WO2022113936A1 - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
WO2022113936A1
WO2022113936A1 PCT/JP2021/042813 JP2021042813W WO2022113936A1 WO 2022113936 A1 WO2022113936 A1 WO 2022113936A1 JP 2021042813 W JP2021042813 W JP 2021042813W WO 2022113936 A1 WO2022113936 A1 WO 2022113936A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
stator
rotor
electric machine
axial direction
Prior art date
Application number
PCT/JP2021/042813
Other languages
French (fr)
Japanese (ja)
Inventor
勇生 馬渡
裕之 土屋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2022565324A priority Critical patent/JP7424513B2/en
Priority to CN202180079387.2A priority patent/CN116491049A/en
Publication of WO2022113936A1 publication Critical patent/WO2022113936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the disclosure in this specification relates to a rotary electric machine.
  • a rotary electric machine having a rotor having a plurality of magnetic poles and a stator having a multi-phase stator winding is known.
  • a bearing is provided in a housing integrated with a stator and the rotor is rotatably supported by the bearing.
  • a housing is provided so as to surround the outer peripheral side of the stator, and a rotor is rotatably supported by a bearing at a bearing protrusion provided in the housing. Is described.
  • the rotor is rotatably supported by a bearing at the bearing protrusion of the housing, and the housing is required to have strength for axially supporting the rotor.
  • the housing is provided as a high-strength member, the degree of freedom in improving heat dissipation and reducing the weight of the housing is limited. Therefore, it is considered that there is room for technical improvement.
  • the present disclosure has been made in view of the above circumstances, and an object thereof is to improve the degree of freedom in designing a rotary electric machine.
  • Means 1 A rotor with magnets arranged in an annular shape, With a stator with a polyphase stator winding, An inner rotor type rotary electric machine in which the rotor is arranged radially inside the stator.
  • a bottomed cylindrical first housing provided so as to surround the stator and having a bottom on the first end side in the axial direction.
  • a second housing provided so as to close the open end of the first housing on the second end side opposite to the first end of the first housing is provided.
  • the rotor has a cylindrical rotating shaft extending in the axial direction.
  • the second housing has a fixed shaft portion that is inserted into the hollow portion of the rotating shaft, and a bearing that rotatably supports the rotating shaft is provided between the fixed shaft portion and the rotating shaft. Has been done.
  • the rotary electric machine having the above configuration has an inner rotor structure, the rotor is arranged radially inside, the stator is arranged radially outside, and the rotating shaft integrally provided with the rotor is rotatably supported by a bearing.
  • a bottomed cylindrical first housing is provided so as to surround the stator, and a second housing is provided so as to close the open end side (second end side) of the first housing. Then, the fixed shaft portion provided in the second housing is inserted into the hollow portion of the rotating shaft, and a bearing is provided between the fixed shaft portion and the rotating shaft.
  • the rotation shaft of the rotor is rotatably supported via the bearing by the second housing of the first housing and the second housing, that is, the housing that is not on the side surrounding the stator.
  • the first housing provided so as to surround the stator, the demand for strength is relaxed as compared with the second housing. Therefore, in the first housing, the degree of freedom in design is increased by relaxing the strength requirement, and it becomes possible to easily meet the request for improvement of heat dissipation and weight reduction.
  • the first housing is a member having a higher thermal conductivity than the second housing
  • the second housing is a member having a higher strength than the first housing
  • the first housing surrounding the stator gives priority to heat dissipation
  • the second housing that supports the rotating shaft via the bearing gives priority to strength.
  • the rotor has a rotor carrier that supports the magnet portion, and the rotor carrier has an end plate portion on one end side in the axial direction, and the rotation thereof.
  • the shaft is provided so as to extend from the end plate portion in the axial direction to the opposite side of the magnet portion, and the hollow portion of the rotating shaft is located on the anti-magnet portion side with respect to the end plate portion in the axial direction.
  • the bearing is provided at a position where the rotation shaft is rotatably supported by the bearing, and rotation is imparted to the axial end portion of the rotation shaft opposite to the end plate portion by the rotary electric machine. The rotating object to be rotated can be combined.
  • a rotor carrier is provided on one end side in the axial direction of the rotating shaft, and the rotating object can be coupled to the rotating electric machine on the other end side in the axial direction of the rotating shaft.
  • a bearing is provided at a position closer to the diamagnetic portion than the end plate portion of the rotor carrier in the axial direction. In this case, by providing the bearing at a position that does not overlap in the radial direction with respect to the magnet portion, the area inside the radial direction of the magnet portion is increased as compared with the configuration in which the bearing is provided at the position where the bearing overlaps in the radial direction with respect to the magnet portion. Can be made larger.
  • sensors, electric parts, a mounting structure for mounting a rotary electric machine, and the like can be arranged in a region inside the radial direction of the magnet portion, and the region can be effectively used.
  • the bearing can be arranged at an appropriate position while taking into consideration that a load acts on the axial end portion on the opposite side of the rotary shaft from the end plate portion.
  • the wheel corresponds to a rotating object.
  • the fixed shaft portion is provided so as to penetrate the through hole provided in the end plate portion, and one of both sides of the end plate portion in the axial direction is the first shaft portion.
  • the other side is the second shaft portion, and the rotation sensor that detects the rotation of the rotor is on the outside of the first shaft portion that is radially inside the magnet portion of the first shaft portion and the second shaft portion. Is provided, and the bearing is provided on the outside of the second shaft portion.
  • the portions on both sides of the end plate portion of the rotor carrier are the first shaft portion and the second shaft portion, respectively, and the area on the first shaft portion side.
  • the area on the side of the second shaft portion is partitioned in the axial direction by the end plate portion. Therefore, in a configuration in which the rotation sensor is provided on the outside of the first shaft portion and the bearing is provided on the outside of the second shaft portion, the influence of the bearing on the rotation sensor can be suppressed.
  • a closed space surrounded by the second housing and the rotor carrier is formed inside the magnet portion in the rotor in the radial direction, and the closed space is formed.
  • a rotation sensor that detects the rotation of the rotor is arranged.
  • the rotation sensor is arranged in the closed space formed by the second housing and the rotor carrier inside the magnet portion in the rotor in the radial direction.
  • the installation environment of the rotation sensor can be kept good. For example, it is possible to suppress foreign matter from adhering to the rotation sensor and water exposure.
  • the rotating shaft is inserted through a through hole provided in the bottom portion of the first housing, and a sliding seal is provided between the bottom portion and the rotating shaft. Is provided.
  • a bearing is provided between the fixed shaft portion of the second housing on the inner peripheral surface side of the rotating shaft, and slides between the outer peripheral surface side of the rotating shaft and the bottom portion of the first housing.
  • a seal is provided. That is, the rotating shaft can rotate relative to the fixed shaft portion of the second housing by the bearing, and can rotate relative to the bottom portion of the first housing by the sliding seal.
  • the rotating shaft is rotatably supported by each housing from the inside and the outside in the radial direction, and a support structure that enables appropriate support of the rotating shaft can be realized.
  • the second housing has a cylindrical portion having a diameter larger than that of the fixed shaft portion, and the cylindrical portion is a rotor whose diameter is inside the magnet portion in the radial direction. It is arranged so as to face the inner peripheral surface in a close state, and the radial inside of the cylindrical portion is a space portion opened to the opposite side of the fixed shaft portion in the axial direction.
  • a cylindrical portion having a diameter larger than that of the fixed shaft portion faces the inner peripheral surface of the rotor in a close state, and the radial inside of the cylindrical portion is the fixed shaft portion in the axial direction. It is an open space on the other side.
  • the inner peripheral side of the magnet portion of the rotor is covered from the inside by the cylindrical portion of the second housing to partition it from the outside, and a space portion is secured in the cylindrical portion to enable effective use thereof.
  • the region where the inner peripheral surface of the rotor and the cylindrical portion face each other on the radial inside of the magnet portion of the rotor is a lubricating oil path through which the lubricating oil passes.
  • the region where the inner peripheral surface of the rotor and the cylindrical portion face each other is the lubricating oil path through which the lubricating oil passes.
  • the lubricating oil can be suitably supplied.
  • the means 9 is a rotary electric machine used as an in-wheel motor integrally provided on the wheels of the vehicle in any of the means 1 to 8, wherein the second housing can be fixed to the vehicle body and the rotary shaft. Is fixed to the wheel so that it can rotate integrally with the wheel.
  • the stator and the housing that holds the stator are fixed to the vehicle body, and the housing receives the vehicle weight.
  • this means is configured to receive the vehicle weight by the second housing of the first housing that holds the stator in a state of surrounding it and the second housing provided on the open end side of the first housing.
  • the second housing can be configured to give priority to load capacity. Further, in the first housing, it is not necessary to receive the weight of the vehicle, and a high heat dissipation material can be used with priority given to heat dissipation.
  • the in-wheel motor (rotary electric machine) is mounted on the vehicle body side by utilizing the area inside the radial direction of the magnet portion.
  • a mounting structure such as a knuckle or a link for mounting on the wheel can be suitably arranged.
  • the second housing is provided with a cylindrical portion having a diameter larger than that of the fixed shaft portion, and the radial inside of the cylindrical portion is opened to the opposite side of the fixed shaft portion in the axial direction.
  • a mounting structure such as a knuckle or a link for mounting the in-wheel motor (rotary electric machine) on the vehicle body side can be suitably arranged.
  • FIG. 1 is a perspective view showing the entire rotary electric machine according to the first embodiment.
  • FIG. 2 is a plan view of the rotary electric machine.
  • FIG. 3 is a vertical cross-sectional view of the rotary electric machine.
  • FIG. 4 is a cross-sectional view of the rotary electric machine.
  • FIG. 5 is an exploded sectional view of the rotary electric machine.
  • FIG. 6 is a cross-sectional view of the rotor.
  • FIG. 7 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit.
  • FIG. 8 is a diagram showing the relationship between the electric angle and the magnetic flux density for the magnet of the embodiment.
  • FIG. 9 is a diagram showing the relationship between the electric angle and the magnetic flux density for the magnet of the comparative example.
  • FIG. 10 is a perspective view of the stator unit.
  • FIG. 11 is a vertical sectional view of the stator unit.
  • FIG. 12 is a perspective view of the core assembly viewed from one side in the axial direction.
  • FIG. 13 is a perspective view of the core assembly viewed from the other side in the axial direction.
  • FIG. 14 is a cross-sectional view of the core assembly.
  • FIG. 15 is an exploded cross-sectional view of the core assembly.
  • FIG. 16 is a circuit diagram showing a connection state of partial windings in each of the three-phase windings.
  • FIG. 17 is a side view showing the first coil module and the second coil module side by side in comparison.
  • FIG. 18 is a side view showing the first partial winding and the second partial winding side by side in comparison.
  • FIG. 19 is a diagram showing the configuration of the first coil module.
  • FIG. 20 is a sectional view taken along line 20-20 in FIG. 19 (a).
  • FIG. 21 is a perspective view showing the configuration of the insulating cover.
  • FIG. 22 is a diagram showing the configuration of the second coil module.
  • FIG. 23 is a sectional view taken along line 23-23 in FIG. 22 (a).
  • FIG. 24 is a perspective view showing the configuration of the insulating cover.
  • FIG. 25 is a diagram showing overlapping positions of film materials in a state where the coil modules are arranged in the circumferential direction.
  • FIG. 26 is a plan view showing the assembled state of the first coil module with respect to the core assembly.
  • FIG. 27 is a plan view showing the assembled state of the first coil module and the second coil module with respect to the core assembly.
  • FIG. 28 is a vertical cross-sectional view showing a fixed state by the fixing pin.
  • FIG. 29 is a perspective view of the bus bar module.
  • FIG. 30 is a cross-sectional view showing a part of a vertical cross section of the bus bar module.
  • FIG. 31 is a perspective view showing a state in which the bus bar module is assembled to the stator holder.
  • FIG. 32 is a vertical sectional view of a fixed portion for fixing the bus bar module.
  • FIG. 33 is a vertical sectional view showing a state in which the relay member is attached to the housing cover.
  • FIG. 34 is a perspective view of the relay member.
  • FIG. 35 is an electric circuit diagram showing a control system of a rotary electric machine.
  • FIG. 36 is a functional block diagram showing a current feedback control process by the control device.
  • FIG. 37 is a functional block diagram showing torque feedback control processing by the control device.
  • FIG. 38 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit in the modified example.
  • FIG. 39 is a diagram showing a configuration of a stator unit having an inner rotor structure.
  • FIG. 40 is a plan view showing the assembled state of the coil module with respect to the core assembly.
  • FIG. 41 is a perspective view showing the entire rotary electric machine according to the second embodiment.
  • FIG. 42 is a plan view of the rotary electric machine.
  • FIG. 35 is an electric circuit diagram showing a control system of a rotary electric machine.
  • FIG. 36 is a functional block diagram showing a current feedback control process by the control device.
  • FIG. 37 is
  • FIG. 43 is a vertical sectional view of the rotary electric machine.
  • FIG. 44 is a cross-sectional view of the rotary electric machine.
  • FIG. 45 is an exploded cross-sectional view showing the components of the rotary electric machine in an exploded manner.
  • FIG. 46 is a perspective view showing the entire stator unit.
  • FIG. 47 is an exploded sectional view of the stator unit.
  • FIG. 48 is a vertical sectional view of the stator unit.
  • FIG. 49 is a perspective view showing the configuration of the partial winding.
  • FIG. 50 is a perspective view showing the configuration of the inner housing.
  • FIG. 51 is a vertical cross-sectional view showing a lubricating oil path in a rotary electric machine.
  • FIG. 52 is a vertical sectional view of a rotary electric machine in a modified example.
  • the rotary electric machine in this embodiment is used, for example, as a vehicle power source.
  • the rotary electric machine can be widely used for industrial use, vehicle use, aircraft use, home electric appliance use, OA equipment use, game machine use, and the like.
  • the parts that are the same or equal to each other are designated by the same reference numerals, and the description thereof will be used for the parts having the same reference numerals.
  • the rotary electric machine 10 is a synchronous multi-phase AC motor and has an outer rotor structure (abduction structure).
  • the outline of the rotary electric machine 10 is shown in FIGS. 1 to 5.
  • 1 is a perspective view showing the entire rotary electric machine 10
  • FIG. 2 is a plan view of the rotary electric machine 10
  • FIG. 3 is a vertical sectional view of the rotary electric machine 10 (3-3 line sectional view of FIG. 2).
  • FIG. 4 is a cross-sectional view of the rotary electric machine 10 (4-4 line cross-sectional view of FIG. 3)
  • FIG. 5 is an exploded cross-sectional view showing the components of the rotary electric machine 10 in an exploded manner.
  • the direction in which the rotary shaft 11 extends is the axial direction
  • the direction in which the rotary shaft 11 extends radially from the center of the rotary shaft 11 is the radial direction
  • the direction in which the rotary shaft 11 extends in a circumferential shape is the circumference. The direction.
  • the rotary electric machine 10 is roughly divided into a rotary electric machine main body having a rotor 20, a stator unit 50 and a bus bar module 200, and a housing 241 and a housing cover 242 provided so as to surround the rotary electric machine main body.
  • Each of these members is arranged coaxially with the rotating shaft 11 integrally provided on the rotor 20, and is assembled in the axial direction in a predetermined order to form the rotating electric machine 10.
  • the rotating shaft 11 is supported by a pair of bearings 12 and 13 provided on the stator unit 50 and the housing 241 respectively, and can rotate in that state.
  • the bearings 12 and 13 are, for example, radial ball bearings having an inner ring, an outer ring, and a plurality of balls arranged between them.
  • the rotation of the rotating shaft 11 causes, for example, the axle of the vehicle to rotate.
  • the rotary electric machine 10 can be mounted on a vehicle by fixing the housing 241 to a vehicle body frame or the like.
  • the stator unit 50 is provided so as to surround the rotary shaft 11, and the rotor 20 is arranged on the radial outside of the stator unit 50.
  • the stator unit 50 has a stator 60 and a stator holder 70 assembled radially inside the stator.
  • the rotor 20 and the stator 60 are arranged so as to face each other in the radial direction with an air gap in between, and the rotor 20 rotates integrally with the rotating shaft 11 so that the rotor 20 is radially outside the stator 60.
  • the rotor 20 corresponds to a "field magnet” and the stator 60 corresponds to an "armature".
  • FIG. 6 is a vertical cross-sectional view of the rotor 20.
  • the rotor 20 has a substantially cylindrical rotor carrier 21 and an annular magnet unit 22 fixed to the rotor carrier 21.
  • the rotor carrier 21 has a cylindrical portion 23 having a cylindrical shape and an end plate portion 24 provided at one end in the axial direction of the cylindrical portion 23, and is configured by integrating them. ..
  • the rotor carrier 21 functions as a magnet holding member, and the magnet unit 22 is annularly fixed inside the cylindrical portion 23 in the radial direction.
  • a through hole 24a is formed in the end plate portion 24, and the rotating shaft 11 is fixed to the end plate portion 24 by a fastener 25 such as a bolt in a state of being inserted into the through hole 24a.
  • the rotary shaft 11 has a flange 11a extending in a direction intersecting (orthogonal) in the axial direction, and the rotor carrier 21 is attached to the rotary shaft 11 in a state where the flange 11a and the end plate portion 24 are surface-bonded. Is fixed.
  • the magnet unit 22 has a cylindrical magnet holder 31, a plurality of magnets 32 fixed to the inner peripheral surface of the magnet holder 31, and on both sides in the axial direction opposite to the end plate portion 24 of the rotor carrier 21. It has a fixed end plate 33.
  • the magnet holder 31 has the same length dimension as the magnet 32 in the axial direction.
  • the magnet 32 is provided in the magnet holder 31 in a state of being surrounded from the outside in the radial direction.
  • the magnet holder 31 and the magnet 32 are fixed in contact with the end plate 33 at one end in the axial direction.
  • the magnet unit 22 corresponds to the "magnet portion".
  • FIG. 7 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit 22.
  • the direction of the easy axis of magnetization of the magnet 32 is indicated by an arrow.
  • the magnets 32 are arranged side by side so that the polarities change alternately along the circumferential direction of the rotor 20.
  • the magnet unit 22 has a plurality of magnetic poles in the circumferential direction.
  • the magnet 32 is a polar anisotropic permanent magnet, and uses a sintered neodymium magnet having an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more. It is configured.
  • the peripheral surface of the magnet 32 on the inner side in the radial direction (on the stator 60 side) is the magnetic flux acting surface 34 on which magnetic flux is exchanged.
  • the magnet unit 22 concentrates the magnetic flux in the region near the d-axis, which is the center of the magnetic pole, on the magnetic flux acting surface 34 of the magnet 32.
  • the direction of the easy magnetization axis is different between the d-axis side (the part closer to the d-axis) and the q-axis side (the part closer to the q-axis), and the easy-magnetization axis is different on the d-axis side.
  • the direction of is parallel to the d-axis, and the direction of the easy magnetization axis is orthogonal to the q-axis on the q-axis side.
  • an arcuate magnetic path is formed along the direction of the easy magnetization axis.
  • the magnet 32 is configured to be oriented so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary.
  • the magnet magnetic path length is longer than the radial thickness dimension of the magnet 32.
  • the permeance of the magnet 32 is increased, and it is possible to exert the same ability as a magnet having a large amount of magnets while having the same amount of magnets.
  • the magnet 32 constitutes one magnetic pole with two adjacent magnets in the circumferential direction as a set. That is, the plurality of magnets 32 arranged in the circumferential direction in the magnet unit 22 have split surfaces on the d-axis and the q-axis, respectively, and the magnets 32 are arranged in contact with each other or in close proximity to each other. .. As described above, the magnet 32 has an arcuate magnet magnetic path, and the north pole and the south pole face each other with the magnets 32 adjacent to each other in the circumferential direction on the q axis. Therefore, it is possible to improve the permeance in the vicinity of the q-axis. Further, since the magnets 32 on both sides of the q-axis attract each other, each of these magnets 32 can maintain a contact state with each other. Therefore, it also contributes to the improvement of permeance.
  • the magnet unit 22 magnetic flux flows in an arc shape between adjacent N and S poles due to each magnet 32, so that the magnet path is longer than that of, for example, a radial anisotropic magnet. Therefore, as shown in FIG. 8, the magnetic flux density distribution is close to that of a sine wave. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown as a comparative example in FIG. 9, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotary electric machine 10 can be increased. .. Further, it can be confirmed that the magnet unit 22 of the present embodiment has a difference in the magnetic flux density distribution as compared with the conventional Halbach array magnet. In FIGS.
  • the horizontal axis represents the electric angle and the vertical axis represents the magnetic flux density. Further, in FIGS. 8 and 9, 90 ° on the horizontal axis indicates the d-axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q-axis.
  • each magnet 32 having the above configuration the magnet magnetic flux in the d-axis is strengthened in the magnet unit 22, and the magnetic flux change in the vicinity of the q-axis is suppressed.
  • the magnet unit 22 in which the change in the surface magnetic flux from the q-axis to the d-axis is gentle at each magnetic pole.
  • the sine wave matching rate of the magnetic flux density distribution may be, for example, a value of 40% or more. By doing so, it is possible to surely improve the amount of magnetic flux in the central portion of the waveform as compared with the case of using a radial alignment magnet or a parallel alignment magnet having a sine wave matching ratio of about 30%. Further, if the sine wave matching factor is 60% or more, the amount of magnetic flux in the central portion of the waveform can be surely improved as compared with the magnetic flux concentrated arrangement such as the Halbach array.
  • the magnetic flux density changes sharply near the q-axis.
  • the steeper the change in the magnetic flux density the more the eddy current increases in the stator winding 61 of the stator 60, which will be described later. Further, the change in magnetic flux on the stator winding 61 side is also steep.
  • the magnetic flux density distribution is a magnetic flux waveform close to a sine wave. Therefore, the change in the magnetic flux density near the q-axis is smaller than the change in the magnetic flux density of the radial anisotropic magnet. This makes it possible to suppress the generation of eddy currents.
  • a recess 35 is formed on the outer peripheral surface in the radial direction in a predetermined range including the d-axis
  • a recess 36 is formed in a predetermined range including the q-axis on the inner peripheral surface in the radial direction. ing.
  • the magnetic path is shortened near the d-axis on the outer peripheral surface of the magnet 32, and the magnetic path is shortened near the q-axis on the inner peripheral surface of the magnet 32. .. Therefore, in consideration of the fact that it becomes difficult to generate a sufficient magnet magnetic flux in a place where the magnet magnetic path length is short in the magnet 32, the magnet is deleted in the place where the magnet magnetic flux is weak.
  • the magnet unit 22 may be configured to use the same number of magnets 32 as the magnetic poles.
  • the magnet 32 is provided as one magnet between the d-axis which is the center of each magnetic pole in two magnetic poles adjacent to each other in the circumferential direction.
  • the magnet 32 has a configuration in which the center in the circumferential direction is the q-axis and the magnet 32 has a split surface on the d-axis.
  • the magnet 32 may be configured such that the center in the circumferential direction is the d-axis instead of the configuration in which the center in the circumferential direction is the q-axis.
  • a configuration using an annular magnet connected in an annular shape may be used.
  • a resolver 41 as a rotation sensor is provided at an end portion (upper end portion in the figure) opposite to the coupling portion with the rotor carrier 21 on both sides of the rotation shaft 11 in the axial direction.
  • the resolver 41 includes a resolver rotor fixed to the rotating shaft 11 and a resolver stator arranged so as to face each other on the radial outer side of the resolver rotor.
  • the resolver rotor has a disk ring shape, and is provided coaxially with the rotating shaft 11 with the rotating shaft 11 inserted therein.
  • the resolver stator has a stator core and a stator coil, and is fixed to the housing cover 242.
  • FIG. 10 is a perspective view of the stator unit 50
  • FIG. 11 is a vertical sectional view of the stator unit 50. Note that FIG. 11 is a vertical cross-sectional view at the same position as in FIG.
  • the stator unit 50 has, as an outline, a stator 60 and a stator holder 70 on the inner side in the radial direction thereof. Further, the stator 60 has a stator winding 61 and a stator core 62. Then, the stator core 62 and the stator holder 70 are integrated and provided as a core assembly CA, and a plurality of partial windings 151 constituting the stator winding 61 are assembled to the core assembly CA.
  • the stator winding 61 corresponds to the "armature winding”
  • the stator core 62 corresponds to the "armature core”
  • the stator holder 70 corresponds to the "armature holding member”.
  • the core assembly CA corresponds to the "support member”.
  • FIG. 12 is a perspective view of the core assembly CA viewed from one side in the axial direction
  • FIG. 13 is a perspective view of the core assembly CA viewed from the other side in the axial direction
  • FIG. 14 is a cross section of the core assembly CA.
  • FIG. 15 is an exploded cross-sectional view of the core assembly CA.
  • the core assembly CA has a stator core 62 and a stator holder 70 assembled radially inside the stator core 62 as described above. So to speak, the stator core 62 is integrally assembled on the outer peripheral surface of the stator holder 70.
  • the stator core 62 is configured as a core sheet laminated body in which core sheets 62a made of magnetic steel sheets, which are magnetic materials, are laminated in the axial direction, and has a cylindrical shape having a predetermined thickness in the radial direction.
  • a stator winding 61 is assembled on the radial outer side of the stator core 62 on the rotor 20 side.
  • the outer peripheral surface of the stator core 62 has a curved surface without unevenness.
  • the stator core 62 functions as a back yoke.
  • the stator core 62 is configured by, for example, a plurality of core sheets 62a punched out in an annular plate shape and laminated in the axial direction. However, a stator core 62 having a helical core structure may be used.
  • stator core 62 having a helical core structure
  • a strip-shaped core sheet is used, and the core sheet is wound in an annular shape and laminated in the axial direction to form a cylindrical stator core 62 as a whole. Has been done.
  • the stator 60 has a slotless structure having no teeth for forming a slot, and the configuration uses any of the following (A) to (C). It may be a thing.
  • a conductor-to-conductor member is provided between each conductor portion (intermediate conductor portion 152 described later) in the circumferential direction, and the width dimension of the conductor-to-lead member in one magnetic pole in the circumferential direction is provided as the conductor-to-conductor member.
  • the saturation magnetic flux density of the conductor-to-conductor member is Bs
  • the width dimension in the circumferential direction of the magnet 32 at one magnetic pole is Wm
  • the residual magnetic flux density of the magnet 32 is Br
  • a magnetic material is used.
  • the stator 60 has a configuration in which no conductor-to-conductor member is provided between the conductor portions (intermediate conductor portions 152) in the circumferential direction.
  • the stator holder 70 has an outer cylinder member 71 and an inner cylinder member 81, and the outer cylinder member 71 is radially outside and the inner cylinder member 81 is radially inside. It is configured by being assembled integrally.
  • Each of these members 71 and 81 is made of, for example, a metal such as aluminum or cast iron, or carbon fiber reinforced plastic (CFRP).
  • the outer cylinder member 71 is a cylindrical member having a perfect circular curved surface on both the outer peripheral surface and the inner peripheral surface, and an annular flange 72 extending inward in the radial direction is formed on one end side in the axial direction.
  • the flange 72 is formed with a plurality of protrusions 73 extending inward in the radial direction at predetermined intervals in the circumferential direction (see FIG. 13).
  • facing surfaces 74 and 75 facing the inner cylinder member 81 in the axial direction are formed on one end side and the other end side in the axial direction, respectively, and the facing surfaces 74 and 75 are annular.
  • An annular grooves 74a and 75a extending to the surface are formed.
  • the inner cylinder member 81 is a cylindrical member having an outer diameter dimension smaller than the inner diameter dimension of the outer cylinder member 71, and its outer peripheral surface is a circular curved surface concentric with the outer cylinder member 71.
  • An annular flange 82 extending radially outward is formed on one end side of the inner cylinder member 81 in the axial direction.
  • the inner cylinder member 81 is assembled to the outer cylinder member 71 in a state of being in axial contact with the facing surfaces 74 and 75 of the outer cylinder member 71. As shown in FIG. 13, the outer cylinder member 71 and the inner cylinder member 81 are assembled to each other by fasteners 84 such as bolts.
  • a plurality of protruding portions 83 extending inward in the radial direction are formed at predetermined intervals in the circumferential direction, and the axial end surface of the protruding portions 83 and the outer cylinder are formed.
  • the protruding portions 73, 83 are fastened to each other by the fastener 84 in a state where the protruding portion 73 of the member 71 is overlapped with each other.
  • the outer cylinder member 71 and the inner cylinder member 81 are assembled to each other, there is an annular gap between the inner peripheral surface of the outer cylinder member 71 and the outer peripheral surface of the inner cylinder member 81. It is formed, and the gap space is a refrigerant passage 85 through which a refrigerant such as cooling water flows.
  • the refrigerant passage 85 is provided in an annular shape in the circumferential direction of the stator holder 70. More specifically, the inner cylinder member 81 is provided with a passage forming portion 88 that protrudes radially inward on the inner peripheral side thereof and has an inlet side passage 86 and an outlet side passage 87 formed therein.
  • Each of the passages 86 and 87 is open to the outer peripheral surface of the inner cylinder member 81. Further, on the outer peripheral surface of the inner cylinder member 81, a partition portion 89 for partitioning the refrigerant passage 85 into an inlet side and an outlet side is provided. As a result, the refrigerant flowing in from the inlet side passage 86 flows in the refrigerant passage 85 in the circumferential direction, and then flows out from the outlet side passage 87.
  • FIG. 12 shows an entrance opening 86a leading to the entrance side passage 86 and an exit opening 87a leading to the exit side passage 87.
  • the inlet side passage 86 and the outlet side passage 87 are connected to the inlet port 244 and the outlet port 245 (see FIG. 1) attached to the housing cover 242, and the refrigerant enters and exits through the respective ports 244 and 245. It has become like.
  • Sealing materials 101 and 102 for suppressing leakage of the refrigerant in the refrigerant passage 85 are provided at the joint portion between the outer cylinder member 71 and the inner cylinder member 81 (see FIG. 15).
  • the sealing materials 101 and 102 are, for example, O-rings, which are accommodated in the annular grooves 74a and 75a of the outer cylinder member 71 and are provided in a state of being compressed by the outer cylinder member 71 and the inner cylinder member 81. There is.
  • the inner cylinder member 81 has an end plate portion 91 on one end side in the axial direction, and the end plate portion 91 has a hollow cylindrical boss portion 92 extending in the axial direction. It is provided.
  • the boss portion 92 is provided so as to surround the insertion hole 93 for inserting the rotating shaft 11.
  • the boss portion 92 is provided with a plurality of fastening portions 94 for fixing the housing cover 242.
  • the end plate portion 91 is provided with a plurality of support column portions 95 extending in the axial direction on the radial outer side of the boss portion 92.
  • the support column 95 is a portion that serves as a fixing portion for fixing the bus bar module 200, and the details thereof will be described later.
  • the boss portion 92 is a bearing holding member for holding the bearing 12, and the bearing 12 is fixed to the bearing fixing portion 96 provided on the inner peripheral portion thereof (see FIG. 3).
  • recesses 105 and 106 used for fixing a plurality of coil modules 150 are formed in the outer cylinder member 71 and the inner cylinder member 81.
  • a plurality of axial end faces of the inner cylinder member 81 are provided at equal intervals in the circumferential direction.
  • a recess 105 is formed.
  • a plurality of recesses 106 are formed at equal intervals in the circumferential direction on the axial end surface of the outer cylinder member 71, specifically, the axially outer end surface of the flange 72.
  • These recesses 105 and 106 are provided so as to be aligned on a virtual circle concentric with the core assembly CA.
  • the recesses 105 and 106 are provided at the same positions in the circumferential direction, respectively, and the intervals and the number thereof are also the same.
  • the stator core 62 is assembled in a state where a compressive force in the radial direction is generated with respect to the stator holder 70 in order to secure the strength of the assembly with respect to the stator holder 70.
  • the stator core 62 is fitted and fixed to the stator holder 70 with a predetermined tightening margin by shrink fitting or press fitting.
  • the stator core 62 and the stator holder 70 are assembled in a state where radial stress is generated from one of them to the other.
  • stator 60 when increasing the torque of the rotary electric machine 10, for example, it is conceivable to increase the diameter of the stator 60, and in such a case, the stator is used to strengthen the coupling of the stator core 62 to the stator holder 70. The tightening force of the core 62 is increased. However, if the compressive stress (in other words, the residual stress) of the stator core 62 is increased, there is a concern that the stator core 62 may be damaged.
  • stator core 62 and the stator holder 70 are fitted and fixed to each other with a predetermined tightening allowance.
  • a regulating portion is provided to regulate the displacement of the stator core 62 in the circumferential direction by engaging in the circumferential direction. That is, as shown in FIGS. 12 to 14, a plurality of engagements as a restricting portion are provided between the stator core 62 and the outer cylinder member 71 of the stator holder 70 in the radial direction at predetermined intervals in the circumferential direction.
  • a member 111 is provided, and the engaging member 111 suppresses the positional deviation between the stator core 62 and the stator holder 70 in the circumferential direction.
  • a recess may be provided in at least one of the stator core 62 and the outer cylinder member 71, and the engaging member 111 may be engaged in the recess.
  • a convex portion may be provided on either the stator core 62 or the outer cylinder member 71.
  • the stator core 62 and the stator holder 70 are fitted and fixed with a predetermined tightening allowance, and mutual circumferential displacement is regulated by the regulation of the engaging member 111. It is provided in a state of being. Therefore, even if the tightening allowance in the stator core 62 and the stator holder 70 is relatively small, the displacement of the stator core 62 in the circumferential direction can be suppressed. Further, since the desired displacement suppressing effect can be obtained even if the tightening allowance is relatively small, damage to the stator core 62 due to an excessively large tightening allowance can be suppressed. As a result, the displacement of the stator core 62 can be appropriately suppressed.
  • An annular internal space is formed on the inner peripheral side of the inner cylinder member 81 so as to surround the rotation shaft 11, and in the internal space, for example, electric components constituting an inverter as a power converter are arranged. May be good.
  • the electric component is, for example, an electric module in which a semiconductor switching element or a capacitor is packaged.
  • the plurality of protruding portions 83 may be eliminated or the protruding height of the protruding portions 83 may be reduced, thereby expanding the internal space on the inner peripheral side of the inner cylinder member 81. It is possible.
  • stator winding 61 assembled to the core assembly CA The state in which the stator winding 61 is assembled to the core assembly CA is as shown in FIGS. 10 and 11, and the stator is radially outside the core assembly CA, that is, radially outside the stator core 62.
  • a plurality of partial windings 151 constituting the winding 61 are assembled in a state of being arranged in the circumferential direction.
  • the stator winding 61 has a plurality of phase windings, and the phase windings of each phase are arranged in a predetermined order in the circumferential direction to form a cylindrical shape (annular).
  • the stator winding 61 has a three-phase phase winding by using U-phase, V-phase, and W-phase phase windings.
  • the stator 60 has a portion corresponding to the coil side CS that faces the magnet unit 22 in the rotor 20 in the axial direction in the axial direction, and a coil end that is outside the coil side CS in the axial direction. It has a part corresponding to CE.
  • the stator core 62 is provided in a range corresponding to the coil side CS in the axial direction.
  • each phase winding of each phase has a plurality of partial windings 151 (see FIG. 16), and the partial windings 151 are individually provided as coil modules 150. That is, the coil module 150 is configured by integrally providing partial windings 151 in the phase windings of each phase, and the stator winding 61 is configured by a predetermined number of coil modules 150 according to the number of poles. There is. By arranging the coil modules 150 (partial winding 151) of each phase in a predetermined order in the circumferential direction, the conductors of each phase are arranged in a predetermined order in the coil side CS of the stator winding 61. It has become.
  • FIG. 10 shows the order of arrangement of the U-phase, V-phase, and W-phase conductors in the coil side CS. In the present embodiment, the number of magnetic poles is 24, but the number is arbitrary.
  • the phase windings of each phase are configured by connecting the partial windings 151 of each coil module 150 in parallel or in series for each phase.
  • FIG. 16 is a circuit diagram showing a connection state of the partial winding 151 in each of the three-phase windings.
  • FIG. 16 shows a state in which the partial windings 151 in the phase windings of each phase are connected in parallel.
  • the coil module 150 is assembled on the radial outer side of the stator core 62.
  • the coil module 150 is assembled in a state where both ends in the axial direction are projected outward in the axial direction (that is, the coil end CE side) from the stator core 62. That is, the stator winding 61 has a portion corresponding to the coil end CE protruding outward in the axial direction from the stator core 62, and a portion corresponding to the coil side CS on the inner side in the axial direction. ..
  • the coil module 150 has two types of shapes, one of which has a shape in which the partial winding 151 is bent in the radial direction, that is, toward the stator core 62 in the coil end CE.
  • the partial winding 151 is not bent inward in the radial direction and has a shape extending linearly in the axial direction.
  • the partial winding 151 having a bent shape on both ends in the axial direction is referred to as a "first partial winding 151A”
  • the coil module 150 having the first partial winding 151A is referred to as a "first coil”. Also referred to as "module 150A”.
  • the partial winding 151 having no bending shape on both ends in the axial direction is also referred to as a "second partial winding 151B", and the coil module 150 having the second partial winding 151B is also referred to as a "second coil module 150B”. ..
  • FIG. 17 is a side view showing the first coil module 150A and the second coil module 150B side by side in comparison
  • FIG. 18 shows the first partial winding 151A and the second partial winding 151B side by side. It is a side view showing side by side and contrasting.
  • the coil modules 150A and 150B and the partial windings 151A and 151B have different axial lengths and different end shapes on both sides in the axial direction.
  • the first partial winding 151A has a substantially C shape in the side view
  • the second partial winding 151B has a substantially I shape in the side view.
  • the first partial winding 151A is equipped with insulating covers 161, 162 as “first insulating covers” on both sides in the axial direction
  • the second partial winding 151B is equipped with “second insulating covers” on both sides in the axial direction. Insulation covers 163 and 164 are attached.
  • FIG. 19A is a perspective view showing the configuration of the first coil module 150A
  • FIG. 19B is a perspective view showing the components of the first coil module 150A in an exploded manner
  • FIG. 20 is a sectional view taken along line 20-20 in FIG. 19 (a).
  • the first coil module 150A has a first partial winding 151A configured by multiple winding of a conducting wire material CR and a first partial winding 151A thereof in the axial direction. It has insulating covers 161, 162 attached to one end side and the other end side.
  • the insulating covers 161, 162 are formed of an insulating material such as synthetic resin.
  • the first partial winding 151A has a pair of intermediate conductor portions 152 provided in parallel and linearly with each other, and a pair of crossover portions 153A connecting the pair of intermediate conductor portions 152 at both ends in the axial direction. , These pair of intermediate conductor portions 152 and the pair of crossover portions 153A form an annular shape.
  • the pair of intermediate conductors 152 are provided so as to be separated by a predetermined coil pitch, and the intermediate conductors 152 of the partial winding 151 of the other phase can be arranged between the pair of intermediate conductors 152 in the circumferential direction. It has become.
  • the pair of intermediate conductors 152 are provided so as to be separated by two coil pitches, and one intermediate conductor 152 in the other two-phase partial winding 151 is arranged between the pair of intermediate conductors 152. It is configured to be.
  • the pair of crossover portions 153A have the same shape on both sides in the axial direction, and both are provided as portions corresponding to the coil end CE (see FIG. 11). Each crossover portion 153A is provided so as to be bent in a direction orthogonal to the intermediate conductor portion 152, that is, in a direction orthogonal to the axial direction.
  • the first partial winding 151A has crossover portions 153A on both sides in the axial direction
  • the second partial winding 151B has crossover portions 153B on both sides in the axial direction.
  • the crossover portions 153A and 153B of the partial windings 151A and 151B are different in shape from each other, and in order to clarify the distinction, the crossover portion 153A of the first partial winding 151A is referred to as a "first crossover portion 153A”.
  • the crossover portion 153B of the second partial winding 151B is also referred to as "second crossover portion 153B".
  • the intermediate conductor portion 152 is provided as a coil side conductor portion arranged one by one in the circumferential direction in the coil side CS. Further, the crossover portions 153A and 153B are provided as coil end conductor portions in the coil end CE for connecting the intermediate conductor portions 152 having the same phase at two positions different in the circumferential direction.
  • the first partial winding 151A is formed by winding the conducting wire material CR multiple times so that the cross section of the conducting wire gathering portion becomes a quadrangle.
  • FIG. 20 shows a cross section of the intermediate conducting wire portion 152, and the conducting wire material CR is multiplely wound around the intermediate conducting wire portion 152 so as to be aligned in the circumferential direction and the radial direction. That is, in the first partial winding 151A, the conductors CR are arranged in a plurality of rows in the circumferential direction and in a plurality of rows in the radial direction in the intermediate conductor portion 152 so that the cross section becomes substantially rectangular. It is formed.
  • the tip of the first crossover portion 153A is configured to be wound in multiple directions so that the conductor CRs are aligned in the axial direction and the radial direction due to the bending in the radial direction.
  • the first partial winding 151A is configured by winding the conductor CR by concentric winding.
  • the method of winding the conductor CR is arbitrary, and instead of concentric winding, the conductor CR may be wound multiple times by alpha winding.
  • the end of the conductor CR is formed from one of the first crossovers 153A (the upper first crossover 153A in FIG. 19B). It is pulled out, and its end portion is a winding end portion 154, 155.
  • the winding end portions 154 and 155 are portions where the winding start and winding end of the conductor material CR, respectively.
  • One of the winding ends 154 and 155 is connected to the current input / output terminal, and the other is connected to the neutral point.
  • each intermediate conducting wire portion 152 is provided with a sheet-shaped insulating coating 157 covered with the intermediate conducting wire portion 152.
  • FIG. 19A shows the first coil module 150A in a state where the intermediate conductor portion 152 is covered with the insulating coating portion 157 and the intermediate conductor portion 152 is present inside the insulating coating portion 157.
  • the corresponding portion is referred to as an intermediate conductor portion 152 (the same applies to FIG. 22A described later).
  • the insulating coating 157 uses a film material FM having at least the length of the insulating coating range in the intermediate wire portion 152 as an axial dimension, and the film material FM is wound around the intermediate conductor portion 152. It is provided.
  • the film material FM is made of, for example, a PEN (polyethylene naphthalate) film. More specifically, the film material FM includes a film base material and an adhesive layer provided on one side of both surfaces of the film base material and having foamability. Then, the film material FM is wound around the intermediate conductor portion 152 in a state of being adhered by the adhesive layer. It is also possible to use a non-foaming adhesive as the adhesive layer.
  • the intermediate lead wire portion 152 has a substantially rectangular cross section due to the radial and radial directions of the lead wire member CR, and the film material FM is formed around the intermediate lead wire portion 152.
  • the insulating coating 157 is provided by covering the peripheral ends in an overlapping state.
  • the film material FM is a rectangular sheet whose vertical dimension is longer than the axial length of the intermediate conductor portion 152 and whose horizontal dimension is longer than one circumference of the intermediate conductor portion 152, according to the cross-sectional shape of the intermediate conductor portion 152. It is wound around the intermediate conductor portion 152 with a crease.
  • the gap between the conductor material CR of the intermediate conductor portion 152 and the film base material is filled by foaming in the adhesive layer. Further, in the overlapping portion OL of the film material FM, the peripheral ends of the film material FM are joined by an adhesive layer.
  • an insulating coating 157 is provided so as to cover all of the two circumferential side surfaces and the two radial side surfaces.
  • the insulating coating 157 surrounding the intermediate conductor portion 152 has a film on one of the two circumferential side surfaces of the intermediate conductor portion 152, that is, the portion facing the intermediate conductor portion 152 in the partial winding 151 of the other phase.
  • An overlap portion OL in which the material FM overlaps is provided.
  • the pair of intermediate conductor portions 152 are provided with overlapping portions OL on the same side in the circumferential direction.
  • the range is from the intermediate conductor portion 152 to the portion covered by the insulating covers 161, 162 (that is, the portion inside the insulating covers 161, 162) in the first crossover portions 153A on both sides in the axial direction.
  • the insulating coating body 157 is provided.
  • the range of AX1 is a portion not covered by the insulating covers 161, 162, and the insulating coating 157 is provided in a range extended vertically from the range AX1. ..
  • the insulating cover 161 is mounted on the first crossover 153A on one axial side of the first partial winding 151A, and the insulating cover 162 is mounted on the first crossover 153A on the other axial direction of the first partial winding 151A. Will be done. Of these, the configuration of the insulating cover 161 is shown in FIGS. 21 (a) and 21 (b). 21 (a) and 21 (b) are perspective views of the insulating cover 161 viewed from two different directions.
  • the insulating cover 161 includes a pair of side surface portions 171 which are side surfaces in the circumferential direction, an outer surface portion 172 on the outer side in the axial direction, and an inner surface portion 173 on the inner side in the axial direction. It has a front surface portion 174 on the inner side in the radial direction.
  • Each of these parts 171 to 174 is formed in a plate shape, and is connected to each other in a three-dimensional shape so that only the radial outer side is open.
  • Each of the pair of side surface portions 171 is provided so as to extend toward the axis of the core assembly CA in the assembled state with the core assembly CA.
  • the outer surface portion 172 is provided with an opening 175a for pulling out the winding end portion 154 of the first partial winding 151A
  • the front surface portion 174 is provided with the winding end of the first partial winding 151A.
  • An opening 175b for pulling out the portion 155 is provided. In this case, one winding end portion 154 is drawn out from the outer surface portion 172 in the axial direction, while the other winding end portion 155 is drawn out from the front surface portion 174 in the radial direction.
  • the pair of side surface portions 171 has a semicircular shape extending in the axial direction at positions at both ends in the circumferential direction of the front surface portion 174, that is, at positions where each side surface portion 171 and the front surface portion 174 intersect.
  • a recess 177 is provided.
  • the outer surface portion 172 is provided with a pair of protrusions 178 extending in the axial direction at positions symmetrical to both sides in the circumferential direction with respect to the center line of the insulating cover 161 in the circumferential direction.
  • the first crossover portion 153A of the first partial winding 151A has a curved shape that is convex in the radial direction, that is, toward the core assembly CA, out of the radial inside and outside. In such a configuration, a gap is formed between the first crossover portions 153A adjacent to each other in the circumferential direction so as to be wider toward the tip end side of the first crossover portion 153A.
  • the recess 177 is provided on the side surface portion 171 of the insulating cover 161 at a position outside the curved portion of the first crossover portion 153A by utilizing the gap between the first crossover portions 153A arranged in the circumferential direction. It has a structure.
  • the first partial winding 151A may be provided with a temperature detection unit (thermistor), and in such a configuration, the insulating cover 161 may be provided with an opening for drawing out a signal line extending from the temperature detection unit.
  • the temperature detection unit can be suitably accommodated in the insulating cover 161.
  • the insulating cover 162 on the other side in the axial direction has substantially the same configuration as the insulating cover 161.
  • the insulating cover 162 has a pair of side surface portions 171, an outer surface portion 172 on the outer side in the axial direction, an inner surface portion 173 on the inner side in the axial direction, and a front surface portion 174 on the inner side in the radial direction, similarly to the insulating cover 161. ..
  • the pair of side surface portions 171 are provided with semicircular recesses 177 at positions at both ends in the circumferential direction of the front surface portion 174, and the outer surface portion 172 is provided with a pair of protrusions 178. ..
  • the difference from the insulating cover 161 is that the insulating cover 162 does not have an opening for pulling out the winding ends 154 and 155 of the first partial winding 151A.
  • the height dimension in the axial direction (that is, the width dimension in the axial direction in the pair of side surface portions 171 and the front surface portion 174) is different.
  • the axial height dimension W11 of the insulating cover 161 and the axial height dimension W12 of the insulating cover 162 are W11> W12. That is, when the conductor material CR is wound multiple times, it is necessary to switch (lane change) the winding stage of the conductor material CR in a direction orthogonal to the winding winding direction (circumferential direction), which is caused by the switching. It is conceivable that the winding width will increase.
  • the insulating cover 161 is a portion that covers the first crossing portion 153A on the side including the winding start and winding end of the conducting wire material CR, and includes the winding start and winding end of the conducting wire material CR.
  • the winding allowance (overlapping allowance) of the conductor material CR is larger than that of the other portions, and as a result, the winding width may be increased.
  • the axial height dimension W11 of the insulating cover 161 is larger than the axial height dimension W12 of the insulating cover 162.
  • FIG. 22A is a perspective view showing the configuration of the second coil module 150B
  • FIG. 22B is a perspective view showing the components of the second coil module 150B in an exploded manner
  • FIG. 23 is a cross-sectional view taken along the line 23-23 in FIG. 22 (a).
  • the second coil module 150B includes a second partial winding 151B configured by multiple winding the conductor CR as in the first partial winding 151A, and a second partial winding 151B thereof.
  • the second partial winding 151B has insulating covers 163 and 164 attached to one end side and the other end side in the axial direction.
  • the insulating covers 163 and 164 are formed of an insulating material such as synthetic resin.
  • the second partial winding 151B has a pair of intermediate conductor portions 152 provided in parallel and linearly with each other, and a pair of second crossover portions 153B connecting the pair of intermediate conductor portions 152 at both ends in the axial direction.
  • the pair of intermediate conductors 152 and the pair of second crossovers 153B form an annular shape.
  • the pair of intermediate conductors 152 in the second partial winding 151B has the same configuration as the intermediate conductors 152 of the first partial winding 151A.
  • the pair of second crossover portions 153B has a different configuration from the first crossover portion 153A of the first partial winding 151A.
  • the second crossover portion 153B of the second partial winding 151B is provided so as to extend linearly in the axial direction from the intermediate conductor portion 152 without being bent in the radial direction.
  • the differences between the partial windings 151A and 151B are clearly shown in comparison.
  • the end of the conductor CR is formed from one of the second crossovers 153B (the upper second crossover 153B in FIG. 22B) of the second crossovers 153B on both sides in the axial direction. It is pulled out, and its end portion is a winding end portion 154, 155. Then, in the second partial winding 151B as well as the first partial winding 151A, one of the winding ends 154 and 155 is connected to the current input / output terminal, and the other is connected to the neutral point. It has become.
  • each intermediate conducting wire portion 152 is provided with a sheet-shaped insulating coating 157 covered.
  • the insulating coating 157 uses a film material FM having at least the length of the insulating coating range in the intermediate wire portion 152 as an axial dimension, and the film material FM is wound around the intermediate conductor portion 152. It is provided.
  • the configuration of the insulating coating 157 is almost the same for each of the partial windings 151A and 151B. That is, as shown in FIG. 23, the film material FM is covered around the intermediate conductor portion 152 in a state where the end portions in the circumferential direction are overlapped.
  • the insulating coating 157 is provided so as to cover all of the two circumferential side surfaces and the two radial side surfaces.
  • the insulating coating 157 surrounding the intermediate conductor portion 152 has a film on one of the two circumferential side surfaces of the intermediate conductor portion 152, that is, the portion facing the intermediate conductor portion 152 in the partial winding 151 of the other phase.
  • An overlap portion OL in which the material FM overlaps is provided.
  • the pair of intermediate conductor portions 152 are provided with overlapping portions OL on the same side in the circumferential direction.
  • the range from the intermediate conductor portion 152 to the portion covered by the insulating covers 163 and 164 in the second crossover portions 153B on both sides in the axial direction that is, the portion inside the insulating covers 163 and 164).
  • the insulating coating body 157 is provided.
  • the range of AX2 is a portion not covered by the insulating covers 163 and 164, and the insulating covering 157 is provided in a range extended vertically from the range AX2. ..
  • the insulating coating 157 is provided in a range including a part of the crossover portions 153A and 153B. That is, the partial windings 151A and 151B are provided with an insulating coating 157 at the intermediate conductor portion 152 and the portion of the crossover portions 153A and 153B that extends linearly following the intermediate conductor portion 152. However, since the axial lengths of the partial windings 151A and 151B are different, the axial range of the insulating coating 157 is also different.
  • the insulating cover 163 is mounted on the second crossover 153B on one axial side of the second partial winding 151B, and the insulating cover 164 is mounted on the second crossover 153B on the other axial direction of the second partial winding 151B. Will be done. Of these, the configuration of the insulating cover 163 is shown in FIGS. 24 (a) and 24 (b). 24 (a) and 24 (b) are perspective views of the insulating cover 163 as viewed from two different directions.
  • the insulating cover 163 includes a pair of side surface portions 181 which are side surfaces in the circumferential direction, an outer surface portion 182 on the outer side in the axial direction, and a front surface portion 183 on the inner side in the radial direction. It has a rear surface portion 184 on the outer side in the radial direction.
  • Each of these portions 181 to 184 is formed in a plate shape, and is connected to each other in a three-dimensional shape so that only the inner side in the axial direction is opened.
  • Each of the pair of side surface portions 181 is provided so as to extend toward the axis of the core assembly CA in the assembled state with the core assembly CA.
  • the front surface portion 183 is provided with an opening 185a for pulling out the winding end portion 154 of the second partial winding 151B, and the outer surface portion 182 is provided with the winding end of the second partial winding 151B.
  • An opening 185b for pulling out the portion 155 is provided.
  • the front surface portion 183 of the insulating cover 163 is provided with a protruding portion 186 protruding inward in the radial direction.
  • the projecting portion 186 is provided at a central position between one end and the other end in the circumferential direction of the insulating cover 163 so as to project radially inward from the second crossover portion 153B.
  • the protrusion 186 has a tapered shape that tapers toward the inside in the radial direction in a plan view, and a through hole 187 extending in the axial direction is provided at the tip thereof.
  • the protruding portion 186 protrudes radially inward from the second crossover portion 153B and has a through hole 187 at the center position between one end and the other end in the circumferential direction of the insulating cover 163, the protruding portion 186 has a through hole 187.
  • the configuration is arbitrary. However, assuming an overlapping state with the insulating cover 161 inside in the axial direction, it is desirable that the cover is formed narrow in the circumferential direction in order to avoid interference with the winding ends 154 and 155.
  • the protruding portion 186 has an axially thin stepped thickness at the tip portion on the inner side in the radial direction, and a through hole 187 is provided in the thinned lower step portion 186a.
  • This low step portion 186a corresponds to a portion where the height of the inner cylinder member 81 from the axial end face is lower than the height of the second crossover portion 153B in the assembled state of the second coil module 150B with respect to the core assembly CA. ..
  • the protruding portion 186 is provided with a through hole 188 penetrating in the axial direction. This makes it possible to fill the space between the insulating covers 161, 163 through the through holes 188 in a state where the insulating covers 161, 163 overlap in the axial direction.
  • the insulating cover 164 on the other side in the axial direction has substantially the same configuration as the insulating cover 163.
  • the insulating cover 164 has a pair of side surface portions 181, an outer surface portion 182 on the outer side in the axial direction, a front surface portion 183 on the inner side in the radial direction, and a rear surface portion 184 on the outer side in the radial direction. It has a through hole 187 provided at the tip of the portion 186.
  • the difference from the insulating cover 163 is that the insulating cover 164 does not have an opening for pulling out the winding ends 154 and 155 of the second partial winding 151B.
  • the width dimensions of the pair of side surface portions 181 in the radial direction are different. Specifically, as shown in FIG. 17, the radial width dimension W21 of the side surface portion 181 of the insulating cover 163 and the radial width dimension W22 of the side surface portion 181 of the insulating cover 164 are W21> W22. .. That is, of the insulating covers 163 and 164, the insulating cover 163 is a portion that covers the second crossing portion 153B on the side including the winding start and winding end of the conducting wire material CR, and includes the winding start and winding end of the conducting wire material CR.
  • the winding allowance (overlapping allowance) of the conductor material CR may be larger than that of the other portions, and as a result, the winding width may be increased.
  • the radial width dimension W21 of the insulating cover 163 is larger than the radial width dimension W22 of the insulating cover 164.
  • the inconvenience that the number of turns of the conducting wire material CR is limited by the insulating covers 163 and 164 can be suppressed. ing.
  • FIG. 25 is a diagram showing the overlap position of the film material FM in a state where the coil modules 150A and 150B are arranged in the circumferential direction.
  • the intermediate conductor portion 152 is overlapped with the portion facing the intermediate conductor portion 152 in the partial winding 151 of the other phase, that is, the circumferential side surface of the intermediate conductor portion 152.
  • the film material FM is covered with the film material (see FIGS. 20 and 23).
  • the overlap portion OL of the film material FM is arranged on the same side (on the right side in the circumferential direction in the figure) on both sides in the circumferential direction. ing.
  • the overlapping portions OL of the film material FM do not overlap each other in the circumferential direction.
  • a maximum of three film material FMs are overlapped between the intermediate conductor portions 152 arranged in the circumferential direction.
  • the coil modules 150A and 150B have different axial lengths, and the shapes of the crossover portions 153A and 153B of the partial windings 151A and 151B are different from each other. It is configured to be attached to the core assembly CA with the second crossover 153B of the second coil module 150B on the inside in the direction and on the outside in the axial direction.
  • the insulating covers 161 to 164 the insulating covers 161 and 163 are vertically overlapped on one end side in the axial direction of each of the coil modules 150A and 150B, and the insulating covers 162 and 164 are vertically overlapped on the other end side in the axial direction. In the closed state, each of these insulating covers 161 to 164 is fixed to the core assembly CA.
  • FIG. 26 is a plan view showing a state in which a plurality of insulating covers 161 are arranged in the circumferential direction in a state where the first coil module 150A is assembled to the core assembly CA
  • FIG. 27 is a plan view showing the first coil module 150A and the first coil module 150A to the core assembly CA. It is a top view which shows the state which a plurality of insulating covers 161, 163 are arranged in the circumferential direction in the assembled state of 2 coil modules 150B.
  • FIG. 28A is a vertical sectional view showing a state before fixing by the fixing pin 191 in the assembled state of the coil modules 150A and 150B with respect to the core assembly CA
  • FIG. 28B is a vertical sectional view showing the state before being fixed with respect to the core assembly CA. It is a vertical sectional view which shows the state after being fixed by the fixing pin 191 in the assembled state of each coil module 150A, 150B.
  • each insulating cover 161 is arranged so that the boundary line LB facing the side surface portions 171 and the recess 105 on the axial end surface of the inner cylinder member 81 coincide with each other.
  • each recess 177 of the insulating cover 161 forms a through hole portion extending in the axial direction, and the through hole portion thereof is formed.
  • the positions of the holes and the recesses 105 are set to match.
  • the second coil module 150B is further assembled to the integral body of the core assembly CA and the first coil module 150A.
  • a plurality of insulating covers 163 are arranged with the side surface portions 181 in contact with each other or in close contact with each other.
  • the crossover portions 153A and 153B are arranged so as to intersect each other on a circle in which the intermediate conductor portions 152 are lined up in the circumferential direction.
  • the protruding portion 186 overlaps the insulating cover 161 in the axial direction, and the through hole 187 of the protruding portion 186 is axially connected to the through hole portion formed by each recess 177 of the insulating cover 161. Will be placed.
  • the protruding portion 186 of the insulating cover 163 is guided to a predetermined position by the pair of protruding portions 178 provided on the insulating cover 161 so that the through hole portion on the insulating cover 161 side and the recess 105 of the inner cylinder member 81 are guided.
  • the position of the through hole 187 on the insulating cover 163 side is aligned with the above. That is, in the state where the coil modules 150A and 150B are assembled to the core assembly CA, the concave portion 177 of the insulating cover 161 is located on the back side of the insulating cover 163, so that the protruding portion with respect to the concave portion 177 of the insulating cover 161.
  • the pair of protrusions 178 of the insulation cover 161 guides the protrusion 186 of the insulation cover 163, which facilitates the alignment of the insulation cover 163 with respect to the insulation cover 161.
  • the insulating cover 161 is fixed by the fixing pin 191 as a fixing member in a state of being engaged with the overlapping portion of the insulating cover 161 and the protruding portion 186 of the insulating cover 163. Will be done. More specifically, in a state where the recess 105 of the inner cylinder member 81, the recess 177 of the insulating cover 161 and the through hole 187 of the insulating cover 163 are aligned, the fixing pins are inserted into the recesses 105, 177 and the through hole 187. 191 is inserted.
  • the insulating covers 161 and 163 are integrally fixed to the inner cylinder member 81.
  • the coil modules 150A and 150B adjacent to each other in the circumferential direction are fixed to the core assembly CA by a common fixing pin 191 at the coil end CE.
  • the fixing pin 191 is preferably made of a material having good thermal conductivity, for example, a metal pin.
  • the fixing pin 191 is assembled to the lower step portion 186a of the protruding portion 186 of the insulating cover 163.
  • the upper end portion of the fixing pin 191 protrudes above the lower step portion 186a, but does not protrude above the upper surface (outer surface portion 182) of the insulating cover 163.
  • the fixing pin 191 is longer than the axial height dimension of the overlapping portion between the insulating cover 161 and the protruding portion 186 (lower step portion 186a) of the insulating cover 163, and has a margin for protruding upward.
  • the fixing pin 191 When the fixing pin 191 is inserted into the recesses 105 and 177 and the through hole 187 (that is, when the fixing pin 191 is fixed), it may be easier to perform the work. Further, since the upper end portion of the fixing pin 191 does not protrude above the upper surface (outer surface portion 182) of the insulating cover 163, it is possible to suppress the inconvenience that the shaft length of the stator 60 becomes long due to the protruding portion of the fixing pin 191. It has become a thing.
  • the adhesive is filled through the through holes 188 provided in the insulating cover 163.
  • the through hole 188 is shown in the range from the upper surface to the lower surface of the insulating cover 163 for convenience, but in reality, the through hole 188 is formed in the thin plate portion formed by lightening or the like. It has a provided configuration.
  • each insulating cover 161 and 163 by the fixing pin 191 is the axial end surface of the stator holder 70 radially inside the stator core 62 (left side in the figure).
  • the stator holder 70 is fixed by the fixing pin 191. That is, the first crossover portion 153A is fixed to the axial end face of the stator holder 70.
  • the stator holder 70 is provided with the refrigerant passage 85, the heat generated in the first partial winding 151A is directly from the first crossover portion 153A to the vicinity of the refrigerant passage 85 of the stator holder 70. It is transmitted to.
  • the fixing pin 191 is inserted into the recess 105 of the stator holder 70, and heat transfer to the stator holder 70 side is promoted through the fixing pin 191. With such a configuration, the cooling performance of the stator winding 61 is improved.
  • 18 insulating covers 161, 163 are arranged so as to be stacked inside and outside the axial direction in the coil end CE, while the same number of insulating covers 161 and 163 are arranged on the axial end face of the stator holder 70.
  • Recesses 105 are provided at 18 locations. The 18 recesses 105 are fixed by the fixing pin 191.
  • the positions of the through holes 187 on the insulating cover 164 side match the through holes on the insulating cover 163 side and the recesses 106 on the outer cylinder member 71, and the recesses 106 and 177 are aligned.
  • the fixing pin 191 By inserting the fixing pin 191 into the through hole 187, the insulating covers 162 and 164 are integrally fixed to the outer cylinder member 71.
  • the first coil modules 150A and 150B When assembling the coil modules 150A and 150B to the core assembly CA, all the first coil modules 150A are attached to the outer peripheral side of the core assembly CA first, and then all the second coil modules 150B are assembled. It is preferable to perform fixing with the fixing pin 191. Alternatively, the two first coil modules 150A and the one second coil module 150B are first fixed to the core assembly CA with one fixing pin 191 and then the first coil module 150A is assembled. , The assembly of the second coil module 150B and the fixing by the fixing pin 191 may be repeated in this order.
  • bus bar module 200 Next, the bus bar module 200 will be described.
  • the bus bar module 200 is electrically connected to the partial winding 151 of each coil module 150 at the stator winding 61, and one end of the partial winding 151 of each phase is connected in parallel for each phase, and each partial winding thereof is connected. It is a winding connection member that connects the other end of 151 at a neutral point. 29 is a perspective view of the bus bar module 200, and FIG. 30 is a cross-sectional view showing a part of a vertical cross section of the bus bar module 200.
  • the bus bar module 200 has an annular portion 201 forming an annular portion, a plurality of connection terminals 202 extending from the annular portion 201, and three input / output terminals 203 provided for each phase winding.
  • the annular portion 201 is formed in an annular shape by, for example, an insulating member such as a resin.
  • the annular portion 201 has a substantially annular plate shape and has laminated plates 204 laminated in multiple layers (five layers in this embodiment) in the axial direction, and each of these laminated plates 204 has a laminated plate 204.
  • Four bus bars 211 to 214 are provided so as to be sandwiched between them.
  • Each of the bus bars 211 to 214 has an annular shape, and is composed of a U-phase bus bar 211, a V-phase bus bar 212, a W-phase bus bar 213, and a neutral point bus bar 214. ..
  • the bus bars 211 to 214 are arranged in the annular portion 201 so as to face each other in the axial direction.
  • connection terminals 202 are connected to the bus bars 211 to 214 so as to project radially outward from the annular portion 201, respectively.
  • a protrusion 201a extending in an annular shape is provided on the upper surface of the annular portion 201, that is, on the upper surface of the laminated plate 204 on the most surface layer side of the laminated plate 204 provided in the five layers.
  • the bus bar module 200 may be provided in a state where the bus bars 211 to 214 are embedded in the annular portion 201, and the bus bars 211 to 214 arranged at predetermined intervals are integrally insert-molded. It may be a thing. Further, the arrangement of the bus bars 211 to 214 is not limited to the configuration in which all the bus bars are arranged in the axial direction and all the plate surfaces are oriented in the same direction. It may be configured to line up in a row, or to include those having different plate surface extending directions.
  • connection terminals 202 are provided so as to be aligned in the circumferential direction of the annular portion 201 and extend in the axial direction on the outer side in the radial direction.
  • the connection terminal 202 includes a connection terminal connected to the U-phase bus bar 211, a connection terminal connected to the V-phase bus bar 212, a connection terminal connected to the W-phase bus bar 213, and a neutral point. Includes a connection terminal connected to the bus bar 214 for.
  • the number of connection terminals 202 is the same as the number of winding ends 154 and 155 of each partial winding 151 in the coil module 150, and each connection terminal 202 is provided with winding ends 154 of each partial winding 151. 155 are connected one by one.
  • the bus bar module 200 is connected to the U-phase partial winding 151, the V-phase partial winding 151, and the W-phase partial winding 151, respectively.
  • the input / output terminal 203 is made of, for example, a bus bar material, and is provided in a direction extending in the axial direction.
  • the input / output terminal 203 includes a U-phase input / output terminal 203U, a V-phase input / output terminal 203V, and a W-phase input / output terminal 203W. These input / output terminals 203 are connected to the bus bars 211 to 213 for each phase in the annular portion 201. Through each of these input / output terminals 203, power is input / output from an inverter (not shown) to the phase windings of each phase of the stator winding 61.
  • the bus bar module 200 may be integrally provided with a current sensor that detects the phase current of each phase.
  • the bus bar module 200 is provided with a current detection terminal, and the detection result of the current sensor is output to a control device (not shown) through the current detection terminal.
  • the annular portion 201 has a plurality of protruding portions 205 projecting to the inner peripheral side as a fixed portion to the stator holder 70, and the protruding portion 205 is formed with a through hole 206 extending in the axial direction. ing.
  • FIG. 31 is a perspective view showing a state in which the bus bar module 200 is assembled to the stator holder 70
  • FIG. 32 is a vertical sectional view of a fixed portion for fixing the bus bar module 200. Please refer to FIG. 12 for the configuration of the stator holder 70 before assembling the bus bar module 200.
  • the bus bar module 200 is provided on the end plate portion 91 so as to surround the boss portion 92 of the inner cylinder member 81.
  • the bus bar module 200 is fixed to the stator holder 70 (inner cylinder member 81) by fastening fasteners 217 such as bolts in a state where the bus bar module 200 is positioned by assembling the inner cylinder member 81 to the support column portion 95 (see FIG. 12). ing.
  • the end plate portion 91 of the inner cylinder member 81 is provided with a strut portion 95 extending in the axial direction. Then, the bus bar module 200 is fixed to the support portion 95 by the fastener 217 in a state where the support portion 95 is inserted into the through holes 206 provided in the plurality of protrusion portions 205.
  • the bus bar module 200 is fixed by using the retainer plate 220 made of a metal material such as iron.
  • the retainer plate 220 is between the fastened portion 222 having an insertion hole 221 through which the fastener 217 is inserted, the pressing portion 223 that presses the upper surface of the annular portion 201 of the bus bar module 200, and the fastened portion 222 and the pressing portion 223. It has a bend portion 224 provided in the.
  • the fastener 217 is screwed to the support column 95 of the inner cylinder member 81 with the fastener 217 inserted into the insertion hole 221 of the retainer plate 220. Further, the pressing portion 223 of the retainer plate 220 is in contact with the upper surface of the annular portion 201 of the bus bar module 200. In this case, the retainer plate 220 is pushed downward in the figure as the fastener 217 is screwed into the support column 95, and the annular portion 201 is pressed downward by the pressing portion 223 accordingly. Since the downward pressing force in the figure generated by the screwing of the fastener 217 is transmitted to the pressing portion 223 through the bend portion 224, the pressing is performed by the pressing portion 223 with the elastic force of the bend portion 224. ing.
  • annular protrusion 201a is provided on the upper surface of the annular portion 201, and the tip of the retainer plate 220 on the pressing portion 223 side can come into contact with the protrusion 201a. As a result, it is possible to prevent the downward pressing force of the retainer plate 220 from escaping radially outward. That is, the pressing force generated by the screwing of the fastener 217 is properly transmitted to the pressing portion 223 side.
  • the input / output terminal 203 is 180 degrees opposite to the inlet opening 86a and the outlet opening 87a leading to the refrigerant passage 85 in the circumferential direction. It is provided at the position where. However, these input / output terminals 203 and the openings 86a and 87a may be provided together at the same position (that is, a close position).
  • the input / output terminal 203 of the bus bar module 200 is provided so as to project outward from the housing cover 242, and is connected to the relay member 230 on the outside of the housing cover 242.
  • the relay member 230 is a member that relays the connection between the input / output terminal 203 for each phase extending from the bus bar module 200 and the power line for each phase extending from an external device such as an inverter.
  • FIG. 33 is a vertical sectional view showing a state in which the relay member 230 is attached to the housing cover 242, and FIG. 34 is a perspective view of the relay member 230.
  • a through hole 242a is formed in the housing cover 242, and the input / output terminal 203 can be pulled out through the through hole 242a.
  • the relay member 230 has a main body portion 231 fixed to the housing cover 242 and a terminal insertion portion 232 to be inserted into the through hole 242a of the housing cover 242.
  • the terminal insertion portion 232 has three insertion holes 233 through which the input / output terminals 203 of each phase are inserted one by one.
  • the three insertion holes 233 have long cross-sectional openings, and are formed side by side in directions in which the longitudinal directions are substantially the same.
  • the relay bus bar 234 is bent and formed in a substantially L shape, and is fixed to the main body 231 by fasteners 235 such as bolts, and the input / output terminal 203 is inserted into the insertion hole 233 of the terminal insertion portion 232. It is fixed to the tip of the bolt by a fastener 236 such as a bolt and a nut.
  • the relay member 230 can be connected to a power line for each phase extending from the external device, and power can be input / output to the input / output terminal 203 for each phase.
  • FIG. 35 is an electric circuit diagram of the control system of the rotary electric machine 10
  • FIG. 36 is a functional block diagram showing a control process by the control device 270.
  • the stator winding 61 is composed of a U-phase winding, a V-phase winding, and a W-phase winding, and an inverter 260 corresponding to a power converter is connected to the stator winding 61.
  • the inverter 260 is composed of a full bridge circuit having the same number of upper and lower arms as the number of phases, and a series connection body including an upper arm switch 261 and a lower arm switch 262 is provided for each phase.
  • Each of these switches 261,262 is turned on and off by the driver 263, and the phase winding of each phase is energized by the on / off.
  • Each switch 261,262 is composed of a semiconductor switching element such as a MOSFET or an IGBT.
  • a charge supply capacitor 264 for supplying the charge required for switching to each switch 261,262 is connected in parallel with the series connection body of the switches 261,262.
  • U-phase winding V-phase winding
  • W-phase winding One end of the U-phase winding, V-phase winding, and W-phase winding is connected to the intermediate connection point between the switches 261,262 of the upper and lower arms, respectively.
  • Each of these phase windings is star-shaped (Y-connected), and the other end of each phase winding is connected to each other at a neutral point.
  • the control device 270 includes a microcomputer including a CPU and various memories, and performs energization control by turning on / off each switch 261,262 based on various detection information in the rotary electric machine 10 and a request for power running drive and power generation. ..
  • the detection information of the rotary electric machine 10 includes, for example, the rotation angle (electric angle information) of the rotor 20 detected by an angle detector such as a resolver, the power supply voltage (inverter input voltage) detected by the voltage sensor, and the current sensor. Includes the energizing current of each phase detected by.
  • the control device 270 performs on / off control of each switch 261,262 by, for example, PWM control at a predetermined switching frequency (carrier frequency) or rectangular wave control.
  • the control device 270 may be a built-in control device built in the rotary electric machine 10 or an external control device provided outside the rotary electric machine 10.
  • the rotary electric machine 10 of the present embodiment has a slotless structure (teethless structure)
  • the inductance of the stator 60 is reduced and the electric time constant is reduced, and the electric time constant thereof is reduced.
  • the switching frequency carrier frequency
  • the capacitor 264 for charge supply is connected in parallel to the series connection of the switches 261,262 of each phase, the wiring inductance becomes low, and even in the configuration where the switching speed is increased, an appropriate surge Countermeasures are possible.
  • the high potential side terminal of the inverter 260 is connected to the positive electrode terminal of the DC power supply 265, and the low potential side terminal is connected to the negative electrode terminal (ground) of the DC power supply 265.
  • the DC power supply 265 is composed of, for example, an assembled battery in which a plurality of single batteries are connected in series. Further, a smoothing capacitor 266 is connected in parallel with the DC power supply 265 to the high potential side terminal and the low potential side terminal of the inverter 260.
  • FIG. 36 is a block diagram showing a current feedback control process for controlling each phase current of the U, V, and W phases.
  • the current command value setting unit 271 uses a torque ⁇ dq map and is based on a power running torque command value or a power generation torque command value for the rotary electric machine 10 and an electric angular velocity ⁇ obtained by time-differentiating the electric angle ⁇ .
  • the d-axis current command value and the q-axis current command value are set.
  • the power generation torque command value is, for example, a regenerative torque command value when the rotary electric machine 10 is used as a power source for a vehicle.
  • the dq conversion unit 272 sets the current detection value (three phase currents) by the current sensor provided for each phase as the d-axis in the field direction (direction of an axis of a magnetic field, or field direction). It is converted into a d-axis current and a q-axis current, which are components of the dimensional rotation coordinate system.
  • the d-axis current feedback control unit 273 calculates the d-axis command voltage as an operation amount for feedback-controlling the d-axis current to the d-axis current command value. Further, the q-axis current feedback control unit 274 calculates the q-axis command voltage as an operation amount for feedback-controlling the q-axis current to the q-axis current command value. In each of these feedback control units 273 and 274, the command voltage is calculated using the PI feedback method based on the deviation of the d-axis current and the q-axis current with respect to the current command value.
  • the three-phase conversion unit 275 converts the d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages.
  • Each of the above units 271 to 275 is a feedback control unit that performs feedback control of the fundamental wave current according to the dq conversion theory, and the command voltages of the U phase, the V phase, and the W phase are the feedback control values.
  • the operation signal generation unit 276 uses a well-known triangular wave carrier comparison method to generate an operation signal of the inverter 260 based on a three-phase command voltage. Specifically, the operation signal generation unit 276 switches the upper and lower arms in each phase by PWM control based on the magnitude comparison between the signal obtained by standardizing the command voltage of the three phases by the power supply voltage and the carrier signal such as the triangular wave signal. Generates an operation signal (duty signal). The switch operation signal generated by the operation signal generation unit 276 is output to the driver 263 of the inverter 260, and the switch 261 and 262 of each phase are turned on and off by the driver 263.
  • This process is mainly used for the purpose of increasing the output and reducing the loss of the rotary electric machine 10 under operating conditions in which the output voltage of the inverter 260 becomes large, such as in a high rotation region and a high output region.
  • the control device 270 selects and executes either the torque feedback control process or the current feedback control process based on the operating conditions of the rotary electric machine 10.
  • FIG. 37 is a block diagram showing torque feedback control processing corresponding to the U, V, and W phases.
  • the voltage amplitude calculation unit 281 is a command value of the magnitude of the voltage vector based on the power running torque command value or the power generation torque command value for the rotary electric machine 10 and the electric angular velocity ⁇ obtained by time-differentiating the electric angle ⁇ . Calculate the voltage amplitude command.
  • the dq conversion unit 282 converts the current detection value by the current sensor provided for each phase into a d-axis current and a q-axis current.
  • the torque estimation unit 283 calculates the torque estimation value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current.
  • the torque estimation unit 283 may calculate the voltage amplitude command based on the map information associated with the d-axis current, the q-axis current, and the voltage amplitude command.
  • the torque feedback control unit 284 calculates a voltage phase command, which is a command value of the phase of the voltage vector, as an operation amount for feedback-controlling the torque estimation value to the power running torque command value or the generated torque command value.
  • the torque feedback control unit 284 calculates the voltage phase command using the PI feedback method based on the deviation of the torque estimation value with respect to the power running torque command value or the generated torque command value.
  • the operation signal generation unit 285 generates an operation signal of the inverter 260 based on the voltage amplitude command, the voltage phase command, and the electric angle ⁇ . Specifically, the operation signal generation unit 285 calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electric angle ⁇ , and the calculated three-phase command voltage is standardized by the power supply voltage. And the switch operation signal of the upper and lower arms in each phase is generated by the PWM control based on the magnitude comparison with the carrier signal such as a triangular wave signal. The switch operation signal generated by the operation signal generation unit 285 is output to the driver 263 of the inverter 260, and the switches 261, 262 of each phase are turned on and off by the driver 263.
  • the operation signal generation unit 285 is based on the pulse pattern information, the voltage amplitude command, the voltage phase command, and the electric angle ⁇ , which are map information related to the voltage amplitude command, the voltage phase command, the electric angle ⁇ , and the switch operation signal. Then, a switch operation signal may be generated.
  • the configuration of the magnet 32 in the magnet unit 22 may be changed as follows.
  • the direction of the easy-to-magnetize axis is oblique with respect to the radial direction in the magnet 32, and a linear magnet magnetic path is formed along the direction of the easy-to-magnetize axis. That is, in the magnet 32, the direction of the easy axis of magnetization between the magnetic flux acting surface 34a on the stator 60 side (inner in the radial direction) and the magnetic flux acting surface 34b on the anti-stator side (outer in the radial direction) is with respect to the d-axis.
  • the magnet path length of the magnet 32 can be made longer than the thickness dimension in the radial direction, and the permeance can be improved.
  • the bending direction of the crossover 153 may be either inside or outside in the radial direction, and the first crossover 153A is bent toward the core assembly CA in relation to the core assembly CA. Or the first crossover 153A may be bent to the opposite side of the core assembly CA. Further, if the second crossover portion 153B is in a state of straddling a part of the first crossover portion 153A in the circumferential direction on the outer side in the axial direction of the first crossover portion 153A, it can be either inside or outside in the radial direction. It may be folded.
  • the partial winding 151 may not have two types of partial windings 151 (first partial winding 151A, second partial winding 151B), but may have one type of partial winding 151.
  • the partial winding 151 may be formed so as to form a substantially L-shape or a substantially Z-shape when viewed from the side.
  • the crossover 153 is bent either inside or outside in the radial direction on one end side in the axial direction, and the crossover portion 153 is radially formed on the other end side in the axial direction.
  • the configuration is such that it is provided without being bent.
  • the crossover portion 153 is bent in the opposite directions in the radial direction on one end side in the axial direction and the other end side in the axial direction.
  • the coil module 150 is fixed to the core assembly CA by the insulating cover covering the crossover portion 153 as described above.
  • all the partial windings 151 for each phase winding may be divided into a plurality of parallel connection groups, and the plurality of parallel connection groups may be connected in series. That is, all n partial windings 151 in each phase winding are divided into two sets of parallel connection groups of n / 2 pieces and three sets of parallel connection groups of n / 3 pieces each, and these are connected in series. It may be configured to connect.
  • the stator winding 61 may be configured such that a plurality of partial windings 151 are all connected in series for each phase winding.
  • the stator winding 61 in the rotary electric machine 10 may have a configuration having two-phase windings (U-phase winding and V-phase winding).
  • a pair of intermediate conductors 152 are provided one coil pitch apart, and the intermediate conductors 152 in the other one-phase partial winding 151 are provided between the pair of intermediate conductors 152. It suffices if it is configured so that one is arranged.
  • FIG. 39 (a) and 39 (b) are diagrams showing the configuration of the stator unit 300 in the case of an inner rotor structure.
  • FIG. 39 (a) is a perspective view showing a state in which the coil modules 310A and 310B are assembled to the core assembly CA
  • FIG. 39 (b) is a partial winding 311A and 311B included in the coil modules 310A and 310B. It is a perspective view which shows.
  • the core assembly CA is configured by assembling the stator holder 70 to the radially outer side of the stator core 62. Further, a plurality of coil modules 310A and 310B are assembled inside the stator core 62 in the radial direction.
  • the partial winding 311A has substantially the same configuration as the first partial winding 151A described above, and is bent toward the core assembly CA side (diameter outside) with the pair of intermediate conductor portions 312 and both sides in the axial direction. It has a formed crossover portion 313A.
  • the partial winding 311B has substantially the same configuration as the second partial winding 151B described above, and has a pair of intermediate conductor portions 312 and a crossover portion 313A on both sides in the axial direction in the circumferential direction on the outer side in the axial direction. It has a crossover portion 313B provided so as to straddle the.
  • An insulating cover 315 is attached to the crossover 313A of the partial winding 311A, and an insulating cover 316 is attached to the crossover 313B of the partial winding 311B.
  • the insulating cover 315 is provided with semicircular recesses 317 extending in the axial direction on the side surface portions on both sides in the circumferential direction. Further, the insulating cover 316 is provided with a protruding portion 318 protruding radially outward from the crossover portion 313B, and a through hole 319 extending in the axial direction is provided at the tip end portion of the protruding portion 318.
  • FIG. 40 is a plan view showing a state in which the coil modules 310A and 310B are assembled to the core assembly CA.
  • a plurality of recesses 105 are formed at equal intervals in the circumferential direction on the axial end surface of the stator holder 70.
  • the stator holder 70 has a cooling structure using a liquid refrigerant or air, and it is preferable that a plurality of heat radiation fins are formed on the outer peripheral surface thereof, for example, as an air cooling structure.
  • the insulating covers 315 and 316 are arranged so as to overlap in the axial direction. Further, a recess 317 provided on the side surface portion of the insulating cover 315 and a through hole 319 provided at a central position between one end and the other end in the circumferential direction of the insulating cover 316 in the protruding portion 318 of the insulating cover 316. Are connected in the axial direction, and each part thereof is fixed by a fixing pin 321.
  • the fixing positions of the insulating covers 315 and 316 by the fixing pin 321 are the axial end faces of the stator holder 70 radially outside the stator core 62, and the stator holder 70 has a fixing position.
  • it is configured to be fixed by the fixing pin 321.
  • the stator holder 70 is provided with a cooling structure, the heat generated by the partial windings 311A and 311B is easily transferred to the stator holder 70. Thereby, the cooling performance of the stator winding 61 can be improved.
  • the stator 60 used in the rotary electric machine 10 may have a protrusion (for example, a tooth) extending from the back yoke. Also in this case, it suffices as long as the coil module 150 or the like is assembled to the stator core to the back yoke.
  • the rotary electric machine is not limited to the one with a star-shaped connection, but may be one with a ⁇ connection.
  • rotary electric machine 10 instead of the rotary field type rotary electric machine in which the field magnet is a rotor and the stator is a stator, a rotary armature type in which the armature is a rotor and the field magnet is a stator. It is also possible to adopt a rotary electric machine.
  • FIGS. 41 to 45 The outline of the rotary electric machine 400 is shown in FIGS. 41 to 45.
  • 41 is a perspective view showing the entire rotary electric machine 400
  • FIG. 42 is a plan view of the rotary electric machine 400
  • FIG. 43 is a vertical cross-sectional view of the rotary electric machine 400 (cross-sectional view taken along lines 43-43 of FIG. 42).
  • 44 is a cross-sectional view of the rotary electric machine 400 (a cross-sectional view taken along the line 44-44 in FIG. 43)
  • FIG. 45 is an exploded cross-sectional view showing the components of the rotary electric machine 400 in an exploded manner.
  • the rotary electric machine 400 is an inner rotor type surface magnet type rotary electric machine.
  • the rotary electric machine 400 is roughly classified into a rotary electric machine main body having a rotor 410 and a stator unit 420 including a stator 430, and an inner housing 470 fixed to the stator unit 420 is not shown.
  • the wheel support member 401 fixed to the vehicle body and fixed to the rotor 410 is fixed to the wheel of a wheel (not shown).
  • the wheel wheel coupled to the wheel support member 401 is an object to be rotated by the rotary electric machine 400.
  • the inner housing 470 and the wheel support member 401 are required to have high strength, and are made of, for example, a steel material.
  • the rotor 410 has a substantially cylindrical rotor carrier 411 and an annular magnet unit 412 fixed to the rotor carrier 411.
  • the rotor carrier 411 has a cylindrical portion 413 having a cylindrical shape and an end plate portion 414 provided at one end in the axial direction of the tubular portion 413, and is annular to the radial outer side of the tubular portion 413.
  • the magnet unit 412 is fixed to the.
  • the rotor carrier 411 functions as a magnet holding member.
  • the end plate portion 414 has a cylindrical boss portion 415 extending toward the magnet unit 412 in the axial direction at the center thereof.
  • a through hole 415a is formed in the boss portion 415.
  • the tubular portion 413 and the boss portion 415 extend in the same axial direction from the end plate portion 414 and are provided so as to be double inside and outside.
  • the magnet unit 412 is composed of a plurality of permanent magnets arranged so that the polarities alternate along the circumferential direction of the rotor 410.
  • the magnet unit 412 corresponds to the "magnet portion".
  • the magnet unit 412 has a plurality of magnetic poles in the circumferential direction.
  • the magnet unit 412 has the configuration described as the magnet unit 22 in FIGS. 6 and 7 of the first embodiment, and as a permanent magnet, has an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux. It is configured by using a sintered neodymium magnet having a density Br of 1.0 [T] or more.
  • the magnet unit 412 has a plurality of polar anisotropy permanent magnets, and each of these magnets has a d-axis side (a portion closer to the d-axis) and a q-axis side.
  • the direction of the easy-magnetization axis is different from that of (the part closer to the q-axis), the direction of the easy-magnetization axis is parallel to the d-axis on the d-axis side, and the direction of the easy-magnetization axis is orthogonal to the q-axis on the q-axis side. It is oriented toward magnetizing.
  • each magnet is configured to be oriented so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary.
  • the magnets of the magnet unit 412 are fixed to each other by adhesion or the like in the circumferential direction, and a fixing member such as a yarn is attached to the outer peripheral portion to be integrated. Further, it is preferable that an annular end plate member is attached to the axial end portion of each magnet.
  • the rotor 410 has a cylindrical rotating shaft 416 provided so as to extend from the end plate portion 414 of the rotor carrier 411 to the side opposite to the magnet unit 412.
  • the rotary shaft 416 is concentric with the cylindrical portion 413 and the boss portion 415 of the rotor carrier 411, and is fixed to the end plate portion 414 by a fixing tool 417 such as a bolt.
  • the rotary shaft 416 has an inner diameter larger than the inner diameter of the boss portion 415. Therefore, the end plate portion 414 of the rotor carrier 411 has a collar-shaped protruding portion that protrudes inward in the radial direction on the inner peripheral side of the rotating shaft 416.
  • a wheel support member 401 is fixed to the other end of the rotary shaft 416 in the axial direction opposite to the rotor carrier 411 by a fixture 402 such as a bolt, and the wheel support member 401 rotates together with the rotor 410.
  • the rotary shaft 416 may be formed of, for example, a steel material.
  • FIG. 46 is a perspective view showing the entire stator unit 420
  • FIG. 47 is an exploded sectional view of the stator unit 420
  • FIG. 48 is a vertical sectional view of the stator unit 420.
  • the stator unit 420 as an outline thereof, has a stator 430, an outer housing 450 provided so as to surround the stator 430, and a wiring module 460.
  • the stator 430 has a stator winding 431 and a stator core 432.
  • the outer housing 450 has a bottomed cylindrical shape, and the inner housing 470 is assembled to the open end side, which is one end side in the axial direction.
  • the outer housing 450 corresponds to the "first housing”
  • the inner housing 470 corresponds to the "second housing”.
  • the stator winding 431 has a three-phase phase winding, and each phase phase winding is composed of a plurality of partial windings 441.
  • the partial winding 441 is provided according to the number of poles of the rotary electric machine 400, and a plurality of partial windings 441 are connected in parallel or in series for each phase. In the present embodiment, the number of magnetic poles is 24, but the number is arbitrary.
  • the stator 430 corresponds to a portion corresponding to the coil side CS radially facing the stator core 432 in the axial direction and a coil end CE corresponding to the axially outer side of the coil side CS. It has a part to be used.
  • the coil side CS is also a portion that faces the magnet unit 412 of the rotor 410 in the radial direction.
  • the partial winding 441 is assembled radially inside the stator core 432. In this case, the partial winding 441 is assembled in a state where both ends in the axial direction are projected outward in the axial direction (that is, the coil end CE side) from the stator core 432.
  • FIG. 49 is a perspective view showing the configuration of the partial winding 441.
  • the partial winding 441 is configured by winding the conducting wire material in multiple turns.
  • the partial winding 441 has a pair of intermediate conductor portions 442 provided in parallel and linearly with each other, and a pair of crossover portions 443 and 444 connecting the pair of intermediate conductor portions 442 at both ends in the axial direction. , These pair of intermediate conductor portions 442 and the pair of crossover portions 443 and 444 form an annular shape.
  • the pair of intermediate conductors 442 are provided so as to be separated by a predetermined coil pitch, and the intermediate conductors 442 of the partial winding 441 of the other phase can be arranged between the pair of intermediate conductors 442 in the circumferential direction. It has become.
  • the pair of intermediate conductors 442 are provided so as to be separated by two coil pitches, and one intermediate conductor 442 in the other two-phase partial winding 441 is arranged between the pair of intermediate conductors 442. It is configured
  • each intermediate conductor portion 442 is provided with a sheet-shaped insulating coating 445 in a covered state.
  • the configuration of the insulating coating 445 is the same as that of the insulating coating 157 of the partial winding 151 in the first embodiment described above. That is, the insulating coating 445 uses a film material having at least the length of the insulating coating range in the intermediate conducting wire portion 442 as the axial dimension, and the film material is wound around the intermediate conducting wire portion 442. It is provided. Further, the insulating coating body 445 is provided in a state where the peripheral end portions of the film material are overlapped with each other around the intermediate conductor portion 442.
  • Each of the crossover portions 443 and 444 on both sides in the axial direction is provided as a portion corresponding to the coil end CE (see FIG. 48), and one of the crossover portions 443 and 444 of each crossover portion 443 is formed to be bent in the radial direction. ing. That is, in the partial winding 441, the coil end portion (crossover portion) is bent in the radial direction on one end side in the axial direction, and the coil end portion (crossover portion) is not bent in the radial direction on the other end side in the axial direction. , It has a substantially L shape when viewed from the side.
  • each partial winding 441 the intermediate conductor portion 442 is provided as a coil side conductor portion arranged one by one in the circumferential direction in the coil side CS. Further, each crossover portion 443, 444 is provided as a coil end lead wire portion for connecting the intermediate lead wire portions 442 of the same phase at two positions different in the circumferential direction in the coil end CE.
  • the conductor material is formed by being wound in multiple directions so that the cross section of the conductor assembly portion becomes a quadrangle.
  • the conductors are arranged in a plurality of rows in the circumferential direction and in a plurality of rows in the radial direction, so that the cross section is formed to have a substantially rectangular shape (see FIG. 20). ).
  • the partial winding 441 has an insulating cover attached to the coil end portion (crossover portion), and the insulating cover ensures the insulation between the coil end portions of each partial winding 441.
  • the insulating cover is, for example, as shown in FIGS. 19A and 19B, and is assembled radially to the crossover 443 of the partial winding 441, or as shown in FIGS. 22A and 22B. It is preferable that the partial winding 441 is assembled to the crossover 443 from the axial direction.
  • a plurality of partial windings 441 are arranged side by side in the circumferential direction.
  • the plurality of partial windings 441 are half of each and the assembly direction is reversed in the axial direction and the radial direction, and the half of the partial windings 441 are on the bending side on one end side in the axial direction (upper side in the figure).
  • the crossover 443 is assembled in a state of being bent outward in the radial direction, and the other half of the partial windings 441 have the crossover 443 on the bending side inward in the radial direction on the other end side in the axial direction (lower side in the figure). It can be assembled in a bent state.
  • the stator winding 431 is formed in an annular shape by a plurality of partial windings 441, and the stator core 432 is assembled on the radial outer side thereof.
  • the stator core 432 is configured as a core sheet laminated body in which core sheets made of magnetic steel sheets, which are magnetic materials, are laminated in the axial direction, and has a cylindrical shape having a predetermined thickness in the radial direction.
  • the inner peripheral surface and the outer peripheral surface of the stator core 432 have a curved surface without unevenness.
  • the stator core 432 functions as a back yoke.
  • the stator core 432 is configured by, for example, a plurality of core sheets punched and formed in the shape of an annulus plate and laminated in the axial direction. However, a stator core 432 having a helical core structure may be used.
  • the stator winding 431 may be assembled to the stator core 432 by individually assembling the partial winding 441 to the stator core 432, or an annular stator may be assembled by the plurality of partial windings 441. After forming the winding 431, the stator winding 431 may be assembled to the stator core 432.
  • the outer housing 450 has a cylindrical outer cylinder member 451 and an inner cylinder member 452, respectively, with the outer cylinder member 451 being radially outside and the inner cylinder member 452 being radially inside. It is composed by assembling them together.
  • Each of these members 451 and 452 is made of a metal such as aluminum or cast iron, or carbon fiber reinforced plastic (CFRP).
  • the inner diameter of the outer cylinder member 451 is larger than the outer diameter of the inner cylinder member 452. Therefore, in a state where the inner cylinder member 452 is assembled inside the outer cylinder member 451 in the radial direction, an annular gap is formed between the respective members 451 and 452, and the gap space allows the refrigerant such as cooling water to flow. It is a refrigerant passage 453 to be made to flow.
  • the refrigerant passage 453 is provided in an annular shape in the circumferential direction of the outer housing 450.
  • the outer cylinder member 451 is formed with an inlet side passage which is an inlet of the refrigerant and an outlet side passage which is an outlet of the refrigerant, and the refrigerant flowing from the inlet side passage is a refrigerant passage. It flows in the circumferential direction through 453 and then flows out from the exit side passage.
  • the outer cylinder member 451 and the inner cylinder member 452 have a flange extending radially outward on one end side in the axial direction, and by assembling a fixture such as a bolt to the flange, the outer cylinder member 451 and the inner cylinder member 452 are attached to the outside.
  • the cylinder member 451 and the inner cylinder member 452 are integrally connected.
  • the outer cylinder member 451 may be provided with heat radiation fins as a heat radiation portion so as to extend radially outward.
  • a stator core 432 is assembled inside the outer housing 450 in the radial direction, specifically, inside the inner cylinder member 452 in the radial direction. Assembling the stator core 432 to the outer housing 450 (inner cylinder member 452) is performed by, for example, bonding. Further, the stator core 432 may be fitted and fixed to the outer housing 450 with a predetermined tightening margin by shrink fitting or press fitting.
  • the outer cylinder member 451 has a bottom portion 454 on one end side in the axial direction, and a through hole 455 is formed in the center of the bottom portion 454.
  • the rotation shaft 416 of the rotor 410 can be inserted into the through hole 455 (see FIG. 43).
  • the bottom portion 454 of the outer cylinder member 451 is provided with an annular groove 456 so as to extend in the axial direction from the end face on the inner side in the axial direction.
  • the annular groove 456 is a coil end accommodating portion for accommodating the coil end portion of the stator winding 431 when the stator 430 is assembled to the outer housing 450. That is, as described above, the stator winding 431 is composed of a plurality of partial windings 441, and the coil end portion (crossing portion) is bent in the radial direction on one end side in the axial direction of the partial winding 441, and the shaft. On the other end side in the direction, the coil end portion (crossing portion) is not bent in the radial direction.
  • the wiring module 460 is a winding connection member electrically connected to each partial winding 441 in the stator winding 431, and the wiring module 460 allows the partial windings 441 of each phase to be connected in parallel or in series for each phase. And the phase windings of each phase are connected to the neutral point.
  • the wiring module 460 is provided on one end side of both ends of the stator winding 431 in the axial direction, specifically on the side opposite to the end plate portion 414 of the rotor carrier 411 (see FIG. 43).
  • the wiring module 460 has an annular portion 461 forming an annular shape and a plurality of connection terminals 462 provided side by side in the circumferential direction along the annular portion 461.
  • the annular portion 461 is formed in an annular shape by, for example, an insulating member such as a resin.
  • Wiring for each phase and wiring for the neutral point (both are not shown) are embedded in the annular portion 461, and a connection terminal 462 is electrically connected to each of these wirings.
  • the connection terminal 462 is provided for each partial winding 441 and is fixed in a direction extending in the axial direction.
  • crossover portions 444 that are not bent in the radial direction are arranged side by side in an annular shape, and a wiring module 460 is provided so as to surround the crossover portions 444 from the outside in the radial direction.
  • the annular portion 461 of the wiring module 460 is formed to have a larger diameter than the annular portion formed by the crossover portions 444 arranged in the circumferential direction.
  • the wiring module 460 is provided with fixing pins 463 at predetermined intervals in the circumferential direction as fixing portions for fixing the wiring module 460.
  • the fixing pin 463 extends in the axial direction, and one end thereof is fixed to the stator core 432 or the outer housing 450, so that the wiring module 460 is attached by the stator unit 420.
  • FIG. 50 is a perspective view showing the configuration of the inner housing 470.
  • the inner housing 470 is provided on one end side in the axial direction and is fixed to the outer housing 450 on the large diameter portion 471, and is provided on the other end side in the axial direction and is provided on the other end side in the axial direction and supports the rotating shaft 416 of the rotor 410.
  • An intermediate cylinder portion 473 having a diameter of 472 and having a diameter smaller than that of the large diameter portion 471 and a diameter larger than that of the fixed shaft portion 472 is provided between the large diameter portion 471 and the fixed shaft portion 472 in the axial direction.
  • the fixed shaft portion 472 may have a hollow portion extending in the axial direction as shown in the figure.
  • the intermediate cylinder portion 473 corresponds to the "cylindrical portion".
  • the large diameter portion 471 has a diameter dimension corresponding to the coil end portion (crossing portion) on one end side in the axial direction of the stator winding 431 and the wiring module 460.
  • the large diameter portion 471 is provided with an annular accommodating portion 474 that accommodates the coil end portion of the stator winding 431 and the wiring module 460.
  • the accommodating portion 474 is provided as an annular groove portion that opens toward the center side of the rotary electric machine 400 in the axial direction.
  • the large diameter portion 471 is provided with a mounting portion 475 for mounting the terminal block 480.
  • the mounting portion 475 has a hollow portion 476 that protrudes radially outward and extends radially in the large diameter portion 471, and the hollow portion 476 communicates with the accommodating portion 474.
  • the terminal block 480 is a wiring connection portion that is electrically connected to the wiring module 460, and power can be input / output for each phase by connecting a power line for each phase extending from an external device (not shown). It has become.
  • the wiring terminal 481 of the terminal block 480 is electrically connected to the wiring module 460 by a relay line (not shown) via the hollow portion 476 of the mounting portion 475.
  • the terminal block 480 can be separated from the inner housing 470 by a screw or the like, and the terminal block 480 can be changed, for example, when the specifications such as electric power are different.
  • the wiring module 460 is provided on the radial outside of the coil end portion of the stator winding 431 (the radial outside of the crossing portion 444). Therefore, the wiring module 460 and the terminal block 480 can be connected without straddling the coil end portion (crossover portion 444) of the stator winding 431 in the radial direction.
  • the fixed shaft portion 472 is formed with an outer dimension smaller than the inner diameter dimension of the rotary shaft 416 of the rotor 410, and the intermediate cylinder portion 473 is formed with an outer dimension smaller than the inner diameter dimension of the rotor carrier 411. Has been done.
  • the fixed shaft portion 472 and the intermediate cylinder portion 473 are closed by the intermediate end plate portion 477, and the intermediate end plate portion 477 has an annular shape for fixing the resolver 493, which will be described later. 478 is formed.
  • a bearing 491 is attached to the fixed shaft portion 472 of the inner housing 470, and the rotary shaft 416 of the rotor 410 is rotatably supported by the bearing 491.
  • the bearing 491 is, for example, a radial ball bearing, and has an outer ring and an inner ring, and a plurality of balls arranged between the outer ring and the inner ring.
  • the inner ring of the bearing 491 is assembled on the fixed shaft portion 472 side, and the outer ring is assembled on the rotating shaft 416 side.
  • the bearing 491 may be a roller bearing (needle-shaped roller bearing, conical roller bearing) in which rollers are used instead of balls as rolling elements.
  • two bearings may be arranged side by side in the axial direction.
  • the rotating shaft 416 is provided so as to extend from the end plate portion 414 of the rotor carrier 411 to the opposite side of the magnet unit 412 in the axial direction, and the bearing 491 is provided so as to extend in the axial direction from the end plate portion 414 to the anti-magnet unit. It is provided at a position on the side. In this case, the bearing 491 is provided at a position that does not overlap in the radial direction with respect to the magnet unit 412.
  • the outer housing 450 is made of a metal such as aluminum or cast iron, or carbon fiber reinforced plastic (CFRP), and the inner housing 470 is made of, for example, a steel material. That is, the outer housing 450 is a member having higher thermal conductivity than the inner housing 470, and the inner housing 470 is a member having higher strength than the outer housing 450.
  • the outer housing 450 surrounding the stator 430 gives priority to heat dissipation, and the inner housing 470 that supports the rotating shaft 416 via the bearing 491 gives priority to strength.
  • the heat generated by the stator 430 is suitably released from the outer housing 450, and the supporting strength of the rotating shaft 416 in the inner housing 470 can be ensured.
  • the stator unit 420 is arranged so as to surround the rotor 410.
  • the stator unit 420 is assembled to the outer peripheral side of the rotor 410 in a state where one end side (open end side) in the axial direction of the outer housing 450 is fixed to the large diameter portion 471 of the inner housing 470 by a fixing tool such as a bolt. ing. That is, the inner housing 470 is provided so as to close the open end on the open end side of the outer housing 450.
  • An annular sliding seal 492 is provided between the bottom portion 454 of the outer cylinder member 451 and the rotating shaft 416 in the outer housing 450. That is, as a support structure for the rotary shaft 416 with respect to the stator unit 420 and the inner housing 470, a bearing 491 is provided on the inner peripheral surface side of the rotary shaft 416 between the fixed shaft portion 472 of the inner housing 470 and the rotary shaft. On the outer peripheral surface side of the 416, a sliding seal 492 is provided between the outer housing 450 and the bottom portion 454. As a result, the rotating shaft 416 can rotate relative to the fixed shaft portion 472 of the inner housing 470 by the bearing 491, and can rotate relative to the bottom portion 454 of the outer housing 450 by the sliding seal 492. . As the sliding seal 492, an annular seal made of synthetic resin, rubber, or the like can be used.
  • an annular closed space SA surrounded by the rotor carrier 411 and the inner housing 470 is formed on the inner peripheral side of the rotor carrier 411. It is formed.
  • a resolver 493 as a rotation sensor is provided in the closed space SA.
  • the resolver 493 has an annular shape, and has a resolver stator fixed to a protruding portion 478 of an inner housing 470 which is a fixed object and a resolver rotor fixed to a boss portion 415 of a rotor carrier 411 which is a rotating object.
  • the resolver rotors are arranged so as to face each other inside the resolver stator in the radial direction.
  • the fixed shaft portion 472 of the inner housing 470 is provided in a state of penetrating the through hole 415a provided in the end plate portion 414 of the rotor carrier 411, and is provided on both sides of the end plate portion 414 in the axial direction.
  • One side is the first shaft portion 472a
  • the other side is the second shaft portion 472b (see FIG. 45).
  • a resolver 493 is provided on the outside of the first shaft portion 472a which is radially inside the rotor carrier 411 (magnet unit 412), and the second shaft portion is provided.
  • a bearing 491 is provided on the outside of the 472b.
  • the area on the first shaft portion 472a side and the area on the second shaft portion 472b side are partitioned in the axial direction by the end plate portion 414, and the influence of the bearing 491 on the resolver 493 is suppressed. ing.
  • the wheel support member 401 is fixed to one end in the axial direction by a fixture 402 such as a bolt.
  • the intermediate cylinder portion 473 of the inner housing 470 is arranged so as to face the inner peripheral surface (rotor inner peripheral surface) of the rotor carrier 411 in a close state.
  • the radial inside of the intermediate cylinder portion 473 is a space portion SX opened on the opposite side of the fixed shaft portion 472 in the axial direction.
  • a mounting structure such as a knuckle or a link for mounting the rotary electric machine 400 on the vehicle body side is arranged in the space portion SX.
  • the region where the inner peripheral surface (rotor inner peripheral surface) of the rotor carrier 411 and the intermediate cylinder portion 473 face each other is a lubricating oil path through which the lubricating oil passes. ..
  • the lubricating oil flows along the path of arrow Y shown in FIG. That is, the lubricating oil flows into the inner space of the rotary electric machine 400 from the inlet portion provided in the large diameter portion 471 of the inner housing 470.
  • the inner housing 470 Lubricating oil may be discharged from the outlet provided in the large diameter portion 471.
  • the lubricating oil flows in the circumferential direction in addition to the axial direction.
  • the rotation shaft 416 is rotatably supported via the bearing 491 by the inner housing 470 of the outer housing 450 and the inner housing 470, that is, the housing not on the side surrounding the stator 430.
  • the outer housing 450 provided so as to surround the stator 430, the demand for strength is relaxed as compared with the inner housing 470. Therefore, in the outer housing 450, the degree of freedom in design is increased by relaxing the strength requirement, and it becomes possible to easily meet the request for improvement of heat dissipation and weight reduction.
  • the outer housing 450 surrounding the stator 430 gives priority to heat dissipation, and the inner housing 470 that supports the rotating shaft 416 via the bearing 491 gives priority to strength.
  • the heat generated by the stator 430 can be suitably released from the outer housing 450, and the supporting strength of the rotating shaft 416 in the inner housing 470 can be secured.
  • the weight of the high-strength material tends to be heavy, since only the inner housing 470 of each housing is used as a high-strength member, the weight of the rotary electric machine 400 can be reduced. In this case, the degree of freedom in design regarding heat dissipation and weight can be improved in the rotary electric machine 400.
  • a bearing 491 is provided in the hollow portion of the rotating shaft 416 at a position on the anti-magnet unit side of the end plate portion 414 of the rotor carrier 411 in the axial direction.
  • the diameter of the magnet unit 412 is compared with the configuration in which the bearing 491 is provided at a position that overlaps in the radial direction with respect to the magnet unit 412.
  • the area inside the direction can be increased.
  • sensors, electric parts, a mounting structure for mounting a rotary electric machine, and the like can be arranged in a region inside the magnet unit 412 in the radial direction, and the region can be effectively used.
  • the bearing 491 is positioned appropriately while taking into consideration that a load acts on the rotary shaft 416 at the axial end portion (tip portion) on the opposite side of the end plate portion 414. Can be placed in.
  • the portions on both sides of the rotor carrier 411 with the end plate portion 414 sandwiched between them are the first shaft portion 472a and the second shaft portion 472b, respectively, and the area on the first shaft portion 472a side.
  • the area on the side of the second shaft portion 472b is partitioned in the axial direction by the end plate portion 414.
  • a resolver 493 was provided on the outside of the first shaft portion 472a, and a bearing 491 was provided on the outside of the second shaft portion 472b. In this case, the influence of the bearing 491 on the resolver 493 can be suppressed.
  • the resolver 493 was placed in the closed space SA formed by the rotor carrier 411 and the inner housing 470.
  • the installation environment of the resolver 493 can be kept good. For example, it is possible to suppress the adhesion of foreign matter to the resolver 493 and the water exposure.
  • the rotating shaft 416 can be rotated relative to the fixed shaft portion 472 of the inner housing 470 by the bearing 491, and can be rotated relative to the bottom portion 454 of the outer housing 450 by the sliding seal 492.
  • the rotary shaft 416 is rotatably supported by the housings 450 and 470 from the inside and the outside in the radial direction, respectively, and a support structure that enables appropriate support of the rotary shaft 416 can be realized.
  • the sliding seal 492 is used instead of the bearing as the support structure of the rotary shaft 416 for the outer housing 450, it is considered that the support strength requirement for the outer housing 450 is relatively small, and the heat dissipation performance of the outer housing 450 deteriorates. Is suppressed.
  • an intermediate cylinder portion 473 having a diameter larger than that of the fixed shaft portion 472 is opposed to the inner peripheral surface (rotor inner peripheral surface) of the rotor carrier 411 in a close state, and the intermediate cylinder portion 473 is radially oriented.
  • the inside is a space portion SX opened on the opposite side of the fixed shaft portion 472 in the axial direction.
  • the inner peripheral side of the rotor carrier 411 is covered from the inside by the intermediate cylinder portion 473 of the inner housing 470 to partition the outside from the outside, and the space portion SX is secured in the intermediate cylinder portion 473 so that the space portion SX can be effectively used. It is supposed to be.
  • the region where the inner peripheral surface (rotor inner peripheral surface) of the rotor carrier 411 and the intermediate cylinder portion 473 of the inner housing 470 face each other was used as a lubricating oil path through which the lubricating oil passes.
  • the lubricating oil can be suitably supplied.
  • the stator 430 and the housing that holds the stator are fixed to the vehicle body, and the housing receives the vehicle weight.
  • the inner housing 470 receives the vehicle weight. Therefore, the inner housing 470 can be configured to give priority to the load capacity. Further, in the outer housing 450, it is not necessary to receive the weight of the vehicle, and a high heat dissipation material can be used with priority given to heat dissipation.
  • the configuration of the rotary electric machine 400 may be changed as shown in FIG. 52.
  • the position of the resolver 493 is changed, and the resolver 493 is attached to the tip of the fixed shaft portion 472 of the inner housing 470.
  • the intermediate end plate portion 477 can be brought closer to the end plate portion 414 of the rotor carrier 411. Therefore, as compared with the configuration of FIG. 43, the intermediate cylinder portion 473 of the inner housing 470 can be expanded in the axial direction.
  • the intermediate cylinder portion 473 and the intermediate end plate portion 477 of the inner housing 470 are configured to face each other in close proximity to the rotor carrier 411. Thereby, in the inner housing 470, the volume of the space portion SX in the intermediate cylinder portion 473 can be expanded.
  • the rotor carrier 411 and the rotary shaft 416 are used as separate members, and the rotary shaft 416 is fixed to the end plate portion 414 of the rotor carrier 411 by a fixture 417. , This may be changed so that the rotor carrier 411 and the rotating shaft 416 are integrally molded.
  • a cooling structure (water cooling structure) by circulating the refrigerant in the refrigerant passage 453 may not be provided, but only an air cooling structure such as an air cooling fin may be provided.
  • stator winding 431 may be changed.
  • the stator winding 431 may be configured by a distributed winding structure such as wave winding.
  • a slot may be provided in the stator core 432 and the stator winding 431 may be wound around the slot.
  • the use of the rotary electric machine 400 may be other than the traveling motor of the vehicle, and may be a rotary electric machine widely used for moving objects including aircraft, and a rotary electric machine used for industrial or household electric equipment. ..
  • Disclosures include exemplary embodiments and modifications by those skilled in the art based on them.
  • the disclosure is not limited to the parts and / or combinations of elements shown in the embodiments. Disclosure can be carried out in various combinations.
  • the disclosure can have additional parts that can be added to the embodiment. Disclosures include those in which the parts and / or elements of the embodiment are omitted. Disclosures include the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the claims description and should be understood to include all modifications within the meaning and scope equivalent to the claims description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

This dynamo-electric machine (400) comprises: a rotor (410) having a magnet section (412) positioned in an annular shape; and a stator (430) having a multiphase stator winding (431), the dynamo-electric machine (400) being an inner-rotor-type dynamo-electric machine in which the rotor is positioned on the radially inner side of the stator. The dynamo-electric machine further comprises: a bottomed cylindrical first housing (450) provided in a state surrounding the stator and having a bottom part (454) on a first end side in the axial direction; and a second housing (470) provided on a second end side on the opposite side of the first housing from the first end so as to close the open end of the first housing. The rotor has a cylindrical rotation shaft (416) extending in the axial direction, and the second housing has a fixed shaft part (472) inserted inside a hollow section of the rotation shaft, a bearing (491) that rotatably supports the rotation shaft being provided between the fixed shaft part and the rotation shaft.

Description

回転電機Rotating electric machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年11月27日に出願された日本出願番号2020-197409号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2020-197409 filed on November 27, 2020, and the contents of the description are incorporated herein by reference.
 この明細書における開示は、回転電機に関する。 The disclosure in this specification relates to a rotary electric machine.
 従来、複数の磁極を有する回転子と、多相の固定子巻線を有する固定子と、を備える回転電機が知られている。また、回転電機において、固定子に一体化されたハウジングに軸受を設け、その軸受により回転子を回転可能に支持する構成が知られている。例えば特許文献1には、インナロータ構造のインホイールモータにおいて、ステータの外周側を囲むようにハウジングを設けるとともに、そのハウジングに設けられた軸受突部に軸受により回転子が回転可能に支持された構成が記載されている。 Conventionally, a rotary electric machine having a rotor having a plurality of magnetic poles and a stator having a multi-phase stator winding is known. Further, in a rotary electric machine, there is known a configuration in which a bearing is provided in a housing integrated with a stator and the rotor is rotatably supported by the bearing. For example, in Patent Document 1, in an in-wheel motor having an inner rotor structure, a housing is provided so as to surround the outer peripheral side of the stator, and a rotor is rotatably supported by a bearing at a bearing protrusion provided in the housing. Is described.
特開2004-129389号公報Japanese Unexamined Patent Publication No. 2004-129389
 ところで、上記特許文献1に記載のインホイールモータでは、ハウジングの軸受突部において軸受により回転子が回転可能に支持されており、そのハウジングには、回転子を軸支持するための強度が要求される。しかしながら、ハウジングが高強度な部材として設けられる構成では、そのハウジングにおいて例えば放熱性向上や軽量化を図る上での自由度が制限されることになる。そのため、技術的な改善の余地があると考えられる。 By the way, in the in-wheel motor described in Patent Document 1, the rotor is rotatably supported by a bearing at the bearing protrusion of the housing, and the housing is required to have strength for axially supporting the rotor. To. However, in the configuration in which the housing is provided as a high-strength member, the degree of freedom in improving heat dissipation and reducing the weight of the housing is limited. Therefore, it is considered that there is room for technical improvement.
 本開示は、上記事情に鑑みてなされたものであり、回転電機において設計の自由度を向上させることを目的とする。 The present disclosure has been made in view of the above circumstances, and an object thereof is to improve the degree of freedom in designing a rotary electric machine.
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。 The plurality of aspects disclosed herein employ different technical means to achieve their respective objectives. The objectives, features, and effects disclosed herein will be further clarified by reference to the subsequent detailed description and accompanying drawings.
 手段1は、
 環状に配置された磁石部を有する回転子と、
 多相の固定子巻線を有する固定子と、を備え、
 前記固定子の径方向内側に前記回転子が配置されたインナロータ式の回転電機であって、
 前記固定子を囲む状態で設けられ、軸方向の第1端側に底部を有する有底筒状の第1ハウジングと、
 前記第1ハウジングの前記第1端とは逆側の第2端側で当該第1ハウジングの開放端を閉じるように設けられた第2ハウジングと、を備え、
 前記回転子は、軸方向に延びる円筒状の回転軸を有し、
 前記第2ハウジングは、前記回転軸の中空部内に挿通される固定軸部を有しており、前記固定軸部と前記回転軸との間に、当該回転軸を回転可能に支持する軸受が設けられている。
Means 1
A rotor with magnets arranged in an annular shape,
With a stator with a polyphase stator winding,
An inner rotor type rotary electric machine in which the rotor is arranged radially inside the stator.
A bottomed cylindrical first housing provided so as to surround the stator and having a bottom on the first end side in the axial direction.
A second housing provided so as to close the open end of the first housing on the second end side opposite to the first end of the first housing is provided.
The rotor has a cylindrical rotating shaft extending in the axial direction.
The second housing has a fixed shaft portion that is inserted into the hollow portion of the rotating shaft, and a bearing that rotatably supports the rotating shaft is provided between the fixed shaft portion and the rotating shaft. Has been done.
 上記構成の回転電機はインナロータ構造を有するものであり、回転子が径方向内側、固定子が径方向外側に配置され、回転子に一体に設けられた回転軸が軸受により回転可能に支持されている。また、固定子を囲むようにして有底筒状の第1ハウジングが設けられ、その第1ハウジングの開放端側(第2端側)を閉じるように第2ハウジングが設けられている。そして、回転軸の中空部に、第2ハウジングに設けられた固定軸部を挿通させるとともに、固定軸部と回転軸との間に軸受が設けられている構成とした。 The rotary electric machine having the above configuration has an inner rotor structure, the rotor is arranged radially inside, the stator is arranged radially outside, and the rotating shaft integrally provided with the rotor is rotatably supported by a bearing. There is. Further, a bottomed cylindrical first housing is provided so as to surround the stator, and a second housing is provided so as to close the open end side (second end side) of the first housing. Then, the fixed shaft portion provided in the second housing is inserted into the hollow portion of the rotating shaft, and a bearing is provided between the fixed shaft portion and the rotating shaft.
 上記構成では、第1ハウジングと第2ハウジングとのうち第2ハウジング、すなわち固定子を囲む側でないハウジングにより、軸受を介して回転子の回転軸が回転可能に支持される。この場合、固定子を囲むように設けられる第1ハウジングにおいて、第2ハウジングに比べて強度の要求が緩和されることとなる。そのため、第1ハウジングにおいて、強度要求が緩和されることによる設計の自由度が増し、放熱性の向上や軽量化の要求に容易に応じることが可能となる。 In the above configuration, the rotation shaft of the rotor is rotatably supported via the bearing by the second housing of the first housing and the second housing, that is, the housing that is not on the side surrounding the stator. In this case, in the first housing provided so as to surround the stator, the demand for strength is relaxed as compared with the second housing. Therefore, in the first housing, the degree of freedom in design is increased by relaxing the strength requirement, and it becomes possible to easily meet the request for improvement of heat dissipation and weight reduction.
 手段2では、手段1において、前記第1ハウジングは、前記第2ハウジングに比べて高熱伝導な部材であり、前記第2ハウジングは、前記第1ハウジングに比べて高強度な部材である。 In the means 2, in the means 1, the first housing is a member having a higher thermal conductivity than the second housing, and the second housing is a member having a higher strength than the first housing.
 上記構成によれば、固定子を囲む第1ハウジングは放熱性を優先したものとなり、軸受を介して回転軸を支持する第2ハウジングは強度を優先したものとなっている。これにより、固定子で生じる熱を第1ハウジングから好適に放出できるとともに、第2ハウジングにおける回転軸の支持強度を確保できる。また、高強度材料は重量が重くなる傾向にあるが、各ハウジングのうち第2ハウジングのみを高強度な部材としたため、回転電機としての重量軽減を図ることもできる。この場合、回転電機において放熱性や重量に関する設計の自由度を向上させることができる。 According to the above configuration, the first housing surrounding the stator gives priority to heat dissipation, and the second housing that supports the rotating shaft via the bearing gives priority to strength. As a result, the heat generated by the stator can be suitably released from the first housing, and the support strength of the rotating shaft in the second housing can be ensured. Further, although the weight of the high-strength material tends to be heavy, since only the second housing of each housing is made of a high-strength member, the weight of the rotary electric machine can be reduced. In this case, it is possible to improve the degree of freedom in design regarding heat dissipation and weight in the rotary electric machine.
 手段3では、手段1又は2において、前記回転子は、前記磁石部を支持する回転子キャリアを有し、前記回転子キャリアは、軸方向一端側に端板部を有しており、前記回転軸は、軸方向において前記端板部から前記磁石部とは逆側に延びるように設けられており、前記回転軸の中空部には、軸方向において前記端板部よりも反磁石部側となる位置に前記軸受が設けられ、その軸受により前記回転軸が回転可能に支持されており、前記回転軸において前記端板部とは逆側の軸方向端部に、本回転電機により回転が付与される回転対象物が結合可能となっている。 In means 3, in means 1 or 2, the rotor has a rotor carrier that supports the magnet portion, and the rotor carrier has an end plate portion on one end side in the axial direction, and the rotation thereof. The shaft is provided so as to extend from the end plate portion in the axial direction to the opposite side of the magnet portion, and the hollow portion of the rotating shaft is located on the anti-magnet portion side with respect to the end plate portion in the axial direction. The bearing is provided at a position where the rotation shaft is rotatably supported by the bearing, and rotation is imparted to the axial end portion of the rotation shaft opposite to the end plate portion by the rotary electric machine. The rotating object to be rotated can be combined.
 上記構成では、回転軸の軸方向一端側に回転子キャリアが設けられ、回転軸の軸方向他端側に本回転電機に対する回転対象物の結合が可能となっている。また、回転軸の中空部には、軸方向において回転子キャリアの端板部よりも反磁石部側となる位置に軸受が設けられている。この場合、磁石部に対して径方向に重複しない位置に軸受を設けることにより、磁石部に対して径方向に重複する位置に軸受を設ける構成に比べて、磁石部の径方向内側の領域を大きくすることができる。これにより、磁石部の径方向内側の領域に、センサ類や電気部品、回転電機取り付け用の取付構造などを配置することができ、当該領域の有効利用が可能となる。また、回転軸において端板部とは逆側の軸方向端部に荷重が作用することを加味しつつ、軸受を適正な位置に配置することができる。なお、インホイールモータでは、車輪が回転対象物に相当する。 In the above configuration, a rotor carrier is provided on one end side in the axial direction of the rotating shaft, and the rotating object can be coupled to the rotating electric machine on the other end side in the axial direction of the rotating shaft. Further, in the hollow portion of the rotating shaft, a bearing is provided at a position closer to the diamagnetic portion than the end plate portion of the rotor carrier in the axial direction. In this case, by providing the bearing at a position that does not overlap in the radial direction with respect to the magnet portion, the area inside the radial direction of the magnet portion is increased as compared with the configuration in which the bearing is provided at the position where the bearing overlaps in the radial direction with respect to the magnet portion. Can be made larger. As a result, sensors, electric parts, a mounting structure for mounting a rotary electric machine, and the like can be arranged in a region inside the radial direction of the magnet portion, and the region can be effectively used. Further, the bearing can be arranged at an appropriate position while taking into consideration that a load acts on the axial end portion on the opposite side of the rotary shaft from the end plate portion. In the in-wheel motor, the wheel corresponds to a rotating object.
 手段4では、手段3において、前記固定軸部は、前記端板部に設けられた貫通孔を貫通させた状態で設けられ、軸方向における前記端板部の両側のうち一方側が第1軸部、他方側が第2軸部であり、前記第1軸部及び前記第2軸部のうち前記磁石部の径方向内側となる第1軸部の外側に、前記回転子の回転を検出する回転センサが設けられ、第2軸部の外側に前記軸受が設けられている。 In the means 4, in the means 3, the fixed shaft portion is provided so as to penetrate the through hole provided in the end plate portion, and one of both sides of the end plate portion in the axial direction is the first shaft portion. The other side is the second shaft portion, and the rotation sensor that detects the rotation of the rotor is on the outside of the first shaft portion that is radially inside the magnet portion of the first shaft portion and the second shaft portion. Is provided, and the bearing is provided on the outside of the second shaft portion.
 上記構成では、第2ハウジングの固定軸部において、回転子キャリアの端板部を挟んで両側となる部分がそれぞれ第1軸部、第2軸部となっており、第1軸部側のエリアと第2軸部側のエリアは、端板部により軸方向に仕切られている。そのため、第1軸部の外側に回転センサが設けられ、第2軸部の外側に軸受が設けられる構成において、軸受による回転センサへの影響を抑制することができる。 In the above configuration, in the fixed shaft portion of the second housing, the portions on both sides of the end plate portion of the rotor carrier are the first shaft portion and the second shaft portion, respectively, and the area on the first shaft portion side. The area on the side of the second shaft portion is partitioned in the axial direction by the end plate portion. Therefore, in a configuration in which the rotation sensor is provided on the outside of the first shaft portion and the bearing is provided on the outside of the second shaft portion, the influence of the bearing on the rotation sensor can be suppressed.
 手段5では、手段3又は4において、前記回転子における前記磁石部の径方向内側には、前記第2ハウジングと前記回転子キャリアとにより囲まれた閉鎖空間が形成されており、前記閉鎖空間に、前記回転子の回転を検出する回転センサが配置されている。 In the means 5, in the means 3 or 4, a closed space surrounded by the second housing and the rotor carrier is formed inside the magnet portion in the rotor in the radial direction, and the closed space is formed. , A rotation sensor that detects the rotation of the rotor is arranged.
 上記構成では、回転子における磁石部の径方向内側において、第2ハウジングと回転子キャリアとにより形成された閉空間に、回転センサが配置されている。この場合、回転センサが回転電機の外部から隔離されるため、回転センサの設置環境を良好に保つことができる。例えば、回転センサに対する異物の付着や被水を抑制することが可能となっている。 In the above configuration, the rotation sensor is arranged in the closed space formed by the second housing and the rotor carrier inside the magnet portion in the rotor in the radial direction. In this case, since the rotation sensor is isolated from the outside of the rotary electric machine, the installation environment of the rotation sensor can be kept good. For example, it is possible to suppress foreign matter from adhering to the rotation sensor and water exposure.
 手段6では、手段1~5のいずれかにおいて、前記回転軸は、前記第1ハウジングにおける前記底部に設けられた貫通孔に挿通されており、前記底部と前記回転軸との間に摺動シールが設けられている。 In the means 6, in any of the means 1 to 5, the rotating shaft is inserted through a through hole provided in the bottom portion of the first housing, and a sliding seal is provided between the bottom portion and the rotating shaft. Is provided.
 上記構成では、回転軸の内周面側には、第2ハウジングの固定軸部との間に軸受が設けられ、回転軸の外周面側には、第1ハウジングの底部との間に摺動シールが設けられている。つまり、回転軸は、軸受により第2ハウジングの固定軸部に対して相対回転可能となり、かつ、摺動シールにより第1ハウジングの底部に対して相対回転可能となっている。これにより、回転軸は、径方向内側及び外側から各ハウジングによりそれぞれ回転可能に支持されることとなり、回転軸の適切な支持を可能とする支持構造を実現することができる。 In the above configuration, a bearing is provided between the fixed shaft portion of the second housing on the inner peripheral surface side of the rotating shaft, and slides between the outer peripheral surface side of the rotating shaft and the bottom portion of the first housing. A seal is provided. That is, the rotating shaft can rotate relative to the fixed shaft portion of the second housing by the bearing, and can rotate relative to the bottom portion of the first housing by the sliding seal. As a result, the rotating shaft is rotatably supported by each housing from the inside and the outside in the radial direction, and a support structure that enables appropriate support of the rotating shaft can be realized.
 手段7では、手段1~6のいずれかにおいて、前記第2ハウジングは、前記固定軸部よりも大径の円筒部を有し、前記円筒部が、前記磁石部の径方向内側となる回転子内周面に近接状態で対向するように配置されており、前記円筒部の径方向内側が、軸方向において前記固定軸部の反対側に開放された空間部となっている。 In the means 7, in any of the means 1 to 6, the second housing has a cylindrical portion having a diameter larger than that of the fixed shaft portion, and the cylindrical portion is a rotor whose diameter is inside the magnet portion in the radial direction. It is arranged so as to face the inner peripheral surface in a close state, and the radial inside of the cylindrical portion is a space portion opened to the opposite side of the fixed shaft portion in the axial direction.
 上記構成では、第2ハウジングにおいて、固定軸部よりも大径の円筒部が回転子内周面に近接状態で対向しており、その円筒部の径方向内側が、軸方向において固定軸部の反対側に開放された空間部となっている。この場合、回転子における磁石部の内周側を、第2ハウジングの円筒部により内側から覆って外部と区画しつつ、円筒部内に空間部を確保してその有効利用を可能としている。 In the above configuration, in the second housing, a cylindrical portion having a diameter larger than that of the fixed shaft portion faces the inner peripheral surface of the rotor in a close state, and the radial inside of the cylindrical portion is the fixed shaft portion in the axial direction. It is an open space on the other side. In this case, the inner peripheral side of the magnet portion of the rotor is covered from the inside by the cylindrical portion of the second housing to partition it from the outside, and a space portion is secured in the cylindrical portion to enable effective use thereof.
 手段8では、手段7において、前記回転子における前記磁石部の径方向内側において、前記回転子内周面と前記円筒部とが対向する領域が、潤滑油が通る潤滑油経路になっている。 In the means 8, in the means 7, the region where the inner peripheral surface of the rotor and the cylindrical portion face each other on the radial inside of the magnet portion of the rotor is a lubricating oil path through which the lubricating oil passes.
 上記構成では、回転子内周面と円筒部とが対向する領域が、潤滑油が通る潤滑油経路になっている。この場合、回転電機の内部において潤滑油が通る領域を第2ハウジングの円筒部により制限することで、潤滑油の供給を好適に行わせることができる。 In the above configuration, the region where the inner peripheral surface of the rotor and the cylindrical portion face each other is the lubricating oil path through which the lubricating oil passes. In this case, by limiting the area through which the lubricating oil passes inside the rotary electric machine by the cylindrical portion of the second housing, the lubricating oil can be suitably supplied.
 手段9では、手段1~8のいずれかにおいて、車両の車輪に一体に設けられるインホイールモータとして用いられる回転電機であって、前記第2ハウジングは車体に対して固定可能であり、前記回転軸は前記車輪に対して固定されることで当該車輪と一体回転可能である。 The means 9 is a rotary electric machine used as an in-wheel motor integrally provided on the wheels of the vehicle in any of the means 1 to 8, wherein the second housing can be fixed to the vehicle body and the rotary shaft. Is fixed to the wheel so that it can rotate integrally with the wheel.
 インホイールモータとしての回転電機では、固定子とその固定子を保持するハウジングとが車体に固定され、車重をハウジングが受ける構成となっている。その前提において、本手段では、固定子を囲む状態で保持する第1ハウジングと、第1ハウジングの開放端側に設けられた第2ハウジングとのうち、第2ハウジングにより車重を受ける構成としたため、第2ハウジングを耐荷重を優先した構成にすることができる。また、第1ハウジングにおいては、車重を受ける必要が無く、放熱性を優先して高放熱材料を使用することができる。 In a rotary electric machine as an in-wheel motor, the stator and the housing that holds the stator are fixed to the vehicle body, and the housing receives the vehicle weight. On that premise, this means is configured to receive the vehicle weight by the second housing of the first housing that holds the stator in a state of surrounding it and the second housing provided on the open end side of the first housing. , The second housing can be configured to give priority to load capacity. Further, in the first housing, it is not necessary to receive the weight of the vehicle, and a high heat dissipation material can be used with priority given to heat dissipation.
 なお、手段3のように、磁石部に対して径方向に重複しない位置に軸受が設けられる構成では、磁石部の径方向内側の領域を利用して、インホイールモータ(回転電機)を車体側に取り付けるためのナックルやリンク等の取付構造を好適に配置することができる。 In the configuration in which the bearing is provided at a position that does not overlap in the radial direction with respect to the magnet portion as in the means 3, the in-wheel motor (rotary electric machine) is mounted on the vehicle body side by utilizing the area inside the radial direction of the magnet portion. A mounting structure such as a knuckle or a link for mounting on the wheel can be suitably arranged.
 また、手段7のように、第2ハウジングに、固定軸部よりも大径の円筒部を設け、その円筒部の径方向内側を、軸方向において固定軸部の反対側に開放された空間部とすることで、上記同様、インホイールモータ(回転電機)を車体側に取り付けるためのナックルやリンク等の取付構造を好適に配置することができる。 Further, as in the means 7, the second housing is provided with a cylindrical portion having a diameter larger than that of the fixed shaft portion, and the radial inside of the cylindrical portion is opened to the opposite side of the fixed shaft portion in the axial direction. As described above, a mounting structure such as a knuckle or a link for mounting the in-wheel motor (rotary electric machine) on the vehicle body side can be suitably arranged.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態における回転電機の全体を示す斜視図であり、 図2は、回転電機の平面図であり、 図3は、回転電機の縦断面図であり、 図4は、回転電機の横断面図であり、 図5は、回転電機の分解断面図であり、 図6は、回転子の断面図であり、 図7は、磁石ユニットの断面構造を示す部分横断面図であり、 図8は、実施形態の磁石について電気角と磁束密度との関係を示す図であり、 図9は、比較例の磁石について電気角と磁束密度との関係を示す図であり、 図10は、固定子ユニットの斜視図であり、 図11は、固定子ユニットの縦断面図であり、 図12は、コアアセンブリを軸方向一方側から見た斜視図であり、 図13は、コアアセンブリを軸方向他方側から見た斜視図であり、 図14は、コアアセンブリの横断面図であり、 図15は、コアアセンブリの分解断面図であり、 図16は、3相の各相巻線における部分巻線の接続状態を示す回路図であり、 図17は、第1コイルモジュールと第2コイルモジュールとを横に並べて対比して示す側面図であり、 図18は、第1部分巻線と第2部分巻線とを横に並べて対比して示す側面図であり、 図19は、第1コイルモジュールの構成を示す図であり、 図20は、図19(a)における20-20線断面図であり、 図21は、絶縁カバーの構成を示す斜視図であり、 図22は、第2コイルモジュールの構成を示す図であり、 図23は、図22(a)における23-23線断面図であり、 図24は、絶縁カバーの構成を示す斜視図であり、 図25は、各コイルモジュールを周方向に並べた状態でのフィルム材のオーバーラップ位置を示す図であり、 図26は、コアアセンブリに対する第1コイルモジュールの組み付け状態を示す平面図であり、 図27は、コアアセンブリに対する第1コイルモジュール及び第2コイルモジュールの組み付け状態を示す平面図であり、 図28は、固定ピンによる固定状態を示す縦断面図であり、 図29は、バスバーモジュールの斜視図であり、 図30は、バスバーモジュールの縦断面の一部を示す断面図であり、 図31は、固定子ホルダにバスバーモジュールを組み付けた状態を示す斜視図であり、 図32は、バスバーモジュールを固定する固定部分における縦断面図であり、 図33は、ハウジングカバーに中継部材を取り付けた状態を示す縦断面図であり、 図34は、中継部材の斜視図であり、 図35は、回転電機の制御システムを示す電気回路図であり、 図36は、制御装置による電流フィードバック制御処理を示す機能ブロック図であり、 図37は、制御装置によるトルクフィードバック制御処理を示す機能ブロック図であり、 図38は、変形例において磁石ユニットの断面構造を示す部分横断面図であり、 図39は、インナロータ構造の固定子ユニットの構成を示す図であり、 図40は、コアアセンブリに対するコイルモジュールの組み付け状態を示す平面図であり、 図41は、第2実施形態における回転電機の全体を示す斜視図であり、 図42は、回転電機の平面図であり、 図43は、回転電機の縦断面図であり、 図44は、回転電機の横断面図であり、 図45は、回転電機の構成要素を分解して示す分解断面図であり、 図46は、固定子ユニットの全体を示す斜視図であり、 図47は、固定子ユニットの分解断面図であり、 図48は、固定子ユニットの縦断面図であり、 図49は、部分巻線の構成を示す斜視図であり、 図50は、インナハウジングの構成を示す斜視図であり、 図51は、回転電機における潤滑油経路を示す縦断面図であり、 図52は、変形例における回転電機の縦断面図である。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a perspective view showing the entire rotary electric machine according to the first embodiment. FIG. 2 is a plan view of the rotary electric machine. FIG. 3 is a vertical cross-sectional view of the rotary electric machine. FIG. 4 is a cross-sectional view of the rotary electric machine. FIG. 5 is an exploded sectional view of the rotary electric machine. FIG. 6 is a cross-sectional view of the rotor. FIG. 7 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit. FIG. 8 is a diagram showing the relationship between the electric angle and the magnetic flux density for the magnet of the embodiment. FIG. 9 is a diagram showing the relationship between the electric angle and the magnetic flux density for the magnet of the comparative example. FIG. 10 is a perspective view of the stator unit. FIG. 11 is a vertical sectional view of the stator unit. FIG. 12 is a perspective view of the core assembly viewed from one side in the axial direction. FIG. 13 is a perspective view of the core assembly viewed from the other side in the axial direction. FIG. 14 is a cross-sectional view of the core assembly. FIG. 15 is an exploded cross-sectional view of the core assembly. FIG. 16 is a circuit diagram showing a connection state of partial windings in each of the three-phase windings. FIG. 17 is a side view showing the first coil module and the second coil module side by side in comparison. FIG. 18 is a side view showing the first partial winding and the second partial winding side by side in comparison. FIG. 19 is a diagram showing the configuration of the first coil module. FIG. 20 is a sectional view taken along line 20-20 in FIG. 19 (a). FIG. 21 is a perspective view showing the configuration of the insulating cover. FIG. 22 is a diagram showing the configuration of the second coil module. FIG. 23 is a sectional view taken along line 23-23 in FIG. 22 (a). FIG. 24 is a perspective view showing the configuration of the insulating cover. FIG. 25 is a diagram showing overlapping positions of film materials in a state where the coil modules are arranged in the circumferential direction. FIG. 26 is a plan view showing the assembled state of the first coil module with respect to the core assembly. FIG. 27 is a plan view showing the assembled state of the first coil module and the second coil module with respect to the core assembly. FIG. 28 is a vertical cross-sectional view showing a fixed state by the fixing pin. FIG. 29 is a perspective view of the bus bar module. FIG. 30 is a cross-sectional view showing a part of a vertical cross section of the bus bar module. FIG. 31 is a perspective view showing a state in which the bus bar module is assembled to the stator holder. FIG. 32 is a vertical sectional view of a fixed portion for fixing the bus bar module. FIG. 33 is a vertical sectional view showing a state in which the relay member is attached to the housing cover. FIG. 34 is a perspective view of the relay member. FIG. 35 is an electric circuit diagram showing a control system of a rotary electric machine. FIG. 36 is a functional block diagram showing a current feedback control process by the control device. FIG. 37 is a functional block diagram showing torque feedback control processing by the control device. FIG. 38 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit in the modified example. FIG. 39 is a diagram showing a configuration of a stator unit having an inner rotor structure. FIG. 40 is a plan view showing the assembled state of the coil module with respect to the core assembly. FIG. 41 is a perspective view showing the entire rotary electric machine according to the second embodiment. FIG. 42 is a plan view of the rotary electric machine. FIG. 43 is a vertical sectional view of the rotary electric machine. FIG. 44 is a cross-sectional view of the rotary electric machine. FIG. 45 is an exploded cross-sectional view showing the components of the rotary electric machine in an exploded manner. FIG. 46 is a perspective view showing the entire stator unit. FIG. 47 is an exploded sectional view of the stator unit. FIG. 48 is a vertical sectional view of the stator unit. FIG. 49 is a perspective view showing the configuration of the partial winding. FIG. 50 is a perspective view showing the configuration of the inner housing. FIG. 51 is a vertical cross-sectional view showing a lubricating oil path in a rotary electric machine. FIG. 52 is a vertical sectional view of a rotary electric machine in a modified example.
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/又は関連付けられる部分については、他の実施形態の説明を参照することができる。 A plurality of embodiments will be described with reference to the drawings. In a plurality of embodiments, functionally and / or structurally corresponding parts and / or related parts may be designated with the same reference code or reference numerals having different hundreds or more digits. For corresponding and / or associated parts, the description of other embodiments can be referred to.
 本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、航空機用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。 The rotary electric machine in this embodiment is used, for example, as a vehicle power source. However, the rotary electric machine can be widely used for industrial use, vehicle use, aircraft use, home electric appliance use, OA equipment use, game machine use, and the like. In each of the following embodiments, the parts that are the same or equal to each other are designated by the same reference numerals, and the description thereof will be used for the parts having the same reference numerals.
 (第1実施形態)
 本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1~図5に示す。図1は、回転電機10の全体を示す斜視図であり、図2は、回転電機10の平面図であり、図3は、回転電機10の縦断面図(図2の3-3線断面図)であり、図4は、回転電機10の横断面図(図3の4-4線断面図)であり、図5は、回転電機10の構成要素を分解して示す分解断面図である。以下の記載では、回転電機10において、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。
(First Embodiment)
The rotary electric machine 10 according to the present embodiment is a synchronous multi-phase AC motor and has an outer rotor structure (abduction structure). The outline of the rotary electric machine 10 is shown in FIGS. 1 to 5. 1 is a perspective view showing the entire rotary electric machine 10, FIG. 2 is a plan view of the rotary electric machine 10, and FIG. 3 is a vertical sectional view of the rotary electric machine 10 (3-3 line sectional view of FIG. 2). ), FIG. 4 is a cross-sectional view of the rotary electric machine 10 (4-4 line cross-sectional view of FIG. 3), and FIG. 5 is an exploded cross-sectional view showing the components of the rotary electric machine 10 in an exploded manner. In the following description, in the rotary electric machine 10, the direction in which the rotary shaft 11 extends is the axial direction, the direction in which the rotary shaft 11 extends radially from the center of the rotary shaft 11 is the radial direction, and the direction in which the rotary shaft 11 extends in a circumferential shape is the circumference. The direction.
 回転電機10は、大別して、回転子20、固定子ユニット50及びバスバーモジュール200を有する回転電機本体と、その回転電機本体を囲むように設けられるハウジング241及びハウジングカバー242とを備えている。これら各部材はいずれも、回転子20に一体に設けられた回転軸11に対して同軸に配置されており、所定順序で軸方向に組み付けられることで回転電機10が構成されている。回転軸11は、固定子ユニット50及びハウジング241にそれぞれ設けられた一対の軸受12,13に支持され、その状態で回転可能となっている。なお、軸受12,13は、例えば内輪と外輪とそれらの間に配置された複数の玉とを有するラジアル玉軸受である。回転軸11の回転により、例えば車両の車軸が回転する。回転電機10は、ハウジング241が車体フレーム等に固定されることにより車両に搭載可能となっている。 The rotary electric machine 10 is roughly divided into a rotary electric machine main body having a rotor 20, a stator unit 50 and a bus bar module 200, and a housing 241 and a housing cover 242 provided so as to surround the rotary electric machine main body. Each of these members is arranged coaxially with the rotating shaft 11 integrally provided on the rotor 20, and is assembled in the axial direction in a predetermined order to form the rotating electric machine 10. The rotating shaft 11 is supported by a pair of bearings 12 and 13 provided on the stator unit 50 and the housing 241 respectively, and can rotate in that state. The bearings 12 and 13 are, for example, radial ball bearings having an inner ring, an outer ring, and a plurality of balls arranged between them. The rotation of the rotating shaft 11 causes, for example, the axle of the vehicle to rotate. The rotary electric machine 10 can be mounted on a vehicle by fixing the housing 241 to a vehicle body frame or the like.
 回転電機10において、固定子ユニット50は回転軸11を囲むように設けられ、その固定子ユニット50の径方向外側に回転子20が配置されている。固定子ユニット50は、固定子60と、その径方向内側に組み付けられた固定子ホルダ70とを有している。回転子20と固定子60とはエアギャップを挟んで径方向に対向配置されており、回転子20が回転軸11と共に一体回転することにより、固定子60の径方向外側にて回転子20が回転する。回転子20が「界磁子」に相当し、固定子60が「電機子」に相当する。 In the rotary electric machine 10, the stator unit 50 is provided so as to surround the rotary shaft 11, and the rotor 20 is arranged on the radial outside of the stator unit 50. The stator unit 50 has a stator 60 and a stator holder 70 assembled radially inside the stator. The rotor 20 and the stator 60 are arranged so as to face each other in the radial direction with an air gap in between, and the rotor 20 rotates integrally with the rotating shaft 11 so that the rotor 20 is radially outside the stator 60. Rotate. The rotor 20 corresponds to a "field magnet" and the stator 60 corresponds to an "armature".
 図6は、回転子20の縦断面図である。図6に示すように、回転子20は、略円筒状の回転子キャリア21と、その回転子キャリア21に固定された環状の磁石ユニット22とを有している。回転子キャリア21は、円筒状をなす円筒部23と、その円筒部23の軸方向一端に設けられた端板部24とを有しており、それらが一体化されることで構成されている。回転子キャリア21は、磁石保持部材として機能し、円筒部23の径方向内側に環状に磁石ユニット22が固定されている。端板部24には貫通孔24aが形成されており、その貫通孔24aに挿通された状態で、ボルト等の締結具25により端板部24に回転軸11が固定されている。回転軸11は、軸方向に交差(直交)する向きに延びるフランジ11aを有しており、そのフランジ11aと端板部24とが面接合されている状態で、回転軸11に回転子キャリア21が固定されている。 FIG. 6 is a vertical cross-sectional view of the rotor 20. As shown in FIG. 6, the rotor 20 has a substantially cylindrical rotor carrier 21 and an annular magnet unit 22 fixed to the rotor carrier 21. The rotor carrier 21 has a cylindrical portion 23 having a cylindrical shape and an end plate portion 24 provided at one end in the axial direction of the cylindrical portion 23, and is configured by integrating them. .. The rotor carrier 21 functions as a magnet holding member, and the magnet unit 22 is annularly fixed inside the cylindrical portion 23 in the radial direction. A through hole 24a is formed in the end plate portion 24, and the rotating shaft 11 is fixed to the end plate portion 24 by a fastener 25 such as a bolt in a state of being inserted into the through hole 24a. The rotary shaft 11 has a flange 11a extending in a direction intersecting (orthogonal) in the axial direction, and the rotor carrier 21 is attached to the rotary shaft 11 in a state where the flange 11a and the end plate portion 24 are surface-bonded. Is fixed.
 磁石ユニット22は、円筒状の磁石ホルダ31と、その磁石ホルダ31の内周面に固定された複数の磁石32と、軸方向両側のうち回転子キャリア21の端板部24とは逆側に固定されたエンドプレート33とを有している。磁石ホルダ31は、軸方向において磁石32と同じ長さ寸法を有している。磁石32は、磁石ホルダ31に径方向外側から包囲された状態で設けられている。磁石ホルダ31及び磁石32は、軸方向一方側の端部においてエンドプレート33に当接した状態で固定されている。磁石ユニット22が「磁石部」に相当する。 The magnet unit 22 has a cylindrical magnet holder 31, a plurality of magnets 32 fixed to the inner peripheral surface of the magnet holder 31, and on both sides in the axial direction opposite to the end plate portion 24 of the rotor carrier 21. It has a fixed end plate 33. The magnet holder 31 has the same length dimension as the magnet 32 in the axial direction. The magnet 32 is provided in the magnet holder 31 in a state of being surrounded from the outside in the radial direction. The magnet holder 31 and the magnet 32 are fixed in contact with the end plate 33 at one end in the axial direction. The magnet unit 22 corresponds to the "magnet portion".
 図7は、磁石ユニット22の断面構造を示す部分横断面図である。図7には、磁石32の磁化容易軸の向きを矢印にて示している。 FIG. 7 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit 22. In FIG. 7, the direction of the easy axis of magnetization of the magnet 32 is indicated by an arrow.
 磁石ユニット22において、磁石32は、回転子20の周方向に沿って極性が交互に変わるように並べて設けられている。これにより、磁石ユニット22は、周方向に複数の磁極を有する。磁石32は、極異方性の永久磁石であり、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石を用いて構成されている。 In the magnet unit 22, the magnets 32 are arranged side by side so that the polarities change alternately along the circumferential direction of the rotor 20. As a result, the magnet unit 22 has a plurality of magnetic poles in the circumferential direction. The magnet 32 is a polar anisotropic permanent magnet, and uses a sintered neodymium magnet having an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more. It is configured.
 磁石32において径方向内側(固定子60側)の周面が、磁束の授受が行われる磁束作用面34である。磁石ユニット22は、磁石32の磁束作用面34において、磁極中心であるd軸付近の領域に集中的に磁束を生じさせるものとなっている。具体的には、磁石32では、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行する向きとなり、q軸側では磁化容易軸の向きがq軸に直交する向きとなっている。この場合、磁化容易軸の向きに沿って円弧状の磁石磁路が形成されている。要するに、磁石32は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。 The peripheral surface of the magnet 32 on the inner side in the radial direction (on the stator 60 side) is the magnetic flux acting surface 34 on which magnetic flux is exchanged. The magnet unit 22 concentrates the magnetic flux in the region near the d-axis, which is the center of the magnetic pole, on the magnetic flux acting surface 34 of the magnet 32. Specifically, in the magnet 32, the direction of the easy magnetization axis is different between the d-axis side (the part closer to the d-axis) and the q-axis side (the part closer to the q-axis), and the easy-magnetization axis is different on the d-axis side. The direction of is parallel to the d-axis, and the direction of the easy magnetization axis is orthogonal to the q-axis on the q-axis side. In this case, an arcuate magnetic path is formed along the direction of the easy magnetization axis. In short, the magnet 32 is configured to be oriented so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary.
 磁石32において、磁石磁路が円弧状に形成されていることにより、磁石32の径方向の厚さ寸法よりも磁石磁路長が長くなっている。これにより、磁石32のパーミアンスが上昇し、同じ磁石量でありながら、磁石量の多い磁石と同等の能力を発揮させることが可能となっている。 In the magnet 32, since the magnet magnetic path is formed in an arc shape, the magnet magnetic path length is longer than the radial thickness dimension of the magnet 32. As a result, the permeance of the magnet 32 is increased, and it is possible to exert the same ability as a magnet having a large amount of magnets while having the same amount of magnets.
 磁石32は、周方向に隣り合う2つを1組として1磁極を構成するものとなっている。つまり、磁石ユニット22において周方向に並ぶ複数の磁石32は、d軸及びq軸にそれぞれ割面を有するものとなっており、それら各磁石32が互いに当接又は近接した状態で配置されている。磁石32は、上記のとおり円弧状の磁石磁路を有しており、q軸では周方向に隣り合う磁石32どうしでN極とS極とが向かい合うこととなる。そのため、q軸近傍でのパーミアンスの向上を図ることができる。また、q軸を挟んで両側の磁石32は互いに吸引し合うため、これら各磁石32は互いの接触状態を保持できる。そのため、やはりパーミアンスの向上に寄与するものとなっている。 The magnet 32 constitutes one magnetic pole with two adjacent magnets in the circumferential direction as a set. That is, the plurality of magnets 32 arranged in the circumferential direction in the magnet unit 22 have split surfaces on the d-axis and the q-axis, respectively, and the magnets 32 are arranged in contact with each other or in close proximity to each other. .. As described above, the magnet 32 has an arcuate magnet magnetic path, and the north pole and the south pole face each other with the magnets 32 adjacent to each other in the circumferential direction on the q axis. Therefore, it is possible to improve the permeance in the vicinity of the q-axis. Further, since the magnets 32 on both sides of the q-axis attract each other, each of these magnets 32 can maintain a contact state with each other. Therefore, it also contributes to the improvement of permeance.
 磁石ユニット22では、各磁石32により、隣接するN,S極間を円弧状に磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、図8に示すように、磁束密度分布が正弦波に近いものとなる。その結果、図9に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極の中心側に磁束を集中させることができ、回転電機10のトルクを高めることが可能となっている。また、本実施形態の磁石ユニット22では、従来のハルバッハ配列の磁石と比べても、磁束密度分布の差異があることが確認できる。なお、図8及び図9において、横軸は電気角を示し、縦軸は磁束密度を示す。また、図8及び図9において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。 In the magnet unit 22, magnetic flux flows in an arc shape between adjacent N and S poles due to each magnet 32, so that the magnet path is longer than that of, for example, a radial anisotropic magnet. Therefore, as shown in FIG. 8, the magnetic flux density distribution is close to that of a sine wave. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown as a comparative example in FIG. 9, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotary electric machine 10 can be increased. .. Further, it can be confirmed that the magnet unit 22 of the present embodiment has a difference in the magnetic flux density distribution as compared with the conventional Halbach array magnet. In FIGS. 8 and 9, the horizontal axis represents the electric angle and the vertical axis represents the magnetic flux density. Further, in FIGS. 8 and 9, 90 ° on the horizontal axis indicates the d-axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q-axis.
 つまり、上記構成の各磁石32によれば、磁石ユニット22においてd軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石ユニット22を好適に実現することができる。 That is, according to each magnet 32 having the above configuration, the magnet magnetic flux in the d-axis is strengthened in the magnet unit 22, and the magnetic flux change in the vicinity of the q-axis is suppressed. As a result, it is possible to suitably realize the magnet unit 22 in which the change in the surface magnetic flux from the q-axis to the d-axis is gentle at each magnetic pole.
 磁束密度分布の正弦波整合率は、例えば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石、パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列のような磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。 The sine wave matching rate of the magnetic flux density distribution may be, for example, a value of 40% or more. By doing so, it is possible to surely improve the amount of magnetic flux in the central portion of the waveform as compared with the case of using a radial alignment magnet or a parallel alignment magnet having a sine wave matching ratio of about 30%. Further, if the sine wave matching factor is 60% or more, the amount of magnetic flux in the central portion of the waveform can be surely improved as compared with the magnetic flux concentrated arrangement such as the Halbach array.
 図9に示すラジアル異方性磁石では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、後述する固定子60の固定子巻線61において渦電流が増加してしまう。また、固定子巻線61側での磁束変化も急峻となる。これに対し、本実施形態では、磁束密度分布が正弦波に近い磁束波形となる。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。 In the radial anisotropic magnet shown in FIG. 9, the magnetic flux density changes sharply near the q-axis. The steeper the change in the magnetic flux density, the more the eddy current increases in the stator winding 61 of the stator 60, which will be described later. Further, the change in magnetic flux on the stator winding 61 side is also steep. On the other hand, in the present embodiment, the magnetic flux density distribution is a magnetic flux waveform close to a sine wave. Therefore, the change in the magnetic flux density near the q-axis is smaller than the change in the magnetic flux density of the radial anisotropic magnet. This makes it possible to suppress the generation of eddy currents.
 磁石32には、径方向外側の外周面に、d軸を含む所定範囲で凹部35が形成されているとともに、径方向内側の内周面に、q軸を含む所定範囲で凹部36が形成されている。この場合、磁石32の磁化容易軸の向きによれば、磁石32の外周面においてd軸付近で磁石磁路が短くなるとともに、磁石32の内周面においてq軸付近で磁石磁路が短くなる。そこで、磁石32において磁石磁路長が短い場所で十分な磁石磁束を生じさせることが困難になることを考慮して、その磁石磁束の弱い場所で磁石が削除されている。 In the magnet 32, a recess 35 is formed on the outer peripheral surface in the radial direction in a predetermined range including the d-axis, and a recess 36 is formed in a predetermined range including the q-axis on the inner peripheral surface in the radial direction. ing. In this case, according to the orientation of the easy-to-magnetize axis of the magnet 32, the magnetic path is shortened near the d-axis on the outer peripheral surface of the magnet 32, and the magnetic path is shortened near the q-axis on the inner peripheral surface of the magnet 32. .. Therefore, in consideration of the fact that it becomes difficult to generate a sufficient magnet magnetic flux in a place where the magnet magnetic path length is short in the magnet 32, the magnet is deleted in the place where the magnet magnetic flux is weak.
 なお、磁石ユニット22において、磁極と同じ数の磁石32を用いる構成としてもよい。例えば、磁石32が、周方向に隣り合う2磁極において各磁極の中心であるd軸間を1磁石として設けられるとよい。この場合、磁石32は、周方向の中心がq軸となり、かつd軸に割面を有する構成となっている。また、磁石32が、周方向の中心をq軸とする構成でなく、周方向の中心をd軸とする構成であってもよい。磁石32として、磁極数の2倍の数の磁石、又は磁極数と同じ数の磁石を用いる構成に代えて、円環状に繋がった円環磁石を用いる構成であってもよい。 The magnet unit 22 may be configured to use the same number of magnets 32 as the magnetic poles. For example, it is preferable that the magnet 32 is provided as one magnet between the d-axis which is the center of each magnetic pole in two magnetic poles adjacent to each other in the circumferential direction. In this case, the magnet 32 has a configuration in which the center in the circumferential direction is the q-axis and the magnet 32 has a split surface on the d-axis. Further, the magnet 32 may be configured such that the center in the circumferential direction is the d-axis instead of the configuration in which the center in the circumferential direction is the q-axis. As the magnet 32, instead of using a magnet having twice the number of magnetic poles or a magnet having the same number of magnetic poles, a configuration using an annular magnet connected in an annular shape may be used.
 図3に示すように、回転軸11の軸方向両側のうち回転子キャリア21との結合部の逆側の端部(図の上側の端部)には、回転センサとしてのレゾルバ41が設けられている。レゾルバ41は、回転軸11に固定されるレゾルバロータと、そのレゾルバロータの径方向外側に対向配置されたレゾルバステータとを備えている。レゾルバロータは、円板リング状をなしており、回転軸11を挿通させた状態で、回転軸11に同軸に設けられている。レゾルバステータは、ステータコアとステータコイルとを有し、ハウジングカバー242に固定されている。 As shown in FIG. 3, a resolver 41 as a rotation sensor is provided at an end portion (upper end portion in the figure) opposite to the coupling portion with the rotor carrier 21 on both sides of the rotation shaft 11 in the axial direction. ing. The resolver 41 includes a resolver rotor fixed to the rotating shaft 11 and a resolver stator arranged so as to face each other on the radial outer side of the resolver rotor. The resolver rotor has a disk ring shape, and is provided coaxially with the rotating shaft 11 with the rotating shaft 11 inserted therein. The resolver stator has a stator core and a stator coil, and is fixed to the housing cover 242.
 次に、固定子ユニット50の構成を説明する。図10は、固定子ユニット50の斜視図であり、図11は、固定子ユニット50の縦断面図である。なお、図11は、図3と同じ位置での縦断面図である。 Next, the configuration of the stator unit 50 will be described. 10 is a perspective view of the stator unit 50, and FIG. 11 is a vertical sectional view of the stator unit 50. Note that FIG. 11 is a vertical cross-sectional view at the same position as in FIG.
 固定子ユニット50は、その概要として、固定子60とその径方向内側の固定子ホルダ70とを有している。また、固定子60は、固定子巻線61と固定子コア62とを有している。そして、固定子コア62と固定子ホルダ70とを一体化してコアアセンブリCAとして設け、そのコアアセンブリCAに対して、固定子巻線61を構成する複数の部分巻線151を組み付ける構成としている。なお、固定子巻線61が「電機子巻線」に相当し、固定子コア62が「電機子コア」に相当し、固定子ホルダ70が「電機子保持部材」に相当する。また、コアアセンブリCAが「支持部材」に相当する。 The stator unit 50 has, as an outline, a stator 60 and a stator holder 70 on the inner side in the radial direction thereof. Further, the stator 60 has a stator winding 61 and a stator core 62. Then, the stator core 62 and the stator holder 70 are integrated and provided as a core assembly CA, and a plurality of partial windings 151 constituting the stator winding 61 are assembled to the core assembly CA. The stator winding 61 corresponds to the "armature winding", the stator core 62 corresponds to the "armature core", and the stator holder 70 corresponds to the "armature holding member". Further, the core assembly CA corresponds to the "support member".
 ここではまず、コアアセンブリCAについて説明する。図12は、コアアセンブリCAを軸方向一方側から見た斜視図であり、図13は、コアアセンブリCAを軸方向他方側から見た斜視図であり、図14は、コアアセンブリCAの横断面図であり、図15は、コアアセンブリCAの分解断面図である。 First, the core assembly CA will be explained. FIG. 12 is a perspective view of the core assembly CA viewed from one side in the axial direction, FIG. 13 is a perspective view of the core assembly CA viewed from the other side in the axial direction, and FIG. 14 is a cross section of the core assembly CA. FIG. 15 is an exploded cross-sectional view of the core assembly CA.
 コアアセンブリCAは、上述したとおり固定子コア62と、その径方向内側に組み付けられた固定子ホルダ70とを有している。言うなれば、固定子ホルダ70の外周面に固定子コア62が一体に組み付けられて構成されている。 The core assembly CA has a stator core 62 and a stator holder 70 assembled radially inside the stator core 62 as described above. So to speak, the stator core 62 is integrally assembled on the outer peripheral surface of the stator holder 70.
 固定子コア62は、磁性体である電磁鋼板からなるコアシート62aが軸方向に積層されたコアシート積層体として構成されており、径方向に所定の厚さを有する円筒状をなしている。固定子コア62において回転子20側となる径方向外側には固定子巻線61が組み付けられている。固定子コア62の外周面は凹凸のない曲面状をなしている。固定子コア62はバックヨークとして機能する。固定子コア62は、例えば円環板状に打ち抜き形成された複数枚のコアシート62aが軸方向に積層されて構成されている。ただし、固定子コア62としてヘリカルコア構造を有するものを用いてもよい。ヘリカルコア構造の固定子コア62では、帯状のコアシートが用いられ、このコアシートが環状に巻回形成されるとともに軸方向に積層されることで、全体として円筒状の固定子コア62が構成されている。 The stator core 62 is configured as a core sheet laminated body in which core sheets 62a made of magnetic steel sheets, which are magnetic materials, are laminated in the axial direction, and has a cylindrical shape having a predetermined thickness in the radial direction. A stator winding 61 is assembled on the radial outer side of the stator core 62 on the rotor 20 side. The outer peripheral surface of the stator core 62 has a curved surface without unevenness. The stator core 62 functions as a back yoke. The stator core 62 is configured by, for example, a plurality of core sheets 62a punched out in an annular plate shape and laminated in the axial direction. However, a stator core 62 having a helical core structure may be used. In the stator core 62 having a helical core structure, a strip-shaped core sheet is used, and the core sheet is wound in an annular shape and laminated in the axial direction to form a cylindrical stator core 62 as a whole. Has been done.
 本実施形態において、固定子60は、スロットを形成するためのティースを有していないスロットレス構造を有するものであるが、その構成は以下の(A)~(C)のいずれかを用いたものであってもよい。
(A)固定子60において、周方向における各導線部(後述する中間導線部152)の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石32の周方向の幅寸法をWm、磁石32の残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子60において、周方向における各導線部(中間導線部152)の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子60において、周方向における各導線部(中間導線部152)の間に導線間部材を設けていない構成となっている。
In the present embodiment, the stator 60 has a slotless structure having no teeth for forming a slot, and the configuration uses any of the following (A) to (C). It may be a thing.
(A) In the stator 60, a conductor-to-conductor member is provided between each conductor portion (intermediate conductor portion 152 described later) in the circumferential direction, and the width dimension of the conductor-to-lead member in one magnetic pole in the circumferential direction is provided as the conductor-to-conductor member. Wt, the saturation magnetic flux density of the conductor-to-conductor member is Bs, the width dimension in the circumferential direction of the magnet 32 at one magnetic pole is Wm, and the residual magnetic flux density of the magnet 32 is Br, the relationship of Wt × Bs ≦ Wm × Br. A magnetic material is used.
(B) In the stator 60, a conductor-to-conductor member is provided between each conductor portion (intermediate conductor portion 152) in the circumferential direction, and a non-magnetic material is used as the conductor-to-conductor member.
(C) The stator 60 has a configuration in which no conductor-to-conductor member is provided between the conductor portions (intermediate conductor portions 152) in the circumferential direction.
 また、図15に示すように、固定子ホルダ70は、外筒部材71と内筒部材81とを有し、外筒部材71を径方向外側、内筒部材81を径方向内側にしてそれらが一体に組み付けられることにより構成されている。これら各部材71,81は、例えばアルミニウムや鋳鉄等の金属、又は炭素繊維強化プラスチック(CFRP)により構成されている。 Further, as shown in FIG. 15, the stator holder 70 has an outer cylinder member 71 and an inner cylinder member 81, and the outer cylinder member 71 is radially outside and the inner cylinder member 81 is radially inside. It is configured by being assembled integrally. Each of these members 71 and 81 is made of, for example, a metal such as aluminum or cast iron, or carbon fiber reinforced plastic (CFRP).
 外筒部材71は、外周面及び内周面をいずれも真円状の曲面とする円筒部材であり、軸方向一端側には、径方向内側に延びる環状のフランジ72が形成されている。このフランジ72には、周方向に所定間隔で、径方向内側に延びる複数の突出部73が形成されている(図13参照)。また、外筒部材71において軸方向一端側及び他端側には、それぞれ内筒部材81に軸方向に対向する対向面74,75が形成されており、その対向面74,75には、環状に延びる環状溝74a,75aが形成されている。 The outer cylinder member 71 is a cylindrical member having a perfect circular curved surface on both the outer peripheral surface and the inner peripheral surface, and an annular flange 72 extending inward in the radial direction is formed on one end side in the axial direction. The flange 72 is formed with a plurality of protrusions 73 extending inward in the radial direction at predetermined intervals in the circumferential direction (see FIG. 13). Further, in the outer cylinder member 71, facing surfaces 74 and 75 facing the inner cylinder member 81 in the axial direction are formed on one end side and the other end side in the axial direction, respectively, and the facing surfaces 74 and 75 are annular. An annular grooves 74a and 75a extending to the surface are formed.
 また、内筒部材81は、外筒部材71の内径寸法よりも小さい外径寸法を有する円筒部材であり、その外周面は、外筒部材71と同心の真円状の曲面となっている。内筒部材81において軸方向一端側には、径方向外側に延びる環状のフランジ82が形成されている。内筒部材81は、外筒部材71の対向面74,75に軸方向に当接した状態で、外筒部材71に組み付けられるようになっている。図13に示すように、外筒部材71及び内筒部材81は、ボルト等の締結具84により互いに組み付けられている。具体的には、内筒部材81の内周側には、周方向に所定間隔で、径方向内側に延びる複数の突出部83が形成されており、その突出部83の軸方向端面と外筒部材71の突出部73とが重ね合わされた状態で、その突出部73,83どうしが締結具84により締結されている。 Further, the inner cylinder member 81 is a cylindrical member having an outer diameter dimension smaller than the inner diameter dimension of the outer cylinder member 71, and its outer peripheral surface is a circular curved surface concentric with the outer cylinder member 71. An annular flange 82 extending radially outward is formed on one end side of the inner cylinder member 81 in the axial direction. The inner cylinder member 81 is assembled to the outer cylinder member 71 in a state of being in axial contact with the facing surfaces 74 and 75 of the outer cylinder member 71. As shown in FIG. 13, the outer cylinder member 71 and the inner cylinder member 81 are assembled to each other by fasteners 84 such as bolts. Specifically, on the inner peripheral side of the inner cylinder member 81, a plurality of protruding portions 83 extending inward in the radial direction are formed at predetermined intervals in the circumferential direction, and the axial end surface of the protruding portions 83 and the outer cylinder are formed. The protruding portions 73, 83 are fastened to each other by the fastener 84 in a state where the protruding portion 73 of the member 71 is overlapped with each other.
 図14に示すように、外筒部材71と内筒部材81とが互いに組み付けられた状態において、外筒部材71の内周面と内筒部材81の外周面との間には環状の隙間が形成されており、その隙間空間が、冷却水等の冷媒を流通させる冷媒通路85となっている。冷媒通路85は、固定子ホルダ70の周方向に環状に設けられている。より詳しくは、内筒部材81には、その内周側において径方向内側に突出し、かつその内部に入口側通路86と出口側通路87とが形成された通路形成部88が設けられており、それら各通路86,87は内筒部材81の外周面に開口している。また、内筒部材81の外周面には、冷媒通路85を入口側と出口側とに仕切るための仕切り部89が設けられている。これにより、入口側通路86から流入する冷媒は、冷媒通路85を周方向に流れ、その後、出口側通路87から流出する。 As shown in FIG. 14, when the outer cylinder member 71 and the inner cylinder member 81 are assembled to each other, there is an annular gap between the inner peripheral surface of the outer cylinder member 71 and the outer peripheral surface of the inner cylinder member 81. It is formed, and the gap space is a refrigerant passage 85 through which a refrigerant such as cooling water flows. The refrigerant passage 85 is provided in an annular shape in the circumferential direction of the stator holder 70. More specifically, the inner cylinder member 81 is provided with a passage forming portion 88 that protrudes radially inward on the inner peripheral side thereof and has an inlet side passage 86 and an outlet side passage 87 formed therein. Each of the passages 86 and 87 is open to the outer peripheral surface of the inner cylinder member 81. Further, on the outer peripheral surface of the inner cylinder member 81, a partition portion 89 for partitioning the refrigerant passage 85 into an inlet side and an outlet side is provided. As a result, the refrigerant flowing in from the inlet side passage 86 flows in the refrigerant passage 85 in the circumferential direction, and then flows out from the outlet side passage 87.
 入口側通路86及び出口側通路87は、その一端側が径方向に延びて内筒部材81の外周面に開口するとともに、他端側が軸方向に延びて内筒部材81の軸方向端面に開口するようになっている。図12には、入口側通路86に通じる入口開口86aと、出口側通路87に通じる出口開口87aとが示されている。なお、入口側通路86及び出口側通路87は、ハウジングカバー242に取り付けられた入口ポート244及び出口ポート245(図1参照)に通じており、それら各ポート244,245を介して冷媒が出入りするようになっている。 One end side of the inlet side passage 86 and the outlet side passage 87 extends radially and opens to the outer peripheral surface of the inner cylinder member 81, and the other end side extends axially and opens to the axial end surface of the inner cylinder member 81. It has become like. FIG. 12 shows an entrance opening 86a leading to the entrance side passage 86 and an exit opening 87a leading to the exit side passage 87. The inlet side passage 86 and the outlet side passage 87 are connected to the inlet port 244 and the outlet port 245 (see FIG. 1) attached to the housing cover 242, and the refrigerant enters and exits through the respective ports 244 and 245. It has become like.
 外筒部材71と内筒部材81との接合部分には、冷媒通路85の冷媒の漏れを抑制するためのシール材101,102が設けられている(図15参照)。具体的には、シール材101,102は例えばOリングであり、外筒部材71の環状溝74a,75aに収容され、かつ外筒部材71及び内筒部材81により圧縮された状態で設けられている。 Sealing materials 101 and 102 for suppressing leakage of the refrigerant in the refrigerant passage 85 are provided at the joint portion between the outer cylinder member 71 and the inner cylinder member 81 (see FIG. 15). Specifically, the sealing materials 101 and 102 are, for example, O-rings, which are accommodated in the annular grooves 74a and 75a of the outer cylinder member 71 and are provided in a state of being compressed by the outer cylinder member 71 and the inner cylinder member 81. There is.
 また、図12に示すように、内筒部材81は、軸方向一端側に端板部91を有しており、その端板部91には、軸方向に延びる中空筒状のボス部92が設けられている。ボス部92は、回転軸11を挿通させるための挿通孔93を囲むように設けられている。ボス部92には、ハウジングカバー242を固定するための複数の締結部94が設けられている。また、端板部91には、ボス部92の径方向外側に、軸方向に延びる複数の支柱部95が設けられている。この支柱部95は、バスバーモジュール200を固定するための固定部となる部位であるが、その詳細は後述する。また、ボス部92は、軸受12を保持する軸受保持部材となっており、その内周部に設けられた軸受固定部96に軸受12が固定されている(図3参照)。 Further, as shown in FIG. 12, the inner cylinder member 81 has an end plate portion 91 on one end side in the axial direction, and the end plate portion 91 has a hollow cylindrical boss portion 92 extending in the axial direction. It is provided. The boss portion 92 is provided so as to surround the insertion hole 93 for inserting the rotating shaft 11. The boss portion 92 is provided with a plurality of fastening portions 94 for fixing the housing cover 242. Further, the end plate portion 91 is provided with a plurality of support column portions 95 extending in the axial direction on the radial outer side of the boss portion 92. The support column 95 is a portion that serves as a fixing portion for fixing the bus bar module 200, and the details thereof will be described later. Further, the boss portion 92 is a bearing holding member for holding the bearing 12, and the bearing 12 is fixed to the bearing fixing portion 96 provided on the inner peripheral portion thereof (see FIG. 3).
 また、図12,図13に示すように、外筒部材71及び内筒部材81には、後述する複数のコイルモジュール150を固定するために用いる凹部105,106が形成されている。 Further, as shown in FIGS. 12 and 13, recesses 105 and 106 used for fixing a plurality of coil modules 150, which will be described later, are formed in the outer cylinder member 71 and the inner cylinder member 81.
 具体的には、図12に示すように、内筒部材81の軸方向端面、詳しくは端板部91においてボス部92の周囲となる軸方向外側端面には、周方向に等間隔で複数の凹部105が形成されている。また、図13に示すように、外筒部材71の軸方向端面、詳しくはフランジ72の軸方向外側の端面には、周方向に等間隔で複数の凹部106が形成されている。これら凹部105,106は、コアアセンブリCAと同心の仮想円上に並ぶように設けられている。凹部105,106は、周方向において同一となる位置にそれぞれ設けられ、その間隔及び個数も同じである。 Specifically, as shown in FIG. 12, a plurality of axial end faces of the inner cylinder member 81, specifically, an axial outer end face around the boss portion 92 in the end plate portion 91, are provided at equal intervals in the circumferential direction. A recess 105 is formed. Further, as shown in FIG. 13, a plurality of recesses 106 are formed at equal intervals in the circumferential direction on the axial end surface of the outer cylinder member 71, specifically, the axially outer end surface of the flange 72. These recesses 105 and 106 are provided so as to be aligned on a virtual circle concentric with the core assembly CA. The recesses 105 and 106 are provided at the same positions in the circumferential direction, respectively, and the intervals and the number thereof are also the same.
 ところで、固定子コア62は、固定子ホルダ70に対する組み付けの強度を確保すべく、固定子ホルダ70に対する径方向の圧縮力を生じる状態で組み付けられている。具体的には、焼きばめ又は圧入により、固定子ホルダ70に対して所定の締め代で固定子コア62が嵌合固定されている。この場合、固定子コア62及び固定子ホルダ70は、そのうち一方による他方への径方向の応力が生じる状態で組み付けられていると言える。また、回転電機10を高トルク化する場合には、例えば固定子60を大径化することが考えられ、かかる場合には固定子ホルダ70に対する固定子コア62の結合を強固にすべく固定子コア62の締め付け力が増大される。しかしながら、固定子コア62の圧縮応力(換言すれば残留応力)を大きくすると、固定子コア62の破損が生じることが懸念される。 By the way, the stator core 62 is assembled in a state where a compressive force in the radial direction is generated with respect to the stator holder 70 in order to secure the strength of the assembly with respect to the stator holder 70. Specifically, the stator core 62 is fitted and fixed to the stator holder 70 with a predetermined tightening margin by shrink fitting or press fitting. In this case, it can be said that the stator core 62 and the stator holder 70 are assembled in a state where radial stress is generated from one of them to the other. Further, when increasing the torque of the rotary electric machine 10, for example, it is conceivable to increase the diameter of the stator 60, and in such a case, the stator is used to strengthen the coupling of the stator core 62 to the stator holder 70. The tightening force of the core 62 is increased. However, if the compressive stress (in other words, the residual stress) of the stator core 62 is increased, there is a concern that the stator core 62 may be damaged.
 そこで本実施形態では、固定子コア62及び固定子ホルダ70が互いに所定の締め代で嵌合固定されている構成において、固定子コア62及び固定子ホルダ70における径方向の互いの対向部分に、周方向の係合により固定子コア62の周方向の変位を規制する規制部を設ける構成としている。つまり、図12~図14に示すように、径方向において固定子コア62と固定子ホルダ70の外筒部材71との間には、周方向に所定間隔で、規制部としての複数の係合部材111が設けられており、その係合部材111により、固定子コア62と固定子ホルダ70との周方向の位置ずれが抑制されている。なおこの場合、固定子コア62及び外筒部材71の少なくともいずれかに凹部を設け、その凹部において係合部材111を係合させる構成とするとよい。係合部材111に代えて、固定子コア62及び外筒部材71のいずれかに凸部を設ける構成としてもよい。 Therefore, in the present embodiment, in a configuration in which the stator core 62 and the stator holder 70 are fitted and fixed to each other with a predetermined tightening allowance, the stator core 62 and the stator holder 70 are radially opposed to each other. A regulating portion is provided to regulate the displacement of the stator core 62 in the circumferential direction by engaging in the circumferential direction. That is, as shown in FIGS. 12 to 14, a plurality of engagements as a restricting portion are provided between the stator core 62 and the outer cylinder member 71 of the stator holder 70 in the radial direction at predetermined intervals in the circumferential direction. A member 111 is provided, and the engaging member 111 suppresses the positional deviation between the stator core 62 and the stator holder 70 in the circumferential direction. In this case, a recess may be provided in at least one of the stator core 62 and the outer cylinder member 71, and the engaging member 111 may be engaged in the recess. Instead of the engaging member 111, a convex portion may be provided on either the stator core 62 or the outer cylinder member 71.
 上記構成では、固定子コア62及び固定子ホルダ70(外筒部材71)は、所定の締め代で嵌合固定されることに加え、係合部材111の規制により相互の周方向変位が規制された状態で設けられている。したがって、仮に固定子コア62及び固定子ホルダ70における締め代が比較的小さくても、固定子コア62の周方向の変位を抑制できる。また、締め代が比較的小さくても所望の変位抑制効果が得られるため、締め代が過剰に大きいことに起因する固定子コア62の破損を抑制できる。その結果、固定子コア62の変位を適正に抑制することができる。 In the above configuration, the stator core 62 and the stator holder 70 (outer cylinder member 71) are fitted and fixed with a predetermined tightening allowance, and mutual circumferential displacement is regulated by the regulation of the engaging member 111. It is provided in a state of being. Therefore, even if the tightening allowance in the stator core 62 and the stator holder 70 is relatively small, the displacement of the stator core 62 in the circumferential direction can be suppressed. Further, since the desired displacement suppressing effect can be obtained even if the tightening allowance is relatively small, damage to the stator core 62 due to an excessively large tightening allowance can be suppressed. As a result, the displacement of the stator core 62 can be appropriately suppressed.
 内筒部材81の内周側には、回転軸11を囲むようにして環状の内部空間が形成されており、その内部空間に、例えば電力変換器としてのインバータを構成する電気部品が配置される構成としてもよい。電気部品は、例えば半導体スイッチング素子やコンデンサをパッケージ化した電気モジュールである。内筒部材81の内周面に当接した状態で電気モジュールを配置することにより、冷媒通路85を流れる冷媒による電気モジュールの冷却が可能となっている。なお、内筒部材81の内周側において、複数の突出部83を無くし、又は突出部83の突出高さを小さくし、これにより内筒部材81の内周側の内部空間を拡張することも可能である。 An annular internal space is formed on the inner peripheral side of the inner cylinder member 81 so as to surround the rotation shaft 11, and in the internal space, for example, electric components constituting an inverter as a power converter are arranged. May be good. The electric component is, for example, an electric module in which a semiconductor switching element or a capacitor is packaged. By arranging the electric module in a state of being in contact with the inner peripheral surface of the inner cylinder member 81, it is possible to cool the electric module by the refrigerant flowing through the refrigerant passage 85. It should be noted that, on the inner peripheral side of the inner cylinder member 81, the plurality of protruding portions 83 may be eliminated or the protruding height of the protruding portions 83 may be reduced, thereby expanding the internal space on the inner peripheral side of the inner cylinder member 81. It is possible.
 次に、コアアセンブリCAに対して組み付けられる固定子巻線61の構成を詳しく説明する。コアアセンブリCAに対して固定子巻線61が組み付けられた状態は、図10,図11に示すとおりであり、コアアセンブリCAの径方向外側、すなわち固定子コア62の径方向外側に、固定子巻線61を構成する複数の部分巻線151が周方向に並ぶ状態で組み付けられている。 Next, the configuration of the stator winding 61 assembled to the core assembly CA will be described in detail. The state in which the stator winding 61 is assembled to the core assembly CA is as shown in FIGS. 10 and 11, and the stator is radially outside the core assembly CA, that is, radially outside the stator core 62. A plurality of partial windings 151 constituting the winding 61 are assembled in a state of being arranged in the circumferential direction.
 固定子巻線61は、複数の相巻線を有し、各相の相巻線が周方向に所定順序で配置されることで円筒状(環状)に形成されている。本実施形態では、U相、V相及びW相の相巻線を用いることで、固定子巻線61が3相の相巻線を有する構成となっている。 The stator winding 61 has a plurality of phase windings, and the phase windings of each phase are arranged in a predetermined order in the circumferential direction to form a cylindrical shape (annular). In the present embodiment, the stator winding 61 has a three-phase phase winding by using U-phase, V-phase, and W-phase phase windings.
 図11に示すように、固定子60は、軸方向において、回転子20における磁石ユニット22に径方向に対向するコイルサイドCSに相当する部分と、そのコイルサイドCSの軸方向外側であるコイルエンドCEに相当する部分とを有している。この場合、固定子コア62は、軸方向においてコイルサイドCSに相当する範囲で設けられている。 As shown in FIG. 11, the stator 60 has a portion corresponding to the coil side CS that faces the magnet unit 22 in the rotor 20 in the axial direction in the axial direction, and a coil end that is outside the coil side CS in the axial direction. It has a part corresponding to CE. In this case, the stator core 62 is provided in a range corresponding to the coil side CS in the axial direction.
 固定子巻線61において各相の相巻線は各々複数の部分巻線151を有しており(図16参照)、その部分巻線151は個別にコイルモジュール150として設けられている。つまり、コイルモジュール150は、各相の相巻線における部分巻線151が一体に設けられて構成されており、極数に応じた所定数のコイルモジュール150により固定子巻線61が構成されている。各相のコイルモジュール150(部分巻線151)が周方向に所定順序で並べて配置されることで、固定子巻線61のコイルサイドCSにおいて各相の導線部が所定順序に並べて配置されるものとなっている。図10には、コイルサイドCSにおけるU相、V相及びW相の導線部の並び順が示されている。本実施形態では、磁極数を24としているが、その数は任意である。 In the stator winding 61, each phase winding of each phase has a plurality of partial windings 151 (see FIG. 16), and the partial windings 151 are individually provided as coil modules 150. That is, the coil module 150 is configured by integrally providing partial windings 151 in the phase windings of each phase, and the stator winding 61 is configured by a predetermined number of coil modules 150 according to the number of poles. There is. By arranging the coil modules 150 (partial winding 151) of each phase in a predetermined order in the circumferential direction, the conductors of each phase are arranged in a predetermined order in the coil side CS of the stator winding 61. It has become. FIG. 10 shows the order of arrangement of the U-phase, V-phase, and W-phase conductors in the coil side CS. In the present embodiment, the number of magnetic poles is 24, but the number is arbitrary.
 固定子巻線61では、相ごとに各コイルモジュール150の部分巻線151が並列又は直列に接続されることにより、各相の相巻線が構成されている。図16は、3相の各相巻線における部分巻線151の接続状態を示す回路図である。図16では、各相の相巻線における部分巻線151がそれぞれ並列に接続された状態が示されている。 In the stator winding 61, the phase windings of each phase are configured by connecting the partial windings 151 of each coil module 150 in parallel or in series for each phase. FIG. 16 is a circuit diagram showing a connection state of the partial winding 151 in each of the three-phase windings. FIG. 16 shows a state in which the partial windings 151 in the phase windings of each phase are connected in parallel.
 図11に示すように、コイルモジュール150は固定子コア62の径方向外側に組み付けられている。この場合、コイルモジュール150は、その軸方向両端部分が固定子コア62よりも軸方向外側(すなわちコイルエンドCE側)に突出した状態で組み付けられている。つまり、固定子巻線61は、固定子コア62よりも軸方向外側に突出したコイルエンドCEに相当する部分と、それよりも軸方向内側のコイルサイドCSに相当する部分とを有している。 As shown in FIG. 11, the coil module 150 is assembled on the radial outer side of the stator core 62. In this case, the coil module 150 is assembled in a state where both ends in the axial direction are projected outward in the axial direction (that is, the coil end CE side) from the stator core 62. That is, the stator winding 61 has a portion corresponding to the coil end CE protruding outward in the axial direction from the stator core 62, and a portion corresponding to the coil side CS on the inner side in the axial direction. ..
 コイルモジュール150は、2種類の形状を有するものとなっており、その一方は、コイルエンドCEにおいて部分巻線151が径方向内側、すなわち固定子コア62側に折り曲げられた形状を有するものであり、他方は、コイルエンドCEにおいて部分巻線151が径方向内側に折り曲げられておらず、軸方向に直線状に延びる形状を有するものである。以下の説明では、便宜を図るべく、軸方向両端側に屈曲形状を有する部分巻線151を「第1部分巻線151A」、その第1部分巻線151Aを有するコイルモジュール150を「第1コイルモジュール150A」とも称する。また、軸方向両端側の屈曲形状を有していない部分巻線151を「第2部分巻線151B」、その第2部分巻線151Bを有するコイルモジュール150を「第2コイルモジュール150B」とも称する。 The coil module 150 has two types of shapes, one of which has a shape in which the partial winding 151 is bent in the radial direction, that is, toward the stator core 62 in the coil end CE. On the other hand, in the coil end CE, the partial winding 151 is not bent inward in the radial direction and has a shape extending linearly in the axial direction. In the following description, for convenience, the partial winding 151 having a bent shape on both ends in the axial direction is referred to as a "first partial winding 151A", and the coil module 150 having the first partial winding 151A is referred to as a "first coil". Also referred to as "module 150A". Further, the partial winding 151 having no bending shape on both ends in the axial direction is also referred to as a "second partial winding 151B", and the coil module 150 having the second partial winding 151B is also referred to as a "second coil module 150B". ..
 図17は、第1コイルモジュール150Aと第2コイルモジュール150Bとを横に並べて対比して示す側面図であり、図18は、第1部分巻線151Aと第2部分巻線151Bとを横に並べて対比して示す側面図である。これら各図に示すように、各コイルモジュール150A,150B、各部分巻線151A,151Bは、軸方向長さが互いに異なり、かつ軸方向両側の端部形状が互いに異なるものとなっている。第1部分巻線151Aは、側面視において略C字状をなし、第2部分巻線151Bは、側面視において略I字状をなしている。第1部分巻線151Aには、軸方向両側に「第1絶縁カバー」としての絶縁カバー161,162が装着され、第2部分巻線151Bには、軸方向両側に「第2絶縁カバー」としての絶縁カバー163,164が装着されている。 FIG. 17 is a side view showing the first coil module 150A and the second coil module 150B side by side in comparison, and FIG. 18 shows the first partial winding 151A and the second partial winding 151B side by side. It is a side view showing side by side and contrasting. As shown in each of these figures, the coil modules 150A and 150B and the partial windings 151A and 151B have different axial lengths and different end shapes on both sides in the axial direction. The first partial winding 151A has a substantially C shape in the side view, and the second partial winding 151B has a substantially I shape in the side view. The first partial winding 151A is equipped with insulating covers 161, 162 as "first insulating covers" on both sides in the axial direction, and the second partial winding 151B is equipped with "second insulating covers" on both sides in the axial direction. Insulation covers 163 and 164 are attached.
 次に、コイルモジュール150A,150Bの構成を詳しく説明する。 Next, the configurations of the coil modules 150A and 150B will be described in detail.
 ここではまず、コイルモジュール150A,150Bのうち第1コイルモジュール150Aについて説明する。図19(a)は、第1コイルモジュール150Aの構成を示す斜視図であり、図19(b)は、第1コイルモジュール150Aにおいて構成部品を分解して示す斜視図である。また、図20は、図19(a)における20-20線断面図である。 Here, first, the first coil module 150A among the coil modules 150A and 150B will be described. FIG. 19A is a perspective view showing the configuration of the first coil module 150A, and FIG. 19B is a perspective view showing the components of the first coil module 150A in an exploded manner. Further, FIG. 20 is a sectional view taken along line 20-20 in FIG. 19 (a).
 図19(a),(b)に示すように、第1コイルモジュール150Aは、導線材CRを多重巻にして構成された第1部分巻線151Aと、その第1部分巻線151Aにおいて軸方向一端側及び他端側に取り付けられた絶縁カバー161,162とを有している。絶縁カバー161,162は合成樹脂等の絶縁材料により成形されている。 As shown in FIGS. 19A and 19B, the first coil module 150A has a first partial winding 151A configured by multiple winding of a conducting wire material CR and a first partial winding 151A thereof in the axial direction. It has insulating covers 161, 162 attached to one end side and the other end side. The insulating covers 161, 162 are formed of an insulating material such as synthetic resin.
 第1部分巻線151Aは、互いに平行でかつ直線状に設けられる一対の中間導線部152と、一対の中間導線部152を軸方向両端でそれぞれ接続する一対の渡り部153Aとを有しており、これら一対の中間導線部152と一対の渡り部153Aとにより環状に形成されている。一対の中間導線部152は、所定のコイルピッチ分を離して設けられており、周方向において一対の中間導線部152の間に、他相の部分巻線151の中間導線部152が配置可能となっている。本実施形態では、一対の中間導線部152は2コイルピッチ分を離して設けられ、一対の中間導線部152の間に、他2相の部分巻線151における中間導線部152が1つずつ配置される構成となっている。 The first partial winding 151A has a pair of intermediate conductor portions 152 provided in parallel and linearly with each other, and a pair of crossover portions 153A connecting the pair of intermediate conductor portions 152 at both ends in the axial direction. , These pair of intermediate conductor portions 152 and the pair of crossover portions 153A form an annular shape. The pair of intermediate conductors 152 are provided so as to be separated by a predetermined coil pitch, and the intermediate conductors 152 of the partial winding 151 of the other phase can be arranged between the pair of intermediate conductors 152 in the circumferential direction. It has become. In the present embodiment, the pair of intermediate conductors 152 are provided so as to be separated by two coil pitches, and one intermediate conductor 152 in the other two-phase partial winding 151 is arranged between the pair of intermediate conductors 152. It is configured to be.
 一対の渡り部153Aは、軸方向両側でそれぞれ同じ形状となっており、いずれもコイルエンドCE(図11参照)に相当する部分として設けられている。各渡り部153Aは、中間導線部152に対して直交する向き、すなわち軸方向に直交する方向に折り曲がるようにして設けられている。 The pair of crossover portions 153A have the same shape on both sides in the axial direction, and both are provided as portions corresponding to the coil end CE (see FIG. 11). Each crossover portion 153A is provided so as to be bent in a direction orthogonal to the intermediate conductor portion 152, that is, in a direction orthogonal to the axial direction.
 図18に示すように、第1部分巻線151Aは、軸方向両側に渡り部153Aを有し、第2部分巻線151Bは、軸方向両側に渡り部153Bを有している。これら各部分巻線151A,151Bの渡り部153A,153Bはその形状が互いに異なっており、その区別を明確にすべく、第1部分巻線151Aの渡り部153Aを「第1渡り部153A」、第2部分巻線151Bの渡り部153Bを「第2渡り部153B」とも記載する。 As shown in FIG. 18, the first partial winding 151A has crossover portions 153A on both sides in the axial direction, and the second partial winding 151B has crossover portions 153B on both sides in the axial direction. The crossover portions 153A and 153B of the partial windings 151A and 151B are different in shape from each other, and in order to clarify the distinction, the crossover portion 153A of the first partial winding 151A is referred to as a "first crossover portion 153A". The crossover portion 153B of the second partial winding 151B is also referred to as "second crossover portion 153B".
 各部分巻線151A,151Bにおいて、中間導線部152は、コイルサイドCSにおいて周方向に1つずつ並ぶコイルサイド導線部として設けられている。また、各渡り部153A,153Bは、コイルエンドCEにおいて、周方向に異なる2位置の同相の中間導線部152どうしを接続するコイルエンド導線部として設けられている。 In each of the partial windings 151A and 151B, the intermediate conductor portion 152 is provided as a coil side conductor portion arranged one by one in the circumferential direction in the coil side CS. Further, the crossover portions 153A and 153B are provided as coil end conductor portions in the coil end CE for connecting the intermediate conductor portions 152 having the same phase at two positions different in the circumferential direction.
 図20に示すように、第1部分巻線151Aは、導線集合部分の横断面が四角形になるように導線材CRが多重に巻回されて形成されている。図20は、中間導線部152の横断面を示しており、その中間導線部152において周方向及び径方向に並ぶように導線材CRが多重に巻回されている。つまり、第1部分巻線151Aは、中間導線部152において導線材CRが周方向に複数列で並べられ、かつ径方向に複数列で並べられることで、横断面が略矩形状となるように形成されている。なお、第1渡り部153Aの先端部では、径方向への折れ曲がりにより、導線材CRが軸方向及び径方向に並ぶように多重に巻回される構成となっている。本実施形態では、導線材CRを同心巻により巻回することで第1部分巻線151Aが構成されている。ただし、導線材CRの巻き方は任意であり、同心巻に代えて、アルファ巻により導線材CRが多重に巻回されていてもよい。 As shown in FIG. 20, the first partial winding 151A is formed by winding the conducting wire material CR multiple times so that the cross section of the conducting wire gathering portion becomes a quadrangle. FIG. 20 shows a cross section of the intermediate conducting wire portion 152, and the conducting wire material CR is multiplely wound around the intermediate conducting wire portion 152 so as to be aligned in the circumferential direction and the radial direction. That is, in the first partial winding 151A, the conductors CR are arranged in a plurality of rows in the circumferential direction and in a plurality of rows in the radial direction in the intermediate conductor portion 152 so that the cross section becomes substantially rectangular. It is formed. The tip of the first crossover portion 153A is configured to be wound in multiple directions so that the conductor CRs are aligned in the axial direction and the radial direction due to the bending in the radial direction. In the present embodiment, the first partial winding 151A is configured by winding the conductor CR by concentric winding. However, the method of winding the conductor CR is arbitrary, and instead of concentric winding, the conductor CR may be wound multiple times by alpha winding.
 第1部分巻線151Aでは、軸方向両側の第1渡り部153Aのうち、一方の第1渡り部153A(図19(b)の上側の第1渡り部153A)から導線材CRの端部が引き出されており、その端部が巻線端部154,155となっている。巻線端部154,155は、それぞれ導線材CRの巻き始め及び巻き終わりとなる部分である。巻線端部154,155のうち一方が電流入出力端子に接続され、他方が中性点に接続されるようになっている。 In the first partial winding 151A, of the first crossovers 153A on both sides in the axial direction, the end of the conductor CR is formed from one of the first crossovers 153A (the upper first crossover 153A in FIG. 19B). It is pulled out, and its end portion is a winding end portion 154, 155. The winding end portions 154 and 155 are portions where the winding start and winding end of the conductor material CR, respectively. One of the winding ends 154 and 155 is connected to the current input / output terminal, and the other is connected to the neutral point.
 第1部分巻線151Aにおいて各中間導線部152には、シート状の絶縁被覆体157が被せられた状態で設けられている。なお、図19(a)には、第1コイルモジュール150Aが、中間導線部152に絶縁被覆体157が被せられ、かつ絶縁被覆体157の内側に中間導線部152が存在する状態で示されているが、便宜上、その該当部分を中間導線部152としている(後述する図22(a)も同様)。 In the first partial winding 151A, each intermediate conducting wire portion 152 is provided with a sheet-shaped insulating coating 157 covered with the intermediate conducting wire portion 152. Note that FIG. 19A shows the first coil module 150A in a state where the intermediate conductor portion 152 is covered with the insulating coating portion 157 and the intermediate conductor portion 152 is present inside the insulating coating portion 157. However, for convenience, the corresponding portion is referred to as an intermediate conductor portion 152 (the same applies to FIG. 22A described later).
 絶縁被覆体157は、軸方向寸法として少なくとも中間導線部152における軸方向の絶縁被覆範囲の長さを有するフィルム材FMを用い、そのフィルム材FMを中間導線部152の周囲に巻装することで設けられている。フィルム材FMは、例えばPEN(ポリエチレンナフタレート)フィルムよりなる。より具体的には、フィルム材FMは、フィルム基材と、そのフィルム基材の両面のうち片面に設けられ、発泡性を有する接着層とを含む。そして、フィルム材FMは、接着層により接着させた状態で、中間導線部152に対して巻装されている。なお、接着層として非発泡性の接着剤を用いることも可能である。 The insulating coating 157 uses a film material FM having at least the length of the insulating coating range in the intermediate wire portion 152 as an axial dimension, and the film material FM is wound around the intermediate conductor portion 152. It is provided. The film material FM is made of, for example, a PEN (polyethylene naphthalate) film. More specifically, the film material FM includes a film base material and an adhesive layer provided on one side of both surfaces of the film base material and having foamability. Then, the film material FM is wound around the intermediate conductor portion 152 in a state of being adhered by the adhesive layer. It is also possible to use a non-foaming adhesive as the adhesive layer.
 図20に示すように、中間導線部152は、導線材CRが周方向及び径方向に並ぶことで横断面が略矩形状をなしており、中間導線部152の周囲には、フィルム材FMがその周方向の端部をオーバーラップさせた状態で被せられていることで、絶縁被覆体157が設けられている。フィルム材FMは、縦寸法が中間導線部152の軸方向長さよりも長く、かつ横寸法が中間導線部152の1周長さよりも長い矩形シートであり、中間導線部152の断面形状に合わせて折り目を付けた状態で中間導線部152に巻装されている。中間導線部152にフィルム材FMが巻装された状態では、中間導線部152の導線材CRとフィルム基材との間の隙間が接着層での発泡により埋められるようになっている。また、フィルム材FMのオーバーラップ部分OLでは、フィルム材FMの周方向の端部どうしが接着層により接合されている。 As shown in FIG. 20, the intermediate lead wire portion 152 has a substantially rectangular cross section due to the radial and radial directions of the lead wire member CR, and the film material FM is formed around the intermediate lead wire portion 152. The insulating coating 157 is provided by covering the peripheral ends in an overlapping state. The film material FM is a rectangular sheet whose vertical dimension is longer than the axial length of the intermediate conductor portion 152 and whose horizontal dimension is longer than one circumference of the intermediate conductor portion 152, according to the cross-sectional shape of the intermediate conductor portion 152. It is wound around the intermediate conductor portion 152 with a crease. In a state where the film material FM is wound around the intermediate conductor portion 152, the gap between the conductor material CR of the intermediate conductor portion 152 and the film base material is filled by foaming in the adhesive layer. Further, in the overlapping portion OL of the film material FM, the peripheral ends of the film material FM are joined by an adhesive layer.
 中間導線部152では、2つの周方向側面及び2つの径方向側面においてそれらの全てを覆うようにして絶縁被覆体157が設けられている。この場合、中間導線部152を囲う絶縁被覆体157には、他相の部分巻線151における中間導線部152との対向部分、すなわち中間導線部152の2つの周方向側面のうち一方に、フィルム材FMがオーバーラップするオーバーラップ部分OLが設けられている。本実施形態では、一対の中間導線部152において、周方向の同じ側にオーバーラップ部分OLがそれぞれ設けられている。 In the intermediate conductor portion 152, an insulating coating 157 is provided so as to cover all of the two circumferential side surfaces and the two radial side surfaces. In this case, the insulating coating 157 surrounding the intermediate conductor portion 152 has a film on one of the two circumferential side surfaces of the intermediate conductor portion 152, that is, the portion facing the intermediate conductor portion 152 in the partial winding 151 of the other phase. An overlap portion OL in which the material FM overlaps is provided. In the present embodiment, the pair of intermediate conductor portions 152 are provided with overlapping portions OL on the same side in the circumferential direction.
 第1部分巻線151Aでは、中間導線部152から、軸方向両側の第1渡り部153Aにおいて絶縁カバー161,162により覆われた部分(すなわち絶縁カバー161,162の内側となる部分)までの範囲で、絶縁被覆体157が設けられている。図17で言えば、第1コイルモジュール150AにおいてAX1の範囲が絶縁カバー161,162により覆われていない部分であり、その範囲AX1よりも上下に拡張した範囲で絶縁被覆体157が設けられている。 In the first partial winding 151A, the range is from the intermediate conductor portion 152 to the portion covered by the insulating covers 161, 162 (that is, the portion inside the insulating covers 161, 162) in the first crossover portions 153A on both sides in the axial direction. The insulating coating body 157 is provided. Speaking of FIG. 17, in the first coil module 150A, the range of AX1 is a portion not covered by the insulating covers 161, 162, and the insulating coating 157 is provided in a range extended vertically from the range AX1. ..
 次に、絶縁カバー161,162の構成を説明する。 Next, the configuration of the insulating covers 161, 162 will be described.
 絶縁カバー161は、第1部分巻線151Aの軸方向一方側の第1渡り部153Aに装着され、絶縁カバー162は、第1部分巻線151Aの軸方向他方側の第1渡り部153Aに装着される。このうち絶縁カバー161の構成を図21(a),(b)に示す。図21(a),(b)は、絶縁カバー161を異なる二方向から見た斜視図である。 The insulating cover 161 is mounted on the first crossover 153A on one axial side of the first partial winding 151A, and the insulating cover 162 is mounted on the first crossover 153A on the other axial direction of the first partial winding 151A. Will be done. Of these, the configuration of the insulating cover 161 is shown in FIGS. 21 (a) and 21 (b). 21 (a) and 21 (b) are perspective views of the insulating cover 161 viewed from two different directions.
 図21(a),(b)に示すように、絶縁カバー161は、周方向の側面となる一対の側面部171と、軸方向外側の外面部172と、軸方向内側の内面部173と、径方向内側の前面部174とを有している。これら各部171~174は、それぞれ板状に形成されており、径方向外側のみが開放されるようにして立体状に互いに結合されている。一対の側面部171はそれぞれ、コアアセンブリCAへの組み付け状態においてコアアセンブリCAの軸心に向けて延びる向きで設けられている。そのため、複数の第1コイルモジュール150Aが周方向に並べて配置された状態では、隣り合う各第1コイルモジュール150Aにおいて絶縁カバー161の側面部171どうしが当接又は接近状態で互いに対向する。これにより、周方向に隣接する各第1コイルモジュール150Aにおいて相互の絶縁が図られつつ好適なる環状配置が可能となっている。 As shown in FIGS. 21 (a) and 21 (b), the insulating cover 161 includes a pair of side surface portions 171 which are side surfaces in the circumferential direction, an outer surface portion 172 on the outer side in the axial direction, and an inner surface portion 173 on the inner side in the axial direction. It has a front surface portion 174 on the inner side in the radial direction. Each of these parts 171 to 174 is formed in a plate shape, and is connected to each other in a three-dimensional shape so that only the radial outer side is open. Each of the pair of side surface portions 171 is provided so as to extend toward the axis of the core assembly CA in the assembled state with the core assembly CA. Therefore, in a state where a plurality of first coil modules 150A are arranged side by side in the circumferential direction, the side surface portions 171 of the insulating cover 161 face each other in an abutting or approaching state in each of the adjacent first coil modules 150A. As a result, in each of the first coil modules 150A adjacent to each other in the circumferential direction, a suitable annular arrangement is possible while being mutually insulated.
 絶縁カバー161において、外面部172には、第1部分巻線151Aの巻線端部154を引き出すための開口部175aが設けられ、前面部174には、第1部分巻線151Aの巻線端部155を引き出すための開口部175bが設けられている。この場合、一方の巻線端部154は外面部172から軸方向に引き出されるのに対し、他方の巻線端部155は前面部174から径方向に引き出される構成となっている。 In the insulating cover 161, the outer surface portion 172 is provided with an opening 175a for pulling out the winding end portion 154 of the first partial winding 151A, and the front surface portion 174 is provided with the winding end of the first partial winding 151A. An opening 175b for pulling out the portion 155 is provided. In this case, one winding end portion 154 is drawn out from the outer surface portion 172 in the axial direction, while the other winding end portion 155 is drawn out from the front surface portion 174 in the radial direction.
 また、絶縁カバー161において、一対の側面部171には、前面部174の周方向両端となる位置、すなわち各側面部171と前面部174とが交差する位置に、軸方向に延びる半円状の凹部177が設けられている。さらに、外面部172には、周方向における絶縁カバー161の中心線を基準として周方向両側に対称となる位置に、軸方向に延びる一対の突起部178が設けられている。 Further, in the insulating cover 161, the pair of side surface portions 171 has a semicircular shape extending in the axial direction at positions at both ends in the circumferential direction of the front surface portion 174, that is, at positions where each side surface portion 171 and the front surface portion 174 intersect. A recess 177 is provided. Further, the outer surface portion 172 is provided with a pair of protrusions 178 extending in the axial direction at positions symmetrical to both sides in the circumferential direction with respect to the center line of the insulating cover 161 in the circumferential direction.
 絶縁カバー161の凹部177について説明を補足する。図20に示すように、第1部分巻線151Aの第1渡り部153Aは、径方向内外のうち径方向内側、すなわちコアアセンブリCAの側に凸となる湾曲状をなしている。かかる構成では、周方向に隣り合う第1渡り部153Aの間に、第1渡り部153Aの先端側ほど幅広となる隙間が形成される。そこで本実施形態では、周方向に並ぶ第1渡り部153Aの間の隙間を利用して、絶縁カバー161の側面部171において第1渡り部153Aの湾曲部の外側となる位置に凹部177を設ける構成としている。 The explanation of the recess 177 of the insulating cover 161 is supplemented. As shown in FIG. 20, the first crossover portion 153A of the first partial winding 151A has a curved shape that is convex in the radial direction, that is, toward the core assembly CA, out of the radial inside and outside. In such a configuration, a gap is formed between the first crossover portions 153A adjacent to each other in the circumferential direction so as to be wider toward the tip end side of the first crossover portion 153A. Therefore, in the present embodiment, the recess 177 is provided on the side surface portion 171 of the insulating cover 161 at a position outside the curved portion of the first crossover portion 153A by utilizing the gap between the first crossover portions 153A arranged in the circumferential direction. It has a structure.
 なお、第1部分巻線151Aに温度検出部(サーミスタ)を設ける構成としてもよく、かかる構成では、絶縁カバー161に、温度検出部から延びる信号線を引き出すための開口部を設けるとよい。この場合、絶縁カバー161内に温度検出部を好適に収容できる。 It should be noted that the first partial winding 151A may be provided with a temperature detection unit (thermistor), and in such a configuration, the insulating cover 161 may be provided with an opening for drawing out a signal line extending from the temperature detection unit. In this case, the temperature detection unit can be suitably accommodated in the insulating cover 161.
 図示による詳細な説明は割愛するが、軸方向他方の絶縁カバー162は、絶縁カバー161と概ね同様の構成を有している。絶縁カバー162は、絶縁カバー161と同様に、一対の側面部171と、軸方向外側の外面部172と、軸方向内側の内面部173と、径方向内側の前面部174とを有している。また、絶縁カバー162において、一対の側面部171には前面部174の周方向両端となる位置に半円状の凹部177が設けられるとともに、外面部172に一対の突起部178が設けられている。絶縁カバー161との相違点として、絶縁カバー162は、第1部分巻線151Aの巻線端部154,155を引き出すための開口部を有していない構成となっている。 Although detailed explanation by illustration is omitted, the insulating cover 162 on the other side in the axial direction has substantially the same configuration as the insulating cover 161. The insulating cover 162 has a pair of side surface portions 171, an outer surface portion 172 on the outer side in the axial direction, an inner surface portion 173 on the inner side in the axial direction, and a front surface portion 174 on the inner side in the radial direction, similarly to the insulating cover 161. .. Further, in the insulating cover 162, the pair of side surface portions 171 are provided with semicircular recesses 177 at positions at both ends in the circumferential direction of the front surface portion 174, and the outer surface portion 172 is provided with a pair of protrusions 178. .. The difference from the insulating cover 161 is that the insulating cover 162 does not have an opening for pulling out the winding ends 154 and 155 of the first partial winding 151A.
 絶縁カバー161,162では、軸方向の高さ寸法(すなわち一対の側面部171及び前面部174における軸方向の幅寸法)が相違している。具体的には、図17に示すように、絶縁カバー161の軸方向の高さ寸法W11と絶縁カバー162の軸方向の高さ寸法W12は、W11>W12となっている。つまり、導線材CRを多重に巻回する場合には、巻線巻回方向(周回方向)に直交する向きに導線材CRの巻き段を切り替える(レーンチェンジする)必要があり、その切り替えに起因して巻線幅が大きくなることが考えられる。補足すると、絶縁カバー161,162のうち絶縁カバー161は、導線材CRの巻き始め及び巻き終わりを含む側の第1渡り部153Aを覆う部分であり、導線材CRの巻き始め及び巻き終わりを含むことにより、他の部分よりも導線材CRの巻き代(重なり代)が多くなり、その結果として巻線幅が大きくなることが生じうる。この点を加味して、絶縁カバー161の軸方向の高さ寸法W11が、絶縁カバー162の軸方向の高さ寸法W12よりも大きくなっている。これにより、絶縁カバー161,162の高さ寸法W11,W12が互いに同じ寸法である場合とは異なり、絶縁カバー161,162により導線材CRの巻き数が制限されるといった不都合が抑制されるようになっている。 In the insulating covers 161, 162, the height dimension in the axial direction (that is, the width dimension in the axial direction in the pair of side surface portions 171 and the front surface portion 174) is different. Specifically, as shown in FIG. 17, the axial height dimension W11 of the insulating cover 161 and the axial height dimension W12 of the insulating cover 162 are W11> W12. That is, when the conductor material CR is wound multiple times, it is necessary to switch (lane change) the winding stage of the conductor material CR in a direction orthogonal to the winding winding direction (circumferential direction), which is caused by the switching. It is conceivable that the winding width will increase. Supplementally, of the insulating covers 161, 162, the insulating cover 161 is a portion that covers the first crossing portion 153A on the side including the winding start and winding end of the conducting wire material CR, and includes the winding start and winding end of the conducting wire material CR. As a result, the winding allowance (overlapping allowance) of the conductor material CR is larger than that of the other portions, and as a result, the winding width may be increased. Taking this point into consideration, the axial height dimension W11 of the insulating cover 161 is larger than the axial height dimension W12 of the insulating cover 162. As a result, unlike the case where the height dimensions W11 and W12 of the insulating covers 161, 162 have the same dimensions, the inconvenience that the number of turns of the conducting wire material CR is limited by the insulating covers 161, 162 is suppressed. It has become.
 次に、第2コイルモジュール150Bについて説明する。 Next, the second coil module 150B will be described.
 図22(a)は、第2コイルモジュール150Bの構成を示す斜視図であり、図22(b)は、第2コイルモジュール150Bにおいて構成部品を分解して示す斜視図である。また、図23は、図22(a)における23-23線断面図である。 FIG. 22A is a perspective view showing the configuration of the second coil module 150B, and FIG. 22B is a perspective view showing the components of the second coil module 150B in an exploded manner. Further, FIG. 23 is a cross-sectional view taken along the line 23-23 in FIG. 22 (a).
 図22(a),(b)に示すように、第2コイルモジュール150Bは、第1部分巻線151Aと同様に導線材CRを多重巻にして構成された第2部分巻線151Bと、その第2部分巻線151Bにおいて軸方向一端側及び他端側に取り付けられた絶縁カバー163,164とを有している。絶縁カバー163,164は合成樹脂等の絶縁材料により成形されている。 As shown in FIGS. 22 (a) and 22 (b), the second coil module 150B includes a second partial winding 151B configured by multiple winding the conductor CR as in the first partial winding 151A, and a second partial winding 151B thereof. The second partial winding 151B has insulating covers 163 and 164 attached to one end side and the other end side in the axial direction. The insulating covers 163 and 164 are formed of an insulating material such as synthetic resin.
 第2部分巻線151Bは、互いに平行でかつ直線状に設けられる一対の中間導線部152と、一対の中間導線部152を軸方向両端でそれぞれ接続する一対の第2渡り部153Bとを有しており、これら一対の中間導線部152と一対の第2渡り部153Bとにより環状に形成されている。第2部分巻線151Bにおいて一対の中間導線部152は、第1部分巻線151Aの中間導線部152と構成が同じである。これに対して、一対の第2渡り部153Bは、第1部分巻線151Aの第1渡り部153Aとは構成が異なっている。第2部分巻線151Bの第2渡り部153Bは、径方向に折り曲げられることなく、中間導線部152から直線状に軸方向に延びるようにして設けられている。図18には、部分巻線151A,151Bの違いが対比して明示されている。 The second partial winding 151B has a pair of intermediate conductor portions 152 provided in parallel and linearly with each other, and a pair of second crossover portions 153B connecting the pair of intermediate conductor portions 152 at both ends in the axial direction. The pair of intermediate conductors 152 and the pair of second crossovers 153B form an annular shape. The pair of intermediate conductors 152 in the second partial winding 151B has the same configuration as the intermediate conductors 152 of the first partial winding 151A. On the other hand, the pair of second crossover portions 153B has a different configuration from the first crossover portion 153A of the first partial winding 151A. The second crossover portion 153B of the second partial winding 151B is provided so as to extend linearly in the axial direction from the intermediate conductor portion 152 without being bent in the radial direction. In FIG. 18, the differences between the partial windings 151A and 151B are clearly shown in comparison.
 第2部分巻線151Bでは、軸方向両側の第2渡り部153Bのうち、一方の第2渡り部153B(図22(b)の上側の第2渡り部153B)から導線材CRの端部が引き出されており、その端部が巻線端部154,155となっている。そして、第2部分巻線151Bでも、第1部分巻線151Aと同様に、巻線端部154,155のうち一方が電流入出力端子に接続され、他方が中性点に接続されるようになっている。 In the second partial winding 151B, the end of the conductor CR is formed from one of the second crossovers 153B (the upper second crossover 153B in FIG. 22B) of the second crossovers 153B on both sides in the axial direction. It is pulled out, and its end portion is a winding end portion 154, 155. Then, in the second partial winding 151B as well as the first partial winding 151A, one of the winding ends 154 and 155 is connected to the current input / output terminal, and the other is connected to the neutral point. It has become.
 第2部分巻線151Bでは、第1部分巻線151Aと同様に、各中間導線部152に、シート状の絶縁被覆体157が被せられた状態で設けられている。絶縁被覆体157は、軸方向寸法として少なくとも中間導線部152における軸方向の絶縁被覆範囲の長さを有するフィルム材FMを用い、そのフィルム材FMを中間導線部152の周囲に巻装することで設けられている。 In the second partial winding 151B, similarly to the first partial winding 151A, each intermediate conducting wire portion 152 is provided with a sheet-shaped insulating coating 157 covered. The insulating coating 157 uses a film material FM having at least the length of the insulating coating range in the intermediate wire portion 152 as an axial dimension, and the film material FM is wound around the intermediate conductor portion 152. It is provided.
 絶縁被覆体157に関する構成も、各部分巻線151A,151Bで概ね同様である。つまり、図23に示すように、中間導線部152の周囲には、フィルム材FMがその周方向の端部をオーバーラップさせた状態で被せられている。中間導線部152では、2つの周方向側面及び2つの径方向側面においてそれらの全てを覆うようにして絶縁被覆体157が設けられている。この場合、中間導線部152を囲う絶縁被覆体157には、他相の部分巻線151における中間導線部152との対向部分、すなわち中間導線部152の2つの周方向側面のうち一方に、フィルム材FMがオーバーラップするオーバーラップ部分OLが設けられている。本実施形態では、一対の中間導線部152において、周方向の同じ側にオーバーラップ部分OLがそれぞれ設けられている。 The configuration of the insulating coating 157 is almost the same for each of the partial windings 151A and 151B. That is, as shown in FIG. 23, the film material FM is covered around the intermediate conductor portion 152 in a state where the end portions in the circumferential direction are overlapped. In the intermediate conductor portion 152, the insulating coating 157 is provided so as to cover all of the two circumferential side surfaces and the two radial side surfaces. In this case, the insulating coating 157 surrounding the intermediate conductor portion 152 has a film on one of the two circumferential side surfaces of the intermediate conductor portion 152, that is, the portion facing the intermediate conductor portion 152 in the partial winding 151 of the other phase. An overlap portion OL in which the material FM overlaps is provided. In the present embodiment, the pair of intermediate conductor portions 152 are provided with overlapping portions OL on the same side in the circumferential direction.
 第2部分巻線151Bでは、中間導線部152から、軸方向両側の第2渡り部153Bにおいて絶縁カバー163,164により覆われた部分(すなわち絶縁カバー163,164の内側となる部分)までの範囲で、絶縁被覆体157が設けられている。図17で言えば、第2コイルモジュール150BにおいてAX2の範囲が絶縁カバー163,164により覆われていない部分であり、その範囲AX2よりも上下に拡張した範囲で絶縁被覆体157が設けられている。 In the second partial winding 151B, the range from the intermediate conductor portion 152 to the portion covered by the insulating covers 163 and 164 in the second crossover portions 153B on both sides in the axial direction (that is, the portion inside the insulating covers 163 and 164). The insulating coating body 157 is provided. Speaking of FIG. 17, in the second coil module 150B, the range of AX2 is a portion not covered by the insulating covers 163 and 164, and the insulating covering 157 is provided in a range extended vertically from the range AX2. ..
 各部分巻線151A,151Bでは、いずれにおいても絶縁被覆体157が渡り部153A,153Bの一部を含む範囲で設けられている。すなわち、各部分巻線151A,151Bには、中間導線部152と、渡り部153A,153Bのうち中間導線部152に引き続き直線状に延びる部分とに、絶縁被覆体157が設けられている。ただし、各部分巻線151A,151Bではその軸方向長さが相違していることから、絶縁被覆体157の軸方向範囲も異なるものとなっている。 In each of the partial windings 151A and 151B, the insulating coating 157 is provided in a range including a part of the crossover portions 153A and 153B. That is, the partial windings 151A and 151B are provided with an insulating coating 157 at the intermediate conductor portion 152 and the portion of the crossover portions 153A and 153B that extends linearly following the intermediate conductor portion 152. However, since the axial lengths of the partial windings 151A and 151B are different, the axial range of the insulating coating 157 is also different.
 次に、絶縁カバー163,164の構成を説明する。 Next, the configuration of the insulating covers 163 and 164 will be described.
 絶縁カバー163は、第2部分巻線151Bの軸方向一方側の第2渡り部153Bに装着され、絶縁カバー164は、第2部分巻線151Bの軸方向他方側の第2渡り部153Bに装着される。このうち絶縁カバー163の構成を図24(a),(b)に示す。図24(a),(b)は、絶縁カバー163を異なる二方向から見た斜視図である。 The insulating cover 163 is mounted on the second crossover 153B on one axial side of the second partial winding 151B, and the insulating cover 164 is mounted on the second crossover 153B on the other axial direction of the second partial winding 151B. Will be done. Of these, the configuration of the insulating cover 163 is shown in FIGS. 24 (a) and 24 (b). 24 (a) and 24 (b) are perspective views of the insulating cover 163 as viewed from two different directions.
 図24(a),(b)に示すように、絶縁カバー163は、周方向の側面となる一対の側面部181と、軸方向外側の外面部182と、径方向内側の前面部183と、径方向外側の後面部184とを有している。これら各部181~184は、それぞれ板状に形成されており、軸方向内側のみが開放されるようにして立体状に互いに結合されている。一対の側面部181はそれぞれ、コアアセンブリCAへの組み付け状態においてコアアセンブリCAの軸心に向けて延びる向きで設けられている。そのため、複数の第2コイルモジュール150Bが周方向に並べて配置された状態では、隣り合う各第2コイルモジュール150Bにおいて絶縁カバー163の側面部181どうしが当接又は接近状態で互いに対向する。これにより、周方向に隣接する各第2コイルモジュール150Bにおいて相互の絶縁が図られつつ好適なる環状配置が可能となっている。 As shown in FIGS. 24A and 24B, the insulating cover 163 includes a pair of side surface portions 181 which are side surfaces in the circumferential direction, an outer surface portion 182 on the outer side in the axial direction, and a front surface portion 183 on the inner side in the radial direction. It has a rear surface portion 184 on the outer side in the radial direction. Each of these portions 181 to 184 is formed in a plate shape, and is connected to each other in a three-dimensional shape so that only the inner side in the axial direction is opened. Each of the pair of side surface portions 181 is provided so as to extend toward the axis of the core assembly CA in the assembled state with the core assembly CA. Therefore, in a state where the plurality of second coil modules 150B are arranged side by side in the circumferential direction, the side surface portions 181 of the insulating cover 163 face each other in an abutting or approaching state in each of the adjacent second coil modules 150B. As a result, in each of the second coil modules 150B adjacent to each other in the circumferential direction, a suitable annular arrangement is possible while being mutually insulated.
 絶縁カバー163において、前面部183には、第2部分巻線151Bの巻線端部154を引き出すための開口部185aが設けられ、外面部182には、第2部分巻線151Bの巻線端部155を引き出すための開口部185bが設けられている。 In the insulating cover 163, the front surface portion 183 is provided with an opening 185a for pulling out the winding end portion 154 of the second partial winding 151B, and the outer surface portion 182 is provided with the winding end of the second partial winding 151B. An opening 185b for pulling out the portion 155 is provided.
 絶縁カバー163の前面部183には、径方向内側に突出する突出部186が設けられている。突出部186は、絶縁カバー163の周方向一端から他端までの間の中央となる位置に、第2渡り部153Bよりも径方向内側に突出するように設けられている。突出部186は、平面視において径方向内側ほど先細りになるテーパ形状をなしており、その先端部に、軸方向に延びる貫通孔187が設けられている。なお、突出部186は、第2渡り部153Bよりも径方向内側に突出し、かつ絶縁カバー163の周方向一端から他端までの間の中央となる位置に貫通孔187を有するものであれば、その構成は任意である。ただし、軸方向内側の絶縁カバー161との重なり状態を想定すると、巻線端部154,155との干渉を回避すべく周方向に幅狭に形成されていることが望ましい。 The front surface portion 183 of the insulating cover 163 is provided with a protruding portion 186 protruding inward in the radial direction. The projecting portion 186 is provided at a central position between one end and the other end in the circumferential direction of the insulating cover 163 so as to project radially inward from the second crossover portion 153B. The protrusion 186 has a tapered shape that tapers toward the inside in the radial direction in a plan view, and a through hole 187 extending in the axial direction is provided at the tip thereof. If the protruding portion 186 protrudes radially inward from the second crossover portion 153B and has a through hole 187 at the center position between one end and the other end in the circumferential direction of the insulating cover 163, the protruding portion 186 has a through hole 187. The configuration is arbitrary. However, assuming an overlapping state with the insulating cover 161 inside in the axial direction, it is desirable that the cover is formed narrow in the circumferential direction in order to avoid interference with the winding ends 154 and 155.
 突出部186は、径方向内側の先端部において軸方向の厚さが段差状に薄くなっており、その薄くなっている低段部186aに貫通孔187が設けられている。この低段部186aは、コアアセンブリCAに対する第2コイルモジュール150Bの組み付け状態において、内筒部材81の軸方向端面からの高さが、第2渡り部153Bの高さよりも低くなる部位に相当する。 The protruding portion 186 has an axially thin stepped thickness at the tip portion on the inner side in the radial direction, and a through hole 187 is provided in the thinned lower step portion 186a. This low step portion 186a corresponds to a portion where the height of the inner cylinder member 81 from the axial end face is lower than the height of the second crossover portion 153B in the assembled state of the second coil module 150B with respect to the core assembly CA. ..
 また、図23に示すように、突出部186には、軸方向に貫通する貫通孔188が設けられている。これにより、絶縁カバー161,163が軸方向に重なる状態において、貫通孔188を通じて、絶縁カバー161,163の間への接着剤の充填が可能となっている。 Further, as shown in FIG. 23, the protruding portion 186 is provided with a through hole 188 penetrating in the axial direction. This makes it possible to fill the space between the insulating covers 161, 163 through the through holes 188 in a state where the insulating covers 161, 163 overlap in the axial direction.
 図示による詳細な説明は割愛するが、軸方向他方の絶縁カバー164は、絶縁カバー163と概ね同様の構成を有している。絶縁カバー164は、絶縁カバー163と同様に、一対の側面部181と、軸方向外側の外面部182と、径方向内側の前面部183と、径方向外側の後面部184とを有するとともに、突出部186の先端部に設けられた貫通孔187を有している。また、絶縁カバー163との相違点として、絶縁カバー164は、第2部分巻線151Bの巻線端部154,155を引き出すための開口部を有していない構成となっている。 Although detailed explanation by illustration is omitted, the insulating cover 164 on the other side in the axial direction has substantially the same configuration as the insulating cover 163. Like the insulating cover 163, the insulating cover 164 has a pair of side surface portions 181, an outer surface portion 182 on the outer side in the axial direction, a front surface portion 183 on the inner side in the radial direction, and a rear surface portion 184 on the outer side in the radial direction. It has a through hole 187 provided at the tip of the portion 186. Further, the difference from the insulating cover 163 is that the insulating cover 164 does not have an opening for pulling out the winding ends 154 and 155 of the second partial winding 151B.
 絶縁カバー163,164では、一対の側面部181の径方向の幅寸法が相違している。具体的には、図17に示すように、絶縁カバー163における側面部181の径方向の幅寸法W21と絶縁カバー164における側面部181の径方向の幅寸法W22は、W21>W22となっている。つまり、絶縁カバー163,164のうち絶縁カバー163は、導線材CRの巻き始め及び巻き終わりを含む側の第2渡り部153Bを覆う部分であり、導線材CRの巻き始め及び巻き終わりを含むことにより、他の部分よりも導線材CRの巻き代(重なり代)が多くなり、その結果として巻線幅が大きくなることが生じうる。この点を加味して、絶縁カバー163の径方向の幅寸法W21が、絶縁カバー164の径方向の幅寸法W22よりも大きくなっている。これにより、絶縁カバー163,164の幅寸法W21,W22が互いに同じ寸法である場合とは異なり、絶縁カバー163,164により導線材CRの巻き数が制限されるといった不都合が抑制されるようになっている。 In the insulating covers 163 and 164, the width dimensions of the pair of side surface portions 181 in the radial direction are different. Specifically, as shown in FIG. 17, the radial width dimension W21 of the side surface portion 181 of the insulating cover 163 and the radial width dimension W22 of the side surface portion 181 of the insulating cover 164 are W21> W22. .. That is, of the insulating covers 163 and 164, the insulating cover 163 is a portion that covers the second crossing portion 153B on the side including the winding start and winding end of the conducting wire material CR, and includes the winding start and winding end of the conducting wire material CR. As a result, the winding allowance (overlapping allowance) of the conductor material CR may be larger than that of the other portions, and as a result, the winding width may be increased. Taking this point into consideration, the radial width dimension W21 of the insulating cover 163 is larger than the radial width dimension W22 of the insulating cover 164. As a result, unlike the case where the width dimensions W21 and W22 of the insulating covers 163 and 164 are the same, the inconvenience that the number of turns of the conducting wire material CR is limited by the insulating covers 163 and 164 can be suppressed. ing.
 図25は、各コイルモジュール150A,150Bを周方向に並べた状態でのフィルム材FMのオーバーラップ位置を示す図である。上述したとおり各コイルモジュール150A,150Bでは、中間導線部152の周囲に、他相の部分巻線151における中間導線部152との対向部分、すなわち中間導線部152の周方向側面でオーバーラップするようにしてフィルム材FMが被せられている(図20,図23参照)。そして、各コイルモジュール150A,150Bを周方向に並べた状態では、フィルム材FMのオーバーラップ部分OLが、周方向両側のうちいずれも同じ側(図の周方向右側)に配置されるものとなっている。これにより、周方向に隣り合う異相の部分巻線151A,151Bにおける各中間導線部152において、フィルム材FMのオーバーラップ部分OLどうしが周方向に重ならない構成となっている。この場合、周方向に並ぶ各中間導線部152の間には、いずれも最多で3枚のフィルム材FMが重なる構成となっている。 FIG. 25 is a diagram showing the overlap position of the film material FM in a state where the coil modules 150A and 150B are arranged in the circumferential direction. As described above, in the coil modules 150A and 150B, the intermediate conductor portion 152 is overlapped with the portion facing the intermediate conductor portion 152 in the partial winding 151 of the other phase, that is, the circumferential side surface of the intermediate conductor portion 152. The film material FM is covered with the film material (see FIGS. 20 and 23). When the coil modules 150A and 150B are arranged in the circumferential direction, the overlap portion OL of the film material FM is arranged on the same side (on the right side in the circumferential direction in the figure) on both sides in the circumferential direction. ing. As a result, in each of the intermediate conductor portions 152 of the partial windings 151A and 151B having different phases adjacent to each other in the circumferential direction, the overlapping portions OL of the film material FM do not overlap each other in the circumferential direction. In this case, a maximum of three film material FMs are overlapped between the intermediate conductor portions 152 arranged in the circumferential direction.
 次に、コアアセンブリCAに対する各コイルモジュール150A,150Bの組み付けに関する構成を説明する。 Next, the configuration related to the assembly of the coil modules 150A and 150B to the core assembly CA will be described.
 各コイルモジュール150A,150Bは、軸方向長さが互いに異なり、かつ部分巻線151A,151Bの渡り部153A,153Bの形状が互いに異なっており、第1コイルモジュール150Aの第1渡り部153Aを軸方向内側、第2コイルモジュール150Bの第2渡り部153Bを軸方向外側にした状態で、コアアセンブリCAに取り付けられる構成となっている。絶縁カバー161~164について言えば、各コイルモジュール150A,150Bの軸方向一端側において絶縁カバー161,163が軸方向に重ねられ、かつ軸方向他端側において絶縁カバー162,164が軸方向に重ねられた状態で、それら各絶縁カバー161~164がコアアセンブリCAに対して固定されるようになっている。 The coil modules 150A and 150B have different axial lengths, and the shapes of the crossover portions 153A and 153B of the partial windings 151A and 151B are different from each other. It is configured to be attached to the core assembly CA with the second crossover 153B of the second coil module 150B on the inside in the direction and on the outside in the axial direction. Regarding the insulating covers 161 to 164, the insulating covers 161 and 163 are vertically overlapped on one end side in the axial direction of each of the coil modules 150A and 150B, and the insulating covers 162 and 164 are vertically overlapped on the other end side in the axial direction. In the closed state, each of these insulating covers 161 to 164 is fixed to the core assembly CA.
 図26は、コアアセンブリCAに対する第1コイルモジュール150Aの組み付け状態において複数の絶縁カバー161が周方向に並ぶ状態を示す平面図であり、図27は、コアアセンブリCAに対する第1コイルモジュール150A及び第2コイルモジュール150Bの組み付け状態において複数の絶縁カバー161,163が周方向に並ぶ状態を示す平面図である。また、図28(a)は、コアアセンブリCAに対する各コイルモジュール150A,150Bの組み付け状態において固定ピン191による固定前の状態を示す縦断面図であり、図28(b)は、コアアセンブリCAに対する各コイルモジュール150A,150Bの組み付け状態において固定ピン191による固定後の状態を示す縦断面図である。 FIG. 26 is a plan view showing a state in which a plurality of insulating covers 161 are arranged in the circumferential direction in a state where the first coil module 150A is assembled to the core assembly CA, and FIG. 27 is a plan view showing the first coil module 150A and the first coil module 150A to the core assembly CA. It is a top view which shows the state which a plurality of insulating covers 161, 163 are arranged in the circumferential direction in the assembled state of 2 coil modules 150B. Further, FIG. 28A is a vertical sectional view showing a state before fixing by the fixing pin 191 in the assembled state of the coil modules 150A and 150B with respect to the core assembly CA, and FIG. 28B is a vertical sectional view showing the state before being fixed with respect to the core assembly CA. It is a vertical sectional view which shows the state after being fixed by the fixing pin 191 in the assembled state of each coil module 150A, 150B.
 図26に示すように、コアアセンブリCAに対して複数の第1コイルモジュール150Aを組み付けた状態では、複数の絶縁カバー161が、側面部171どうしを当接又は接近状態としてそれぞれ配置される。各絶縁カバー161は、側面部171どうしが対向する境界線LBと、内筒部材81の軸方向端面の凹部105とが一致するようにして配置される。この場合、周方向に隣り合う絶縁カバー161の側面部171どうしが当接又は接近状態となることで、それら絶縁カバー161の各凹部177により、軸方向に延びる貫通孔部が形成され、その貫通孔部と凹部105の位置が一致する状態とされる。 As shown in FIG. 26, in a state where a plurality of first coil modules 150A are assembled to the core assembly CA, a plurality of insulating covers 161 are arranged with the side surface portions 171 in contact with each other or in close contact with each other. Each insulating cover 161 is arranged so that the boundary line LB facing the side surface portions 171 and the recess 105 on the axial end surface of the inner cylinder member 81 coincide with each other. In this case, when the side surface portions 171 of the insulating covers 161 adjacent to each other in the circumferential direction are in contact with each other or are in an approaching state, each recess 177 of the insulating cover 161 forms a through hole portion extending in the axial direction, and the through hole portion thereof is formed. The positions of the holes and the recesses 105 are set to match.
 また、図27に示すように、コアアセンブリCA及び第1コイルモジュール150Aの一体物に対して、さらに第2コイルモジュール150Bが組み付けられる。この組み付けに伴い、複数の絶縁カバー163が、側面部181どうしを当接又は接近状態としてそれぞれ配置される。この状態では、各渡り部153A,153Bは、周方向に中間導線部152が並ぶ円上で互いに交差するように配置されることとなる。各絶縁カバー163は、突出部186が絶縁カバー161に軸方向に重なり、かつ突出部186の貫通孔187が、絶縁カバー161の各凹部177により形成された貫通孔部に軸方向に連なるようにして配置される。 Further, as shown in FIG. 27, the second coil module 150B is further assembled to the integral body of the core assembly CA and the first coil module 150A. Along with this assembly, a plurality of insulating covers 163 are arranged with the side surface portions 181 in contact with each other or in close contact with each other. In this state, the crossover portions 153A and 153B are arranged so as to intersect each other on a circle in which the intermediate conductor portions 152 are lined up in the circumferential direction. In each insulating cover 163, the protruding portion 186 overlaps the insulating cover 161 in the axial direction, and the through hole 187 of the protruding portion 186 is axially connected to the through hole portion formed by each recess 177 of the insulating cover 161. Will be placed.
 このとき、絶縁カバー163の突出部186が、絶縁カバー161に設けられた一対の突起部178により所定位置に案内されることで、絶縁カバー161側の貫通孔部と内筒部材81の凹部105とに対して絶縁カバー163側の貫通孔187の位置が合致するようになっている。つまり、コアアセンブリCAに対して各コイルモジュール150A,150Bを組み付けた状態では、絶縁カバー163の奥側に絶縁カバー161の凹部177が位置するために、絶縁カバー161の凹部177に対して突出部186の貫通孔187の位置合わせを行うことが困難になるおそれがある。この点、絶縁カバー161の一対の突起部178により絶縁カバー163の突出部186が案内されることで、絶縁カバー161に対する絶縁カバー163の位置合わせが容易となる。 At this time, the protruding portion 186 of the insulating cover 163 is guided to a predetermined position by the pair of protruding portions 178 provided on the insulating cover 161 so that the through hole portion on the insulating cover 161 side and the recess 105 of the inner cylinder member 81 are guided. The position of the through hole 187 on the insulating cover 163 side is aligned with the above. That is, in the state where the coil modules 150A and 150B are assembled to the core assembly CA, the concave portion 177 of the insulating cover 161 is located on the back side of the insulating cover 163, so that the protruding portion with respect to the concave portion 177 of the insulating cover 161. It may be difficult to align the through hole 187 of 186. In this respect, the pair of protrusions 178 of the insulation cover 161 guides the protrusion 186 of the insulation cover 163, which facilitates the alignment of the insulation cover 163 with respect to the insulation cover 161.
 そして、図28(a),(b)に示すように、絶縁カバー161と絶縁カバー163の突出部186との重なり部分においてこれらに係合する状態で、固定部材としての固定ピン191による固定が行われる。より具体的には、内筒部材81の凹部105と、絶縁カバー161の凹部177と、絶縁カバー163の貫通孔187とを位置合わせした状態で、それら凹部105,177及び貫通孔187に固定ピン191が差し入れられる。これにより、内筒部材81に対して絶縁カバー161,163が一体で固定される。本構成によれば、周方向に隣り合う各コイルモジュール150A,150Bが、コイルエンドCEでコアアセンブリCAに対して共通の固定ピン191により固定されるようになっている。固定ピン191は、熱伝導性の良い材料で構成されていることが望ましく、例えば金属ピンである。 Then, as shown in FIGS. 28 (a) and 28 (b), the insulating cover 161 is fixed by the fixing pin 191 as a fixing member in a state of being engaged with the overlapping portion of the insulating cover 161 and the protruding portion 186 of the insulating cover 163. Will be done. More specifically, in a state where the recess 105 of the inner cylinder member 81, the recess 177 of the insulating cover 161 and the through hole 187 of the insulating cover 163 are aligned, the fixing pins are inserted into the recesses 105, 177 and the through hole 187. 191 is inserted. As a result, the insulating covers 161 and 163 are integrally fixed to the inner cylinder member 81. According to this configuration, the coil modules 150A and 150B adjacent to each other in the circumferential direction are fixed to the core assembly CA by a common fixing pin 191 at the coil end CE. The fixing pin 191 is preferably made of a material having good thermal conductivity, for example, a metal pin.
 図28(b)に示すように、固定ピン191は、絶縁カバー163の突出部186のうち低段部186aに組み付けられている。この状態では、固定ピン191の上端部は、低段部186aの上方に突き出ているが、絶縁カバー163の上面(外面部182)よりも上方に突き出ないものとなっている。この場合、固定ピン191は、絶縁カバー161と絶縁カバー163の突出部186(低段部186a)との重なり部分の軸方向高さ寸法よりも長く、上方に突き出る余裕代を有しているため、固定ピン191を凹部105,177及び貫通孔187に差し入れる際(すなわち固定ピン191の固定作業時)にその作業を行いやすくなることが考えられる。また、固定ピン191の上端部が絶縁カバー163の上面(外面部182)よりも上方に突き出ないため、固定ピン191の突き出しに起因して固定子60の軸長が長くなるといった不都合を抑制できるものとなっている。 As shown in FIG. 28 (b), the fixing pin 191 is assembled to the lower step portion 186a of the protruding portion 186 of the insulating cover 163. In this state, the upper end portion of the fixing pin 191 protrudes above the lower step portion 186a, but does not protrude above the upper surface (outer surface portion 182) of the insulating cover 163. In this case, the fixing pin 191 is longer than the axial height dimension of the overlapping portion between the insulating cover 161 and the protruding portion 186 (lower step portion 186a) of the insulating cover 163, and has a margin for protruding upward. When the fixing pin 191 is inserted into the recesses 105 and 177 and the through hole 187 (that is, when the fixing pin 191 is fixed), it may be easier to perform the work. Further, since the upper end portion of the fixing pin 191 does not protrude above the upper surface (outer surface portion 182) of the insulating cover 163, it is possible to suppress the inconvenience that the shaft length of the stator 60 becomes long due to the protruding portion of the fixing pin 191. It has become a thing.
 固定ピン191による絶縁カバー161,163の固定後には、絶縁カバー163に設けた貫通孔188を通じて、接着剤の充填が行われる。これにより、軸方向に重なる絶縁カバー161,163が互いに強固に結合されるようになっている。なお、図28(a),(b)では、便宜上、絶縁カバー163の上面から下面までの範囲で貫通孔188を示すが、実際には肉抜き等により形成された薄板部に貫通孔188が設けられた構成となっている。 After fixing the insulating covers 161 and 163 with the fixing pins 191, the adhesive is filled through the through holes 188 provided in the insulating cover 163. As a result, the insulating covers 161 and 163 that overlap in the axial direction are firmly coupled to each other. In FIGS. 28 (a) and 28 (b), the through hole 188 is shown in the range from the upper surface to the lower surface of the insulating cover 163 for convenience, but in reality, the through hole 188 is formed in the thin plate portion formed by lightening or the like. It has a provided configuration.
 図28(b)に示すように、固定ピン191による各絶縁カバー161,163の固定位置は、固定子コア62よりも径方向内側(図の左側)の固定子ホルダ70の軸方向端面となっており、その固定子ホルダ70に対して固定ピン191による固定が行われる構成となっている。つまり、第1渡り部153Aが固定子ホルダ70の軸方向端面に対して固定される構成となっている。この場合、固定子ホルダ70には冷媒通路85が設けられているため、第1部分巻線151Aで生じた熱は、第1渡り部153Aから、固定子ホルダ70の冷媒通路85付近に直接的に伝わる。また、固定ピン191は、固定子ホルダ70の凹部105に差し入れられており、その固定ピン191を通じて固定子ホルダ70側への熱の伝達が促されるようになっている。かかる構成により、固定子巻線61の冷却性能の向上が図られている。 As shown in FIG. 28 (b), the fixing position of each insulating cover 161 and 163 by the fixing pin 191 is the axial end surface of the stator holder 70 radially inside the stator core 62 (left side in the figure). The stator holder 70 is fixed by the fixing pin 191. That is, the first crossover portion 153A is fixed to the axial end face of the stator holder 70. In this case, since the stator holder 70 is provided with the refrigerant passage 85, the heat generated in the first partial winding 151A is directly from the first crossover portion 153A to the vicinity of the refrigerant passage 85 of the stator holder 70. It is transmitted to. Further, the fixing pin 191 is inserted into the recess 105 of the stator holder 70, and heat transfer to the stator holder 70 side is promoted through the fixing pin 191. With such a configuration, the cooling performance of the stator winding 61 is improved.
 本実施形態では、コイルエンドCEにおいて18個ずつの絶縁カバー161,163が軸方向内外に重ねて配置される一方、固定子ホルダ70の軸方向端面には、各絶縁カバー161,163と同数の18箇所に凹部105が設けられている。そして、その18箇所の凹部105で固定ピン191による固定が行われる構成となっている。 In the present embodiment, 18 insulating covers 161, 163 are arranged so as to be stacked inside and outside the axial direction in the coil end CE, while the same number of insulating covers 161 and 163 are arranged on the axial end face of the stator holder 70. Recesses 105 are provided at 18 locations. The 18 recesses 105 are fixed by the fixing pin 191.
 不図示としているが、軸方向逆側の絶縁カバー162,164についても同様である。すなわち、まず第1コイルモジュール150Aの組み付けに際し、周方向に隣り合う絶縁カバー162の側面部171どうしが当接又は接近状態となることで、それら絶縁カバー162の各凹部177により、軸方向に延びる貫通孔部が形成され、その貫通孔部と、外筒部材71の軸方向端面の凹部106の位置が一致する状態とされる。そして、第2コイルモジュール150Bの組み付けにより、絶縁カバー163側の貫通孔部と外筒部材71の凹部106とに対して絶縁カバー164側の貫通孔187の位置が合致し、それら凹部106,177、貫通孔187に固定ピン191が差し入れられることで、外筒部材71に対して絶縁カバー162,164が一体で固定される。 Although not shown, the same applies to the insulating covers 162 and 164 on the opposite side in the axial direction. That is, first, when assembling the first coil module 150A, the side surface portions 171 of the insulating covers 162 adjacent to each other in the circumferential direction are in contact with each other or are in close contact with each other, and the concave portions 177 of the insulating cover 162 extend in the axial direction. A through-hole portion is formed, and the position of the through-hole portion coincides with the position of the recess 106 on the axial end surface of the outer cylinder member 71. Then, by assembling the second coil module 150B, the positions of the through holes 187 on the insulating cover 164 side match the through holes on the insulating cover 163 side and the recesses 106 on the outer cylinder member 71, and the recesses 106 and 177 are aligned. By inserting the fixing pin 191 into the through hole 187, the insulating covers 162 and 164 are integrally fixed to the outer cylinder member 71.
 コアアセンブリCAに対する各コイルモジュール150A,150Bの組み付け時には、コアアセンブリCAに対して、その外周側に全ての第1コイルモジュール150Aを先付けし、その後に、全ての第2コイルモジュール150Bの組み付けと、固定ピン191による固定とを行うとよい。又は、コアアセンブリCAに対して、先に、2つの第1コイルモジュール150Aと1つの第2コイルモジュール150Bとを1本の固定ピン191で固定し、その後に、第1コイルモジュール150Aの組み付けと、第2コイルモジュール150Bの組み付けと、固定ピン191による固定とをこの順序で繰り返し行うようにしてもよい。 When assembling the coil modules 150A and 150B to the core assembly CA, all the first coil modules 150A are attached to the outer peripheral side of the core assembly CA first, and then all the second coil modules 150B are assembled. It is preferable to perform fixing with the fixing pin 191. Alternatively, the two first coil modules 150A and the one second coil module 150B are first fixed to the core assembly CA with one fixing pin 191 and then the first coil module 150A is assembled. , The assembly of the second coil module 150B and the fixing by the fixing pin 191 may be repeated in this order.
 次に、バスバーモジュール200について説明する。 Next, the bus bar module 200 will be described.
 バスバーモジュール200は、固定子巻線61において各コイルモジュール150の部分巻線151に電気的に接続され、各相の部分巻線151の一端を相ごとに並列接続するとともに、それら各部分巻線151の他端を中性点で接続する巻線接続部材である。図29は、バスバーモジュール200の斜視図であり、図30は、バスバーモジュール200の縦断面の一部を示す断面図である。 The bus bar module 200 is electrically connected to the partial winding 151 of each coil module 150 at the stator winding 61, and one end of the partial winding 151 of each phase is connected in parallel for each phase, and each partial winding thereof is connected. It is a winding connection member that connects the other end of 151 at a neutral point. 29 is a perspective view of the bus bar module 200, and FIG. 30 is a cross-sectional view showing a part of a vertical cross section of the bus bar module 200.
 バスバーモジュール200は、円環状をなす環状部201と、その環状部201から延びる複数の接続端子202と、相巻線ごとに設けられる3つの入出力端子203とを有している。環状部201は、例えば樹脂等の絶縁部材により円環状に形成されている。 The bus bar module 200 has an annular portion 201 forming an annular portion, a plurality of connection terminals 202 extending from the annular portion 201, and three input / output terminals 203 provided for each phase winding. The annular portion 201 is formed in an annular shape by, for example, an insulating member such as a resin.
 図30に示すように、環状部201は、略円環板状をなし軸方向に多層(本実施形態では5層)に積層された積層板204を有しており、これら各積層板204の間に挟まれた状態で4つのバスバー211~214が設けられている。各バスバー211~214は、いずれも円環状をなしており、U相用のバスバー211と、V相用のバスバー212と、W相用のバスバー213と、中性点用のバスバー214とからなる。これら各バスバー211~214は、環状部201内において、板面を対向させるようにして軸方向に並べて配置されるものとなっている。各積層板204と各バスバー211~214とは、接着剤により互いに接合されている。接着剤として接着シートを用いることが望ましい。ただし液状又は半液状の接着剤を塗布する構成であってもよい。そして、各バスバー211~214には、それぞれ環状部201から径方向外側に突出させるようにして接続端子202が接続されている。 As shown in FIG. 30, the annular portion 201 has a substantially annular plate shape and has laminated plates 204 laminated in multiple layers (five layers in this embodiment) in the axial direction, and each of these laminated plates 204 has a laminated plate 204. Four bus bars 211 to 214 are provided so as to be sandwiched between them. Each of the bus bars 211 to 214 has an annular shape, and is composed of a U-phase bus bar 211, a V-phase bus bar 212, a W-phase bus bar 213, and a neutral point bus bar 214. .. The bus bars 211 to 214 are arranged in the annular portion 201 so as to face each other in the axial direction. Each laminated plate 204 and each bus bar 211 to 214 are joined to each other by an adhesive. It is desirable to use an adhesive sheet as the adhesive. However, it may be configured to apply a liquid or semi-liquid adhesive. The connection terminals 202 are connected to the bus bars 211 to 214 so as to project radially outward from the annular portion 201, respectively.
 環状部201の上面、すなわち5層に設けられた積層板204の最も表層側の積層板204の上面には、環状に延びる突起部201aが設けられている。 A protrusion 201a extending in an annular shape is provided on the upper surface of the annular portion 201, that is, on the upper surface of the laminated plate 204 on the most surface layer side of the laminated plate 204 provided in the five layers.
 なお、バスバーモジュール200は、各バスバー211~214が環状部201内に埋設された状態で設けられるものであればよく、所定間隔で配置された各バスバー211~214が一体的にインサート成形されるものであってもよい。また、各バスバー211~214の配置は、全てが軸方向に並びかつ全ての板面が同方向を向く構成に限られず、径方向に並ぶ構成や、軸方向に2列でかつ径方向に2列に並ぶ構成、板面の延びる方向が異なるものを含む構成などであってもよい。 The bus bar module 200 may be provided in a state where the bus bars 211 to 214 are embedded in the annular portion 201, and the bus bars 211 to 214 arranged at predetermined intervals are integrally insert-molded. It may be a thing. Further, the arrangement of the bus bars 211 to 214 is not limited to the configuration in which all the bus bars are arranged in the axial direction and all the plate surfaces are oriented in the same direction. It may be configured to line up in a row, or to include those having different plate surface extending directions.
 図29において、各接続端子202は、環状部201の周方向に並び、かつ径方向外側において軸方向に延びるように設けられている。接続端子202は、U相用のバスバー211に接続された接続端子と、V相用のバスバー212に接続された接続端子と、W相用のバスバー213に接続された接続端子と、中性点用のバスバー214に接続された接続端子とを含む。接続端子202は、コイルモジュール150における各部分巻線151の巻線端部154,155と同数で設けられており、これら各接続端子202には、各部分巻線151の巻線端部154,155が1つずつ接続される。これにより、バスバーモジュール200が、U相の部分巻線151、V相の部分巻線151、W相の部分巻線151に対してそれぞれ接続されるようになっている。 In FIG. 29, the connection terminals 202 are provided so as to be aligned in the circumferential direction of the annular portion 201 and extend in the axial direction on the outer side in the radial direction. The connection terminal 202 includes a connection terminal connected to the U-phase bus bar 211, a connection terminal connected to the V-phase bus bar 212, a connection terminal connected to the W-phase bus bar 213, and a neutral point. Includes a connection terminal connected to the bus bar 214 for. The number of connection terminals 202 is the same as the number of winding ends 154 and 155 of each partial winding 151 in the coil module 150, and each connection terminal 202 is provided with winding ends 154 of each partial winding 151. 155 are connected one by one. As a result, the bus bar module 200 is connected to the U-phase partial winding 151, the V-phase partial winding 151, and the W-phase partial winding 151, respectively.
 入出力端子203は、例えばバスバー材よりなり、軸方向に延びる向きで設けられている。入出力端子203は、U相用の入出力端子203Uと、V相用の入出力端子203Vと、W相用の入出力端子203Wとを含む。これらの入出力端子203は、環状部201内において相ごとに各バスバー211~213にそれぞれ接続されている。これらの各入出力端子203を通じて、固定子巻線61の各相の相巻線に対して、不図示のインバータから電力の入出力が行われるようになっている。 The input / output terminal 203 is made of, for example, a bus bar material, and is provided in a direction extending in the axial direction. The input / output terminal 203 includes a U-phase input / output terminal 203U, a V-phase input / output terminal 203V, and a W-phase input / output terminal 203W. These input / output terminals 203 are connected to the bus bars 211 to 213 for each phase in the annular portion 201. Through each of these input / output terminals 203, power is input / output from an inverter (not shown) to the phase windings of each phase of the stator winding 61.
 なお、バスバーモジュール200に、各相の相電流を検出する電流センサを一体に設ける構成であってもよい。この場合、バスバーモジュール200に電流検出端子を設け、その電流検出端子を通じて、電流センサの検出結果を不図示の制御装置に対して出力するようになっているとよい。 The bus bar module 200 may be integrally provided with a current sensor that detects the phase current of each phase. In this case, it is preferable that the bus bar module 200 is provided with a current detection terminal, and the detection result of the current sensor is output to a control device (not shown) through the current detection terminal.
 また、環状部201は、固定子ホルダ70に対する被固定部として、内周側に突出する複数の突出部205を有しており、その突出部205には軸方向に延びる貫通孔206が形成されている。 Further, the annular portion 201 has a plurality of protruding portions 205 projecting to the inner peripheral side as a fixed portion to the stator holder 70, and the protruding portion 205 is formed with a through hole 206 extending in the axial direction. ing.
 図31は、固定子ホルダ70にバスバーモジュール200を組み付けた状態を示す斜視図であり、図32は、バスバーモジュール200を固定する固定部分における縦断面図である。なお、バスバーモジュール200を組み付ける前の固定子ホルダ70の構成は、図12を参照されたい。 FIG. 31 is a perspective view showing a state in which the bus bar module 200 is assembled to the stator holder 70, and FIG. 32 is a vertical sectional view of a fixed portion for fixing the bus bar module 200. Please refer to FIG. 12 for the configuration of the stator holder 70 before assembling the bus bar module 200.
 図31において、バスバーモジュール200は、内筒部材81のボス部92を囲むようにして端板部91上に設けられている。バスバーモジュール200は、内筒部材81の支柱部95(図12参照)に対する組み付けにより位置決めがなされた状態で、ボルト等の締結具217の締結により固定子ホルダ70(内筒部材81)に固定されている。 In FIG. 31, the bus bar module 200 is provided on the end plate portion 91 so as to surround the boss portion 92 of the inner cylinder member 81. The bus bar module 200 is fixed to the stator holder 70 (inner cylinder member 81) by fastening fasteners 217 such as bolts in a state where the bus bar module 200 is positioned by assembling the inner cylinder member 81 to the support column portion 95 (see FIG. 12). ing.
 より詳しくは、図32に示すように、内筒部材81の端板部91には軸方向に延びる支柱部95が設けられている。そして、バスバーモジュール200は、複数の突出部205に設けられた貫通孔206に支柱部95を挿通させた状態で、支柱部95に対して締結具217により固定されている。本実施形態では、鉄等の金属材料よりなるリテーナプレート220を用いてバスバーモジュール200を固定することとしている。リテーナプレート220は、締結具217を挿通させる挿通孔221を有する被締結部222と、バスバーモジュール200の環状部201の上面を押圧する押圧部223と、被締結部222と押圧部223との間に設けられるベンド部224とを有している。 More specifically, as shown in FIG. 32, the end plate portion 91 of the inner cylinder member 81 is provided with a strut portion 95 extending in the axial direction. Then, the bus bar module 200 is fixed to the support portion 95 by the fastener 217 in a state where the support portion 95 is inserted into the through holes 206 provided in the plurality of protrusion portions 205. In the present embodiment, the bus bar module 200 is fixed by using the retainer plate 220 made of a metal material such as iron. The retainer plate 220 is between the fastened portion 222 having an insertion hole 221 through which the fastener 217 is inserted, the pressing portion 223 that presses the upper surface of the annular portion 201 of the bus bar module 200, and the fastened portion 222 and the pressing portion 223. It has a bend portion 224 provided in the.
 リテーナプレート220の装着状態では、リテーナプレート220の挿通孔221に締結具217が挿通された状態で、締結具217が内筒部材81の支柱部95に対して螺着されている。また、リテーナプレート220の押圧部223がバスバーモジュール200の環状部201の上面に当接した状態となっている。この場合、締結具217が支柱部95にねじ入れられることに伴いリテーナプレート220が図の下方に押し込まれ、それに応じて押圧部223により環状部201が下方に押圧されている。締結具217の螺着に伴い生じる図の下方への押圧力は、ベンド部224を通じて押圧部223に伝わるため、ベンド部224での弾性力を伴う状態で、押圧部223での押圧が行われている。 In the mounted state of the retainer plate 220, the fastener 217 is screwed to the support column 95 of the inner cylinder member 81 with the fastener 217 inserted into the insertion hole 221 of the retainer plate 220. Further, the pressing portion 223 of the retainer plate 220 is in contact with the upper surface of the annular portion 201 of the bus bar module 200. In this case, the retainer plate 220 is pushed downward in the figure as the fastener 217 is screwed into the support column 95, and the annular portion 201 is pressed downward by the pressing portion 223 accordingly. Since the downward pressing force in the figure generated by the screwing of the fastener 217 is transmitted to the pressing portion 223 through the bend portion 224, the pressing is performed by the pressing portion 223 with the elastic force of the bend portion 224. ing.
 上述したとおり環状部201の上面には環状の突起部201aが設けられており、リテーナプレート220の押圧部223側の先端は突起部201aに当接可能となっている。これにより、リテーナプレート220の図の下方への押圧力が径方向外側に逃げてしまうことが抑制される。つまり、締結具217の螺着に伴い生じる押圧力が押圧部223の側に適正に伝わる構成となっている。 As described above, an annular protrusion 201a is provided on the upper surface of the annular portion 201, and the tip of the retainer plate 220 on the pressing portion 223 side can come into contact with the protrusion 201a. As a result, it is possible to prevent the downward pressing force of the retainer plate 220 from escaping radially outward. That is, the pressing force generated by the screwing of the fastener 217 is properly transmitted to the pressing portion 223 side.
 なお、図31に示すように、固定子ホルダ70に対するバスバーモジュール200の組み付け状態において、入出力端子203は、冷媒通路85に通じる入口開口86a及び出口開口87aに対して周方向に180度反対側となる位置に設けられている。ただし、これら入出力端子203と各開口86a,87aとが同位置(すなわち近接位置)にまとめて設けられていてもよい。 As shown in FIG. 31, in the assembled state of the bus bar module 200 with respect to the stator holder 70, the input / output terminal 203 is 180 degrees opposite to the inlet opening 86a and the outlet opening 87a leading to the refrigerant passage 85 in the circumferential direction. It is provided at the position where. However, these input / output terminals 203 and the openings 86a and 87a may be provided together at the same position (that is, a close position).
 次に、バスバーモジュール200の入出力端子203を回転電機10の外部の外部装置に対して電気的に接続する中継部材230について説明する。 Next, a relay member 230 for electrically connecting the input / output terminal 203 of the bus bar module 200 to an external device outside the rotary electric machine 10 will be described.
 図1に示すように、回転電機10では、バスバーモジュール200の入出力端子203がハウジングカバー242から外側に突出するように設けられており、そのハウジングカバー242の外側で中継部材230に接続されている。中継部材230は、バスバーモジュール200から延びる相ごとの入出力端子203と、インバータ等の外部装置から延びる相ごとの電力線との接続を中継する部材である。 As shown in FIG. 1, in the rotary electric machine 10, the input / output terminal 203 of the bus bar module 200 is provided so as to project outward from the housing cover 242, and is connected to the relay member 230 on the outside of the housing cover 242. There is. The relay member 230 is a member that relays the connection between the input / output terminal 203 for each phase extending from the bus bar module 200 and the power line for each phase extending from an external device such as an inverter.
 図33は、ハウジングカバー242に中継部材230を取り付けた状態を示す縦断面図であり、図34は、中継部材230の斜視図である。図33に示すように、ハウジングカバー242には貫通孔242aが形成されており、その貫通孔242aを通じて入出力端子203の引き出しが可能になっている。 FIG. 33 is a vertical sectional view showing a state in which the relay member 230 is attached to the housing cover 242, and FIG. 34 is a perspective view of the relay member 230. As shown in FIG. 33, a through hole 242a is formed in the housing cover 242, and the input / output terminal 203 can be pulled out through the through hole 242a.
 中継部材230は、ハウジングカバー242に固定される本体部231と、ハウジングカバー242の貫通孔242aに挿し入れられる端子挿通部232とを有している。端子挿通部232は、各相の入出力端子203を1つずつ挿通させる3つの挿通孔233を有している。それら3つの挿通孔233は、断面開口が長尺状をなしており、長手方向がいずれも略同じとなる向きで並べて形成されている。 The relay member 230 has a main body portion 231 fixed to the housing cover 242 and a terminal insertion portion 232 to be inserted into the through hole 242a of the housing cover 242. The terminal insertion portion 232 has three insertion holes 233 through which the input / output terminals 203 of each phase are inserted one by one. The three insertion holes 233 have long cross-sectional openings, and are formed side by side in directions in which the longitudinal directions are substantially the same.
 本体部231には、相ごとに設けられた3つの中継バスバー234が取り付けられている。中継バスバー234は、略L字状に屈曲形成されており、本体部231にボルト等の締結具235により固定されるとともに、端子挿通部232の挿通孔233に挿通された状態の入出力端子203の先端部にボルト及びナット等の締結具236により固定されている。 Three relay bus bars 234 provided for each phase are attached to the main body 231. The relay bus bar 234 is bent and formed in a substantially L shape, and is fixed to the main body 231 by fasteners 235 such as bolts, and the input / output terminal 203 is inserted into the insertion hole 233 of the terminal insertion portion 232. It is fixed to the tip of the bolt by a fastener 236 such as a bolt and a nut.
 なお、図示は略しているが、中継部材230には外部装置から延びる相ごとの電力線が接続可能となっており、相ごとに入出力端子203に対する電力の入出力が可能となっている。 Although not shown, the relay member 230 can be connected to a power line for each phase extending from the external device, and power can be input / output to the input / output terminal 203 for each phase.
 次に、回転電機10を制御する制御システムの構成について説明する。図35は、回転電機10の制御システムの電気回路図であり、図36は、制御装置270による制御処理を示す機能ブロック図である。 Next, the configuration of the control system that controls the rotary electric machine 10 will be described. FIG. 35 is an electric circuit diagram of the control system of the rotary electric machine 10, and FIG. 36 is a functional block diagram showing a control process by the control device 270.
 図35に示すように、固定子巻線61はU相巻線、V相巻線及びW相巻線よりなり、その固定子巻線61に、電力変換器に相当するインバータ260が接続されている。インバータ260は、相数と同じ数の上下アームを有するフルブリッジ回路により構成されており、相ごとに上アームスイッチ261及び下アームスイッチ262からなる直列接続体が設けられている。これら各スイッチ261,262はドライバ263によりそれぞれオンオフされ、そのオンオフにより各相の相巻線が通電される。各スイッチ261,262は、例えばMOSFETやIGBT等の半導体スイッチング素子により構成されている。また、各相の上下アームには、スイッチ261,262の直列接続体に並列に、スイッチング時に要する電荷を各スイッチ261,262に供給する電荷供給用のコンデンサ264が接続されている。 As shown in FIG. 35, the stator winding 61 is composed of a U-phase winding, a V-phase winding, and a W-phase winding, and an inverter 260 corresponding to a power converter is connected to the stator winding 61. There is. The inverter 260 is composed of a full bridge circuit having the same number of upper and lower arms as the number of phases, and a series connection body including an upper arm switch 261 and a lower arm switch 262 is provided for each phase. Each of these switches 261,262 is turned on and off by the driver 263, and the phase winding of each phase is energized by the on / off. Each switch 261,262 is composed of a semiconductor switching element such as a MOSFET or an IGBT. Further, to the upper and lower arms of each phase, a charge supply capacitor 264 for supplying the charge required for switching to each switch 261,262 is connected in parallel with the series connection body of the switches 261,262.
 上下アームの各スイッチ261,262の間の中間接続点に、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。 One end of the U-phase winding, V-phase winding, and W-phase winding is connected to the intermediate connection point between the switches 261,262 of the upper and lower arms, respectively. Each of these phase windings is star-shaped (Y-connected), and the other end of each phase winding is connected to each other at a neutral point.
 制御装置270は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、各スイッチ261,262のオンオフにより通電制御を実施する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子20の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置270は、例えば所定のスイッチング周波数(キャリア周波数)でのPWM制御や、矩形波制御により各スイッチ261,262のオンオフ制御を実施する。制御装置270は、回転電機10に内蔵された内蔵制御装置であってもよいし、回転電機10の外部に設けられた外部制御装置であってもよい。 The control device 270 includes a microcomputer including a CPU and various memories, and performs energization control by turning on / off each switch 261,262 based on various detection information in the rotary electric machine 10 and a request for power running drive and power generation. .. The detection information of the rotary electric machine 10 includes, for example, the rotation angle (electric angle information) of the rotor 20 detected by an angle detector such as a resolver, the power supply voltage (inverter input voltage) detected by the voltage sensor, and the current sensor. Includes the energizing current of each phase detected by. The control device 270 performs on / off control of each switch 261,262 by, for example, PWM control at a predetermined switching frequency (carrier frequency) or rectangular wave control. The control device 270 may be a built-in control device built in the rotary electric machine 10 or an external control device provided outside the rotary electric machine 10.
 ちなみに、本実施形態の回転電機10は、スロットレス構造(ティースレス構造)を有していることから、固定子60のインダクタンスが低減されて電気的時定数が小さくなっており、その電気的時定数が小さい状況下では、スイッチング周波数(キャリア周波数)を高くし、かつスイッチング速度を速くすることが望ましい。この点において、各相のスイッチ261,262の直列接続体に並列に電荷供給用のコンデンサ264が接続されていることで配線インダクタンスが低くなり、スイッチング速度を速くした構成であっても適正なサージ対策が可能となる。 By the way, since the rotary electric machine 10 of the present embodiment has a slotless structure (teethless structure), the inductance of the stator 60 is reduced and the electric time constant is reduced, and the electric time constant thereof is reduced. Under the situation where the constant is small, it is desirable to increase the switching frequency (carrier frequency) and increase the switching speed. In this respect, since the capacitor 264 for charge supply is connected in parallel to the series connection of the switches 261,262 of each phase, the wiring inductance becomes low, and even in the configuration where the switching speed is increased, an appropriate surge Countermeasures are possible.
 インバータ260の高電位側端子は直流電源265の正極端子に接続され、低電位側端子は直流電源265の負極端子(グランド)に接続されている。直流電源265は、例えば複数の単電池が直列接続された組電池により構成されている。また、インバータ260の高電位側端子及び低電位側端子には、直流電源265に並列に平滑用のコンデンサ266が接続されている。 The high potential side terminal of the inverter 260 is connected to the positive electrode terminal of the DC power supply 265, and the low potential side terminal is connected to the negative electrode terminal (ground) of the DC power supply 265. The DC power supply 265 is composed of, for example, an assembled battery in which a plurality of single batteries are connected in series. Further, a smoothing capacitor 266 is connected in parallel with the DC power supply 265 to the high potential side terminal and the low potential side terminal of the inverter 260.
 図36は、U,V,W相の各相電流を制御する電流フィードバック制御処理を示すブロック図である。 FIG. 36 is a block diagram showing a current feedback control process for controlling each phase current of the U, V, and W phases.
 図36において、電流指令値設定部271は、トルク-dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、発電トルク指令値は、例えば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。 In FIG. 36, the current command value setting unit 271 uses a torque −dq map and is based on a power running torque command value or a power generation torque command value for the rotary electric machine 10 and an electric angular velocity ω obtained by time-differentiating the electric angle θ. , The d-axis current command value and the q-axis current command value are set. The power generation torque command value is, for example, a regenerative torque command value when the rotary electric machine 10 is used as a power source for a vehicle.
 dq変換部272は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向(direction of an axis of a magnetic field,or field direction)をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。 The dq conversion unit 272 sets the current detection value (three phase currents) by the current sensor provided for each phase as the d-axis in the field direction (direction of an axis of a magnetic field, or field direction). It is converted into a d-axis current and a q-axis current, which are components of the dimensional rotation coordinate system.
 d軸電流フィードバック制御部273は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。また、q軸電流フィードバック制御部274は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部273,274では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。 The d-axis current feedback control unit 273 calculates the d-axis command voltage as an operation amount for feedback-controlling the d-axis current to the d-axis current command value. Further, the q-axis current feedback control unit 274 calculates the q-axis command voltage as an operation amount for feedback-controlling the q-axis current to the q-axis current command value. In each of these feedback control units 273 and 274, the command voltage is calculated using the PI feedback method based on the deviation of the d-axis current and the q-axis current with respect to the current command value.
 3相変換部275は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部271~275が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。 The three-phase conversion unit 275 converts the d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages. Each of the above units 271 to 275 is a feedback control unit that performs feedback control of the fundamental wave current according to the dq conversion theory, and the command voltages of the U phase, the V phase, and the W phase are the feedback control values.
 操作信号生成部276は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、インバータ260の操作信号を生成する。具体的には、操作信号生成部276は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。操作信号生成部276にて生成されたスイッチ操作信号がインバータ260のドライバ263に出力され、ドライバ263により各相のスイッチ261,262がオンオフされる。 The operation signal generation unit 276 uses a well-known triangular wave carrier comparison method to generate an operation signal of the inverter 260 based on a three-phase command voltage. Specifically, the operation signal generation unit 276 switches the upper and lower arms in each phase by PWM control based on the magnitude comparison between the signal obtained by standardizing the command voltage of the three phases by the power supply voltage and the carrier signal such as the triangular wave signal. Generates an operation signal (duty signal). The switch operation signal generated by the operation signal generation unit 276 is output to the driver 263 of the inverter 260, and the switch 261 and 262 of each phase are turned on and off by the driver 263.
 続いて、トルクフィードバック制御処理について説明する。この処理は、例えば高回転領域及び高出力領域等、インバータ260の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化や損失低減の目的で用いられる。制御装置270は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。 Next, the torque feedback control process will be described. This process is mainly used for the purpose of increasing the output and reducing the loss of the rotary electric machine 10 under operating conditions in which the output voltage of the inverter 260 becomes large, such as in a high rotation region and a high output region. The control device 270 selects and executes either the torque feedback control process or the current feedback control process based on the operating conditions of the rotary electric machine 10.
 図37は、U,V,W相に対応するトルクフィードバック制御処理を示すブロック図である。 FIG. 37 is a block diagram showing torque feedback control processing corresponding to the U, V, and W phases.
 電圧振幅算出部281は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。 The voltage amplitude calculation unit 281 is a command value of the magnitude of the voltage vector based on the power running torque command value or the power generation torque command value for the rotary electric machine 10 and the electric angular velocity ω obtained by time-differentiating the electric angle θ. Calculate the voltage amplitude command.
 dq変換部282は、dq変換部272と同様に、相ごとに設けられた電流センサによる電流検出値をd軸電流とq軸電流とに変換する。トルク推定部283は、d軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部283は、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。 Similar to the dq conversion unit 272, the dq conversion unit 282 converts the current detection value by the current sensor provided for each phase into a d-axis current and a q-axis current. The torque estimation unit 283 calculates the torque estimation value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current. The torque estimation unit 283 may calculate the voltage amplitude command based on the map information associated with the d-axis current, the q-axis current, and the voltage amplitude command.
 トルクフィードバック制御部284は、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部284では、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。 The torque feedback control unit 284 calculates a voltage phase command, which is a command value of the phase of the voltage vector, as an operation amount for feedback-controlling the torque estimation value to the power running torque command value or the generated torque command value. The torque feedback control unit 284 calculates the voltage phase command using the PI feedback method based on the deviation of the torque estimation value with respect to the power running torque command value or the generated torque command value.
 操作信号生成部285は、電圧振幅指令、電圧位相指令及び電気角θに基づいて、インバータ260の操作信号を生成する。具体的には、操作信号生成部285は、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。操作信号生成部285にて生成されたスイッチ操作信号がインバータ260のドライバ263に出力され、ドライバ263により各相のスイッチ261,262がオンオフされる。 The operation signal generation unit 285 generates an operation signal of the inverter 260 based on the voltage amplitude command, the voltage phase command, and the electric angle θ. Specifically, the operation signal generation unit 285 calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electric angle θ, and the calculated three-phase command voltage is standardized by the power supply voltage. And the switch operation signal of the upper and lower arms in each phase is generated by the PWM control based on the magnitude comparison with the carrier signal such as a triangular wave signal. The switch operation signal generated by the operation signal generation unit 285 is output to the driver 263 of the inverter 260, and the switches 261, 262 of each phase are turned on and off by the driver 263.
 ちなみに、操作信号生成部285は、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。 Incidentally, the operation signal generation unit 285 is based on the pulse pattern information, the voltage amplitude command, the voltage phase command, and the electric angle θ, which are map information related to the voltage amplitude command, the voltage phase command, the electric angle θ, and the switch operation signal. Then, a switch operation signal may be generated.
 (変形例)
 以下に、上記第1実施形態に関する変形例を説明する。
(Modification example)
Hereinafter, a modified example of the first embodiment will be described.
 ・磁石ユニット22における磁石32の構成を以下のように変更してもよい。図38に示す磁石ユニット22では、磁石32において磁化容易軸の向きが径方向に対して斜めであり、その磁化容易軸の向きに沿って直線状の磁石磁路が形成されている。つまり、磁石32は、固定子60側(径方向内側)の磁束作用面34aと反固定子側(径方向外側)の磁束作用面34bとの間において磁化容易軸の向きがd軸に対して斜めであり、周方向において固定子60側でd軸に近づき、かつ反固定子側でd軸から離れる向きとなるように直線的な配向がなされて構成されている。本構成においても、磁石32の磁石磁路長を径方向の厚さ寸法よりも長くすることができ、パーミアンスの向上を図ることが可能となっている。 -The configuration of the magnet 32 in the magnet unit 22 may be changed as follows. In the magnet unit 22 shown in FIG. 38, the direction of the easy-to-magnetize axis is oblique with respect to the radial direction in the magnet 32, and a linear magnet magnetic path is formed along the direction of the easy-to-magnetize axis. That is, in the magnet 32, the direction of the easy axis of magnetization between the magnetic flux acting surface 34a on the stator 60 side (inner in the radial direction) and the magnetic flux acting surface 34b on the anti-stator side (outer in the radial direction) is with respect to the d-axis. It is slanted and is configured to be linearly oriented so as to approach the d-axis on the stator 60 side and away from the d-axis on the anti-stator side in the circumferential direction. Also in this configuration, the magnet path length of the magnet 32 can be made longer than the thickness dimension in the radial direction, and the permeance can be improved.
 ・磁石ユニット22においてハルバッハ配列の磁石を用いることも可能である。 -It is also possible to use Halbach array magnets in the magnet unit 22.
 ・各部分巻線151において、渡り部153の折り曲げの方向は径方向内外のうちいずれであってもよく、コアアセンブリCAとの関係として、第1渡り部153AがコアアセンブリCAの側に折り曲げられていても、又は第1渡り部153AがコアアセンブリCAの逆側に折り曲げられていてもよい。また、第2渡り部153Bは、第1渡り部153Aの軸方向外側でその第1渡り部153Aの一部を周方向に跨ぐ状態になっているものであれば、径方向内外のいずれかに折り曲げられていてもよい。 In each partial winding 151, the bending direction of the crossover 153 may be either inside or outside in the radial direction, and the first crossover 153A is bent toward the core assembly CA in relation to the core assembly CA. Or the first crossover 153A may be bent to the opposite side of the core assembly CA. Further, if the second crossover portion 153B is in a state of straddling a part of the first crossover portion 153A in the circumferential direction on the outer side in the axial direction of the first crossover portion 153A, it can be either inside or outside in the radial direction. It may be folded.
 ・部分巻線151として2種類の部分巻線151(第1部分巻線151A、第2部分巻線151B)を有するものとせず、1種類の部分巻線151を有するものとしてもよい。具体的には、部分巻線151を、側面視において略L字状又は略Z字状をなすように形成するとよい。部分巻線151を側面視で略L字状に形成する場合、軸方向一端側では、渡り部153が径方向内外のいずれかに折り曲げられ、軸方向他端側では、渡り部153が径方向に折り曲げられることなく設けられている構成とする。また、部分巻線151を側面視で略Z字状に形成する場合、軸方向一端側及び軸方向他端側において、渡り部153が径方向に互いに逆向きに折り曲げられている構成とする。いずれの場合であっても、上述のように渡り部153を覆う絶縁カバーによりコイルモジュール150がコアアセンブリCAに対して固定される構成であるとよい。 -The partial winding 151 may not have two types of partial windings 151 (first partial winding 151A, second partial winding 151B), but may have one type of partial winding 151. Specifically, the partial winding 151 may be formed so as to form a substantially L-shape or a substantially Z-shape when viewed from the side. When the partial winding 151 is formed in a substantially L shape in a side view, the crossover 153 is bent either inside or outside in the radial direction on one end side in the axial direction, and the crossover portion 153 is radially formed on the other end side in the axial direction. The configuration is such that it is provided without being bent. Further, when the partial winding 151 is formed in a substantially Z shape in a side view, the crossover portion 153 is bent in the opposite directions in the radial direction on one end side in the axial direction and the other end side in the axial direction. In any case, it is preferable that the coil module 150 is fixed to the core assembly CA by the insulating cover covering the crossover portion 153 as described above.
 ・上述した構成では、固定子巻線61において、相巻線ごとに全ての部分巻線151が並列接続される構成を説明したが、これを変更してもよい。例えば、相巻線ごとの全ての部分巻線151を複数の並列接続群に分け、その複数の並列接続群を直列接続する構成でもよい。つまり、各相巻線における全n個の部分巻線151を、n/2個ずつの2組の並列接続群や、n/3個ずつの3組の並列接続群などに分け、それらを直列接続する構成としてもよい。又は、固定子巻線61において相巻線ごとに複数の部分巻線151が全て直列接続される構成としてもよい。 -In the above-mentioned configuration, in the stator winding 61, the configuration in which all the partial windings 151 are connected in parallel for each phase winding has been described, but this may be changed. For example, all the partial windings 151 for each phase winding may be divided into a plurality of parallel connection groups, and the plurality of parallel connection groups may be connected in series. That is, all n partial windings 151 in each phase winding are divided into two sets of parallel connection groups of n / 2 pieces and three sets of parallel connection groups of n / 3 pieces each, and these are connected in series. It may be configured to connect. Alternatively, the stator winding 61 may be configured such that a plurality of partial windings 151 are all connected in series for each phase winding.
 ・回転電機10における固定子巻線61は2相の相巻線(U相巻線及びV相巻線)を有する構成であってもよい。この場合、例えば部分巻線151では、一対の中間導線部152が1コイルピッチ分を離して設けられ、一対の中間導線部152の間に、他1相の部分巻線151における中間導線部152が1つ配置される構成となっていればよい。 The stator winding 61 in the rotary electric machine 10 may have a configuration having two-phase windings (U-phase winding and V-phase winding). In this case, for example, in the partial winding 151, a pair of intermediate conductors 152 are provided one coil pitch apart, and the intermediate conductors 152 in the other one-phase partial winding 151 are provided between the pair of intermediate conductors 152. It suffices if it is configured so that one is arranged.
 ・回転電機10を、アウタロータ式の表面磁石型回転電機に代えて、インナロータ式の表面磁石型回転電機として具体化することも可能である。図39(a),(b)は、インナロータ構造とした場合の固定子ユニット300の構成を示す図である。このうち図39(a)はコイルモジュール310A,310BをコアアセンブリCAに組み付けた状態を示す斜視図であり、図39(b)は、各コイルモジュール310A,310Bに含まれる部分巻線311A,311Bを示す斜視図である。本例では、固定子コア62の径方向外側に固定子ホルダ70が組み付けられることでコアアセンブリCAが構成されている。また、固定子コア62の径方向内側に、複数のコイルモジュール310A,310Bが組み付けられる構成となっている。 -It is also possible to embody the rotary electric machine 10 as an inner rotor type surface magnet type rotary electric machine instead of the outer rotor type surface magnet type rotary electric machine. 39 (a) and 39 (b) are diagrams showing the configuration of the stator unit 300 in the case of an inner rotor structure. Of these, FIG. 39 (a) is a perspective view showing a state in which the coil modules 310A and 310B are assembled to the core assembly CA, and FIG. 39 (b) is a partial winding 311A and 311B included in the coil modules 310A and 310B. It is a perspective view which shows. In this example, the core assembly CA is configured by assembling the stator holder 70 to the radially outer side of the stator core 62. Further, a plurality of coil modules 310A and 310B are assembled inside the stator core 62 in the radial direction.
 部分巻線311Aは、概ね既述の第1部分巻線151Aと同様の構成を有しており、一対の中間導線部312と、軸方向両側においてコアアセンブリCAの側(径方向外側)に折り曲げ形成された渡り部313Aとを有している。また、部分巻線311Bは、概ね既述の第2部分巻線151Bと同様の構成を有しており、一対の中間導線部312と、軸方向両側において渡り部313Aを軸方向外側で周方向に跨ぐように設けられた渡り部313Bとを有している。部分巻線311Aの渡り部313Aには絶縁カバー315が装着され、部分巻線311Bの渡り部313Bには絶縁カバー316が装着されている。 The partial winding 311A has substantially the same configuration as the first partial winding 151A described above, and is bent toward the core assembly CA side (diameter outside) with the pair of intermediate conductor portions 312 and both sides in the axial direction. It has a formed crossover portion 313A. Further, the partial winding 311B has substantially the same configuration as the second partial winding 151B described above, and has a pair of intermediate conductor portions 312 and a crossover portion 313A on both sides in the axial direction in the circumferential direction on the outer side in the axial direction. It has a crossover portion 313B provided so as to straddle the. An insulating cover 315 is attached to the crossover 313A of the partial winding 311A, and an insulating cover 316 is attached to the crossover 313B of the partial winding 311B.
 絶縁カバー315には、周方向両側の側面部に、軸方向に延びる半円状の凹部317が設けられている。また、絶縁カバー316には、渡り部313Bよりも径方向外側に突出する突出部318が設けられ、その突出部318の先端部に、軸方向に延びる貫通孔319が設けられている。 The insulating cover 315 is provided with semicircular recesses 317 extending in the axial direction on the side surface portions on both sides in the circumferential direction. Further, the insulating cover 316 is provided with a protruding portion 318 protruding radially outward from the crossover portion 313B, and a through hole 319 extending in the axial direction is provided at the tip end portion of the protruding portion 318.
 図40は、コアアセンブリCAに対してコイルモジュール310A,310Bを組み付けた状態を示す平面図である。なお、図40において、固定子ホルダ70の軸方向端面には周方向に等間隔で複数の凹部105が形成されている。また、固定子ホルダ70は、液状冷媒又は空気による冷却構造を有しており、例えば空冷構造として、外周面に複数の放熱フィンが形成されているとよい。 FIG. 40 is a plan view showing a state in which the coil modules 310A and 310B are assembled to the core assembly CA. In FIG. 40, a plurality of recesses 105 are formed at equal intervals in the circumferential direction on the axial end surface of the stator holder 70. Further, the stator holder 70 has a cooling structure using a liquid refrigerant or air, and it is preferable that a plurality of heat radiation fins are formed on the outer peripheral surface thereof, for example, as an air cooling structure.
 図40では、絶縁カバー315,316が軸方向に重なる状態で配置されている。また、絶縁カバー315の側面部に設けられた凹部317と、絶縁カバー316の突出部318において絶縁カバー316の周方向一端から他端までの間の中央となる位置に設けられた貫通孔319とが軸方向に連なっており、それら各部で、固定ピン321による固定がなされている。 In FIG. 40, the insulating covers 315 and 316 are arranged so as to overlap in the axial direction. Further, a recess 317 provided on the side surface portion of the insulating cover 315 and a through hole 319 provided at a central position between one end and the other end in the circumferential direction of the insulating cover 316 in the protruding portion 318 of the insulating cover 316. Are connected in the axial direction, and each part thereof is fixed by a fixing pin 321.
 また、図40では、固定ピン321による各絶縁カバー315,316の固定位置が、固定子コア62よりも径方向外側の固定子ホルダ70の軸方向端面となっており、その固定子ホルダ70に対して固定ピン321による固定が行われる構成となっている。この場合、固定子ホルダ70には冷却構造が設けられているため、部分巻線311A,311Bで生じた熱が固定子ホルダ70に伝わり易くなっている。これにより、固定子巻線61の冷却性能を向上させることができる。 Further, in FIG. 40, the fixing positions of the insulating covers 315 and 316 by the fixing pin 321 are the axial end faces of the stator holder 70 radially outside the stator core 62, and the stator holder 70 has a fixing position. On the other hand, it is configured to be fixed by the fixing pin 321. In this case, since the stator holder 70 is provided with a cooling structure, the heat generated by the partial windings 311A and 311B is easily transferred to the stator holder 70. Thereby, the cooling performance of the stator winding 61 can be improved.
 ・回転電機10に用いられる固定子60は、バックヨークから延びる突起部(例えばティース)を有するものであってもよい。この場合にも、固定子コアに対するコイルモジュール150等の組み付けがバックヨークに対して行われるものであればよい。 The stator 60 used in the rotary electric machine 10 may have a protrusion (for example, a tooth) extending from the back yoke. Also in this case, it suffices as long as the coil module 150 or the like is assembled to the stator core to the back yoke.
 ・回転電機としては、星形結線のものに限らず、Δ結線のものであってもよい。 -The rotary electric machine is not limited to the one with a star-shaped connection, but may be one with a Δ connection.
 ・回転電機10として、界磁子を回転子、電機子を固定子とする回転界磁形の回転電機に代えて、電機子を回転子、界磁子を固定子とする回転電機子形の回転電機を採用することも可能である。 -As the rotary electric machine 10, instead of the rotary field type rotary electric machine in which the field magnet is a rotor and the stator is a stator, a rotary armature type in which the armature is a rotor and the field magnet is a stator. It is also possible to adopt a rotary electric machine.
 (第2実施形態)
 次に、第2実施形態における回転電機400について説明する。本実施形態の回転電機400は、車両のインホイールモータとして用いられる。回転電機400の概要を図41~図45に示す。図41は、回転電機400の全体を示す斜視図であり、図42は、回転電機400の平面図であり、図43は、回転電機400の縦断面図(図42の43-43線断面図)であり、図44は、回転電機400の横断面図(図43の44-44線断面図)であり、図45は、回転電機400の構成要素を分解して示す分解断面図である。
(Second Embodiment)
Next, the rotary electric machine 400 in the second embodiment will be described. The rotary electric machine 400 of the present embodiment is used as an in-wheel motor of a vehicle. The outline of the rotary electric machine 400 is shown in FIGS. 41 to 45. 41 is a perspective view showing the entire rotary electric machine 400, FIG. 42 is a plan view of the rotary electric machine 400, and FIG. 43 is a vertical cross-sectional view of the rotary electric machine 400 (cross-sectional view taken along lines 43-43 of FIG. 42). 44 is a cross-sectional view of the rotary electric machine 400 (a cross-sectional view taken along the line 44-44 in FIG. 43), and FIG. 45 is an exploded cross-sectional view showing the components of the rotary electric machine 400 in an exploded manner.
 回転電機400は、インナロータ式の表面磁石型回転電機である。回転電機400は、大別して、回転子410と、固定子430を含んでなる固定子ユニット420とを有する回転電機本体を備えており、固定子ユニット420に固定されたインナハウジング470が不図示の車体に固定されるとともに、回転子410に固定されたホイール支持部材401が不図示の車輪のホイールに固定される構成となっている。本実施形態では、ホイール支持部材401に結合される車輪ホイールが、回転電機400による回転対象物となっている。これらインナハウジング470及びホイール支持部材401は、高強度であることが要求され、例えば鉄鋼材料よりなる。 The rotary electric machine 400 is an inner rotor type surface magnet type rotary electric machine. The rotary electric machine 400 is roughly classified into a rotary electric machine main body having a rotor 410 and a stator unit 420 including a stator 430, and an inner housing 470 fixed to the stator unit 420 is not shown. The wheel support member 401 fixed to the vehicle body and fixed to the rotor 410 is fixed to the wheel of a wheel (not shown). In the present embodiment, the wheel wheel coupled to the wheel support member 401 is an object to be rotated by the rotary electric machine 400. The inner housing 470 and the wheel support member 401 are required to have high strength, and are made of, for example, a steel material.
 回転子410の構成を以下に説明する。 The configuration of the rotor 410 will be described below.
 図45に示すように、回転子410は、略円筒状の回転子キャリア411と、その回転子キャリア411に固定された環状の磁石ユニット412とを有している。回転子キャリア411は、円筒状をなす筒状部413と、その筒状部413の軸方向一端に設けられた端板部414とを有しており、筒状部413の径方向外側に環状に磁石ユニット412が固定されている。回転子キャリア411は、磁石保持部材として機能する。端板部414は、その中央部に、軸方向において磁石ユニット412の側に延びる円筒状のボス部415を有している。ボス部415には貫通孔415aが形成されている。回転子キャリア411において、筒状部413とボス部415とは、端板部414から軸方向に同じ向きに延び、内外二重になるように設けられている。 As shown in FIG. 45, the rotor 410 has a substantially cylindrical rotor carrier 411 and an annular magnet unit 412 fixed to the rotor carrier 411. The rotor carrier 411 has a cylindrical portion 413 having a cylindrical shape and an end plate portion 414 provided at one end in the axial direction of the tubular portion 413, and is annular to the radial outer side of the tubular portion 413. The magnet unit 412 is fixed to the. The rotor carrier 411 functions as a magnet holding member. The end plate portion 414 has a cylindrical boss portion 415 extending toward the magnet unit 412 in the axial direction at the center thereof. A through hole 415a is formed in the boss portion 415. In the rotor carrier 411, the tubular portion 413 and the boss portion 415 extend in the same axial direction from the end plate portion 414 and are provided so as to be double inside and outside.
 磁石ユニット412は、回転子410の周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。磁石ユニット412が「磁石部」に相当する。これにより、磁石ユニット412は、周方向に複数の磁極を有する。磁石ユニット412は、第1実施形態の図6,図7において磁石ユニット22として説明した構成を有しており、永久磁石として、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石を用いて構成されている。 The magnet unit 412 is composed of a plurality of permanent magnets arranged so that the polarities alternate along the circumferential direction of the rotor 410. The magnet unit 412 corresponds to the "magnet portion". As a result, the magnet unit 412 has a plurality of magnetic poles in the circumferential direction. The magnet unit 412 has the configuration described as the magnet unit 22 in FIGS. 6 and 7 of the first embodiment, and as a permanent magnet, has an intrinsic coercive force of 400 [kA / m] or more and a residual magnetic flux. It is configured by using a sintered neodymium magnet having a density Br of 1.0 [T] or more.
 磁石ユニット412は、図7の磁石ユニット22と同様に、それぞれ極異方性の複数の永久磁石を有しており、それら各磁石は、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違し、d軸側では磁化容易軸の向きがd軸に平行する向きとなり、q軸側では磁化容易軸の向きがq軸に直交する向きとなっている。この場合、磁化容易軸の向きに沿って円弧状の磁石磁路が形成されている。要するに、各磁石は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。 Similar to the magnet unit 22 of FIG. 7, the magnet unit 412 has a plurality of polar anisotropy permanent magnets, and each of these magnets has a d-axis side (a portion closer to the d-axis) and a q-axis side. The direction of the easy-magnetization axis is different from that of (the part closer to the q-axis), the direction of the easy-magnetization axis is parallel to the d-axis on the d-axis side, and the direction of the easy-magnetization axis is orthogonal to the q-axis on the q-axis side. It is oriented toward magnetizing. In this case, an arcuate magnetic path is formed along the direction of the easy magnetization axis. In short, each magnet is configured to be oriented so that the direction of the easy magnetization axis is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared with the q-axis side, which is the magnetic pole boundary.
 なお、磁石ユニット412の各磁石は、周方向において接着等により互いに固定されるとともに、外周部においてヤーン等の固定部材が取り付けられて一体化されているとよい。また、各磁石の軸方向端部に、円環状の端板部材が取り付けられているとよい。 It is preferable that the magnets of the magnet unit 412 are fixed to each other by adhesion or the like in the circumferential direction, and a fixing member such as a yarn is attached to the outer peripheral portion to be integrated. Further, it is preferable that an annular end plate member is attached to the axial end portion of each magnet.
 また、回転子410は、回転子キャリア411の端板部414から磁石ユニット412とは逆側に延びるように設けられた円筒状の回転軸416を有している。回転軸416は、回転子キャリア411の筒状部413及びボス部415と同心であり、端板部414に対してボルト等の固定具417により固定されている。回転軸416は、ボス部415の内径寸法よりも大きい内径寸法を有している。そのため、回転子キャリア411の端板部414は、回転軸416の内周側において径方向内側に突出する鍔状の突出部を有している。 Further, the rotor 410 has a cylindrical rotating shaft 416 provided so as to extend from the end plate portion 414 of the rotor carrier 411 to the side opposite to the magnet unit 412. The rotary shaft 416 is concentric with the cylindrical portion 413 and the boss portion 415 of the rotor carrier 411, and is fixed to the end plate portion 414 by a fixing tool 417 such as a bolt. The rotary shaft 416 has an inner diameter larger than the inner diameter of the boss portion 415. Therefore, the end plate portion 414 of the rotor carrier 411 has a collar-shaped protruding portion that protrudes inward in the radial direction on the inner peripheral side of the rotating shaft 416.
 回転軸416において回転子キャリア411とは逆側の軸方向他端には、ボルト等の固定具402によりホイール支持部材401が固定されており、ホイール支持部材401は回転子410と共に回転する。なお、回転軸416は、例えば鉄鋼材料により形成されているとよい。 A wheel support member 401 is fixed to the other end of the rotary shaft 416 in the axial direction opposite to the rotor carrier 411 by a fixture 402 such as a bolt, and the wheel support member 401 rotates together with the rotor 410. The rotary shaft 416 may be formed of, for example, a steel material.
 次に、固定子ユニット420の構成を説明する。図46は、固定子ユニット420の全体を示す斜視図であり、図47は、固定子ユニット420の分解断面図であり、図48は、固定子ユニット420の縦断面図である。 Next, the configuration of the stator unit 420 will be described. FIG. 46 is a perspective view showing the entire stator unit 420, FIG. 47 is an exploded sectional view of the stator unit 420, and FIG. 48 is a vertical sectional view of the stator unit 420.
 固定子ユニット420は、その概要として、固定子430と、固定子430を囲むように設けられたアウタハウジング450と、配線モジュール460とを有している。固定子430は、固定子巻線431と固定子コア432とを有している。アウタハウジング450は有底筒状をなしており、軸方向一端側である開放端側にインナハウジング470が組み付けられる構成となっている。なお、アウタハウジング450が「第1ハウジング」に相当し、インナハウジング470が「第2ハウジング」に相当する。 The stator unit 420, as an outline thereof, has a stator 430, an outer housing 450 provided so as to surround the stator 430, and a wiring module 460. The stator 430 has a stator winding 431 and a stator core 432. The outer housing 450 has a bottomed cylindrical shape, and the inner housing 470 is assembled to the open end side, which is one end side in the axial direction. The outer housing 450 corresponds to the "first housing", and the inner housing 470 corresponds to the "second housing".
 固定子430において、固定子巻線431は3相の相巻線を有し、各相の相巻線はそれぞれ複数の部分巻線441により構成されている。部分巻線441は、回転電機400の極数に応じて設けられており、相ごとに複数の部分巻線441が並列又は直列に接続されている。本実施形態では、磁極数を24としているが、その数は任意である。 In the stator 430, the stator winding 431 has a three-phase phase winding, and each phase phase winding is composed of a plurality of partial windings 441. The partial winding 441 is provided according to the number of poles of the rotary electric machine 400, and a plurality of partial windings 441 are connected in parallel or in series for each phase. In the present embodiment, the number of magnetic poles is 24, but the number is arbitrary.
 図48に示すように、固定子430は、軸方向において、固定子コア432に径方向に対向するコイルサイドCSに相当する部分と、そのコイルサイドCSの軸方向外側であるコイルエンドCEに相当する部分とを有している。コイルサイドCSは、回転子410の磁石ユニット412に径方向に対向する部分でもある。部分巻線441は固定子コア432の径方向内側に組み付けられている。この場合、部分巻線441は、その軸方向両端部分が固定子コア432よりも軸方向外側(すなわちコイルエンドCE側)に突出した状態で組み付けられている。 As shown in FIG. 48, the stator 430 corresponds to a portion corresponding to the coil side CS radially facing the stator core 432 in the axial direction and a coil end CE corresponding to the axially outer side of the coil side CS. It has a part to be used. The coil side CS is also a portion that faces the magnet unit 412 of the rotor 410 in the radial direction. The partial winding 441 is assembled radially inside the stator core 432. In this case, the partial winding 441 is assembled in a state where both ends in the axial direction are projected outward in the axial direction (that is, the coil end CE side) from the stator core 432.
 図49は、部分巻線441の構成を示す斜視図である。部分巻線441は、導線材を多重に巻回することで構成されている。部分巻線441は、互いに平行でかつ直線状に設けられる一対の中間導線部442と、一対の中間導線部442を軸方向両端でそれぞれ接続する一対の渡り部443,444とを有しており、これら一対の中間導線部442と一対の渡り部443,444とにより環状に形成されている。一対の中間導線部442は、所定のコイルピッチ分を離して設けられており、周方向において一対の中間導線部442の間に、他相の部分巻線441の中間導線部442が配置可能となっている。本実施形態では、一対の中間導線部442は2コイルピッチ分を離して設けられ、一対の中間導線部442の間に、他2相の部分巻線441における中間導線部442が1つずつ配置される構成となっている。 FIG. 49 is a perspective view showing the configuration of the partial winding 441. The partial winding 441 is configured by winding the conducting wire material in multiple turns. The partial winding 441 has a pair of intermediate conductor portions 442 provided in parallel and linearly with each other, and a pair of crossover portions 443 and 444 connecting the pair of intermediate conductor portions 442 at both ends in the axial direction. , These pair of intermediate conductor portions 442 and the pair of crossover portions 443 and 444 form an annular shape. The pair of intermediate conductors 442 are provided so as to be separated by a predetermined coil pitch, and the intermediate conductors 442 of the partial winding 441 of the other phase can be arranged between the pair of intermediate conductors 442 in the circumferential direction. It has become. In the present embodiment, the pair of intermediate conductors 442 are provided so as to be separated by two coil pitches, and one intermediate conductor 442 in the other two-phase partial winding 441 is arranged between the pair of intermediate conductors 442. It is configured to be.
 部分巻線441において各中間導線部442には、シート状の絶縁被覆体445が被せられた状態で設けられている。絶縁被覆体445の構成は、上述した第1実施形態における部分巻線151の絶縁被覆体157と同様である。すなわち、絶縁被覆体445は、軸方向寸法として少なくとも中間導線部442における軸方向の絶縁被覆範囲の長さを有するフィルム材を用い、そのフィルム材を中間導線部442の周囲に巻装することで設けられている。また、絶縁被覆体445は、中間導線部442の周囲に、フィルム材の周方向の端部をオーバーラップさせた状態で設けられている。 In the partial winding 441, each intermediate conductor portion 442 is provided with a sheet-shaped insulating coating 445 in a covered state. The configuration of the insulating coating 445 is the same as that of the insulating coating 157 of the partial winding 151 in the first embodiment described above. That is, the insulating coating 445 uses a film material having at least the length of the insulating coating range in the intermediate conducting wire portion 442 as the axial dimension, and the film material is wound around the intermediate conducting wire portion 442. It is provided. Further, the insulating coating body 445 is provided in a state where the peripheral end portions of the film material are overlapped with each other around the intermediate conductor portion 442.
 軸方向両側の各渡り部443,444は、いずれもコイルエンドCE(図48参照)に相当する部分として設けられ、各渡り部443,444のうち一方の渡り部443が径方向に屈曲形成されている。つまり、部分巻線441は、軸方向一端側ではコイルエンド部(渡り部)が径方向に屈曲され、かつ軸方向他端側ではコイルエンド部(渡り部)が径方向に屈曲されておらず、側方から見て略L形状となっている。 Each of the crossover portions 443 and 444 on both sides in the axial direction is provided as a portion corresponding to the coil end CE (see FIG. 48), and one of the crossover portions 443 and 444 of each crossover portion 443 is formed to be bent in the radial direction. ing. That is, in the partial winding 441, the coil end portion (crossover portion) is bent in the radial direction on one end side in the axial direction, and the coil end portion (crossover portion) is not bent in the radial direction on the other end side in the axial direction. , It has a substantially L shape when viewed from the side.
 各部分巻線441において、中間導線部442は、コイルサイドCSにおいて周方向に1つずつ並ぶコイルサイド導線部として設けられている。また、各渡り部443,444は、コイルエンドCEにおいて、周方向に異なる2位置の同相の中間導線部442どうしを接続するコイルエンド導線部として設けられている。 In each partial winding 441, the intermediate conductor portion 442 is provided as a coil side conductor portion arranged one by one in the circumferential direction in the coil side CS. Further, each crossover portion 443, 444 is provided as a coil end lead wire portion for connecting the intermediate lead wire portions 442 of the same phase at two positions different in the circumferential direction in the coil end CE.
 部分巻線441では、上述した部分巻線151と同様に、導線集合部分の横断面が四角形になるように導線材が多重に巻回されて形成されている。中間導線部442で言えば、導線材が周方向に複数列で並べられ、かつ径方向に複数列で並べられることで、横断面が略矩形状となるように形成されている(図20参照)。 In the partial winding 441, similarly to the above-mentioned partial winding 151, the conductor material is formed by being wound in multiple directions so that the cross section of the conductor assembly portion becomes a quadrangle. Speaking of the intermediate conductor portion 442, the conductors are arranged in a plurality of rows in the circumferential direction and in a plurality of rows in the radial direction, so that the cross section is formed to have a substantially rectangular shape (see FIG. 20). ).
 なお、部分巻線441において、コイルエンド部(渡り部)に絶縁カバーを取り付け、その絶縁カバーにより各部分巻線441のコイルエンド部どうしの絶縁性が確保される構成になっているとよい。絶縁カバーは、例えば図19(a),(b)に示すように、部分巻線441の渡り部443に径方向から組み付けられるもの、又は図22(a),(b)に示すように、部分巻線441の渡り部443に軸方向から組み付けられるものであるとよい。 It is preferable that the partial winding 441 has an insulating cover attached to the coil end portion (crossover portion), and the insulating cover ensures the insulation between the coil end portions of each partial winding 441. The insulating cover is, for example, as shown in FIGS. 19A and 19B, and is assembled radially to the crossover 443 of the partial winding 441, or as shown in FIGS. 22A and 22B. It is preferable that the partial winding 441 is assembled to the crossover 443 from the axial direction.
 図47に示すように、固定子430においては、複数の部分巻線441が周方向に並べて配置される。具体的には、複数の部分巻線441は半数ずつで組み付けの向きが軸方向及び径方向で反転され、半数の部分巻線441は、軸方向一端側(図の上側)において、屈曲側の渡り部443が径方向外側に屈曲された状態で組み付けられ、残りの半数の部分巻線441は、軸方向他端側(図の下側)において、屈曲側の渡り部443が径方向内側に屈曲された状態で組み付けられるようになっている。この場合、軸方向両端においてそれぞれ渡り部443,444どうしの干渉が回避され、その状態で中間導線部442が周方向に並ぶように配置されている。なお実際には、各中間導線部442の間には絶縁被覆体445が介在し、その絶縁被覆体445により互いの絶縁(相間絶縁)がなされた状態となっている。 As shown in FIG. 47, in the stator 430, a plurality of partial windings 441 are arranged side by side in the circumferential direction. Specifically, the plurality of partial windings 441 are half of each and the assembly direction is reversed in the axial direction and the radial direction, and the half of the partial windings 441 are on the bending side on one end side in the axial direction (upper side in the figure). The crossover 443 is assembled in a state of being bent outward in the radial direction, and the other half of the partial windings 441 have the crossover 443 on the bending side inward in the radial direction on the other end side in the axial direction (lower side in the figure). It can be assembled in a bent state. In this case, interference between the crossover portions 443 and 444 is avoided at both ends in the axial direction, and the intermediate conductor portions 442 are arranged so as to line up in the circumferential direction in that state. In reality, an insulating coating body 445 is interposed between the intermediate conducting wire portions 442, and the insulating coating body 445 insulates each other (interphase insulation).
 固定子巻線431は、複数の部分巻線441により環状に形成され、その径方向外側に固定子コア432が組み付けられている。固定子コア432は、磁性体である電磁鋼板からなるコアシートが軸方向に積層されたコアシート積層体として構成されており、径方向に所定の厚さを有する円筒状をなしている。固定子コア432の内周面及び外周面は凹凸のない曲面状をなしている。固定子コア432はバックヨークとして機能する。固定子コア432は、例えば円環板状に打ち抜き形成された複数枚のコアシートが軸方向に積層されて構成されている。ただし、固定子コア432としてヘリカルコア構造を有するものを用いてもよい。 The stator winding 431 is formed in an annular shape by a plurality of partial windings 441, and the stator core 432 is assembled on the radial outer side thereof. The stator core 432 is configured as a core sheet laminated body in which core sheets made of magnetic steel sheets, which are magnetic materials, are laminated in the axial direction, and has a cylindrical shape having a predetermined thickness in the radial direction. The inner peripheral surface and the outer peripheral surface of the stator core 432 have a curved surface without unevenness. The stator core 432 functions as a back yoke. The stator core 432 is configured by, for example, a plurality of core sheets punched and formed in the shape of an annulus plate and laminated in the axial direction. However, a stator core 432 having a helical core structure may be used.
 なお、固定子コア432に対する固定子巻線431の組み付けは、固定子コア432に対して部分巻線441を個別に組み付けることでなされてもよいし、複数の部分巻線441により環状の固定子巻線431を形成した後に、その固定子巻線431を固定子コア432に組み付けることでなされてもよい。 The stator winding 431 may be assembled to the stator core 432 by individually assembling the partial winding 441 to the stator core 432, or an annular stator may be assembled by the plurality of partial windings 441. After forming the winding 431, the stator winding 431 may be assembled to the stator core 432.
 図48に示すように、アウタハウジング450は、それぞれ円筒状をなす外筒部材451と内筒部材452とを有し、外筒部材451を径方向外側、内筒部材452を径方向内側にしてそれらが一体に組み付けられることにより構成されている。これら各部材451,452は、例えばアルミニウムや鋳鉄等の金属、又は炭素繊維強化プラスチック(CFRP)により構成されている。 As shown in FIG. 48, the outer housing 450 has a cylindrical outer cylinder member 451 and an inner cylinder member 452, respectively, with the outer cylinder member 451 being radially outside and the inner cylinder member 452 being radially inside. It is composed by assembling them together. Each of these members 451 and 452 is made of a metal such as aluminum or cast iron, or carbon fiber reinforced plastic (CFRP).
 外筒部材451の筒部の内径寸法は、内筒部材452の筒部の外径寸法よりも大きい。そのため、外筒部材451の径方向内側に内筒部材452が組み付けられた状態では、これら各部材451,452の間に環状の隙間が形成され、その隙間空間が、冷却水等の冷媒を流通させる冷媒通路453となっている。冷媒通路453は、アウタハウジング450の周方向に環状に設けられている。なお、図示を略すが、外筒部材451には、冷媒の入口となる入口側通路と、冷媒の出口となる出口側通路とが形成されており、入口側通路から流入する冷媒は、冷媒通路453を周方向に流れ、その後、出口側通路から流出する。 The inner diameter of the outer cylinder member 451 is larger than the outer diameter of the inner cylinder member 452. Therefore, in a state where the inner cylinder member 452 is assembled inside the outer cylinder member 451 in the radial direction, an annular gap is formed between the respective members 451 and 452, and the gap space allows the refrigerant such as cooling water to flow. It is a refrigerant passage 453 to be made to flow. The refrigerant passage 453 is provided in an annular shape in the circumferential direction of the outer housing 450. Although not shown, the outer cylinder member 451 is formed with an inlet side passage which is an inlet of the refrigerant and an outlet side passage which is an outlet of the refrigerant, and the refrigerant flowing from the inlet side passage is a refrigerant passage. It flows in the circumferential direction through 453 and then flows out from the exit side passage.
 図47に示すように、外筒部材451及び内筒部材452は、軸方向一端側に径方向外側に延びるフランジを有しており、そのフランジにボルト等の固定具が組み付けられることにより、外筒部材451及び内筒部材452が一体に結合されている。なお、外筒部材451には、放熱部として、径方向外側に延びるように放熱フィンが設けられていてもよい。 As shown in FIG. 47, the outer cylinder member 451 and the inner cylinder member 452 have a flange extending radially outward on one end side in the axial direction, and by assembling a fixture such as a bolt to the flange, the outer cylinder member 451 and the inner cylinder member 452 are attached to the outside. The cylinder member 451 and the inner cylinder member 452 are integrally connected. The outer cylinder member 451 may be provided with heat radiation fins as a heat radiation portion so as to extend radially outward.
 アウタハウジング450の径方向内側、詳しくは内筒部材452の径方向内側には固定子コア432が組み付けられている。アウタハウジング450(内筒部材452)に対する固定子コア432の組み付けは、例えば接着により行われる。また、焼きばめ又は圧入により、アウタハウジング450に対して所定の締め代で固定子コア432が嵌合固定される構成であってもよい。 A stator core 432 is assembled inside the outer housing 450 in the radial direction, specifically, inside the inner cylinder member 452 in the radial direction. Assembling the stator core 432 to the outer housing 450 (inner cylinder member 452) is performed by, for example, bonding. Further, the stator core 432 may be fitted and fixed to the outer housing 450 with a predetermined tightening margin by shrink fitting or press fitting.
 また、図48に示すように、外筒部材451は、軸方向一端側に底部454を有し、その底部454の中央に貫通孔455が形成されている。貫通孔455には、回転子410の回転軸416が挿通可能となっている(図43参照)。 Further, as shown in FIG. 48, the outer cylinder member 451 has a bottom portion 454 on one end side in the axial direction, and a through hole 455 is formed in the center of the bottom portion 454. The rotation shaft 416 of the rotor 410 can be inserted into the through hole 455 (see FIG. 43).
 外筒部材451の底部454には、軸方向内側の端面から軸方向に延びるように環状溝456が設けられている。環状溝456は、アウタハウジング450に固定子430を組み付けた際に、固定子巻線431のコイルエンド部を収容するコイルエンド収容部となっている。つまり、上述したとおり固定子巻線431は複数の部分巻線441により構成されており、その部分巻線441の軸方向一端側ではコイルエンド部(渡り部)が径方向に屈曲され、かつ軸方向他端側ではコイルエンド部(渡り部)が径方向に屈曲されていない。この場合、部分巻線441においてコイルエンド部の一部、すなわち径方向に屈曲されていない渡り部444が軸方向に突出するが、その突出部分が環状溝456に収容されるようになっている。 The bottom portion 454 of the outer cylinder member 451 is provided with an annular groove 456 so as to extend in the axial direction from the end face on the inner side in the axial direction. The annular groove 456 is a coil end accommodating portion for accommodating the coil end portion of the stator winding 431 when the stator 430 is assembled to the outer housing 450. That is, as described above, the stator winding 431 is composed of a plurality of partial windings 441, and the coil end portion (crossing portion) is bent in the radial direction on one end side in the axial direction of the partial winding 441, and the shaft. On the other end side in the direction, the coil end portion (crossing portion) is not bent in the radial direction. In this case, a part of the coil end portion in the partial winding 441, that is, the crossover portion 444 which is not bent in the radial direction protrudes in the axial direction, and the protruding portion is accommodated in the annular groove 456. ..
 次に、配線モジュール460について説明する。配線モジュール460は、固定子巻線431において各部分巻線441に電気的に接続される巻線接続部材であり、この配線モジュール460により、各相の部分巻線441が相ごとに並列又は直列に接続され、かつ各相の相巻線が中性点接続される。配線モジュール460は、固定子巻線431の軸方向両端のうち一端側、具体的には回転子キャリア411の端板部414とは逆側に設けられている(図43参照)。 Next, the wiring module 460 will be described. The wiring module 460 is a winding connection member electrically connected to each partial winding 441 in the stator winding 431, and the wiring module 460 allows the partial windings 441 of each phase to be connected in parallel or in series for each phase. And the phase windings of each phase are connected to the neutral point. The wiring module 460 is provided on one end side of both ends of the stator winding 431 in the axial direction, specifically on the side opposite to the end plate portion 414 of the rotor carrier 411 (see FIG. 43).
 図47に示すように、配線モジュール460は、円環状をなす環状部461と、その環状部461に沿って周方向に並べて設けられた複数の接続端子462とを有している。環状部461は、例えば樹脂等の絶縁部材により円環状に形成されている。環状部461には、相ごとの配線と中性点用の配線(いずれも図示略)が埋設されており、それら各配線に、接続端子462が電気接続されている。接続端子462は、部分巻線441ごとに設けられ、かつそれぞれ軸方向に延びる向きで固定されている。 As shown in FIG. 47, the wiring module 460 has an annular portion 461 forming an annular shape and a plurality of connection terminals 462 provided side by side in the circumferential direction along the annular portion 461. The annular portion 461 is formed in an annular shape by, for example, an insulating member such as a resin. Wiring for each phase and wiring for the neutral point (both are not shown) are embedded in the annular portion 461, and a connection terminal 462 is electrically connected to each of these wirings. The connection terminal 462 is provided for each partial winding 441 and is fixed in a direction extending in the axial direction.
 図46に示すように、固定子巻線431では、径方向に屈曲されていない渡り部444が環状に並んで配置されており、その渡り部444を径方向外側から囲むようにして配線モジュール460が設けられている。つまり、配線モジュール460の環状部461は、周方向に並ぶ渡り部444により形成される円環部よりも大径に形成されている。配線モジュール460には、その配線モジュール460を固定するための固定部として、周方向に所定間隔で固定ピン463が設けられている。固定ピン463は、軸方向に延び、その一端が固定子コア432又はアウタハウジング450に対して固定されることで、固定子ユニット420にて配線モジュール460が取り付けられている。 As shown in FIG. 46, in the stator winding 431, crossover portions 444 that are not bent in the radial direction are arranged side by side in an annular shape, and a wiring module 460 is provided so as to surround the crossover portions 444 from the outside in the radial direction. Has been done. That is, the annular portion 461 of the wiring module 460 is formed to have a larger diameter than the annular portion formed by the crossover portions 444 arranged in the circumferential direction. The wiring module 460 is provided with fixing pins 463 at predetermined intervals in the circumferential direction as fixing portions for fixing the wiring module 460. The fixing pin 463 extends in the axial direction, and one end thereof is fixed to the stator core 432 or the outer housing 450, so that the wiring module 460 is attached by the stator unit 420.
 図50は、インナハウジング470の構成を示す斜視図である。インナハウジング470は、軸方向一端側に設けられ、アウタハウジング450に対して固定される大径部471と、軸方向他端側に設けられ、回転子410の回転軸416を支持する固定軸部472とを有し、軸方向において大径部471と固定軸部472との間には、大径部471より小径で、かつ固定軸部472よりも大径の中間筒部473が設けられている。なお、固定軸部472は、図示のごとく軸方向に延びる中空部を有していてもよい。中間筒部473が「円筒部」に相当する。 FIG. 50 is a perspective view showing the configuration of the inner housing 470. The inner housing 470 is provided on one end side in the axial direction and is fixed to the outer housing 450 on the large diameter portion 471, and is provided on the other end side in the axial direction and is provided on the other end side in the axial direction and supports the rotating shaft 416 of the rotor 410. An intermediate cylinder portion 473 having a diameter of 472 and having a diameter smaller than that of the large diameter portion 471 and a diameter larger than that of the fixed shaft portion 472 is provided between the large diameter portion 471 and the fixed shaft portion 472 in the axial direction. There is. The fixed shaft portion 472 may have a hollow portion extending in the axial direction as shown in the figure. The intermediate cylinder portion 473 corresponds to the "cylindrical portion".
 大径部471は、固定子巻線431の軸方向一端側のコイルエンド部(渡り部)と配線モジュール460とに対応する径寸法を有している。大径部471には、固定子巻線431のコイルエンド部と配線モジュール460とを収容する円環状の収容部474が設けられている。収容部474は、軸方向において回転電機400の中央側に向けて開口する環状溝部として設けられている。 The large diameter portion 471 has a diameter dimension corresponding to the coil end portion (crossing portion) on one end side in the axial direction of the stator winding 431 and the wiring module 460. The large diameter portion 471 is provided with an annular accommodating portion 474 that accommodates the coil end portion of the stator winding 431 and the wiring module 460. The accommodating portion 474 is provided as an annular groove portion that opens toward the center side of the rotary electric machine 400 in the axial direction.
 また、大径部471には、端子台480を取り付けるための取付部475が設けられている。取付部475は、大径部471において径方向外側に突出し、かつ径方向に延びる中空部476を有しており、その中空部476が収容部474に連通している。端子台480は、配線モジュール460に対して電気的に接続される配線接続部であり、不図示の外部装置から延びる相ごとの電力線が接続されることで、相ごとに電力の入出力が可能となっている。端子台480が取付部475に取り付けられた状態では、端子台480の配線端子481が、取付部475の中空部476を介して、不図示の中継線により配線モジュール460に電気的に接続されている。端子台480は、ネジ等によりインナハウジング470から分離可能となっており、例えば電力等の仕様が異なる場合に端子台480の変更が可能となっている。 Further, the large diameter portion 471 is provided with a mounting portion 475 for mounting the terminal block 480. The mounting portion 475 has a hollow portion 476 that protrudes radially outward and extends radially in the large diameter portion 471, and the hollow portion 476 communicates with the accommodating portion 474. The terminal block 480 is a wiring connection portion that is electrically connected to the wiring module 460, and power can be input / output for each phase by connecting a power line for each phase extending from an external device (not shown). It has become. In the state where the terminal block 480 is attached to the mounting portion 475, the wiring terminal 481 of the terminal block 480 is electrically connected to the wiring module 460 by a relay line (not shown) via the hollow portion 476 of the mounting portion 475. There is. The terminal block 480 can be separated from the inner housing 470 by a screw or the like, and the terminal block 480 can be changed, for example, when the specifications such as electric power are different.
 本実施形態では、固定子巻線431のコイルエンド部の径方向外側(渡り部444の径方向外側)に、配線モジュール460が設けられている。そのため、固定子巻線431のコイルエンド部(渡り部444)を径方向に跨ぐことなく、配線モジュール460と端子台480との接続が可能となっている。 In the present embodiment, the wiring module 460 is provided on the radial outside of the coil end portion of the stator winding 431 (the radial outside of the crossing portion 444). Therefore, the wiring module 460 and the terminal block 480 can be connected without straddling the coil end portion (crossover portion 444) of the stator winding 431 in the radial direction.
 インナハウジング470において、固定軸部472は、回転子410の回転軸416の内径寸法よりも小さい外形寸法で形成され、中間筒部473は、回転子キャリア411の内径寸法よりも小さい外形寸法で形成されている。 In the inner housing 470, the fixed shaft portion 472 is formed with an outer dimension smaller than the inner diameter dimension of the rotary shaft 416 of the rotor 410, and the intermediate cylinder portion 473 is formed with an outer dimension smaller than the inner diameter dimension of the rotor carrier 411. Has been done.
 また、インナハウジング470において、固定軸部472と中間筒部473との間は中間端板部477により閉じられており、その中間端板部477には、後述するレゾルバ493を固定するための環状の突出部478が形成されている。 Further, in the inner housing 470, the fixed shaft portion 472 and the intermediate cylinder portion 473 are closed by the intermediate end plate portion 477, and the intermediate end plate portion 477 has an annular shape for fixing the resolver 493, which will be described later. 478 is formed.
 次に、上述した回転子410や固定子ユニット420、インナハウジング470を含む回転電機400の全体構成について説明する。 Next, the overall configuration of the rotary electric machine 400 including the rotor 410, the stator unit 420, and the inner housing 470 described above will be described.
 図43に示すように、インナハウジング470の固定軸部472には軸受491が組み付けられ、その軸受491により回転子410の回転軸416が回転可能に支持されている。軸受491は、例えばラジアル玉軸受であり、外輪と内輪とそれら外輪及び内輪の間に配置された複数の玉とを有している。軸受491の内輪が固定軸部472側に組み付けられ、外輪が回転軸416側に組み付けられている。なお、軸受491は、転動体として玉に代えてころを用いたころ軸受(針状ころ軸受、円錐ころ軸受)であってもよい。また、軸受491として、軸方向に2つの軸受が並べて配置されていてもよい。 As shown in FIG. 43, a bearing 491 is attached to the fixed shaft portion 472 of the inner housing 470, and the rotary shaft 416 of the rotor 410 is rotatably supported by the bearing 491. The bearing 491 is, for example, a radial ball bearing, and has an outer ring and an inner ring, and a plurality of balls arranged between the outer ring and the inner ring. The inner ring of the bearing 491 is assembled on the fixed shaft portion 472 side, and the outer ring is assembled on the rotating shaft 416 side. The bearing 491 may be a roller bearing (needle-shaped roller bearing, conical roller bearing) in which rollers are used instead of balls as rolling elements. Further, as the bearing 491, two bearings may be arranged side by side in the axial direction.
 回転軸416は、軸方向において回転子キャリア411の端板部414から磁石ユニット412とは逆側に延びるように設けられており、軸受491は、軸方向において端板部414よりも反磁石ユニット側となる位置に設けられている。この場合、磁石ユニット412に対して径方向に重複しない位置に軸受491が設けられている。 The rotating shaft 416 is provided so as to extend from the end plate portion 414 of the rotor carrier 411 to the opposite side of the magnet unit 412 in the axial direction, and the bearing 491 is provided so as to extend in the axial direction from the end plate portion 414 to the anti-magnet unit. It is provided at a position on the side. In this case, the bearing 491 is provided at a position that does not overlap in the radial direction with respect to the magnet unit 412.
 ここで、アウタハウジング450は、例えばアルミニウムや鋳鉄等の金属、又は炭素繊維強化プラスチック(CFRP)よりなり、インナハウジング470は、例えば鉄鋼材料よりなる。つまり、アウタハウジング450は、インナハウジング470に比べて高熱伝導な部材であり、インナハウジング470は、アウタハウジング450に比べて高強度な部材である。この場合、固定子430を囲むアウタハウジング450は放熱性を優先したものとなり、軸受491を介して回転軸416を支持するインナハウジング470は強度を優先したものとなっている。これにより、固定子430で生じる熱がアウタハウジング450から好適に放出されるとともに、インナハウジング470における回転軸416の支持強度が確保できるものとなっている。 Here, the outer housing 450 is made of a metal such as aluminum or cast iron, or carbon fiber reinforced plastic (CFRP), and the inner housing 470 is made of, for example, a steel material. That is, the outer housing 450 is a member having higher thermal conductivity than the inner housing 470, and the inner housing 470 is a member having higher strength than the outer housing 450. In this case, the outer housing 450 surrounding the stator 430 gives priority to heat dissipation, and the inner housing 470 that supports the rotating shaft 416 via the bearing 491 gives priority to strength. As a result, the heat generated by the stator 430 is suitably released from the outer housing 450, and the supporting strength of the rotating shaft 416 in the inner housing 470 can be ensured.
 また、回転子410の径方向外側には、その回転子410を囲むようにして固定子ユニット420が配設されている。固定子ユニット420は、アウタハウジング450の軸方向一端側(開放端側)がボルト等の固定具によりインナハウジング470の大径部471に固定された状態で、回転子410の外周側に組み付けられている。つまり、インナハウジング470は、アウタハウジング450の開放端側でその開放端を閉じるように設けられるものとなっている。 Further, on the radial outer side of the rotor 410, the stator unit 420 is arranged so as to surround the rotor 410. The stator unit 420 is assembled to the outer peripheral side of the rotor 410 in a state where one end side (open end side) in the axial direction of the outer housing 450 is fixed to the large diameter portion 471 of the inner housing 470 by a fixing tool such as a bolt. ing. That is, the inner housing 470 is provided so as to close the open end on the open end side of the outer housing 450.
 アウタハウジング450における外筒部材451の底部454と回転軸416との間には円環状の摺動シール492が設けられている。つまり、固定子ユニット420及びインナハウジング470に対する回転軸416の支持構造として、回転軸416の内周面側には、インナハウジング470の固定軸部472との間に軸受491が設けられ、回転軸416の外周面側には、アウタハウジング450の底部454との間に摺動シール492が設けられている。これにより、回転軸416は、軸受491によりインナハウジング470の固定軸部472に対して相対回転可能となり、かつ、摺動シール492によりアウタハウジング450の底部454に対して相対回転可能となっている。なお、摺動シール492として、合成樹脂やゴム等による環状シールを用いることが可能である。 An annular sliding seal 492 is provided between the bottom portion 454 of the outer cylinder member 451 and the rotating shaft 416 in the outer housing 450. That is, as a support structure for the rotary shaft 416 with respect to the stator unit 420 and the inner housing 470, a bearing 491 is provided on the inner peripheral surface side of the rotary shaft 416 between the fixed shaft portion 472 of the inner housing 470 and the rotary shaft. On the outer peripheral surface side of the 416, a sliding seal 492 is provided between the outer housing 450 and the bottom portion 454. As a result, the rotating shaft 416 can rotate relative to the fixed shaft portion 472 of the inner housing 470 by the bearing 491, and can rotate relative to the bottom portion 454 of the outer housing 450 by the sliding seal 492. .. As the sliding seal 492, an annular seal made of synthetic resin, rubber, or the like can be used.
 回転子410とインナハウジング470とが軸受491を介して一体化された状態では、回転子キャリア411の内周側に、回転子キャリア411とインナハウジング470とにより囲まれた環状の閉鎖空間SAが形成されている。そして、その閉鎖空間SA内に、回転センサとしてのレゾルバ493が設けられている。レゾルバ493は、円環状をなしており、固定物であるインナハウジング470の突出部478に固定されたレゾルバステータと、回転物である回転子キャリア411のボス部415に固定されたレゾルバロータとを有する。レソルバステータの径方向内側に、レゾルバロータが対向配置されている。 In a state where the rotor 410 and the inner housing 470 are integrated via the bearing 491, an annular closed space SA surrounded by the rotor carrier 411 and the inner housing 470 is formed on the inner peripheral side of the rotor carrier 411. It is formed. A resolver 493 as a rotation sensor is provided in the closed space SA. The resolver 493 has an annular shape, and has a resolver stator fixed to a protruding portion 478 of an inner housing 470 which is a fixed object and a resolver rotor fixed to a boss portion 415 of a rotor carrier 411 which is a rotating object. Have. The resolver rotors are arranged so as to face each other inside the resolver stator in the radial direction.
 ここで、インナハウジング470の固定軸部472は、回転子キャリア411の端板部414に設けられた貫通孔415aを貫通させた状態で設けられており、軸方向における端板部414の両側のうち一方側が第1軸部472a、他方側が第2軸部472bとなっている(図45参照)。そして、第1軸部472a及び第2軸部472bのうち、回転子キャリア411(磁石ユニット412)の径方向内側となる第1軸部472aの外側に、レゾルバ493が設けられ、第2軸部472bの外側に軸受491が設けられている。この場合、第1軸部472a側のエリアと第2軸部472b側のエリアは、端板部414により軸方向に仕切られており、軸受491によるレゾルバ493への影響が抑制されるものとなっている。 Here, the fixed shaft portion 472 of the inner housing 470 is provided in a state of penetrating the through hole 415a provided in the end plate portion 414 of the rotor carrier 411, and is provided on both sides of the end plate portion 414 in the axial direction. One side is the first shaft portion 472a, and the other side is the second shaft portion 472b (see FIG. 45). Then, of the first shaft portion 472a and the second shaft portion 472b, a resolver 493 is provided on the outside of the first shaft portion 472a which is radially inside the rotor carrier 411 (magnet unit 412), and the second shaft portion is provided. A bearing 491 is provided on the outside of the 472b. In this case, the area on the first shaft portion 472a side and the area on the second shaft portion 472b side are partitioned in the axial direction by the end plate portion 414, and the influence of the bearing 491 on the resolver 493 is suppressed. ing.
 そして、回転子410に対して固定子ユニット420とインナハウジング470とが組み付けられた状態で、軸方向一端にボルト等の固定具402によりホイール支持部材401が固定されている。 Then, with the stator unit 420 and the inner housing 470 assembled to the rotor 410, the wheel support member 401 is fixed to one end in the axial direction by a fixture 402 such as a bolt.
 回転電機400では、インナハウジング470の中間筒部473が、回転子キャリア411の内周面(回転子内周面)に近接状態で対向するように配置されている。そして、中間筒部473の径方向内側が、軸方向において固定軸部472の反対側に開放された空間部SXとなっている。この場合、空間部SXには、回転電機400を車体側に取り付けるためのナックルやリンク等の取付構造が配置されるとよい。 In the rotary electric machine 400, the intermediate cylinder portion 473 of the inner housing 470 is arranged so as to face the inner peripheral surface (rotor inner peripheral surface) of the rotor carrier 411 in a close state. The radial inside of the intermediate cylinder portion 473 is a space portion SX opened on the opposite side of the fixed shaft portion 472 in the axial direction. In this case, it is preferable that a mounting structure such as a knuckle or a link for mounting the rotary electric machine 400 on the vehicle body side is arranged in the space portion SX.
 また、回転子キャリア411の径方向内側では、回転子キャリア411の内周面(回転子内周面)と中間筒部473とが対向する領域が、潤滑油が通る潤滑油経路になっている。この場合、図51に示す矢印Yの経路で潤滑油が流れるとよい。つまり、インナハウジング470の大径部471に設けられた入口部から、回転電機400の内側空間に潤滑油を流入させる。そして、回転子キャリア411と中間筒部473とが対向する第1領域と、回転子キャリア411と固定軸部472とが対向する第2領域とで潤滑油を通過させた後、インナハウジング470の大径部471に設けられた出口部から潤滑油を排出するとよい。なお、第1領域では、軸方向に加えて周方向に潤滑油が流れる。 Further, inside the rotor carrier 411 in the radial direction, the region where the inner peripheral surface (rotor inner peripheral surface) of the rotor carrier 411 and the intermediate cylinder portion 473 face each other is a lubricating oil path through which the lubricating oil passes. .. In this case, it is preferable that the lubricating oil flows along the path of arrow Y shown in FIG. That is, the lubricating oil flows into the inner space of the rotary electric machine 400 from the inlet portion provided in the large diameter portion 471 of the inner housing 470. Then, after passing the lubricating oil through the first region where the rotor carrier 411 and the intermediate cylinder portion 473 face each other and the second region where the rotor carrier 411 and the fixed shaft portion 472 face each other, the inner housing 470 Lubricating oil may be discharged from the outlet provided in the large diameter portion 471. In the first region, the lubricating oil flows in the circumferential direction in addition to the axial direction.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the present embodiment described in detail above, the following excellent effects can be obtained.
 回転電機400において、アウタハウジング450とインナハウジング470とのうちインナハウジング470、すなわち固定子430を囲む側でないハウジングにより、軸受491を介して回転軸416を回転可能に支持する構成とした。この場合、固定子430を囲むように設けられるアウタハウジング450において、インナハウジング470に比べて強度の要求が緩和されることとなる。そのため、アウタハウジング450において、強度要求が緩和されることによる設計の自由度が増し、放熱性の向上や軽量化の要求に容易に応じることが可能となる。 In the rotary electric machine 400, the rotation shaft 416 is rotatably supported via the bearing 491 by the inner housing 470 of the outer housing 450 and the inner housing 470, that is, the housing not on the side surrounding the stator 430. In this case, in the outer housing 450 provided so as to surround the stator 430, the demand for strength is relaxed as compared with the inner housing 470. Therefore, in the outer housing 450, the degree of freedom in design is increased by relaxing the strength requirement, and it becomes possible to easily meet the request for improvement of heat dissipation and weight reduction.
 固定子430を囲むアウタハウジング450は放熱性を優先したものとし、軸受491を介して回転軸416を支持するインナハウジング470は強度を優先したものとした。これにより、固定子430で生じる熱をアウタハウジング450から好適に放出できるとともに、インナハウジング470における回転軸416の支持強度を確保できる。また、高強度材料は重量が重くなる傾向にあるが、各ハウジングのうちインナハウジング470のみを高強度な部材としたため、回転電機400としての重量軽減を図ることもできる。この場合、回転電機400において放熱性や重量に関する設計の自由度を向上させることができる。 The outer housing 450 surrounding the stator 430 gives priority to heat dissipation, and the inner housing 470 that supports the rotating shaft 416 via the bearing 491 gives priority to strength. As a result, the heat generated by the stator 430 can be suitably released from the outer housing 450, and the supporting strength of the rotating shaft 416 in the inner housing 470 can be secured. Further, although the weight of the high-strength material tends to be heavy, since only the inner housing 470 of each housing is used as a high-strength member, the weight of the rotary electric machine 400 can be reduced. In this case, the degree of freedom in design regarding heat dissipation and weight can be improved in the rotary electric machine 400.
 回転軸416の中空部に、軸方向において回転子キャリア411の端板部414よりも反磁石ユニット側となる位置に軸受491を設ける構成とした。この場合、磁石ユニット412に対して径方向に重複しない位置に軸受491を設けることにより、磁石ユニット412に対して径方向に重複する位置に軸受491を設ける構成に比べて、磁石ユニット412の径方向内側の領域を大きくすることができる。これにより、磁石ユニット412の径方向内側の領域に、センサ類や電気部品、回転電機取り付け用の取付構造などを配置することができ、当該領域の有効利用が可能となる。また、インホイールモータとしての回転電機400において、回転軸416に端板部414とは逆側の軸方向端部(先端部)に荷重が作用することを加味しつつ、軸受491を適正な位置に配置することができる。 A bearing 491 is provided in the hollow portion of the rotating shaft 416 at a position on the anti-magnet unit side of the end plate portion 414 of the rotor carrier 411 in the axial direction. In this case, by providing the bearing 491 at a position that does not overlap in the radial direction with respect to the magnet unit 412, the diameter of the magnet unit 412 is compared with the configuration in which the bearing 491 is provided at a position that overlaps in the radial direction with respect to the magnet unit 412. The area inside the direction can be increased. As a result, sensors, electric parts, a mounting structure for mounting a rotary electric machine, and the like can be arranged in a region inside the magnet unit 412 in the radial direction, and the region can be effectively used. Further, in the rotary electric machine 400 as an in-wheel motor, the bearing 491 is positioned appropriately while taking into consideration that a load acts on the rotary shaft 416 at the axial end portion (tip portion) on the opposite side of the end plate portion 414. Can be placed in.
 インナハウジング470の固定軸部472において、回転子キャリア411の端板部414を挟んで両側となる部分をそれぞれ第1軸部472aと第2軸部472bとし、第1軸部472a側のエリアと第2軸部472b側のエリアとを端板部414により軸方向に仕切る構成とした。そして、第1軸部472aの外側にレゾルバ493を設け、第2軸部472bの外側に軸受491を設けた。この場合、軸受491によるレゾルバ493への影響を抑制することができる。 In the fixed shaft portion 472 of the inner housing 470, the portions on both sides of the rotor carrier 411 with the end plate portion 414 sandwiched between them are the first shaft portion 472a and the second shaft portion 472b, respectively, and the area on the first shaft portion 472a side. The area on the side of the second shaft portion 472b is partitioned in the axial direction by the end plate portion 414. Then, a resolver 493 was provided on the outside of the first shaft portion 472a, and a bearing 491 was provided on the outside of the second shaft portion 472b. In this case, the influence of the bearing 491 on the resolver 493 can be suppressed.
 回転子キャリア411の径方向内側において、回転子キャリア411とインナハウジング470とにより形成された閉鎖空間SAにレゾルバ493を配置した。この場合、レゾルバ493が回転電機400の外部から隔離されるため、レゾルバ493の設置環境を良好に保つことができる。例えば、レゾルバ493に対する異物の付着や被水を抑制することが可能となっている。 Inside the rotor carrier 411 in the radial direction, the resolver 493 was placed in the closed space SA formed by the rotor carrier 411 and the inner housing 470. In this case, since the resolver 493 is isolated from the outside of the rotary electric machine 400, the installation environment of the resolver 493 can be kept good. For example, it is possible to suppress the adhesion of foreign matter to the resolver 493 and the water exposure.
 回転軸416を、軸受491によりインナハウジング470の固定軸部472に対して相対回転可能とし、かつ、摺動シール492によりアウタハウジング450の底部454に対して相対回転可能とした。これにより、回転軸416は、径方向内側及び外側から各ハウジング450,470によりそれぞれ回転可能に支持されることとなり、回転軸416の適切な支持を可能とする支持構造を実現することができる。 The rotating shaft 416 can be rotated relative to the fixed shaft portion 472 of the inner housing 470 by the bearing 491, and can be rotated relative to the bottom portion 454 of the outer housing 450 by the sliding seal 492. As a result, the rotary shaft 416 is rotatably supported by the housings 450 and 470 from the inside and the outside in the radial direction, respectively, and a support structure that enables appropriate support of the rotary shaft 416 can be realized.
 なお、アウタハウジング450に対する回転軸416の支持構造として、軸受でなく摺動シール492を用いたため、アウタハウジング450に対する支持強度要求が比較的小さくなることが考えられ、アウタハウジング450の放熱性能が低下することが抑制される。 Since the sliding seal 492 is used instead of the bearing as the support structure of the rotary shaft 416 for the outer housing 450, it is considered that the support strength requirement for the outer housing 450 is relatively small, and the heat dissipation performance of the outer housing 450 deteriorates. Is suppressed.
 インナハウジング470において、固定軸部472よりも大径の中間筒部473を回転子キャリア411の内周面(回転子内周面)に近接状態で対向させ、かつその中間筒部473の径方向内側を、軸方向において固定軸部472の反対側に開放された空間部SXとした。この場合、回転子キャリア411の内周側を、インナハウジング470の中間筒部473により内側から覆って外部と区画しつつ、中間筒部473内に空間部SXを確保してその有効利用を可能としている。 In the inner housing 470, an intermediate cylinder portion 473 having a diameter larger than that of the fixed shaft portion 472 is opposed to the inner peripheral surface (rotor inner peripheral surface) of the rotor carrier 411 in a close state, and the intermediate cylinder portion 473 is radially oriented. The inside is a space portion SX opened on the opposite side of the fixed shaft portion 472 in the axial direction. In this case, the inner peripheral side of the rotor carrier 411 is covered from the inside by the intermediate cylinder portion 473 of the inner housing 470 to partition the outside from the outside, and the space portion SX is secured in the intermediate cylinder portion 473 so that the space portion SX can be effectively used. It is supposed to be.
 回転子キャリア411の内周面(回転子内周面)とインナハウジング470の中間筒部473とが対向する領域を、潤滑油が通る潤滑油経路とした。この場合、回転電機400の内部において潤滑油が通る領域をインナハウジング470の中間筒部473により制限することで、潤滑油の供給を好適に行わせることができる。 The region where the inner peripheral surface (rotor inner peripheral surface) of the rotor carrier 411 and the intermediate cylinder portion 473 of the inner housing 470 face each other was used as a lubricating oil path through which the lubricating oil passes. In this case, by limiting the region through which the lubricating oil passes inside the rotary electric machine 400 by the intermediate cylinder portion 473 of the inner housing 470, the lubricating oil can be suitably supplied.
 インホイールモータとしての回転電機400では、固定子430とその固定子を保持するハウジングとが車体に固定され、車重をハウジングが受ける構成となっている。その前提において、本実施形態では、固定子430を囲む状態で保持するアウタハウジング450と、アウタハウジング450の開放端側に設けられたインナハウジング470とのうち、インナハウジング470により車重を受ける構成としたため、インナハウジング470を耐荷重を優先した構成にすることができる。また、アウタハウジング450においては、車重を受ける必要が無く、放熱性を優先して高放熱材料を使用することができる。 In the rotary electric machine 400 as an in-wheel motor, the stator 430 and the housing that holds the stator are fixed to the vehicle body, and the housing receives the vehicle weight. On that premise, in the present embodiment, of the outer housing 450 held around the stator 430 and the inner housing 470 provided on the open end side of the outer housing 450, the inner housing 470 receives the vehicle weight. Therefore, the inner housing 470 can be configured to give priority to the load capacity. Further, in the outer housing 450, it is not necessary to receive the weight of the vehicle, and a high heat dissipation material can be used with priority given to heat dissipation.
 (第2実施形態の変形例)
 ・回転電機400の構成を、図52に示すように変更してもよい。図52の回転電機400では、レゾルバ493の位置を変更しており、インナハウジング470の固定軸部472の先端部にレゾルバ493を取り付ける構成としている。この場合、閉鎖空間SA内にレゾルバ493の設置領域を確保する必要がなくなり、中間端板部477を回転子キャリア411の端板部414に近づけることができる。そのため、図43の構成に比べて、インナハウジング470の中間筒部473を軸方向に拡張することができる。つまり、インナハウジング470の中間筒部473及び中間端板部477が、それぞれ回転子キャリア411に近接対向する構成となっている。これにより、インナハウジング470において中間筒部473内の空間部SXの容積を拡張することができる。
(Modified example of the second embodiment)
The configuration of the rotary electric machine 400 may be changed as shown in FIG. 52. In the rotary electric machine 400 of FIG. 52, the position of the resolver 493 is changed, and the resolver 493 is attached to the tip of the fixed shaft portion 472 of the inner housing 470. In this case, it is not necessary to secure the installation area of the resolver 493 in the closed space SA, and the intermediate end plate portion 477 can be brought closer to the end plate portion 414 of the rotor carrier 411. Therefore, as compared with the configuration of FIG. 43, the intermediate cylinder portion 473 of the inner housing 470 can be expanded in the axial direction. That is, the intermediate cylinder portion 473 and the intermediate end plate portion 477 of the inner housing 470 are configured to face each other in close proximity to the rotor carrier 411. Thereby, in the inner housing 470, the volume of the space portion SX in the intermediate cylinder portion 473 can be expanded.
 ・上記構成では、回転子410において、回転子キャリア411と回転軸416とを別部材とし、回転子キャリア411の端板部414に対して回転軸416を固定具417により固定する構成としたが、これを変更し、回転子キャリア411と回転軸416とを一体に成形する構成であってもよい。 In the above configuration, in the rotor 410, the rotor carrier 411 and the rotary shaft 416 are used as separate members, and the rotary shaft 416 is fixed to the end plate portion 414 of the rotor carrier 411 by a fixture 417. , This may be changed so that the rotor carrier 411 and the rotating shaft 416 are integrally molded.
 ・回転電機400において、アウタハウジング450の冷却構造として、冷媒通路453の冷媒の循環による冷却構造(水冷構造)を設けず、空冷フィン等の空冷構造のみを設けた構成としてもよい。 -In the rotary electric machine 400, as the cooling structure of the outer housing 450, a cooling structure (water cooling structure) by circulating the refrigerant in the refrigerant passage 453 may not be provided, but only an air cooling structure such as an air cooling fin may be provided.
 ・固定子巻線431の構成を変更してもよい。例えば、複数の部分巻線441を用いた集中巻構造に代えて、波巻き等の分布巻構造により固定子巻線431を構成してもよい。また、固定子430において、固定子コア432にスロットを設けないスロットレス構造に代えて、固定子コア432にスロットを設け、そのスロットに固定子巻線431を巻回する構成としてもよい。 -The configuration of the stator winding 431 may be changed. For example, instead of the centralized winding structure using a plurality of partial windings 441, the stator winding 431 may be configured by a distributed winding structure such as wave winding. Further, in the stator 430, instead of the slotless structure in which the stator core 432 is not provided with a slot, a slot may be provided in the stator core 432 and the stator winding 431 may be wound around the slot.
 ・回転電機400の用途は車両の走行用モータ以外であってもよく、航空機を含め広く移動体に用いられる回転電機や、産業用又は家庭用の電気機器に用いられる回転電機であってもよい。 -The use of the rotary electric machine 400 may be other than the traveling motor of the vehicle, and may be a rotary electric machine widely used for moving objects including aircraft, and a rotary electric machine used for industrial or household electric equipment. ..
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。 The disclosure in this specification is not limited to the exemplified embodiments. Disclosures include exemplary embodiments and modifications by those skilled in the art based on them. For example, the disclosure is not limited to the parts and / or combinations of elements shown in the embodiments. Disclosure can be carried out in various combinations. The disclosure can have additional parts that can be added to the embodiment. Disclosures include those in which the parts and / or elements of the embodiment are omitted. Disclosures include the replacement or combination of parts and / or elements between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the claims description and should be understood to include all modifications within the meaning and scope equivalent to the claims description.

Claims (9)

  1.  環状に配置された磁石部(412)を有する回転子(410)と、
     多相の固定子巻線(431)を有する固定子(430)と、を備え、
     前記固定子の径方向内側に前記回転子が配置されたインナロータ式の回転電機(400)であって、
     前記固定子を囲む状態で設けられ、軸方向の第1端側に底部(454)を有する有底筒状の第1ハウジング(450)と、
     前記第1ハウジングの前記第1端とは逆側の第2端側で当該第1ハウジングの開放端を閉じるように設けられた第2ハウジング(470)と、を備え、
     前記回転子は、軸方向に延びる円筒状の回転軸(416)を有し、
     前記第2ハウジングは、前記回転軸の中空部内に挿通される固定軸部(472)を有しており、前記固定軸部と前記回転軸との間に、当該回転軸を回転可能に支持する軸受(491)が設けられている回転電機。
    A rotor (410) having a magnet portion (412) arranged in an annular shape, and
    With a stator (430) having a polyphase stator winding (431),
    An inner rotor type rotary electric machine (400) in which the rotor is arranged radially inside the stator.
    A bottomed cylindrical first housing (450) provided so as to surround the stator and having a bottom portion (454) on the first end side in the axial direction.
    A second housing (470) provided so as to close the open end of the first housing on the second end side opposite to the first end of the first housing is provided.
    The rotor has a cylindrical rotating shaft (416) extending in the axial direction.
    The second housing has a fixed shaft portion (472) inserted into the hollow portion of the rotating shaft, and rotatably supports the rotating shaft between the fixed shaft portion and the rotating shaft. A rotary electric machine provided with a bearing (491).
  2.  前記第1ハウジングは、前記第2ハウジングに比べて高熱伝導な部材であり、
     前記第2ハウジングは、前記第1ハウジングに比べて高強度な部材である請求項1に記載の回転電機。
    The first housing is a member having higher thermal conductivity than the second housing.
    The rotary electric machine according to claim 1, wherein the second housing is a member having higher strength than the first housing.
  3.  前記回転子は、前記磁石部を支持する回転子キャリア(411)を有し、
     前記回転子キャリアは、軸方向一端側に端板部(414)を有しており、
     前記回転軸は、軸方向において前記端板部から前記磁石部とは逆側に延びるように設けられており、
     前記回転軸の中空部には、軸方向において前記端板部よりも反磁石部側となる位置に前記軸受が設けられ、その軸受により前記回転軸が回転可能に支持されており、
     前記回転軸において前記端板部とは逆側の軸方向端部に、本回転電機により回転が付与される回転対象物が結合可能となっている請求項1又は2に記載の回転電機。
    The rotor has a rotor carrier (411) that supports the magnet portion.
    The rotor carrier has an end plate portion (414) on one end side in the axial direction.
    The rotating shaft is provided so as to extend from the end plate portion to the opposite side of the magnet portion in the axial direction.
    The bearing is provided in the hollow portion of the rotating shaft at a position closer to the anti-magnet portion than the end plate portion in the axial direction, and the rotating shaft is rotatably supported by the bearing.
    The rotary electric machine according to claim 1 or 2, wherein a rotating object to which rotation is applied by the rotary electric machine can be coupled to an axial end portion of the rotating shaft opposite to the end plate portion.
  4.  前記固定軸部は、前記端板部に設けられた貫通孔(415a)を貫通させた状態で設けられ、軸方向における前記端板部の両側のうち一方側が第1軸部(472a)、他方側が第2軸部(472b)であり、
     前記第1軸部及び前記第2軸部のうち前記磁石部の径方向内側となる第1軸部の外側に、前記回転子の回転を検出する回転センサ(493)が設けられ、第2軸部の外側に前記軸受が設けられている請求項3に記載の回転電機。
    The fixed shaft portion is provided in a state of penetrating a through hole (415a) provided in the end plate portion, and one of both sides of the end plate portion in the axial direction is the first shaft portion (472a) and the other. The side is the second shaft portion (472b),
    A rotation sensor (493) for detecting the rotation of the rotor is provided on the outside of the first shaft portion, which is the radial inner side of the magnet portion, among the first shaft portion and the second shaft portion, and the second shaft portion is provided. The rotary electric machine according to claim 3, wherein the bearing is provided on the outside of the portion.
  5.  前記回転子における前記磁石部の径方向内側には、前記第2ハウジングと前記回転子キャリアとにより囲まれた閉鎖空間(SA)が形成されており、
     前記閉鎖空間に、前記回転子の回転を検出する回転センサ(493)が配置されている請求項3又は4に記載の回転電機。
    A closed space (SA) surrounded by the second housing and the rotor carrier is formed inside the magnet portion in the rotor in the radial direction.
    The rotary electric machine according to claim 3 or 4, wherein a rotation sensor (493) for detecting the rotation of the rotor is arranged in the closed space.
  6.  前記回転軸は、前記第1ハウジングにおける前記底部に設けられた貫通孔(455)に挿通されており、前記底部と前記回転軸との間に摺動シール(492)が設けられている請求項1~5のいずれか1項に記載の回転電機。 A claim that the rotating shaft is inserted through a through hole (455) provided in the bottom portion of the first housing, and a sliding seal (492) is provided between the bottom portion and the rotating shaft. The rotary electric machine according to any one of 1 to 5.
  7.  前記第2ハウジングは、前記固定軸部よりも大径の円筒部(473)を有し、
     前記円筒部が、前記磁石部の径方向内側となる回転子内周面に近接状態で対向するように配置されており、
     前記円筒部の径方向内側が、軸方向において前記固定軸部の反対側に開放された空間部となっている請求項1~6のいずれか1項に記載の回転電機。
    The second housing has a cylindrical portion (473) having a diameter larger than that of the fixed shaft portion.
    The cylindrical portion is arranged so as to face the inner peripheral surface of the rotor, which is radially inside the magnet portion, in a close state.
    The rotary electric machine according to any one of claims 1 to 6, wherein the radial inside of the cylindrical portion is a space portion opened on the opposite side of the fixed shaft portion in the axial direction.
  8.  前記回転子における前記磁石部の径方向内側において、前記回転子内周面と前記円筒部とが対向する領域が、潤滑油が通る潤滑油経路になっている請求項7に記載の回転電機。 The rotary electric machine according to claim 7, wherein the region where the inner peripheral surface of the rotor and the cylindrical portion face each other in the radial inside of the magnet portion of the rotor is a lubricating oil path through which the lubricating oil passes.
  9.  車両の車輪に一体に設けられるインホイールモータとして用いられる回転電機であって、
     前記第2ハウジングは車体に対して固定可能であり、前記回転軸は前記車輪に対して固定されることで当該車輪と一体回転可能である請求項1~8のいずれか1項に記載の回転電機。
    A rotary electric machine used as an in-wheel motor integrally installed on the wheels of a vehicle.
    The rotation according to any one of claims 1 to 8, wherein the second housing can be fixed to the vehicle body, and the rotating shaft can be integrally rotated with the wheel by being fixed to the wheel. Electric.
PCT/JP2021/042813 2020-11-27 2021-11-22 Dynamo-electric machine WO2022113936A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022565324A JP7424513B2 (en) 2020-11-27 2021-11-22 rotating electric machine
CN202180079387.2A CN116491049A (en) 2020-11-27 2021-11-22 Rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197409 2020-11-27
JP2020-197409 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113936A1 true WO2022113936A1 (en) 2022-06-02

Family

ID=81754818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042813 WO2022113936A1 (en) 2020-11-27 2021-11-22 Dynamo-electric machine

Country Status (3)

Country Link
JP (1) JP7424513B2 (en)
CN (1) CN116491049A (en)
WO (1) WO2022113936A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502494A (en) * 2006-08-31 2010-01-28 アメリカン アクスル アンド マニュファクチャリング,インコーポレイテッド Electric wheel motor assembly
KR101323777B1 (en) * 2012-05-31 2013-10-29 김용환 Motor having motor axle with hole
CN210327168U (en) * 2019-09-06 2020-04-14 福建佶龙机械科技股份有限公司 Inner rotor direct-drive motor for large-diameter industrial ceiling fan
CN111169274A (en) * 2018-11-13 2020-05-19 舍弗勒技术股份两合公司 In-wheel motor driving system and motor vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502494A (en) * 2006-08-31 2010-01-28 アメリカン アクスル アンド マニュファクチャリング,インコーポレイテッド Electric wheel motor assembly
KR101323777B1 (en) * 2012-05-31 2013-10-29 김용환 Motor having motor axle with hole
CN111169274A (en) * 2018-11-13 2020-05-19 舍弗勒技术股份两合公司 In-wheel motor driving system and motor vehicle
CN210327168U (en) * 2019-09-06 2020-04-14 福建佶龙机械科技股份有限公司 Inner rotor direct-drive motor for large-diameter industrial ceiling fan

Also Published As

Publication number Publication date
JP7424513B2 (en) 2024-01-30
CN116491049A (en) 2023-07-25
JPWO2022113936A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
WO2021220760A1 (en) Rotary electrical machine
WO2022092148A1 (en) Rotary electrical machine
WO2021090884A1 (en) Rotary electrical machine
WO2021145350A1 (en) Armature and method of manufacturing armature
WO2022113936A1 (en) Dynamo-electric machine
JP2022151073A (en) Rotary electric machine
JP2021114819A (en) Armature
WO2021090819A1 (en) Dynamo-electric machine
WO2021192864A1 (en) Rotary electrical machine
WO2021090883A1 (en) Rotary electric machine
WO2021117831A1 (en) Rotating electric machine
WO2021117789A1 (en) Rotating electrical machine
WO2022113935A1 (en) Electric motor
WO2021112199A1 (en) Rotary electric machine
WO2021220761A1 (en) Dynamo-electrical machine and method for manufacturing same
WO2021112200A1 (en) Rotary electrical machine
WO2022181473A1 (en) Rotating electrical machine and method for manufacturing rotating electrical machine
WO2022186057A1 (en) Rotating electric machine and control method for rotating electric machine
WO2022186056A1 (en) Rotating electrical machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565324

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180079387.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897909

Country of ref document: EP

Kind code of ref document: A1