WO2022113918A1 - Switching device, vehicle-mounted switching system, and switch control method - Google Patents

Switching device, vehicle-mounted switching system, and switch control method Download PDF

Info

Publication number
WO2022113918A1
WO2022113918A1 PCT/JP2021/042705 JP2021042705W WO2022113918A1 WO 2022113918 A1 WO2022113918 A1 WO 2022113918A1 JP 2021042705 W JP2021042705 W JP 2021042705W WO 2022113918 A1 WO2022113918 A1 WO 2022113918A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
switch
power supply
battery packs
battery pack
Prior art date
Application number
PCT/JP2021/042705
Other languages
French (fr)
Japanese (ja)
Inventor
洋 長野
直樹 實政
裕 小松
康 田村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2022113918A1 publication Critical patent/WO2022113918A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This disclosure relates to a switching device, an in-vehicle switching system, and a switch control method.
  • This application claims priority based on Japanese Application No. 2020-195017 filed on November 25, 2020, and incorporates all the contents described in the Japanese application.
  • some vehicles are equipped with a high power charger having a charging capacity larger than that of the 50 kW class electric vehicle charging station used so far, for example, a 150 kW class to 350 kW class high power charger.
  • the switching device is provided between the plurality of charging inlets provided in the electric vehicle and the plurality of battery packs mounted on the electric vehicle, and each of the plurality of battery packs is provided.
  • a changeover switch that switches the connection path between multiple charging inlets and multiple battery packs, and a switch located between multiple charging inlets and multiple battery packs so that any of the multiple charging inlets can be connected.
  • a plurality of first power supply paths and a second power supply path connecting at least two of the plurality of first power supply paths are included, and a changeover switch is provided in the second power supply path and is a first. It includes a first switch that switches power supply on and off in the second power supply path in response to a control signal.
  • the vehicle-mounted switching system is provided between a plurality of battery packs mounted on an electric vehicle, a plurality of charging inlets provided on the electric vehicle, and a plurality of battery packs, as described above. Including any switching device.
  • the switch control method is provided between the first and second charging inlets and the first and second battery packs, and the first and second charging inlets and the first and first charging inlets are provided.
  • a switch control method that controls a switch circuit that switches the connection between the battery pack and the battery pack.
  • the switch circuit is a switch unit capable of electrically separating or coupling the charging system from the first and second charging inlets. , Includes first and second contactors located between the first and second charging inlets and the switch section, and responds to the connection of a charging plug to any of the first and second charging inlets. Then, by controlling the switch circuit, the step of separating the charging system from the first and second charging inlets and the safety for charging each of the charging systems from the first and second charging inlets.
  • a signal for permitting the charging plug to start charging is sent.
  • the first contactor or the second contactor connected to the charging inlet to which the charging plug is connected in response to the transmission step and the result of the safety diagnosis and the conformity judgment being both determined to be safe. Includes a step to turn on the contactor.
  • FIG. 1 is a diagram illustrating an outline of a quick charging system according to the first embodiment of the present disclosure.
  • FIG. 2 is a functional block diagram relating to the charging of the vehicle shown in FIG.
  • FIG. 3 is a more detailed block diagram of the switch box shown in FIG.
  • FIG. 4A is a diagram illustrating a switching state of the switch box when a safety diagnosis and a compatibility determination are performed when one charger is connected to the vehicle shown in FIG. 2.
  • FIG. 4B is a diagram illustrating a switching state of the switch box when a safety diagnosis and a compatibility determination are performed when two chargers are connected to the vehicle shown in FIG. 2.
  • FIG. 4A is a diagram illustrating a switching state of the switch box when a safety diagnosis and a compatibility determination are performed when two chargers are connected to the vehicle shown in FIG. 2.
  • FIG. 4B is a diagram illustrating a switching state of the switch box when a safety diagnosis and a compatibility determination are performed when two chargers are connected to the vehicle shown in
  • FIG. 4C is a diagram illustrating a switching state of the switch box when safety diagnosis and conformity determination are performed when three chargers are connected to the vehicle shown in FIG. 2.
  • FIG. 5A is a diagram illustrating a switching state of the switch box when charging the vehicle shown in FIG. 2 with one charger.
  • FIG. 5B is a diagram illustrating a switching state of the switch box when charging the vehicle shown in FIG. 2 with two chargers.
  • FIG. 5C is a diagram illustrating a switching state of the switch box when charging the vehicle shown in FIG. 2 with three chargers.
  • FIG. 6 is a schematic diagram showing the capacities of each battery pack during charging and discharging when the voltages of the three battery packs match.
  • FIG. 5A is a diagram illustrating a switching state of the switch box when charging the vehicle shown in FIG. 2 with one charger.
  • FIG. 5B is a diagram illustrating a switching state of the switch box when charging the vehicle shown in FIG. 2 with two chargers.
  • FIG. 5C is a diagram
  • FIG. 7 is a schematic diagram showing the capacity loss that occurs during charging and discharging when the voltages of the three battery packs do not match.
  • FIG. 8 is a schematic diagram showing a change in the capacity of each battery pack during charging according to the first embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing a change in the capacity of each battery pack at the time of discharging in the first embodiment of the present disclosure.
  • FIG. 10 is a diagram for explaining a switching state of the switch box at the time of discharging in the first embodiment of the present disclosure.
  • FIG. 11 is a flowchart showing a control structure of a computer program for realizing the charging process according to the first embodiment of the disclosure.
  • FIG. 12 is a block diagram showing a portion related to charging of the vehicle according to the second embodiment of the disclosure.
  • FIG. 13 is a diagram for explaining a switching state of the switch box when charging is performed using the high power charger in the vehicle shown in FIG. 12.
  • FIG. 14 is a diagram for explaining a switching state of the switch box when charging is performed using two normal chargers in the vehicle shown in FIG. 12.
  • FIG. 15 is a diagram for explaining a switching state of a switch box when performing voltage balancing processing of two battery packs using two normal chargers in the vehicle shown in FIG. 12.
  • FIG. 16 is a block diagram showing a method of utilizing the electric power stored in the vehicle in the third embodiment of the disclosure.
  • Patent Document 1 discloses a vehicle charging system that uses a plurality of chargers to charge a plurality of battery packs.
  • the controller changes the number of chargers to supply power according to the required power determined by the remaining capacity of multiple battery packs and the rated output power of multiple chargers.
  • Patent Document 1 the system disclosed in Patent Document 1 is premised on a sufficient number of chargers required to charge a plurality of batteries. Furthermore, it is necessary for the system on the charger side to control which charger to use, and it is difficult to use the existing charger as it is or to use chargers with different output powers together.
  • this disclosure is intended to provide a switching device, an in-vehicle switching system, and a switch control method that can efficiently charge a plurality of battery packs by using at least an existing charger without modification.
  • the switching device is provided between a plurality of charging inlets provided in an electric vehicle and a plurality of battery packs mounted on the electric vehicle, and is provided between the plurality of battery packs.
  • a changeover switch that switches the connection path between multiple charging inlets and multiple battery packs, and between multiple charging inlets and multiple battery packs so that each can be connected to any of multiple charging inlets.
  • a plurality of first power supply paths arranged in the above and a second power supply path connecting at least two of the plurality of first power supply paths are included, and a changeover switch is provided in the second power supply path. , Includes a first switch that switches power supply on and off in the second power supply path in response to the first control signal.
  • the second power supply path switches the power supply on and off between at least two first power supply paths. By switching the power supply off, the safety diagnosis and suitability determination of each first power supply path can be performed separately from the other power supply paths. As a result, a plurality of battery packs can be safely charged using a plurality of chargers.
  • the changeover switch is further provided in each of the plurality of first power supply paths, and in response to each of the second control signals, a plurality of first power supply paths for switching on and off of power supply in the plurality of first power supply paths. It may include two switches.
  • the first power supply path can be turned on and off individually by the second switch. Battery packs can be individually received and charged at the same time. As a result, the balance process at the time of charging the battery pack can be easily performed.
  • the changeover device may be provided between the changeover switch and the plurality of battery packs, and may further include a sub changeover switch for switching the connection path between the changeover switch and the plurality of battery packs, and the sub changeover switch is a battery pack. It may include a switch for switching between a state in which they are connected in series and a state in which they are connected in parallel.
  • the sub changeover switch switches the connection path of the battery pack between the state where multiple battery packs are connected in series and the state where they are connected in parallel. When charging with high voltage, multiple battery packs can be connected in series, and when charging with normal voltage, multiple battery packs can be connected in parallel. Since the connection of the battery pack can be switched by the voltage of the charger, both charging by high voltage and charging by normal voltage become possible.
  • At least one of the changeover switch and the sub changeover switch may be controlled by an in-vehicle control device mounted on the electric vehicle.
  • At least one of the changeover switch and the sub changeover switch does not need to be controlled on the charger side.
  • both are controlled by the in-vehicle control device, neither needs to be controlled on the charger side. Therefore, the modification on the charger side can be minimized or eliminated at all. As a result, a plurality of chargers can be efficiently charged using both high voltage and normal voltage chargers while minimizing the need for modification on the charger side.
  • the changeover device may further include a plurality of contactors provided between the plurality of charging inlets and the changeover switch.
  • a contactor is provided between multiple charging inlets and the changeover switch. Therefore, the safety diagnosis and the suitability determination before charging can be individually performed for each charging inlet between the charging plug connected to each charging inlet and the in-vehicle device. As a result, a plurality of battery packs can be appropriately charged using the plurality of charging inlets.
  • a charger for supplying power to a plurality of battery packs may be electrically connected to the charging inlet, and the in-vehicle control device responds to the fact that the charger is connected to the charging inlet. Then, the state information of the plurality of battery packs may be provided to the charger by communicating with the charger, and the changeover switch charges the plurality of battery packs by the electric power supplied from the charger according to the state information. Therefore, the connection path may be switched under the control of the vehicle-mounted control device.
  • connection route can be switched by the changeover switch so that the battery packs are charged with the power supplied from the charger.
  • balance processing between battery packs can be performed.
  • the vehicle-mounted switching system according to the second aspect of the present disclosure is provided between a plurality of battery packs mounted on an electric vehicle, a plurality of charging inlets provided on the electric vehicle, and a plurality of battery packs. , Includes any of the above switching devices.
  • the in-vehicle system includes an in-vehicle control device that is mounted on an electric vehicle together with a switching device and controls the switching device.
  • the in-vehicle control device controls the switching device, there is no need to control the switching device on the charger side. Therefore, it is possible to reduce the number of modifications on the charger side as much as possible, or to eliminate the need for modification at all. As a result, a plurality of chargers can be efficiently charged by using a plurality of chargers while minimizing the need for modification on the charger side.
  • the switch control method is provided between the first and second charging inlets and the first and second battery packs, and the first and second charging inlets and the first.
  • a charging plug is connected to either the first or second charging inlet, including the switch unit and the first and second contactors arranged between the first and second charging inlets and the switch unit. In response to this, by controlling the switch circuit, the step of separating the charging system from the first and second charging inlets and the charging system of each of the charging systems from the first and second charging inlets are charged.
  • the charging system from the first and second charging inlets is separated. In that state, safety diagnosis and conformity determination for charging can be performed for each of the charging systems. As a result, a plurality of battery packs can be safely charged using a plurality of charging inlets.
  • the switch control method includes a step of acquiring the voltage at the start of charging for each of the first and second battery packs, a step of comparing the voltages of the first and second battery packs, and the first and second batteries.
  • the switch circuit is controlled so that one of the first and second battery packs, which has a higher voltage, is disconnected from the switch circuit, and the other battery pack, which has a lower voltage, is used.
  • it may further include a step of charging until a predetermined end-of-charge voltage is reached.
  • the switch control method includes a step of acquiring the voltage at the start of each discharge of the first and second battery packs in response to the request for discharge from the first and second battery packs, and the first step.
  • the switch circuit is controlled so that one of the battery packs having a low voltage at the start of discharge is disconnected from the switch circuit, and the voltage of the remaining battery pack is the battery pack of one of the remaining battery packs having a high voltage at the start of discharge.
  • Switch circuit of one of the battery packs in response to the step of discharging until it becomes equal to the voltage at the start of discharging of the battery and the voltage of the remaining battery pack becomes equal to the voltage at the time of discharging of one of the battery packs. It may further include a step of controlling the switch circuit to connect to, and with the remaining battery pack, discharging until a predetermined end-of-discharge voltage is reached.
  • the switch circuit is controlled so as to switch a predetermined connection according to the number and position of the charging plug connected to either the first or second charging inlet. Further may include a step of charging both the 1st and 2nd battery packs.
  • the switch control method is a switch for switching a predetermined connection according to which of the first and second charging inlets the charging plug is connected to, the number, the position, and the magnitude of the charging power. Further may include a step of controlling the circuit and charging both the first and second battery packs in series or in parallel.
  • the switch control method in response to the charging / discharging device being connected to either the first or second charging inlet, the first battery pack, the second battery pack, or both of them are the same. It may further include a step of controlling the switch circuit to be connected to the charging inlet and supplying power to the charger / discharger via the charging inlet.
  • the first and second battery packs may have the same specifications.
  • FIG. 1 is a diagram showing an outline of a quick charging system 50 according to the first embodiment of the present disclosure.
  • the vehicle 60 driven by electric power from the battery pack includes an inlet 62, an inlet 64 and an inlet 66.
  • the case where the number of inlets is three is shown, but two or four or more inlets may be used.
  • Vehicle 60 includes three battery packs of the same specifications, not shown in FIG.
  • the inlet 62, the inlet 64, and the inlet 66 can be connected to any of the conventional low power quick charger 70, quick charger 72, and quick charger 74, respectively.
  • the quick charger 70, the quick charger 72 and the quick charger 74 are connected to the inlet 62, the inlet 64 and the inlet 66, the above-mentioned three battery packs are charged through them. Since 3 battery packs can be charged using up to 3 chargers, when charging 3 battery packs (or 1 battery pack with the same capacity) using 1 charger The battery pack can be fully charged in about one-third of the time.
  • FIG. 2 is a functional block diagram relating to charging of the vehicle 60 shown in FIG.
  • the vehicle 60 includes the above-mentioned inlet 62, inlet 64, inlet 66, contactor 80, switch box 82, battery pack 84, battery pack 88 and battery pack 92, and a BMS (Battery Management system). ) 86, BMS90 and BMS94, and an ECU (Electronic Control Unit) 96 which is an in-vehicle device.
  • the quick charger 70, the quick charger 72, and the quick charger 74 are connected to the inlet 62, the inlet 64, and the inlet 66, respectively.
  • the battery pack 84, the battery pack 88, and the battery pack 92 can be charged using any one to three quick chargers as described above. Further, the same charging can be performed regardless of where they are connected to the inlet 62, the inlet 64 and the inlet 66.
  • the inlet 62, the inlet 64, and the inlet 66 can be connected to the quick charger by a set of wiring including a power supply line, a CAN (Control Area Area Network) cable, and a DC circuit wiring, respectively.
  • the power supply line is used to supply charging power to the battery pack 84, the battery pack 88, and the battery pack 92.
  • the CAN cable is used by the ECU 96 to send and receive control signals between the ECU 96 and the quick charger 70, the quick charger 72 and the quick charger 74.
  • the DC circuit wiring is used by the ECU 96 for analog signal processing for ensuring safety when the quick charger 70 or the like is connected to the inlet 62. Although the DC circuit wiring is shown as one in the figure, it actually includes a plurality of wirings.
  • the ECU 96 acquires the charging status (voltage, etc.) of the battery packs 84, 88, and 92 from the BMS 86, 90, and 94, and controls switching between the contactor 80 and the switch box 82 by communicating with the quick charger 70, 72, or 74.
  • the DC control circuit is included, and a CAN-TR (Transceiver) that provides digital communication between the quick charger 70, 72, or 74 and the microcomputer is included.
  • the contactor 80 includes three contactors provided on the power supply line between the inlet 62, the inlet 64, and the inlet 66 and the switch box 82, respectively.
  • the switch box 82 connects three nodes N1, N2 and N3, an inlet side power supply line 100 connecting the node N1 and the inlet 62, and the node N1 and the battery pack 84.
  • Battery pack side power supply line 102, inlet side power supply line 104 connecting node N2 and inlet 64, battery pack side power supply line 106 connecting node N2 and battery pack 88, node N3 and inlet It includes an inlet-side power supply line 108 connecting the 66 and a battery pack-side power supply line 110 connecting the node N3 and the battery pack 92.
  • the switch box 82 further includes a power supply line 112 connecting the node N1 and the node N2, a power supply line 114 connecting the node N2 and the node N3, and a power supply line 116 connecting the node N3 and the node N1.
  • the switch box 82 is further provided on the power supply line 112 with a switch C1 for turning on and off the connection between the node N1 and the node N2, and is provided on the power supply line 114 with the node N2 and the node N3. It includes a switch C2 for turning on and off the connection between the nodes and a switch C3 provided on the power supply line 116 for turning on and off the connection between the node N1 and the node N3.
  • the individual switch box 98 is provided on the battery pack side power supply line 102, is provided on the switch P1 for turning on and off the connection between the node N1 and the battery pack 84, and is provided on the battery pack side power supply line 106, and is provided on the battery pack side power supply line 106.
  • a switch P2 for turning on and off the connection between the battery pack 88 and the battery pack 88, and a switch P2 provided on the battery pack side power supply line 110 for turning on and off the connection between the battery pack side power supply line 110 and the battery pack 92. Includes switch P3. All of the switches operate under the control of the ECU 96 shown in FIG.
  • 4A, 4B and 4C show the switch box 82 for performing safety diagnosis and conformity determination when one, two and three chargers are connected to the vehicle 60 shown in FIG. 2, respectively. It is a figure explaining each switching state.
  • the switch C1, the switch C2 and the switch C3 shown in FIG. 3 are referred to as the ECU 96 shown in FIG. It is turned off by the control of. Further, all of the switch P1, the switch P2 and the switch P3 shown in FIG. 3 are turned on by the control of the ECU 96. Then, the power supply path between the inlet 62 and the battery pack 84, the power supply path between the inlet 64 and the battery pack 88, and the power supply path between the inlet 66 and the battery pack 92 are electrically separated from each other. To.
  • each quick charger may perform safety diagnosis and conformity determination according to the same procedure as before.
  • FIGS. 5A, 5B, and 5C are diagrams for explaining the switching state of the switch box 82 when charging the vehicle 60 shown in FIG. 2 with one, two, and three chargers, respectively.
  • the switch C1, the switch C2 and the switch C3 are turned on in each case.
  • all the quick chargers connected to the vehicle 60 are used to charge the battery pack 84, the battery pack 88, and the battery pack 92 in parallel.
  • the switch P1, the switch P2, and the switch P3 those corresponding to the battery pack to be charged are turned on according to the balance processing described later, and those corresponding to the battery pack not to be charged are turned off. This control is performed by the ECU 96.
  • Balance processing refers to processing in which the voltage of each battery is made the same so that capacity loss does not occur as much as possible when the batteries are discharged and charged.
  • FIG. 6 is a schematic diagram showing the capacities of each battery pack during charging and discharging when the voltages of the three battery packs match, that is, when they are balanced.
  • FIG. 6A it is assumed that the voltages of the battery packs 84, 88 and 92 before charging are the same.
  • all the voltages of the battery packs 84, 88, and 92 simultaneously become the charging end voltage, and charging is stopped at the same time, as shown in FIG. 6 (B).
  • FIG. 6 (B) shows the battery packs 84, 88 and 92 are discharged with the same discharge power from this state, all the voltages of the battery packs 84, 88 and 92 become the discharge end voltage at the same time as shown in FIG. 6C, and at the same time. The discharge ends.
  • FIG. 7 is a schematic diagram showing the capacity loss that can occur during charging and discharging when the voltages of the three battery packs do not match.
  • FIG. 7 it is assumed that the voltages of the battery packs 84, 88, and 92 before the start of charging are sequentially lowered in this order.
  • the battery pack 84 reaches the end-of-charge voltage when the voltages of the battery pack 88 and the battery pack 92 have not yet reached the end-of-charge voltage. Reach.
  • the battery pack 88 and the battery pack 92 are not sufficiently charged. As a result, capacity loss 120 and capacity loss 122 occur.
  • the discharge is started from the state shown in FIG. 7 (B). If the discharge powers are the same, as shown in FIG. 7C, the voltage of the battery pack 92 first becomes the discharge end voltage when the voltages of the battery pack 84 and the battery pack 88 have not reached the discharge end voltage yet. Reach. When the discharge is completed here, the battery pack 84 and the battery pack 88 still have electric power that can be discharged, and as a result, the capacity loss 130 and the capacity loss 132 occur.
  • FIG. 8 is a schematic diagram showing a change in the capacity of each battery when charging each battery while balancing the voltage of each battery pack in the first embodiment of the disclosure.
  • the battery pack 92 is first charged so that the voltage of the battery pack 92 becomes equal to the voltage of the battery pack 88.
  • the battery pack 88 and the battery pack 92 are charged until the voltages of the battery pack 88 and the battery pack 92 become equal to the voltage of the battery pack 84.
  • FIG. 9 is a schematic diagram showing a change in the capacity of each battery pack at the time of discharging in the first embodiment of the disclosure.
  • FIG. 9A it is assumed that the voltages of the battery packs 84, 88 and 92 are different for some reason.
  • the battery packs 84, 88, and 92 are in the order of highest voltage. In this case, first, the battery pack having the highest voltage, and in the case of FIG. 9, the battery pack 84 is started to be discharged. The battery pack 88 and the battery pack 92 are separated from the discharge circuit.
  • FIG. 9B shows a state in which the voltage of the battery pack 84 drops and becomes equal to the voltage of the battery pack 88.
  • the battery pack 88 When the state shown in FIG. 9B is reached, the battery pack 88 is connected to the discharge path, and both the battery pack 84 and the battery pack 88 are started to be discharged.
  • the battery pack 92 is maintained in a state separated from the discharge path.
  • the voltages of the battery pack 84 and the battery pack 88 decrease in a state of being equal to each other, and eventually, as shown in FIG. 9C, the voltages of both and the voltage of the BMS 94 become equal to each other.
  • the battery pack 92 is connected to the discharge path.
  • all discharges are started with the voltages of the battery packs 84, 88 and 92 being the same.
  • the discharge is terminated when all the voltages of the battery packs 84, 88 and 92 reach the discharge end voltage.
  • FIG. 10 shows the electrical configuration of the vehicle 60 at the time of discharge.
  • the DC power discharged from these is converted into AC power via the inverter 150 to drive the motor 152.
  • the switch box 82 the switch C1, the switch C2, and the switch C3 are all turned on.
  • the switch P1 is turned on, and the switch P2 and the switch P3 are turned off.
  • the switch P2 is turned on in addition to the switch P1.
  • Switch P3 remains off.
  • the switch P3 is further turned on.
  • FIG. 9D the switch P1, the switch P2, and the switch P3 are turned off at the same time.
  • FIG. 11 is a flowchart showing a control structure of a computer program for realizing the charging process according to the first embodiment of the disclosure. Prior to the execution of this program, all contactors were disconnected at the end of the previous charging process.
  • this program responds to step 180, which waits for a charger to be connected, and the charging plug is connected to any of the inlets, detects the number of chargers, and switches C1 to.
  • FIG. 2 shows a step 182 that outputs a control signal for turning off C3 to separate each charging path, a step 184 that determines a master charger and transmits it to the charger, and a step 186 that starts CAN communication.
  • Step 188 to acquire the information of each battery pack (maximum voltage, battery capacity, maximum charging time, etc.) from BMS86, BMS90 and BMS94, and step 190 to transmit the information of the battery pack acquired in step 188 to the charger. include.
  • the master charger makes a conformity determination based on this information.
  • This program further receives charger information (maximum voltage, maximum current, conformity determination above determination value) from the master charger, and a step of determining conformity based on the information received from the master charger. 194, step 196 to send a readiness notification to the charger in response to the confirmation of compatibility, step 198 to turn on all contactors, switch C1 to C3 on, switch P1 to P3 off. Then, based on the step 200 of transmitting the charging start command to the charger and the voltage acquired in step 188, the identifiers assigned to the battery packs 84, 88 and 92 are rearranged in descending order of voltage and prepared in the memory. Includes step 202 and stored in sequences E [0] to E [2]. The identifier of each battery pack here may be anything as long as the battery packs can be distinguished from each other.
  • This program further determines whether or not the absolute value of V2-V3 is less than a predetermined threshold value following step 202, and steps 204 for branching the control flow according to the determination result, and the determination of step 204 is negative.
  • step 206 where charging of the battery pack E3 is started and control is returned to step 204, and when the determination in step 204 is affirmative, it is determined whether or not the absolute value of V1-V2 is less than a predetermined threshold value.
  • This program further determines whether any of V1, V2, and V3 is equal to or higher than the charge termination voltage when the determination in step 208 is affirmative, and the determination in step 212 and step 212 to branch the control flow according to the determination.
  • a signal requesting the charging plug to stop charging is transmitted. This includes step 216 of executing a charging process termination process such as turning off all contactors to terminate the execution of this program.
  • the vehicle 60 operates as follows at the time of charging. With reference to FIG. 2, it is assumed that the vehicle 60 is stopped. When stopped, the switch P1, the switch P2, and the switch P3 shown in FIG. 3 are all turned off, and the battery packs 84, 88, and 92 are neither discharged nor charged. The contactor 80 is all off.
  • the charging plug is connected to the inlet 62, the inlet 64 or the inlet 66 with reference to FIG.
  • the charging plug is connected to the inlet 62.
  • the potential of one of the DC lines becomes high level.
  • the ECU 96 detects that the charging plug is connected (YES in step 180 in FIG. 11). Further, the ECU 96 detects the number of chargers connected to the inlet, turns off the switches C1 to C3, and separates all the charging systems (step 182). After that, the ECU 96 determines the master charger (step 184) and starts CAN communication with the charger (step 186).
  • the ECU 96 further acquires battery information including the maximum voltage, maximum current, maximum charging time and current voltage of the battery packs 84, 88 and 92 from the BMS 86, BMS 90 and BMS 94 shown in FIG. 2 (step 188), and obtains this information. Send to the charger via the charging plug (step 190). Based on this information on the charger side, conformity determination regarding charging is performed, and the result is transmitted to the ECU 96 together with the charger information.
  • the ECU 96 Upon receiving the charger information and the compatibility result, the ECU 96 determines the compatibility regarding charging based on the received charger information and its own storage battery information when the compatibility is confirmed (step 194). .. If there is no problem with the compatibility, the ECU 96 sends a notification indicating the completion to the charger (step 196). After that, the ECU 96 inputs all the contactors (step 198). Further, the ECU 96 turns on all the switches C1 to C3 shown in FIG. 3, turns off all the switches P1 to P3, and transmits a charging start command to the charger.
  • All the charging paths including the pack-side power supply line 110 are connected to the charger, and the voltage for charging is causal.
  • switches P1 to P3 are off, these power supply lines are not yet connected to each battery pack, and charging of the battery pack has not started.
  • the ECU 96 starts charging with balance processing by the following procedure.
  • step 202 the voltages of the battery packs 84, 88 and 92 are sorted in descending order, and the identifiers of the battery packs are stored in the array E in order from the one with the highest voltage value.
  • the switch P1, the switch P2 and the switch P3 are all initially turned off.
  • those corresponding to the inlet to which the charging plug is connected are turned on, and the others are turned off.
  • the switch C1, the switch C2 and the switch C3 will be turned on eventually. As a result, the three charging paths are connected to each other.
  • the difference between the second highest voltage V2 and the third highest (lowest) voltage V3 among the voltage values of the battery packs 84, 88 and 92 is calculated, and the absolute value is the threshold value. It is determined whether or not it is less than (step 204). If this determination is negative, that is, if the difference between V2 and V3 is equal to or greater than the threshold value, charging of the battery pack E3 (battery pack having a voltage V3) is started in step 206.
  • step 206 the process of step 206 is repeated until the determination of step 204 becomes affirmative.
  • the state of charge of the battery packs 84, 88 and 92 approaches the state of FIGS. 8 (A) to 8 (B).
  • the determination in step 204 in FIG. 11 becomes affirmative, and the control proceeds to step 208.
  • step 208 the difference between the voltages V1 and V2 of the battery pack having the highest voltage is calculated, and it is determined whether or not the difference is less than a predetermined threshold value. In the state of FIG. 8B, this difference is equal to or greater than the threshold value. As a result, control proceeds to step 210. In step 210, charging of the battery packs E2 and E3 corresponding to V2 and V3 is started.
  • the switch P2 is turned on in the example currently described.
  • Switch P1 is kept off.
  • Switch P3 remains on.
  • the battery pack 88 and the battery pack 92 are charged in step 210.
  • This charging is performed until the determination in step 208 becomes affirmative, that is, until the charging states of the battery packs 84, 88, and 92 are in the state shown in FIG. 8 (C).
  • step 208 When the determination in step 208 is affirmative, that is, when the charging states of the battery packs 84, 88 and 92 are in the state shown in FIG. 8C, the switch P1 shown in FIG. 3 is turned on. Switch P2 and switch P3 are also kept on. In the flowchart of FIG. 11, control proceeds to step 212.
  • step 214 is performed and all of the battery packs 84, 88 and 92 are charged in parallel.
  • the process of step 214 is continued until the determination in step 212 becomes affirmative, that is, the state of charge of the battery packs 84, 88, and 92 becomes the state shown in FIG. 8 (D).
  • the determination in step 212 becomes affirmative, and the process of step 216 is executed.
  • step 216 the reverse process of the start of charging is performed, and the vehicle 60 is in a state where the charging plug can be safely removed from the inlet 62 or the like.
  • the charging process ends when all the charging plugs are removed.
  • the first embodiment it is possible to charge a plurality of battery packs with one or a plurality of quick chargers while controlling the vehicle 60 so as to perform charging safely.
  • multiple battery packs can be charged in a short time. All of the connection switching required for that purpose can be realized by the switch box 82 except for the mechanism for generating the control signal, and the charger side is not involved. As a result, a plurality of battery packs can be efficiently charged by using a conventional quick charger.
  • the number of charging inlets provided in the vehicle and the number of battery packs mounted in the vehicle are the same.
  • the number of charging inlets may be greater than the number of battery packs. In that case, all battery packs can be charged in a shorter time.
  • the balance processing of the battery is performed in the first embodiment. However, it is not necessary to perform the battery balancing process only for the purpose of shortening the charging time.
  • the charging paths inside the vehicle 60 are separated from each other. Further, when the battery pack is charged in parallel, the switching of the switch in the vehicle 60 is controlled by the ECU 96 of the vehicle 60, and the quick charger is not involved at all. Therefore, the safety diagnosis and the conformity determination can be performed separately for each separated charging path, just like the conventional method.
  • the quick charger the conventional one that charges individually can be used as it is. Then, the effect that a plurality of battery packs can be charged in parallel in a short time can be obtained by using a plurality of conventional quick chargers.
  • FIG. 12 is a block diagram showing a portion related to charging of the vehicle 300 according to the second embodiment of this disclosure.
  • the vehicle 300 has an inlet 310 and an inlet 312.
  • the vehicle 300 further includes two 400 volt battery packs 350 and 352, and a switch box 320 and a sub switch box 322 located between the inlet 310 and inlet 312 and the battery pack 350 and battery pack 352.
  • a contactor provided in each charging path, an ECU that controls each switch, a CAN that provides a communication path between the charger and the ECU, a receiving electric machine and an ECU.
  • the DC circuit for exchanging signals at the start and end of charging with and from is not shown.
  • the switch box 320 is a connection between a power supply line 330 and a power supply line 332 whose ends are connected to a positive terminal and a negative terminal of an inlet 310, respectively, and a power supply line 330 and a power supply line 332 and a sub switch box 322.
  • One terminal of the individual switch box 342 is connected to the other ends of the power supply line 330 and the power supply line 332, respectively, and the connection and disconnection between the individual switch box 342 and the sub switch box 322 are made according to the same control signal from the ECU (not shown). Includes a set of switches P1 to switch.
  • one terminal is connected to the other ends of the power supply line 330 and the power supply line 332, respectively, and the power supply line 330 and the power supply line 332 are synchronized according to the same control signal from the ECU (not shown).
  • a set of switches P2 that switches between connection and disconnection between the power supply line 322 and the sub switch box 322, and one terminal is connected to the other ends of the power supply line 334 and the power supply line 336, both of which are the same from the ECU (not shown). It includes a set of switches P3 that synchronously switch connection and disconnection between the power supply line 334 and the power supply line 336 and the sub switch box 322 according to a control signal.
  • the switch box 320 further includes a switch C1 that switches the connection between the power supply line 330 and the power supply line 334 between on and off according to a control signal from an ECU (not shown).
  • the sub switch box 322 includes a set of terminals 360 and 362 connected to the other terminal of the set of switches P1 and a set of terminals 364 and 366 connected to the other terminal of the set of switches P2, respectively. It includes a terminal 368 and a terminal 370 connected to the other terminal of P3, respectively.
  • the sub switch box 322 further includes a terminal 372 connected to the terminal 360 and the positive electrode terminal of the battery pack 350, a terminal 374 connected to the negative electrode terminal of the battery pack 350, and a terminal 376 connected to the positive electrode terminal of the battery pack 352.
  • the terminal 378 connected to the negative electrode terminal and the terminal 362 of the battery pack 352, connected between the terminal 374 and the terminal 376, and connected and disconnected between the terminal 374 and the terminal 376 according to the control signal from the ECU.
  • the sub-switch box 322 further comprises terminals 364 and 366 connected to the other terminal of the set of switches P1, respectively, and terminals 368 and 370 and terminals 364 connected to the other terminal of the set of switches P2, respectively.
  • a terminal 380 connected to the positive electrode terminal of the battery pack 350, a terminal 382 connected to the terminal 366 and the negative electrode terminal of the battery pack 350, and a terminal 384 connected to the terminal 368 and the positive electrode terminal of the battery pack 352.
  • a terminal 386 connected to the terminal 370 and the negative electrode terminal of the battery pack 352.
  • the switch P1, the switch P2, the switch P3, the switch C1 and the switch S1 use one high power charger for charging (high power charging) and two normal chargers.
  • the connection between the inlet 310, the inlet 312, the battery pack 350, and the battery pack 352 is switched as follows at the time of charging (normal charging).
  • the battery pack 350 and the battery pack 352 are simultaneously charged by the 800 volt high power charger.
  • the switch C1 is turned off when charging with the high power charger.
  • the inlet 312 is disconnected from the switch P1, so it is necessary to connect the charging plug to the inlet 310.
  • FIG. 14 shows the connection between the inlet 310, the inlet 312, the battery pack 350, and the battery pack 352 during normal charging.
  • the switch P1 and the switch S1 are off and have nothing to do with the circuit configuration, so they are not shown.
  • the switch P2, the switch P3 and the switch C1 are all on. Therefore, in this figure, these are shown as simple connecting lines.
  • the power supply path from the inlet 310 to the battery pack 350 that is, the power supply line 330, the terminal 364, the terminal 380, the battery pack 350, the terminal 382, the terminal 366, and the power supply line 332, and from the inlet 312.
  • the power supply line 330 and the power supply line 334 are connected, and the power supply line 332 and the power supply line 336 are connected.
  • the battery pack 350 and the battery pack 352 are simultaneously charged by these two chargers.
  • the charging time required at this time is the same as the charging time with the high power charger.
  • the charging time is about twice that of the high power charger.
  • FIG. 15 is a diagram for explaining a switching state of the switch box 320 when the voltage balance processing of the battery pack 350 and the battery pack 352 is performed by using two normal chargers in the vehicle 300 shown in FIG. be.
  • the switch P2 when the battery pack 350 is charged and the battery pack 352 is not charged, the switch P2 may be turned on and the switch P3 may be turned off. When only the battery pack 352 is charged and the battery pack 350 is not charged, the switch P2 may be turned off and the switch P3 may be turned off. After that, this process can be realized by a program having the same configuration as that shown in FIG.
  • a plurality of battery packs can be charged by properly using a high power charger and a normal charger. It is also possible to charge the battery pack using a plurality of normal chargers, in which case the battery pack can be charged in about the same time as when using a high power charger. Even if there is only one normal charger, the battery pack can be charged, although it takes time. Therefore, if a high power charger can be used, or if a plurality of normal chargers can be used, charging can be completed in a short time. Even if only one regular charger is available, it will take some time to charge.
  • the vehicle 300 according to the above embodiment is provided with two inlets and two battery packs.
  • this disclosure is not limited to such embodiments.
  • two or more sets of the configurations shown in FIG. 12 may be provided.
  • two high power chargers may be available by connecting the input of the inlet.
  • a switch capable of switching the connection between a plurality of batteries in series and in parallel, and these may be used as appropriate.
  • the vehicle according to the first embodiment and the vehicle 300 according to the second embodiment both have a rechargeable battery.
  • the electric power stored in this rechargeable battery can be used for various purposes in the event of a disaster or the like.
  • a device for extracting electric power from a charger of a vehicle 60 or the like may be connected to the inlet 62 or the like shown in FIG. 2 according to a predetermined standard.
  • FIG. 16 is a block diagram showing a configuration when the electric power stored in the vehicle 60 according to the first embodiment is used as an example in the third embodiment of the disclosure.
  • the electric power stored in the battery pack 84, the battery pack 88, and the battery pack 92 can be safely taken out and used by the inlet 62, the inlet 64, and the inlet 66 of the vehicle 60 by communicating with the ECU 96.
  • the V2H charge / discharger 400, the V2H charge / discharger 402, and the V2H charge / discharger 404 are connected. Then, the electric power for lighting and air conditioning of the shelter, the electric power for driving the elevator of the building, and the electric power for charging the smartphone are taken out and used.
  • Both the vehicle 60 according to the first embodiment and the vehicle 300 according to the second embodiment can provide the electric power stored in the internal battery pack to the outside in the event of a disaster or the like.

Abstract

This switching device includes: a switching switch that is provided between a plurality of charging inlets provided in an electric-powered vehicle and a plurality of battery packs mounted in the electric-powered vehicle, and switches a connection path between the plurality of charging inlets and the plurality of battery packs such that each of the battery packs can be connected to any of the plurality of charging inlets; a plurality of first power supply paths that are disposed between the plurality of charging inlets and the plurality of battery packs; and a second power supply path that connects at least two among the plurality of first power supply paths. The switching switch includes a first switch that is provided in the second power supply path, and in response to a first control signal, switches power supply in the second power supply path on and off.

Description

切替装置、車載切替システム、及びスイッチ制御方法Switching device, in-vehicle switching system, and switch control method
 この開示は、切替装置、車載切替システム、及びスイッチ制御方法に関する。この出願は2020年11月25日出願の日本出願第2020-195017号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This disclosure relates to a switching device, an in-vehicle switching system, and a switch control method. This application claims priority based on Japanese Application No. 2020-195017 filed on November 25, 2020, and incorporates all the contents described in the Japanese application.
 充電可能な電池パックを備え、電池パックからの電力でモータを駆動することで走行する電気自動車が増加しつつある。電気自動車の初期は乗用車が主体だった。しかし、今後はトラック、バス等の大型車両についても電気を動力源とすることが予想される。 The number of electric vehicles equipped with a rechargeable battery pack and running by driving a motor with the electric power from the battery pack is increasing. In the early days of electric vehicles, passenger cars were the mainstream. However, it is expected that electricity will be used as a power source for large vehicles such as trucks and buses in the future.
 しかし、トラック及びバス等の大型車両の場合、車体が大きい上に積載重量も大きく、電力消費が乗用車と比較してはるかに大きくなる。またこれまでの内燃機関を電気自動車が置き換えるためには、1回の充電で走行可能な距離を大きくする必要がある。こうした問題を解決するためには、車両に搭載する電池パックを乗用車用のものより大きくするか、乗用車と同じ規格の電池パックをより多く搭載する必要がある。そうすることで電池パックに蓄積される電力量が大きく、また一度に放電する電力も大きくなるため、大型車両を従来に近い状態で運用可能となる。 However, in the case of large vehicles such as trucks and buses, the vehicle body is large and the load weight is also large, so the power consumption is much higher than that of passenger cars. Further, in order for an electric vehicle to replace the conventional internal combustion engine, it is necessary to increase the distance that can be traveled by one charge. In order to solve these problems, it is necessary to make the battery packs installed in the vehicle larger than those for passenger cars, or to install more battery packs of the same standard as passenger cars. By doing so, the amount of electric power stored in the battery pack is large, and the electric power discharged at one time is also large, so that a large vehicle can be operated in a state close to the conventional one.
 しかし、搭載する電池パックの容量を大きくすると、充電に要する時間が長くなるという問題がある。充電に要する時間があまりに長いと車両の利用効率が落ち、普及は難しくなる。 However, if the capacity of the installed battery pack is increased, there is a problem that the time required for charging becomes longer. If the time required for charging is too long, the utilization efficiency of the vehicle will decrease and it will be difficult to spread it.
 同様の問題は乗用車の場合にも生ずる。乗用車の場合にも、1回の充電により走行可能な距離を長くするために、電池パックの容量を大きくすることが試みられている。しかしその場合に問題となるのは、やはり充電時間である。充電が可能な充電ステーションが限られている現状では、大容量の電池の充電をできるだけ早く完了させることが必要である。 The same problem occurs in the case of passenger cars. In the case of passenger cars as well, attempts have been made to increase the capacity of the battery pack in order to increase the distance that can be traveled by one charge. However, in that case, the problem is still the charging time. In the current situation where charging stations that can be charged are limited, it is necessary to complete charging of large-capacity batteries as soon as possible.
 そのための1つの方策として、充電電力を大容量化することが考えられる。実際、今まで使用されていた50kW級の電気自動車充電ステーションよりも大きな充電容量、例えば150kW級から350kW級のハイパワー充電器を搭載した車両も出現している。 As one measure for that, it is conceivable to increase the charging power capacity. In fact, some vehicles are equipped with a high power charger having a charging capacity larger than that of the 50 kW class electric vehicle charging station used so far, for example, a 150 kW class to 350 kW class high power charger.
 しかし、こうしたハイパワー充電器は未だ普及していない。そのため、大型車両の充電には既存の充電ステーションを利用せざるを得ず、既存の充電器を用いて充電時間を短縮する必要がある。 However, such high power chargers have not yet become widespread. Therefore, the existing charging station has to be used for charging a large vehicle, and it is necessary to shorten the charging time by using the existing charger.
特開2013-27236公報Japanese Unexamined Patent Publication No. 2013-27236
 本開示の第1の局面に係る切替装置は、電動車両に設けられる複数の充電用インレットと、電動車両に搭載される複数の電池パックとの間に設けられ、複数の電池パックの各々が、複数の充電用インレットのいずれとも接続可能なように、複数の充電用インレットと複数の電池パックとの接続経路を切り替える切替スイッチと、複数の充電用インレットと複数の電池パックとの間に配置された複数の第1電力供給経路と、複数の第1電力供給経路の内、少なくとも2つを接続する第2電力供給経路とを含み、切替スイッチは、第2電力供給経路に設けられ、第1制御信号に応答して、第2電力供給経路における電力供給のオン及びオフを切り替える第1スイッチを含む。 The switching device according to the first aspect of the present disclosure is provided between the plurality of charging inlets provided in the electric vehicle and the plurality of battery packs mounted on the electric vehicle, and each of the plurality of battery packs is provided. A changeover switch that switches the connection path between multiple charging inlets and multiple battery packs, and a switch located between multiple charging inlets and multiple battery packs so that any of the multiple charging inlets can be connected. A plurality of first power supply paths and a second power supply path connecting at least two of the plurality of first power supply paths are included, and a changeover switch is provided in the second power supply path and is a first. It includes a first switch that switches power supply on and off in the second power supply path in response to a control signal.
 本開示の第2の局面に係る車載切替システムは、電動車両に搭載される複数の電池パックと、電動車両に設けられる複数の充電用インレットと複数の電池パックとの間に設けられる、上記したいずれかの切替装置とを含む。 The vehicle-mounted switching system according to the second aspect of the present disclosure is provided between a plurality of battery packs mounted on an electric vehicle, a plurality of charging inlets provided on the electric vehicle, and a plurality of battery packs, as described above. Including any switching device.
 本開示の第3の局面に係るスイッチ制御方法は、第1及び第2充電用インレットと第1及び第2電池パックとの間に設けられ、第1及び第2充電用インレットと第1及び第2電池パックとの間の接続を切り替えるスイッチ回路を制御するスイッチ制御方法であって、スイッチ回路は、第1及び第2充電用インレットからの充電系統を電気的に分離又は結合可能なスイッチ部と、第1及び第2充電用インレットとスイッチ部との間に配置された第1及び第2コンタクタとを含み、第1及び第2充電用インレットのいずれかに充電プラグが接続されたことに応答して、スイッチ回路を制御することにより、第1及び第2充電用インレットからの充電系統を分離するステップと、第1及び第2充電用インレットからの充電系統の各々について、充電のための安全性診断と適合性判定とを行うステップと、安全性診断と適合性判定との結果がいずれも安全であると判定されたことに応答して、充電プラグに対して充電開始を許可する信号を送信するステップと、安全性診断と適合性判定との結果がいずれも安全であると判定されたことに応答して、充電プラグが接続された充電用インレットに接続された第1コンタクタ又は第2コンタクタをオンとするステップとを含む。 The switch control method according to the third aspect of the present disclosure is provided between the first and second charging inlets and the first and second battery packs, and the first and second charging inlets and the first and first charging inlets are provided. 2 A switch control method that controls a switch circuit that switches the connection between the battery pack and the battery pack. The switch circuit is a switch unit capable of electrically separating or coupling the charging system from the first and second charging inlets. , Includes first and second contactors located between the first and second charging inlets and the switch section, and responds to the connection of a charging plug to any of the first and second charging inlets. Then, by controlling the switch circuit, the step of separating the charging system from the first and second charging inlets and the safety for charging each of the charging systems from the first and second charging inlets. In response to the step of performing the sexual diagnosis and the conformity determination and the result of the safety diagnosis and the conformity determination being determined to be safe, a signal for permitting the charging plug to start charging is sent. The first contactor or the second contactor connected to the charging inlet to which the charging plug is connected in response to the transmission step and the result of the safety diagnosis and the conformity judgment being both determined to be safe. Includes a step to turn on the contactor.
図1は、この開示の第1実施形態に係る急速充電システムの概略を示す図である。FIG. 1 is a diagram illustrating an outline of a quick charging system according to the first embodiment of the present disclosure. 図2は、図1に示す車両の充電関係に関する機能的ブロック図である。FIG. 2 is a functional block diagram relating to the charging of the vehicle shown in FIG. 図3は、図2に示すスイッチボックスのより詳細なブロック図である。FIG. 3 is a more detailed block diagram of the switch box shown in FIG. 図4Aは、図2に示す車両に1台の充電器が接続されたときに安全性診断と適合性判定を行う場合のスイッチボックスの切替状態を説明する図である。FIG. 4A is a diagram illustrating a switching state of the switch box when a safety diagnosis and a compatibility determination are performed when one charger is connected to the vehicle shown in FIG. 2. 図4Bは、図2に示す車両に2台の充電器が接続されたときに安全性診断と適合性判定を行う場合のスイッチボックスの切替状態を説明する図である。FIG. 4B is a diagram illustrating a switching state of the switch box when a safety diagnosis and a compatibility determination are performed when two chargers are connected to the vehicle shown in FIG. 2. 図4Cは、図2に示す車両に3台の充電器が接続されたときに安全性診断と適合性判定を行う場合のスイッチボックスの切替状態を説明する図である。FIG. 4C is a diagram illustrating a switching state of the switch box when safety diagnosis and conformity determination are performed when three chargers are connected to the vehicle shown in FIG. 2. 図5Aは、図2に示す車両に1台の充電器で充電を行う場合のスイッチボックスの切替状態を説明する図である。FIG. 5A is a diagram illustrating a switching state of the switch box when charging the vehicle shown in FIG. 2 with one charger. 図5Bは、図2に示す車両に2台の充電器で充電を行う場合のスイッチボックスの切替状態を説明する図である。FIG. 5B is a diagram illustrating a switching state of the switch box when charging the vehicle shown in FIG. 2 with two chargers. 図5Cは、図2に示す車両に3台の充電器で充電を行う場合のスイッチボックスの切替状態を説明する図である。FIG. 5C is a diagram illustrating a switching state of the switch box when charging the vehicle shown in FIG. 2 with three chargers. 図6は、3個の電池パックの電圧が一致しているときの充電及び放電時の各電池パックの容量を示す模式図である。FIG. 6 is a schematic diagram showing the capacities of each battery pack during charging and discharging when the voltages of the three battery packs match. 図7は、3個の電池パックの電圧が一致していないときの充電時及び放電時に発生する容量ロスを示す模式図である。FIG. 7 is a schematic diagram showing the capacity loss that occurs during charging and discharging when the voltages of the three battery packs do not match. 図8は、この開示の第1実施形態における充電時の各電池パックの容量変化を示す模式図である。FIG. 8 is a schematic diagram showing a change in the capacity of each battery pack during charging according to the first embodiment of the present disclosure. 図9は、この開示の第1実施形態における放電時の各電池パックの容量変化を示す模式図である。FIG. 9 is a schematic diagram showing a change in the capacity of each battery pack at the time of discharging in the first embodiment of the present disclosure. 図10は、この開示の第1実施形態における放電時のスイッチボックスの切替状態を説明するための図である。FIG. 10 is a diagram for explaining a switching state of the switch box at the time of discharging in the first embodiment of the present disclosure. 図11は、この開示の第1実施形態における充電処理を実現するためのコンピュータプログラムの制御構造を示すフローチャートである。FIG. 11 is a flowchart showing a control structure of a computer program for realizing the charging process according to the first embodiment of the disclosure. 図12は、この開示の第2実施形態に係る車両の充電に関する部分を示すブロック図である。FIG. 12 is a block diagram showing a portion related to charging of the vehicle according to the second embodiment of the disclosure. 図13は、図12に示す車両において、ハイパワー充電器を用いて充電を行う場合のスイッチボックスの切替状態を説明するための図である。FIG. 13 is a diagram for explaining a switching state of the switch box when charging is performed using the high power charger in the vehicle shown in FIG. 12. 図14は、図12に示す車両において、通常の充電器を2台用いて充電を行う場合のスイッチボックスの切替状態を説明するための図である。FIG. 14 is a diagram for explaining a switching state of the switch box when charging is performed using two normal chargers in the vehicle shown in FIG. 12. 図15は、図12に示す車両において、通常の充電器を2台用いて2個の電池パックの電圧のバランス処理を行う場合のスイッチボックスの切替状態を説明するための図である。FIG. 15 is a diagram for explaining a switching state of a switch box when performing voltage balancing processing of two battery packs using two normal chargers in the vehicle shown in FIG. 12. 図16は、この開示の第3実施形態において車両に蓄積された電力を利用する方法を示すブロック図である。FIG. 16 is a block diagram showing a method of utilizing the electric power stored in the vehicle in the third embodiment of the disclosure.
 [開示が解決しようとする課題]
 特許文献1は、複数の充電器を用い、複数の電池パックを充電する車両の充電システムを開示している。このシステムでは、コントローラが、複数の電池パックの残存容量から定まる必要電力と複数の充電器の定格出力電力とに応じ、電力を供給する充電器の数を変更する。
[Issues to be solved by disclosure]
Patent Document 1 discloses a vehicle charging system that uses a plurality of chargers to charge a plurality of battery packs. In this system, the controller changes the number of chargers to supply power according to the required power determined by the remaining capacity of multiple battery packs and the rated output power of multiple chargers.
 こうしたシステムにより、複数の充電器を用いて複数の電池パックをパラレルに充電できる。十分な電力が供給できればこの構成により充電に必要な時間を短縮可能である。 With such a system, multiple battery packs can be charged in parallel using multiple chargers. If sufficient power can be supplied, this configuration can shorten the time required for charging.
 しかし、特許文献1に開示のシステムは、複数のバッテリを充電するために必要な充電器の数が十分にあることが前提である。さらに、またどの充電器を利用するかについて、充電器側のシステムが制御する必要があり、既存の充電器をそのまま使用することも、出力電力の異なる充電器をあわせて使用することも難しい。 However, the system disclosed in Patent Document 1 is premised on a sufficient number of chargers required to charge a plurality of batteries. Furthermore, it is necessary for the system on the charger side to control which charger to use, and it is difficult to use the existing charger as it is or to use chargers with different output powers together.
 したがってこの開示は、少なくとも既存の充電器を改造することなく用いて効率的に複数の電池パックを充電できる切替装置、車載切替システム、及びスイッチ制御方法を提供することを目的とする。 Therefore, this disclosure is intended to provide a switching device, an in-vehicle switching system, and a switch control method that can efficiently charge a plurality of battery packs by using at least an existing charger without modification.
 [本開示の実施形態の説明]
 以下の説明及び図面では、同一の部品には同一の参照番号を付してある。それらの機能も同一である。したがって、それらについての詳細な説明は繰返さない。なお、以下に記載した各実施形態の少なくとも一部を組み合わせてもよい。
[Explanation of Embodiments of the present disclosure]
In the following description and drawings, the same parts are given the same reference numbers. Their functions are also the same. Therefore, detailed explanations about them will not be repeated. In addition, at least a part of each embodiment described below may be combined.
 (1)本開示の第1の局面に係る切替装置は、電動車両に設けられる複数の充電用インレットと、電動車両に搭載される複数の電池パックとの間に設けられ、複数の電池パックの各々が、複数の充電用インレットのいずれとも接続可能なように、複数の充電用インレットと複数の電池パックとの接続経路を切り替える切替スイッチと、複数の充電用インレットと複数の電池パックとの間に配置された複数の第1電力供給経路と、複数の第1電力供給経路の内、少なくとも2つを接続する第2電力供給経路とを含み、切替スイッチは、第2電力供給経路に設けられ、第1制御信号に応答して、第2電力供給経路における電力供給のオン及びオフを切り替える第1スイッチを含む。 (1) The switching device according to the first aspect of the present disclosure is provided between a plurality of charging inlets provided in an electric vehicle and a plurality of battery packs mounted on the electric vehicle, and is provided between the plurality of battery packs. A changeover switch that switches the connection path between multiple charging inlets and multiple battery packs, and between multiple charging inlets and multiple battery packs so that each can be connected to any of multiple charging inlets. A plurality of first power supply paths arranged in the above and a second power supply path connecting at least two of the plurality of first power supply paths are included, and a changeover switch is provided in the second power supply path. , Includes a first switch that switches power supply on and off in the second power supply path in response to the first control signal.
 第2電力供給経路が、少なくとも2つの第1電力供給経路の間の電力供給のオン及びオフを切り替える。電力供給をオフに切り替えることにより、個々の第1電力供給経路の安全性診断及び適合性判定を他の電力供給路と別々に行える。その結果、複数の充電器を用いて複数の電池パックを安全に充電できる。 The second power supply path switches the power supply on and off between at least two first power supply paths. By switching the power supply off, the safety diagnosis and suitability determination of each first power supply path can be performed separately from the other power supply paths. As a result, a plurality of battery packs can be safely charged using a plurality of chargers.
 (2)切替スイッチはさらに、複数の第1電力供給経路の各々に設けられ、それぞれ第2制御信号に応答して、複数の第1電力供給経路における電力供給のオン及びオフを切り替える複数の第2スイッチを含んでもよい。 (2) The changeover switch is further provided in each of the plurality of first power supply paths, and in response to each of the second control signals, a plurality of first power supply paths for switching on and off of power supply in the plurality of first power supply paths. It may include two switches.
 第1電力供給路のオン及びオフが第2スイッチにより個別に切り替えられる。電池パックを個別に受電したり同時に充電したりすることが可能になる。その結果、電池パックの充電時のバランス処理を容易に行える。 The first power supply path can be turned on and off individually by the second switch. Battery packs can be individually received and charged at the same time. As a result, the balance process at the time of charging the battery pack can be easily performed.
 (3)切替装置は、切替スイッチと複数の電池パックとの間に設けられ、切替スイッチと複数の電池パックとの接続経路を切り替えるサブ切替スイッチをさらに含んでもよく、サブ切替スイッチは、電池パック同士が直列接続された状態と、並列接続された状態とを切り替えるスイッチを含んでもよい。 (3) The changeover device may be provided between the changeover switch and the plurality of battery packs, and may further include a sub changeover switch for switching the connection path between the changeover switch and the plurality of battery packs, and the sub changeover switch is a battery pack. It may include a switch for switching between a state in which they are connected in series and a state in which they are connected in parallel.
 サブ切替スイッチは、複数の電池パックを直列接続にした状態と並列接続にした状態との間で電池パックの接続経路を切り替える。高電圧による充電時には複数の電池パックを直列に接続し、通常の電圧による充電時には、複数の電池パックを並列に接続できる。充電器の電圧により電池パックの接続を切り替えることができるため、高電圧による充電と通常電圧による充電との双方が可能になる。 The sub changeover switch switches the connection path of the battery pack between the state where multiple battery packs are connected in series and the state where they are connected in parallel. When charging with high voltage, multiple battery packs can be connected in series, and when charging with normal voltage, multiple battery packs can be connected in parallel. Since the connection of the battery pack can be switched by the voltage of the charger, both charging by high voltage and charging by normal voltage become possible.
 (4)切替スイッチ及びサブ切替スイッチの少なくとも一方は、電動車両に搭載される車載制御装置によって制御されてもよい。 (4) At least one of the changeover switch and the sub changeover switch may be controlled by an in-vehicle control device mounted on the electric vehicle.
 切替スイッチ及びサブ切替スイッチの少なくとも一方は、充電器側で制御する必要がない。両者が車載制御装置によって制御される場合には、いずれも充電器側で制御する必要がない。そのため、充電器側の改造をできるだけ少なくしたり、全く必要なくしたりできる。その結果、充電器側の改造の必要をできるだけ小さくしながら、複数の充電器を高電圧と通常電圧の双方の充電器を用いて効率よく充電できる。 At least one of the changeover switch and the sub changeover switch does not need to be controlled on the charger side. When both are controlled by the in-vehicle control device, neither needs to be controlled on the charger side. Therefore, the modification on the charger side can be minimized or eliminated at all. As a result, a plurality of chargers can be efficiently charged using both high voltage and normal voltage chargers while minimizing the need for modification on the charger side.
 (5)切替装置は、さらに、複数の充電用インレットと切替スイッチの間にそれぞれ設けられた複数のコンタクタを含んでもよい。 (5) The changeover device may further include a plurality of contactors provided between the plurality of charging inlets and the changeover switch.
 複数の充電用インレットと切替スイッチとの間にそれぞれコンタクタがもうけられる。したがって、各充電用インレットに接続された充電プラグと車載装置との間で充電前の安全性診断及び適合性判定が個々の充電用インレットについて個別に行える。その結果、複数の充電用インレットを用いて複数の電池パックを適切に充電できる。 A contactor is provided between multiple charging inlets and the changeover switch. Therefore, the safety diagnosis and the suitability determination before charging can be individually performed for each charging inlet between the charging plug connected to each charging inlet and the in-vehicle device. As a result, a plurality of battery packs can be appropriately charged using the plurality of charging inlets.
 (6)充電用インレットには、複数の電池パックに電力を供給するための充電器が電気的に接続されてもよく、車載制御装置は、充電用インレットに充電器が接続されたことに応答して、充電器と通信して複数の電池パックの状態情報を充電器に提供してもよく、切替スイッチは、状態情報に応じて充電器から供給される電力によって複数の電池パックを充電するために、車載制御装置の制御の下で、接続経路を切り替えてもよい。 (6) A charger for supplying power to a plurality of battery packs may be electrically connected to the charging inlet, and the in-vehicle control device responds to the fact that the charger is connected to the charging inlet. Then, the state information of the plurality of battery packs may be provided to the charger by communicating with the charger, and the changeover switch charges the plurality of battery packs by the electric power supplied from the charger according to the state information. Therefore, the connection path may be switched under the control of the vehicle-mounted control device.
 車載制御装置により複数の電池パックの電力を監視しながら、充電器から供給される電力で電池パックを充電するように、切替スイッチにより接続経路が切り替えられる。複数の電池パックを充電するときに、電池パックの間のバランス処理を行える。 While monitoring the power of multiple battery packs with the in-vehicle control device, the connection route can be switched by the changeover switch so that the battery packs are charged with the power supplied from the charger. When charging multiple battery packs, balance processing between battery packs can be performed.
 (7)本開示の第2の局面に係る車載切替システムは、電動車両に搭載される複数の電池パックと、電動車両に設けられる複数の充電用インレットと複数の電池パックとの間に設けられる、上記したいずれかの切替装置とを含む。 (7) The vehicle-mounted switching system according to the second aspect of the present disclosure is provided between a plurality of battery packs mounted on an electric vehicle, a plurality of charging inlets provided on the electric vehicle, and a plurality of battery packs. , Includes any of the above switching devices.
 複数の電池パックを、切替装置で接続を切り替えて複数の充電器でパラレルに充電するために、充電器側を改造する必要がない。従来の充電器を用いて、複数の充電器を効率的に充電できる。 There is no need to modify the charger side to charge multiple battery packs in parallel with multiple chargers by switching the connection with the switching device. Multiple chargers can be efficiently charged using conventional chargers.
 (8)車載システムは、切替装置とともに電動車両に搭載され、切替装置を制御する車載制御装置を含む。 (8) The in-vehicle system includes an in-vehicle control device that is mounted on an electric vehicle together with a switching device and controls the switching device.
 車載制御装置が切替装置を制御するので充電器側で切替装置を制御する必要がない。そのため、充電器側の改造をできるだけ少なくしたり、改造の必要が全くないようにしたりできる。その結果、充電器側の改造の必要をできるだけ小さくしながら、複数の充電器を複数の充電器を用いて効率よく充電できる。 Since the in-vehicle control device controls the switching device, there is no need to control the switching device on the charger side. Therefore, it is possible to reduce the number of modifications on the charger side as much as possible, or to eliminate the need for modification at all. As a result, a plurality of chargers can be efficiently charged by using a plurality of chargers while minimizing the need for modification on the charger side.
 (9)本開示の第3の局面に係るスイッチ制御方法は、第1及び第2充電用インレットと第1及び第2電池パックとの間に設けられ、第1及び第2充電用インレットと第1及び第2電池パックとの間の接続を切り替えるスイッチ回路を制御するスイッチ制御方法であって、スイッチ回路は、第1及び第2充電用インレットからの充電系統を電気的に分離又は結合可能なスイッチ部と、第1及び第2充電用インレットとスイッチ部との間に配置された第1及び第2コンタクタとを含み、第1及び第2充電用インレットのいずれかに充電プラグが接続されたことに応答して、スイッチ回路を制御することにより、第1及び第2充電用インレットからの充電系統を分離するステップと、第1及び第2充電用インレットからの充電系統の各々について、充電のための安全性診断と適合性判定とを行うステップと、安全性診断と適合性判定との結果がいずれも安全であると判定されたことに応答して、充電プラグに対して充電開始を許可する信号を送信するステップと、安全性診断と適合性判定との結果がいずれも安全であると判定されたことに応答して、充電プラグが接続された充電用インレットに接続された第1コンタクタ又は第2コンタクタをオンとするステップとを含む。 (9) The switch control method according to the third aspect of the present disclosure is provided between the first and second charging inlets and the first and second battery packs, and the first and second charging inlets and the first. A switch control method for controlling a switch circuit that switches the connection between the first and second battery packs, wherein the switch circuit can electrically separate or couple the charging system from the first and second charging inlets. A charging plug is connected to either the first or second charging inlet, including the switch unit and the first and second contactors arranged between the first and second charging inlets and the switch unit. In response to this, by controlling the switch circuit, the step of separating the charging system from the first and second charging inlets and the charging system of each of the charging systems from the first and second charging inlets are charged. Allows the charging plug to start charging in response to the step of performing the safety diagnosis and conformity judgment for the purpose and the result of both the safety diagnosis and the conformity judgment being judged to be safe. The first contactor connected to the charging inlet to which the charging plug is connected in response to the step of transmitting the signal to be performed and the result of the safety diagnosis and the conformity judgment being both determined to be safe. Alternatively, it includes a step of turning on the second contactor.
 第1及び第2充電用インレットのいずれかに充電プラグが接続されると、第1及び第2充電用インレットからの充電系統が分離される。その状態で充電系統の各々について、充電のための安全性診断と適合性判定とが行える。その結果、複数の充電用インレットを用いて複数の電池パックを安全に充電できる。 When the charging plug is connected to either the first or second charging inlet, the charging system from the first and second charging inlets is separated. In that state, safety diagnosis and conformity determination for charging can be performed for each of the charging systems. As a result, a plurality of battery packs can be safely charged using a plurality of charging inlets.
 (10)スイッチ制御方法は、第1及び第2電池パックの各々について充電開始時の電圧を取得するステップと、第1及び第2電池パックの電圧を比較するステップと、第1及び第2電池パックの電圧が異なることに応答して、第1及び第2電池パックの内、電圧が高い一方の電池パックをスイッチ回路から切り離すようスイッチ回路を制御し、電圧が低い他方の電池パックを、一方の電池パックの電圧と等しくなるまで充電するステップと、第1及び第2電池パックの電圧が等しくなったことに応答して、一方の電池パックをスイッチ回路に接続するようスイッチ回路を制御し、他方の電池パックとともに、所定の充電終止電圧となるまで充電を行うステップとをさらに含んでもよい。 (10) The switch control method includes a step of acquiring the voltage at the start of charging for each of the first and second battery packs, a step of comparing the voltages of the first and second battery packs, and the first and second batteries. In response to different pack voltages, the switch circuit is controlled so that one of the first and second battery packs, which has a higher voltage, is disconnected from the switch circuit, and the other battery pack, which has a lower voltage, is used. Control the switch circuit to connect one of the battery packs to the switch circuit in response to the step of charging until it becomes equal to the voltage of the battery pack of 1 and the voltage of the 1st and 2nd battery packs becomes equal. Along with the other battery pack, it may further include a step of charging until a predetermined end-of-charge voltage is reached.
 (11)スイッチ制御方法は、第1及び第2電池パックからの放電が要求されたことに応答して、第1及び第2電池パックの各々の放電開始時の電圧を取得するステップと、第1及び第2電池パックの放電開始時の電圧を比較するステップと、第1及び第2電池パックの放電開始時の放電電圧が異なることに応答して、第1及び第2電池パックの内、放電開始時の電圧が低いいずれかの電池パックをスイッチ回路から切り離すようスイッチ回路を制御し、放電開始時の電圧が高い残りの電池パックから、当該残りの電池パックの電圧がいずれかの電池パックの放電開始時の電圧と等しくなるまで放電するステップと、残りの電池パックの電圧がいずれかの電池パックの放電時の電圧と等しくなったことに応答して、いずれかの電池パックをスイッチ回路に接続するようスイッチ回路を制御し、残りの電池パックとともに、所定の放電終止電圧となるまで放電を行うステップとをさらに含んでもよい。 (11) The switch control method includes a step of acquiring the voltage at the start of each discharge of the first and second battery packs in response to the request for discharge from the first and second battery packs, and the first step. Of the first and second battery packs, in response to the step of comparing the voltages at the start of discharge of the first and second battery packs and the difference in the discharge voltages at the start of discharge of the first and second battery packs. The switch circuit is controlled so that one of the battery packs having a low voltage at the start of discharge is disconnected from the switch circuit, and the voltage of the remaining battery pack is the battery pack of one of the remaining battery packs having a high voltage at the start of discharge. Switch circuit of one of the battery packs in response to the step of discharging until it becomes equal to the voltage at the start of discharging of the battery and the voltage of the remaining battery pack becomes equal to the voltage at the time of discharging of one of the battery packs. It may further include a step of controlling the switch circuit to connect to, and with the remaining battery pack, discharging until a predetermined end-of-discharge voltage is reached.
 (12)スイッチ制御方法は、第1及び第2充電用インレットのいずれに充電プラグが接続されたか、その個数及び位置にしたがって、予め定められた接続の切替を行うようスイッチ回路を制御し、第1及び第2電池パックの双方の充電を行うステップをさらに含んでもよい。 (12) In the switch control method, the switch circuit is controlled so as to switch a predetermined connection according to the number and position of the charging plug connected to either the first or second charging inlet. Further may include a step of charging both the 1st and 2nd battery packs.
 (13)スイッチ制御方法は、第1及び第2充電用インレットのいずれに充電プラグが接続されたか、その個数、位置及び充電電力の大きさにしたがって、予め定められた接続の切替を行うようスイッチ回路を制御し、第1及び第2電池パックの双方の充電を直列又は並列に行うステップをさらに含んでもよい。 (13) The switch control method is a switch for switching a predetermined connection according to which of the first and second charging inlets the charging plug is connected to, the number, the position, and the magnitude of the charging power. Further may include a step of controlling the circuit and charging both the first and second battery packs in series or in parallel.
 (14)スイッチ制御方法は、第1及び第2充電用インレットのいずれかに充放電器が接続されたことに応答して、第1電池パック、又は第2電池パック若しくはその双方が当該いずれかの充電用インレットに接続されるようスイッチ回路を制御し、当該充電用インレットを介して充放電器に電力を供給するステップをさらに含んでもよい。 (14) In the switch control method, in response to the charging / discharging device being connected to either the first or second charging inlet, the first battery pack, the second battery pack, or both of them are the same. It may further include a step of controlling the switch circuit to be connected to the charging inlet and supplying power to the charger / discharger via the charging inlet.
 (15)第1及び第2電池パックは同じ仕様であってもよい。 (15) The first and second battery packs may have the same specifications.
 [開示の効果]
 以上のようにこの開示によると、少なくとも既存の充電器を改造することなく用いて効率的に複数の電池パックを充電できる切替装置、車載切替システム、及びスイッチ制御方法を提供できる。
 [本開示の実施形態の詳細]
 本開示の実施形態に係る切替装置、車載切替システム、及びスイッチ制御方法の具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。この開示のその他の構成及び効果は、添付した図面と以下の詳細な説明とによりさらに明確となるであろう。
[Effect of disclosure]
As described above, according to this disclosure, it is possible to provide a switching device, an in-vehicle switching system, and a switch control method that can efficiently charge a plurality of battery packs by using at least an existing charger without modification.
[Details of Embodiments of the present disclosure]
Specific examples of the switching device, the vehicle-mounted switching system, and the switch control method according to the embodiment of the present disclosure will be described below with reference to the drawings. It should be noted that the present disclosure is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. Other configurations and effects of this disclosure will be further clarified by the accompanying drawings and the detailed description below.
 <第1実施形態>
 [構成]
 図1は、この開示の第1実施形態に係る急速充電システム50の概略を示す図である。図1を参照して、電池パックからの電力により駆動される車両60は、インレット62、インレット64及びインレット66を含む。第1実施形態ではインレットが3個の場合を示すが、2個でも4個以上でもよい。車両60は図1には示していないが3個の同じ仕様の電池パックを含む。
<First Embodiment>
[Constitution]
FIG. 1 is a diagram showing an outline of a quick charging system 50 according to the first embodiment of the present disclosure. With reference to FIG. 1, the vehicle 60 driven by electric power from the battery pack includes an inlet 62, an inlet 64 and an inlet 66. In the first embodiment, the case where the number of inlets is three is shown, but two or four or more inlets may be used. Vehicle 60 includes three battery packs of the same specifications, not shown in FIG.
 この例では、インレット62、インレット64及びインレット66は、それぞれ従来の低電力の急速充電器70、急速充電器72及び急速充電器74の内、任意のものに接続可能である。急速充電器70、急速充電器72及び急速充電器74はインレット62、インレット64及びインレット66に接続されると、これらを介して上記した3個の電池パックを充電する。最大で3個の充電器を用いて3個の電池パックを充電できるので、1個の充電器を用いて3個の電池パック(又はこれと同じ容量の1個の電池パック)を充電する場合と比較して、約3分の1の時間で電池パックの充電を完了できる。 In this example, the inlet 62, the inlet 64, and the inlet 66 can be connected to any of the conventional low power quick charger 70, quick charger 72, and quick charger 74, respectively. When the quick charger 70, the quick charger 72 and the quick charger 74 are connected to the inlet 62, the inlet 64 and the inlet 66, the above-mentioned three battery packs are charged through them. Since 3 battery packs can be charged using up to 3 chargers, when charging 3 battery packs (or 1 battery pack with the same capacity) using 1 charger The battery pack can be fully charged in about one-third of the time.
 図2は、図1に示す車両60の充電関係に関する機能的ブロック図である。図2を参照して、車両60は、上記したインレット62、インレット64、インレット66と、コンタクタ80と、スイッチボックス82と、電池パック84、電池パック88及び電池パック92と、BMS(Battery Manegement system)86、BMS90及びBMS94と、車載装置であるECU(Electronic Control Unit)96とを含む。なお、図2ではインレット62、インレット64及びインレット66にそれぞれ急速充電器70、急速充電器72及び急速充電器74が接続されている。しかしこの実施形態では、既に述べたように1個から3個の任意の急速充電器を用いて電池パック84、電池パック88及び電池パック92を充電できる。またそれらがインレット62、インレット64及びインレット66のどこに接続されても同様の充電が行える。 FIG. 2 is a functional block diagram relating to charging of the vehicle 60 shown in FIG. With reference to FIG. 2, the vehicle 60 includes the above-mentioned inlet 62, inlet 64, inlet 66, contactor 80, switch box 82, battery pack 84, battery pack 88 and battery pack 92, and a BMS (Battery Management system). ) 86, BMS90 and BMS94, and an ECU (Electronic Control Unit) 96 which is an in-vehicle device. In FIG. 2, the quick charger 70, the quick charger 72, and the quick charger 74 are connected to the inlet 62, the inlet 64, and the inlet 66, respectively. However, in this embodiment, the battery pack 84, the battery pack 88, and the battery pack 92 can be charged using any one to three quick chargers as described above. Further, the same charging can be performed regardless of where they are connected to the inlet 62, the inlet 64 and the inlet 66.
 インレット62、インレット64及びインレット66は、それぞれ急速充電器との間で電力供給線、CAN(Controller Area Network)ケーブル、及びDC回路用配線とからなる一組の配線で接続可能である。電力供給線は電池パック84、電池パック88及び電池パック92に充電電力を供給するために使用される。CANケーブルは、ECU96と急速充電器70、急速充電器72及び急速充電器74との間で制御信号を送受信するためにECU96が使用する。DC回路用配線は、急速充電器70等がインレット62に接続されるときの安全性を確保するためのアナログ信号処理のためにECU96が使用する。なお、DC回路用配線は、図では1本として記載しているが実際には複数の配線を含む。 The inlet 62, the inlet 64, and the inlet 66 can be connected to the quick charger by a set of wiring including a power supply line, a CAN (Control Area Area Network) cable, and a DC circuit wiring, respectively. The power supply line is used to supply charging power to the battery pack 84, the battery pack 88, and the battery pack 92. The CAN cable is used by the ECU 96 to send and receive control signals between the ECU 96 and the quick charger 70, the quick charger 72 and the quick charger 74. The DC circuit wiring is used by the ECU 96 for analog signal processing for ensuring safety when the quick charger 70 or the like is connected to the inlet 62. Although the DC circuit wiring is shown as one in the figure, it actually includes a plurality of wirings.
 ECU96は、BMS86、90及び94から、電池パック84、88及び92の充電状況(電圧等)を取得し、急速充電器70、72又は74との通信によりコンタクタ80及びスイッチボックス82の切替を制御するためのプログラムを実行して制御信号を出力するマイクロコンピュータと、急速充電器70、72、又は74との間でDC回路による制御信号の交信を行うための、各充電経路に対応して設けられたDC制御回路と、急速充電器70、72、又は74とマイクロコンピュータとの間のデジタル通信を提供するCAN-TR(Transceiver)とを含む。 The ECU 96 acquires the charging status (voltage, etc.) of the battery packs 84, 88, and 92 from the BMS 86, 90, and 94, and controls switching between the contactor 80 and the switch box 82 by communicating with the quick charger 70, 72, or 74. Provided corresponding to each charging path for communicating the control signal by the DC circuit between the microcomputer that executes the program for executing the control signal and outputs the control signal and the quick charger 70, 72, or 74. The DC control circuit is included, and a CAN-TR (Transceiver) that provides digital communication between the quick charger 70, 72, or 74 and the microcomputer is included.
 コンタクタ80は、インレット62、インレット64及びインレット66とスイッチボックス82との間の電力供給線にそれぞれ設けられた3つのコンタクタを含む。 The contactor 80 includes three contactors provided on the power supply line between the inlet 62, the inlet 64, and the inlet 66 and the switch box 82, respectively.
 図3を参照して、スイッチボックス82は3個のノードN1、ノードN2及びノードN3と、ノードN1とインレット62とを接続するインレット側電力供給線100と、ノードN1と電池パック84とを接続する電池パック側電力供給線102と、ノードN2とインレット64とを接続するインレット側電力供給線104と、ノードN2と電池パック88とを接続する電池パック側電力供給線106と、ノードN3とインレット66とを接続するインレット側電力供給線108と、ノードN3と電池パック92とを接続する電池パック側電力供給線110とを含む。 Referring to FIG. 3, the switch box 82 connects three nodes N1, N2 and N3, an inlet side power supply line 100 connecting the node N1 and the inlet 62, and the node N1 and the battery pack 84. Battery pack side power supply line 102, inlet side power supply line 104 connecting node N2 and inlet 64, battery pack side power supply line 106 connecting node N2 and battery pack 88, node N3 and inlet It includes an inlet-side power supply line 108 connecting the 66 and a battery pack-side power supply line 110 connecting the node N3 and the battery pack 92.
 スイッチボックス82はさらに、ノードN1とノードN2とを接続する電力供給線112と、ノードN2とノードN3とを接続する電力供給線114と、ノードN3とノードN1とを接続する電力供給線116とを含む。スイッチボックス82はさらに、電力供給線112に設けられ、ノードN1とノードN2との間の接続をオン及びオフするためのスイッチC1と、電力供給線114に設けられ、ノードN2とノードN3との間の接続をオン及びオフするためのスイッチC2と、電力供給線116に設けられ、ノードN1とノードN3との間の接続をオン及びオフするためのスイッチC3とを含む。 The switch box 82 further includes a power supply line 112 connecting the node N1 and the node N2, a power supply line 114 connecting the node N2 and the node N3, and a power supply line 116 connecting the node N3 and the node N1. including. The switch box 82 is further provided on the power supply line 112 with a switch C1 for turning on and off the connection between the node N1 and the node N2, and is provided on the power supply line 114 with the node N2 and the node N3. It includes a switch C2 for turning on and off the connection between the nodes and a switch C3 provided on the power supply line 116 for turning on and off the connection between the node N1 and the node N3.
 個別スイッチボックス98は、電池パック側電力供給線102に設けられ、ノードN1と電池パック84との接続をオン及びオフするためのスイッチP1と、電池パック側電力供給線106に設けられ、ノードN2と電池パック88との接続をオン及びオフするためのスイッチP2と、電池パック側電力供給線110に設けられ、電池パック側電力供給線110と電池パック92との接続をオン及びオフするためのスイッチP3とを含む。これはスイッチは、いずれも図2に示すECU96により制御されて動作する。 The individual switch box 98 is provided on the battery pack side power supply line 102, is provided on the switch P1 for turning on and off the connection between the node N1 and the battery pack 84, and is provided on the battery pack side power supply line 106, and is provided on the battery pack side power supply line 106. A switch P2 for turning on and off the connection between the battery pack 88 and the battery pack 88, and a switch P2 provided on the battery pack side power supply line 110 for turning on and off the connection between the battery pack side power supply line 110 and the battery pack 92. Includes switch P3. All of the switches operate under the control of the ECU 96 shown in FIG.
 図4A、図4B及び図4Cはそれぞれ、図2に示す車両60に1台、2台及び3台の充電器が接続されたときに安全性診断と適合性判定を行う場合のスイッチボックス82の切替状態をそれぞれ説明する図である。 4A, 4B and 4C show the switch box 82 for performing safety diagnosis and conformity determination when one, two and three chargers are connected to the vehicle 60 shown in FIG. 2, respectively. It is a figure explaining each switching state.
 図4A、図4B及び図4Cに示されるように、この実施形態では、安全性診断と適合性判定を行う場合には、図3に示すスイッチC1、スイッチC2及びスイッチC3を図2に示すECU96の制御によりオフさせる。また図3に示すスイッチP1、スイッチP2及びスイッチP3をいずれもECU96の制御によりオンさせる。するとインレット62と電池パック84との間の電力供給経路、インレット64と電池パック88との間の電力供給経路、及びインレット66と電池パック92との間の電力供給経路が互いに電気的に分離される。この状態で、ECU96が、従来の単独インレットの場合と同様の手順で各電力供給経路についての安全性診断と適合性判定とを行う。このような構成とすることで、各急速充電器は従来と同様の手順にしたがって安全性診断と適合性判定とを行えばよい。互いをパラレルに接続することにより各急速充電器に何らかの改造を行う必要はない。 As shown in FIGS. 4A, 4B and 4C, in this embodiment, when performing safety diagnosis and conformity determination, the switch C1, the switch C2 and the switch C3 shown in FIG. 3 are referred to as the ECU 96 shown in FIG. It is turned off by the control of. Further, all of the switch P1, the switch P2 and the switch P3 shown in FIG. 3 are turned on by the control of the ECU 96. Then, the power supply path between the inlet 62 and the battery pack 84, the power supply path between the inlet 64 and the battery pack 88, and the power supply path between the inlet 66 and the battery pack 92 are electrically separated from each other. To. In this state, the ECU 96 performs safety diagnosis and conformity determination for each power supply path in the same procedure as in the case of the conventional single inlet. With such a configuration, each quick charger may perform safety diagnosis and conformity determination according to the same procedure as before. By connecting each other in parallel, there is no need to make any modifications to each quick charger.
 図5A、図5B及び図5Cはそれぞれ、図2に示す車両60に1台、2台及び3台の充電器で充電を行う場合のスイッチボックス82の切替状態を説明する図である。この実施形態では、図5A、図5B及び図5Cに示すように、いずれの場合にもスイッチC1、スイッチC2及びスイッチC3をオンさせる。この結果、基本的には車両60に接続された急速充電器を全て使用して、電池パック84、電池パック88及び電池パック92をパラレルに充電する。なおこのとき、スイッチP1、スイッチP2及びスイッチP3については、後述するバランス処理に応じて充電対象となる電池パックに対応するものはオンし、充電対象とならない電池パックに対応するものはオフさせる。この制御はECU96が行う。 5A, 5B, and 5C are diagrams for explaining the switching state of the switch box 82 when charging the vehicle 60 shown in FIG. 2 with one, two, and three chargers, respectively. In this embodiment, as shown in FIGS. 5A, 5B and 5C, the switch C1, the switch C2 and the switch C3 are turned on in each case. As a result, basically, all the quick chargers connected to the vehicle 60 are used to charge the battery pack 84, the battery pack 88, and the battery pack 92 in parallel. At this time, regarding the switch P1, the switch P2, and the switch P3, those corresponding to the battery pack to be charged are turned on according to the balance processing described later, and those corresponding to the battery pack not to be charged are turned off. This control is performed by the ECU 96.
 バランス処理とは、電池の放電時及び充電時にできるだけ容量ロスが生じないように、各電池の電圧を同一にそろえる処理のことをいう。 Balance processing refers to processing in which the voltage of each battery is made the same so that capacity loss does not occur as much as possible when the batteries are discharged and charged.
 図6は、3個の電池パックの電圧が一致しているとき、すなわちバランスが取れているときの充電及び放電時の各電池パックの容量を示す模式図である。図6(A)を参照して、充電前の電池パック84、88及び92の電圧が揃っているものとする。この場合、同じ充電電力で同じ時間だけ充電を行うと、図6(B)に示すように、電池パック84、88及び92の全ての電圧が同時に充電終止電圧となり、同時に充電が停止される。またこの状態から同じ放電電力で電池パック84、88及び92の放電を行うと、図6(C)に示すように、電池パック84、88及び92の全ての電圧が同時に放電終止電圧となり、同時に放電が終了する。 FIG. 6 is a schematic diagram showing the capacities of each battery pack during charging and discharging when the voltages of the three battery packs match, that is, when they are balanced. With reference to FIG. 6A, it is assumed that the voltages of the battery packs 84, 88 and 92 before charging are the same. In this case, when charging is performed with the same charging power for the same time, all the voltages of the battery packs 84, 88, and 92 simultaneously become the charging end voltage, and charging is stopped at the same time, as shown in FIG. 6 (B). When the battery packs 84, 88 and 92 are discharged with the same discharge power from this state, all the voltages of the battery packs 84, 88 and 92 become the discharge end voltage at the same time as shown in FIG. 6C, and at the same time. The discharge ends.
 図7は、3個の電池パックの電圧が一致していないときの充電時及び放電時に発生し得る容量ロスを示す模式図である。図7に示すように、電池パック84、88及び92の充電開始前の電圧が、この順番で順番に低くなっているものとする。この状態から同じ充電電力で充電を行うと、図7(B)に示すように、電池パック88及び電池パック92の電圧がまだ充電終止電圧に達していないときに電池パック84が充電終止電圧に達する。ここで電池パック84、88及び92の充電を終了すると、電池パック88及び電池パック92は十分に充電されてない。その結果、容量ロス120及び容量ロス122が発生する。 FIG. 7 is a schematic diagram showing the capacity loss that can occur during charging and discharging when the voltages of the three battery packs do not match. As shown in FIG. 7, it is assumed that the voltages of the battery packs 84, 88, and 92 before the start of charging are sequentially lowered in this order. When charging is performed with the same charging power from this state, as shown in FIG. 7B, the battery pack 84 reaches the end-of-charge voltage when the voltages of the battery pack 88 and the battery pack 92 have not yet reached the end-of-charge voltage. Reach. When the charging of the battery packs 84, 88 and 92 is completed, the battery pack 88 and the battery pack 92 are not sufficiently charged. As a result, capacity loss 120 and capacity loss 122 occur.
 さらに図7(B)に示す状態から放電を開始したものとする。放電電力が同じであれば、図7(C)に示すように、電池パック84及び電池パック88の電圧がまだ放電終止電圧に達していない時点で電池パック92の電圧が最初に放電終止電圧に達する。ここで放電を終了すると、電池パック84及び電池パック88はまだ放電できる電力が残っており、その結果容量ロス130及び容量ロス132が生じる。 Further, it is assumed that the discharge is started from the state shown in FIG. 7 (B). If the discharge powers are the same, as shown in FIG. 7C, the voltage of the battery pack 92 first becomes the discharge end voltage when the voltages of the battery pack 84 and the battery pack 88 have not reached the discharge end voltage yet. Reach. When the discharge is completed here, the battery pack 84 and the battery pack 88 still have electric power that can be discharged, and as a result, the capacity loss 130 and the capacity loss 132 occur.
 以上のように複数の電池パックの電圧のバランスがとれていないと、充電時と放電時との双方で容量ロスが発生し、車両の駆動可能距離が短くなってしまう。そのため、複数の電池パックについてはできるだけ電圧をバランスさせる必要がある。 If the voltages of multiple battery packs are not balanced as described above, capacity loss will occur both during charging and discharging, and the driveable distance of the vehicle will be shortened. Therefore, it is necessary to balance the voltage as much as possible for a plurality of battery packs.
 図8は、この開示の第1実施形態において各電池パックの電圧のバランスを取りながら各電池に充電する場合の、各電池の容量変化を示す模式図である。図8(A)を参照して、例えば電池パック84、88及び92の電圧がこの順番で順に低くなっているものとする。この場合、図8(B)に示すように、まず電池パック92の電圧が電池パック88の電圧と等しくなるように、電池パック92を最初に充電する。電池パック88と電池パック92の電圧が等しくなれば、電池パック88と電池パック92の電圧が電池パック84の電圧と等しくなるまで、電池パック88と電池パック92との充電を行う。その結果、図8(C)に示すように、電池パック84、88及び92の電圧が等しくなる。この状態から電池パック84、88及び92の全てについて同じ充電電力での充電を開始する。そして図8(D)に示すように、電池パック84、88及び92の電圧が充電終止電圧になれば充電を終了する。 FIG. 8 is a schematic diagram showing a change in the capacity of each battery when charging each battery while balancing the voltage of each battery pack in the first embodiment of the disclosure. With reference to FIG. 8A, it is assumed that, for example, the voltages of the battery packs 84, 88 and 92 are decreasing in this order. In this case, as shown in FIG. 8B, the battery pack 92 is first charged so that the voltage of the battery pack 92 becomes equal to the voltage of the battery pack 88. When the voltages of the battery pack 88 and the battery pack 92 become equal, the battery pack 88 and the battery pack 92 are charged until the voltages of the battery pack 88 and the battery pack 92 become equal to the voltage of the battery pack 84. As a result, as shown in FIG. 8C, the voltages of the battery packs 84, 88 and 92 become equal. From this state, charging of all the battery packs 84, 88, and 92 with the same charging power is started. Then, as shown in FIG. 8D, charging ends when the voltages of the battery packs 84, 88 and 92 reach the charging end voltage.
 このような充電方法をとることにより、この実施形態では充電時の容量ロスの発生を防止できる。なお、上の説明で「電圧が等しい」とは、2つの電圧が厳密に等しいことを指すわけではない。もともと電圧の測定には誤差が含まれるので、両者の電圧差が所定のしきい値以下又は未満となったときに両者の電圧が等しいという条件が充足されたものとする。この場合のしきい値はあまり大きいと容量ロスにつながるので、適切な大きさに設定しておく必要がある。 By adopting such a charging method, it is possible to prevent the occurrence of capacity loss during charging in this embodiment. In the above explanation, "equal voltage" does not mean that the two voltages are exactly equal. Since the voltage measurement originally includes an error, it is assumed that the condition that the voltages of the two are equal when the voltage difference between the two becomes equal to or less than a predetermined threshold value is satisfied. If the threshold value in this case is too large, it will lead to capacity loss, so it is necessary to set it to an appropriate size.
 図9は、この開示の第1実施形態における放電時の各電池パックの容量変化を示す模式図である。何らかの原因で図9(A)に示すように、電池パック84、88及び92の電圧に差が生じたものとする。この例では、電圧が高い順で電池パック84、88及び92の順番となっているものとする。この場合、まず電圧が最も高い電池パック、図9の場合には電池パック84の放電を開始する。電池パック88及び電池パック92は放電回路から分離しておく。電池パック84の電圧が降下し、電池パック88の電圧と等しくなった状態を図9(B)に示す。 FIG. 9 is a schematic diagram showing a change in the capacity of each battery pack at the time of discharging in the first embodiment of the disclosure. As shown in FIG. 9A, it is assumed that the voltages of the battery packs 84, 88 and 92 are different for some reason. In this example, it is assumed that the battery packs 84, 88, and 92 are in the order of highest voltage. In this case, first, the battery pack having the highest voltage, and in the case of FIG. 9, the battery pack 84 is started to be discharged. The battery pack 88 and the battery pack 92 are separated from the discharge circuit. FIG. 9B shows a state in which the voltage of the battery pack 84 drops and becomes equal to the voltage of the battery pack 88.
 図9(B)の状態となったところで、電池パック88を放電経路に接続し、電池パック84と電池パック88との両者の放電を開始する。電池パック92は放電経路から分離した状態に維持する。その結果、電池パック84と電池パック88の電圧は互いに等しい状態で低下し、やがて図9(C)に示すように、両者の電圧とBMS94の電圧とが等しくなる。この状態となると電池パック92を放電経路に接続する。その結果、電池パック84、88及び92の電圧が同じ状態で全ての放電が開始する。そして図9(D)に示すように、電池パック84、88及び92の電圧が全て放電終止電圧となったところで放電を終了する。 When the state shown in FIG. 9B is reached, the battery pack 88 is connected to the discharge path, and both the battery pack 84 and the battery pack 88 are started to be discharged. The battery pack 92 is maintained in a state separated from the discharge path. As a result, the voltages of the battery pack 84 and the battery pack 88 decrease in a state of being equal to each other, and eventually, as shown in FIG. 9C, the voltages of both and the voltage of the BMS 94 become equal to each other. In this state, the battery pack 92 is connected to the discharge path. As a result, all discharges are started with the voltages of the battery packs 84, 88 and 92 being the same. Then, as shown in FIG. 9D, the discharge is terminated when all the voltages of the battery packs 84, 88 and 92 reach the discharge end voltage.
 この図9に示すような放電を行うことで、放電時の容量ロスの発生を防止できる。 By performing the discharge as shown in FIG. 9, it is possible to prevent the occurrence of capacity loss during discharge.
 図10は、放電時の車両60の電気的構成を示す。これらから放電された直流電力はインバータ150を介して交流電力に変換され、モータ152を駆動する。スイッチボックス82において、スイッチC1、スイッチC2及びスイッチC3はいずれもオンとする。図9(A)の状態ではスイッチP1のみオンし、スイッチP2及びスイッチP3をオフしておく。この結果、インバータ150への放電経路には電池パック84のみが接続され、電池パック88及び電池パック92は放電経路から分離される。同様に図9(B)となった後は、スイッチP1に加えてスイッチP2もオンさせる。スイッチP3はオフのままである。図9(C)の状態になれば、さらにスイッチP3をオンさせる。そして図9(D)となったときにはスイッチP1、スイッチP2及びスイッチP3同時にオフさせる。 FIG. 10 shows the electrical configuration of the vehicle 60 at the time of discharge. The DC power discharged from these is converted into AC power via the inverter 150 to drive the motor 152. In the switch box 82, the switch C1, the switch C2, and the switch C3 are all turned on. In the state of FIG. 9A, only the switch P1 is turned on, and the switch P2 and the switch P3 are turned off. As a result, only the battery pack 84 is connected to the discharge path to the inverter 150, and the battery pack 88 and the battery pack 92 are separated from the discharge path. Similarly, after the result of FIG. 9B, the switch P2 is turned on in addition to the switch P1. Switch P3 remains off. When the state shown in FIG. 9C is reached, the switch P3 is further turned on. Then, when FIG. 9D is reached, the switch P1, the switch P2, and the switch P3 are turned off at the same time.
 図11は、この開示の第1実施形態における充電処理を実現するためのコンピュータプログラムの制御構造を示すフローチャートである。このプログラムの実行に先立って、前回の充電処理の終了時にコンタクタは全て切断されている。 FIG. 11 is a flowchart showing a control structure of a computer program for realizing the charging process according to the first embodiment of the disclosure. Prior to the execution of this program, all contactors were disconnected at the end of the previous charging process.
 図11を参照して、このプログラムは、充電器が接続されるまで待機するステップ180と、いずれかのインレットに充電プラグが接続されたことに応答し、充電器台数を検知し、スイッチC1~C3をオフする制御信号を出力して各充電経路を分離するするステップ182と、マスタ充電器を決定し、充電器に送信するステップ184と、CAN通信を開始するステップ186と、図2に示すBMS86、BMS90及びBMS94から各電池パックの情報(最大電圧、電池容量、最大充電時間等)を取得するステップ188と、ステップ188で取得された電池パックの情報を充電器に送信するステップ190とを含む。マスタ充電器では、この情報に基づいて適合性判定を行う。 With reference to FIG. 11, this program responds to step 180, which waits for a charger to be connected, and the charging plug is connected to any of the inlets, detects the number of chargers, and switches C1 to. FIG. 2 shows a step 182 that outputs a control signal for turning off C3 to separate each charging path, a step 184 that determines a master charger and transmits it to the charger, and a step 186 that starts CAN communication. Step 188 to acquire the information of each battery pack (maximum voltage, battery capacity, maximum charging time, etc.) from BMS86, BMS90 and BMS94, and step 190 to transmit the information of the battery pack acquired in step 188 to the charger. include. The master charger makes a conformity determination based on this information.
 このプログラムはさらに、マスタ充電器から充電器情報(最大電圧、最大電流、適合性判定の以上判定値)を受信するステップ192と、マスタ充電器から受信した情報に基づいて適合性を判定するステップ194と、適合性が確認されたことに応答して、準備完了通知を充電器に送信するステップ196と、全コンタクタを投入するステップ198と、スイッチC1~C3をオン、スイッチP1~P3をオフとし、充電開始指令を充電器に送信するステップ200と、ステップ188で取得した電圧に基づいて、電圧の高い順番に電池パック84、88及び92に割り当てられた識別子を並べ替え、メモリに準備した配列E[0]からE[2]に記憶するステップ202とを含む。ここでの各電池パックの識別子は、電池パックを互いに区別できるものであればどのようなものでもよい。 This program further receives charger information (maximum voltage, maximum current, conformity determination above determination value) from the master charger, and a step of determining conformity based on the information received from the master charger. 194, step 196 to send a readiness notification to the charger in response to the confirmation of compatibility, step 198 to turn on all contactors, switch C1 to C3 on, switch P1 to P3 off. Then, based on the step 200 of transmitting the charging start command to the charger and the voltage acquired in step 188, the identifiers assigned to the battery packs 84, 88 and 92 are rearranged in descending order of voltage and prepared in the memory. Includes step 202 and stored in sequences E [0] to E [2]. The identifier of each battery pack here may be anything as long as the battery packs can be distinguished from each other.
 なお以下の説明では、各電池パックの電圧を、識別子と同様にメモリに準備した配列V[0]からV[2]に記憶するものとする。ここで、ある電池パックの識別子がE[i](i=0、1又は2)に記憶されている場合、その電池パックの電圧は配列V[i]に記憶されているものとする。また以下では説明を短くするために、配列V[i]に記憶されている電圧値をViで、配列E[i]に記憶されている識別子に対応する電池パックをEiで、それぞれ表す。 In the following description, it is assumed that the voltage of each battery pack is stored in the array V [0] to V [2] prepared in the memory in the same manner as the identifier. Here, when the identifier of a certain battery pack is stored in E [i] (i = 0, 1 or 2), it is assumed that the voltage of the battery pack is stored in the array V [i]. Further, in the following, in order to shorten the description, the voltage value stored in the array V [i] is represented by Vi, and the battery pack corresponding to the identifier stored in the array E [i] is represented by Ei.
 このプログラムはさらに、ステップ202に続きV2-V3の絶対値が所定のしきい値未満か否かを判定し、判定結果にしたがって制御の流れを分岐させるステップ204と、ステップ204の判定が否定のときに、電池パックE3の充電を開始し制御をステップ204に戻すステップ206と、ステップ204の判定が肯定のときに、V1-V2の絶対値が所定のしきい値未満か否かを判定し、判定結果にしたがって制御の流れを分岐させるステップ208と、ステップ208の判定が否定のときに、電池パックE2及びE3の充電を開始し、制御をステップ208に戻すステップ210とを含む。 This program further determines whether or not the absolute value of V2-V3 is less than a predetermined threshold value following step 202, and steps 204 for branching the control flow according to the determination result, and the determination of step 204 is negative. Occasionally, in step 206 where charging of the battery pack E3 is started and control is returned to step 204, and when the determination in step 204 is affirmative, it is determined whether or not the absolute value of V1-V2 is less than a predetermined threshold value. , Step 208 for branching the control flow according to the determination result, and step 210 for starting charging of the battery packs E2 and E3 and returning the control to step 208 when the determination in step 208 is negative.
 このプログラムはさらに、ステップ208の判定が肯定の時、V1、V2及びV3のいずれかが充電終止電圧以上かを判定し、判定にしたがって制御の流れを分岐させるステップ212と、ステップ212の判定が否定のときに、E1、E2及びE3の充電を開始し制御をステップ212に戻すステップ214と、ステップ212の判定が肯定であるときに、充電プラグに対して充電出力停止を要求する信号を送信したり、コンタクタを全てオフにしたりする充電処理の終了処理を実行してこのプログラムの実行を終了するステップ216とを含む。 This program further determines whether any of V1, V2, and V3 is equal to or higher than the charge termination voltage when the determination in step 208 is affirmative, and the determination in step 212 and step 212 to branch the control flow according to the determination. When negative, charging of E1, E2 and E3 is started and control is returned to step 212, and when the judgment of step 212 is affirmative, a signal requesting the charging plug to stop charging is transmitted. This includes step 216 of executing a charging process termination process such as turning off all contactors to terminate the execution of this program.
 [動作]
 第1実施形態に係る車両60は、充電時には以下のように動作する。図2を参照して、車両60が停止している場合を想定する。停止時には、図3に示すスイッチP1、スイッチP2及びスイッチP3はいずれもオフとなっており、電池パック84、88及び92については放電も充電も行われていない。コンタクタ80はいずれもオフである。
[motion]
The vehicle 60 according to the first embodiment operates as follows at the time of charging. With reference to FIG. 2, it is assumed that the vehicle 60 is stopped. When stopped, the switch P1, the switch P2, and the switch P3 shown in FIG. 3 are all turned off, and the battery packs 84, 88, and 92 are neither discharged nor charged. The contactor 80 is all off.
 ここで、図2を参照して、インレット62、インレット64又はインレット66に充電プラグが接続されたものとする。ここでは、充電プラグがインレット62に接続されたものとする。充電プラグがインレット62に接続されるとDC回線の内の1つの電位がハイレベルとなる。ECU96はこの変化に応答して、充電プラグが接続されたことを検知する(図11のステップ180でYES)。ECU96はさらに、インレットに接続された充電器台数を検知し、スイッチC1~C3をオフにして充電系統を全て分離する(ステップ182)。ECU96はこの後、マスタ充電器を決定し(ステップ184)、充電器との間でCAN通信を開始する(ステップ186)。ECU96はさらに、図2に示すBMS86、BMS90及びBMS94から電池パック84、88及び92の最大電圧、最大電流、最大充電時間及び現在の電圧を含む電池情報を取得し(ステップ188)、この情報を充電プラグを介して充電器に送信する(ステップ190)。充電器側でのこの情報に基づいて、充電に関する適合性判定を行い、その結果を充電器情報とともにECU96に送信してくる。 Here, it is assumed that the charging plug is connected to the inlet 62, the inlet 64 or the inlet 66 with reference to FIG. Here, it is assumed that the charging plug is connected to the inlet 62. When the charging plug is connected to the inlet 62, the potential of one of the DC lines becomes high level. In response to this change, the ECU 96 detects that the charging plug is connected (YES in step 180 in FIG. 11). Further, the ECU 96 detects the number of chargers connected to the inlet, turns off the switches C1 to C3, and separates all the charging systems (step 182). After that, the ECU 96 determines the master charger (step 184) and starts CAN communication with the charger (step 186). The ECU 96 further acquires battery information including the maximum voltage, maximum current, maximum charging time and current voltage of the battery packs 84, 88 and 92 from the BMS 86, BMS 90 and BMS 94 shown in FIG. 2 (step 188), and obtains this information. Send to the charger via the charging plug (step 190). Based on this information on the charger side, conformity determination regarding charging is performed, and the result is transmitted to the ECU 96 together with the charger information.
 この充電器情報と適合性の結果とを受けたECU96は、適合性が確認されると受信した充電器情報と自己の蓄電池情報とに基づいて、充電に関する適合性の判定を行う(ステップ194)。適合性に問題がなければECU96は、充電器に対して準備完了を示す通知を送信する(ステップ196)。この後ECU96は全てのコンタクタを投入する(ステップ198)。また、ECU96は、図3に示すスイッチC1~C3を全てオンに、スイッチP1~P3を全てオフし、充電器に対して充電開始指令を送信する。その結果、インレット側電力供給線100及び電池パック側電力供給線102からなる充電経路、インレット側電力供給線104及び電池パック側電力供給線106からなる充電経路、並びにインレット側電力供給線108及び電池パック側電力供給線110からなる充電経路が全て充電器と接続され、充電のための電圧が因果される。ただしスイッチP1~P3がオフであるためまだこれら電力供給線は各電池パックには接続されておらず電池パックの充電は開始されていない。この状態で、ECU96は以下の手順でバランス処理を伴う充電を開始する。 Upon receiving the charger information and the compatibility result, the ECU 96 determines the compatibility regarding charging based on the received charger information and its own storage battery information when the compatibility is confirmed (step 194). .. If there is no problem with the compatibility, the ECU 96 sends a notification indicating the completion to the charger (step 196). After that, the ECU 96 inputs all the contactors (step 198). Further, the ECU 96 turns on all the switches C1 to C3 shown in FIG. 3, turns off all the switches P1 to P3, and transmits a charging start command to the charger. As a result, the charging path including the inlet side power supply line 100 and the battery pack side power supply line 102, the charging path including the inlet side power supply line 104 and the battery pack side power supply line 106, and the inlet side power supply line 108 and the battery. All the charging paths including the pack-side power supply line 110 are connected to the charger, and the voltage for charging is causal. However, since switches P1 to P3 are off, these power supply lines are not yet connected to each battery pack, and charging of the battery pack has not started. In this state, the ECU 96 starts charging with balance processing by the following procedure.
 図11を参照して、ステップ202において、電池パック84、88及び92の電圧を降順にソートし、電圧値の高いものから順番に電池パックの識別子を配列Eに記憶する。図3を参照して、スイッチP1、スイッチP2及びスイッチP3はいずれも最初はオフとなっている。図2に示すコンタクタ80の内、充電プラグが接続されたインレットに対応するものはオンされ、それ以外はオフとされる。図3を参照して、スイッチC1、スイッチC2及びスイッチC3はいずれオンとなる。この結果、3本の充電経路は互いに接続される。 With reference to FIG. 11, in step 202, the voltages of the battery packs 84, 88 and 92 are sorted in descending order, and the identifiers of the battery packs are stored in the array E in order from the one with the highest voltage value. With reference to FIG. 3, the switch P1, the switch P2 and the switch P3 are all initially turned off. Among the contactors 80 shown in FIG. 2, those corresponding to the inlet to which the charging plug is connected are turned on, and the others are turned off. With reference to FIG. 3, the switch C1, the switch C2 and the switch C3 will be turned on eventually. As a result, the three charging paths are connected to each other.
 図11を参照して、電池パック84、88及び92の電圧値の内2番目に高い電圧V2と3番目に高い(最も低い)電圧V3との差が計算され、その絶対値がしきい値未満か否かが判定される(ステップ204)。この判定が否定であると、すなわちV2とV3との差がしきい値以上なら、ステップ206で電池パックE3(電圧V3の電池パック)の充電が開始される。 With reference to FIG. 11, the difference between the second highest voltage V2 and the third highest (lowest) voltage V3 among the voltage values of the battery packs 84, 88 and 92 is calculated, and the absolute value is the threshold value. It is determined whether or not it is less than (step 204). If this determination is negative, that is, if the difference between V2 and V3 is equal to or greater than the threshold value, charging of the battery pack E3 (battery pack having a voltage V3) is started in step 206.
 例えば図2において、充電開始時には電圧は高い順に電池パック84、88及び92であるとする。すると電池パックE3は電池パック92となる。図3を参照して、スイッチP3がオンとなり、スイッチP1及びスイッチP2はオフが維持される。この結果、充電経路と電池パック92とが接続され、電池パック92のみの充電が開始される。3本の充電経路が互いに接続されているため、インレット62-66に接続されている充電プラグの数が1から3のいずれでもそれらにより電池パック92が充電される。 For example, in FIG. 2, it is assumed that the batteries packs 84, 88, and 92 are in descending order of voltage at the start of charging. Then, the battery pack E3 becomes the battery pack 92. With reference to FIG. 3, switch P3 is turned on and switches P1 and P2 are kept off. As a result, the charging path and the battery pack 92 are connected, and charging of only the battery pack 92 is started. Since the three charging paths are connected to each other, the battery pack 92 is charged by any of the charging plugs 1 to 3 connected to the inlets 62-66.
 図11を参照して、ステップ204の判定が肯定となるまでステップ206の処理が繰り返される。この結果、電池パック84、88及び92の充電状態は図8(A)から図8(B)の状態に近づく。電池パック84、88及び92の充電状態が図8(B)となると、図11のステップ204の判定が肯定となり制御はステップ208に進む。 With reference to FIG. 11, the process of step 206 is repeated until the determination of step 204 becomes affirmative. As a result, the state of charge of the battery packs 84, 88 and 92 approaches the state of FIGS. 8 (A) to 8 (B). When the charging states of the battery packs 84, 88, and 92 are in FIG. 8B, the determination in step 204 in FIG. 11 becomes affirmative, and the control proceeds to step 208.
 ステップ208では、最も電圧が高い電池パックの電圧V1とV2との差が算出され、その差が所定のしきい値未満か否かが判定される。図8(B)の状態では、この差はしきい値以上である。その結果、制御はステップ210に進む。ステップ210では、V2及びV3に対応する電池パックE2及びE3の充電が開始される。 In step 208, the difference between the voltages V1 and V2 of the battery pack having the highest voltage is calculated, and it is determined whether or not the difference is less than a predetermined threshold value. In the state of FIG. 8B, this difference is equal to or greater than the threshold value. As a result, control proceeds to step 210. In step 210, charging of the battery packs E2 and E3 corresponding to V2 and V3 is started.
 具体的には、図3を参照して、現在説明している例ではスイッチP2がオンとなる。スイッチP1はオフに維持される。スイッチP3はオンに維持される。この結果、電池パック88及び電池パック92の充電がステップ210で行われる。 Specifically, with reference to FIG. 3, the switch P2 is turned on in the example currently described. Switch P1 is kept off. Switch P3 remains on. As a result, the battery pack 88 and the battery pack 92 are charged in step 210.
 この充電はステップ208の判定が肯定となるまで、すなわち電池パック84、88及び92の充電状態が図8(C)の状態となるまで行われる。 This charging is performed until the determination in step 208 becomes affirmative, that is, until the charging states of the battery packs 84, 88, and 92 are in the state shown in FIG. 8 (C).
 ステップ208の判定が肯定となると、すなわち電池パック84、88及び92の充電状態が図8(C)の状態となると、図3に示すスイッチP1がオンする。スイッチP2及びスイッチP3もオンに維持される。図11のフローチャートにおいて、制御はステップ212に進む。 When the determination in step 208 is affirmative, that is, when the charging states of the battery packs 84, 88 and 92 are in the state shown in FIG. 8C, the switch P1 shown in FIG. 3 is turned on. Switch P2 and switch P3 are also kept on. In the flowchart of FIG. 11, control proceeds to step 212.
 図8(C)の状態ではステップ212の判定は否定である。したがってステップ214が実行され、電池パック84、88及び92の全てがパラレルに充電される。ステップ214の処理はステップ212の判定が肯定となるまで、すなわち電池パック84、88及び92の充電状態が図8(D)の状態となるまで継続される。充電状態が図8(D)となるとステップ212の判定が肯定となり、ステップ216の処理が実行される。 In the state of FIG. 8C, the determination in step 212 is negative. Therefore, step 214 is performed and all of the battery packs 84, 88 and 92 are charged in parallel. The process of step 214 is continued until the determination in step 212 becomes affirmative, that is, the state of charge of the battery packs 84, 88, and 92 becomes the state shown in FIG. 8 (D). When the charging state becomes FIG. 8D, the determination in step 212 becomes affirmative, and the process of step 216 is executed.
 ステップ216では、充電の開始時と逆の処理が行われ、車両60は充電プラグを安全にインレット62等から安全に取り外せる状態となる。充電プラグが全て取り外されると充電処理は終了する。 In step 216, the reverse process of the start of charging is performed, and the vehicle 60 is in a state where the charging plug can be safely removed from the inlet 62 or the like. The charging process ends when all the charging plugs are removed.
 放電についても基本的には充電時と同様の考えを適用できる。ただし放電時には放電電力が走行負荷によって決まるため、図11に示した充電時の処理より制御は複雑になる。ただし図3に示すスイッチボックス82については同じものを利用できる。 Basically, the same idea as when charging can be applied to discharging. However, since the discharge power is determined by the traveling load at the time of discharging, the control becomes more complicated than the processing at the time of charging shown in FIG. However, the same switch box 82 shown in FIG. 3 can be used.
 以上のようにこの第1実施形態によれば、充電を安全に行うように車両60を制御しながら、1又は複数の急速充電器で複数の電池パックの充電を行うことができる。急速充電器を複数パラレルに使用する場合には、複数の電池パックを短時間に充電できる。そのために必要な接続の切替は、制御信号を発生するための機構を除き、全てスイッチボックス82により実現でき、充電器側が関与することはない。その結果、従来の急速充電器を用いて、効率的に複数の電池パックを充電できる。 As described above, according to the first embodiment, it is possible to charge a plurality of battery packs with one or a plurality of quick chargers while controlling the vehicle 60 so as to perform charging safely. When using multiple quick chargers in parallel, multiple battery packs can be charged in a short time. All of the connection switching required for that purpose can be realized by the switch box 82 except for the mechanism for generating the control signal, and the charger side is not involved. As a result, a plurality of battery packs can be efficiently charged by using a conventional quick charger.
 なお、上記第1実施形態では、車両に設けられた充電インレットの数と車両に搭載された電池パックの数とは一致している。しかしこの開示はそのような実施形態には限定されない。充電インレットの数が電池パックの数より多くてもよい。その場合にはさらに短い時間で全ての電池パックを充電できる。 In the first embodiment, the number of charging inlets provided in the vehicle and the number of battery packs mounted in the vehicle are the same. However, this disclosure is not limited to such embodiments. The number of charging inlets may be greater than the number of battery packs. In that case, all battery packs can be charged in a shorter time.
 なお、電池の容量を効率よく使用するために、上記第1実施形態では電池のバランス処理を行っている。しかし、充電時間の短縮を目的とするためだけであれば電池のバランス処理を行わなくてもよい。 In addition, in order to efficiently use the capacity of the battery, the balance processing of the battery is performed in the first embodiment. However, it is not necessary to perform the battery balancing process only for the purpose of shortening the charging time.
 上記第1実施形態では、充電プラグが充電インレットに接続されると、車両60の内部の充電経路が互いに分離される。またパラレルに電池パックを充電する際の、車両60内のスイッチの切替等は全て車両60のECU96が制御し、急速充電器は全く関与しない。そのため、安全性診断及び適合性判定は、従来の手法と全く同様に、分離された各充電経路で別々に行える。その結果、急速充電器としては、個別に充電を行う従来のものをそのまま利用できる。そして、従来の急速充電器を複数個用いて、複数個の電池パックをパラレルに短時間で充電できるという効果が得られる。 In the first embodiment, when the charging plug is connected to the charging inlet, the charging paths inside the vehicle 60 are separated from each other. Further, when the battery pack is charged in parallel, the switching of the switch in the vehicle 60 is controlled by the ECU 96 of the vehicle 60, and the quick charger is not involved at all. Therefore, the safety diagnosis and the conformity determination can be performed separately for each separated charging path, just like the conventional method. As a result, as the quick charger, the conventional one that charges individually can be used as it is. Then, the effect that a plurality of battery packs can be charged in parallel in a short time can be obtained by using a plurality of conventional quick chargers.
 <第2実施形態>
 上記第1実施形態では、従来の同じ構成の複数の充電器を用いる。これに対し、より充電能力の高い充電器も提案されている。しかし、従来の充電器が比較的普及しているのに対し、より充電能力の高い充電器はそれほど普及していない。したがって、従来の充電器とより充電能力の高い充電器の双方を切り替えて利用できればより便利である。以下に説明する第2実施形態に係る車両は、そのような機能を持つ。
<Second Embodiment>
In the first embodiment, a plurality of conventional chargers having the same configuration are used. On the other hand, a charger with a higher charging capacity has also been proposed. However, while conventional chargers are relatively widespread, chargers with higher charging capacity are not so widespread. Therefore, it would be more convenient if both the conventional charger and the charger with higher charging capacity could be switched and used. The vehicle according to the second embodiment described below has such a function.
 [構成]
 以下の説明では、例として、従来の充電器が400ボルトの電圧で電池を充電するのに対し、より充電能力の高い充電器が800ボルトの電圧で電池を充電する場合を考える。両者のいずれも利用できるようにするため、この第2実施形態は、各々が400ボルトの2個の電池を直列接続と並列接続とに切り替え可能とする。800ボルトの充電器で充電する場合には、電池を直列接続し、その両端から充電する。400ボルトの充電器で充電する場合には、電池を並列接続し、その各々を400ボルトの充電器で充電する。
[Constitution]
In the following description, as an example, consider a case where a conventional charger charges a battery with a voltage of 400 volts, whereas a charger with a higher charging capacity charges a battery with a voltage of 800 volts. In order to make both available available, this second embodiment allows two batteries, each of 400 volts, to be switched between series and parallel connections. When charging with an 800 volt charger, the batteries are connected in series and charged from both ends. When charging with a 400 volt charger, the batteries are connected in parallel and each is charged with a 400 volt charger.
 この第2実施形態は上記した電池の直列接続と並列接続とを切り替えるメカニズムをスイッチボックス内に設けたものである。 In this second embodiment, a mechanism for switching between series connection and parallel connection of the above-mentioned batteries is provided in the switch box.
 図12は、この開示の第2実施形態に係る車両300の充電に関する部分を示すブロック図である。図12を参照して、車両300は、インレット310及びインレット312を持つ。車両300はさらに、400ボルトの2つの電池パック350及び電池パック352と、インレット310及びインレット312と電池パック350及び電池パック352との間に配置されたスイッチボックス320及びサブスイッチボックス322を含む。なお、この図12においては、図を簡略にするために、各充電経路に設けられるコンタクタ、各スイッチを制御するECU、充電器とECUとの間の通信経路を提供するCAN、受電機とECUとの間で充電開始及び充電終了時の信号の交換を行うDC回路については図示していない。 FIG. 12 is a block diagram showing a portion related to charging of the vehicle 300 according to the second embodiment of this disclosure. With reference to FIG. 12, the vehicle 300 has an inlet 310 and an inlet 312. The vehicle 300 further includes two 400 volt battery packs 350 and 352, and a switch box 320 and a sub switch box 322 located between the inlet 310 and inlet 312 and the battery pack 350 and battery pack 352. In FIG. 12, for simplification of the figure, a contactor provided in each charging path, an ECU that controls each switch, a CAN that provides a communication path between the charger and the ECU, a receiving electric machine and an ECU. The DC circuit for exchanging signals at the start and end of charging with and from is not shown.
 スイッチボックス320は、インレット310の正極端子及び負極端子に一端がそれぞれ接続された電力供給線330及び電力供給線332と、電力供給線330及び電力供給線332とサブスイッチボックス322との間の接続と切断とを切り替えるための個別スイッチボックス342と、インレット312の正極端子及び負極端子に一端がそれぞれ接続された電力供給線334及び電力供給線336と、電力供給線330及び電力供給線332、並びに電力供給線334及び電力供給線336とサブスイッチボックス322との間の接続と切断とを切り替えるための個別スイッチボックス340とを含む。 The switch box 320 is a connection between a power supply line 330 and a power supply line 332 whose ends are connected to a positive terminal and a negative terminal of an inlet 310, respectively, and a power supply line 330 and a power supply line 332 and a sub switch box 322. An individual switch box 342 for switching between and disconnection, a power supply line 334 and a power supply line 336 whose ends are connected to the positive and negative terminals of the inlet 312, a power supply line 330 and a power supply line 332, and a power supply line 332, respectively. It includes a power supply line 334 and an individual switch box 340 for switching connection and disconnection between the power supply line 336 and the sub switch box 322.
 個別スイッチボックス342は、電力供給線330及び電力供給線332の他端にそれぞれ一方端子が接続され、いずれも図示しないECUからの同じ制御信号にしたがってサブスイッチボックス322との間の接続及び切断を切り替える一組のスイッチP1を含む。個別スイッチボックス340は、電力供給線330及び電力供給線332の他端にそれぞれ一方端子が接続され、いずれも図示しないECUからの同じ制御信号にしたがって同期して電力供給線330及び電力供給線332とサブスイッチボックス322との間の接続と切断とを切り替える一組のスイッチP2と、電力供給線334及び電力供給線336の他端にそれぞれ一方端子が接続され、いずれも図示しないECUからの同じ制御信号にしたがって同期して電力供給線334及び電力供給線336とサブスイッチボックス322との間の接続及び切断を切り替える一組のスイッチP3とを含む。 One terminal of the individual switch box 342 is connected to the other ends of the power supply line 330 and the power supply line 332, respectively, and the connection and disconnection between the individual switch box 342 and the sub switch box 322 are made according to the same control signal from the ECU (not shown). Includes a set of switches P1 to switch. In the individual switch box 340, one terminal is connected to the other ends of the power supply line 330 and the power supply line 332, respectively, and the power supply line 330 and the power supply line 332 are synchronized according to the same control signal from the ECU (not shown). A set of switches P2 that switches between connection and disconnection between the power supply line 322 and the sub switch box 322, and one terminal is connected to the other ends of the power supply line 334 and the power supply line 336, both of which are the same from the ECU (not shown). It includes a set of switches P3 that synchronously switch connection and disconnection between the power supply line 334 and the power supply line 336 and the sub switch box 322 according to a control signal.
 スイッチボックス320はさらに、いずれも図示しないECUからの制御信号にしたがって電力供給線330と電力供給線334との間の接続をオンとオフとの間で切り替えるスイッチC1を含む。 The switch box 320 further includes a switch C1 that switches the connection between the power supply line 330 and the power supply line 334 between on and off according to a control signal from an ECU (not shown).
 サブスイッチボックス322は、一組のスイッチP1の他方端子にそれぞれ接続された端子360及び端子362と、一組のスイッチP2の他方端子にそれぞれ接続された端子364及び端子366と、一組のスイッチP3の他方端子にそれぞれ接続された端子368及び端子370とを含む。 The sub switch box 322 includes a set of terminals 360 and 362 connected to the other terminal of the set of switches P1 and a set of terminals 364 and 366 connected to the other terminal of the set of switches P2, respectively. It includes a terminal 368 and a terminal 370 connected to the other terminal of P3, respectively.
 サブスイッチボックス322はさらに端子360と電池パック350の正極端子とに接続された端子372と、電池パック350の負極端子に接続された端子374と、電池パック352の正極端子に接続された端子376と、電池パック352の負極端子と端子362とに接続された端子378と、端子374及び端子376の間に接続され、ECUからの制御信号にしたがって端子374と端子376との間の接続及び切断を切り替えるスイッチS1とを含む。 The sub switch box 322 further includes a terminal 372 connected to the terminal 360 and the positive electrode terminal of the battery pack 350, a terminal 374 connected to the negative electrode terminal of the battery pack 350, and a terminal 376 connected to the positive electrode terminal of the battery pack 352. And the terminal 378 connected to the negative electrode terminal and the terminal 362 of the battery pack 352, connected between the terminal 374 and the terminal 376, and connected and disconnected between the terminal 374 and the terminal 376 according to the control signal from the ECU. Includes a switch S1 for switching between.
 サブスイッチボックス322はさらに、一組のスイッチP1の他方端子にそれぞれ接続される端子364及び端子366と、一組のスイッチP2の他方端子にそれぞれ接続される端子368及び端子370と、端子364と電池パック350の正極端子とに接続される端子380と、端子366と電池パック350の負極端子とに接続される端子382と、端子368と電池パック352の正極端子とに接続される端子384と、端子370と電池パック352の負極端子とに接続される端子386とを含む。 The sub-switch box 322 further comprises terminals 364 and 366 connected to the other terminal of the set of switches P1, respectively, and terminals 368 and 370 and terminals 364 connected to the other terminal of the set of switches P2, respectively. A terminal 380 connected to the positive electrode terminal of the battery pack 350, a terminal 382 connected to the terminal 366 and the negative electrode terminal of the battery pack 350, and a terminal 384 connected to the terminal 368 and the positive electrode terminal of the battery pack 352. , A terminal 386 connected to the terminal 370 and the negative electrode terminal of the battery pack 352.
 [動作]
 この実施形態では、スイッチP1、スイッチP2、スイッチP3、スイッチC1及びスイッチS1は、1台のハイパワー充電器を用いた充電時(ハイパワー充電時)と、2台の通常の充電器を用いた充電時(通常充電時)とで、以下のようにインレット310、インレット312、電池パック350及び電池パック352の間の接続を切り替える。
[motion]
In this embodiment, the switch P1, the switch P2, the switch P3, the switch C1 and the switch S1 use one high power charger for charging (high power charging) and two normal chargers. The connection between the inlet 310, the inlet 312, the battery pack 350, and the battery pack 352 is switched as follows at the time of charging (normal charging).
 ・ハイパワー充電時
 スイッチP1 オン
 スイッチP2 オフ
 スイッチP3 オフ
 スイッチC1 オフ
 スイッチS1 オン
 ・通常充電時
 スイッチP1 オフ
 スイッチP2 オン
 スイッチP3 オン
 スイッチC1 オン
 スイッチS1 オフ
 ハイパワー充電時のインレット310、インレット312、電池パック350及び電池パック352の間の接続を図13に示す。図12に示すスイッチP1及びスイッチS1はオンであるため、図13ではスイッチP1は図示せず単なる接続線として示してある。図13に示すように、インレット310から電力供給線330、端子360、端子372、電池パック350、端子374、端子376、電池パック352、端子378、端子362、電力供給線332を経てインレット310への直流の電力供給経路が形成される。この結果、電池パック350及び電池パック352が800ボルトのハイパワー充電器により同時に充電される。なお、この実施形態では、ハイパワー充電器による充電時にはスイッチC1がオフとなる。その結果、インレット312がスイッチP1と切断されるため、充電プラグをインレット310に接続する必要がある。
・ High power charge switch P1 on switch P2 off switch P3 off switch C1 off switch S1 on ・ Normal charge switch P1 off switch P2 on switch P3 on switch C1 on switch S1 off High power charge inlet 310, inlet 312, The connection between the battery pack 350 and the battery pack 352 is shown in FIG. Since the switch P1 and the switch S1 shown in FIG. 12 are on, the switch P1 is not shown in FIG. 13 and is shown as a mere connection line. As shown in FIG. 13, from the inlet 310 to the inlet 310 via the power supply line 330, the terminal 360, the terminal 372, the battery pack 350, the terminal 374, the terminal 376, the battery pack 352, the terminal 378, the terminal 362, and the power supply line 332. DC power supply path is formed. As a result, the battery pack 350 and the battery pack 352 are simultaneously charged by the 800 volt high power charger. In this embodiment, the switch C1 is turned off when charging with the high power charger. As a result, the inlet 312 is disconnected from the switch P1, so it is necessary to connect the charging plug to the inlet 310.
 通常充電時のインレット310、インレット312、電池パック350及び電池パック352の間の接続を図14に示す。ここではスイッチP1及びスイッチS1はオフとなり回路構成と無関係なので図示していない。またスイッチP2、スイッチP3及びスイッチC1はいずれもオンである。したがってこの図ではこれらは単なる接続線として示してある。 FIG. 14 shows the connection between the inlet 310, the inlet 312, the battery pack 350, and the battery pack 352 during normal charging. Here, the switch P1 and the switch S1 are off and have nothing to do with the circuit configuration, so they are not shown. Further, the switch P2, the switch P3 and the switch C1 are all on. Therefore, in this figure, these are shown as simple connecting lines.
 図14に示すように、インレット310から電力供給線330、端子364、端子380、電池パック350、端子382、端子366、電力供給線332という、電池パック350への電力供給経路と、インレット312から電力供給線334、端子368、端子384、電池パック352、端子386、端子370、電力供給線336という、電池パック352への電力供給経路とが形成される。両者は並列の関係となっており、電池パック350及び電池パック352がいずれも通常の充電器により充電される。またこの場合、電力供給線330及び電力供給線334が接続され、電力供給線332及び電力供給線336が接続されている。この結果、インレット310及びインレット312の双方に通常の充電器が接続されたときには、この2台の充電器で電池パック350及び電池パック352が同時に充電される。このときに必要な充電時間はハイパワー充電器による充電時間と変わらない。インレット312及びインレット312のいずれか一方のみに通常の充電器が接続されたときには、その通常の充電器により電池パック350及び電池パック352が同時に充電される。その結果、充電時間はハイパワー充電器による場合の2倍程度となる。 As shown in FIG. 14, the power supply path from the inlet 310 to the battery pack 350, that is, the power supply line 330, the terminal 364, the terminal 380, the battery pack 350, the terminal 382, the terminal 366, and the power supply line 332, and from the inlet 312. A power supply path to the battery pack 352, which is a power supply line 334, a terminal 368, a terminal 384, a battery pack 352, a terminal 386, a terminal 370, and a power supply line 336, is formed. Both are in a parallel relationship, and both the battery pack 350 and the battery pack 352 are charged by a normal charger. In this case, the power supply line 330 and the power supply line 334 are connected, and the power supply line 332 and the power supply line 336 are connected. As a result, when a normal charger is connected to both the inlet 310 and the inlet 312, the battery pack 350 and the battery pack 352 are simultaneously charged by these two chargers. The charging time required at this time is the same as the charging time with the high power charger. When a normal charger is connected to only one of the inlet 312 and the inlet 312, the battery pack 350 and the battery pack 352 are simultaneously charged by the normal charger. As a result, the charging time is about twice that of the high power charger.
 この第2実施形態でも、通常の充電器を用いる場合には、電池パック350及び電池パック352についてのバランス処理を実行できる。そのためにスイッチP2及びスイッチP3を使用する。 Even in this second embodiment, when a normal charger is used, the balance processing for the battery pack 350 and the battery pack 352 can be executed. Therefore, the switch P2 and the switch P3 are used.
 図15は、図12に示す車両300において、通常の充電器を2台用いて電池パック350及び電池パック352の電圧のバランス処理を行う場合のスイッチボックス320の切替状態を説明するための図である。図15を参照して、例えば電池パック350を充電し、電池パック352を充電しないときには、スイッチP2をオン、スイッチP3をオフとすればよい。電池パック352のみを充電し、電池パック350を充電しないときにはスイッチP2をオフ、スイッチP3をオフとすればよい。後は図11に示すものと同様の構成を有するプログラムでこの処理を実現できる。 FIG. 15 is a diagram for explaining a switching state of the switch box 320 when the voltage balance processing of the battery pack 350 and the battery pack 352 is performed by using two normal chargers in the vehicle 300 shown in FIG. be. With reference to FIG. 15, for example, when the battery pack 350 is charged and the battery pack 352 is not charged, the switch P2 may be turned on and the switch P3 may be turned off. When only the battery pack 352 is charged and the battery pack 350 is not charged, the switch P2 may be turned off and the switch P3 may be turned off. After that, this process can be realized by a program having the same configuration as that shown in FIG.
 この第2実施形態によれば、ハイパワー充電器と通常の充電器とを使い分けて複数の電池パックの充電が行える。通常の充電器を複数用いて電池パックを充電することもでき、その場合にはハイパワー充電器を用いる場合とほぼ同じ時間で電池パックを充電できる。また通常の充電器が1つしか無い場合でも、時間はかかるが電池パックを充電できる。したがって、ハイパワー充電器が使用可能な場合、又は通常の充電器が複数個利用できる場合には、短時間で充電を完了できる。通常の充電器が1つしか利用できない場合でも、時間はかかるが充電を行える。 According to this second embodiment, a plurality of battery packs can be charged by properly using a high power charger and a normal charger. It is also possible to charge the battery pack using a plurality of normal chargers, in which case the battery pack can be charged in about the same time as when using a high power charger. Even if there is only one normal charger, the battery pack can be charged, although it takes time. Therefore, if a high power charger can be used, or if a plurality of normal chargers can be used, charging can be completed in a short time. Even if only one regular charger is available, it will take some time to charge.
 なお上記実施形態に係る車両300は、2個のインレットと2個の電池パックを備えている。しかしこの開示はそのような実施形態には限定されない。例えば図12に示す構成を2セット以上設けてもよい。また、ハイパワー充電器を用いる充電の場合でも、インレットの入力を接続するようにして2個のハイパワー充電器を利用可能としてもよい。その他、複数の電池を直列と並列とで接続を切り替えることが可能なスイッチの配置が可能であり、それらを適宜用いればよい。 The vehicle 300 according to the above embodiment is provided with two inlets and two battery packs. However, this disclosure is not limited to such embodiments. For example, two or more sets of the configurations shown in FIG. 12 may be provided. Further, even in the case of charging using a high power charger, two high power chargers may be available by connecting the input of the inlet. In addition, it is possible to arrange a switch capable of switching the connection between a plurality of batteries in series and in parallel, and these may be used as appropriate.
 <第3実施形態>
 第1実施形態に係る車両及び第2実施形態に係る車両300は、いずれも充電池を持つ。この充電池に蓄積された電力を、災害時等には様々な用途に利用できる。そのためには、図2に記載のインレット62等に、所定の規格により車両60等の充電器からの電力を外部に取り出すための装置を接続すればよい。
<Third Embodiment>
The vehicle according to the first embodiment and the vehicle 300 according to the second embodiment both have a rechargeable battery. The electric power stored in this rechargeable battery can be used for various purposes in the event of a disaster or the like. For that purpose, a device for extracting electric power from a charger of a vehicle 60 or the like may be connected to the inlet 62 or the like shown in FIG. 2 according to a predetermined standard.
 図16は、この開示の第3実施形態において、例として第1実施形態に係る車両60に蓄積された電力を利用する場合の構成を示すブロック図である。図16を参照して、車両60のインレット62、インレット64及びインレット66に、ECU96との通信により電池パック84、電池パック88及び電池パック92に蓄積された電力を安全に取り出して利用するためのV2H充放電器400、V2H充放電器402、及びV2H充放電器404を接続する。そしてこれらから避難所の照明及び空調等のための電力、ビルのエレベータを駆動するための電力、スマートフォンの充電を行うための電力を取り出して利用する。 FIG. 16 is a block diagram showing a configuration when the electric power stored in the vehicle 60 according to the first embodiment is used as an example in the third embodiment of the disclosure. With reference to FIG. 16, the electric power stored in the battery pack 84, the battery pack 88, and the battery pack 92 can be safely taken out and used by the inlet 62, the inlet 64, and the inlet 66 of the vehicle 60 by communicating with the ECU 96. The V2H charge / discharger 400, the V2H charge / discharger 402, and the V2H charge / discharger 404 are connected. Then, the electric power for lighting and air conditioning of the shelter, the electric power for driving the elevator of the building, and the electric power for charging the smartphone are taken out and used.
 第1実施形態に係る車両60も、第2実施形態に係る車両300も、内部の電池パックに蓄積された電力を災害時等に外部に提供できる。 Both the vehicle 60 according to the first embodiment and the vehicle 300 according to the second embodiment can provide the electric power stored in the internal battery pack to the outside in the event of a disaster or the like.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、開示の詳細な説明の記載により示されるわけではなく、請求の範囲の各請求項によって示され、請求の範囲の文言と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of this disclosure is not indicated by the description of the detailed description of the disclosure, but is indicated by each claim of the claims, and includes the wording of the claims and all changes in the same meaning and scope. Is intended to be.
C1、C2、C3、P1、P2、P3、S1 スイッチ
N1、N2、N3 ノード
50 急速充電システム
60、300 車両
62、64、66、310、312 インレット
70、72、74 急速充電器
80 コンタクタ
82、320 スイッチボックス
84、88、92、350、352 電池パック
86、90、94 BMS
96 ECU
98、340、342 個別スイッチボックス
100、104、108 インレット側電力供給線
102、106、110 電池パック側電力供給線
112、114、116、330、332、334、336 電力供給線
120、122、130、132 容量ロス
150 インバータ
152 モータ
180、182、184、186、188、190、192、194、196、198、200、202、204、206、208、210、212、214、216 ステップ
322 サブスイッチボックス
360、362、364、366、368、370、372、374、376、378、380、382、384、386 端子
400、402、404 V2H充放電器
 
C1, C2, C3, P1, P2, P3, S1 Switch N1, N2, N3 Node 50 Fast Charge System 60, 300 Vehicle 62, 64, 66, 310, 312 Inlet 70, 72, 74 Quick Charger 80 Contactor 82, 320 Switch Box 84, 88, 92, 350, 352 Battery Pack 86, 90, 94 BMS
96 ECU
98, 340, 342 Individual switch box 100, 104, 108 Inverter side power supply line 102, 106, 110 Battery pack side power supply line 112, 114, 116, 330, 332, 334, 336 Power supply line 120, 122, 130 , 132 Capacity Loss 150 Inverter 152 Motor 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216 Step 322 Sub Switch Box 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, 384, 386 Terminals 400, 402, 404 V2H Charger / Discharger

Claims (9)

  1.  電動車両に設けられる複数の充電用インレットと、前記電動車両に搭載される複数の電池パックとの間に設けられ、前記複数の電池パックの各々が、前記複数の充電用インレットのいずれとも接続可能なように、前記複数の充電用インレットと前記複数の電池パックとの接続経路を切り替える切替スイッチと、
     前記複数の充電用インレットと前記複数の電池パックとの間に配置された複数の第1電力供給経路と、
     前記複数の第1電力供給経路の内、少なくとも2つを接続する第2電力供給経路とを含み、
     前記切替スイッチは、前記第2電力供給経路に設けられ、第1制御信号に応答して、前記第2電力供給経路における電力供給のオン及びオフを切り替える第1スイッチを含む、切替装置。
    A plurality of charging inlets provided in the electric vehicle and a plurality of battery packs mounted on the electric vehicle are provided, and each of the plurality of battery packs can be connected to any of the plurality of charging inlets. As described above, the changeover switch for switching the connection path between the plurality of charging inlets and the plurality of battery packs,
    A plurality of first power supply paths arranged between the plurality of charging inlets and the plurality of battery packs, and a plurality of first power supply paths.
    A second power supply path connecting at least two of the plurality of first power supply paths is included.
    The changeover switch is a changeover device provided in the second power supply path and includes a first switch for switching on and off of power supply in the second power supply path in response to a first control signal.
  2.   前記切替スイッチはさらに、前記複数の第1電力供給経路の各々に設けられ、それぞれ第2制御信号に応答して、前記複数の第1電力供給経路における電力供給のオン及びオフを切り替える複数の第2スイッチを含む、請求項1に記載の切替装置。 The changeover switch is further provided in each of the plurality of first power supply paths, and in response to each of the second control signals, a plurality of first power supply paths for switching on and off of power supply in the plurality of first power supply paths. The switching device according to claim 1, which comprises two switches.
  3.  前記切替スイッチと前記複数の電池パックとの間に設けられ、前記切替スイッチと前記複数の電池パックとの接続経路を切り替えるサブ切替スイッチをさらに含み、
     前記サブ切替スイッチは、前記電池パック同士が直列接続された状態と、並列接続された状態とを切り替えるスイッチを含む、請求項1又は請求項2に記載の切替装置。
    A sub changeover switch provided between the changeover switch and the plurality of battery packs and switching a connection path between the changeover switch and the plurality of battery packs is further included.
    The changeover device according to claim 1 or 2, wherein the sub changeover switch includes a switch for switching between a state in which the battery packs are connected in series and a state in which the battery packs are connected in parallel.
  4.  前記切替スイッチ及び前記サブ切替スイッチの少なくとも一方は、前記電動車両に搭載される車載制御装置によって制御される、請求項3に記載の切替装置。 The changeover device according to claim 3, wherein at least one of the changeover switch and the sub changeover switch is controlled by an in-vehicle control device mounted on the electric vehicle.
  5.  さらに、前記複数の充電用インレットと前記切替スイッチの間にそれぞれ設けられた複数のコンタクタを含む、請求項1から請求項4のいずれか1項に記載の切替装置。 The switching device according to any one of claims 1 to 4, further comprising a plurality of contactors provided between the plurality of charging inlets and the changeover switch.
  6.  前記充電用インレットには、前記複数の電池パックに電力を供給するための充電器が電気的に接続され、
     前記車載制御装置は、前記充電用インレットに前記充電器が接続されたことに応答して、前記充電器と通信して前記複数の電池パックの状態情報を前記充電器に提供し、
     前記切替スイッチは、前記状態情報に応じて前記充電器から供給される電力によって前記複数の電池パックを充電するために、前記車載制御装置の制御の下で、前記接続経路を切り替える、請求項4に記載の切替装置。
    A charger for supplying electric power to the plurality of battery packs is electrically connected to the charging inlet.
    In response to the charger being connected to the charging inlet, the vehicle-mounted control device communicates with the charger to provide the state information of the plurality of battery packs to the charger.
    4. The changeover switch switches the connection path under the control of the in-vehicle control device in order to charge the plurality of battery packs with the electric power supplied from the charger according to the state information. The switching device described in.
  7.  電動車両に搭載される複数の電池パックと、
     前記電動車両に設けられる複数の充電用インレットと前記複数の電池パックとの間に設けられる、請求項1から請求項6のいずれか1項に記載の切替装置とを含む、車載切替システム。
    Multiple battery packs mounted on electric vehicles and
    An in-vehicle switching system including the switching device according to any one of claims 1 to 6, which is provided between a plurality of charging inlets provided in the electric vehicle and the plurality of battery packs.
  8.  前記切替装置とともに前記電動車両に搭載され、前記切替装置を制御する車載制御装置をさらに含む、請求項7に記載の車載切替システム。 The vehicle-mounted switching system according to claim 7, further comprising an vehicle-mounted control device mounted on the electric vehicle together with the switching device and controlling the switching device.
  9.  第1及び第2充電用インレットと第1及び第2電池パックとの間に設けられ、前記第1及び第2充電用インレットと前記第1及び第2電池パックとの間の接続を切り替えるスイッチ回路を制御するスイッチ制御方法であって、
     前記スイッチ回路は、前記第1及び第2充電用インレットからの充電系統を電気的に分離又は結合可能なスイッチ部と、前記第1及び第2充電用インレットと前記スイッチ部との間に配置された第1及び第2コンタクタとを含み、
     前記第1及び第2充電用インレットのいずれかに充電プラグが接続されたことに応答して、前記スイッチ回路を制御することにより、前記第1及び第2充電用インレットからの充電系統を分離するステップと、
     前記第1及び第2充電用インレットからの充電系統の各々について、充電のための安全性診断と適合性判定とを行うステップと、
     前記安全性診断と前記適合性判定との結果がいずれも安全であると判定されたことに応答して、前記充電プラグに対して充電開始を許可する信号を送信するステップと、
     前記安全性診断と前記適合性判定との結果がいずれも安全であると判定されたことに応答して、前記充電プラグが接続された充電用インレットに接続された前記第1コンタクタ又は前記第2コンタクタをオンとするステップとを含む、スイッチ制御方法。
     
    A switch circuit provided between the first and second charging inlets and the first and second battery packs to switch the connection between the first and second charging inlets and the first and second battery packs. It is a switch control method to control
    The switch circuit is arranged between the switch unit capable of electrically separating or coupling the charging system from the first and second charging inlets, and the first and second charging inlets and the switch unit. Including the first and second contactors
    By controlling the switch circuit in response to the connection of the charging plug to any of the first and second charging inlets, the charging system from the first and second charging inlets is separated. Steps and
    For each of the charging systems from the first and second charging inlets, a step of performing safety diagnosis and conformity determination for charging, and
    In response to the determination that the results of the safety diagnosis and the conformity determination are both safe, a step of transmitting a signal permitting the start of charging to the charging plug, and a step of transmitting the signal.
    In response to the determination that both the safety diagnosis and the conformity determination are safe, the first contactor or the second contactor connected to the charging inlet to which the charging plug is connected. A switch control method that includes a step to turn on the contactor.
PCT/JP2021/042705 2020-11-25 2021-11-22 Switching device, vehicle-mounted switching system, and switch control method WO2022113918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020195017 2020-11-25
JP2020-195017 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022113918A1 true WO2022113918A1 (en) 2022-06-02

Family

ID=81754592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042705 WO2022113918A1 (en) 2020-11-25 2021-11-22 Switching device, vehicle-mounted switching system, and switch control method

Country Status (1)

Country Link
WO (1) WO2022113918A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220097536A1 (en) * 2020-09-29 2022-03-31 GM Global Technology Operations LLC Electric powertrain with battery system having a three-state high-voltage contactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164820A (en) * 2004-12-09 2006-06-22 Sony Corp Battery pack and charger
JP2011114961A (en) * 2009-11-27 2011-06-09 Tokyo Electric Power Co Inc:The Charging system, charger, motor-driven vehicle and method for charging battery for the motor-driven vehicle
JP2012120347A (en) * 2010-12-01 2012-06-21 Denso Corp Battery control system, battery ecu, charge/discharge control ecu
JP2014060875A (en) * 2012-09-18 2014-04-03 Toshiba Corp Battery pack and electric automobile
JP2019129557A (en) * 2018-01-22 2019-08-01 トヨタ自動車株式会社 vehicle
JP2019187027A (en) * 2018-04-05 2019-10-24 株式会社デンソー Power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164820A (en) * 2004-12-09 2006-06-22 Sony Corp Battery pack and charger
JP2011114961A (en) * 2009-11-27 2011-06-09 Tokyo Electric Power Co Inc:The Charging system, charger, motor-driven vehicle and method for charging battery for the motor-driven vehicle
JP2012120347A (en) * 2010-12-01 2012-06-21 Denso Corp Battery control system, battery ecu, charge/discharge control ecu
JP2014060875A (en) * 2012-09-18 2014-04-03 Toshiba Corp Battery pack and electric automobile
JP2019129557A (en) * 2018-01-22 2019-08-01 トヨタ自動車株式会社 vehicle
JP2019187027A (en) * 2018-04-05 2019-10-24 株式会社デンソー Power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220097536A1 (en) * 2020-09-29 2022-03-31 GM Global Technology Operations LLC Electric powertrain with battery system having a three-state high-voltage contactor
US11548397B2 (en) * 2020-09-29 2023-01-10 GM Global Technology Operations LLC Electric powertrain with battery system having a three-state high-voltage contactor

Similar Documents

Publication Publication Date Title
CN110190658B (en) On-board DC charging circuit using traction drive components
US8143843B2 (en) Electrically-driven vehicle and method for controlling charging of electrically-driven vehicle
CN104253464B (en) System for mutual charging of electric vehicles and charging connector
CN105034830B (en) For the apparatus and method to electric vehicle charging
CN102089177B (en) Electric vehicle
US8264196B2 (en) Charge control apparatus, battery pack, and vehicle
CN110816300B (en) Vehicle and electrical system with dual battery module
CN102712266B (en) Vehicle
WO2014045666A1 (en) Battery pack and electric vehicle
EP2371610A1 (en) Vehicular charging system
CN103187769A (en) Electric automobile and discharging device thereof
CN105247754A (en) Vehicle
US11535118B2 (en) Vehicle
CN102442220A (en) Method and apparatus for managing multiple battery packs in hybrid or electric vehicle
EP3521098B1 (en) Motor-driven vehicle and control method for motor-driven vehicle
CN103813928A (en) Battery processing device, vehicle, battery processing method, and battery processing program
CN103828172A (en) Vehicle power supply system
CN109941106A (en) The power-supply system of electric vehicle
CN103563205A (en) Power source system, vehicle comprising power source system, and method for controlling power source system
CN102983611A (en) Battery monitoring and charging system and motor-driven vehicle
CN107225954A (en) Supply unit, the control method of supply unit and control device
CN106956599A (en) The self-loopa charge and discharge device and power assembly system of electric automobile
US11400825B2 (en) AC/DC EVSE charging system
WO2022113918A1 (en) Switching device, vehicle-mounted switching system, and switch control method
CN106864283B (en) Power supply method and service capacity calculation method for electric mobile charging vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP