WO2022114368A1 - 뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치 - Google Patents

뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치 Download PDF

Info

Publication number
WO2022114368A1
WO2022114368A1 PCT/KR2020/018970 KR2020018970W WO2022114368A1 WO 2022114368 A1 WO2022114368 A1 WO 2022114368A1 KR 2020018970 W KR2020018970 W KR 2020018970W WO 2022114368 A1 WO2022114368 A1 WO 2022114368A1
Authority
WO
WIPO (PCT)
Prior art keywords
relation
rule
triple
knowledge
variable
Prior art date
Application number
PCT/KR2020/018970
Other languages
English (en)
French (fr)
Inventor
박영택
노재승
박현규
신원철
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Publication of WO2022114368A1 publication Critical patent/WO2022114368A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/022Knowledge engineering; Knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models

Definitions

  • the present invention relates to a method and apparatus for completing knowledge through neuro-symbolic-based relation embedding.
  • the knowledge graph is a network that expresses the relationship between data and is applied to artificial intelligence technology and is used in various ways.
  • the deep learning method requires a large amount of learning data due to the data-based processing method and has a problem in that it is impossible to explain the result.
  • the missing knowledge can be completed through the well-reflected knowledge graph, but there is a problem in that a lot of time and money for the expert are incurred in order to provide the relation expression and rules for the large-capacity knowledge graph.
  • the relationship expression and rules must be modified according to the changed knowledge.
  • the present invention intends to propose a knowledge completion method and apparatus through neurosymbol-based relation embedding capable of efficiently and accurately completing knowledge.
  • an apparatus for completing knowledge using neurosymbols comprising: a processor; and a memory connected to the processor, wherein the relation and entity of triple data included in the incomplete knowledge graph and the relation included in the parameterized rule are embedded in a multidimensional space, and when a target triple for link connection is input , update the embedding value of a relation included in the parameterized rule through a backward chaining-based neurosymbolic unification process, and one or more paths including a combination of relations that satisfy the target triple through the update store program instructions executable by the processor to generate, generate a speculation rule that most semantically matches the target triple using the one or more paths, and connect the missing link through the generated speculation rule.
  • a knowledge completion device is provided.
  • the parameterized rule includes a conclusion term including a first relation and a plurality of variables, and a premise term including a second relation and a plurality of variables, wherein the program instructions include: the relation of the target triple and the first A permutation set may be obtained by updating the embedding value of the first relation by comparing the similarity of the relations, and binding a plurality of entities of the target triple to the plurality of variables, respectively.
  • the program instructions may determine a relation of triple data included in the incomplete knowledge graph to be compared with the second relation by using the obtained permutation set.
  • the premise term includes first and second premise terms, the conclusion term includes a first relation, a first variable, and a second variable, the first premise term includes a relation 2-1 and a first variable, and A third variable may be included, and the second premise may include a relation 2-2 and a third variable and a second variable.
  • the permutation set is obtained by binding the first variable to a subject entity of the target triple, and binding the second variable to an object entity of the target triple, wherein the program instructions include: Searching for triple data with the incomplete knowledge graph in the incomplete knowledge graph, comparing the similarity between the relation of the searched triple data and the 2-1 relation, and binding the third variable to the object entity of the searched triple data to replace the The set can be updated.
  • the program instructions may calculate an average value of embedding values of relation combinations included in each of the one or more paths, and apply the average value to a cost function to determine one path for generating the inference rule.
  • a relation of triple data included in an incomplete knowledge graph and a relation included in an entity and a parameterized rule are embedded in a multidimensional space step; updating an embedding value of a relation included in the parameterized rule through a neuro-symbolic unification process based on backward chaining when a target triple for link connection is input; generating one or more paths including a combination of relations satisfying the target triple through the update; generating an inference rule that most semantically matches the target triple using the one or more paths; and connecting the missing link through the generated inference rule.
  • a knowledge completion system using a neurosymbol, an incomplete knowledge graph
  • a neurosymbol an incomplete knowledge graph
  • a backward chaining-based neurosymbolic unification process a neuro-symbolic integration module for updating an embedding value of a relation included in the parameterized rule through , and generating one or more paths including a combination of relations satisfying the target triple through the update; and a knowledge completion module that is generated using the one or more paths and connects the missing links using an inference rule that most semantically matches the target triple.
  • FIG. 1 is a diagram showing the configuration of a system of a knowledge completion device according to an exemplary embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a simple example of the unification process according to the present embodiment.
  • FIG. 3 is a diagram illustrating a neuro-symbolic integration process using a parameterized rule according to the present embodiment.
  • 4 to 5 are diagrams showing positive data and negative data according to the present embodiment.
  • FIG. 6 is a view for explaining a knowledge completion process according to the present embodiment.
  • FIG. 7 is a diagram showing the configuration of the knowledge completion apparatus according to the present embodiment.
  • the present invention performs knowledge completion automatically by explicitly extracting implicit rules from data of a knowledge graph using a neuro-symbolic method.
  • FIG. 1 is a diagram showing the configuration of a system of a knowledge completion device according to an exemplary embodiment of the present invention.
  • the knowledge completion device may include a Neuro-Symbolic Unification Module 100 and a Knowledge Completion Module 110 .
  • Neuro-symbolic integration module 100 includes triple data of incomplete knowledge graph (Incomplete KG, 102) and parameterized rule (Parameterized Rule, ), and embeds the relation and entity of triple data and the relation included in the parameterized rule in the multidimensional space.
  • the relation ( ) and the embedding value of the relation included in the parameterized rule when a target triple for link connection is input, generate one or more paths including a combination of relations that satisfy the target triple through the update, and use the one or more paths to be the most meaningful to the target triple Generate logically consistent inference rules.
  • the triple data includes a relation corresponding to an entity such as a subject and an object and a predicate
  • the neurosymbolic integration module 100 includes the relation of the target triple and the parameterized rule. Compare relation and similarity.
  • the neuro-symbolic integration module 100 sets an arbitrary triple as a target triple for the parameterized rule, and performs a neuro-symbolic integration process from the set target triple.
  • the final output is relation information for a rule that can derive a target triple.
  • the relation of the parameterized rule is learned through the similarity calculation for “relation-relation”, and a rule that satisfies the target triple is derived.
  • the knowledge completion module 110 performs automatic completion of knowledge through an inference engine using the derived rule.
  • Prolog's backward chaining algorithm is used to prove that the target triple is true for a given target triple (query).
  • the backward chaining algorithm process mainly consists of two processes, and in this process, the neuro-symbolic integration process described above is performed together.
  • the neuro-symbolic integration module 100 performs an OR process to obtain a substitution set including entities included in the target triple corresponding to the conclusion of the rule by utilizing all rules and data (facts) of the knowledge graph.
  • the rule of nationality(X,Y):- placeOfBirth(X,Y) may consist of nationality(X,Y) as a conclusion term and BornIn(X,Y) as a premise term.
  • the neuro-symbolic integration module 100 When the integration is successfully performed in the OR process, the neuro-symbolic integration module 100 performs an AND process to update the permutation set satisfying the premise of the rule.
  • a recursive call is performed that performs an AND process on the first premise and calls an OR process again.
  • FIG. 2 is a diagram illustrating a simple example of the unification process according to the present embodiment.
  • the target triple is nationality(kim, korea)
  • the given rule is equal to nationality(X,Y) :- BornIn(X,Y)
  • the variable X in the rule's conclusion term, nationality(X,Y) is kim
  • variable Y is bound to the value of korea to obtain the permutation set ⁇ X/kim, Y/korea ⁇ .
  • the permutation set obtained in advance is applied as it is and the entity and the variable are bound through parameter passing. You can convert the variable in the premise to a constant (embedding value of the bound entity).
  • the rule for the target triple can be inferred by converting BornIn(X,Y), which is the premise of the rule, into triple data such as BornIn(kim, korea), and searching for the corresponding triple in the knowledge graph.
  • the neurosymbolic integration process it is possible to derive a path including a combination of relations constituting a parameterized rule that satisfies the target triple.
  • the neurosymbolic integration process is only possible when the relation in the rule template matches the relation existing in the actual knowledge graph, it is not suitable for learning for inference rule creation.
  • the rule template is reconstructed by parameterizing arbitrary relations p, q, and r as #1, #2, #3.
  • FIG. 3 is a diagram illustrating a neuro-symbolic integration process using a parameterized rule according to the present embodiment.
  • the finally derived rule grandFatherOf(X,Y) - fatherOf(X,Z), parentOf(Z,Y).
  • the rule template is changed into a parameterized rule form such as #1(X,Y) :- #2(X,Z), #3(Z,Y).
  • the parameterized rule may include the first relation of the conclusion clause as #1, the relation of the premise clause as #2, #3, and may include a plurality of variables X, Y, and Z.
  • the embedding value is updated through a neuro-symbolic integration process based on backward chaining.
  • the update of the embedding value is parameter passing through comparison of the similarity between the relation of the target triple and the first relation of the parameterized rule, and the comparison between the variable included in the parameterized rule and the entity of the triple data of the incomplete knowledge graph. , may be performed through a similarity comparison process between the relation of the triple data of the knowledge graph determined according to the parameter passing and the second and third relations.
  • the embedding value of the first relation is updated by comparing the similarity between the relation of the target triple and the first relation, and a plurality of entities of the target triple are respectively bound to the plurality of variables. Obtain a permutation set.
  • the conclusion term includes the first relation (#1), the first variable (X), and the second variable (Y)
  • the first premise term includes the 2-1 relation (#2) and the first variable ( X) and a third variable (Z)
  • the second premise includes a 2-2 relation (#3) and a third variable (Z) and a second variable (Y)
  • the permutation set is Searching in the incomplete knowledge graph for triple data obtained by binding a first variable to a subject entity of the target triple, and binding the second variable to an object entity of the target triple, and having the same subject entity as the first variable
  • the relation of the searched triple data is compared with the degree of similarity of the 2-1 relation
  • the third variable is bound to the object entity of the searched triple data to update the permutation set.
  • Path information including the order for the first to third relations may be derived through the update of the embedding value, and when the target triple is true using the derived relation path information, the first to third relations and the true relation The similarity is learned to converge to close to 1, and the similarity of a false relation to 0.
  • the difference between the present invention and the existing integration process is that the relation of the parameterized rule is changed to have an arbitrary relation, so it is possible to calculate the similarity by embedding the grandFatherOf of the target triple and the relation parameter #1 of the first rule term do.
  • Variables in a parameterized rule are bound to the subject or object entity of the target triple.
  • the integration process is performed on triple data whose subject entity is ABE from the knowledge graph
  • the first triple of the knowledge graph, fatherOf(ABE, HOMER) is derived.
  • the similarity calculation for the relation can be performed through the obtained triple data.
  • ⁇ (#1, grandfahterOf), (#2, fatherOf), (#3, parentOf) ⁇ is set as one path and can be inferred as a rule, #1 is grandfahterOf, #2 is fatherOf, and #3 is A similarity to parentOf is learned close to 1.
  • a neurosymbolic integration process is performed by selecting an arbitrary triple from the knowledge graph as the target triple.
  • the relation of the performed result is used as positive data, and is used in group units in consideration of the path including the relation combination that reflects the order.
  • relation #1, #2, #3 of the parameterized rule for any relation p, q, r and the number of cases of the rule derived for the target triple is k
  • relation information about one rule that satisfies can be expressed as
  • 4 to 5 are diagrams showing positive data and negative data according to the present embodiment.
  • the i-th path derived from the target triple is like ⁇ (#1, grandfahterOf), (#2, fatherOf), (#3, parentOf) ⁇ , Because the result is true, it is generated as positive data.
  • negative data is generated by adding a relation combination that does not exist in each path group derived through the neuro-symbolic integration process.
  • negative data is a relation combination that cannot be derived from the integration process, such as ⁇ (#1, grandfahterOf), (#2, grandfahterOf), (#3, childOf) ⁇ .
  • a cost function that minimizes an error is defined in order to learn rule inference for knowledge completion.
  • Learning data is a set of relations derived through neurosymbolic integration. and for the knowledge graph K, the positive data are all relations of L about form, and the value of relation similarity for each term becomes 1, and negative data is all relation of L about form, and negative log-likelihood is used so that the value of the similarity of the relation for each term becomes 0.
  • the average value of the relation for each derived path is calculated. Since one path contains multiple relations used in a rule, their average value represents the characteristic of the rule.
  • a plurality of paths obtained through the neuro-symbolic integration process are all true, and in order to satisfy them all through a given rule template, the relation of the parameterized rules is augmented and processed. It uses the method of learning by taking the highest value from the path of one rule and selecting the smallest value from multiple paths.
  • FIG. 6 is a view for explaining a knowledge completion process according to the present embodiment.
  • #1(X,Y) - #
  • rules such as grandFatherOf(X,Y) :- fatherOf(X,Z), parentOf(Z,Y) can be extracted.
  • FIG. 7 is a diagram showing the configuration of the knowledge completion apparatus according to the present embodiment.
  • the knowledge completion apparatus may include a processor 700 and a memory 702 .
  • the processor 700 may include a central processing unit (CPU) or other virtual machine capable of executing a computer program.
  • CPU central processing unit
  • the memory 702 may include a non-volatile storage device such as a fixed hard drive or a removable storage device.
  • the removable storage device may include a compact flash unit, a USB memory stick, and the like.
  • Memory 702 may also include volatile memory, such as various random access memories.
  • Such a memory 702 stores program instructions executable by the processor 700 for the processes performed by the neuro-symbolic integration module 100 and the knowledge completion module 102 described above.
  • the program instructions according to the present embodiment embed a relation and entity of triple data included in the incomplete knowledge graph and a relation included in a parameterized rule in a multidimensional space, and when a target triple for link connection is input, Backward Through the chaining-based neurosymbolic unification process, the embedding value of the relation included in the parameterized rule is updated, and one or more paths including a combination of relations satisfying the target triple are generated through the update, , generates an inference rule that most semantically matches the target triple using the one or more paths, and connects the missing link through the generated inference rule.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

본 발명은 뉴로 심볼릭을 이용한 지식완성 방법 및 장치를 개시한다. 본 발명에 따르면, 프로세서; 및 상기 프로세서에 연결되는 메모리를 포함하되, 불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션 및 엔티티와, 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩하고, 링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 상기 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하고, 상기 업데이트를 통해 상기 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하고, 상기 하나 이상의 경로를 이용하여 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 생성하고, 상기 생성된 추론 규칙을 통해 누락된 링크를 연결하도록, 상기 프로세서에 의해 실행 가능한 프로그램 명령어들을 저장하는 지식완성 장치가 제공된다.

Description

뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치
본 발명은 뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치에 관한 것이다.
지식 그래프는 데이터들 간의 관계를 표현한 네트워크로 인공지능 기술에 접목되어 다양하게 활용되고 있지만, 엔티티 또는 엔티티 사이의 링크가 누락되어 지식의 불완전성에 대한 문제가 존재한다.
상기한 문제점을 해결하기 위해 자동 지식완성 기법 연구가 중요하게 요구되며, 임베딩 기법을 사용하거나 딥러닝을 활용한 연구와 온톨로지를 이용한 심볼릭 규칙 추론을 통한 지식완성 수행과 같은 다양한 연구들이 진행되었다.
이러한 방식을 통해 효율적으로 자동 지식완성을 수행하지만 딥러닝 방식은 데이터 기반의 처리 방식으로 인해 대량의 학습 데이터가 요구되며, 결과에 대한 설명이 불가능하다는 문제점이 있다.
그리고 심볼릭 추론 방식을 이용하는 대다수의 연구들은 온톨로지를 통해 지식의 관계에 대하여 정의하고, 이를 규칙 기반 시맨틱 추론으로 지식완성을 수행한다.
전문가에 의해 정의된 규칙을 활용하기 때문에 잘 반영된 지식 그래프를 통해 누락된 지식을 완성할 수 있지만 대용량의 지식 그래프에 대한 관계 표현 및 규칙을 제공하기 위해서는 전문가의 많은 시간과 비용이 발생하는 문제점이 존재하며, 새로운 지식이나 기존 지식에 대한 변경이 발생할 때마다 관계 표현 및 규칙을 변경된 지식에 맞게 수정해야하는 문제점이 존재한다.
상기한 종래기술의 문제점을 해결하기 위해, 본 발명은 효율적이며 정확한 지식완성을 수행할 수 있는 뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치를 제안하고자 한다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 뉴로 심볼릭을 이용한 지식완성 장치로서, 프로세서; 및 상기 프로세서에 연결되는 메모리를 포함하되, 불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션 및 엔티티와, 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩하고, 링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 상기 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하고, 상기 업데이트를 통해 상기 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하고, 상기 하나 이상의 경로를 이용하여 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 생성하고, 상기 생성된 추론 규칙을 통해 누락된 링크를 연결하도록, 상기 프로세서에 의해 실행 가능한 프로그램 명령어들을 저장하는 지식완성 장치가 제공된다.
상기 파라미터화된 규칙은 제1 릴레이션 및 복수의 변수를 포함하는 결론 항과, 제2 릴레이션 및 복수의 변수를 포함하는 전제 항으로 구성되고, 상기 프로그램 명령어들은, 상기 목표 트리플의 릴레이션과 상기 제1 릴레이션의 유사도를 비교하여 상기 제1 릴레이션의 임베딩 값을 업데이트하고, 상기 목표 트리플의 복수의 엔티티들을 상기 복수의 변수에 각각 바인딩하여 치환 집합을 획득할 수 있다.
상기 프로그램 명령어들은, 상기 획득된 치환 집합을 이용하여 상기 제2 릴레이션과 유사도 비교 대상이 되는 상기 불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션을 결정할 수 있다.
상기 전제 항은 제1 및 제2 전제 항을 포함하고, 상기 결론 항은 제1 릴레이션, 제1 변수 및 제2 변수를 포함하고, 상기 제1 전제 항은 제2-1 릴레이션 및 제1 변수 및 제3 변수를 포함하고, 상기 제2 전제 항은 제2-2 릴레이션 및 제3 변수 및 제2 변수를 포함할 수 있다.
상기 치환 집합은 상기 제1 변수를 상기 목표 트리플의 주어 엔티티와 바인딩하고, 상기 제2 변수를 상기 목표 트리플의 목적어 엔티티와 바인딩하여 획득되며, 상기 프로그램 명령어들은, 상기 제1 변수와 동일한 주어 엔티티를 갖는 트리플 데이터를 상기 불완전 지식 그래프에서 탐색하고, 상기 탐색된 트리플 데이터의 릴레이션과 상기 제2-1 릴레이션의 유사도를 비교하고, 상기 제3 변수를 상기 탐색된 트리플 데이터의 목적어 엔티티와 바인딩하여 상기 치환 집합을 업데이트할 수 있다.
상기 프로그램 명령어들은, 상기 하나 이상의 경로 각각에 포함된 릴레이션 조합의 임베딩 값의 평균값을 계산하고, 상기 평균값을 비용 함수에 적용하여 상기 추론 규칙 생성을 위한 하나의 경로를 결정할 수 있다.
본 발명의 다른 측면에 따르면, 프로세서 및 메모리를 포함하는 뉴로 심볼릭을 이용한 지식완성 방법으로서, 불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션 및 엔티티와 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩하는 단계; 링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 상기 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하는 단계; 상기 업데이트를 통해 상기 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하는 단계; 상기 하나 이상의 경로를 이용하여 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 생성하는 단계; 및 상기 생성된 추론 규칙을 통해 누락된 링크를 연결하는 단계를 포함하는 지식완성 방법이 제공된다.
본 발명의 또 다른 측면에 따르면, 상기 방법을 수행하는 컴퓨터 판독 가능한 프로그램이 제공된다.
본 발명의 또 다른 측면에 따르면, 뉴로 심볼릭을 이용한 지식완성 시스템으로서, 불완전 지식 그래프; 상기 불완전 지식 그래프 포함된 트리플 데이터의 릴레이션 및 엔티티와 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩하고, 링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 상기 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하고, 상기 업데이트를 통해 상기 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하는 뉴로 심볼릭 통합 모듈; 및 상기 하나 이상의 경로를 이용하여 생성되며, 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 이용하여 누락된 링크를 연결하는 지식완성 모듈을 포함하는 지식완성 시스템이 제공된다.
본 발명에 따르면, 선택적으로 릴레이션을 임베딩하고, 파라미터 패싱을 통해 효율적이며 정확하게 지식완성을 수행할 수 있는 장점이 있다.
도 1은 본 발명의 바람직한 일 실시에에 따른 지식완성 장치의 시스템의 구성을 도시한 도면이다.
도 2는 본 실시예에 따른 통합(unification) 과정에 대한 간단한 예를 도시한 도면이다.
도 3은 본 실시예에 따른 파라미터화된 규칙을 이용한 뉴로 심볼릭 통합 과정을 도시한 도면이다.
도 4 내지 도 5는 본 실시예에 따른 positive 데이터와 negative 데이터를 도시한 도면이다.
도 6은 본 실시예에 따른 지식완성 과정을 설명하기 위한 도면이다.
도 7은 본 실시예에 따른 지식완성 장치의 구성을 도시한 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명은 뉴로 심볼릭 방식을 이용하여 지식 그래프의 데이터로부터 implicit한 규칙을 explicit하게 추출하여 자동으로 지식완성을 수행한다.
도 1은 본 발명의 바람직한 일 실시에에 따른 지식완성 장치의 시스템의 구성을 도시한 도면이다.
도 1에 도시된 바와 같이, 본 실시예에 따른 지식완성 장치는 뉴로 심볼릭 통합 모듈(Neuro-Symbolic Unification Module, 100) 및 지식완성 모듈(Knowledge Completion Module, 110)을 포함할 수 있다.
뉴로 심볼릭 통합 모듈(100)은 불완전 지식 그래프(Incomplete KG, 102)의 트리플 데이터와 파라미터화된 규칙(Parameterized Rule,
Figure PCTKR2020018970-appb-I000001
)을 입력 받고, 트리플 데이터의 릴레이션 및 엔티티와, 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩한다.
또한, 링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 파라미터화된 규칙의 릴레이션(
Figure PCTKR2020018970-appb-I000002
)과 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하고, 업데이트를 통해 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하며, 하나 이상의 경로를 이용하여 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 생성한다.
여기서, 트리플 데이터는 subject(주어), object(목적어)와 같은 엔티티와 predicate에 해당하는 릴레이션을 포함하며, 본 실시예에 따른 뉴로 심볼릭 통합 모듈(100)은 목표 트리플의 릴레이션과 파라미터화된 규칙의 릴레이션과 유사도를 비교한다.
본 실시예에 따른 뉴로 심볼릭 통합 모듈(100)은 파라미터화된 규칙에 대해 임의의 트리플을 목표 트리플로 설정하고, 설정된 목표 트리플로부터 뉴로 심볼릭 통합 과정을 수행한다.
최종 출력은 목표 트리플을 도출할 수 있는 규칙에 대한 릴레이션 정보이다.
수집된 릴레이션 정보는 릴레이션에 대한 임베딩 과정을 거친 후, “릴레이션-릴레이션”에 대한 유사도 계산을 통해 파라미터화된 규칙의 릴레이션을 학습하여, 목표 트리플을 만족하는 규칙을 유도한다.
이후, 지식완성 모듈(110)은 유도된 규칙을 이용한 추론 엔진을 통해 지식의 자동 완성을 수행한다.
본 실시예에 따르면, 주어진 목표 트리플(질의)에 대하여 목표 트리플이 참이 되도록 증명하기 위해 Prolog의 Backward chaining 알고리즘을 사용한다.
Backward chaining 알고리즘 과정은 크게 2가지 과정으로 진행되며, 이 과정에서는 앞서 설명한 뉴로 심볼릭 통합 과정을 함께 수행하게 된다.
뉴로 심볼릭 통합 모듈(100)은 지식 그래프의 모든 규칙과 데이터(facts)를 활용하여 규칙의 결론에 해당하는 목표 트리플에 포함된 엔티티를 포함하는 치환(substitution) 집합을 얻는 OR 과정을 수행한다.
여기서, nationality(X,Y) :- placeOfBirth(X,Y)의 규칙은 결론 항인 nationality(X,Y)와 전제 항인 BornIn(X,Y)로 이루어질 수 있다.
OR 과정에서 통합이 성공적으로 수행되면, 뉴로 심볼릭 통합 모듈(100)은 규칙의 전제 항을 만족하는 치환 집합을 업데이트하기 위한 AND 과정을 수행한다.
규칙의 전제 항이 여러 개가 존재할 경우, 첫 번째 전제 항에 대하여 AND 과정을 수행하고 다시 OR 과정을 호출하는 재귀적 호출이 수행된다.
도 2는 본 실시예에 따른 통합(unification) 과정에 대한 간단한 예를 도시한 도면이다.
예를 들어 목표 트리플이 nationality(kim, korea)이고, 주어진 규칙이 nationality(X,Y) :- BornIn(X,Y)와 같을 때, 규칙의 결론 항인 nationality(X,Y)에서 변수 X는 kim, 변수 Y는 korea의 값으로 바인딩되어 치환 집합 {X/kim, Y/korea}을 얻을 수 있다.
규칙의 결론 항의 변수에 대해 상기와 같은 바인딩을 통해 구해진 치환 집합에서 규칙의 전제 항에서도 동일한 변수가 사용되면, 미리 구해진 치환 집합을 그대로 적용하여 엔티티와 변수를 바인딩하는 파라미터 패싱(Parameter passing)을 통해 전제 항의 변수를 상수(바인딩된 엔티티의 임베딩 값)로 변환할 수 있다.
이를 통해 규칙의 전제 항인 BornIn(X,Y)을 BornIn(kim, korea)와 같은 트리플 데이터로 변환하여 지식 그래프에서 해당 트리플을 검색하여 목표 트리플에 대한 규칙을 추론할 수 있다.
뉴로 심볼릭 통합 과정을 통해 목표 트리플을 만족하는 파라미터화된 규칙을 구성하는 릴레이션의 조합을 포함하는 경로를 도출할 수 있다. 하지만 뉴로 심볼릭 통합 과정은 규칙 템플릿의 릴레이션이 실제 지식 그래프에 존재하는 릴레이션과 일치하는 경우에만 가능하기 때문에 추론 규칙 생성을 위한 학습에는 부적합하다.
따라서 임의의 릴레이션 p, q, r를 #1, #2, #3와 같이 파라미터화하여 규칙 템플릿을 재구성한다.
도 3은 본 실시예에 따른 파라미터화된 규칙을 이용한 뉴로 심볼릭 통합 과정을 도시한 도면이다.
도 3을 참조하면, 최종적으로 도출되는 규칙 grandFatherOf(X,Y) :- fatherOf(X,Z), parentOf(Z,Y). 의 릴레이션을 임의의 릴레이션 정보와 학습하기 위해 규칙 템플릿을 #1(X,Y) :- #2(X,Z), #3(Z,Y)와 같이 파라미터화된 규칙 형태로 변경한다.
파라미터화된 규칙는 #1과 같이, 결론 항의 제1 릴레이션, #2, #3와 같이 전제 항의 릴레이션을 포함할 수 있고, 복수의 변수 X, Y, Z를 포함할 수 있다.
파라미터화된 규칙의 제1 내지 제3 릴레이션은 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합 과정을 통해 임베딩 값이 업데이트된다.
여기서, 임베딩 값의 업데이트는, 목표 트리플의 릴레이션과, 파라미터화된 규칙의제1 릴레이션의 유사도 비교 및 파라미터화된 규칙에 포함된 변수와 불완전 지식 그래프의 트리플 데이터의 엔티티와의 비교를 통한 파라미터 패싱, 상기한 파라미터 패싱에 따라 결정된 지식 그래프의 트리플 데이터의 릴레이션과 제2 및 제3 릴레이션의 유사도 비교 과정을 통해 수행될 수 있다.
보다 상세하게, 임베딩 값 업데이트에서, 목표 트리플의 릴레이션과 상기 제1 릴레이션의 유사도를 비교하여 상기 제1 릴레이션의 임베딩 값을 업데이트하고, 상기 목표 트리플의 복수의 엔티티들을 상기 복수의 변수에 각각 바인딩하여 치환 집합을 획득한다.
다음으로, 획득된 치환 집합을 이용하여 상기 제2 릴레이션과 유사도 비교 대상이 되는 상기 불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션을 결정한다.
도 3과 같이, 결론 항이 제1 릴레이션(#1), 제1 변수(X) 및 제2 변수(Y)를 포함하고, 제1 전제 항이 제2-1 릴레이션(#2) 및 제1 변수(X) 및 제3 변수(Z)를 포함하고, 제2 전제 항이 제2-2 릴레이션(#3) 및 제3 변수(Z) 및 제2 변수(Y)를 포함하는 경우, 치환 집합은 상기 제1 변수를 상기 목표 트리플의 주어 엔티티와 바인딩하고, 상기 제2 변수를 상기 목표 트리플의 목적어 엔티티와 바인딩하여 획득되며, 제1 변수와 동일한 주어 엔티티를 갖는 트리플 데이터를 상기 불완전 지식 그래프에서 탐색하고, 상기 탐색된 트리플 데이터의 릴레이션과 상기 제2-1 릴레이션의 유사도를 비교하고, 상기 제3 변수를 상기 탐색된 트리플 데이터의 목적어 엔티티와 바인딩하여 상기 치환 집합을 업데이트한다.
임베딩 값의 업데이트를 통해 제1 내지 제3 릴레이션에 대한 순서를 포함하는 경로 정보가 도출될 수 있고, 도출된 릴레이션 경로 정보를 이용하여 목표 트리플이 참인 경우, 제1 내지 제3 릴레이션과 참인 릴레이션의 유사도는 1에 가깝게, 거짓인 릴레이션의 유사도는 0으로 수렴하도록 학습된다.
본 발명과 기존의 통합 과정의 차이점은 파라미터화된 규칙의 릴레이션이 임의의 릴레이션을 가질 수 있도록 변경되었기 때문에 목표 트리플의 grandFatherOf와 첫 번째 규칙 항의 릴레이션 파라미터 #1에 대하여 임베딩하여 유사도를 계산하는 것이 가능하다.
파라미터화된 규칙의 변수는 목표 트리플의 주어 또는 목적어 엔티티로 바인딩된다.
따라서 규칙의 결론 항과 목표 트리플에 대한 릴레이션은 #1과 grandFatherOf에 대한 유사도 계산을 수행하고 엔티티에 대해서 X는 ABE, Y는 BART로 바인딩된다.
다음으로 전제 항에 대해서는 앞서 구한 치환 집합({X/ABE, Y/BART})을 이용하며, 동일한 변수인 X에 대해 파라미터 패싱을 적용한다. 규칙의 결론 항에서 X의 값이 ABE로 바인딩되었기 때문에 #2(ABE, Z)에 대하여 통합 과정을 수행한다.
지식 그래프로부터 subject 엔티티가 ABE인 트리플 데이터에 대해 통합 과정을 수행하면 지식 그래프의 1번 트리플인 fatherOf(ABE, HOMER)가 도출된다. 이렇게 구해진 트리플 데이터를 통해 릴레이션에 대한 유사도 계산을 수행할 수 있다.
다음으로 #2와 fatherOf 릴레이션 간의 유사도를 계산하고, 치환 집합에 변수 Z에 대한 값으로 HOMER가 저장된다. 이와 같은 과정으로 규칙이 끝날 때까지 재귀적으로 수행하게 되며 최종적으로 규칙의 결론 항 및 전제 항에 대한 릴레이션에 대한 정보를 도출하게 된다.
뉴로 심볼릭 통합의 결과인 릴레이션에 대한 정보는 규칙을 구성하는 각 항이 되기 때문에 규칙의 첫 항부터 마지막 항에 대한 정보까지 바뀌지 않아야 한다. 또한 각 항마다 릴레이션에 대한 유사도 계산은 지식 그래프의 크기가 커질수록 계산량이 증가하게 된다.
이를 방지하기 위해 뉴로 심볼릭 통합 과정에서 도출된 릴레이션의 조합을 규칙 항의 순서를 고려한 그룹으로 설정한다.
따라서 {(#1, grandfahterOf), (#2, fatherOf), (#3, parentOf)}가 하나의 경로로 설정되어 규칙으로 추론 가능하며, #1은 grandfahterOf, #2은 fatherOf, 그리고 #3은 parentOf와 유사도가 1에 가깝게 학습된다.
지식완성을 위한 규칙 추론 학습을 하기 위해 오차(loss)를 최소화하는 비용 함수(cost function)와 기존의 방식과 다르게 뉴로 심볼릭 통합 과정을 수행하기 때문에 학습 데이터에 대한 정의가 필요하다.
학습 데이터는 릴레이션의 경로에 대한 임베딩 학습을 수행해야 하기 때문에 지식 그래프에서 임의의 하나의 트리플을 목표 트리플로 선택하여 뉴로 심볼릭 통합 과정을 수행한다.
수행된 결과의 릴레이션은 positive 데이터로 사용되며, 순서를 반영한 릴레이션 조합을 포함하는 경로를 고려하여 그룹 단위로 사용된다.
임의의 릴레이션 p, q, r에 대한 파라미터화된 규칙의 릴레이션 #1, #2, #3와 목표 트리플에 대하여 도출되는 규칙의 경우의 수가 k개라 가정할 때, i번째 경로의 릴레이션은 목표 트리플을 만족하는 하나의 규칙에 대한 릴레이션 정보가 되며, 이를 표현하면
Figure PCTKR2020018970-appb-I000003
과 같이 표현할 수 있다.
도 4 내지 도 5는 본 실시예에 따른 positive 데이터와 negative 데이터를 도시한 도면이다.
도 4를 참조하면, 목표 트리플로부터 도출되는 i번째 경로는 {(#1, grandfahterOf), (#2, fatherOf), (#3, parentOf)}와 같으며, 뉴로 심볼릭 통합 과정을 통한 모든 과정의 결과는 참이기 때문에 positive 데이터로 생성한다.
반대로 도 5에 도시된 바와 같이, negative 데이터는 뉴로 심볼릭 통합 과정을 통해 도출된 각 경로 그룹에 존재하지 않는 릴레이션 조합을 추가하여 생성한다.
예를 들어, negative 데이터는 {(#1, grandfahterOf), (#2, grandfahterOf), (#3, childOf)}와 같이 통합 과정에서 도출될 수 없는 릴레이션 조합이다.
본 실시예에 따르면, 지식완성을 위한 규칙 추론 학습을 하기 위해 오차를 최소화하는 비용 함수를 정의한다. 학습 데이터는 뉴로 심볼릭 통합을 통해 도출되는 릴레이션의 집합은
Figure PCTKR2020018970-appb-I000004
이고 지식 그래프 K에 대하여 positive 데이터는 모든 L의 릴레이션
Figure PCTKR2020018970-appb-I000005
에 대해서
Figure PCTKR2020018970-appb-I000006
형태가 되며, 각 항에 대한 릴레이션 유사도의 값이 1이 되며, negative 데이터는 모든 L의 릴레이션
Figure PCTKR2020018970-appb-I000007
에 대해서
Figure PCTKR2020018970-appb-I000008
형태가 되며, 각항에 대한 릴레이션의 유사도의 값이 0이 되도록 하기 위해 negative log-likelihood를 사용한다.
뉴로 심볼릭 통합 과정의 결과는 여러 개의 릴레이션으로 구성된 다수의 경로 집합을 도출하기 때문에 0 또는 1의 유사도 값을 위해 몇 가지의 과정이 필요하며, 학습 데이터에 따라 아래와 같은 계산을 추가적으로 수행한다.
Figure PCTKR2020018970-appb-M000001
Figure PCTKR2020018970-appb-M000002
먼저 뉴로 심볼릭 통합 과정을 수행한 후, 도출되는 각 경로에 대한 릴레이션의 평균값을 계산한다. 하나의 경로는 규칙에 사용되는 다수의 릴레이션을 포함하기 때문에 이들의 평균값은 규칙에 대한 특징을 의미한다.
뉴로 심볼릭 통합 과정을 통해 구해진 다수의 경로는 모두 참이며, 주어진 규칙 템플릿을 통해 모두 만족시키기 위해 파라미터화된 규칙의 릴레이션을 증강(augment)하여 수행하여 처리한다. 하나의 규칙의 경로에서 가장 높은 값을 취하여 다수의 경로에서 최소값을 선택하여 학습하는 방법을 사용한다.
뉴로 심볼릭 통합 과정을 통해 도출된 경로를 학습 데이터로 사용하고 앞서 지정한 비용 함수를 뉴로 심볼릭 통합 과정 모듈(100)의 함수로 사용함으로써 릴레이션 임베딩 벡터에 대한 학습을 수행할 수 있다.
도 6은 본 실시예에 따른 지식완성 과정을 설명하기 위한 도면이다.
도 6을 참조하면, 다음과 같은 불완전한 지식 그래프가 있을 때, 뉴로 심볼릭 통합 모듈(100)을 통해 임베딩 벡터를 학습하고 주어진 규칙 템플릿에 알맞은 임베딩 벡터를 추출함으로써 #1(X,Y) :- #2(X,Z), #3(Z,Y) 형태인 규칙 템플릿에 대하여 grandFatherOf(X,Y) :- fatherOf(X,Z), parentOf(Z,Y) 와 같은 규칙 추출이 가능하다.
추출된 규칙을 통해 불완전한 지식 그래프에 대하여 규칙 추론을 수행하게 되면 grandFatherOf(jim, edward) :- fatherOf(jim, roth), parentOf(roth, edward) 와 같은 추론이 가능하게 되며, 이를 통해 불완전 지식 그래프에서 누락되었던 grandFatherOf(jim, edward) 에 대한 링크 연결이 가능하게 된다.
뉴로 심볼릭 통합 모듈(100)을 통해 다양한 형태의 규칙 템플릿을 학습하고 이에 대한 규칙 추출을 통해 추출된 규칙을 사용한 추론을 사용하게 되면 불완전한 지식 그래프에 대하여 좋은 성능의 지식완성을 수행할 수 있게 된다.
도 7은 본 실시예에 따른 지식완성 장치의 구성을 도시한 도면이다.
도 7에 도시된 바와 같이, 본 실시예에 따른 지식완성 장치는 프로세서(700) 및 메모리(702)를 포함할 수 있다.
프로세서(700)는 컴퓨터 프로그램을 실행할 수 있는 CPU(central processing unit)나 그밖에 가상 머신 등을 포함할 수 있다.
메모리(702)는 고정식 하드 드라이브나 착탈식 저장 장치와 같은 불휘발성 저장 장치를 포함할 수 있다. 착탈식 저장 장치는 컴팩트 플래시 유닛, USB 메모리 스틱 등을 포함할 수 있다. 메모리(702)는 각종 랜덤 액세스 메모리와 같은 휘발성 메모리도 포함할 수 있다.
이와 같은 메모리(702)에는 상기한 뉴로 심볼릭 통합 모듈(100) 및 지식완성 모듈(102)이 수행하는 과정을 위해, 프로세서(700)에 의해 실행 가능한 프로그램 명령어들이 저장된다.
본 실시예에 따른 프로그램 명령어들은, 불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션 및 엔티티와, 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩하고, 링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 상기 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하고, 상기 업데이트를 통해 상기 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하고, 상기 하나 이상의 경로를 이용하여 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 생성하고,상기 생성된 추론 규칙을 통해 누락된 링크를 연결한다.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.

Claims (10)

  1. 뉴로 심볼릭을 이용한 지식완성 장치로서,
    프로세서; 및
    상기 프로세서에 연결되는 메모리를 포함하되,
    불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션 및 엔티티와, 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩하고,
    링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 상기 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하고,
    상기 업데이트를 통해 상기 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하고,
    상기 하나 이상의 경로를 이용하여 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 생성하고,
    상기 생성된 추론 규칙을 통해 누락된 링크를 연결하도록,
    상기 프로세서에 의해 실행 가능한 프로그램 명령어들을 저장하는 지식완성 장치.
  2. 제1항에 있어서,
    상기 파라미터화된 규칙은 제1 릴레이션 및 복수의 변수를 포함하는 결론 항과, 제2 릴레이션 및 복수의 변수를 포함하는 전제 항으로 구성되고,
    상기 프로그램 명령어들은,
    상기 목표 트리플의 릴레이션과 상기 제1 릴레이션의 유사도를 비교하여 상기 제1 릴레이션의 임베딩 값을 업데이트하고,
    상기 목표 트리플의 복수의 엔티티들을 상기 복수의 변수에 각각 바인딩하여 치환 집합을 획득하는 지식완성 장치.
  3. 제2항에 있어서,
    상기 프로그램 명령어들은,
    상기 획득된 치환 집합을 이용하여 상기 제2 릴레이션과 유사도 비교 대상이 되는 상기 불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션을 결정하는 지식완성 장치.
  4. 제3항에 있어서,
    상기 전제 항은 제1 및 제2 전제 항을 포함하고,
    상기 결론 항은 제1 릴레이션, 제1 변수 및 제2 변수를 포함하고,
    상기 제1 전제 항은 제2-1 릴레이션 및 제1 변수 및 제3 변수를 포함하고,
    상기 제2 전제 항은 제2-2 릴레이션 및 제3 변수 및 제2 변수를 포함하는 지식완성 장치.
  5. 제4항에 있어서,
    상기 치환 집합은 상기 제1 변수를 상기 목표 트리플의 주어 엔티티와 바인딩하고, 상기 제2 변수를 상기 목표 트리플의 목적어 엔티티와 바인딩하여 획득되며,
    상기 프로그램 명령어들은,
    상기 제1 변수와 동일한 주어 엔티티를 갖는 트리플 데이터를 상기 불완전 지식 그래프에서 탐색하고, 상기 탐색된 트리플 데이터의 릴레이션과 상기 제2-1 릴레이션의 유사도를 비교하고,
    상기 제3 변수를 상기 탐색된 트리플 데이터의 목적어 엔티티와 바인딩하여 상기 치환 집합을 업데이트하는 지식완성 장치.
  6. 제1항에 있어서,
    상기 프로그램 명령어들은,
    상기 하나 이상의 경로 각각에 포함된 릴레이션 조합의 임베딩 값의 평균값을 계산하고,
    상기 평균값을 비용 함수에 적용하여 상기 추론 규칙 생성을 위한 하나의 경로를 결정하는 지식완성 장치.
  7. 프로세서 및 메모리를 포함하는 뉴로 심볼릭을 이용한 지식완성 방법으로서,
    불완전 지식 그래프에 포함된 트리플 데이터의 릴레이션 및 엔티티와 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩하는 단계;
    링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 상기 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하는 단계;
    상기 업데이트를 통해 상기 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하는 단계;
    상기 하나 이상의 경로를 이용하여 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 생성하는 단계; 및
    상기 생성된 추론 규칙을 통해 누락된 링크를 연결하는 단계를 포함하는 지식완성 방법.
  8. 제7항에 있어서,
    상기 파라미터화된 규칙은 제1 릴레이션 및 복수의 변수를 포함하는 결론 항 및 제2 릴레이션 및복수의 변수를 포함하는 전제 항으로 구성되고,
    상기 업데이트 하는 단계는, 상기 목표 트리플의 릴레이션과 상기 제1 릴레이션의 유사도를 비교하여 상기 제1 릴레이션의 임베딩 값을 업데이트하고, 상기 목표 트리플의 복수의 엔티티들을 상기 복수의 변수에 각각 바인딩하여 치환 집합을 획득하는 지식완성 방법.
  9. 제7항에 따른 방법을 수행하는 컴퓨터 판독 가능한 프로그램.
  10. 뉴로 심볼릭을 이용한 지식완성 시스템으로서,
    불완전 지식 그래프;
    상기 불완전 지식 그래프 포함된 트리플 데이터의 릴레이션 및 엔티티와 파라미터화된 규칙에 포함되는 릴레이션을 다차원 공간에 임베딩하고, 링크 연결을 위한 목표 트리플이 입력되는 경우, Backward Chaining 기반의 뉴로 심볼릭 통합(unification) 과정을 통해 상기 파라미터화된 규칙에 포함된 릴레이션의 임베딩 값을 업데이트하고, 상기 업데이트를 통해 상기 목표 트리플을 만족하는 릴레이션의 조합을 포함하는 하나 이상의 경로를 생성하는 뉴로 심볼릭 통합 모듈; 및
    상기 하나 이상의 경로를 이용하여 생성되며, 상기 목표 트리플에 가장 의미론적으로 부합하는 추론 규칙을 이용하여 누락된 링크를 연결하는 지식완성 모듈을 포함하는 지식완성 시스템.
PCT/KR2020/018970 2020-11-27 2020-12-23 뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치 WO2022114368A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0162934 2020-11-27
KR1020200162934A KR102582779B1 (ko) 2020-11-27 2020-11-27 뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2022114368A1 true WO2022114368A1 (ko) 2022-06-02

Family

ID=81756054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018970 WO2022114368A1 (ko) 2020-11-27 2020-12-23 뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치

Country Status (2)

Country Link
KR (1) KR102582779B1 (ko)
WO (1) WO2022114368A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114741460A (zh) * 2022-06-10 2022-07-12 山东大学 基于规则间关联的知识图谱数据扩展方法及系统
CN116049148A (zh) * 2023-04-03 2023-05-02 中国科学院成都文献情报中心 一种元出版环境下领域元知识引擎的构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121792A1 (en) * 2007-01-05 2010-05-13 Qiong Yang Directed Graph Embedding
KR20110059260A (ko) * 2009-11-27 2011-06-02 한국과학기술정보연구원 규칙 추론기 및 이를 포함하는 와일드 패턴 규칙의 동적인 구체화 방법
US9519681B2 (en) * 2007-10-04 2016-12-13 Amazon Technologies, Inc. Enhanced knowledge repository
KR20200117690A (ko) * 2019-04-05 2020-10-14 연세대학교 산학협력단 멀티 홉 이웃을 이용한 컨볼루션 학습 기반의 지식 그래프 완성 방법 및 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140585B1 (ko) 2018-11-29 2020-08-03 숭실대학교산학협력단 사람의 행위 의도 인지를 위한 온톨로지 기반 사건 연산 규칙 생성 장치 및 그 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121792A1 (en) * 2007-01-05 2010-05-13 Qiong Yang Directed Graph Embedding
US9519681B2 (en) * 2007-10-04 2016-12-13 Amazon Technologies, Inc. Enhanced knowledge repository
KR20110059260A (ko) * 2009-11-27 2011-06-02 한국과학기술정보연구원 규칙 추론기 및 이를 포함하는 와일드 패턴 규칙의 동적인 구체화 방법
KR20200117690A (ko) * 2019-04-05 2020-10-14 연세대학교 산학협력단 멀티 홉 이웃을 이용한 컨볼루션 학습 기반의 지식 그래프 완성 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEON WEBER; PASQUALE MINERVINI; JANNES MUNCHMEYER; ULF LESER; TIM ROCKTASCHEL: "NLProlog: Reasoning with Weak Unification for Question Answering in Natural Language", ARXIV.ORG, 14 June 2019 (2019-06-14), pages 1 - 11, XP081381642 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114741460A (zh) * 2022-06-10 2022-07-12 山东大学 基于规则间关联的知识图谱数据扩展方法及系统
CN114741460B (zh) * 2022-06-10 2022-09-30 山东大学 基于规则间关联的知识图谱数据扩展方法及系统
CN116049148A (zh) * 2023-04-03 2023-05-02 中国科学院成都文献情报中心 一种元出版环境下领域元知识引擎的构建方法
CN116049148B (zh) * 2023-04-03 2023-07-18 中国科学院成都文献情报中心 一种元出版环境下领域元知识引擎的构建方法

Also Published As

Publication number Publication date
KR102582779B1 (ko) 2023-09-25
KR20220074430A (ko) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2022114368A1 (ko) 뉴로 심볼릭 기반 릴레이션 임베딩을 통한 지식완성 방법 및 장치
WO2020111314A1 (ko) 개념 그래프 기반 질의응답 장치 및 방법
WO2021096009A1 (ko) 릴레이션 네트워크에 기반한 지식 보완 방법 및 장치
WO2020045714A1 (ko) 콘텐츠 인식 방법 및 시스템
WO2021095987A1 (ko) 다중타입 엔티티에 기반한 지식 보완 방법 및 장치
WO2011065613A1 (ko) 규칙 추론기 및 이를 포함하는 와일드 패턴 규칙의 동적인 구체화 방법
WO2022108206A1 (ko) 설명 가능한 지식그래프 완성 방법 및 장치
WO2020231226A1 (en) Method of performing, by electronic device, convolution operation at certain layer in neural network, and electronic device therefor
WO2021157863A1 (ko) 준 지도 학습을 위한 오토인코더 기반 그래프 설계
WO2018186708A1 (ko) 음원의 하이라이트 구간을 결정하는 방법, 장치 및 컴퓨터 프로그램
WO2022186539A1 (ko) 이미지 분류 기반 유명인 식별 방법 및 장치
WO2022035116A1 (ko) 인공 지능 피드백 방법 및 인공 지능 피드백 시스템
WO2023277448A1 (ko) 이미지 처리를 위한 인공 신경망 모델 학습 방법 및 시스템
WO2022045488A1 (ko) 뉴럴 심볼릭 기반 규칙 생성을 통한 지식완성 방법 및 장치
WO2022154376A1 (ko) Sns 텍스트 기반의 사용자의 인테리어 스타일 분석 모델 제공 장치 및 방법
WO2022107955A1 (ko) 의미역 결정 기반 신경망 연산 방법 및 장치
WO2021242073A1 (ko) 전자 장치 및 이의 제어 방법
WO2021182670A1 (ko) 요소 간 관계 추출 기반 이종 얼굴 인식 장치 및 방법
WO2021054512A1 (ko) 지식 베이스 보강을 위한 시스템 및 방법
WO2021020848A2 (ko) 인공 신경망을 위한 행렬 연산기 및 행렬 연산 방법
CN114676258A (zh) 一种基于患者症状描述文本的疾病分类智能服务方法
WO2021107231A1 (ko) 계층적 단어 정보를 이용한 문장 인코딩 방법 및 장치
WO2022103081A1 (ko) 사용자 의도 추론을 위한 뉴럴 심볼릭 기반 규칙 생성 방법 및 장치
WO2021167257A1 (ko) Ppt 추천방법 및 그 장치
WO2023042988A1 (en) Methods and systems for determining missing slots associated with a voice command for an advanced voice interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963762

Country of ref document: EP

Kind code of ref document: A1