metal represented by M is Ni, Cu, Fe, Sc, Ti, V, Cr, Mn, Co, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Lu, Hf , Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Uub, and combinations thereof. and may preferably include Ni or Cu.
  • the metal-organic framework (MOF) may have semiconducting properties, and electrons may move through the metal part and the ligand part. have.
  • the organic ligand represented by L in Formula 1 may include any one of the structures of Formulas 2 to 4 below.
  • X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH), or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are may be the same or different from each other.
  • X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH) or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are The same or different from each other, n may be an integer of 0 to 5.
  • X1 to X6 are each independently an amine group (NH2), a carboxy group (COOH), or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X5 and X6 are may be the same as each other, X1, X3 and X5 may be the same as or different from each other, and Y1 to Y6 may each independently be carbon or nitrogen.
  • X1 to X4 may preferably be an amine group (NH2)
  • X1 to X6 may preferably be an amine group (NH2)
  • the compound represented by Formula 3 may include an ortho-diamine group.
  • the organic ligand may include an aryl core and a substituent capable of coordinating with a metal as shown in Formulas 1 to 3, and the substituent included in the organic ligand is each coordinated with the metal. It may be to form a bond. That is, X1 to X4 of Formulas 1 and 2 or X1 to X6 of Formula 3 may form a coordination bond with a metal, respectively.
  • the organic ligand (first organic ligand) represented by Formula 1 or 2 and the organic ligand (second organic ligand) represented by Formula 3 cross-coordinate with the metal.
  • the metal-organic framework may be one in which the first organic ligand and the second organic ligand form a coordination bond on both sides of one metal as the center, and the structure is expanded by having the structure as a repeating unit may be to have
  • the electrical conductivity of the metal-organic framework may be 0.01 S ⁇ cm -1 or more.
  • the electrical conductivity of the metal-organic framework may be measurable in the form of polycrystalline pellets or polycrystalline films.
  • the electrical conductivity of the metal-organic framework pellets may be 0.01 S ⁇ cm -1 or more, preferably 0.01 S ⁇ cm -1 to 10 S ⁇ cm -1 , more preferably 1 S ⁇ cm -1 to 5 S ⁇ cm -1 may be.
  • the electrical conductivity of the metal-organic framework film may be 10 S ⁇ cm -1 or more based on an average film thickness of 500 nm, preferably 0.01 S ⁇ cm -1 to 100 S ⁇ cm -1 , more preferably For example, it may be 0.01 S ⁇ cm -1 to 50 S ⁇ cm -1 .
  • the organic ligand of the metal-organic framework may have high electrical conductivity because it has pi-back bonding.
  • the pi back bonding is a chemical concept in which electrons move from an atomic orbital of one atom to a ⁇ * anti-bonding orbital of another atom or ligand. Specifically, by an aryl group included in an organic ligand The bonding may be formed.
  • the total pore volume of the metal-organic framework may be 0.01 cm 3 /g to 5.0 cm 3 /g, and the metal-organic framework has an average diameter of 0.5 nm to 20 nm. It may include pores. That is, since the metal-organic framework has a high porosity and average pore diameter, when a hybrid composite including the same is used as an electrode active material of an electrochemical device such as a secondary battery or a supercapacitor, the occlusion and desorption of the electrolyte is easy. The electrochemical properties of the electrochemical device may be improved.
  • the hybrid composite is a plurality of two-dimensional nanosheets, and may include a two-dimensional nanosheet selected from the group consisting of a metal oxide sheet, a metal carbide sheet, and a metal hydroxide sheet.
  • the metal oxide sheet is manganese oxide, cobalt oxide (cobalt oxdie), rubidium oxide (rubidium oxide), titanium oxide (titanium oxide), vanadium oxide (vanadium oxide), iron oxide (iron oxide), nickel Nickel oxide, copper oxide, zinc oxide, zirconium dioxide, molybdenum oxide, tantalum oxide and a metal oxide selected from the group consisting of combinations thereof, and preferably may include manganese oxide or cobalt oxide.
  • the metal oxide sheet may be any metal oxide that can be manufactured into a two-dimensional nanosheet that can be manufactured according to the manufacturing process shown in FIG. 4 .
  • a mixture of tert-butyl alcohol (TBA) and amine is treated on a metal oxide in a laminated form, and the mixture is inserted between the metal oxide layers, followed by ultrasonic treatment ( Sonication) may be to obtain a metal oxide sheet by exfoliating each metal oxide layer by swelling (swelling).
  • the metal carbide sheet is titanium carbide (titanium carbide), aluminum carbide (aluminum carbide), chromium carbide (chromium carbide), zinc carbide (zinc carbide), copper carbide (copper carbide), magnesium carbide (magnesium carbide), zirconium Carbide (zirconium carbide), molybdenum carbide (molybdenum carbide), vanadium carbide (vanadium carbide), niobium carbide (niobium carbide), iron carbide (iron carbide), manganese carbide (manganese carbide), cobalt carbide (cobalt carbide) It may include a metal carbide selected from the group consisting of nickel carbide, tantalum carbide, and combinations thereof, and may preferably include titanium carbide.
  • the metal carbide sheet may be manufactured according to the manufacturing process shown in FIG. 5 . Specifically, first, the bulk metal carbide having a layered crystal structure in the bulk form is treated with HF, etc. to obtain expanded metal carbide with each metal carbide layer separated, and fluoroamphetamine (FA) is added to the expanded metal carbide. ) or by treatment with dimethylformamide (DMF) or the like to obtain a peeled metal carbide sheet.
  • FFA fluoroamphetamine
  • DMF dimethylformamide
  • the metal hydroxide sheet is a peeled metal double layer hydroxide (LDH) nanosheet
  • the peeled metal double layer hydroxide nanosheet is a compound represented by the following [Formula 5], characterized in that may be doing:
  • M II is selected from the group consisting of Ca 2+ , Mg 2+ , Zn 2+ , Ni 2+ , Mn 2+ , Co 2+ , Fe 2+ , Cu 2+ and mixed metals thereof
  • M III is selected from the group consisting of Fe 3+ , Al 3+ , Cr 3+ , Mn 3+ , Ga 3+ , Co 3+ , Ni 3+ and mixed metals thereof
  • a n- is a hydroxide ion ( OH - ), nitrate ions (NO 3 - ), PO 4 3- , HPO 4 2- , H 2 PO 4 - and combinations thereof, 0 ⁇ x ⁇ 1, and z is 0.1 to 15 may be a mistake in
  • FIG. 6 is a schematic diagram showing a manufacturing process of a metal hydroxide sheet according to an embodiment of the present invention.
  • the metal double layer hydroxide (LDH) nanosheet represented by Formula 1 is co-precipitated, and then the metal double layer hydroxide salt is prepared by adding 1-butanol, 1-hexanol, 1-octanol ( 1-octanol), 1-decanol (1-decanol), CCl4, xylene formamide (HCONH2; formamide), and dimethylformamide (dimethylformamide, DMF) reaction with one or more solvents selected from the group consisting of It can be prepared in the form of a nanosheet through the step of dissolving (exfoliation) in the form of a metal double-layer hydroxide salt having a cationic surface charge.
  • the type of the solvent is not limited as long as it can dissolve the metal double layer hydroxide salt.
  • the two-dimensional nanosheet may each include a plurality of nanopores, wherein the size of the nanopores may be 0.5 nm to 20 nm.
  • the content of the two-dimensional nanosheet relative to 100 parts by weight of the metal-organic framework may be 10 parts by weight to 300 parts by weight.
  • the content of the two-dimensional nanosheet relative to 100 parts by weight of the metal-organic framework may be 30 parts by weight to 200 parts by weight.
  • a hybrid complex can be obtained by reacting the metal-organic framework to contain about 0.01 to 0.2 g of the metal-organic framework per 10 ml of the dispersed solution including the two-dimensional nanosheet, but this is not limited This is merely an example, and is not limited thereto.
  • the porosity of the hybrid composite may be 30 vol% to 70 vol%. That is, the hybrid composite includes both the specific porosity of the metal-organic framework (MOF) and the specific porosity of the metal oxide sheet or metal carbide sheet, and the metal-organic framework (MOF) and the metal oxide Alternatively, the metal carbide sheet may have a very high porosity because it also includes three-dimensional pores that are randomly mixed and generated.
  • MOF metal-organic framework
  • the metal carbide sheet may have a very high porosity because it also includes three-dimensional pores that are randomly mixed and generated.
  • the electrode active material may be used in a secondary battery or a supercapacitor, etc., and since the hybrid composite has high porosity and excellent electrical conductivity, the energy density and output characteristics of the devices are improved.
  • the porosity of the hybrid composite may be 30 vol% to 70 vol%, and the electrical conductivity may be 0.01 S ⁇ cm ⁇ 1 or more.
  • the electrode active material may be formed on the electrode current collector.
  • the electrode current collector may include stainless steel, aluminum, nickel, titanium, sintered carbon, or a material in which carbon, nickel, titanium, silver, or the like is surface-treated on the surface of aluminum or stainless steel.
  • the electrode current collector may have a thickness of about 3 ⁇ m to 500 ⁇ m, and may be to form fine irregularities on the surface of the current collector to increase the adhesion of the electrode active material. That is, it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the electrode active material may further include a conductive material and a binder in addition to the active material.
  • the conductive material is used to impart conductivity to the electrode, and as long as it has electrical conductivity without causing a chemical change in the device, there may be no restriction on the type of the conductive material.
  • the conductive material may include graphite such as natural graphite or artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon-based materials such as carbon fiber, copper, nickel aluminum , a metal powder or metal fiber such as silver, a conductive whiskey such as zinc oxide and potassium titanate, a conductive metal oxide such as titanium oxide or a conductive polymer such as a polyphenylene derivative, and a material selected from the group consisting of combinations thereof may be doing Meanwhile, the conductive material may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
  • the binder may serve to improve adhesion between the electrode active material particles and adhesion between the electrode active material and the current collector.
  • the binder is, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile (polyacrylonitrile), Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), alcohol It may include a material selected from the group consisting of ponylated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof and combinations thereof. Meanwhile, the binder may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of
  • the supercapacitor may preferably be a hybrid supercapacitor, and the hybrid supercapacitor may specifically include a positive electrode; cathode; It may include a separator and an electrolyte interposed between the positive electrode and the negative electrode.
  • the electrode active material may be preferably used as the active material of the negative electrode, and activated carbon may be used as the positive active material of the positive electrode.
  • the electrolyte used in the hybrid supercapacitor may be used by mixing a salt and an additive in an organic solvent.
  • the organic solvent is ACN (Acetonitrile), EC (Ethylene carbonate), PC (Propylene carbonate), DMC (Dimethyl carbonate), DEC (Diethyl carbonate), EMC (Ethylmethyl carbonate), DME (1,2-dimethoxyethane), It may include a material selected from the group consisting of GBL ( ⁇ -buthrolactone), MF (Methyl formate), MP (Methyl propionate), and combinations thereof.
  • the lithium (Li) salt is accompanied by an insertion/desorption reaction into the structure of the anode active material, that is, the hybrid composite, and its types include LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiBOB (Lithium bis(oxalato)borate), and combinations thereof may be included.
  • the non-lithium salt is accompanied by an adsorption/desorption reaction on the surface area of the carbon material additive, and may be used by mixing 0 to 0.5 M with the lithium salt.
  • the non-lithium salt contains a material selected from the group consisting of TEABF 4 (Tetraethylammonium tetrafluoroborate), TEMABF 4 (Triethylmethylammonium tetrafluorborate), SBPBF 4 (spiro-(1,1′)-bipyrrolidium tetrafluoroborate) and combinations thereof.
  • the carbon material additive may include a material selected from the group consisting of VC (Vinylene Carbonate), VEC (Vinyl ethylene carbonate), FEC (Fluoroethylene carbonate), and combinations thereof.
  • the separator is positioned between the positive electrode and the negative electrode to prevent the positive electrode and the negative electrode from being in physical contact with each other and from being electrically shorted, and a material having a porosity may be used.
  • the separator may include a material selected from the group consisting of polypropylene-based, polyethylene-based, polyolefin-based, and combinations thereof.
  • the hybrid supercapacitor having the above configuration has high electrical conductivity because the hybrid composite is used as the negative electrode active material, and the capacity is improved due to the high specific surface area of the carbon material additive, so that high energy density and output characteristics may be to have That is, a carbon material additive is inserted into a plurality of spaces formed in the hybrid composite, and a hybrid supercapacitor including the same may exhibit excellent electrical conductivity, capacitance, and output characteristics.
  • the hybrid complex is a catalyst for water purification, anticancer agent, immunodeficiency virus treatment agent, fungal and bacterial infection treatment agent, malaria treatment agent, various drug delivery materials, photocatalyst, sensor, Since it can be applied in various fields such as aerospace materials, it can be used as a commercially very useful material.

Abstract

Disclosed is a hybrid composite comprising a metal-organic framework (MOF) and a two-dimensional sheet. The hybrid composite has high porosity and excellent conductivity, and thus can be used in an electrode of a super capacitor or a secondary cell to improve the energy density and output characteristics and the like thereof.

Description

금속-유기 골격체 및 2차원 시트를 포함하는 하이브리드 복합체Hybrid composite comprising a metal-organic framework and a two-dimensional sheet
본 발명은 금속-유기 골격체(MOF) 및 2차원 시트를 포함하는 하이브리드 복합체에 관한 것으로서, 상기 2차원 시트는 금속산화물 시트 또는 금속카바이드 시트를 포함한다.The present invention relates to a hybrid composite including a metal-organic framework (MOF) and a two-dimensional sheet, wherein the two-dimensional sheet includes a metal oxide sheet or a metal carbide sheet.
개선된 기능의 방대한 배열을 갖는 20,000개 이상의 금속-유기 골격체(Metal-Organic Frameworks, MOF)의 발견에 기인하여, 다양한 금속 노드(metal nodes) 및 유기 연결체(organic linkers)와 같은 형성 블록들(building block)의 풍부한 종류에 의해 지난 수십 년 동안 수많은 MOF 합성에 대한 연구가 이어졌다. 이와 관련하여, 상기 MOF의 기본 합성 프로토콜은 금속 노드 및 유기 연결체와 같은 형성 블록들의 자기조립(self-assembly)에 의한 것으로서 비교적 간단한 합성 방법을 가진다.Due to the discovery of more than 20,000 Metal-Organic Frameworks (MOFs) with vast arrays of improved functions, building blocks such as various metal nodes and organic linkers Numerous studies on the synthesis of MOFs have been conducted over the past few decades due to the abundance of different types of building blocks. In this regard, the basic synthesis protocol of the MOF is by self-assembly of building blocks such as metal nodes and organic interconnects, and has a relatively simple synthesis method.
한편, 상기 MOF의 경우 다양한 크기의 마이크로 포어(micropore)와 메조 포어(mesopore)를 가지고 있으며 비표면적이 매우 넓어서 기체저장체로서 주로 활용되어져 왔다. 또한, MOF에 포함되는 금속 전구체와 유기 리간드의 조합이 매우 다양하여 수천 가지의 결정구조가 데이터베이스에 등록되어 있으며, 다양한 작용기 (functional group) 또한 포함될 수 있기 때문에 다양한 산업분야에서 유망한 소재물질로서 각광받고 있다. 다만, 전기화학적인 측면에서는 MOF 자체가 가지는 낮은 전도성으로 인하여 그 활용도가 떨어지고 있으며, 이에 전도성을 가지는 MOF를 합성하기 위한 연구가 활발히 이루어지고 있다.Meanwhile, in the case of the MOF, it has micropores and mesopores of various sizes, and has been mainly used as a gas storage material because of its very wide specific surface area. In addition, since the combinations of metal precursors and organic ligands included in MOF are very diverse, thousands of crystal structures are registered in the database, and various functional groups can also be included, so it is spotlighted as a promising material in various industries. have. However, in terms of electrochemicals, due to the low conductivity of the MOF itself, its utility is falling, and research for synthesizing the MOF having conductivity is being actively conducted.
한편, 슈퍼커패시터(Super-Capacitor)는 축전용량이 대단히 큰 커패시터로 울트라 커패시터(Ultra Capacitor) 또는 우리말로 초고용량 커패시터라고 한다. 학술적인 용어로는 기존의 정전기식(electrostatic) 또는 전해식(electrolytic)과 구분해 전기화학식 커패시터(electrochemical capacitor)라고 불린다. 슈퍼커패시터는 화학 반응을 이용하는 배터리와 달리 전극과 전해질 계면으로의 단순한 이온의 이동이나 표면화학반응에 의한 충전현상을 이용한다. 이에 따라 급속 충방전이 가능하고 높은 충방전 효율 및 반영구적인 사이클 수명 특성으로 보조 배터리나 배터리 대체용으로 사용될 수 있는 차세대 에너지저장장치로 각광받고 있다.On the other hand, a super capacitor (Super-Capacitor) is a capacitor with a very large capacitance, and is called an ultra capacitor or an ultra-high-capacitance capacitor in Korean. In scientific terms, it is called an electrochemical capacitor to distinguish it from the conventional electrostatic or electrolytic capacitors. Unlike a battery that uses a chemical reaction, a supercapacitor uses a simple movement of ions to the electrode and electrolyte interface or a charging phenomenon by a surface chemical reaction. Accordingly, it is receiving attention as a next-generation energy storage device that can be used as a substitute for an auxiliary battery or battery due to its rapid charge/discharge capability, high charge/discharge efficiency, and semi-permanent cycle life characteristics.
슈퍼커패시터는 1980년대부터 상용화되기 시작해 개발의 역사는 비교적 짧지만 전통적으로 사용되어 왔던 활성탄을 포함한 금속산화물, 전도성고분자 등의 신규 전극재료와 비대칭 전극을 사용하는 하이브리드형 제품디자인 기술의 개발로 그 발전 속도가 매우 빠르다. 최근에 발표된 제품은 에너지 밀도가 Ni-MH 배터리를 넘어서는 것도 있어 일본에서는 이러한 비약적인 기술의 발전을 ‘축전혁명’이라 일컫고 있다.Supercapacitors have been commercialized since the 1980s and have a relatively short history of development, but their development is due to the development of hybrid-type product design technology that uses asymmetric electrodes and new electrode materials such as metal oxides and conductive polymers, including activated carbon, which have been traditionally used. The speed is very fast. Some of the recently announced products have energy density that exceeds that of Ni-MH batteries.
이러한 차세대 에너지 저장장치인 슈퍼커패시터는 대용량의 전기를 빠르게 저장하고 꺼내어 사용할 수 있고, 2차전지보다 100배 이상의 고출력이며 반영구적으로 사용이 가능해 휴대전화, 디지털카메라의 플래시, 하이브리드 자동차 등 응용분야가 다양하다. 즉, 슈퍼커패시터는 석유를 대체해 이산화탄소 배출이 없는 친환경 청정 대체에너지인 태양광, 풍력, 수소연료 전지 등의 신재생에너지 저장장치로 중요도를 갖는다.Supercapacitors, a next-generation energy storage device, can quickly store and take out large-capacity electricity, have 100 times higher output than secondary batteries, and can be used semi-permanently, so there are various application fields such as mobile phones, digital camera flashes, and hybrid vehicles. do. In other words, supercapacitors are important as renewable energy storage devices such as solar power, wind power, and hydrogen fuel cells, which are eco-friendly, clean alternative energy that does not emit carbon dioxide by replacing petroleum.
그러나, 현재까지 개발된 슈퍼커패시터의 경우 탄소계 전극물질이 주로 전기 이중층에 에너지를 저장함으로 비교적 높은 출력 특성을 가지고 있으나 에너지 저장량이 낮은 단점이 있으며, 비표면적과 산화환원 반응을 동시에 이용하는 금속산화물계는 높은 축전용량을 나타내는 장점이 있으나 소재가 비싸 대량 생산에 있어서 사용화가 어렵다는 단점을 갖는 등 많은 문제점들을 가지고 있다. 따라서, 상기 슈퍼커패시터의 에너지 밀도 및 출력밀도를 향상시키기 위하여 저렴하며 높은 다공도 및 전기 전도도를 가진 전극의 개발이 시급한 것이 현실이다.However, in the case of supercapacitors developed so far, the carbon-based electrode material mainly stores energy in the electric double layer, so it has a relatively high output characteristic, but has a disadvantage in that the energy storage amount is low. Although it has the advantage of showing high storage capacity, it has many problems such as the disadvantage of being difficult to use in mass production because the material is expensive. Therefore, in order to improve the energy density and power density of the supercapacitor, it is urgent to develop an electrode having high porosity and electrical conductivity, which is inexpensive and has high electrical conductivity.
이에, 본 발명자들은 상기와 같은 문제를 해결하기 위해 연구하던 중, 복수의 금속-유기 골격체(MOF) 및 복수의 2차원 금속산화물 또는 금속카바이드 시트를 랜덤하게 혼합한 하이브리드 복합체를 제조하였으며, 이를 슈퍼커패시터 또는 이차전지의 전극으로 적용하게 되면 상기 하이브리드 복합체가 가지는 특유의 높은 다공도 및 전기 전도도 특성으로 인해 슈퍼커패시터 또는 이차전지의 성능이 향상될 수 있음을 확인하여 본 발명을 완성하게 되었다. 한편, 상기 하이브리드 복합체는 슈퍼커패시터 또는 이차전지 이외에도 물정화용 촉매, 항암제, 면역결핍 바이러스 치료제, 곰팡이 및 박테리아 감염 치료제, 말라리아 치료제, 각종 약물전달 물질, 광촉매, 센서, 항공우주 물질 등 다양한 분야에 있어서 적용이 가능한 바, 상업적으로 매우 유용한 물질로서 사용될 수 있다.Accordingly, the present inventors prepared a hybrid composite in which a plurality of metal-organic frameworks (MOFs) and a plurality of two-dimensional metal oxide or metal carbide sheets were randomly mixed while studying to solve the above problems, When applied as an electrode of a supercapacitor or a secondary battery, it was confirmed that the performance of a supercapacitor or a secondary battery can be improved due to the characteristic high porosity and electrical conductivity characteristics of the hybrid composite, thereby completing the present invention. On the other hand, the hybrid complex is applied in various fields, such as a catalyst for water purification, an anticancer agent, an immunodeficiency virus treatment, a treatment for fungal and bacterial infections, a treatment for malaria, various drug delivery materials, photocatalysts, sensors, and aerospace materials, in addition to supercapacitors or secondary batteries. As this is possible, it can be used as a commercially very useful material.
이와 관련하여, 대한민국 공개특허 제10-2019-0013629호는 MOF를 포함하는 항균제 및 이를 포함하는 항균 필터에 대하여 개시하고 있다.In this regard, Korean Patent Laid-Open No. 10-2019-0013629 discloses an antibacterial agent containing MOF and an antibacterial filter containing the same.
본 발명은 전술한 문제를 해결하고자 안출된 것으로서, 본 발명의 일 실시예는 복수의 금속-유기 골격체(MOF) 및 복수의 2차원 금속산화물 또는 금속카바이드 시트를 포함하는 하이브리드 복합체를 제공한다.The present invention has been devised to solve the above problems, and an embodiment of the present invention provides a hybrid composite including a plurality of metal-organic frameworks (MOFs) and a plurality of two-dimensional metal oxide or metal carbide sheets.
또한, 본 발명의 다른 일 실시에는 상기 하이브리드 복합체를 포함하는 전극 활물질을 제공한다.In addition, another embodiment of the present invention provides an electrode active material including the hybrid composite.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 한정되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. it could be
전술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면은, As a technical means for achieving the above-described technical problem, one aspect of the present invention is,
복수의 금속-유기 골격체(MOF); 및 복수의 2차원 나노시트로서, 금속산화물 시트, 금속카바이드 시트, 및 금속수산화물 시트로 이루어지는 군에서 선택된 2차원 나노시트;를 포함하고, 상기 금속-유기 골격체는 3차원 형상이며, 상기 복수의 2차원 나노시트가 상기 금속-유기 골격체의 표면에 적층되는 것을 특징으로 하는 하이브리드 복합체를 제공한다. a plurality of metal-organic frameworks (MOFs); and a plurality of two-dimensional nanosheets, a two-dimensional nanosheet selected from the group consisting of a metal oxide sheet, a metal carbide sheet, and a metal hydroxide sheet, wherein the metal-organic framework has a three-dimensional shape, and the plurality of It provides a hybrid composite, characterized in that the two-dimensional nanosheet is laminated on the surface of the metal-organic framework.
상기 금속-유기 골격체는 하기 화학식 1의 구조를 포함하는 것일 수 있다.The metal-organic framework may include a structure of Formula 1 below.
[화학식 1][Formula 1]
M-L-MM-L-M
상기 화학식 1에서, M은 금속이고, L은 유기 리간드로서 하기 화학식 2 내지 4의 구조 중 어느 하나를 포함한다.In Chemical Formula 1, M is a metal, and L is an organic ligand and includes any one of the structures of Chemical Formulas 2 to 4 below.
[화학식 2][Formula 2]
Figure PCTKR2021017228-appb-img-000001
Figure PCTKR2021017228-appb-img-000001
상기 화학식 2에서, X1 내지 X4는 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고, X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X1 및 X3은 서로 동일하거나 상이하다.In Formula 2, X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH), or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are same or different from each other
[화학식 3][Formula 3]
Figure PCTKR2021017228-appb-img-000002
Figure PCTKR2021017228-appb-img-000002
상기 화학식 3에서, X1 내지 X4는 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고, X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X1 및 X3은 서로 동일하거나 상이하고, n은 0 내지 5의 정수이다.In Formula 3, X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH) or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are They are the same as or different from each other, and n is an integer from 0 to 5.
[화학식 4][Formula 4]
Figure PCTKR2021017228-appb-img-000003
Figure PCTKR2021017228-appb-img-000003
상기 화학식 4에서, X1 내지 X6은 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고, X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X5 및 X6은 서로 동일하고, X1, X3 및 X5는 서로 동일하거나 상이하고, Y1 내지 Y6은 각각 독립적으로 탄소 또는 질소이다.In Formula 4, X1 to X6 are each independently an amine group (NH2), a carboxy group (COOH), or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X5 and X6 are are identical to each other, X1, X3 and X5 are the same as or different from each other, and Y1 to Y6 are each independently carbon or nitrogen.
상기 M은 Ni, Cu, Fe, Sc, Ti, V, Cr, Mn, Co, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Uub 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속을 포함하는 것일 수 있다.M is Ni, Cu, Fe, Sc, Ti, V, Cr, Mn, Co, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re , Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Uub, and may be one containing a metal selected from the group consisting of combinations thereof.
상기 금속산화물 시트는 망간옥사이드(manganese oxide), 코발트옥사이드(cobalt oxdie), 루비듐옥사이드(rubidium oxide), 티타늄옥사이드(titanium oxide), 바나듐옥사이드(vanadium oxide), 아이언옥사이드(iron oxide), 니켈옥사이드(nickel oxide), 구리옥사이드(copper oxide), 징크옥사이드(zinc oxide), 지르코늄디옥사이드(zirconium dioxide), 몰리브데늄옥사이드(molybdenum oxide), 탄탈륨옥사이드(tantalum oxide) 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속산화물을 포함하는 것일 수 있다.The metal oxide sheet is manganese oxide, cobalt oxide, rubidium oxide, titanium oxide, vanadium oxide, iron oxide, nickel oxide ( nickel oxide, copper oxide, zinc oxide, zirconium dioxide, molybdenum oxide, tantalum oxide and a metal oxide selected from the group consisting of combinations thereof.
상기 금속카바이드 시트는 티타늄카바이드(titanium carbide), 알루미늄카바이드(aluminum carbide), 크롬카바이드(chromium carbide), 징크카바이드(zinc carbide), 구리카바이드(copper carbide), 마그네슘카바이드(magnesium carbide), 지르코늄카바이드(zirconium carbide), 몰리브데늄카바이드(molybdenum carbide), 바나듐카바이드(vanadium carbide), 니오븀카바이드(niobium carbide), 아이언카바이드(iron carbide), 망간카바이드(manganese carbide), 코발트카바이드(cobalt carbide), 니켈카바이드(nickel carbide), 탄탈륨카바이드(tantalum carbide) 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속카바이드를 포함하는 것일 수 있다.The metal carbide sheet is titanium carbide, aluminum carbide, chromium carbide, zinc carbide, copper carbide, magnesium carbide, zirconium carbide ( zirconium carbide, molybdenum carbide, vanadium carbide, niobium carbide, iron carbide, manganese carbide, cobalt carbide, nickel carbide (nickel carbide), tantalum carbide (tantalum carbide), and may include a metal carbide selected from the group consisting of combinations thereof.
상기 금속 수산화물 시트는, 박리된 금속 이중층 수산화물(LDH) 나노시트이고, 상기 박리된 금속 이중층 수산화물 나노시트는 하기 [화학식 5]로 표시되는 화합물인 것을 특징으로 하는 것일 수 있다:The metal hydroxide sheet may be a peeled metal double layer hydroxide (LDH) nanosheet, and the peeled metal double layer hydroxide nanosheet may be a compound represented by the following [Formula 5]:
[화학식 5][Formula 5]
[MII (1-x)MIII x(OH)2][An-]x/n·zH2O;[M II (1-x) M III x (OH) 2 ][A n- ] x/n zH 2 O;
상기 화학식 1에서, MII는 Ca2+, Mg2+, Zn2+, Ni2+, Mn2+, Co2+, Fe2+, Cu2+ 및 이들의 혼합금속으로 이루어진 군에서 선택되며, MIII은 Fe3+, Al3+, Cr3+, Mn3+, Ga3+, Co3+, Ni3+ 및 이들의 혼합금속으로 이루어진 군에서 선택되고, An-는 수산화 이온(OH-), 질산 이온(NO3 -), PO4 3-, HPO4 2-, H2PO4 - 및 이들의 조합으로 이루어지는 군으로부터 선택되며, 0<x<1이고, z는 0.1 내지 15의 실수일 수 있다.In Formula 1, M II is selected from the group consisting of Ca 2+ , Mg 2+ , Zn 2+ , Ni 2+ , Mn 2+ , Co 2+ , Fe 2+ , Cu 2+ and mixed metals thereof, , M III is selected from the group consisting of Fe 3+ , Al 3+ , Cr 3+ , Mn 3+ , Ga 3+ , Co 3+ , Ni 3+ and mixed metals thereof, and A n- is a hydroxide ion ( OH - ), nitrate ions (NO 3 - ), PO 4 3- , HPO 4 2- , H 2 PO 4 - and combinations thereof, 0 < x < 1, and z is 0.1 to 15 may be a mistake in
상기 금속-유기 골격체와 2차원 나노시트는 각각 복수의 나노기공을 포함하며, 상기 나노기공의 크기는 0.5 nm 내지 20 nm인 것일 수 있다.The metal-organic framework and the two-dimensional nanosheet each include a plurality of nanopores, and the size of the nanopores may be 0.5 nm to 20 nm.
상기 금속-유기 골격체 100 중량부 대비 상기 2차원 나노시트의 함량은 10 중량부 내지 300 중량부인 것일 수 있다.The content of the two-dimensional nanosheet relative to 100 parts by weight of the metal-organic framework may be 10 parts by weight to 300 parts by weight.
상기 하이브리드 복합체의 다공도는 30 vol% 내지 70 vol%인 것일 수 있다.The porosity of the hybrid composite may be 30 vol% to 70 vol%.
상기 하이브리드 복합체의 전기 전도도는 0.01 S·cm-1 이상인 것일 수 있다.The electrical conductivity of the hybrid composite may be 0.01 S·cm −1 or more.
본 발명의 다른 일 측면은, 상기 하이브리드 복합체를 포함하는 촉매를 제공한다.Another aspect of the present invention provides a catalyst including the hybrid complex.
본 발명의 다른 일 측면은, 상기 하이브리드 복합체를 포함하는 소자용 전극을 제공한다.Another aspect of the present invention provides an electrode for a device including the hybrid composite.
본 발명의 일 실시예에 의하면, 상기 하이브리드 복합체는 금속-유기 골격체(MOF)가 가지는 특유의 다공도 및 금속산화물 시트 또는 금속카바이드 시트가 가지는 특유의 다공도를 모두 포함하며, 상기 금속-유기 골격체(MOF) 및 상기 금속산화물 또는 금속카바이드 시트가 랜덤하게 혼합되며 생성되는 3차원의 기공 또한 포함하기 때문에 매우 높은 다공도를 가지는 것일 수 있다. 따라서, 상기 하이브리드 복합체는 높은 다공도 및 우수한 전기 전도도를 가지기 때문에 이를 슈퍼커패시터 또는 이차전지 등의 전극에 사용 시 상기 소자의 에너지밀도 및 출력특성 등을 향상시킬 수 있다.According to an embodiment of the present invention, the hybrid composite includes both the characteristic porosity of the metal-organic framework (MOF) and the characteristic porosity of the metal oxide sheet or metal carbide sheet, and the metal-organic framework (MOF) and the metal oxide or metal carbide sheet may have very high porosity because they also include three-dimensional pores that are randomly mixed. Therefore, since the hybrid composite has high porosity and excellent electrical conductivity, when it is used in electrodes such as supercapacitors or secondary batteries, energy density and output characteristics of the device can be improved.
또한, 상기 하이브리드 복합체는 제조가 비교적 용이하기 때문에 대량생산이 가능하여 산업적으로 크게 유용한 것일 수 있다.In addition, since the hybrid composite is relatively easy to manufacture, it can be mass-produced and thus can be highly useful industrially.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일 구현예에 따른 하이브리드 복합체의 제조공정을 나타낸 개략도이다.1 is a schematic diagram showing a manufacturing process of a hybrid composite according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 금속-유기 골격체(MOF)를 나타낸 개략도이다.2 is a schematic diagram showing a metal-organic framework (MOF) according to an embodiment of the present invention.
도 3은 본 발명의 일 구현예에 따른 금속-유기 골격체(MOF)의 SEM 이미지를 나타낸 것이다.3 shows an SEM image of a metal-organic framework (MOF) according to an embodiment of the present invention.
도 4는 본 발명의 일 구현예에 따른 금속산화물 시트의 제조공정을 나타낸 개략도이다.4 is a schematic diagram showing a manufacturing process of a metal oxide sheet according to an embodiment of the present invention.
도 5는 본 발명의 일 구현예에 따른 금속카바이드 시트의 제조공정을 나타낸 개략도이다.5 is a schematic diagram showing a manufacturing process of a metal carbide sheet according to an embodiment of the present invention.
도 6은 본 발명의 일 구현예에 따른 금속수산화물 시트의 제조공정을 나타낸 개략도이다.6 is a schematic diagram showing a manufacturing process of a metal hydroxide sheet according to an embodiment of the present invention.
도 7a은 본 발명의 일 실시예에 따라 제조된 금속산화물 시트를 포함하는 용액을 나타낸 사진이고, 도 7b는 본 발명의 일 실시예에 따라 제조된 금속산화물 나노시트의 TEM 이미지를 나타낸 것이다.7A is a photograph showing a solution including a metal oxide sheet prepared according to an embodiment of the present invention, and FIG. 7B is a TEM image of a metal oxide nanosheet prepared according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 2차원 Mxene 구조를 나타낸 개략도(도 8a) 및 본 발명의 일 실시예에 따라 제조된 금속카바이드 시트의 XRD 데이터(도 8b)이고, 본 발명의 일 실시예에 따른 벌크 금속카바이드(도 8c), 팽창된 금속카바이드(도 8d) 및 박리된 금속카바이드 시트(도 8e)를 나타낸 TEM 과 SAED 패턴이며, 제조된 금속카바이드 시트를 포함하는 용액을 나타낸 사진(도 8f)이다.8 is a schematic diagram (FIG. 8a) showing a two-dimensional Mxene structure according to an embodiment of the present invention and XRD data (FIG. 8b) of a metal carbide sheet manufactured according to an embodiment of the present invention, an embodiment of the present invention TEM and SAED patterns showing bulk metal carbide (FIG. 8c), expanded metal carbide (FIG. 8d) and exfoliated metal carbide sheet (FIG. 8e) according to the example, and a photograph showing a solution containing the prepared metal carbide sheet ( 8f).
도 9a은 본 발명의 일 실시예에 따라 제조된 금속수산화물 시트를 포함하는 용액을 나타낸 사진이고, 도 9b는 본 발명의 일 실시예에 따라 제조된 박리화된 금속수산화물 나노시트의 TEM 이미지를 나타낸 것이다.9A is a photograph showing a solution including a metal hydroxide sheet prepared according to an embodiment of the present invention, and FIG. 9B is a TEM image of the exfoliated metal hydroxide nanosheet prepared according to an embodiment of the present invention will be.
도 10은 본 발명의 일 실시예에 따른 하이브리드 복합체의 제조공정을 나타낸 사진이다.10 is a photograph showing a manufacturing process of a hybrid composite according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따라 제조된 하이브리드 복합체 등의 XRD 데이터이다.11 is XRD data of a hybrid composite prepared according to an embodiment of the present invention.
도 12은 본 발명의 일 실시예에 따라 제조된 Ni-MOF(위), 및 하이브리드 복합체(아래)를 나타낸 SEM 사진이다.12 is an SEM photograph showing a Ni-MOF (top) and a hybrid composite (bottom) prepared according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따라 제조된 Ni-MOF/MnO2 하이브리드 복합체의 electron mapping을 나타낸 것이다.13 shows electron mapping of the Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따라 제조된 Ni-MOF/MnO2 하이브리드 복합체의 EDS 스펙트럼이다.14 is an EDS spectrum of a Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따라 제조된 Ni-MOF(0.05g)/MnO2 하이브리드 복합체에 대한 전류밀도에 따른 충방전 성능 결과를 나타낸 것이다.15 shows the results of charging and discharging performance according to current density for the Ni-MOF (0.05 g)/MnO 2 hybrid composite prepared according to an embodiment of the present invention.
도 16는 본 발명의 일 실시예에 따라 제조된 Ni-MOF(0.1g)/MnO2 하이브리드 복합체에 대한 전류밀도에 따른 충방전 성능 결과를 나타낸 것이다.16 shows the results of charging and discharging performance according to current density for the Ni-MOF (0.1g)/MnO2 hybrid composite prepared according to an embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따라 제조된 Ni-MOF/MnO2 하이브리드 복합체와 Ni-MOF의 전류 밀도에 대한 성능을 비교한 것을 나타낸 것이다.17 shows a comparison of the performance with respect to the current density of the Ni-MOF/MnO2 hybrid composite and Ni-MOF prepared according to an embodiment of the present invention.
도 18은 본 발명의 일 실시예에 따라 제조된 Ni-MOF(0.05g)/MnO2 하이브리드 복합체에 대한 사이클 성능 결과를 나타낸 것이다.18 shows the cycle performance results for the Ni-MOF (0.05 g)/MnO 2 hybrid composite prepared according to an embodiment of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the present invention. However, the present invention may be embodied in several different forms and is not limited to the embodiments described herein.
제조예 1. 금속-유기 골격체(MOF)의 합성Preparation Example 1. Synthesis of metal-organic framework (MOF)
Ni-MOF인 Ni-HITP 분말은 공지된 방법으로 제조하였다. 20㎖ scintillation vial에서 탈기된 3 ㎖의 DMSO에 Ni(NO3)2.6H2O (32mg, 0.11mmol)와 14M NH4OH (0.7㎖)가 용해된 용액을 탈기된 3 ㎖의 DMSO에 HITP·6HCl (39mg, 0.07mmol)를 녹인 용액에 첨가하였다. Vial은 느슨하게 캡핑한 후 65℃에서 2시간 동안 교반없이 가열하였다. 혼합물은 원심분리하고, 용기를 옮긴 후 탈이온수로 2회 세척하고, 아세톤으로 1회 세척하였다. 고체 생성물은 진공에서 건조시켜 Ni3(HITP)2(HITP= hexaaminotriphenylene)을 수득하였다.Ni-HITP powder, which is Ni-MOF, was prepared by a known method. A solution of Ni(NO3)2.6H2O (32mg, 0.11mmol) and 14M NH4OH (0.7ml) dissolved in 3ml of DMSO degassed in a 20ml scintillation vial was added to 3ml of degassed DMSO with HITP 6HCl (39mg, 0.07). mmol) was added to the dissolved solution. The vial was loosely capped and heated at 65° C. for 2 hours without stirring. The mixture was centrifuged and the vessel was transferred and washed twice with deionized water and once with acetone. The solid product was dried in vacuo to obtain Ni3(HITP)2(HITP=hexaaminotriphenylene).
상기 제조방법을 통해 수득한 금속-유기 골격체SEM 이미지 사진을 도 2에 나타내었다. 도 2를 참조하면, 다공성의 MOF가 형성된 것을 확인할 수 있다.A photograph of the metal-organic framework SEM image obtained through the above preparation method is shown in FIG. 2 . Referring to FIG. 2 , it can be confirmed that a porous MOF is formed.
제조예 2. 금속산화물 시트의 합성Preparation Example 2. Synthesis of metal oxide sheet
본 발명에 따른 금속산화물 시트를 제조하기 위하여, 우선 2차원 구조를 갖는 벌크K0.45MnO2를 고상합성으로 합성을 하였다. 이후 3번이상의 1M HCl 로 처리하여 층안에 있는 K+이온을 제거하였다. 이후 산처리된 샘플을 TBAOH와 반응하여 MnO2 나노시트 콜로이드를 얻었다. 교환 가능한 양성자의 양과 관련하여 적용된 TBAOH의 용량 H0.13MnO*0.7H2O에서. 즉, TBA+/H+의 몰비는 TBA 수산화물의 농도를 변화시켜 약 3정도로 변화시켰다. 적층된 이산화망간(MnO2)을 준비하고, 적층된 이산화망간을 스웰링(swelling)시켜 각각의 이산화망간 층을 박리(exfoliated)시킴으로써 박리된 이산화망간 시트를 수득하였다. In order to prepare a metal oxide sheet according to the present invention, first, bulk K 0.45 MnO 2 having a two-dimensional structure was synthesized by solid-state synthesis. Thereafter, K+ ions in the layer were removed by treatment with 1M HCl three or more times. Then, the acid-treated sample was reacted with TBAOH to obtain a MnO2 nanosheet colloid. The dose of TBAOH applied in relation to the amount of exchangeable protons H at 0.13 MnO*0.7H 2 O. That is, the molar ratio of TBA+/H+ was changed to about 3 by changing the concentration of TBA hydroxide. Laminated manganese dioxide (MnO 2 ) was prepared, and each manganese dioxide layer was exfoliated by swelling the stacked manganese dioxide to obtain an exfoliated manganese dioxide sheet.
도 7은 본 발명의 일 실시예에 따른 금속산화물 시트를 포함하는 용액을 나타낸 사진(도 7a) 및 제조된 금속산화물 시트의 특성을 나타낸 사진 및 그래프(도 7b)이다. 도 7a를 참조하면 틴들현상이 나타나는 것을 확인할 수 있고, 망간산화물 나노시트가 잘 분산되어 있는 것을 확인할 수 있고, 또한 도 7b를 참조하면 망간 산화물의 박리화된 나노시트가 잘 형성되었음을 확인할 수 있다.7 is a photograph (FIG. 7A) showing a solution containing a metal oxide sheet according to an embodiment of the present invention, and a photograph and graph (FIG. 7B) showing the characteristics of the prepared metal oxide sheet. Referring to FIG. 7A , it can be seen that the Tyndall phenomenon appears, and it can be confirmed that the manganese oxide nanosheets are well dispersed, and referring to FIG. 7B , it can be confirmed that the exfoliated nanosheets of manganese oxide are well formed.
제조예 3. 금속카바이드 시트의 합성Preparation Example 3. Synthesis of metal carbide sheet
고순도 Ti3AlC2 블록이 무압력(pressureless) 소결에 의해 준비되었다. 1:1.1:2 비율의 TiH2, Al, TiC의 초기 분말을 12 시간 동안 볼 밀링하고 1400 °C에서 2시간 동안 아르곤 분위기에서 처리한 다음 블록을 분쇄하여 325-메쉬 체를 통과하였다. 그런 다음 1g의 Ti3AlC2 분말을 HF 용액에 첨가하고 혼합물을 60 °C에서 소정의 시간동안 교반했다. 산처리 후의 Ti3AlC2를 Formamide, Di-water, Methanol, Dimethyformamide 등의 용액에 넣어 분산시켜 준다. 가장 분산이 잘된 Formamide 용액+ Ti3C2와 Methanol 용액+ Ti3C2를 TEM 분석을 통해 분석을 진행하였다.A high-purity Ti 3 AlC 2 block was prepared by pressureless sintering. An initial powder of TiH 2 , Al, and TiC in a 1:1.1:2 ratio was ball milled for 12 hours, treated at 1400 °C for 2 hours in an argon atmosphere, and then the block was crushed and passed through a 325-mesh sieve. Then, 1 g of Ti 3 AlC 2 powder was added to the HF solution and the mixture was stirred at 60 °C for a predetermined time. Ti 3 AlC 2 after acid treatment is put in a solution such as Formamide, Di-water, Methanol, Dimethyformamide and dispersed. Formamide solution + Ti 3 C 2 and methanol solution + Ti 3 C 2 with the best dispersion were analyzed through TEM analysis.
상기 수득한 Ti3C2 나노시트를 포함하는 용액의 사진을 도 8f에 나타내었다. 또한, 상기 벌크형태의 Ti3AlC2의 SEM 사진을 도 8c에 나타내었으며, 팽창된 벌크형태의 Ti3C2의 SEM 사진을 도 8d에 나타내었고, 최종 수득한 Ti3C2 나노시트의 SEM 사진을 도 8e에 나타내었다. 도 8c 내지 8e를 참조하건대, 벌크형태의 Ti3AlC2는 HF 처리시 층간 사이가 확장된 것으로 보이고, 이는 층안에 있는 Al이 제거되고 층과 층사이에 전기적 반발력으로 인해 팽창된 것으로 확인되었다. 팽창된 벌크형태의 Ti3C2의 경우 각각의 시트 사이의 간격이 벌어져 층상구조를 가지고 있음을 확인할 수 있었다. 한편, 최종 수득된 Ti3C2 나노시트는 박리된 시트형태를 나타내고 있음을 확인할 수 있었다.A photograph of the solution including the obtained Ti 3 C 2 nanosheet is shown in FIG. 8f . In addition, the SEM photograph of Ti 3 AlC 2 in the bulk form is shown in FIG. 8c, the SEM image of Ti 3 C 2 in the expanded bulk form is shown in FIG. 8d, and the SEM of the finally obtained Ti 3 C 2 nanosheet. A photograph is shown in FIG. 8E . Referring to FIGS. 8c to 8e , it was confirmed that the bulk of Ti 3 AlC 2 was expanded between layers during HF treatment, which was confirmed that Al in the layer was removed and expanded due to the electrical repulsive force between the layers. In the case of the expanded bulk form of Ti 3 C 2 , it was confirmed that the gap between each sheet was widened to have a layered structure. On the other hand, it was confirmed that the finally obtained Ti 3 C 2 nanosheet exhibited a peeled sheet shape.
제조예 4. 금속수산화물 시트의 합성Preparation Example 4. Synthesis of metal hydroxide sheet
나노시트를 제조하기 위해서는 나이트레이트 형태(nitrate form)의 순수 Zn-Cr LDH가 필요하며 이를 합성하기 위해서, 이전에 보고된 문헌을 참조하여(Prevot, V.; Forano, C.; Besse, J. P. Inorg. Chem. 1998, 37, 4293-4301) 합성하였다. 우선 상온에서 Zn2+ (Zn(NO3)2·6H2O, 0.66M), Cr3+(Cr(NO3)3·9H2O, 0.33M), NaNO3(1.98M)를 몰비 2:1:3으로 물과 같은 극성 용매 중에서 직접적 공침에 의해 준비되었다. 공침할 때 2M NaOH 용액을 이용하여 천천히 pH 5.5±0.5로 맞추어 주었으며 카보네이트(carbonate)형태의 LDH 합성을 방지하기 위해서 N2 가스를 지속적으로 흘려주었다. pH를 맞춘 후 용액의 온도를 60 ℃로 유지하고 24시간 강렬히 교반하였다. 반응완료 후 원심분리기를 통해서 보라색 시료를 분리하였으며 증류수로 반응하지 않고 남은 이온을 없애기 위해서 여러 번 세척하였다. 분리된 젖은 분말을 60 ℃ 오븐에서 하루 동안 건조시켜 최종 Zn-Cr LDH 분말을 수득하였다.In order to prepare a nanosheet, pure Zn-Cr LDH in nitrate form is required, and in order to synthesize it, referring to previously reported literature (Prevot, V.; Forano, C.; Besse, J. P. Inorg) Chem. 1998, 37, 4293-4301) was synthesized. First, at room temperature, Zn2+ (Zn(NO3)2·6H2O, 0.66M), Cr3+ (Cr(NO3)3·9H2O, 0.33M), and NaNO3 (1.98M) were mixed in a polar solvent such as water in a molar ratio of 2: 1:3 It was prepared by direct co-precipitation. During co-precipitation, the pH was slowly adjusted to 5.5±0.5 using a 2M NaOH solution, and N2 gas was continuously flowed to prevent the synthesis of carbonate-type LDH. After adjusting the pH, the temperature of the solution was maintained at 60° C. and stirred vigorously for 24 hours. After completion of the reaction, the purple sample was separated through a centrifuge and washed several times with distilled water to remove unreacted remaining ions. The separated wet powder was dried in an oven at 60° C. for one day to obtain a final Zn-Cr LDH powder.
상기 합성된 층상구조인 Zn-Cr LDH 분말을 낱장의 LDH 나노시트로 유도하기 위한 박리화 과정을 이전 문헌(Li,L.; Ma, R.; Ebina,Y.; Iyi, N.; Sasaki, T. Chem. Mater. 2005, 17, 4386-4391)을 참조하여 합성하였다. N2 가스의 지속적인 버블링 하에서 포름아마이드 용액에 LDH 분말(0.5g~1g/L)을 격렬한 교반에 의하여 수행시켜 Zn-Cr LDH 나노시트를 수득하였다.The exfoliation process for inducing the synthesized layered structure Zn-Cr LDH powder into a sheet LDH nanosheet was described in the previous literature (Li, L.; Ma, R.; Ebina, Y.; Iyi, N.; Sasaki, T. Chem. Mater. 2005, 17, 4386-4391) was synthesized with reference. Zn-Cr LDH nanosheets were obtained by vigorously stirring LDH powder (0.5 g ~ 1 g/L) in a formamide solution under continuous bubbling of N2 gas.
도 9a은 본 발명의 일 실시예에 따라 제조된 금속수산화물 시트를 포함하는 용액을 나타낸 사진이고, 도 9b는 본 발명의 일 실시예에 따라 제조된 박리화된 금속산화물 나노시트의 TEM 이미지를 나타낸 것이다. 도 9a를 참조하면 ZnCr-LDH의 박리화된 ZrCr-LDH 나노시트 콜로이드의 틴들현상을 확인할 수 있고, 금속수산화물 나노시트가 잘 분산되어 있는 것을 확인할 수 있고, 또한 도 9b를 참조하면 박리화된 ZnCr-LDH 나노시트가 잘 형성되었음을 확인할 수 있다.Figure 9a is a photograph showing a solution containing a metal hydroxide sheet prepared according to an embodiment of the present invention, Figure 9b is a TEM image of the exfoliated metal oxide nanosheet prepared according to an embodiment of the present invention will be. Referring to FIG. 9A , it can be seen that the Tyndall phenomenon of the colloidal colloid of ZrCr-LDH exfoliated ZnCr-LDH can be confirmed, and it can be seen that the metal hydroxide nanosheet is well dispersed. Also, referring to FIG. 9B , the exfoliated ZnCr - It can be confirmed that the LDH nanosheet was well formed.
실시예 1. 하이브리드 복합체의 합성Example 1. Synthesis of hybrid complex
본 발명에 따른 하이브리드 복합체를 합성하기 위하여, 도 10에 나타낸 바와 같이 상기 제조예 2 내지 4에서 합성한 2차원 나노시트 용액 20 ml에 상기 제조예 1에서 합성한 금속-유기 골격체를 0.05g, 0.1g 각각 다른 중량으로 용매 하에서 반응시켜 하이브리드 복합체를 수득하였다. In order to synthesize the hybrid composite according to the present invention, as shown in FIG. 10, 0.05 g of the metal-organic framework synthesized in Preparation Example 1 in 20 ml of the two-dimensional nanosheet solution synthesized in Preparation Examples 2 to 4, A hybrid complex was obtained by reacting in a solvent with a different weight of 0.1 g.
실험예 1. 금속카바이드 및 하이브리드 복합체의 XRD 분석 및 SEM 분석Experimental Example 1. XRD analysis and SEM analysis of metal carbide and hybrid complexes
상기 제조예 3의 벌크 Ti3AlC2 및 Ti3C2 나노시트 금속카바이드의 XRD 분석을 수행하여 이의 결과를 도 8b에 나타내었으며, 아래서부터, simulated Ni-MOF, 환류법으로 합성한 Ni-MOF, 층상 벌크 K0.45MnO2, 박리화된 MnO2 나노시트, 및 Ni-MOF/MnO2 하이브리드 복합체의 XRD 분석을 수행하여 이의 결과를 도 11에 나타내었다. 우선, 도 8b을 참조하면, 상기 제조예 3의 벌크형태의 Ti3AlC2 및 Ti3C2 나노시트 각각의 피크를 확인하였으며, 이론적인 피크와 일치함을 확인할 수 있었다. 또한, 도 11을 참조하면, 시물레이션된 Ni-MOF의 피크들이 실제 합성된 Ni-MOF에서 나타나는 것을 확인할 수 있었고, 박리된 MnO2 시트의 경우 박리화가 잘 이루어져 개개의 낱장으로 분리되어 더 이상 규칙적인 배열이 사라져 K0.45MnO2의 규칙적인 주요 피크들이 사라졌음을 의미하고 따라서 피크가 비정질 구조 특징의 XRD 패턴으로 나타났다. 각각의 물질에 대한 피크 및 실시예에 따른 하이브리드 복합체(Ni 기반 MOF + 이산화망간 나노시트)의 피크를 확인하였으며, 이 또한 각각의 피크가 이론적인 피크와 일치함을 확인할 수 있었다.The XRD analysis of the bulk Ti 3 AlC 2 and Ti 3 C 2 nanosheet metal carbide of Preparation Example 3 was performed and the results are shown in FIG. 8b, from below, simulated Ni-MOF, Ni-MOF synthesized by reflux method , layered bulk K 0.45 MnO 2 , exfoliated MnO 2 nanosheets, and Ni-MOF/MnO 2 XRD analysis of the hybrid composite was performed, and the results are shown in FIG. 11 . First, referring to FIG. 8b , the peaks of Ti 3 AlC 2 and Ti 3 C 2 nanosheets in the bulk form of Preparation Example 3 were confirmed, and it was confirmed that they were consistent with the theoretical peaks. In addition, referring to FIG. 11 , it was confirmed that the simulated Ni-MOF peaks appeared in the actually synthesized Ni-MOF, and in the case of the exfoliated MnO 2 sheet, exfoliation was well performed and separated into individual sheets and no longer regular The alignment disappeared, indicating that the regular main peaks of K 0.45 MnO 2 disappeared, and thus the peak appeared as an XRD pattern of amorphous structure characteristics. The peak for each material and the peak of the hybrid composite (Ni-based MOF + manganese dioxide nanosheet) according to the example were confirmed, and it was also confirmed that each peak was consistent with the theoretical peak.
상기 수득한 하이브리드 복합체의 SEM 사진을 도 12(아래)에 나타내었으며, 도 12에 나타낸 바와 같이 상기 하이브리드 복합체는 다공성 금속-유기 골격체에 금속산화물 또는 금속카바이드 시트가 표면을 감싸듯이 랜덤하게 혼합되어 3차원 다공성 구조를 가지고 있음을 확인할 수 있었다.The SEM photograph of the obtained hybrid composite is shown in FIG. 12 (below), and as shown in FIG. 12, the hybrid composite is randomly mixed in a porous metal-organic framework with a metal oxide or metal carbide sheet covering the surface. It was confirmed that it has a three-dimensional porous structure.
실험예 2. 하이브리드 복합체의 원소 분석Experimental Example 2. Elemental Analysis of Hybrid Composites
도 13은 본 발명의 일 실시예에 따라 제조된 Ni-MOF/MnO2 하이브리드 복합체의 electron mapping을 나타낸 것이고, 도 14는 본 발명의 일 실시예에 따라 제조된 Ni-MOF/MnO2 하이브리드 복합체의 EDS 스펙트럼을 나타낸 것이다.13 shows electron mapping of the Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention, and FIG. 14 is an EDS spectrum of the Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention. is shown.
도 13 및 14를 참조하면, 본 발명의 하이브리드 복합체의 표면에 Ni, Mn 및 C가 고르게 분포되어 형성되어 있음을 관찰할 수 있었다.13 and 14, it was observed that Ni, Mn, and C were evenly distributed and formed on the surface of the hybrid composite of the present invention.
실험예 3. 하이브리드 복합체의 전기화학적 특성 분석Experimental Example 3. Electrochemical Characterization of Hybrid Composite
도 15와 도 16은 본 발명의 일 실시예에 따라 제조된 Ni-MOF/MnO2 하이브리드 복합체에 대한 전류에 따른 충방전 성능 결과를 나타낸 것이다. 구체적으로, 도 15는 Ni-MOF(0.05g)/MnO2 복합체의 전류에 따른 충방전 성능 결과를 나타내었고, 도 16은 Ni-MOF(0.1g)/MnO2 복합체의 전류에 따른 충방전 성능 결과를 나타낸 것이다. 도 17은 본 발명의 일 실시예에 따라 제조된 Ni-MOF/MnO2 하이브리드 복합체와 Ni-MOF의 전류 밀도에 대한 성능을 비교한 것을 나타낸 것이며, 도 18은 본 발명의 일 실시예에 따라 제조된 Ni-MOF/MnO2 하이브리드 복합체(Ni-MOF(0.05g)/MnO2)에 대한 사이클 성능 결과를 나타낸 것이다.15 and 16 show the charging/discharging performance results according to the current for the Ni-MOF/MnO2 hybrid composite prepared according to an embodiment of the present invention. Specifically, FIG. 15 shows the charging/discharging performance results according to the current of the Ni-MOF (0.05 g)/MnO 2 composite, and FIG. 16 is the charging/discharging performance according to the current of the Ni-MOF (0.1 g)/MnO 2 composite. the results are shown. 17 shows a comparison of the performance of the Ni-MOF/MnO 2 hybrid composite prepared according to an embodiment of the present invention with respect to the current density of Ni-MOF, and FIG. 18 is prepared according to an embodiment of the present invention It shows the cycle performance results for the Ni-MOF / MnO 2 hybrid composite (Ni-MOF (0.05 g) / MnO 2 ).
도 15 내지 19의 결과에 따르면, 본 발명의 하이브리드 복합체를 전극재로 활용하였을 경우, 금속-유기 골격체(MOF)만을 사용한 경우 대비, 용량 특성, 안정성, 쿨롱 효율, 정전용량, 전류 밀도 등의 관점에서 우수한 재료로 활용될 수 있음을 확인할 수 있다. According to the results of FIGS. 15 to 19, when the hybrid composite of the present invention is used as an electrode material, compared to the case where only a metal-organic framework (MOF) is used, capacity characteristics, stability, coulombic efficiency, capacitance, current density, etc. It can be confirmed that it can be used as an excellent material from the viewpoint.
이하, 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 의해 본 발명이 한정되지 않으며 본 발명은 후술할 청구범위의 의해 정의될 뿐이다.Hereinafter, the present invention will be described in more detail. However, the present invention may be embodied in various different forms, and the present invention is not limited by the embodiments described herein, and the present invention is only defined by the claims to be described later.
덧붙여, 본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, the terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the entire specification of the present invention, 'including' any component means that other components may be further included, rather than excluding other components, unless otherwise stated.
본원의 제 1 측면은,The first aspect of the present application is
복수의 금속-유기 골격체(MOF); 및 복수의 2차원 나노시트로서, 금속산화물 시트, 금속카바이드 시트, 및 금속수산화물 시트로 이루어지는 군에서 선택된 2차원 나노시트;를 포함하고, 상기 금속-유기 골격체는 3차원 형상이며, 상기 복수의 2차원 나노시트가 상기 금속-유기 골격체의 표면에 적층되는 것을 특징으로 하는 하이브리드 복합체를 제공한다.a plurality of metal-organic frameworks (MOFs); and a plurality of two-dimensional nanosheets, a two-dimensional nanosheet selected from the group consisting of a metal oxide sheet, a metal carbide sheet, and a metal hydroxide sheet, wherein the metal-organic framework has a three-dimensional shape, and the plurality of It provides a hybrid composite, characterized in that the two-dimensional nanosheet is laminated on the surface of the metal-organic framework.
이하, 본원의 제 1 측면에 따른 하이브리드 복합체에 대하여 도 1 내지 도 6을 참조하여 상세히 설명한다. Hereinafter, the hybrid composite according to the first aspect of the present application will be described in detail with reference to FIGS. 1 to 6 .
본원의 일 구현예에 있어서, 상기 하이브리드 복합체는 도 1에 나타낸 바와 같이 복수의 금속-유기 골격체(MOF) 및 복수의 2차원 금속산화물 또는 금속카바이드 시트를 포함한다. 따라서, 상기 하이브리드 복합체는 금속-유기 골격체(MOF)가 가지는 특유의 다공도(도 2의 SEM 이미지 참조) 및 금속산화물 시트 또는 금속카바이드 시트가 가지는 특유의 다공도를 모두 포함하며, 상기 금속-유기 골격체(MOF) 및 상기 금속산화물 또는 금속카바이드 시트가 랜덤하게 혼합되며 생성되는 3차원의 기공 또한 포함하기 때문에 매우 높은 다공도를 가지는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 금속-유기 골격체(MOF)는 3차원 형상이며, 상기 복수의 2차원 나노시트가 상기 금속-유기 골격체의 표면에 랜덤하게 적층되어 코어-쉘(Core-shell) 구조를 이루는 것을 특징으로 할 수 있다.In one embodiment of the present application, the hybrid composite includes a plurality of metal-organic frameworks (MOFs) and a plurality of two-dimensional metal oxide or metal carbide sheets as shown in FIG. 1 . Accordingly, the hybrid composite includes both the characteristic porosity of the metal-organic framework (MOF) (see the SEM image of FIG. 2 ) and the characteristic porosity of the metal oxide sheet or metal carbide sheet, and the metal-organic framework The sieve (MOF) and the metal oxide or metal carbide sheet may have very high porosity because they also include three-dimensional pores that are randomly mixed. In one embodiment of the present application, the metal-organic framework (MOF) has a three-dimensional shape, and the plurality of two-dimensional nanosheets are randomly stacked on the surface of the metal-organic framework to form a core-shell (Core-). shell) structure.
본원의 일 구현예에 있어서, 상기 금속-유기 골격체(MOF)는 1차원, 2차원 또는 3차원의 형태를 가지는 것일 수 있으며, 구체적으로 하기 화학식 1의 구조를 포함하는 것일 수 있다.In one embodiment of the present application, the metal-organic framework (MOF) may have a one-dimensional, two-dimensional, or three-dimensional form, and may specifically include the structure of Formula 1 below.
[화학식 1][Formula 1]
M-L-MM-L-M
상기 화학식 1에서, M은 금속이고, L은 유기 리간드이다.In Formula 1, M is a metal, and L is an organic ligand.
한편, 상기 M으로 표시되는 금속은 Ni, Cu, Fe, Sc, Ti, V, Cr, Mn, Co, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Uub 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속을 포함하는 것일 수 있으며, 바람직하게 Ni 또는 Cu를 포함하는 것일 수 있다. 이와 관련하여, 도 2에 나타낸 바와 같이, 상기 금속의 종류에 따라 상기 금속-유기 골격체(MOF)가 반도체적(semiconducting) 특성을 가질 수 있고, 금속 부분 및 리간드 부분을 통해 전자가 이동 가능할 수 있다.On the other hand, the metal represented by M is Ni, Cu, Fe, Sc, Ti, V, Cr, Mn, Co, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Lu, Hf , Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Uub, and combinations thereof. and may preferably include Ni or Cu. In this regard, as shown in FIG. 2 , depending on the type of the metal, the metal-organic framework (MOF) may have semiconducting properties, and electrons may move through the metal part and the ligand part. have.
본원의 일 구현예에 있어서, 상기 화학식 1에서 L로 표시되는 유기 리간드는 하기 화학식 2 내지 4의 구조 중 어느 하나를 포함하는 것일 수 있다.In one embodiment of the present application, the organic ligand represented by L in Formula 1 may include any one of the structures of Formulas 2 to 4 below.
[화학식 2][Formula 2]
Figure PCTKR2021017228-appb-img-000004
Figure PCTKR2021017228-appb-img-000004
상기 화학식 2에서, X1 내지 X4는 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고, X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X1 및 X3은 서로 동일하거나 상이할 수 있다.In Formula 2, X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH), or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are may be the same or different from each other.
[화학식 3][Formula 3]
Figure PCTKR2021017228-appb-img-000005
Figure PCTKR2021017228-appb-img-000005
상기 화학식 3에서, X1 내지 X4는 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고, X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X1 및 X3은 서로 동일하거나 상이하고, n은 0 내지 5의 정수일 수 있다.In Formula 3, X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH) or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are The same or different from each other, n may be an integer of 0 to 5.
[화학식 4][Formula 4]
Figure PCTKR2021017228-appb-img-000006
Figure PCTKR2021017228-appb-img-000006
상기 화학식 4에서, X1 내지 X6은 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고, X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X5 및 X6은 서로 동일하고, X1, X3 및 X5는 서로 동일하거나 상이하고, Y1 내지 Y6은 각각 독립적으로 탄소 또는 질소일 수 있다.In Formula 4, X1 to X6 are each independently an amine group (NH2), a carboxy group (COOH), or a hydroxyl group (OH), X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X5 and X6 are may be the same as each other, X1, X3 and X5 may be the same as or different from each other, and Y1 to Y6 may each independently be carbon or nitrogen.
본원의 일 구현예에 있어서, 상기 화학식 1 및 2에서 X1 내지 X4는 바람직하게 아민기(NH2)일 수 있으며, 상기 화학식 3에서 X1 내지 X6은 바람직하게 아민기(NH2)일 수 있으며, 따라서, 상기 화학식 3으로 표시되는 화합물은 오쏘-디아민기(ortho-diamine group)를 포함하는 것일 수 있다.In one embodiment of the present application, in Formulas 1 and 2, X1 to X4 may preferably be an amine group (NH2), and in Formula 3, X1 to X6 may preferably be an amine group (NH2), and thus, The compound represented by Formula 3 may include an ortho-diamine group.
본원의 일 구현예에 있어서, 상기 유기 리간드는 상기 화학식 1 내지 3에 나타낸 바와 같이 아릴 코어 및 금속과 배위결합 가능한 치환기를 포함하는 것일 수 있으며, 상기 유기 리간드에 포함된 치환기가 상기 금속과 각각 배위결합을 형성하는 것일 수 있다. 즉, 상기 화학식 1 및 2의 X1 내지 X4 또는 상기 화학식 3의 X1 내지 X6이 금속과 각각 배위결합을 형성하는 것일 수 있다. 한편, 상기 금속-유기 골격체(MOF)는 상기 화학식 1 또는 2로 표시되는 유기 리간드(제1 유기 리간드) 및 화학식 3으로 표시되는 유기 리간드(제2 유기 리간드)가 금속과 교차로 배위결합을 형성하는 것일 수 있다. 이 경우, 상기 금속-유기 골격체는 제1 유기 리간드 및 제2 유기 리간드가 하나의 금속을 중심으로 양쪽에 각각 배위결합을 형성하고 있는 것일 수 있으며, 상기 구조를 반복단위로 가짐으로써 확장된 구조를 가지는 것일 수 있다.In one embodiment of the present application, the organic ligand may include an aryl core and a substituent capable of coordinating with a metal as shown in Formulas 1 to 3, and the substituent included in the organic ligand is each coordinated with the metal. It may be to form a bond. That is, X1 to X4 of Formulas 1 and 2 or X1 to X6 of Formula 3 may form a coordination bond with a metal, respectively. On the other hand, in the metal-organic framework (MOF), the organic ligand (first organic ligand) represented by Formula 1 or 2 and the organic ligand (second organic ligand) represented by Formula 3 cross-coordinate with the metal. may be doing In this case, the metal-organic framework may be one in which the first organic ligand and the second organic ligand form a coordination bond on both sides of one metal as the center, and the structure is expanded by having the structure as a repeating unit may be to have
본원의 일 구현예에 있어서, 상기 금속-유기 골격체의 전기 전도도는 0.01 S·cm-1 이상인 것일 수 있다. 이때, 상기 금속-유기 골격체의 전기 전도도는 다결정 펠릿 형태 또는 다결정 필름 형태로 측정 가능한 것일 수 있다. 본원의 일 실시예에 따라 상기 금속-유기 골격체 펠릿의 전기 전도도는 0.01 S·cm-1 이상인 것일 수 있으며, 바람직하게는 0.01 S·cm-1 내지 10 S·cm-1 , 더욱 바람직하게는 1 S·cm-1 내지 5 S·cm-1 인 것일 수 있다. 또한, 상기 금속-유기 골격체 필름의 전기 전도도는 필름 평균 두께 500 nm 기준, 10 S·cm-1 이상인 것일 수 있으며, 바람직하게는 0.01 S·cm-1 내지 100 S·cm-1 , 더욱 바람직하게는 0.01 S·cm-1 내지 50 S·cm-1 인 것일 수 있다.In one embodiment of the present application, the electrical conductivity of the metal-organic framework may be 0.01 S·cm -1 or more. In this case, the electrical conductivity of the metal-organic framework may be measurable in the form of polycrystalline pellets or polycrystalline films. According to an embodiment of the present application, the electrical conductivity of the metal-organic framework pellets may be 0.01 S·cm -1 or more, preferably 0.01 S·cm -1 to 10 S·cm -1 , more preferably 1 S·cm -1 to 5 S·cm -1 may be. In addition, the electrical conductivity of the metal-organic framework film may be 10 S·cm -1 or more based on an average film thickness of 500 nm, preferably 0.01 S·cm -1 to 100 S·cm -1 , more preferably For example, it may be 0.01 S·cm -1 to 50 S·cm -1 .
즉, 상기 금속-유기 골격체의 유기 리간드는 pi-back 본딩(bonding)을 가지기 때문에 높은 전기 전도도를 가지는 것일 수 있다. 한편, 상기 pi back 본딩은 전자가 한 원자의 원자 궤도에서 다른 원자 또는 리간드의 π* 안티-본딩 궤도(anti-bonding orbital)로 이동하는 화학 개념으로서, 구체적으로, 유기 리간드에 포함된 아릴기에 의해 상기 본딩이 형성되는 것일 수 있다. That is, the organic ligand of the metal-organic framework may have high electrical conductivity because it has pi-back bonding. On the other hand, the pi back bonding is a chemical concept in which electrons move from an atomic orbital of one atom to a π* anti-bonding orbital of another atom or ligand. Specifically, by an aryl group included in an organic ligand The bonding may be formed.
본원의 일 구현예예 있어서, 상기 금속-유기 골격체의 총 기공부피는 0.01 cm3/g 내지 5.0 cm3/g인 것일 수 있으며, 상기 금속-유기 골격체는 평균 직경이 0.5 nm 내지 20 nm인 기공을 포함하는 것일 수 있다. 즉, 상기 금속-유기 골격체는 높은 다공도 및 기공 평균 직경을 가지기 때문에 이를 포함하는 하이브리드 복합체를 이차전지 또는 슈퍼커패시터와 같은 전기화학소자의 전극 활물질로 사용하게 되면 전해질의 흡장 및 탈장이 용이하여 상기 전기화학소자의 전기화학적 특성이 향상되는 것일 수 있다.In one embodiment of the present application, the total pore volume of the metal-organic framework may be 0.01 cm 3 /g to 5.0 cm 3 /g, and the metal-organic framework has an average diameter of 0.5 nm to 20 nm. It may include pores. That is, since the metal-organic framework has a high porosity and average pore diameter, when a hybrid composite including the same is used as an electrode active material of an electrochemical device such as a secondary battery or a supercapacitor, the occlusion and desorption of the electrolyte is easy. The electrochemical properties of the electrochemical device may be improved.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체는 복수의 2차원 나노시트로서, 금속산화물 시트, 금속카바이드 시트, 및 금속수산화물 시트로 이루어지는 군에서 선택된 2차원 나노시트를 포함하는 것일 수 있다. 이때, 상기 금속산화물 시트는 망간옥사이드(manganese oxide), 코발트옥사이드(cobalt oxdie), 루비듐옥사이드(rubidium oxide), 티타늄옥사이드(titanium oxide), 바나듐옥사이드(vanadium oxide), 아이언옥사이드(iron oxide), 니켈옥사이드(nickel oxide), 구리옥사이드(copper oxide), 징크옥사이드(zinc oxide), 지르코늄디옥사이드(zirconium dioxide), 몰리브데늄옥사이드(molybdenum oxide), 탄탈륨옥사이드(tantalum oxide) 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속산화물을 포함하는 것일 수 있으며, 바람직하게 망간옥사이드(manganese oxide) 또는 코발트옥사이드(cobalt oxdie)를 포함하는 것일 수 있다. 이때, 상기 금속산화물 시트는 도 4에 나타낸 제조공정을 따라 제조가능한, 2차원 구조 나노시트로 만들 수 있는 모든 금속 산화물이 가능한 것일 수 있다. 구체적으로, 우선 적층된 형태의 금속산화물에 삼차 부틸 알코올(tert-butyl alcohol, TBA) 및 아민(amine)의 혼합물 등을 처리하여 상기 혼합물을 금속산화물 층의 사이사이에 삽입시킨 후, 초음파 처리(sonication)를 통해 스웰링(swelling)시켜 각각의 금속산화물 층을 박리(exfoliated)시킴으로써 금속산화물 시트를 수득하는 것일 수 있다.In one embodiment of the present application, the hybrid composite is a plurality of two-dimensional nanosheets, and may include a two-dimensional nanosheet selected from the group consisting of a metal oxide sheet, a metal carbide sheet, and a metal hydroxide sheet. At this time, the metal oxide sheet is manganese oxide, cobalt oxide (cobalt oxdie), rubidium oxide (rubidium oxide), titanium oxide (titanium oxide), vanadium oxide (vanadium oxide), iron oxide (iron oxide), nickel Nickel oxide, copper oxide, zinc oxide, zirconium dioxide, molybdenum oxide, tantalum oxide and a metal oxide selected from the group consisting of combinations thereof, and preferably may include manganese oxide or cobalt oxide. In this case, the metal oxide sheet may be any metal oxide that can be manufactured into a two-dimensional nanosheet that can be manufactured according to the manufacturing process shown in FIG. 4 . Specifically, first, a mixture of tert-butyl alcohol (TBA) and amine is treated on a metal oxide in a laminated form, and the mixture is inserted between the metal oxide layers, followed by ultrasonic treatment ( Sonication) may be to obtain a metal oxide sheet by exfoliating each metal oxide layer by swelling (swelling).
한편, 상기 금속카바이드 시트는 티타늄카바이드(titanium carbide), 알루미늄카바이드(aluminum carbide), 크롬카바이드(chromium carbide), 징크카바이드(zinc carbide), 구리카바이드(copper carbide), 마그네슘카바이드(magnesium carbide), 지르코늄카바이드(zirconium carbide), 몰리브데늄카바이드(molybdenum carbide), 바나듐카바이드(vanadium carbide), 니오븀카바이드(niobium carbide), 아이언카바이드(iron carbide), 망간카바이드(manganese carbide), 코발트카바이드(cobalt carbide), 니켈카바이드(nickel carbide), 탄탈륨카바이드(tantalum carbide) 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속카바이드를 포함하는 것일 수 있으며, 바람직하게 티타늄카바이드(titanium carbide)를 포함하는 것일 수 있다. 이때, 상기 금속카바이드 시트는 도 5에 나타낸 제조공정을 따라 제조가능한 것일 수 있다. 구체적으로, 우선 벌크 형태의 층상형 결정구조를 가진 벌크 금속카바이드에 HF 등을 처리하여 각각의 금속카바이드 층이 벌어진 팽창된 금속카바이드를 수득하고, 상기 팽창된 금속카바이드에 플로오로암페타민(fluoroamphetamine, FA) 또는 디메틸포름아마이드(dimethylformamide, DMF) 등을 처리하여 박리된 금속카바이드 시트를 수득하는 것일 수 있다.On the other hand, the metal carbide sheet is titanium carbide (titanium carbide), aluminum carbide (aluminum carbide), chromium carbide (chromium carbide), zinc carbide (zinc carbide), copper carbide (copper carbide), magnesium carbide (magnesium carbide), zirconium Carbide (zirconium carbide), molybdenum carbide (molybdenum carbide), vanadium carbide (vanadium carbide), niobium carbide (niobium carbide), iron carbide (iron carbide), manganese carbide (manganese carbide), cobalt carbide (cobalt carbide) It may include a metal carbide selected from the group consisting of nickel carbide, tantalum carbide, and combinations thereof, and may preferably include titanium carbide. In this case, the metal carbide sheet may be manufactured according to the manufacturing process shown in FIG. 5 . Specifically, first, the bulk metal carbide having a layered crystal structure in the bulk form is treated with HF, etc. to obtain expanded metal carbide with each metal carbide layer separated, and fluoroamphetamine (FA) is added to the expanded metal carbide. ) or by treatment with dimethylformamide (DMF) or the like to obtain a peeled metal carbide sheet.
또한, 본원의 일 구현예에 있어서, 상기 금속 수산화물 시트는, 박리된 금속 이중층 수산화물(LDH) 나노시트이고, 상기 박리된 금속 이중층 수산화물 나노시트는 하기 [화학식 5]로 표시되는 화합물인 것을 특징으로 하는 것일 수 있다:In addition, in one embodiment of the present application, the metal hydroxide sheet is a peeled metal double layer hydroxide (LDH) nanosheet, and the peeled metal double layer hydroxide nanosheet is a compound represented by the following [Formula 5], characterized in that may be doing:
[화학식 5][Formula 5]
[MII (1-x)MIII x(OH)2][An-]x/n·zH2O;[M II (1-x) M III x (OH) 2 ][A n- ] x/n zH 2 O;
상기 화학식 1에서, MII는 Ca2+, Mg2+, Zn2+, Ni2+, Mn2+, Co2+, Fe2+, Cu2+ 및 이들의 혼합금속으로 이루어진 군에서 선택되며, MIII은 Fe3+, Al3+, Cr3+, Mn3+, Ga3+, Co3+, Ni3+ 및 이들의 혼합금속으로 이루어진 군에서 선택되고, An-는 수산화 이온(OH-), 질산 이온(NO3 -), PO4 3-, HPO4 2-, H2PO4 - 및 이들의 조합으로 이루어지는 군으로부터 선택되며, 0<x<1이고, z는 0.1 내지 15의 실수일 수 있다.In Formula 1, M II is selected from the group consisting of Ca 2+ , Mg 2+ , Zn 2+ , Ni 2+ , Mn 2+ , Co 2+ , Fe 2+ , Cu 2+ and mixed metals thereof, , M III is selected from the group consisting of Fe 3+ , Al 3+ , Cr 3+ , Mn 3+ , Ga 3+ , Co 3+ , Ni 3+ and mixed metals thereof, and A n- is a hydroxide ion ( OH - ), nitrate ions (NO 3 - ), PO 4 3- , HPO 4 2- , H 2 PO 4 - and combinations thereof, 0 < x < 1, and z is 0.1 to 15 may be a mistake in
도 6은 본 발명의 일 구현예에 따른 금속수산화물 시트의 제조공정을 나타낸 개략도이다. 상기 화학식 1로 표현되는 금속 이중층 수산화물(LDH) 나노시트는 공침 단계를 거친 후, 금속 이중층 수산화물염을 1-부탄올(1-butanol), 1-헥사놀(1-hexanol), 1-옥타놀(1-octanol), 1-데카놀(1-decanol), CCl4, 크실렌(xylene) 포름아마이드(HCONH2; formamide), 및 디메틸포름아마이드(dimethylformamide, DMF) 로 이루어지는 군으로부터 선택되는 1 종 이상의 용매와 반응시켜 양이온 표면 전하를 갖는 금속 이중층 수산화물염의 형태로 용해하는 단계(박리화)를 통하여 나노시트 형태로 제조될 수 있다. 상기 용매의 종류는 상기 금속 이중층 수산화물염을 용해할 수 있는 것이면 제한되는 것은 아니다.6 is a schematic diagram showing a manufacturing process of a metal hydroxide sheet according to an embodiment of the present invention. The metal double layer hydroxide (LDH) nanosheet represented by Formula 1 is co-precipitated, and then the metal double layer hydroxide salt is prepared by adding 1-butanol, 1-hexanol, 1-octanol ( 1-octanol), 1-decanol (1-decanol), CCl4, xylene formamide (HCONH2; formamide), and dimethylformamide (dimethylformamide, DMF) reaction with one or more solvents selected from the group consisting of It can be prepared in the form of a nanosheet through the step of dissolving (exfoliation) in the form of a metal double-layer hydroxide salt having a cationic surface charge. The type of the solvent is not limited as long as it can dissolve the metal double layer hydroxide salt.
또한, 상기 2차원 나노시트는 각각 복수의 나노기공을 포함하는 것일 수 있으며, 이때 상기 나노기공의 크기는 0.5 nm 내지 20 nm인 것일 수 있다.In addition, the two-dimensional nanosheet may each include a plurality of nanopores, wherein the size of the nanopores may be 0.5 nm to 20 nm.
본원의 일 구현예에 있어서, 상기 금속-유기 골격체 100 중량부 대비 상기 2차원 나노시트의 함량은 10 중량부 내지 300 중량부인 것일 수 있다. 바람직하게는, 상기 금속-유기 골격체 100 중량부 대비 상기 2차원 나노시트의 함량은 30 중량부 내지 200 중량부일 수 있다. 상기 범위를 만족함으로써, 2차원 나노시트가 상기 금속-유기 골격체의 표면을 적절히 둘러싸면서 적층되어, 우수한 구조적 안정성을 확보할 수 있다. 본원의 일 구현예에 있어서는, 상기 2차원 나노시트를 포함하고 분산된 용액 10 ml당 상기 금속-유기 골격체를 약 0.01 내지 0.2 g 포함되도록 반응시켜 하이브리드 복합체를 수득할 수 있으나, 이는 비제한적인 예시일 뿐, 이에 제한되는 것은 아니다.In one embodiment of the present application, the content of the two-dimensional nanosheet relative to 100 parts by weight of the metal-organic framework may be 10 parts by weight to 300 parts by weight. Preferably, the content of the two-dimensional nanosheet relative to 100 parts by weight of the metal-organic framework may be 30 parts by weight to 200 parts by weight. By satisfying the above range, the two-dimensional nanosheets are stacked while appropriately surrounding the surface of the metal-organic framework, thereby ensuring excellent structural stability. In one embodiment of the present application, a hybrid complex can be obtained by reacting the metal-organic framework to contain about 0.01 to 0.2 g of the metal-organic framework per 10 ml of the dispersed solution including the two-dimensional nanosheet, but this is not limited This is merely an example, and is not limited thereto.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체의 다공도는 30 vol% 내지 70 vol%인 것일 수 있다. 즉, 상기 하이브리드 복합체는 금속-유기 골격체(MOF)가 가지는 특유의 다공도 및 금속산화물 시트 또는 금속카바이드 시트가 가지는 특유의 다공도를 모두 포함하며, 상기 금속-유기 골격체(MOF) 및 상기 금속산화물 또는 금속카바이드 시트가 랜덤하게 혼합되며 생성되는 3차원의 기공 또한 포함하기 때문에 매우 높은 다공도를 가지는 것일 수 있다.In one embodiment of the present application, the porosity of the hybrid composite may be 30 vol% to 70 vol%. That is, the hybrid composite includes both the specific porosity of the metal-organic framework (MOF) and the specific porosity of the metal oxide sheet or metal carbide sheet, and the metal-organic framework (MOF) and the metal oxide Alternatively, the metal carbide sheet may have a very high porosity because it also includes three-dimensional pores that are randomly mixed and generated.
본원의 제 2 측면은,The second aspect of the present application is
상기 본원의 제 1 측면에 따른 하이브리드 복합체를 포함하는 전극 활물질을 제공한다.It provides an electrode active material comprising the hybrid composite according to the first aspect of the present application.
본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.Although a detailed description of the overlapping parts of the first aspect of the present application is omitted, the description of the first aspect of the present application may be equally applied even if the description thereof is omitted in the second aspect.
이하, 본원의 제 2 측면에 따른 상기 하이브리드 복합체를 포함하는 전극 활물질을 상세히 설명한다.Hereinafter, an electrode active material including the hybrid composite according to the second aspect of the present application will be described in detail.
본원의 일 구현예에 있어서, 상기 전극 활물질은 이차전지 또는 슈퍼커패시터 등에 사용되는 것일 수 있으며, 상기 하이브리드 복합체는 높은 다공도 및 우수한 전기 전도도를 가지기 때문에 상기 소자들의 에너지밀도 및 출력특성 등을 향상시키는 것일 수 있다. 구체적으로, 상기 하이브리드 복합체의 다공도는 30 vol% 내지 70 vol%인 것일 수 있으며, 전기 전도도는 0.01 S·cm-1 이상인 것일 수 있다.In one embodiment of the present application, the electrode active material may be used in a secondary battery or a supercapacitor, etc., and since the hybrid composite has high porosity and excellent electrical conductivity, the energy density and output characteristics of the devices are improved. can Specifically, the porosity of the hybrid composite may be 30 vol% to 70 vol%, and the electrical conductivity may be 0.01 S·cm −1 or more.
본원의 일 구현예에 있어서, 상기 전극 활물질은 전극 집전체 상에 형성되어 있는 것일 수 있다. 이때, 상기 전극 집전체는 소자의 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 종류에 크게 제한이 없는 것일 수 있다. 예를 들어, 상기 전극 집전체는 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인리스 스틸 표면에 탄소, 니켈, 티탄, 은 등이 표면 처리된 물질을 포함하는 것일 수 있다. 한편, 상기 전극 집전체는 약 3 μm 내지 500 μm의 두께를 가지는 것일 수 있으며, 상기 집전체의 표면에 미세한 요철을 형성하여 전극 활물질의 접착력을 높이는 것일 수 있다. 즉, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용 가능한 것일 수 있다.In one embodiment of the present application, the electrode active material may be formed on the electrode current collector. In this case, if the electrode current collector has conductivity without causing a chemical change in the device, there may be no restriction on the type of the current collector. For example, the electrode current collector may include stainless steel, aluminum, nickel, titanium, sintered carbon, or a material in which carbon, nickel, titanium, silver, or the like is surface-treated on the surface of aluminum or stainless steel. Meanwhile, the electrode current collector may have a thickness of about 3 μm to 500 μm, and may be to form fine irregularities on the surface of the current collector to increase the adhesion of the electrode active material. That is, it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
본원의 일 구현예에 있어서, 상기 전극 활물질은 활물질 이외에 도전재 및 바인더를 더 포함하는 것일 수 있다. 이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 소자의 화학적 변화를 유발하지 않고 전기 전도성을 갖는 것이라면 종류에 크게 제한이 없는 것일 수 있다. 예를 들어, 상기 도전재는 천연 흑연 또는 인조 흑연 등의 흑연, 카본블랙, 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프블랙, 서머블랙, 탄소섬유 등의 탄소계 물질, 구리, 니켈 알루미늄, 은 등의 금속 분말 또는 금속 섬유, 산화아연, 티탄산 칼륨 등의 도전성 위스키, 산화 티탄 등의 도전성 금속 산화물 또는 폴리페닐렌 유도체 등의 전도성 고분자 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 한편, 상기 도전재는 통상적으로 상기 전극 활물질 100 중량부 대비 1 중량부 내지 30 중량부의 함량으로 사용되는 것일 수 있다.In one embodiment of the present application, the electrode active material may further include a conductive material and a binder in addition to the active material. In this case, the conductive material is used to impart conductivity to the electrode, and as long as it has electrical conductivity without causing a chemical change in the device, there may be no restriction on the type of the conductive material. For example, the conductive material may include graphite such as natural graphite or artificial graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon-based materials such as carbon fiber, copper, nickel aluminum , a metal powder or metal fiber such as silver, a conductive whiskey such as zinc oxide and potassium titanate, a conductive metal oxide such as titanium oxide or a conductive polymer such as a polyphenylene derivative, and a material selected from the group consisting of combinations thereof may be doing Meanwhile, the conductive material may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
또한, 상기 바인더는 전극 활물질 입자들 간의 부착 및 전극 활물질과 집전체와의 접착력을 향상시키는 역할을 하는 것일 수 있다. 구체적으로, 상기 바인더는 예를 들어, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 한편, 상기 바인더는 통상적으로 상기 전극 활물질 100 중량부 대비 1 중량부 내지 30 중량부의 함량으로 사용되는 것일 수 있다.In addition, the binder may serve to improve adhesion between the electrode active material particles and adhesion between the electrode active material and the current collector. Specifically, the binder is, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile (polyacrylonitrile), Carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), alcohol It may include a material selected from the group consisting of ponylated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof and combinations thereof. Meanwhile, the binder may be typically used in an amount of 1 to 30 parts by weight based on 100 parts by weight of the electrode active material.
또한, 상기 슈퍼커패시터는 바람직하게 하이브리드 슈퍼커패시터인 것일 수 있으며, 상기 하이브리드 슈퍼커패시터는 구체적으로, 양극; 음극; 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하는 것일 수 있다. 이 경우, 상기 전극 활물질은 바람직하게 상기 음극의 활물질로 사용되는 것일 수 있으며, 상기 양극의 양극 활물질로는 활성탄이 사용되는 것일 수 있다.In addition, the supercapacitor may preferably be a hybrid supercapacitor, and the hybrid supercapacitor may specifically include a positive electrode; cathode; It may include a separator and an electrolyte interposed between the positive electrode and the negative electrode. In this case, the electrode active material may be preferably used as the active material of the negative electrode, and activated carbon may be used as the positive active material of the positive electrode.
본원의 일 구현예에 있어서, 상기 하이브리드 슈퍼커패시터에 사용되는 전해질은 유기용매에 염 및 첨가제를 혼합하여 사용하는 것일 수 있다. 이때, 상기 유기용매는 ACN(Acetonitrile), EC(Ethylene carbonate), PC(Propylene carbonate), DMC(Dimethyl carbonate), DEC(Diethyl carbonate), EMC(Ethylmethyl carbonate), DME(1,2-dimethoxyethane), GBL(γ-buthrolactone), MF(Methyl formate), MP(Methyl propionate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 또한, 상기 염은 0.8 내지 2 M가 사용되며, 리튬(Li)염과 비리튬(non-lithium)염을 혼합하여 사용하는 것일 수 있다. 상기 리튬(Li)염은 상기 음극 활물질, 즉 하이브리드 복합체의 구조 내로 삽입/탈리 반응을 수반하며, 이의 종류로는 LiBF4, LiPF6, LiClO4, LiAsF6, LiAlCl4, LiCF3SO3, LiN(SO2CF3)2, LiC(SO2CF3)3, LiBOB(Lithium bis(oxalato)borate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 또한, 상기 비리튬염은 탄소재질 첨가제의 표면적에 흡/탈착 반응을 수반하며, 리튬염에 0 내지 0.5 M를 혼합하여 사용하는 것일 수 있다. 이때, 상기 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate), TEMABF4(Triethylmethylammonium tetrafluorborate), SBPBF4(spiro-(1,1′)-bipyrrolidium tetrafluoroborate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 또한, 상기 탄소재질 첨가제는 VC(Vinylene Carbonate), VEC(Vinyl ethylene carbonate), FEC(Fluoroethylene carbonate) 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다.In one embodiment of the present application, the electrolyte used in the hybrid supercapacitor may be used by mixing a salt and an additive in an organic solvent. At this time, the organic solvent is ACN (Acetonitrile), EC (Ethylene carbonate), PC (Propylene carbonate), DMC (Dimethyl carbonate), DEC (Diethyl carbonate), EMC (Ethylmethyl carbonate), DME (1,2-dimethoxyethane), It may include a material selected from the group consisting of GBL (γ-buthrolactone), MF (Methyl formate), MP (Methyl propionate), and combinations thereof. In addition, 0.8 to 2 M of the salt is used, and a lithium (Li) salt and a non-lithium salt may be mixed and used. The lithium (Li) salt is accompanied by an insertion/desorption reaction into the structure of the anode active material, that is, the hybrid composite, and its types include LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , LiBOB (Lithium bis(oxalato)borate), and combinations thereof may be included. In addition, the non-lithium salt is accompanied by an adsorption/desorption reaction on the surface area of the carbon material additive, and may be used by mixing 0 to 0.5 M with the lithium salt. In this case, the non-lithium salt contains a material selected from the group consisting of TEABF 4 (Tetraethylammonium tetrafluoroborate), TEMABF 4 (Triethylmethylammonium tetrafluorborate), SBPBF 4 (spiro-(1,1′)-bipyrrolidium tetrafluoroborate) and combinations thereof. may be doing In addition, the carbon material additive may include a material selected from the group consisting of VC (Vinylene Carbonate), VEC (Vinyl ethylene carbonate), FEC (Fluoroethylene carbonate), and combinations thereof.
본원의 일 구현예에 있어서, 상기 세퍼레이터는 양극과 음극 사이에 위치되어 양극과 음극이 서로 물리적으로 접촉되어 전기적으로 쇼트(short)되는 것을 방지하며, 다공성을 갖는 물질이 사용되는 것일 수 있다. 예를 들어, 상기 분리막은 폴리프로필렌계, 폴리에틸렌계, 폴리올레핀계 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. In one embodiment of the present application, the separator is positioned between the positive electrode and the negative electrode to prevent the positive electrode and the negative electrode from being in physical contact with each other and from being electrically shorted, and a material having a porosity may be used. For example, the separator may include a material selected from the group consisting of polypropylene-based, polyethylene-based, polyolefin-based, and combinations thereof.
본원의 일 구현예에 있어서, 상기 구성을 가진 하이브리드 슈퍼커패시터는 음극 활물질로서 하이브리드 복합체를 사용하기 때문에 높은 전기 전도도를 가지며, 탄소재질 첨가제의 높은 비표면적으로 인하여 용량이 개선되어 높은 에너지밀도 및 출력특성을 가지는 것일 수 있다. 즉, 상기 하이브리드 복합체에 형성된 다수의 공간에 탄소재질 첨가제가 삽입되어 이를 포함하는 하이브리드 슈퍼커패시터가 우수한 전기 전도도, 정전용량 및 출력특성을 나타내는 것일 수 있다.In one embodiment of the present application, the hybrid supercapacitor having the above configuration has high electrical conductivity because the hybrid composite is used as the negative electrode active material, and the capacity is improved due to the high specific surface area of the carbon material additive, so that high energy density and output characteristics may be to have That is, a carbon material additive is inserted into a plurality of spaces formed in the hybrid composite, and a hybrid supercapacitor including the same may exhibit excellent electrical conductivity, capacitance, and output characteristics.
본원의 일 구현예에 있어서, 상기 하이브리드 복합체는 슈퍼커패시터 또는 이차전지의 전극 활물질 이외에도 물정화용 촉매, 항암제, 면역결핍 바이러스 치료제, 곰팡이 및 박테리아 감염 치료제, 말라리아 치료제, 각종 약물전달 물질, 광촉매, 센서, 항공우주 물질 등 다양한 분야에 있어서 적용이 가능한 바, 상업적으로 매우 유용한 물질로서 사용될 수 있다.In one embodiment of the present application, the hybrid complex is a catalyst for water purification, anticancer agent, immunodeficiency virus treatment agent, fungal and bacterial infection treatment agent, malaria treatment agent, various drug delivery materials, photocatalyst, sensor, Since it can be applied in various fields such as aerospace materials, it can be used as a commercially very useful material.

Claims (12)

  1. 복수의 금속-유기 골격체(MOF); 및a plurality of metal-organic frameworks (MOFs); and
    복수의 2차원 나노시트로서, 금속산화물 시트, 금속카바이드 시트, 및 금속수산화물 시트로 이루어지는 군에서 선택된 2차원 나노시트;A plurality of two-dimensional nanosheets comprising: a two-dimensional nanosheet selected from the group consisting of a metal oxide sheet, a metal carbide sheet, and a metal hydroxide sheet;
    를 포함하고, including,
    상기 금속-유기 골격체는 3차원 형상이며, 상기 복수의 2차원 나노시트가 상기 금속-유기 골격체의 표면에 적층되는 것을 특징으로 하는 하이브리드 복합체.The metal-organic framework has a three-dimensional shape, and the plurality of two-dimensional nanosheets are laminated on a surface of the metal-organic framework.
  2. 제1항에 있어서,According to claim 1,
    상기 금속-유기 골격체는 하기 화학식 1의 구조를 포함하는 것인 하이브리드 복합체:The metal-organic framework is a hybrid complex comprising the structure of Formula 1 below:
    [화학식 1][Formula 1]
    M-L-MM-L-M
    (상기 화학식 1에서,(In Formula 1,
    M은 금속이고,M is a metal,
    L은 유기 리간드로서 하기 화학식 2 내지 4의 구조 중 어느 하나를 포함한다.)L is an organic ligand and includes any one of the structures of Formulas 2 to 4 below.)
    [화학식 2][Formula 2]
    Figure PCTKR2021017228-appb-img-000007
    Figure PCTKR2021017228-appb-img-000007
    (상기 화학식 2에서,(In Formula 2,
    X1 내지 X4는 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고,X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH) or a hydroxyl group (OH),
    X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X1 및 X3은 서로 동일하거나 상이하다.)X1 and X2 are the same as each other, X3 and X4 are the same as each other, and X1 and X3 are the same or different from each other.)
    [화학식 3][Formula 3]
    Figure PCTKR2021017228-appb-img-000008
    Figure PCTKR2021017228-appb-img-000008
    (상기 화학식 3에서, (In Formula 3,
    X1 내지 X4는 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고,X1 to X4 are each independently an amine group (NH2), a carboxy group (COOH) or a hydroxyl group (OH),
    X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X1 및 X3은 서로 동일하거나 상이하고,X1 and X2 are the same as each other, X3 and X4 are the same as each other, X1 and X3 are the same as or different from each other,
    n은 0 내지 5의 정수이다.)n is an integer from 0 to 5.)
    [화학식 4][Formula 4]
    Figure PCTKR2021017228-appb-img-000009
    Figure PCTKR2021017228-appb-img-000009
    (상기 화학식 4에서,(In Formula 4,
    X1 내지 X6은 각각 독립적으로 아민기(NH2), 카복시기(COOH) 또는 히드록시기(OH)이고,X1 to X6 are each independently an amine group (NH2), a carboxy group (COOH) or a hydroxyl group (OH),
    X1 및 X2는 서로 동일하고, X3 및 X4는 서로 동일하고, X5 및 X6은 서로 동일하고,X1 and X2 are identical to each other, X3 and X4 are identical to each other, X5 and X6 are identical to each other,
    X1, X3 및 X5는 서로 동일하거나 상이하고,X1, X3 and X5 are the same as or different from each other,
    Y1 내지 Y6은 각각 독립적으로 탄소 또는 질소이다.)Y1 to Y6 are each independently carbon or nitrogen.)
  3. 제2항에 있어서,3. The method of claim 2,
    상기 M은 Ni, Cu, Fe, Sc, Ti, V, Cr, Mn, Co, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Uub 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속을 포함하는 것인 하이브리드 복합체.M is Ni, Cu, Fe, Sc, Ti, V, Cr, Mn, Co, Zn, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Lu, Hf, Ta, W, Re , Os, Ir, Pt, Au, Hg, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Uub, and a hybrid complex comprising a metal selected from the group consisting of combinations thereof.
  4. 제1항에 있어서,According to claim 1,
    상기 금속산화물 시트는 망간옥사이드(manganese oxide), 코발트옥사이드(cobalt oxdie), 루비듐옥사이드(rubidium oxide), 티타늄옥사이드(titanium oxide), 바나듐옥사이드(vanadium oxide), 아이언옥사이드(iron oxide), 니켈옥사이드(nickel oxide), 구리옥사이드(copper oxide), 징크옥사이드(zinc oxide), 지르코늄디옥사이드(zirconium dioxide), 몰리브데늄옥사이드(molybdenum oxide), 탄탈륨옥사이드(tantalum oxide) 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속산화물을 포함하는 것인 하이브리드 복합체. The metal oxide sheet is manganese oxide, cobalt oxide, rubidium oxide, titanium oxide, vanadium oxide, iron oxide, nickel oxide ( nickel oxide, copper oxide, zinc oxide, zirconium dioxide, molybdenum oxide, tantalum oxide And a hybrid composite comprising a metal oxide selected from the group consisting of combinations thereof.
  5. 제1항에 있어서,According to claim 1,
    상기 금속카바이드 시트는 티타늄카바이드(titanium carbide), 알루미늄카바이드(aluminum carbide), 크롬카바이드(chromium carbide), 징크카바이드(zinc carbide), 구리카바이드(copper carbide), 마그네슘카바이드(magnesium carbide), 지르코늄카바이드(zirconium carbide), 몰리브데늄카바이드(molybdenum carbide), 바나듐카바이드(vanadium carbide), 니오븀카바이드(niobium carbide), 아이언카바이드(iron carbide), 망간카바이드(manganese carbide), 코발트카바이드(cobalt carbide), 니켈카바이드(nickel carbide), 탄탈륨카바이드(tantalum carbide) 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속카바이드를 포함하는 것인 하이브리드 복합체.The metal carbide sheet is titanium carbide, aluminum carbide, chromium carbide, zinc carbide, copper carbide, magnesium carbide, zirconium carbide ( zirconium carbide, molybdenum carbide, vanadium carbide, niobium carbide, iron carbide, manganese carbide, cobalt carbide, nickel carbide (nickel carbide), tantalum carbide (tantalum carbide), and a hybrid composite comprising a metal carbide selected from the group consisting of combinations thereof.
  6. 제1항에 있어서,According to claim 1,
    상기 금속 수산화물 시트는, 박리된 금속 이중층 수산화물(LDH) 나노시트이고,The metal hydroxide sheet is an exfoliated metal double layer hydroxide (LDH) nanosheet,
    상기 박리된 금속 이중층 수산화물 나노시트는 하기 [화학식 5]로 표시되는 화합물인 것을 특징으로 하는 하이브리드 복합체:The exfoliated metal double-layered hydroxide nanosheet is a hybrid composite, characterized in that it is a compound represented by the following [Formula 5]:
    [화학식 5][Formula 5]
    [MII (1-x)MIII x(OH)2][An-]x/n·zH2O;[M II (1-x) M III x (OH) 2 ][A n- ] x/n zH 2 O;
    (상기 화학식 1에서, MII는 Ca2+, Mg2+, Zn2+, Ni2+, Mn2+, Co2+, Fe2+, Cu2+ 및 이들의 혼합금속으로 이루어진 군에서 선택되며, (In Formula 1, M II is selected from the group consisting of Ca 2+ , Mg 2+ , Zn 2+ , Ni 2+ , Mn 2+ , Co 2+ , Fe 2+ , Cu 2+ and mixed metals thereof becomes,
    MIII은 Fe3+, Al3+, Cr3+, Mn3+, Ga3+, Co3+, Ni3+ 및 이들의 혼합금속으로 이루어진 군에서 선택되고, M III is selected from the group consisting of Fe 3+ , Al 3+ , Cr 3+ , Mn 3+ , Ga 3+ , Co 3+ , Ni 3+ and mixed metals thereof,
    An-는 수산화 이온(OH-), 질산 이온(NO3 -), PO4 3-, HPO4 2-, H2PO4 - 및 이들의 조합으로 이루어지는 군으로부터 선택되며,A n- is selected from the group consisting of hydroxide ions (OH - ), nitrate ions (NO 3 - ), PO 4 3- , HPO 4 2- , H 2 PO 4 - and combinations thereof,
    0<x<1이고, z는 0.1 내지 15의 실수이다)0<x<1, and z is a real number from 0.1 to 15)
  7. 제1항에 있어서,According to claim 1,
    상기 금속-유기 골격체와 2차원 나노시트는 각각 복수의 나노기공을 포함하며,The metal-organic framework and the two-dimensional nanosheet each include a plurality of nanopores,
    상기 나노기공의 크기는 0.5 nm 내지 20 nm인 것인 하이브리드 복합체.The size of the nanopores is a hybrid composite of 0.5 nm to 20 nm.
  8. 제1항에 있어서,According to claim 1,
    상기 금속-유기 골격체 100 중량부 대비 상기 2차원 나노시트의 함량은 10 중량부 내지 300 중량부인 것인 하이브리드 복합체.The content of the two-dimensional nanosheet relative to 100 parts by weight of the metal-organic framework is 10 parts by weight to 300 parts by weight of the hybrid composite.
  9. 제1항에 있어서,According to claim 1,
    상기 하이브리드 복합체의 다공도는 30 vol% 내지 70 vol%인 것인 하이브리드 복합체.The hybrid composite will have a porosity of 30 vol% to 70 vol% of the hybrid composite.
  10. 제1항에 있어서,The method of claim 1,
    상기 하이브리드 복합체의 전기 전도도는 0.01 S·cm-1 이상인 것인 하이브리드 복합체.The electrical conductivity of the hybrid composite is 0.01 S·cm -1 or more of the hybrid composite.
  11. 제1항에 따른 하이브리드 복합체를 포함하는 촉매.A catalyst comprising the hybrid complex according to claim 1 .
  12. 제1항에 따른 하이브리드 복합체를 포함하는 소자용 전극.An electrode for a device comprising the hybrid composite according to claim 1 .
PCT/KR2021/017228 2020-11-24 2021-11-23 Hybrid composite comprising metal-organic framework (mof) and two-dimensional sheet WO2022114714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200158871A KR102366563B1 (en) 2020-11-24 2020-11-24 Hybrid composite comprising metal-organic framework and two-dimensional sheet
KR10-2020-0158871 2020-11-24

Publications (1)

Publication Number Publication Date
WO2022114714A1 true WO2022114714A1 (en) 2022-06-02

Family

ID=80495384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017228 WO2022114714A1 (en) 2020-11-24 2021-11-23 Hybrid composite comprising metal-organic framework (mof) and two-dimensional sheet

Country Status (2)

Country Link
KR (1) KR102366563B1 (en)
WO (1) WO2022114714A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115193482A (en) * 2022-08-08 2022-10-18 江苏盛剑环境设备有限公司 Composite catalyst, preparation method and application thereof
CN115594223A (en) * 2022-10-25 2023-01-13 广东邦普循环科技有限公司(Cn) Modified lithium ion sieve, manganese dioxide adsorbent, preparation method and application of manganese dioxide adsorbent, and method for extracting lithium from salt lake
CN115975488A (en) * 2023-01-06 2023-04-18 上海天阳钢管有限公司 High-conversion-rate sensitized solar power generation coating and preparation method thereof
CN116351473A (en) * 2023-02-27 2023-06-30 北京工业大学 Metal organic frame-manganese dioxide composite material and application thereof in decomposing ozone

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591194B1 (en) * 2021-08-13 2023-10-20 연세대학교 산학협력단 A method of manufacturing metal-organic frameworks nanosheets, metal-organic frameworks manufactured using the method and gas separation membrane comprising the same
CN114715954B (en) * 2022-03-21 2023-06-20 东北电力大学 Preparation method and application of NiMn-LDH material after three-dimensional flower-sphere-shaped partial vulcanization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140071993A (en) * 2014-05-14 2014-06-12 이화여자대학교 산학협력단 Mesoporous nanohybrid, preparing method of the same, and photocatalyst including the same
KR20150117228A (en) * 2014-04-09 2015-10-19 이화여자대학교 산학협력단 Super capacitor electrode material and preparing method thereof
KR20170091655A (en) * 2014-12-04 2017-08-09 누맷 테크놀로지스, 인코포레이티드 Porous polymers for the abatement and purification of electronic gas and the removal of mercury from hydrocarbon streams
KR20180043061A (en) * 2016-10-19 2018-04-27 한국에너지기술연구원 Self-assembled 3D hybrid structure, method for preparing the same, and photocatalysts using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150117228A (en) * 2014-04-09 2015-10-19 이화여자대학교 산학협력단 Super capacitor electrode material and preparing method thereof
KR20140071993A (en) * 2014-05-14 2014-06-12 이화여자대학교 산학협력단 Mesoporous nanohybrid, preparing method of the same, and photocatalyst including the same
KR20170091655A (en) * 2014-12-04 2017-08-09 누맷 테크놀로지스, 인코포레이티드 Porous polymers for the abatement and purification of electronic gas and the removal of mercury from hydrocarbon streams
KR20180043061A (en) * 2016-10-19 2018-04-27 한국에너지기술연구원 Self-assembled 3D hybrid structure, method for preparing the same, and photocatalysts using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOSA JOSHUA, BENNETT TIMOTHY, NELMS KATHERINE, LIU BRANDON, TOVAR ROBERTO, LIU YANGYANG: "Metal–Organic Framework Hybrid Materials and Their Applications", CRYSTALS, vol. 8, no. 8, pages 1 - 23, XP055934436, DOI: 10.3390/cryst8080325 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115193482A (en) * 2022-08-08 2022-10-18 江苏盛剑环境设备有限公司 Composite catalyst, preparation method and application thereof
CN115594223A (en) * 2022-10-25 2023-01-13 广东邦普循环科技有限公司(Cn) Modified lithium ion sieve, manganese dioxide adsorbent, preparation method and application of manganese dioxide adsorbent, and method for extracting lithium from salt lake
CN115975488A (en) * 2023-01-06 2023-04-18 上海天阳钢管有限公司 High-conversion-rate sensitized solar power generation coating and preparation method thereof
CN116351473A (en) * 2023-02-27 2023-06-30 北京工业大学 Metal organic frame-manganese dioxide composite material and application thereof in decomposing ozone

Also Published As

Publication number Publication date
KR102366563B1 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2022114714A1 (en) Hybrid composite comprising metal-organic framework (mof) and two-dimensional sheet
Xia et al. Freestanding Co3O4 nanowire array for high performance supercapacitors
WO2021091323A1 (en) Two-dimensional ni-organic framework/rgo composite and electrode for secondary battery or super-capacitor comprising same
EP2541664B1 (en) Negative electrode and lithium battery including the negative electrode
WO2015065095A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
KR101137375B1 (en) Secondary particle and lithium battery comprising the same
WO2015041450A1 (en) Porous silicon-based anode active material, and lithium secondary battery containing same
KR20160024610A (en) Electrolyte Membrane for energy storage device, energy storage device including the same, and method for preparing the lectrolyte membrane for energy storage device
WO2014010970A1 (en) High density anode active material and preparation method thereof
WO2017034093A1 (en) Ultra-high output, ultra-long-lifespan lithium secondary battery negative electrode material using layered structure of porous graphene and metal oxide nanoparticles, and method for preparing same
WO2017111566A1 (en) Negative electrode active material having improved output characteristics and electrode for electrochemical device, containing negative electrode active material
WO2019216713A1 (en) Lithium metal secondary battery with improved safety, and battery module including same
WO2019212153A1 (en) Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same
KR20110088214A (en) Negative active material containing super-conductive nanoparticle coated with high capacity negative material and lithium battery comprising same
KR102521281B1 (en) Hybrid composite comprising metal-organic framework and two-dimensional metal carbide sheet and manufacturing method thereof
KR102375865B1 (en) Metal organic frameworks comprising nikel, and Preparation method thereof, Electrode and Energy storage device comprising the same
CN116190633B (en) Layered oxide positive electrode material, preparation method thereof, positive electrode composition, sodium ion secondary battery and application
KR20220058789A (en) Metal organic framework-coated lithium-metal oxide particle amd method for preparing thereof
WO2014061973A1 (en) Method for preparing silicon oxide
EP4016673A1 (en) Negative electrode, electrochemical device containing same and electronic device
WO2013187707A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
US20220271281A1 (en) Anode material, electrochemical device and electronic device comprising the same
US20220199988A1 (en) Anode material, electrochemical device and electronic device comprising the same
WO2022108413A1 (en) Method for preparing hybrid composite from ti-based metal-organic framework
KR20220032441A (en) Composition for three-dimensional lamination, electrode comprising the same, and method for manufacturing electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898540

Country of ref document: EP

Kind code of ref document: A1