WO2022113885A1 - Method for manufacturing glass roll - Google Patents

Method for manufacturing glass roll Download PDF

Info

Publication number
WO2022113885A1
WO2022113885A1 PCT/JP2021/042476 JP2021042476W WO2022113885A1 WO 2022113885 A1 WO2022113885 A1 WO 2022113885A1 JP 2021042476 W JP2021042476 W JP 2021042476W WO 2022113885 A1 WO2022113885 A1 WO 2022113885A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass film
glass
winding
downstream side
roll
Prior art date
Application number
PCT/JP2021/042476
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 村田
直弘 猪飼
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2022565290A priority Critical patent/JPWO2022113885A1/ja
Priority to CN202180068639.1A priority patent/CN116323448A/en
Publication of WO2022113885A1 publication Critical patent/WO2022113885A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/10Advancing webs by a feed band against which web is held by fluid pressure, e.g. suction or air blast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock

Definitions

  • the present invention relates to a method for manufacturing a glass roll.
  • the glass film manufacturing process may include a process of winding a strip-shaped base glass film, which is the basis of the glass film, into a roll to manufacture a glass roll.
  • Patent Document 1 discloses a method for manufacturing a glass roll including a molding step, an ear removal step, a first winding step, a taking-out step, a cutting step, and a second winding step. There is.
  • the base glass film is continuously molded by the overflow down draw method.
  • the base glass film is irradiated with laser light from a laser irradiation device to remove unnecessary selvage portions located at both ends in the width direction of the base glass film, whereby the first glass film is formed.
  • the first glass roll is formed by winding the first glass film with a winding core.
  • the glass film is taken out from the first glass roll, and in the cutting step, the laser beam is irradiated to the first glass film from the laser irradiation device.
  • the widthwise end portion of the first glass film is removed as an unnecessary portion (non-product portion), and the second glass film is formed.
  • the second glass roll is manufactured by winding the second glass film with the winding core.
  • skewing or meandering may occur in the second glass film conveyed after the cutting process. This is because the length of one end in the width direction and the length of the other end in the width direction of the second glass film are different. If the degree of skewing or meandering becomes large, it may adversely affect the cutting process on the upstream side.
  • the upstream part of the second glass film may be pulled and damaged by the downstream part.
  • the upstream portion of the second glass film may come into contact with an unnecessary portion separated from the first glass film and be damaged.
  • the present invention has been made in view of the above circumstances, and it is a technical subject to suppress meandering and skewing when transporting a glass film.
  • the present invention is for solving the above-mentioned problems, and is a method for manufacturing a glass roll, which comprises a supply step of supplying a glass film and irradiating the glass film with a laser beam from a laser irradiation device. It is provided between the cutting step of cutting a part of the glass film, the winding step of winding the glass film in a roll shape by the winding device after the cutting step, and the laser irradiation device and the winding device. It is characterized by comprising a downstream side adjusting step of adjusting the position of the glass film after the cutting step by the downstream side adjusting device.
  • the length of one end in the width direction and the length of the other end in the width direction may be different.
  • the glass is adjusted by the downstream adjustment step (downstream adjustment device) by adjusting the position of the glass film so that the difference between the length of one end and the length of the other end of the glass film does not become excessive. It is possible to suppress skewing and meandering when transporting the film. This makes it possible to prevent adverse effects on the cutting process by the laser irradiation device on the upstream side.
  • the glass film may be supplied by a winding device capable of delivering the glass film from a glass roll formed by winding the glass film in a roll shape, and the present method is described.
  • An upstream adjustment step of adjusting the position of the glass film supplied from the unwinding device by the upstream adjusting device provided between the unwinding device and the laser irradiation device may be provided.
  • the length of one end in the width direction of the glass film supplied from the unwinding device to the laser irradiation device may differ from the length of the other end in the width direction. If this difference in length is excessive, wrinkles may occur in the glass film supplied to the laser irradiation device, which may hinder the cutting of the glass film.
  • this method by adjusting the position of the glass film so that the above difference in length is not excessive by the upstream side adjustment step, it is possible to cut the glass film with high accuracy in the cutting step.
  • the position adjustment amount of the glass film after the cutting step by the downstream side adjusting device is smaller than the position adjusting amount of the glass film supplied from the unwinding device by the upstream side adjusting device. good.
  • the position of the glass film can be adjusted relatively large by the upstream side adjusting device, and the position of the glass film can be finely adjusted by the downstream side adjusting device. This makes it possible to prevent the cutting process by the laser irradiation device from being adversely affected.
  • This method may include a positioning step of positioning the glass film after the cutting step by a suction belt conveyor provided between the laser irradiation device and the downstream side adjusting device.
  • the downstream side adjusting device may include a transport roller that comes into contact with the glass film after the cutting step so as to have a holding angle. This makes it possible to reliably adjust the position of the glass film in the downstream side adjustment step.
  • the upstream side adjusting device may include a transport roller that contacts the glass film supplied from the unwinding device so as to have a holding angle. This makes it possible to reliably adjust the position of the glass film in the upstream side adjustment step.
  • FIG. 1 to 6 show the first embodiment of the method for manufacturing a glass roll according to the present invention.
  • FIG. 1 shows a glass roll manufacturing apparatus used in this method.
  • the manufacturing apparatus 1 includes a molding unit 2 for molding the strip-shaped base glass film G, a direction changing unit 3 for changing the traveling direction of the base glass film G from the lower vertical direction to the horizontal direction, and the base glass after the direction change.
  • the first transport portion 4 that transports the film G in the lateral direction
  • the first cut portion 5 that cuts both ends in the width direction of the base glass film G to form the first glass film G1, and the first glass film G1.
  • a first winding device 6 for winding into a roll to obtain a first glass roll GRL1 is provided.
  • the manufacturing apparatus 1 includes an unwinding device 7 that feeds out the first glass film G1 from the first glass roll GRL1, a second transport unit 8 that conveys the first glass film G1 supplied from the unwinding device 7, and a second unit.
  • a second cutting portion 9 that cuts a part of the glass film G1 to form the second glass film G2, and a second winding device that winds the second glass film G2 into a roll to obtain a second glass roll GRL2. 10 and are further provided.
  • the molded portion 2 has a substantially wedge-shaped molded body 11 having an overflow groove 11a formed at the upper end thereof, and an edge that is arranged directly below the molded body 11 and sandwiches the molten glass GM formed by the molded body 11 from both the front and back sides. It has a roller 12 and an annealer 13 deployed directly under the edge roller 12.
  • the molding unit 2 causes the molten glass GM overflowing from the overflow groove 11a of the molded body 11 to flow down along both side surfaces of the molded body 11 and merges at the lower end portions thereof to form a film.
  • the edge roller 12 regulates the widthwise shrinkage of the molten glass GM to adjust the widthwise dimension of the base glass film G.
  • the annealing 13 is for performing a strain-removing treatment on the base glass film G.
  • the annealer 13 has an annealer roller 14 arranged in a plurality of stages in the vertical direction.
  • a support roller 15 for sandwiching the base glass film G from both the front and back sides is arranged below the annealer 13.
  • the base glass film G is used. Is tensioned.
  • the direction changing unit 3 is provided at a position below the support roller 15.
  • a plurality of guide rollers 16 for guiding the base glass film G are arranged in a curved shape in the direction changing unit 3. These guide rollers 16 guide the base glass film G, which is conveyed in the vertical direction, in the lateral direction.
  • the first transport unit 4 is arranged in front of (downstream side) the direction changing unit 3.
  • the first transport unit 4 transports the base glass film G that has passed through the direction changing unit 3 to the downstream side along the lateral transport direction X1.
  • the first transport unit 4 can have an arbitrary configuration, and can be configured by, for example, one or a plurality of belt conveyors.
  • the first transport unit 4 includes a transport belt 17, and by driving the transport belt 17, the base glass film G can be transported.
  • the first transport unit 4 is not limited to this configuration, and it is also possible to use a roller conveyor or other various transport devices.
  • the first cutting section 5 is arranged above the first transport section 4.
  • the first cutting portion 5 is configured to cut the base glass film G by laser cutting.
  • the first cutting portion 5 includes a pair of laser irradiation devices (hereinafter referred to as “first laser irradiation device”) 18 and a pair of cooling devices (hereinafter referred to as “first laser irradiation device”) arranged on the downstream side of the first laser irradiation device 18. (Hereinafter referred to as "first cooling device”) 19.
  • the first cutting portion 5 irradiates a predetermined portion of the base glass film G to be conveyed with laser light L from each first laser irradiation device 18 to heat the predetermined portion, and then discharges the refrigerant R from the first cooling device 19. Cool the heated part.
  • the first take-up device 6 is installed on the downstream side of the first transport section 4 and the first cutting section 5.
  • the first winding device 6 winds the first glass film G1 in a roll shape by rotating the winding core 20, thereby forming the first glass roll GRL1.
  • the first glass roll GRL1 is conveyed to the position of the unwinding device 7.
  • the unwinding device 7 functions as a supply unit that supplies the first glass film G1 to the second transport unit 8 and the second cutting unit 9.
  • the unwinding device 7 mounts the first glass roll GRL1 transferred from the first winding device 6, and sends out the first glass film G1 from the first glass roll GRL1 to supply the first glass film G1 to the second transport unit 8.
  • the second transport unit 8 transports the first glass film G1 and the second glass film G2 by a roll-to-roll method.
  • the second transport unit 8 transports the first glass film G1 fed from the first glass roll GRL1 in the unwinding device 7 toward the upper Z1 and then transports the first glass film G1 along the lateral transport direction X2.
  • the second transport unit 8 transports the second glass film G2 formed by the second cutting portion 9 along the lateral transport direction X2, and then transports the second glass film G2 downward to the second winding device 10.
  • the second transport unit 8 has a transport roller 21 for transporting the first glass film G1 supplied from the unwinding device 7 to the upper Z1 and an upstream of the second cutting portion 9.
  • the upstream side conveyor 22 located on the side, the downstream side conveyor 23 located on the downstream side of the second cutting portion 9, the downstream side adjusting device 24 for adjusting the position of the second glass film G2 being conveyed, and the second Includes a transport roller 25 that transports the glass film G2 to the lower Z2.
  • the upstream conveyor 22 is composed of a belt conveyor, but is not limited to this configuration.
  • the upstream conveyor 22 includes a plurality of belts (hereinafter referred to as “first belts”) 26.
  • the first belt 26 contacts the lower surface of the first glass film G1 and supports the first glass film G1 in a horizontal posture.
  • the first belt 26 is configured to convey the first glass film G1 toward the second cutting portion 9 on the downstream side.
  • Each first belt 26 is composed of, for example, an endless belt-shaped belt. As shown in FIG. 2, among the plurality of first belts 26, the one located in the central portion in the width direction is composed of the suction belt.
  • the first belt (suction belt) 26 has a plurality of suction holes 27 penetrating in the thickness direction. The suction hole 27 is connected to a suction device (not shown).
  • the downstream side conveyor 23 is composed of a suction belt conveyor, but is not limited to this configuration.
  • the downstream conveyor 23 includes a plurality of belts (hereinafter referred to as “second belts”) 28.
  • the second belt 28 contacts the lower surface of the second glass film G2 and supports the second glass film G2 in a horizontal posture.
  • the second belt 28 is configured to convey the second glass film G2 to the downstream side adjusting device 24.
  • Each second belt 28 is composed of, for example, an endless belt-shaped belt.
  • the second belt 28 is composed of a suction belt that sucks the second glass film G2, but is not limited to this structure.
  • the second belt 28 has a plurality of suction holes 29 penetrating in the thickness direction.
  • the suction hole 29 is connected to a suction device (not shown).
  • the second cutting portion 9 is arranged in the region between the upstream side conveyor 22 and the downstream side conveyor 23 in the second transport unit 8.
  • the second cutting portion 9 is configured to cut the end portions Ga and Gb of the first glass film G1 in the width direction by laser cutting.
  • the second cutting portion 9 includes a pair of laser irradiation devices (hereinafter referred to as “second laser irradiation device”) 30 and a pair of cooling devices (hereinafter referred to as “second cooling device”) arranged on the downstream side of each second laser irradiation device 30. It has (referred to as a device) 31 and.
  • a surface plate 32 in contact with the lower surface of the first glass film G1 is arranged at a position below the second laser irradiation device 30 and the second cooling device 31.
  • the surface plate 32 corresponds to the pair of the second laser irradiation device 30 and the second cooling device 31. It is arranged in two places.
  • the surface plate 32 is installed and fixed on the floor surface and is always in a stationary state.
  • the surface plate 32 includes a plurality of suction ports 33 for sucking the first glass film G1.
  • the suction port 33 is connected to a suction device (not shown).
  • the downstream side adjusting device 24 is arranged between the second cutting portion 9 and the second winding device 10.
  • the downstream side adjusting device 24 also functions as a direction changing unit that changes the transport direction of the second glass film G2 from the lateral transport direction X2 to the downward Z2.
  • the downstream side adjusting device 24 includes a transport roller 34 that comes into contact with the second glass film G2 so as to have a holding angle, and a drive mechanism 35 that drives the transport roller 34. To prepare for.
  • the transport roller 34 is composed of, for example, a free roller.
  • the holding angle (central angle) of the second glass film G2 in the transport roller 34 is preferably 20 ° to 70 °, more preferably 30 ° to 60 °, and preferably 40 ° to 50 °. Further preferred, but not limited to this range.
  • the transport roller 34 converts the transport direction of the second glass film G2 from the lateral transport direction X2 to the downward Z2.
  • the transport roller 34 is configured to be rotatable about the first shaft A1 so as to transport the second glass film G2 to the downstream side.
  • the transport roller 34 is configured to be rotatable about a second axis A2 orthogonal to the first axis A1 and along the vertical direction.
  • the second axis A2 is curved in contact with the transport roller 34 in the radial direction of the transport roller 34 passing through the curved apex of the second glass film G2 (for example, the second glass film G2 is bent by 90 ° by the transport roller 34). When transported, it may be set along the direction of 45 °).
  • the drive mechanism 35 includes a bearing 36 that rotationally supports the transport roller 34 at both ends in the axial direction, a motor 37, and a connecting portion 38 that connects the bearing 36 and the motor 37.
  • the axis of rotation of the motor 37 coincides with the second axis A2.
  • the drive mechanism 35 can rotate the connecting portion 38 around the second shaft A2 by the motor 37. By rotating the connecting portion 38, the transport roller 34 rotates around the second shaft A2 to change the posture for supporting the second glass film G2.
  • the drive mechanism 35 can control the posture of the transport roller 34 by adjusting the amount of rotation of the shaft portion of the motor 37.
  • the second take-up device 10 is located on the downstream side of the downstream side adjusting device 24 and below the downstream side adjusting device 24.
  • the second winding device 10 forms the second glass roll GRL2 by winding the second glass film G2 conveyed by the second conveying unit 8 by the winding core 39.
  • the non-alkali glass is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 3000 ppm or less. be.
  • the weight ratio of the alkaline component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • the thickness of the second glass film G2 (first glass film G1) is 10 ⁇ m or more and 300 ⁇ m or less, preferably 30 ⁇ m or more and 200 ⁇ m or less, and most preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • this method includes a molding step S1, a first cutting step S2, a first winding step S3, a supply step S4, a second cutting step S5, and a downstream adjustment step S6.
  • the second winding step S7 is provided.
  • the molten glass GM overflowing from the overflow groove 11a of the molded body 11 in the molded body 2 is allowed to flow down along both side surfaces of the molded body 11 and merged at the lower ends thereof to form a film.
  • the shrinkage of the molten glass GM in the width direction is regulated by the edge roller 12 to obtain the base glass film G having a predetermined width.
  • the base glass film G is subjected to strain-removing treatment with the annealing 13 (slow cooling step).
  • the base glass film G is formed to a predetermined thickness by the tension of the support roller 15.
  • the base glass film G is conveyed along the lateral transfer direction X1 by the direction changing unit 3 and the first transfer unit 4, and the laser is emitted from the first laser irradiation device 18 in the first cutting unit 5.
  • Light L is applied to a part of the base glass film G.
  • the base glass film G is heated by the irradiation of the laser beam L as described above. After that, when the heated portion of the base glass film G reaches directly under the first cooling device 19, it receives the refrigerant R jetted downward from the first cooling device 19 and is cooled.
  • Thermal stress is generated in the base glass film G due to the expansion of the first laser irradiation device 18 due to local heating and the contraction of the first cooling device 19 due to cooling.
  • Initial cracks are formed in advance in the base glass film G, and these cracks are propagated by thermal stress.
  • both ends (ears) of the base glass film G in the width direction are separated from the base glass film G as non-product portions Gs, and the first glass film G1 is formed.
  • the first glass roll GRL1 is formed by winding the first glass film G1 around the winding core 20 in the first winding device 6. After that, the first glass roll GRL1 is removed from the first winding device 6 and transferred to the unwinding device 7.
  • the first glass film G1 is sent out from the first glass roll GRL1 mounted on the unwinding device 7.
  • the first glass film G1 is conveyed upward to Z1 via the transfer roller 21 of the second transfer unit 8.
  • the first glass film G1 is conveyed to the second cutting portion 9 along the lateral transfer direction X2 by the upstream conveyor 22.
  • the first glass film G1 is conveyed along the lateral transfer direction X2 by the upstream conveyor 22, and the laser beam L is transmitted to a part of the first glass film G1 by the second laser irradiation device 30. Irradiate.
  • the first glass film G1 is heated by the irradiation of the laser beam L as described above. After that, when the heated portion of the first glass film G1 reaches directly under the second cooling device 31, it receives the refrigerant R jetted downward from the second cooling device 31 and is cooled.
  • Thermal stress is generated in the first glass film G1 due to the expansion of the second laser irradiation device 30 due to local heating and the contraction of the second cooling device 31 due to cooling.
  • Initial cracks are formed in advance in the first glass film G1, and these cracks are propagated by thermal stress.
  • both ends Ga and Gb of the first glass film G1 in the width direction Y are separated from the first glass film G1 as non-product portions Gs, and the second glass film G2 is formed.
  • the downstream side conveyor 23 is conveyed to the downstream side while adsorbing the second glass film G2 by the second belt 28.
  • the second glass film G2 is positioned so that the second glass film G2 does not shift in position (positioning step).
  • the position of the second glass film G2 is adjusted by the downstream side adjusting device 24. adjust.
  • the skewing or meandering of the second glass film G2 may occur due to the difference between the length of one end Ga in the width direction Y of the second glass film G2 and the length of the other end Gb in the width direction Y.
  • the position of the second glass film G2 is adjusted by changing the posture of the transport roller 34 of the downstream side adjusting device 24 so that the difference in length does not become excessive.
  • the downstream side adjusting device 24 arranges the transport roller 34 in a reference posture (a posture shown by a solid line) in which the first axis A1 is parallel to the width direction Y of the second glass film G2. ) Is changed to an adjustment posture (posture indicated by a two-dot chain line) rotated by a predetermined angle ⁇ 1 around the second axis A2. As a result, the position of the second glass film G2 in the width direction Y is adjusted.
  • the position adjustment amount (position adjustment angle ⁇ 1) of the transfer roller 34 is appropriately set according to the width dimension of the second glass film G2 and the difference in the lengths of the end portions Ga and Gb.
  • the second transport unit 8 converts the transport direction of the second glass film G2 from the lateral transport direction X2 to the lower Z2 by the downstream side adjusting device 24, and transfers the second glass film G2 by the downstream side transport roller 25. It is conveyed toward the two-winding device 10.
  • the second glass film G2 is wound by the winding core 39 in the second winding device 10.
  • the second glass roll GRL2 is formed on the second winding device 10.
  • the position of the second glass film G2 is adjusted by the downstream side adjusting step S6 (downstream side adjusting device 24) to adjust the position of the second glass film G2. It is possible to suppress skewing and meandering when transporting G2. As a result, it is possible to prevent the second cut portion 9 from being adversely affected by the skewing or meandering of the second glass film G2. Further, since the transport roller 34 of the downstream side adjusting device 24 has a holding angle with respect to the second glass film G2, the position of the second glass film G2 can be surely adjusted.
  • the manufacturing apparatus 1 forms two second glass films G2a and G2b from one first glass film G1 and winds them up to form two pieces.
  • the second glass rolls GRL2a and GRL2b can be manufactured.
  • the second cutting portion 9 has three second laser irradiation devices 30 and three units for forming two second glass films G2 from one first glass film G1.
  • a second cooling device 31 is provided.
  • three surface plates 32 that support the lower surface of the first glass film G1 are arranged so as to correspond to each second laser irradiation device 30.
  • the manufacturing device 1 includes two downstream side adjusting devices 24a and 24b for adjusting the positions of the two second glass films G2a and G2b.
  • the configurations of the downstream side adjusting devices 24a and 24b are the same as those of the downstream side adjusting device 24 in the first embodiment.
  • the manufacturing apparatus 1 includes an upstream adjusting apparatus 40 for adjusting the position of the first glass film G1.
  • the upstream side adjusting device 40 is arranged between the unwinding device 7 and the second cutting portion 9.
  • the upstream side adjusting device 40 also functions as a direction changing unit that changes the transport direction of the first glass film G1 delivered from the unwinding device 7 from the vertical direction (upper Z1) to the lateral transport direction X2.
  • the configuration of the upstream side adjusting device 40 is the same as the configuration of the downstream side adjusting device 24 in the first embodiment. That is, the upstream side adjusting device 40 includes a transport roller 34 that comes into contact with the first glass film G1 supplied from the unwinding device 7 so as to have a holding angle, a motor (not shown), and a connecting portion (not shown). ) And.
  • the holding angle (central angle) of the first glass film G1 in the transport roller 34 of the upstream side adjusting device 40 is preferably 20 ° to 70 °, more preferably 30 ° to 60 °, and 40. It is more desirable to set the temperature from ° to 50 °.
  • the manufacturing apparatus 1 includes two second winding devices 10a and 10b for individually winding the two second glass films G2a and G2b formed in the second cutting portion 9.
  • this method includes a molding step S11, a first cutting step S12, a first winding step S13, a supply step S14, an upstream adjustment step S15, and a second cutting step S16.
  • a downstream side adjusting step S17 and a second winding step S18 are provided.
  • the first glass film G1 sent out from the unwinding device 7 is supplied to the upstream side adjusting device 40.
  • the length of one end Ga in the width direction Y of the first glass film G1 is different from the length of the other end Gb in the width direction Y. If this difference in length becomes large, wrinkles may occur in a part of the first glass film G1 supplied to the second cutting portion 9, and the cutting by the second cutting portion 9 may be hindered.
  • the upstream side adjusting device 40 adjusts the position of the first glass film G1 so that the first glass film G1 supplied to the second cutting portion 9 can be cut with high accuracy.
  • the upstream side adjusting device 40 arranges the transport roller 34 in a reference posture (a posture shown by a solid line) in which the first axis A1 is parallel to the width direction Y of the first glass film G1. ) Is changed to an adjustment posture (posture indicated by a two-dot chain line) rotated by a predetermined angle ⁇ 2 around the second axis A2.
  • the position adjustment amount (position adjustment angle ⁇ 2) of the first glass film G1 by the upstream side adjustment device 40 is set larger than the position adjustment amount (position adjustment angle ⁇ 1) of the second glass film G2 by the downstream side adjustment devices 24a and 24b. It is desirable to be done. That is, it is desirable that the position adjustment amount by the downstream side adjusting devices 24a and 24b is set smaller than the position adjustment amount by the upstream side adjusting device 40. According to this configuration, the position of the first glass film G1 can be adjusted relatively largely by the upstream side adjusting device 40, and the position of the second glass film G2 can be finely adjusted by the downstream side adjusting device 24. can. As a result, it is possible to prevent the second cutting portion 9 from being adversely affected.
  • the laser beam L is irradiated from each second laser irradiation device 30 to the second glass film G2, and the refrigerant R is injected from each second cooling device 31 toward the second glass film G2.
  • the non-product portion Gs is separated from the first glass film G1, and two second glass films G2a and G2b as the product portion are formed.
  • the two second glass films G2a and G2b are conveyed to the second winding devices 10a and 10b via the downstream side adjusting devices 24a and 24b (downstream side adjusting step S17).
  • the two second glass films G2a and G2b are individually wound by the two second winding devices 10a and 10b.
  • the second glass rolls GRL2a and GRL2b are formed on the second winding devices 10a and 10b.
  • the downstream side adjusting device 24 of the manufacturing apparatus 1 includes a transfer roller 34 and a drive mechanism 35, as well as an end Ga of the second glass film G2 in the width direction Y. It includes an edge sensor 41 for detecting a position and a control device 42.
  • the edge sensor 41 for example, an optical sensor using an LED or the like is used, but other non-contact type sensors may be used. As shown in FIGS. 10 and 11, the edge sensor 41 is located above the second glass film G2 so as to face the light projecting unit 41a arranged below the second glass film G2 and the light projecting unit 41a. It has a light receiving unit 41b to be arranged. The light emitting portion 41a and the light receiving portion 41b are arranged so as to overlap the end portion Ga of the second glass film G2 in a plan view.
  • the edge sensor 41 causes the light receiving unit 41b to receive the light LT emitted from the light projecting unit 41a.
  • the light LT emitted from the light projecting unit 41a passes through the end portion Ga of the second glass film G2 and reaches the light receiving unit 41b.
  • the edge sensor 41 can detect the position of the end portion Ga of the second glass film G2 in the width direction Y based on the signal of the optical LT detected by the light receiving portion 41b.
  • the drive mechanism 35 includes a bearing 36 and a motor 37, but in the present embodiment, the configuration of the motor 37 is different from that of the first embodiment.
  • the motor 37 according to this embodiment is composed of a linear motor (for example, a linear servo motor).
  • the motor 37 is provided on the bearing 36 that supports one of the shaft end portions 34a and 34b of the transport roller 34.
  • the motor 37 includes a drive unit 43 that moves the bearing 36 in a predetermined direction, and a support base 44 that supports the drive unit 43.
  • the present embodiment shows an example in which the motor 37 is not provided on the bearing 36 that supports the other shaft end portion 34b of the transport roller 34, the motor 37 may be provided on the bearing 36.
  • the drive unit 43 supports the bearing 36 related to one of the shaft end portions 34a of the transport roller 34 on the upper surface thereof. As shown in FIGS. 11 to 13, the drive unit 43 is configured to be movable in the first movement direction D1 or the second movement direction D2.
  • the support base 44 includes a rail portion (guide portion) 45 that slidably supports the drive portion 43.
  • the rail portion 45 is formed linearly along the lateral transport direction X2 of the second glass film G2.
  • the motor 37 moves the drive unit 43 in the first movement direction D1 or the second movement direction D2 along the rail portion 45 of the support base 44, so that one shaft end portion of the transport roller 34
  • the transport roller 34 changes its posture by rotating around the position of the bearing 36 that supports the other shaft end portion 34b.
  • the control device 42 is connected to the edge sensor 41 and the motor 37.
  • the control device 42 operates the motor 37 based on the position information of the end Ga detected by the edge sensor 41 when the end Ga of the second glass film G2 deviates from a predetermined reference position. For example, in FIG. 12, when the edge sensor 41 detects that the second glass film G2 is skewed to the left side (the end portion Gb side of the second glass film G2), the control device 42 operates the motor 37.
  • the shaft end portion 34a of the transport roller 34 and its bearing 36 are moved in the first movement direction D1, and the transport roller 34 changes its posture from the reference posture shown by the solid line in FIG. 13 to the adjustment posture shown by the two-dot chain line. do.
  • FIG. 12 when the edge sensor 41 detects that the second glass film G2 is skewed to the left side (the end portion Gb side of the second glass film G2), the control device 42 operates the motor 37.
  • the shaft end portion 34a of the transport roller 34 and its bearing 36 are moved in
  • the control device 42 when the edge sensor 41 detects that the second glass film G2 is skewed to the right side (the end Ga side of the second glass film G2), the control device 42 is the transfer roller 34.
  • the shaft end portion 34a and its bearing 36 are moved in the second moving direction D2 in FIG.
  • the downstream side adjusting device 24 can suppress meandering and skewing of the second glass film G2.
  • the manufacturing apparatus 1 according to the present embodiment can efficiently manufacture the second glass film G2 by automatically adjusting the posture of the transport roller 34 by the edge sensor 41 and the control device 42 of the downstream side adjusting device 24. can.
  • the manufacturing apparatus 1 according to the present embodiment may include a configuration such as the upstream side adjusting device 40 according to the second embodiment.
  • the present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect.
  • the present invention can be modified in various ways without departing from the gist of the present invention.
  • the present invention is not limited to this configuration.
  • the present invention can also be applied to a method for producing the first glass roll GRL1.
  • the first cutting portion 5 of the manufacturing apparatus 1 may have the same configuration as the second cutting portion 9.
  • the manufacturing apparatus 1 may include a downstream side adjusting device 24 between the first cutting portion 5 and the first winding device 6.
  • the manufacturing apparatus 1 may include an upstream side adjusting device 40 between the direction changing unit 3 and the first cutting unit 5.
  • the base glass film G is supplied to the first cutting section 5 from the molding section 2 and the direction changing section 3. That is, the molding unit 2 and the direction changing unit 3 function as a supply unit for supplying the glass film (base material glass film G) to the first cutting unit 5, similarly to the unwinding device 7.
  • the position of the first glass film G1 formed by cutting the widthwise end portion of the base glass film G by the first cutting portion 5 is adjusted in the downstream side adjusting step.
  • the downstream side adjusting device 24 and the upstream side adjusting device 40 adjust the positions of the glass films G1 and G2 by changing the posture of the transport roller 34, but the present invention has this configuration. Not limited to.
  • the downstream side adjusting device 24 and the upstream side adjusting device 40 may be provided with a belt conveyor capable of adjusting the positions of the glass films G1 and G2 instead of the transport roller 34.
  • the belt conveyor is configured so that the posture can be changed (position can be changed) so as to adjust the positions of the glass films G1 and G2.
  • the configuration in which the postures of the transport rollers 34 of the downstream side adjusting device 24 and the upstream side adjusting device 40 are adjusted by the motor 37 of the drive mechanism 35 is exemplified, but the present invention is not limited to this configuration.
  • the posture of the transport roller 34 may be changed manually by an operator.
  • the manufacturing apparatus 1 includes a non-contact sensor arranged corresponding to each end Ga, Gb in order to measure the lengths of the ends Ga, Gb in the width direction Y of each glass film G1 and G2. You may.

Abstract

This method for manufacturing a glass roll comprises: a supply step for supplying a glass film; a cutting step for cutting the glass film by irradiating the glass film with laser light from a laser irradiation device; a winding step for winding, by means of a winding device, the glass film that has undergone the cutting step into a roll shape; and a downstream-side adjustment step for adjusting the position of the glass film that has undergone the cutting step, by means of a downstream-side adjustment device provided between the laser irradiation device and the winding device.

Description

ガラスロールの製造方法Manufacturing method of glass roll
 本発明は、ガラスロールを製造する方法に関する。 The present invention relates to a method for manufacturing a glass roll.
 近年、急速に普及しているスマートフォンやタブレット型PC等のモバイル端末は、薄型、軽量であることが求められるため、これらの端末に組み込まれるガラス基板にも薄板化に対する要請が高まっている。このような現状の下、フィルム状にまで薄板化(例えば、厚みが300μm以下)されたガラス基板であるガラスフィルムが開発、製造されるに至っている。 In recent years, mobile terminals such as smartphones and tablet PCs, which are rapidly becoming widespread, are required to be thin and lightweight, so there is an increasing demand for thinning glass substrates incorporated in these terminals. Under such circumstances, a glass film, which is a glass substrate thinned to a film shape (for example, a thickness of 300 μm or less), has been developed and manufactured.
 ガラスフィルムの製造工程には、これの元となる帯状の母材ガラスフィルムをロール状に巻き取ってガラスロールを製造する工程が含まれる場合がある。例えば特許文献1には、成形工程と、耳部除去工程と、第一巻取工程と、取出工程と、割断工程と、第二巻取工程と、を備えるガラスロールの製造方法が開示されている。 The glass film manufacturing process may include a process of winding a strip-shaped base glass film, which is the basis of the glass film, into a roll to manufacture a glass roll. For example, Patent Document 1 discloses a method for manufacturing a glass roll including a molding step, an ear removal step, a first winding step, a taking-out step, a cutting step, and a second winding step. There is.
 この製造方法では、まず、成形工程において、オーバーフローダウンドロー法により母材ガラスフィルムを連続的に成形する。次に、耳部除去工程において、母材ガラスフィルムにレーザ照射装置からレーザ光を照射し、母材ガラスフィルムの幅方向両端に位置する不要な耳部を除去することで、第一ガラスフィルムを形成する。第一巻取工程では、この第一ガラスフィルムを巻芯により巻き取ることで、第一ガラスロールが形成される。 In this manufacturing method, first, in the molding process, the base glass film is continuously molded by the overflow down draw method. Next, in the selvage removal step, the base glass film is irradiated with laser light from a laser irradiation device to remove unnecessary selvage portions located at both ends in the width direction of the base glass film, whereby the first glass film is formed. Form. In the first winding step, the first glass roll is formed by winding the first glass film with a winding core.
 その後、取出工程において、第一ガラスロールからガラスフィルムが取り出され、割断工程において、レーザ照射装置からレーザ光をこの第一ガラスフィルムに照射する。これにより、第一ガラスフィルムの幅方向の端部が不要部分(非製品部)として除去され、第二ガラスフィルムが形成される。最後に、第二巻取工程において、第二ガラスフィルムを巻芯により巻き取ることで、第二ガラスロールが製造される。 After that, in the taking-out step, the glass film is taken out from the first glass roll, and in the cutting step, the laser beam is irradiated to the first glass film from the laser irradiation device. As a result, the widthwise end portion of the first glass film is removed as an unnecessary portion (non-product portion), and the second glass film is formed. Finally, in the second winding step, the second glass roll is manufactured by winding the second glass film with the winding core.
特開2019-48734号公報Japanese Unexamined Patent Publication No. 2019-48734
 上記のようなガラスロールの製造方法において、割断工程後に搬送される第二ガラスフィルムに斜行や蛇行が発生する場合がある。これは、第二ガラスフィルムにおける幅方向の一端部の長さと、幅方向の他端部の長さとが異なることに起因する。斜行や蛇行の程度が大きくなると、上流側の割断工程に好ましくない影響を与える場合がある。 In the glass roll manufacturing method as described above, skewing or meandering may occur in the second glass film conveyed after the cutting process. This is because the length of one end in the width direction and the length of the other end in the width direction of the second glass film are different. If the degree of skewing or meandering becomes large, it may adversely affect the cutting process on the upstream side.
 すなわち、第二ガラスフィルムに斜行や蛇行が生じると、第二ガラスフィルムの上流側の部分が下流側の部分によって引っ張られて破損する場合があった。また、第二ガラスフィルムの上流側の部分が、第一ガラスフィルムから分離された不要部分に接触して破損する場合があった。 That is, when skewing or meandering occurs in the second glass film, the upstream part of the second glass film may be pulled and damaged by the downstream part. In addition, the upstream portion of the second glass film may come into contact with an unnecessary portion separated from the first glass film and be damaged.
 本発明は上記の事情に鑑みてなされたものであり、ガラスフィルムを搬送する際の蛇行や斜行を抑制することを技術的課題とする。 The present invention has been made in view of the above circumstances, and it is a technical subject to suppress meandering and skewing when transporting a glass film.
 本発明は上記の課題を解決するためのものであり、ガラスロールの製造方法であって、ガラスフィルムを供給する供給工程と、前記ガラスフィルムにレーザ照射装置からレーザ光を照射することにより、前記ガラスフィルムの一部を切断する切断工程と、前記切断工程後の前記ガラスフィルムを巻取装置によってロール状に巻き取る巻取工程と、前記レーザ照射装置と前記巻取装置との間に設けられる下流側調整装置によって、前記切断工程後の前記ガラスフィルムの位置を調整する下流側調整工程と、を備えることを特徴とする。 The present invention is for solving the above-mentioned problems, and is a method for manufacturing a glass roll, which comprises a supply step of supplying a glass film and irradiating the glass film with a laser beam from a laser irradiation device. It is provided between the cutting step of cutting a part of the glass film, the winding step of winding the glass film in a roll shape by the winding device after the cutting step, and the laser irradiation device and the winding device. It is characterized by comprising a downstream side adjusting step of adjusting the position of the glass film after the cutting step by the downstream side adjusting device.
 既述のように、切断工程によって形成されたガラスフィルムについては、幅方向の一端部の長さと、幅方向の他端部の長さとが異なる場合がある。本方法では、下流側調整工程(下流側調整装置)によって、ガラスフィルムの一端部の長さと他端部の長さとの差が過大とならないように当該ガラスフィルムの位置を調整することで、ガラスフィルムを搬送する際の斜行や蛇行を抑制することが可能となる。これにより、上流側のレーザ照射装置による切断工程に悪影響を及ぼすのを防止することができる。 As described above, for the glass film formed by the cutting process, the length of one end in the width direction and the length of the other end in the width direction may be different. In this method, the glass is adjusted by the downstream adjustment step (downstream adjustment device) by adjusting the position of the glass film so that the difference between the length of one end and the length of the other end of the glass film does not become excessive. It is possible to suppress skewing and meandering when transporting the film. This makes it possible to prevent adverse effects on the cutting process by the laser irradiation device on the upstream side.
 本方法における前記供給工程では、前記ガラスフィルムをロール状に巻き取ってなるガラスロールから前記ガラスフィルムを送り出すことが可能な巻出装置によって前記ガラスフィルムを供給してもよく、本方法は、前記巻出装置と前記レーザ照射装置との間に設けられる上流側調整装置によって、前記巻出装置から供給される前記ガラスフィルムの位置を調整する上流側調整工程を備えてもよい。 In the supply step in the present method, the glass film may be supplied by a winding device capable of delivering the glass film from a glass roll formed by winding the glass film in a roll shape, and the present method is described. An upstream adjustment step of adjusting the position of the glass film supplied from the unwinding device by the upstream adjusting device provided between the unwinding device and the laser irradiation device may be provided.
 巻出装置からレーザ照射装置に供給されるガラスフィルムは、その幅方向の一端部の長さと、幅方向の他端部の長さとが異なる場合がある。この長さの差が過大となると、レーザ照射装置に供給されたガラスフィルムに皺が発生し、ガラスフィルムの切断を阻害するおそれがある。本方法では、上流側調整工程によって、上記の長さの差が過大とならないようにガラスフィルムの位置を調整することで、切断工程においてこのガラスフィルムを精度良く切断することが可能となる。 The length of one end in the width direction of the glass film supplied from the unwinding device to the laser irradiation device may differ from the length of the other end in the width direction. If this difference in length is excessive, wrinkles may occur in the glass film supplied to the laser irradiation device, which may hinder the cutting of the glass film. In this method, by adjusting the position of the glass film so that the above difference in length is not excessive by the upstream side adjustment step, it is possible to cut the glass film with high accuracy in the cutting step.
 本方法において、前記切断工程後の前記ガラスフィルムに対する前記下流側調整装置による位置調整量は、前記巻出装置から供給された前記ガラスフィルムに対する前記上流側調整装置による位置調整量よりも小さくてもよい。この構成によれば、上流側調整装置によって相対的に大きくガラスフィルムの位置調整を行うことができ、下流側調整装置によってガラスフィルムの位置の微調整を行うことができる。これにより、レーザ照射装置による切断工程に悪影響が及ぶのを防止することができる。 In this method, even if the position adjustment amount of the glass film after the cutting step by the downstream side adjusting device is smaller than the position adjusting amount of the glass film supplied from the unwinding device by the upstream side adjusting device. good. According to this configuration, the position of the glass film can be adjusted relatively large by the upstream side adjusting device, and the position of the glass film can be finely adjusted by the downstream side adjusting device. This makes it possible to prevent the cutting process by the laser irradiation device from being adversely affected.
 本方法は、前記レーザ照射装置と前記下流側調整装置との間に設けられる吸着ベルトコンベアによって、前記切断工程後の前記ガラスフィルムの位置決めを行う位置決め工程を備えてもよい。 This method may include a positioning step of positioning the glass film after the cutting step by a suction belt conveyor provided between the laser irradiation device and the downstream side adjusting device.
 位置決め工程によってガラスフィルムの位置ずれを防止することで、吸着ベルトコンベアの上流側での切断工程において、ガラスフィルムの切断を精度良く行うことが可能となる。 By preventing the position of the glass film from shifting by the positioning process, it is possible to cut the glass film with high accuracy in the cutting process on the upstream side of the suction belt conveyor.
 前記下流側調整装置は、前記切断工程後の前記ガラスフィルムに対して抱き角を有するように接触する搬送ローラを備えてもよい。これにより、下流側調整工程におけるガラスフィルムの位置調整を確実に行うことができる。 The downstream side adjusting device may include a transport roller that comes into contact with the glass film after the cutting step so as to have a holding angle. This makes it possible to reliably adjust the position of the glass film in the downstream side adjustment step.
 前記上流側調整装置は、前記巻出装置から供給された前記ガラスフィルムに対して抱き角を有するように接触する搬送ローラを備えてもよい。これにより、上流側調整工程におけるガラスフィルムの位置調整を確実に行うことができる。 The upstream side adjusting device may include a transport roller that contacts the glass film supplied from the unwinding device so as to have a holding angle. This makes it possible to reliably adjust the position of the glass film in the upstream side adjustment step.
 本発明によれば、ガラスフィルムを搬送する際の蛇行や斜行を抑制することができる。 According to the present invention, it is possible to suppress meandering and skewing when transporting a glass film.
第一実施形態に係るガラスロールの製造装置を示す側面図である。It is a side view which shows the manufacturing apparatus of the glass roll which concerns on 1st Embodiment. 第二切断部の平面図である。It is a top view of the second cut part. 下流側調整装置の正面図である。It is a front view of the downstream side adjustment device. 下流側調整装置の平面図である。It is a top view of the downstream side adjustment device. ガラスロールの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a glass roll. 下流側調整工程を示す平面図である。It is a top view which shows the downstream side adjustment process. 第二実施形態に係るガラスロールの製造装置を示す側面図である。It is a side view which shows the manufacturing apparatus of the glass roll which concerns on 2nd Embodiment. 上流側調整装置及び第二切断部の平面図である。It is a top view of the upstream side adjustment device and the 2nd cut part. ガラスロールの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a glass roll. 第三実施形態に係るガラスロールの製造装置を示す側面図である。It is a side view which shows the manufacturing apparatus of the glass roll which concerns on 3rd Embodiment. 下流側調整装置の側面図である。It is a side view of the downstream side adjustment device. 下流側調整装置の平面図である。It is a top view of the downstream side adjustment device. 下流側調整装置の平面図である。It is a top view of the downstream side adjustment device.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図6は、本発明に係るガラスロールの製造方法の第一実施形態を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 6 show the first embodiment of the method for manufacturing a glass roll according to the present invention.
 図1は、本方法に使用されるガラスロールの製造装置を示す。製造装置1は、帯状の母材ガラスフィルムGを成形する成形部2と、母材ガラスフィルムGの進行方向を縦方向下方から横方向に変換する方向変換部3と、方向変換後に母材ガラスフィルムGを横方向に搬送する第一搬送部4と、母材ガラスフィルムGの幅方向両端部を切断して第一ガラスフィルムG1を形成する第一切断部5と、第一ガラスフィルムG1をロール状に巻き取って第一ガラスロールGRL1を得る第一巻取装置6と、を備える。 FIG. 1 shows a glass roll manufacturing apparatus used in this method. The manufacturing apparatus 1 includes a molding unit 2 for molding the strip-shaped base glass film G, a direction changing unit 3 for changing the traveling direction of the base glass film G from the lower vertical direction to the horizontal direction, and the base glass after the direction change. The first transport portion 4 that transports the film G in the lateral direction, the first cut portion 5 that cuts both ends in the width direction of the base glass film G to form the first glass film G1, and the first glass film G1. A first winding device 6 for winding into a roll to obtain a first glass roll GRL1 is provided.
 また、製造装置1は、第一ガラスロールGRL1から第一ガラスフィルムG1を送り出す巻出装置7と、巻出装置7から供給された第一ガラスフィルムG1を搬送する第二搬送部8と、第一ガラスフィルムG1の一部を切断して第二ガラスフィルムG2を形成する第二切断部9と、第二ガラスフィルムG2をロール状に巻き取って第二ガラスロールGRL2を得る第二巻取装置10と、をさらに備える。 Further, the manufacturing apparatus 1 includes an unwinding device 7 that feeds out the first glass film G1 from the first glass roll GRL1, a second transport unit 8 that conveys the first glass film G1 supplied from the unwinding device 7, and a second unit. (1) A second cutting portion 9 that cuts a part of the glass film G1 to form the second glass film G2, and a second winding device that winds the second glass film G2 into a roll to obtain a second glass roll GRL2. 10 and are further provided.
 成形部2は、上端部にオーバーフロー溝11aが形成された断面視略楔形の成形体11と、成形体11の直下に配置され、成形体11によって成形された溶融ガラスGMを表裏両側から挟むエッジローラ12と、エッジローラ12の直下に配備されるアニーラ13と、を有する。 The molded portion 2 has a substantially wedge-shaped molded body 11 having an overflow groove 11a formed at the upper end thereof, and an edge that is arranged directly below the molded body 11 and sandwiches the molten glass GM formed by the molded body 11 from both the front and back sides. It has a roller 12 and an annealer 13 deployed directly under the edge roller 12.
 成形部2は、成形体11のオーバーフロー溝11aから溢れ出した溶融ガラスGMを、成形体11の両側面に沿ってそれぞれ流下させ、その下端部で合流させてフィルム状に成形する。エッジローラ12は、この溶融ガラスGMの幅方向収縮を規制して母材ガラスフィルムGの幅方向寸法を調整する。アニーラ13は、母材ガラスフィルムGに対して除歪処理を施すためのものである。アニーラ13は、上下方向複数段に配設されたアニーラローラ14を有する。 The molding unit 2 causes the molten glass GM overflowing from the overflow groove 11a of the molded body 11 to flow down along both side surfaces of the molded body 11 and merges at the lower end portions thereof to form a film. The edge roller 12 regulates the widthwise shrinkage of the molten glass GM to adjust the widthwise dimension of the base glass film G. The annealing 13 is for performing a strain-removing treatment on the base glass film G. The annealer 13 has an annealer roller 14 arranged in a plurality of stages in the vertical direction.
 アニーラ13の下方には、母材ガラスフィルムGを表裏両側から挟持する支持ローラ15が配設されている。支持ローラ15とエッジローラ12との間、又は支持ローラ15と何れか一箇所のアニーラローラ14との間には、母材ガラスフィルムGを薄肉にすることを助長するために、母材ガラスフィルムGに張力が付与されている。 Below the annealer 13, a support roller 15 for sandwiching the base glass film G from both the front and back sides is arranged. In order to promote thinning of the base glass film G between the support roller 15 and the edge roller 12, or between the support roller 15 and any one of the annealing rollers 14, the base glass film G is used. Is tensioned.
 方向変換部3は、支持ローラ15の下方位置に設けられている。方向変換部3には、母材ガラスフィルムGを案内する複数のガイドローラ16が湾曲状に配列されている。これらのガイドローラ16は、鉛直方向に搬送される母材ガラスフィルムGを横方向へと案内する。 The direction changing unit 3 is provided at a position below the support roller 15. A plurality of guide rollers 16 for guiding the base glass film G are arranged in a curved shape in the direction changing unit 3. These guide rollers 16 guide the base glass film G, which is conveyed in the vertical direction, in the lateral direction.
 第一搬送部4は、方向変換部3の前方(下流側)に配置される。第一搬送部4は、方向変換部3を通過した母材ガラスフィルムGを横搬送方向X1に沿って下流側に搬送する。 The first transport unit 4 is arranged in front of (downstream side) the direction changing unit 3. The first transport unit 4 transports the base glass film G that has passed through the direction changing unit 3 to the downstream side along the lateral transport direction X1.
 なお、第一搬送部4は任意の構成をとることが可能であり、例えば一又は複数のベルトコンベアで構成することが可能である。この場合、第一搬送部4は、搬送ベルト17を備え、この搬送ベルト17を駆動することにより、母材ガラスフィルムGを搬送し得る。第一搬送部4は、この構成に限らず、ローラコンベアその他の各種搬送装置を使用することも可能である。 The first transport unit 4 can have an arbitrary configuration, and can be configured by, for example, one or a plurality of belt conveyors. In this case, the first transport unit 4 includes a transport belt 17, and by driving the transport belt 17, the base glass film G can be transported. The first transport unit 4 is not limited to this configuration, and it is also possible to use a roller conveyor or other various transport devices.
 第一切断部5は、第一搬送部4の上方に配置される。本実施形態では、第一切断部5は、レーザ割断により母材ガラスフィルムGを切断するように構成される。具体的には、第一切断部5は、一対のレーザ照射装置(以下「第一レーザ照射装置」という)18と、当該第一レーザ照射装置18の下流側に配置される一対の冷却装置(以下「第一冷却装置」という)19と、を有する。 The first cutting section 5 is arranged above the first transport section 4. In the present embodiment, the first cutting portion 5 is configured to cut the base glass film G by laser cutting. Specifically, the first cutting portion 5 includes a pair of laser irradiation devices (hereinafter referred to as “first laser irradiation device”) 18 and a pair of cooling devices (hereinafter referred to as “first laser irradiation device”) arranged on the downstream side of the first laser irradiation device 18. (Hereinafter referred to as "first cooling device") 19.
 第一切断部5は、搬送される母材ガラスフィルムGの所定部位に各第一レーザ照射装置18からレーザ光Lを照射して加熱した後、第一冷却装置19から冷媒Rを放出して当該加熱部位を冷却する。 The first cutting portion 5 irradiates a predetermined portion of the base glass film G to be conveyed with laser light L from each first laser irradiation device 18 to heat the predetermined portion, and then discharges the refrigerant R from the first cooling device 19. Cool the heated part.
 第一巻取装置6は、第一搬送部4及び第一切断部5の下流側に設置されている。第一巻取装置6は、巻芯20を回転させることで、第一ガラスフィルムG1をロール状に巻き取ることで、第一ガラスロールGRL1を形成する。この第一ガラスロールGRL1は、巻出装置7の位置まで搬送される。 The first take-up device 6 is installed on the downstream side of the first transport section 4 and the first cutting section 5. The first winding device 6 winds the first glass film G1 in a roll shape by rotating the winding core 20, thereby forming the first glass roll GRL1. The first glass roll GRL1 is conveyed to the position of the unwinding device 7.
 巻出装置7は、第一ガラスフィルムG1を第二搬送部8及び第二切断部9に供給する供給部として機能する。巻出装置7は、第一巻取装置6から移送された第一ガラスロールGRL1を装着し、この第一ガラスロールGRL1から第一ガラスフィルムG1を送り出して、第二搬送部8に供給する。 The unwinding device 7 functions as a supply unit that supplies the first glass film G1 to the second transport unit 8 and the second cutting unit 9. The unwinding device 7 mounts the first glass roll GRL1 transferred from the first winding device 6, and sends out the first glass film G1 from the first glass roll GRL1 to supply the first glass film G1 to the second transport unit 8.
 第二搬送部8は、ロールトゥロール方式により、第一ガラスフィルムG1及び第二ガラスフィルムG2を搬送する。第二搬送部8は、巻出装置7において第一ガラスロールGRL1から送り出された第一ガラスフィルムG1を、上方Z1に向かって搬送した後、横搬送方向X2に沿って搬送する。第二搬送部8は、第二切断部9によって形成された第二ガラスフィルムG2を、横搬送方向X2に沿って搬送した後、第二巻取装置10に向かって下方Z2に搬送する。 The second transport unit 8 transports the first glass film G1 and the second glass film G2 by a roll-to-roll method. The second transport unit 8 transports the first glass film G1 fed from the first glass roll GRL1 in the unwinding device 7 toward the upper Z1 and then transports the first glass film G1 along the lateral transport direction X2. The second transport unit 8 transports the second glass film G2 formed by the second cutting portion 9 along the lateral transport direction X2, and then transports the second glass film G2 downward to the second winding device 10.
 具体的には、図1に示すように、第二搬送部8は、巻出装置7から供給された第一ガラスフィルムG1を上方Z1に搬送する搬送ローラ21と、第二切断部9の上流側に位置する上流側コンベア22と、第二切断部9よりも下流側に位置する下流側コンベア23と、搬送中の第二ガラスフィルムG2の位置を調整する下流側調整装置24と、第二ガラスフィルムG2を下方Z2に搬送する搬送ローラ25と、を含む。 Specifically, as shown in FIG. 1, the second transport unit 8 has a transport roller 21 for transporting the first glass film G1 supplied from the unwinding device 7 to the upper Z1 and an upstream of the second cutting portion 9. The upstream side conveyor 22 located on the side, the downstream side conveyor 23 located on the downstream side of the second cutting portion 9, the downstream side adjusting device 24 for adjusting the position of the second glass film G2 being conveyed, and the second Includes a transport roller 25 that transports the glass film G2 to the lower Z2.
 上流側コンベア22はベルトコンベアで構成されるが、この構成に限定されない。本実施形態では、上流側コンベア22は、複数のベルト(以下「第一ベルト」という)26を備える。第一ベルト26は、第一ガラスフィルムG1の下面に接触するとともに、第一ガラスフィルムG1を水平姿勢となるように支持する。第一ベルト26は、第一ガラスフィルムG1を下流側の第二切断部9に向かって搬送するように構成される。 The upstream conveyor 22 is composed of a belt conveyor, but is not limited to this configuration. In the present embodiment, the upstream conveyor 22 includes a plurality of belts (hereinafter referred to as “first belts”) 26. The first belt 26 contacts the lower surface of the first glass film G1 and supports the first glass film G1 in a horizontal posture. The first belt 26 is configured to convey the first glass film G1 toward the second cutting portion 9 on the downstream side.
 各第一ベルト26は、例えば無端帯状のベルトにより構成される。図2に示すように、複数の第一ベルト26のうち、幅方向の中央部に位置するものは、吸着ベルトにより構成される。この第一ベルト(吸着ベルト)26は、厚さ方向に貫通する複数の吸着孔27を有する。吸着孔27は、図示しない吸引装置に接続されている。 Each first belt 26 is composed of, for example, an endless belt-shaped belt. As shown in FIG. 2, among the plurality of first belts 26, the one located in the central portion in the width direction is composed of the suction belt. The first belt (suction belt) 26 has a plurality of suction holes 27 penetrating in the thickness direction. The suction hole 27 is connected to a suction device (not shown).
 下流側コンベア23は吸着ベルトコンベアにより構成されるが、この構成に限定されない。下流側コンベア23は、複数のベルト(以下「第二ベルト」という)28を備える。第二ベルト28は、第二ガラスフィルムG2の下面に接触するとともに、第二ガラスフィルムG2を水平姿勢となるように支持する。第二ベルト28は、第二ガラスフィルムG2を下流側調整装置24に搬送するように構成される。 The downstream side conveyor 23 is composed of a suction belt conveyor, but is not limited to this configuration. The downstream conveyor 23 includes a plurality of belts (hereinafter referred to as “second belts”) 28. The second belt 28 contacts the lower surface of the second glass film G2 and supports the second glass film G2 in a horizontal posture. The second belt 28 is configured to convey the second glass film G2 to the downstream side adjusting device 24.
 各第二ベルト28は、例えば無端帯状のベルトにより構成される。第二ベルト28は、第二ガラスフィルムG2を吸着する吸着ベルトにより構成されるが、この構成に限定されるものではない。図2に示すように、第二ベルト28は、厚さ方向に貫通する複数の吸着孔29を有する。吸着孔29は、図示しない吸引装置に接続されている。 Each second belt 28 is composed of, for example, an endless belt-shaped belt. The second belt 28 is composed of a suction belt that sucks the second glass film G2, but is not limited to this structure. As shown in FIG. 2, the second belt 28 has a plurality of suction holes 29 penetrating in the thickness direction. The suction hole 29 is connected to a suction device (not shown).
 図2に示すように、第二切断部9は、第二搬送部8における上流側コンベア22と下流側コンベア23との間の領域に配置される。第二切断部9は、レーザ割断により第一ガラスフィルムG1の幅方向の端部Ga,Gbを切断するように構成される。第二切断部9は、一対のレーザ照射装置(以下「第二レーザ照射装置」という)30と、各第二レーザ照射装置30の下流側に配置される一対の冷却装置(以下「第二冷却装置」という)31と、を有する。 As shown in FIG. 2, the second cutting portion 9 is arranged in the region between the upstream side conveyor 22 and the downstream side conveyor 23 in the second transport unit 8. The second cutting portion 9 is configured to cut the end portions Ga and Gb of the first glass film G1 in the width direction by laser cutting. The second cutting portion 9 includes a pair of laser irradiation devices (hereinafter referred to as “second laser irradiation device”) 30 and a pair of cooling devices (hereinafter referred to as “second cooling device”) arranged on the downstream side of each second laser irradiation device 30. It has (referred to as a device) 31 and.
 図1に示すように、第二レーザ照射装置30及び第二冷却装置31の下方位置に、第一ガラスフィルムG1の下面に接触する定盤32が配設されている。図2に示すように、第一ガラスフィルムG1を幅方向の二箇所で切断する形態を採っていることから、定盤32は、一対の第二レーザ照射装置30及び第二冷却装置31に対応する二箇所に配設されている。 As shown in FIG. 1, a surface plate 32 in contact with the lower surface of the first glass film G1 is arranged at a position below the second laser irradiation device 30 and the second cooling device 31. As shown in FIG. 2, since the first glass film G1 is cut at two points in the width direction, the surface plate 32 corresponds to the pair of the second laser irradiation device 30 and the second cooling device 31. It is arranged in two places.
 定盤32は、図示は省略するが、床面に設置固定されており、常に静止した状態にある。定盤32は、第一ガラスフィルムG1を吸着する複数の吸着口33を備える。吸着口33は、図示しない吸引装置に接続されている。 Although not shown, the surface plate 32 is installed and fixed on the floor surface and is always in a stationary state. The surface plate 32 includes a plurality of suction ports 33 for sucking the first glass film G1. The suction port 33 is connected to a suction device (not shown).
 図1に示すように、下流側調整装置24は、第二切断部9と第二巻取装置10との間に配置されている。下流側調整装置24は、第二ガラスフィルムG2の搬送方向を横搬送方向X2から下方Z2へと変更する方向変換部としても機能する。 As shown in FIG. 1, the downstream side adjusting device 24 is arranged between the second cutting portion 9 and the second winding device 10. The downstream side adjusting device 24 also functions as a direction changing unit that changes the transport direction of the second glass film G2 from the lateral transport direction X2 to the downward Z2.
 図3及び図4に示すように、下流側調整装置24は、第二ガラスフィルムG2に対して抱き角を有するように接触する搬送ローラ34と、この搬送ローラ34を駆動する駆動機構35と、を備える。 As shown in FIGS. 3 and 4, the downstream side adjusting device 24 includes a transport roller 34 that comes into contact with the second glass film G2 so as to have a holding angle, and a drive mechanism 35 that drives the transport roller 34. To prepare for.
 搬送ローラ34は、例えばフリーローラにより構成される。搬送ローラ34における第二ガラスフィルムG2の抱き角(中心角)は、20°~70°であることが好ましく、30°~60°であることがより好ましく、40°~50°であることが更に好ましいが、この範囲に限定されるものではない。搬送ローラ34は、第二ガラスフィルムG2の搬送方向を横搬送方向X2から下方Z2へと変換する。 The transport roller 34 is composed of, for example, a free roller. The holding angle (central angle) of the second glass film G2 in the transport roller 34 is preferably 20 ° to 70 °, more preferably 30 ° to 60 °, and preferably 40 ° to 50 °. Further preferred, but not limited to this range. The transport roller 34 converts the transport direction of the second glass film G2 from the lateral transport direction X2 to the downward Z2.
 搬送ローラ34は、第二ガラスフィルムG2を下流側に搬送するように、第一の軸A1を中心として回転可能に構成される。搬送ローラ34は、第一の軸A1に対して直交しかつ鉛直方向に沿う第二の軸A2を中心として、回動可能に構成されている。第二の軸A2は、搬送ローラ34と接しながら湾曲している第二ガラスフィルムG2の湾曲頂点を通る搬送ローラ34の半径方向(例えば搬送ローラ34によって第二ガラスフィルムG2が90°曲げられて搬送される場合は45°の方向)に沿って設定されてもよい。 The transport roller 34 is configured to be rotatable about the first shaft A1 so as to transport the second glass film G2 to the downstream side. The transport roller 34 is configured to be rotatable about a second axis A2 orthogonal to the first axis A1 and along the vertical direction. The second axis A2 is curved in contact with the transport roller 34 in the radial direction of the transport roller 34 passing through the curved apex of the second glass film G2 (for example, the second glass film G2 is bent by 90 ° by the transport roller 34). When transported, it may be set along the direction of 45 °).
 駆動機構35は、搬送ローラ34をその軸方向両端で回転支持する軸受36と、モータ37と、軸受36とモータ37とを連結する連結部38とを備える。モータ37の回転軸は、第二の軸A2と一致している。 The drive mechanism 35 includes a bearing 36 that rotationally supports the transport roller 34 at both ends in the axial direction, a motor 37, and a connecting portion 38 that connects the bearing 36 and the motor 37. The axis of rotation of the motor 37 coincides with the second axis A2.
 駆動機構35は、モータ37によって連結部38を第二の軸A2まわりに回動させることができる。連結部38の回動により、搬送ローラ34は、第二の軸A2まわりに回動することで、第二ガラスフィルムG2を支持するための姿勢を変更する。駆動機構35は、モータ37の軸部の回動量を調整することにより、搬送ローラ34の姿勢を制御することができる。 The drive mechanism 35 can rotate the connecting portion 38 around the second shaft A2 by the motor 37. By rotating the connecting portion 38, the transport roller 34 rotates around the second shaft A2 to change the posture for supporting the second glass film G2. The drive mechanism 35 can control the posture of the transport roller 34 by adjusting the amount of rotation of the shaft portion of the motor 37.
 第二巻取装置10は、下流側調整装置24の下流側であって、この下流側調整装置24の下方に位置する。第二巻取装置10は、第二搬送部8によって搬送される第二ガラスフィルムG2を巻芯39によって巻き取ることで第二ガラスロールGRL2を形成する。 The second take-up device 10 is located on the downstream side of the downstream side adjusting device 24 and below the downstream side adjusting device 24. The second winding device 10 forms the second glass roll GRL2 by winding the second glass film G2 conveyed by the second conveying unit 8 by the winding core 39.
 上記構成の製造装置1により製造される第二ガラスフィルムG2(第一ガラスフィルムG1)の材質としては、ケイ酸塩ガラス、シリカガラスが用いられ、好ましくはホウ珪酸ガラス、ソーダライムガラス、アルミノ珪酸塩ガラス、化学強化ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。ここで、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 As the material of the second glass film G2 (first glass film G1) manufactured by the manufacturing apparatus 1 having the above configuration, silicate glass and silica glass are used, preferably borosilicate glass, sodalime glass, and aluminosilicate. Salt glass and chemically strengthened glass are used, and most preferably non-alkali glass is used. Here, the non-alkali glass is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 3000 ppm or less. be. The weight ratio of the alkaline component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
 また、第二ガラスフィルムG2(第一ガラスフィルムG1)の厚み寸法は、10μm以上300μm以下とされ、好ましくは30μm以上200μm以下であり、最も好ましくは30μm以上100μm以下である。 The thickness of the second glass film G2 (first glass film G1) is 10 μm or more and 300 μm or less, preferably 30 μm or more and 200 μm or less, and most preferably 30 μm or more and 100 μm or less.
 以下、上記構成の製造装置1を使用して第二ガラスロールGRL2を製造する方法について説明する。 Hereinafter, a method of manufacturing the second glass roll GRL2 using the manufacturing apparatus 1 having the above configuration will be described.
 図5に示すように、本方法は、成形工程S1と、第一切断工程S2と、第一巻取工程S3と、供給工程S4と、第二切断工程S5と、下流側調整工程S6と、第二巻取工程S7と、を備える。 As shown in FIG. 5, this method includes a molding step S1, a first cutting step S2, a first winding step S3, a supply step S4, a second cutting step S5, and a downstream adjustment step S6. The second winding step S7 is provided.
 成形工程S1では、成形部2における成形体11のオーバーフロー溝11aから溢れ出した溶融ガラスGMを成形体11の両側面に沿ってそれぞれ流下させ、その下端で合流させてフィルム状に成形する。 In the molding step S1, the molten glass GM overflowing from the overflow groove 11a of the molded body 11 in the molded body 2 is allowed to flow down along both side surfaces of the molded body 11 and merged at the lower ends thereof to form a film.
 この際、溶融ガラスGMの幅方向収縮をエッジローラ12により規制して所定幅の母材ガラスフィルムGとする。その後、母材ガラスフィルムGに対してアニーラ13により除歪処理を施す(徐冷工程)。支持ローラ15の張力により、母材ガラスフィルムGは所定の厚みに形成される。 At this time, the shrinkage of the molten glass GM in the width direction is regulated by the edge roller 12 to obtain the base glass film G having a predetermined width. After that, the base glass film G is subjected to strain-removing treatment with the annealing 13 (slow cooling step). The base glass film G is formed to a predetermined thickness by the tension of the support roller 15.
 第一切断工程S2では、方向変換部3及び第一搬送部4によって母材ガラスフィルムGを横搬送方向X1に沿って搬送しつつ、第一切断部5において、第一レーザ照射装置18からレーザ光Lを母材ガラスフィルムGの一部に照射する。 In the first cutting step S2, the base glass film G is conveyed along the lateral transfer direction X1 by the direction changing unit 3 and the first transfer unit 4, and the laser is emitted from the first laser irradiation device 18 in the first cutting unit 5. Light L is applied to a part of the base glass film G.
 上記のようなレーザ光Lの照射により、母材ガラスフィルムGが加熱される。その後、母材ガラスフィルムGのうち加熱された部分は、第一冷却装置19の直下に到達すると、第一冷却装置19から下方に向けて噴射された冷媒Rを受けて冷却される。 The base glass film G is heated by the irradiation of the laser beam L as described above. After that, when the heated portion of the base glass film G reaches directly under the first cooling device 19, it receives the refrigerant R jetted downward from the first cooling device 19 and is cooled.
 第一レーザ照射装置18の局部加熱による膨張と第一冷却装置19の冷却による収縮とにより、母材ガラスフィルムGに熱応力が生じる。母材ガラスフィルムGには、予め初期クラックが形成されており、このクラックを熱応力によって進展させる。これにより、母材ガラスフィルムGの幅方向における両端部(耳部)が非製品部Gsとして母材ガラスフィルムGから分離され、第一ガラスフィルムG1が形成される。 Thermal stress is generated in the base glass film G due to the expansion of the first laser irradiation device 18 due to local heating and the contraction of the first cooling device 19 due to cooling. Initial cracks are formed in advance in the base glass film G, and these cracks are propagated by thermal stress. As a result, both ends (ears) of the base glass film G in the width direction are separated from the base glass film G as non-product portions Gs, and the first glass film G1 is formed.
 第一巻取工程S3では、第一巻取装置6において第一ガラスフィルムG1を巻芯20に巻き取ることで、第一ガラスロールGRL1が形成される。その後、第一ガラスロールGRL1は、第一巻取装置6から取り外され、巻出装置7へと移送される。 In the first winding step S3, the first glass roll GRL1 is formed by winding the first glass film G1 around the winding core 20 in the first winding device 6. After that, the first glass roll GRL1 is removed from the first winding device 6 and transferred to the unwinding device 7.
 供給工程S4では、巻出装置7に装着された第一ガラスロールGRL1から第一ガラスフィルムG1が送り出される。第一ガラスフィルムG1は、第二搬送部8の搬送ローラ21を介して上方Z1へと搬送される。その後、第一ガラスフィルムG1は、上流側コンベア22により、横搬送方向X2に沿って第二切断部9へと搬送される。 In the supply process S4, the first glass film G1 is sent out from the first glass roll GRL1 mounted on the unwinding device 7. The first glass film G1 is conveyed upward to Z1 via the transfer roller 21 of the second transfer unit 8. After that, the first glass film G1 is conveyed to the second cutting portion 9 along the lateral transfer direction X2 by the upstream conveyor 22.
 第二切断工程S5では、上流側コンベア22によって第一ガラスフィルムG1を横搬送方向X2に沿って搬送しつつ、第一ガラスフィルムG1の一部に、第二レーザ照射装置30によりレーザ光Lを照射する。 In the second cutting step S5, the first glass film G1 is conveyed along the lateral transfer direction X2 by the upstream conveyor 22, and the laser beam L is transmitted to a part of the first glass film G1 by the second laser irradiation device 30. Irradiate.
 上記のようなレーザ光Lの照射により、第一ガラスフィルムG1が加熱される。その後、第一ガラスフィルムG1のうち加熱された部分は、第二冷却装置31の直下に到達すると、第二冷却装置31から下方に向けて噴射された冷媒Rを受けて冷却される。 The first glass film G1 is heated by the irradiation of the laser beam L as described above. After that, when the heated portion of the first glass film G1 reaches directly under the second cooling device 31, it receives the refrigerant R jetted downward from the second cooling device 31 and is cooled.
 第二レーザ照射装置30の局部加熱による膨張と第二冷却装置31の冷却による収縮とにより、第一ガラスフィルムG1に熱応力が生じる。第一ガラスフィルムG1には、予め初期クラックが形成されており、このクラックを熱応力によって進展させる。これにより、第一ガラスフィルムG1の幅方向Yにおける両端部Ga,Gbが非製品部Gsとして第一ガラスフィルムG1から分離し、第二ガラスフィルムG2が形成される。 Thermal stress is generated in the first glass film G1 due to the expansion of the second laser irradiation device 30 due to local heating and the contraction of the second cooling device 31 due to cooling. Initial cracks are formed in advance in the first glass film G1, and these cracks are propagated by thermal stress. As a result, both ends Ga and Gb of the first glass film G1 in the width direction Y are separated from the first glass film G1 as non-product portions Gs, and the second glass film G2 is formed.
 下流側コンベア23は、第二ベルト28によって第二ガラスフィルムG2を吸着しながら下流側に搬送する。これにより、第二ガラスフィルムG2に位置ずれが生じないように、第二ガラスフィルムG2の位置決めが行われる(位置決め工程)。このように、下流側コンベア23によって第二ガラスフィルムG2の位置決めを行うことで、上流側の切断位置において、第一ガラスフィルムG1を精度良く切断することが可能となる。 The downstream side conveyor 23 is conveyed to the downstream side while adsorbing the second glass film G2 by the second belt 28. As a result, the second glass film G2 is positioned so that the second glass film G2 does not shift in position (positioning step). By positioning the second glass film G2 by the downstream conveyor 23 in this way, it is possible to accurately cut the first glass film G1 at the cutting position on the upstream side.
 下流側調整工程S6では、下流側コンベア23よりも下流側で搬送される第二ガラスフィルムG2の斜行や蛇行を抑制するために、この第二ガラスフィルムG2の位置を下流側調整装置24によって調整する。 In the downstream side adjusting step S6, in order to suppress the skewing and meandering of the second glass film G2 conveyed on the downstream side of the downstream side conveyor 23, the position of the second glass film G2 is adjusted by the downstream side adjusting device 24. adjust.
 第二ガラスフィルムG2の斜行や蛇行は、この第二ガラスフィルムG2の幅方向Yにおける一端部Gaの長さと、幅方向Yにおける他端部Gbの長さとの違いにより発生し得る。下流側調整工程S6では、この長さの差が過大とならないように、下流側調整装置24の搬送ローラ34の姿勢を変更することによって、第二ガラスフィルムG2の位置を調整する。 The skewing or meandering of the second glass film G2 may occur due to the difference between the length of one end Ga in the width direction Y of the second glass film G2 and the length of the other end Gb in the width direction Y. In the downstream side adjusting step S6, the position of the second glass film G2 is adjusted by changing the posture of the transport roller 34 of the downstream side adjusting device 24 so that the difference in length does not become excessive.
 具体的には、図6に示すように、下流側調整装置24は、搬送ローラ34を、第一の軸A1が第二ガラスフィルムG2の幅方向Yと平行となる基準姿勢(実線で示す姿勢)から、第二の軸A2まわりに所定の角度θ1だけ回動した調整姿勢(二点鎖線で示す姿勢)へと変更する。これにより、幅方向Yにおける第二ガラスフィルムG2の位置が調整される。この搬送ローラ34の位置調整量(位置調整角度θ1)は、第二ガラスフィルムG2の幅寸法や各端部Ga,Gbの長さの差に応じて適宜設定される。 Specifically, as shown in FIG. 6, the downstream side adjusting device 24 arranges the transport roller 34 in a reference posture (a posture shown by a solid line) in which the first axis A1 is parallel to the width direction Y of the second glass film G2. ) Is changed to an adjustment posture (posture indicated by a two-dot chain line) rotated by a predetermined angle θ1 around the second axis A2. As a result, the position of the second glass film G2 in the width direction Y is adjusted. The position adjustment amount (position adjustment angle θ1) of the transfer roller 34 is appropriately set according to the width dimension of the second glass film G2 and the difference in the lengths of the end portions Ga and Gb.
 また、第二搬送部8は、下流側調整装置24によって第二ガラスフィルムG2の搬送方向を横搬送方向X2から下方Z2へと変換し、下流側の搬送ローラ25によって第二ガラスフィルムG2を第二巻取装置10に向かって搬送する。 Further, the second transport unit 8 converts the transport direction of the second glass film G2 from the lateral transport direction X2 to the lower Z2 by the downstream side adjusting device 24, and transfers the second glass film G2 by the downstream side transport roller 25. It is conveyed toward the two-winding device 10.
 第二巻取工程S7では、第二巻取装置10において、巻芯39によって第二ガラスフィルムG2が巻き取られる。所定長さの第二ガラスフィルムG2が巻き取られることで、第二巻取装置10に第二ガラスロールGRL2が形成される。 In the second winding step S7, the second glass film G2 is wound by the winding core 39 in the second winding device 10. By winding the second glass film G2 having a predetermined length, the second glass roll GRL2 is formed on the second winding device 10.
 以上説明した本実施形態に係る第二ガラスロールGRL2の製造方法によれば、下流側調整工程S6(下流側調整装置24)によって第二ガラスフィルムG2の位置を調整することで、第二ガラスフィルムG2を搬送する際の斜行や蛇行を抑制することが可能となる。これにより、第二切断部9に第二ガラスフィルムG2の斜行や蛇行による悪影響が及ぶのを防止することができる。また、下流側調整装置24の搬送ローラ34は、第二ガラスフィルムG2に対する抱き角を有することで、当該第二ガラスフィルムG2の位置調整を確実に行うことができる。 According to the method for manufacturing the second glass roll GRL2 according to the present embodiment described above, the position of the second glass film G2 is adjusted by the downstream side adjusting step S6 (downstream side adjusting device 24) to adjust the position of the second glass film G2. It is possible to suppress skewing and meandering when transporting G2. As a result, it is possible to prevent the second cut portion 9 from being adversely affected by the skewing or meandering of the second glass film G2. Further, since the transport roller 34 of the downstream side adjusting device 24 has a holding angle with respect to the second glass film G2, the position of the second glass film G2 can be surely adjusted.
 図7乃至図9は、本発明の第二実施形態を示す。図7に示すように、本実施形態に係る製造装置1は、一枚の第一ガラスフィルムG1から二枚の第二ガラスフィルムG2a,G2bを形成し、これらを巻き取ることで、二個の第二ガラスロールGRL2a,GRL2bを製造することができる。 7 to 9 show a second embodiment of the present invention. As shown in FIG. 7, the manufacturing apparatus 1 according to the present embodiment forms two second glass films G2a and G2b from one first glass film G1 and winds them up to form two pieces. The second glass rolls GRL2a and GRL2b can be manufactured.
 図8に示すように、第二切断部9は、一枚の第一ガラスフィルムG1から二枚の第二ガラスフィルムG2を形成するために、三台の第二レーザ照射装置30及び三台の第二冷却装置31を備える。各第二レーザ照射装置30の下方位置には、各第二レーザ照射装置30に対応するように、第一ガラスフィルムG1の下面を支持する三台の定盤32が配置されている。 As shown in FIG. 8, the second cutting portion 9 has three second laser irradiation devices 30 and three units for forming two second glass films G2 from one first glass film G1. A second cooling device 31 is provided. At a lower position of each second laser irradiation device 30, three surface plates 32 that support the lower surface of the first glass film G1 are arranged so as to correspond to each second laser irradiation device 30.
 製造装置1は、二枚の第二ガラスフィルムG2a,G2bの位置を調整するために、二台の下流側調整装置24a,24bを備える。各下流側調整装置24a,24bの構成は、第一実施形態における下流側調整装置24と同じである。 The manufacturing device 1 includes two downstream side adjusting devices 24a and 24b for adjusting the positions of the two second glass films G2a and G2b. The configurations of the downstream side adjusting devices 24a and 24b are the same as those of the downstream side adjusting device 24 in the first embodiment.
 その他、製造装置1は、第一ガラスフィルムG1の位置を調整する上流側調整装置40を備える。上流側調整装置40は、巻出装置7と第二切断部9との間に配置されている。上流側調整装置40は、巻出装置7から送り出された第一ガラスフィルムG1の搬送方向を上下方向(上方Z1)から横搬送方向X2へと変更する方向変換部としても機能する。 In addition, the manufacturing apparatus 1 includes an upstream adjusting apparatus 40 for adjusting the position of the first glass film G1. The upstream side adjusting device 40 is arranged between the unwinding device 7 and the second cutting portion 9. The upstream side adjusting device 40 also functions as a direction changing unit that changes the transport direction of the first glass film G1 delivered from the unwinding device 7 from the vertical direction (upper Z1) to the lateral transport direction X2.
 上流側調整装置40の構成は、第一実施形態における下流側調整装置24と構成と同じである。すなわち、上流側調整装置40は、巻出装置7から供給される第一ガラスフィルムG1に対して抱き角を有するように接触する搬送ローラ34と、モータ(図示省略)と、連結部(図示省略)と、を備えている。上流側調整装置40の搬送ローラ34における第一ガラスフィルムG1の抱き角(中心角)は、20°~70°とされることが望ましく、30°~60°とされることがより望ましく、40°~50°とされることが更に望ましい。 The configuration of the upstream side adjusting device 40 is the same as the configuration of the downstream side adjusting device 24 in the first embodiment. That is, the upstream side adjusting device 40 includes a transport roller 34 that comes into contact with the first glass film G1 supplied from the unwinding device 7 so as to have a holding angle, a motor (not shown), and a connecting portion (not shown). ) And. The holding angle (central angle) of the first glass film G1 in the transport roller 34 of the upstream side adjusting device 40 is preferably 20 ° to 70 °, more preferably 30 ° to 60 °, and 40. It is more desirable to set the temperature from ° to 50 °.
 製造装置1は、第二切断部9において形成された二枚の第二ガラスフィルムG2a,G2bを個別に巻き取るために、二台の第二巻取装置10a,10bを備える。 The manufacturing apparatus 1 includes two second winding devices 10a and 10b for individually winding the two second glass films G2a and G2b formed in the second cutting portion 9.
 以下、本実施形態に係る製造装置1を使用して第二ガラスロールGRL2を製造する方法について説明する。 Hereinafter, a method of manufacturing the second glass roll GRL2 by using the manufacturing apparatus 1 according to the present embodiment will be described.
 図9に示すように、本方法は、成形工程S11と、第一切断工程S12と、第一巻取工程S13と、供給工程S14と、上流側調整工程S15と、第二切断工程S16と、下流側調整工程S17と、第二巻取工程S18と、を備える。以下、本方法において、第一実施形態と異なる点について説明する。 As shown in FIG. 9, this method includes a molding step S11, a first cutting step S12, a first winding step S13, a supply step S14, an upstream adjustment step S15, and a second cutting step S16. A downstream side adjusting step S17 and a second winding step S18 are provided. Hereinafter, the points different from the first embodiment in this method will be described.
 上流側調整工程S15では、巻出装置7から送り出された第一ガラスフィルムG1が上流側調整装置40に供給される。 In the upstream side adjusting step S15, the first glass film G1 sent out from the unwinding device 7 is supplied to the upstream side adjusting device 40.
 第一ガラスフィルムG1は、その幅方向Yにおける一端部Gaの長さと、幅方向Yにおける他端部Gbの長さとが異なる。この長さの差が大きくなると、第二切断部9に供給される第一ガラスフィルムG1の一部に皺が発生し、第二切断部9による切断を阻害するおそれがある。 The length of one end Ga in the width direction Y of the first glass film G1 is different from the length of the other end Gb in the width direction Y. If this difference in length becomes large, wrinkles may occur in a part of the first glass film G1 supplied to the second cutting portion 9, and the cutting by the second cutting portion 9 may be hindered.
 上流側調整装置40は、第二切断部9に供給される第一ガラスフィルムG1を精度良く切断することができるように、第一ガラスフィルムG1の位置を調整する。 The upstream side adjusting device 40 adjusts the position of the first glass film G1 so that the first glass film G1 supplied to the second cutting portion 9 can be cut with high accuracy.
 具体的には、図8に示すように、上流側調整装置40は、搬送ローラ34を、第一の軸A1が第一ガラスフィルムG1の幅方向Yと平行となる基準姿勢(実線で示す姿勢)から、第二の軸A2まわりに所定の角度θ2だけ回動した調整姿勢(二点鎖線で示す姿勢)に変更する。 Specifically, as shown in FIG. 8, the upstream side adjusting device 40 arranges the transport roller 34 in a reference posture (a posture shown by a solid line) in which the first axis A1 is parallel to the width direction Y of the first glass film G1. ) Is changed to an adjustment posture (posture indicated by a two-dot chain line) rotated by a predetermined angle θ2 around the second axis A2.
 上流側調整装置40による第一ガラスフィルムG1の位置調整量(位置調整角度θ2)は、下流側調整装置24a,24bによる第二ガラスフィルムG2の位置調整量(位置調整角度θ1)よりも大きく設定されることが望ましい。すなわち、下流側調整装置24a,24bによる位置調整量は、上流側調整装置40による位置調整量よりも小さく設定されることが望ましい。この構成によれば、上流側調整装置40によって相対的に大きく第一ガラスフィルムG1の位置調整を行うことができ、下流側調整装置24によって第二ガラスフィルムG2の位置の微調整を行うことができる。これにより、第二切断部9に悪影響が及ぶのを防止することができる。 The position adjustment amount (position adjustment angle θ2) of the first glass film G1 by the upstream side adjustment device 40 is set larger than the position adjustment amount (position adjustment angle θ1) of the second glass film G2 by the downstream side adjustment devices 24a and 24b. It is desirable to be done. That is, it is desirable that the position adjustment amount by the downstream side adjusting devices 24a and 24b is set smaller than the position adjustment amount by the upstream side adjusting device 40. According to this configuration, the position of the first glass film G1 can be adjusted relatively largely by the upstream side adjusting device 40, and the position of the second glass film G2 can be finely adjusted by the downstream side adjusting device 24. can. As a result, it is possible to prevent the second cutting portion 9 from being adversely affected.
 第二切断工程S16では、各第二レーザ照射装置30から第二ガラスフィルムG2に対してレーザ光Lが照射され、各第二冷却装置31から第二ガラスフィルムG2に向かって冷媒Rが噴射される。これにより、第一ガラスフィルムG1から非製品部Gsが分離され、製品部としての二枚の第二ガラスフィルムG2a,G2bが形成される。二枚の第二ガラスフィルムG2a,G2bは、下流側調整装置24a,24b(下流側調整工程S17)を経て、第二巻取装置10a,10bへと搬送される。 In the second cutting step S16, the laser beam L is irradiated from each second laser irradiation device 30 to the second glass film G2, and the refrigerant R is injected from each second cooling device 31 toward the second glass film G2. To. As a result, the non-product portion Gs is separated from the first glass film G1, and two second glass films G2a and G2b as the product portion are formed. The two second glass films G2a and G2b are conveyed to the second winding devices 10a and 10b via the downstream side adjusting devices 24a and 24b (downstream side adjusting step S17).
 第二巻取工程S18では、二台の第二巻取装置10a,10bによって二枚の第二ガラスフィルムG2a,G2bが個別に巻き取られる。これにより、各第二巻取装置10a,10bに第二ガラスロールGRL2a,GRL2bが形成される。 In the second winding step S18, the two second glass films G2a and G2b are individually wound by the two second winding devices 10a and 10b. As a result, the second glass rolls GRL2a and GRL2b are formed on the second winding devices 10a and 10b.
 本実施形態におけるその他の構成は、第一実施形態と同じである。本実施形態において第一実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment. The components common to the first embodiment in the present embodiment are designated by a common reference numeral.
 図10乃至図13は、本発明の第三実施形態を示す。図10及び図11に示すように、本実施形態に係る製造装置1の下流側調整装置24は、搬送ローラ34及び駆動機構35の他、第二ガラスフィルムG2の幅方向Yにおける端部Gaの位置を検出するエッジセンサ41と、制御装置42とを備える。 10 to 13 show a third embodiment of the present invention. As shown in FIGS. 10 and 11, the downstream side adjusting device 24 of the manufacturing apparatus 1 according to the present embodiment includes a transfer roller 34 and a drive mechanism 35, as well as an end Ga of the second glass film G2 in the width direction Y. It includes an edge sensor 41 for detecting a position and a control device 42.
 エッジセンサ41としては、例えばLED等を利用する光学式センサが使用されるが、他の非接触式のセンサを使用してもよい。図10及び図11に示すように、エッジセンサ41は、第二ガラスフィルムG2の下方に配される投光部41aと、投光部41aと対向するように、第二ガラスフィルムG2の上方に配される受光部41bとを有する。投光部41a及び受光部41bは、平面視において第二ガラスフィルムG2の端部Gaと重なるように配置されている。 As the edge sensor 41, for example, an optical sensor using an LED or the like is used, but other non-contact type sensors may be used. As shown in FIGS. 10 and 11, the edge sensor 41 is located above the second glass film G2 so as to face the light projecting unit 41a arranged below the second glass film G2 and the light projecting unit 41a. It has a light receiving unit 41b to be arranged. The light emitting portion 41a and the light receiving portion 41b are arranged so as to overlap the end portion Ga of the second glass film G2 in a plan view.
 図11に示すように、エッジセンサ41は、投光部41aから放射した光LTを受光部41bに受光させる。投光部41aから放射された光LTは、第二ガラスフィルムG2の端部Gaを透過し、受光部41bに到達する。エッジセンサ41は、受光部41bが検出した光LTの信号に基づいて、第二ガラスフィルムG2の端部Gaの幅方向Yにおける位置を検出することができる。 As shown in FIG. 11, the edge sensor 41 causes the light receiving unit 41b to receive the light LT emitted from the light projecting unit 41a. The light LT emitted from the light projecting unit 41a passes through the end portion Ga of the second glass film G2 and reaches the light receiving unit 41b. The edge sensor 41 can detect the position of the end portion Ga of the second glass film G2 in the width direction Y based on the signal of the optical LT detected by the light receiving portion 41b.
 図11及び図12に示すように、駆動機構35は、軸受36及びモータ37を備えるが、本実施形態ではモータ37の構成が第一実施形態と異なる。本実施形態に係るモータ37は、リニアモータ(例えばリニアサーボモータ)により構成される。 As shown in FIGS. 11 and 12, the drive mechanism 35 includes a bearing 36 and a motor 37, but in the present embodiment, the configuration of the motor 37 is different from that of the first embodiment. The motor 37 according to this embodiment is composed of a linear motor (for example, a linear servo motor).
 モータ37は、搬送ローラ34の各軸端部34a,34bのうち、一方の軸端部34aを支持する軸受36に設けられている。モータ37は、この軸受36を所定の方向に移動させる駆動部43と、この駆動部43を支持する支持台44とを備える。なお、本実施形態では、搬送ローラ34の他方の軸端部34bを支持する軸受36にモータ37が設けられていない例を示すが、この軸受36にモータ37が設けられてもよい。 The motor 37 is provided on the bearing 36 that supports one of the shaft end portions 34a and 34b of the transport roller 34. The motor 37 includes a drive unit 43 that moves the bearing 36 in a predetermined direction, and a support base 44 that supports the drive unit 43. Although the present embodiment shows an example in which the motor 37 is not provided on the bearing 36 that supports the other shaft end portion 34b of the transport roller 34, the motor 37 may be provided on the bearing 36.
 駆動部43は、その上面において、搬送ローラ34の一方の軸端部34aに係る軸受36を支持している。図11乃至図13に示すように、駆動部43は、第一移動方向D1又は第二移動方向D2に移動可能に構成されている。 The drive unit 43 supports the bearing 36 related to one of the shaft end portions 34a of the transport roller 34 on the upper surface thereof. As shown in FIGS. 11 to 13, the drive unit 43 is configured to be movable in the first movement direction D1 or the second movement direction D2.
 支持台44は、駆動部43をスライド可能に支持するレール部(ガイド部)45を備える。レール部45は、第二ガラスフィルムG2の横搬送方向X2に沿うように直線状に構成される。 The support base 44 includes a rail portion (guide portion) 45 that slidably supports the drive portion 43. The rail portion 45 is formed linearly along the lateral transport direction X2 of the second glass film G2.
 下流側調整工程において、モータ37は、支持台44のレール部45に沿って駆動部43を第一移動方向D1又は第二移動方向D2に移動させることで、搬送ローラ34の一方の軸端部34a及びその軸受36の位置を変更する。この場合において、搬送ローラ34は、他方の軸端部34bを支持する軸受36の位置を中心として回動することで、その姿勢を変更する。 In the downstream adjustment step, the motor 37 moves the drive unit 43 in the first movement direction D1 or the second movement direction D2 along the rail portion 45 of the support base 44, so that one shaft end portion of the transport roller 34 The positions of 34a and its bearing 36 are changed. In this case, the transport roller 34 changes its posture by rotating around the position of the bearing 36 that supports the other shaft end portion 34b.
 制御装置42は、エッジセンサ41及びモータ37に接続されている。制御装置42は、第二ガラスフィルムG2の端部Gaが所定の基準位置からずれたときに、エッジセンサ41によって検出された端部Gaの位置情報に基づいて、モータ37を作動させる。例えば、図12において、エッジセンサ41が、第二ガラスフィルムG2が左側(第二ガラスフィルムG2の端部Gb側)へ斜行するのを検知した場合、制御装置42は、モータ37を作動させ、搬送ローラ34の軸端部34a及びその軸受36を第一移動方向D1に移動させ、搬送ローラ34は、図13において実線で示す基準姿勢から、二点鎖線で示す調整姿勢へと姿勢を変更する。逆に、図12において、エッジセンサ41が、第二ガラスフィルムG2が右側(第二ガラスフィルムG2の端部Ga側)へ斜行するのを検知した場合、制御装置42は、搬送ローラ34の軸端部34a及びその軸受36を図13における第二移動方向D2に移動させる。 The control device 42 is connected to the edge sensor 41 and the motor 37. The control device 42 operates the motor 37 based on the position information of the end Ga detected by the edge sensor 41 when the end Ga of the second glass film G2 deviates from a predetermined reference position. For example, in FIG. 12, when the edge sensor 41 detects that the second glass film G2 is skewed to the left side (the end portion Gb side of the second glass film G2), the control device 42 operates the motor 37. The shaft end portion 34a of the transport roller 34 and its bearing 36 are moved in the first movement direction D1, and the transport roller 34 changes its posture from the reference posture shown by the solid line in FIG. 13 to the adjustment posture shown by the two-dot chain line. do. On the contrary, in FIG. 12, when the edge sensor 41 detects that the second glass film G2 is skewed to the right side (the end Ga side of the second glass film G2), the control device 42 is the transfer roller 34. The shaft end portion 34a and its bearing 36 are moved in the second moving direction D2 in FIG.
 上記のような搬送ローラ34の姿勢の調整により、下流側調整装置24は、第二ガラスフィルムG2の蛇行及び斜行を抑制することができる。本実施形態に係る製造装置1は、下流側調整装置24のエッジセンサ41及び制御装置42によって搬送ローラ34の姿勢を自動的に調整することで、第二ガラスフィルムG2を効率良く製造することができる。 By adjusting the posture of the transport roller 34 as described above, the downstream side adjusting device 24 can suppress meandering and skewing of the second glass film G2. The manufacturing apparatus 1 according to the present embodiment can efficiently manufacture the second glass film G2 by automatically adjusting the posture of the transport roller 34 by the edge sensor 41 and the control device 42 of the downstream side adjusting device 24. can.
 本実施形態におけるその他の構成は、第一実施形態と同じである。本実施形態において第一実施形態と共通する構成要素には、共通符号を付している。本実施形態に係る製造装置1は、第二実施形態に係る上流側調整装置40等の構成を備えてもよい。 Other configurations in this embodiment are the same as those in the first embodiment. The components common to the first embodiment in the present embodiment are designated by a common reference numeral. The manufacturing apparatus 1 according to the present embodiment may include a configuration such as the upstream side adjusting device 40 according to the second embodiment.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.
 上記の実施形態では、供給工程S4において、巻出装置7によって第一ガラスフィルムG1を供給する例を示したが、本発明はこの構成に限定されるものではない。本発明は、第一ガラスロールGRL1を製造する方法にも適用することができる。 In the above embodiment, an example in which the first glass film G1 is supplied by the unwinding device 7 is shown in the supply step S4, but the present invention is not limited to this configuration. The present invention can also be applied to a method for producing the first glass roll GRL1.
 すなわち、製造装置1の第一切断部5は、第二切断部9と同じ構成を備えてもよい。製造装置1は、第一切断部5と第一巻取装置6との間に、下流側調整装置24を備えてもよい。製造装置1は、方向変換部3と第一切断部5との間に、上流側調整装置40を備えてもよい。 That is, the first cutting portion 5 of the manufacturing apparatus 1 may have the same configuration as the second cutting portion 9. The manufacturing apparatus 1 may include a downstream side adjusting device 24 between the first cutting portion 5 and the first winding device 6. The manufacturing apparatus 1 may include an upstream side adjusting device 40 between the direction changing unit 3 and the first cutting unit 5.
 この場合において、供給工程では、成形部2及び方向変換部3から母材ガラスフィルムGが第一切断部5に供給される。すなわち、成形部2及び方向変換部3は、巻出装置7と同様に、第一切断部5にガラスフィルム(母材ガラスフィルムG)を供給する供給部として機能する。 In this case, in the supply process, the base glass film G is supplied to the first cutting section 5 from the molding section 2 and the direction changing section 3. That is, the molding unit 2 and the direction changing unit 3 function as a supply unit for supplying the glass film (base material glass film G) to the first cutting unit 5, similarly to the unwinding device 7.
 第一切断部5によって母材ガラスフィルムGの幅方向端部を切断することで形成された第一ガラスフィルムG1は、下流側調整工程において、その位置が調整される。 The position of the first glass film G1 formed by cutting the widthwise end portion of the base glass film G by the first cutting portion 5 is adjusted in the downstream side adjusting step.
 上記の実施形態では、下流側調整装置24及び上流側調整装置40は、搬送ローラ34の姿勢を変更することによって、各ガラスフィルムG1,G2の位置を調整していたが、本発明はこの構成に限定されるものではない。下流側調整装置24及び上流側調整装置40は、搬送ローラ34に替えて、各ガラスフィルムG1,G2の位置を調整することが可能なベルトコンベアを備えてもよい。ベルトコンベアは、各ガラスフィルムG1,G2の位置を調整するように、姿勢変更可能(位置変更可能)に構成される。 In the above embodiment, the downstream side adjusting device 24 and the upstream side adjusting device 40 adjust the positions of the glass films G1 and G2 by changing the posture of the transport roller 34, but the present invention has this configuration. Not limited to. The downstream side adjusting device 24 and the upstream side adjusting device 40 may be provided with a belt conveyor capable of adjusting the positions of the glass films G1 and G2 instead of the transport roller 34. The belt conveyor is configured so that the posture can be changed (position can be changed) so as to adjust the positions of the glass films G1 and G2.
 上記の実施形態では、下流側調整装置24及び上流側調整装置40の搬送ローラ34の姿勢を駆動機構35のモータ37によって調整する構成を例示したが、本発明はこの構成に限定されない。搬送ローラ34の姿勢変更は、作業者の手動操作によって行われてもよい。 In the above embodiment, the configuration in which the postures of the transport rollers 34 of the downstream side adjusting device 24 and the upstream side adjusting device 40 are adjusted by the motor 37 of the drive mechanism 35 is exemplified, but the present invention is not limited to this configuration. The posture of the transport roller 34 may be changed manually by an operator.
 上記の第二実施形態では、上流側調整装置40を備える製造装置1の形態での説明を行ったが、第一実施形態における製造装置1でも上流側調整装置40を備えていても良い。 製造装置1は、各ガラスフィルムG1,G2の幅方向Yにおける端部Ga,Gbの長さを測定するために、各端部Ga,Gbに対応して配置される非接触式のセンサを備えてもよい。 In the second embodiment described above, the description is given in the form of the manufacturing device 1 provided with the upstream side adjusting device 40, but the manufacturing device 1 in the first embodiment may also be provided with the upstream side adjusting device 40. The manufacturing apparatus 1 includes a non-contact sensor arranged corresponding to each end Ga, Gb in order to measure the lengths of the ends Ga, Gb in the width direction Y of each glass film G1 and G2. You may.
 6      第一巻取装置
 7      巻出装置
10      第二巻取装置
10a     第二巻取装置
10b     第二巻取装置
18      第一レーザ照射装置
23      下流側コンベア(吸着ベルトコンベア)
24      下流側調整装置
30      第二レーザ照射装置
34      搬送ローラ
 G      母材ガラスフィルム
 G1     第一ガラスフィルム
 G2     第二ガラスフィルム
 GRL1   第一ガラスロール
 GRL2   第二ガラスロール
 GRL2a  第二ガラスロール
 GRL2b  第二ガラスロール
 L      レーザ光
 S2     第一切断工程
 S3     第一巻取工程
 S4     供給工程
 S5     第二切断工程
 S6     下流側調整工程
 S7     第二巻取工程
 θ1       第二ガラスフィルムに対する下流側調整装置による位置調
                整量
 θ2       第一ガラスフィルムに対する上流側調整装置による位置調
                整量
6 1st take-up device 7 Unwinding device 10 2nd take-up device 10a 2nd take-up device 10b 2nd take-up device 18 1st laser irradiation device 23 Downstream side conveyor (adsorption belt conveyor)
24 Downstream side adjusting device 30 Second laser irradiation device 34 Conveying roller G Base glass film G1 First glass film G2 Second glass film GRL1 First glass roll GRL2 Second glass roll GRL2a Second glass roll GRL2b Second glass roll L Laser light S2 1st cutting process S3 1st winding process S4 Supply process S5 2nd cutting process S6 Downstream side adjustment process S7 2nd winding process θ1 Position adjustment amount by downstream side adjusting device for 2nd glass film θ2 1st Position adjustment by the upstream adjustment device for the glass film

Claims (6)

  1.  ガラスロールの製造方法であって、
     ガラスフィルムを供給する供給工程と、
     前記ガラスフィルムにレーザ照射装置からレーザ光を照射することにより、前記ガラスフィルムの一部を切断する切断工程と、
     前記切断工程後の前記ガラスフィルムを巻取装置によってロール状に巻き取る巻取工程と、
     前記レーザ照射装置と前記巻取装置との間に設けられる下流側調整装置によって、前記切断工程後の前記ガラスフィルムの位置を調整する下流側調整工程と、を備えることを特徴とするガラスロールの製造方法。
    It is a manufacturing method of glass rolls.
    The supply process for supplying glass film and
    A cutting step of cutting a part of the glass film by irradiating the glass film with a laser beam from a laser irradiation device.
    A winding step of winding the glass film into a roll by a winding device after the cutting step, and a winding step.
    A glass roll comprising: a downstream side adjusting device for adjusting the position of the glass film after the cutting step by a downstream side adjusting device provided between the laser irradiation device and the winding device. Production method.
  2.  前記供給工程では、前記ガラスフィルムをロール状に巻き取ってなるガラスロールから前記ガラスフィルムを送り出すことが可能な巻出装置によって前記ガラスフィルムを供給し、
     前記巻出装置と前記レーザ照射装置との間に設けられる上流側調整装置によって、前記巻出装置から供給される前記ガラスフィルムの位置を調整する上流側調整工程を備える請求項1に記載のガラスロールの製造方法。
    In the supply step, the glass film is supplied by a winding device capable of delivering the glass film from a glass roll formed by winding the glass film into a roll shape.
    The glass according to claim 1, further comprising an upstream side adjusting step of adjusting the position of the glass film supplied from the unwinding device by an upstream side adjusting device provided between the unwinding device and the laser irradiation device. How to make a roll.
  3.  前記切断工程後の前記ガラスフィルムに対する前記下流側調整装置による位置調整量は、前記巻出装置から供給された前記ガラスフィルムに対する前記上流側調整装置による位置調整量よりも小さい請求項2に記載のガラスロールの製造方法。 The second aspect of claim 2, wherein the position adjustment amount of the glass film after the cutting step by the downstream side adjusting device is smaller than the position adjusting amount of the glass film supplied by the unwinding device by the upstream side adjusting device. How to make a glass roll.
  4.  前記レーザ照射装置と前記下流側調整装置との間に設けられる吸着ベルトコンベアによって、前記切断工程後の前記ガラスフィルムの位置決めを行う位置決め工程を備える請求項1から3のいずれか一項に記載のガラスロールの製造方法。 The invention according to any one of claims 1 to 3, further comprising a positioning step of positioning the glass film after the cutting step by a suction belt conveyor provided between the laser irradiation device and the downstream side adjusting device. How to make a glass roll.
  5.  前記下流側調整装置は、前記切断工程後の前記ガラスフィルムに対して抱き角を有するように接触する搬送ローラを備える請求項1から4のいずれか一項に記載のガラスロールの製造方法。 The method for manufacturing a glass roll according to any one of claims 1 to 4, wherein the downstream side adjusting device includes a transport roller that comes into contact with the glass film after the cutting step so as to have a holding angle.
  6.  前記上流側調整装置は、前記巻出装置から供給された前記ガラスフィルムに対して抱き角を有するように接触する搬送ローラを備える請求項2又は3に記載のガラスロールの製造方法。 The method for manufacturing a glass roll according to claim 2 or 3, wherein the upstream adjusting device includes a transport roller that comes into contact with the glass film supplied from the unwinding device so as to have a holding angle.
PCT/JP2021/042476 2020-11-27 2021-11-18 Method for manufacturing glass roll WO2022113885A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022565290A JPWO2022113885A1 (en) 2020-11-27 2021-11-18
CN202180068639.1A CN116323448A (en) 2020-11-27 2021-11-18 Method for manufacturing glass roll

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020197018 2020-11-27
JP2020-197018 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113885A1 true WO2022113885A1 (en) 2022-06-02

Family

ID=81754586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042476 WO2022113885A1 (en) 2020-11-27 2021-11-18 Method for manufacturing glass roll

Country Status (4)

Country Link
JP (1) JPWO2022113885A1 (en)
CN (1) CN116323448A (en)
TW (1) TW202229006A (en)
WO (1) WO2022113885A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195558A (en) * 2009-02-26 2010-09-09 Toyota Motor Corp Device, method, and control program for conveying web
JP2016175834A (en) * 2011-08-18 2016-10-06 コーニング インコーポレイテッド Method for dividing glass ribbon
JP2018129383A (en) * 2017-02-08 2018-08-16 リンテック株式会社 Sheet sticking device and sticking method
JP2018522805A (en) * 2015-05-18 2018-08-16 コーニング インコーポレイテッド Continuous processing of flexible glass ribbons for ribbon separation and stabilization
JP2019218203A (en) * 2018-06-22 2019-12-26 日本電気硝子株式会社 Glass roll manufacturing method
WO2020049987A1 (en) * 2018-09-07 2020-03-12 日本電気硝子株式会社 Method for manufacturing glass film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195558A (en) * 2009-02-26 2010-09-09 Toyota Motor Corp Device, method, and control program for conveying web
JP2016175834A (en) * 2011-08-18 2016-10-06 コーニング インコーポレイテッド Method for dividing glass ribbon
JP2018522805A (en) * 2015-05-18 2018-08-16 コーニング インコーポレイテッド Continuous processing of flexible glass ribbons for ribbon separation and stabilization
JP2018129383A (en) * 2017-02-08 2018-08-16 リンテック株式会社 Sheet sticking device and sticking method
JP2019218203A (en) * 2018-06-22 2019-12-26 日本電気硝子株式会社 Glass roll manufacturing method
WO2020049987A1 (en) * 2018-09-07 2020-03-12 日本電気硝子株式会社 Method for manufacturing glass film

Also Published As

Publication number Publication date
TW202229006A (en) 2022-08-01
CN116323448A (en) 2023-06-23
JPWO2022113885A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP6631838B2 (en) Method and apparatus for manufacturing glass sheet, and apparatus for transporting glass sheet
KR101823427B1 (en) Glass film production device and production method
JP6924379B2 (en) Glass film manufacturing method
WO2019244653A1 (en) Glass roll manufacturing method
TWI735671B (en) Manufacturing method of glass film
WO2017208677A1 (en) Glass film production method
JP6829814B2 (en) Glass film manufacturing method
WO2022113885A1 (en) Method for manufacturing glass roll
WO2021106596A1 (en) Method for producing glass roll and method for transporting glass film
WO2022070814A1 (en) Production method for glass roll
TWI801823B (en) Ribbon glass film manufacturing method
TWI832089B (en) How to make glass rolls
WO2021131763A1 (en) Glass film manufacturing method and glass film manufacturing device
WO2022149415A1 (en) Roll body manufacturing method
WO2021131559A1 (en) Glass film production method, glass roll production method, and glass film production device
WO2019244654A1 (en) Glass roll manufacturing method
WO2021149519A1 (en) Method for producing glass film
WO2023228788A1 (en) Production method for glass film, and production device for glass film
JP2004307149A (en) Tape carrier
TW202134195A (en) Glass film production method and glass film production device
JP2023105513A (en) Method for manufacturing glass film, and direction change device
TW202120417A (en) Production method for glass roll

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897859

Country of ref document: EP

Kind code of ref document: A1