WO2022113801A1 - 医療用画像の異常検出システム及び異常検出方法 - Google Patents

医療用画像の異常検出システム及び異常検出方法 Download PDF

Info

Publication number
WO2022113801A1
WO2022113801A1 PCT/JP2021/041902 JP2021041902W WO2022113801A1 WO 2022113801 A1 WO2022113801 A1 WO 2022113801A1 JP 2021041902 W JP2021041902 W JP 2021041902W WO 2022113801 A1 WO2022113801 A1 WO 2022113801A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical image
block
anatomical structure
block information
abnormality detection
Prior art date
Application number
PCT/JP2021/041902
Other languages
English (en)
French (fr)
Inventor
正宏 石井
堅司 近藤
雅人 田中
真一 藤本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN202180077325.8A priority Critical patent/CN116490130A/zh
Priority to JP2022565238A priority patent/JPWO2022113801A1/ja
Priority to EP21897775.9A priority patent/EP4252657A4/en
Publication of WO2022113801A1 publication Critical patent/WO2022113801A1/ja
Priority to US18/200,693 priority patent/US20230289965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/468Arrangements for interfacing with the operator or the patient characterised by special input means allowing annotation or message recording
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/468Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means allowing annotation or message recording
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/457Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by analysing connectivity, e.g. edge linking, connected component analysis or slices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/50Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images
    • G06V2201/031Recognition of patterns in medical or anatomical images of internal organs

Definitions

  • the present disclosure relates to an abnormality detection system and an abnormality detection method for medical images, and more particularly to a system for detecting the presence or absence of abnormalities in anatomical structures contained in medical images.
  • Patent Document 1 a technique for detecting the presence or absence of an abnormality in an anatomical structure such as an organ based on a medical image has been proposed (see, for example, Patent Document 1).
  • the region of interest is separated from the medical image by performing image segmentation on the medical image, and the presence or absence of abnormality is determined by the position of the center of gravity, volume, shape, intensity, density, transparency, etc. of the separated region of interest. Judging.
  • "abnormal” / "normal” means “abnormal” / "normal” from a medical point of view (that is, diagnostically).
  • an object of the present disclosure is to provide an abnormality detection system and an abnormality detection method for medical images capable of detecting the presence or absence of an abnormality in an anatomical structure with higher accuracy.
  • the medical image anomaly detection system is anomalous with respect to one pre-specified anatomical structure contained in the medical image based on the medical image.
  • An abnormality detection system that detects the presence or absence of a block information indicating a block that is a region in which pixels indicating the anatomical structure are connected in the medical image, and an acquisition unit acquired by the acquisition unit.
  • the determination unit includes a determination unit that determines and outputs whether or not the anatomical structure is abnormal based on the number of blocks indicated by the block information, and the determination unit includes the number of blocks indicated by the block information. When it is determined that the anatomical structure is not abnormal, and the number of blocks indicated by the block information is 2 or more, when the blocks indicated by the block information satisfy a predetermined condition. It is determined that the anatomical structure is abnormal.
  • the method for detecting an abnormality in a medical image is a pre-specified anatomical structure included in the medical image based on the medical image. It is an abnormality detection method by an abnormality detection system that detects the presence or absence of an abnormality, and is a step of acquiring block information indicating a block that is a region in which pixels indicating the anatomical structure are connected in the medical image, and an acquisition step.
  • the determination step includes the determination step of determining whether or not the anatomical structure is abnormal based on the number of blocks indicated by the block information acquired in the acquisition step, and the determination step includes the block information.
  • the number of blocks indicated by is 1, it is determined that the anatomical structure is not abnormal, and when the number of blocks indicated by the block information is 2 or more, the block indicated by the block information is predetermined. When the conditions are met, it is determined that the anatomical structure is abnormal.
  • the present disclosure provides an abnormality detection system for medical images and an abnormality detection method capable of detecting the presence or absence of an abnormality in an anatomical structure with higher accuracy.
  • FIG. 1 is a block diagram showing a configuration of a diagnostic support system according to an embodiment.
  • FIG. 2A is a diagram showing an example of an anatomical structure in a medical image.
  • FIG. 2B is a diagram showing another example of an anatomical structure in a medical image.
  • FIG. 2C is a diagram showing another example of an anatomical structure in a medical image.
  • FIG. 2D is a diagram showing another example of an anatomical structure in a medical image.
  • FIG. 3 is a flowchart showing the main operation of the abnormality detection system in FIG.
  • FIG. 4 is a flowchart showing a specific example of step S23 in FIG. FIG.
  • FIG. 5 is a schematic diagram showing an example of an anatomical structure in a medical image for explaining an example of the result of the determination shown in FIGS. 3 and 4.
  • FIG. 6 is a diagram showing the results of an experiment using a case for evaluating the determination shown in FIG.
  • FIG. 7 is a flowchart showing another specific example of step S23 in FIG.
  • FIG. 8A is a schematic diagram showing an example of an anatomical structure in a medical image for explaining an example of the result of the determination shown in FIGS. 3 and 7.
  • FIG. 8B is a diagram showing an example of imaging an an anatomical structure in a medical image for explaining an example of the result of the determination shown in FIG. 7.
  • FIG. 9 is a flowchart showing still another specific example of step S23 in FIG.
  • FIG. 10A is a flowchart showing a method of determining a first threshold value used for determination using the area shown in FIG.
  • FIG. 10B is a flowchart showing a method of determining the second threshold value
  • FIG. 1 is a block diagram showing a configuration of the diagnostic support system 10 according to the embodiment.
  • the diagnosis support system 10 is a system that assists doctors in efficiently diagnosing anatomical structures based on medical images, and is an imaging device 20, an image server 30, and an image server 30 connected by a communication path such as the Internet. It includes a viewer device 40 and an abnormality detection system 50.
  • the imaging device 20 is an apparatus that generates a medical image 31a by photographing a human anatomical structure, and in the present embodiment, a chest X-ray image is generated as a medical image on the image server 30. It is an X-ray imaging device to be stored.
  • the medical image is not limited to the chest X-ray image, but may be an X-ray image of another part, CT scan, PET / CT scan, SPECT scan, MRI, ultrasound, X-ray, breast. It may be an image provided by radiography, radiography, radiography, or a combination thereof.
  • the image server 30 holds the medical image 31a generated by the imaging device 20 and the detected medical image 32a generated by the abnormality detection system 50, and the viewer device holds the medical image 32b. It is a data server provided to 40, and is, for example, a computer device provided with storage such as a hard disk.
  • the data exchanged with the other device by the image server 30 may include not only the medical image but also various information (shooting date / time, information about the patient, detection result, etc.) associated with the medical image.
  • the viewer device 40 displays the medical image 32b held in the image server 30 and various information associated with the medical image in various modes according to instructions from the user obtained via the GUI (Graphical User Interface). It is a device, for example, a computer device including a display, an input device such as a mouse, and a peripheral device such as a storage device such as a hard disk.
  • the abnormality detection system 50 detects the presence or absence of a medical abnormality in one pre-specified anatomical structure included in the medical image based on the medical image 31b to be detected acquired from the image server 30. It is a system and includes a block information generation unit 51, an acquisition unit 52, a determination unit 53, and an image processing unit 54.
  • the block information generation unit 51 generates block information indicating a block, which is a region in which pixels indicating an anatomical structure included in the medical image 31b are connected, from the medical image 31b to be detected acquired from the image server 30. That is, the medical image 31b is subjected to a labeling process and separated into a mass of images.
  • the block information is not limited to a specific format as long as it is information that identifies individual blocks in the medical image 31b.
  • the block information is information that distinguishes pixels belonging to individual blocks in the medical image 31b from other pixels (for example, the pixels constituting the block are "1" and the other pixels are "0". It may be (binary image) or information indicating the characteristics of individual blocks (for example, the area of each block obtained by analyzing the binary image, contour information, etc.).
  • the acquisition unit 52 acquires the block information generated by the block information generation unit 51.
  • the determination unit 53 determines and outputs whether or not the anatomical structure included in the medical image 31b is abnormal based on the number of blocks indicated by the block information acquired by the acquisition unit 52. At this time, the determination unit 53 recognizes that when the number of blocks indicated by the block information is 1, the anatomical structure that should be originally detected as one block is detected as one block, and the medical treatment is performed. It is determined that the anatomical structure contained in the image 31b is not abnormal. On the other hand, when the number of blocks indicated by the block information is 2 or more and the block indicated by the block information satisfies a predetermined condition, the determination unit 53 is originally one block instead of noise on the image or image processing. It is recognized that the anatomical structure to be detected is separated into two or more, and it is determined that the anatomical structure included in the medical image 31b is abnormal.
  • the predetermined condition is, for example, a condition relating to the block having the second largest area in the medical image 31b among the two or more blocks indicated by the block information. More specifically, the predetermined condition is that, of the two or more blocks indicated by the block information, the block having the second largest area in the medical image 31b has an area of the first threshold value or more.
  • the predetermined condition is, for example, that the minimum value of the distance in the medical image 31b between the block having the largest area in the medical image 31b and each of the other blocks among the two or more blocks indicated by the block information is set. It is below the second threshold. At this time, the predetermined condition may further include that, of the two or more blocks indicated by the block information, the block having the second largest area in the medical image 31b has an area of the first threshold value or more.
  • the image processing unit 54 generates the detected medical image 32a by reflecting the determination result by the determination unit 53 on the medical image 31b to be detected, and stores it in the image server 30.
  • the block information generation unit 51, acquisition unit 52, determination unit 53, and image processing unit 54 constituting the abnormality detection system 50 are specifically a non-volatile memory for holding a program and volatile as a temporary work area. It is realized by at least one computer including a memory, a processor for executing a program, an input / output circuit including a communication interface and a communication port, and the like.
  • the block information generation unit 51, the acquisition unit 52, the determination unit 53, and the image processing unit 54 constituting the abnormality detection system 50 may be realized by one computer or an image processing device, or may be connected by a communication path. It may be realized in a distributed manner by a plurality of computers or image processing devices.
  • diagnosis support system 10 is composed of an imaging device 20, an image server 30, a viewer device 40, and an abnormality detection system 50 connected by a communication path, but all or a part of these components is one. It may be assembled as a device.
  • the abnormality detection system 50 does not necessarily have to include the block information generation unit 51 and the image processing unit 54, but may include at least the acquisition unit 52 and the determination unit 53. Even with such a configuration, it is possible to detect the presence or absence of an abnormality in the anatomical structure contained in the medical image. On the contrary, the abnormality detection system 50 may have at least one function of the photographing device 20, the image server 30, and the viewer device 40.
  • FIGS. 2A to 2D are diagrams showing examples of anatomical structures (that is, examples of seven types of anatomical structures in total) in medical images (that is, included in medical images). More specifically, FIGS. 2A-2D show, as examples of anatomical structures, the right atrioventricular and left ventricular shadows, the descending aorta shadow, the right diaphragm dome shadow and the left diaphragm dome shadow, the right lateral lung shadow and the left, respectively. Shows lateral lung shadow. In each table of FIGS.
  • a chest X-ray image in order from the left, a chest X-ray image, an anatomical structure name, an area of an anatomical structure, and an example of superimposition of a chest X-ray image and an anatomical structure. It is shown.
  • the anatomical structures on the chest X-ray image are, as shown in FIGS. 2A to 2C, a right atrial shadow, a left ventricular shadow, a descending aorta shadow, a diaphragm dome shadow, and the like.
  • the right atrium shadow is a boundary line drawn at the boundary between the right atrium and its surroundings on the chest X-ray image.
  • the left ventricle shadow is a boundary line drawn at the boundary between the left ventricle and its surroundings on a chest X-ray image.
  • the descending aorta shadow is a borderline drawn on the chest X-ray image at the boundary between the descending aorta and its surroundings.
  • the diaphragm dome shadow is a boundary line drawn at the boundary between the diaphragm and its surroundings on a chest X-ray image.
  • the anatomical structures on the chest X-ray image are not limited to these.
  • the anatomical structure may be, for example, a shadow on the outer edge of the lung, which is the boundary drawn at the boundary between the outer part of the lung and its periphery on the chest radiograph, as shown in FIG. 2D. , Other structures or shadows of organs, etc.
  • the anatomical structure is not limited to the structure included in the chest X-ray image, but the structure included in the medical image taken by other imaging devices such as CT image and MRI image. May be.
  • diagnosis support system 10 configured as described above will be described focusing on the operation of the characteristic abnormality detection system 50 constituting the diagnosis support system 10.
  • FIG. 3 is a flowchart showing the main operation (that is, the abnormality detection method) of the abnormality detection system 50 in FIG.
  • FIG. 3A shows the main operation flow of the abnormality detection system 50
  • FIG. 3B shows the details of step S2 in FIG. 3A.
  • the acquisition unit 52 acquires the block information generated by the block information generation unit 51 (acquisition step S1).
  • the determination unit 53 determines and outputs whether or not the anatomical structure included in the medical image is abnormal based on the number of blocks indicated by the block information acquired by the acquisition unit 52 ( Judgment step S2). More specifically, the determination unit 53 determines the number of blocks indicated by the block information (S21), and when the number of blocks is 1 (Yes in S21), the anatomical unit should be detected as one block. It is recognized that the structure is detected as one block, and it is determined that the anatomical structure included in the medical image is not abnormal (S22).
  • the determination unit 53 determines whether or not the block indicated by the block information satisfies a predetermined condition when the number of blocks indicated by the block information is 2 or more (S23), and when the predetermined condition is satisfied. (Yes in S23), the anatomy included in the medical image, recognizing that the anatomical structure that should be detected as one block, not the noise on the image or image processing, is separated into two or more. An anatomical structure that should be detected as one block by noise on the image or image processing when it is determined that the structural structure is abnormal (S24) and the predetermined conditions are not satisfied (No in S23). It is recognized that the object is separated into two or more, and it is determined that the anatomical structure included in the medical image is not abnormal (S22).
  • FIG. 4 is a flowchart showing a specific example of step S23 (determination of whether or not a predetermined condition is satisfied) in FIG.
  • the determination unit 53 determines whether or not a predetermined condition is satisfied, and the block having the second largest area in the medical image is the second block among the two or more blocks indicated by the block information. It is determined whether or not the area has one threshold value or more (S23a).
  • the determination unit 53 is essentially one rather than noise on the image or image processing. It is recognized that the anatomical structure to be detected as a block is separated into two or more, and it is determined that the anatomical structure included in the medical image is abnormal (to S24 in FIG. 3).
  • the determination unit 53 originally has one due to noise on the image or image processing. It is recognized that the anatomical structure to be detected as a block is separated into two or more, and it is determined that the anatomical structure included in the medical image is not abnormal (to S22 in FIG. 3).
  • FIG. 5 is a schematic diagram showing an example of an anatomical structure (here, a descending aorta shadow) in a medical image for explaining an example of the result of the determination shown in FIGS. 3 and 4. More specifically, FIG. 5A shows an example of a descending aortic shadow that is determined to be “not abnormal” because it was detected as one block 60 (Yes in step S21 of FIG. 3). (B) of FIG. 5 is detected as two blocks 60a and 60b (No in step S21 of FIG. 3), and the second largest block 60a has an area equal to or larger than the first threshold value (FIG. 4). Yes) in step S23a, an example of a descending aortic shadow determined to be "abnormal" is shown. FIG.
  • step S23a of 4 an example of a descending aortic shadow determined to be “not abnormal” is shown.
  • FIG. 6 is a diagram showing the results of an experiment using a case for evaluating the determination shown in FIG. More specifically, FIG. 6A shows the ROC curve (receiver operating characteristic curve) when the presence or absence of abnormality is determined by using the right tuft shadow as an anatomical structure, and FIG. 6B shows the left. The ROC curve when the presence or absence of abnormality is determined by using the chamber shadow as an anatomical structure is shown, and FIG. 6 (c) shows the ROC curve when determining the presence or absence of abnormality by using the descending aortic shadow as an anatomical structure. 6 (d) is a diagram showing the threshold selection result and AUC (Area Under the Curve) of the ROC curve shown in FIGS. 6 (a) to 6 (c).
  • AUC Average Under the Curve
  • the horizontal axis indicates the false positive rate (that is, the probability that the abnormality detection system 50 determines that a case known to be normal is abnormal (1-specificity). )), And the vertical axis shows the positive rate (that is, the probability (sensitivity) that the abnormality detection system 50 determines that the case known to be abnormal is abnormal).
  • These ROC curves are plots of the determination results by the abnormality detection system 50 obtained by changing the first threshold value used for the determination shown in FIG. 4 for a plurality of cases in which normality and abnormality are known. be.
  • the ROC curve is a curve that passes through a position closer to the upper left corner, indicating that the correct judgment can be made for the case.
  • the judgment accuracy for the cases related to the left ventricular shadow and the descending aorta shadow shown in FIGS. 6 (b) and 6 (c) is improved as compared with the judgment accuracy based on the conventional image processing. It turns out that.
  • This is conventionally determined by a method of determining anomaly / normal for one anatomical structure based on the number of blocks extracted from the medical image and the size of the block with the second largest area.
  • the correct judgment can be made even in the case where it is difficult (for example, in the medical image, a part of the normal structure of the organ is overlapped with other abnormal substances such as tumor and water). ..
  • the first threshold value corresponding to the point closest to the upper left corner black point in (a) to (c) of FIG. 6) can be said to be the most suitable as the threshold value used for the determination shown in FIG.
  • the threshold value used for judgment in the ROC curve There are several methods for selecting the threshold value used for judgment in the ROC curve. For example, it is a method of selecting the point on the ROC curve where the value of the positive rate + (1-false positive rate) is the largest (the black point in (a) to (c) of FIG. 6). Positive rate + (1-false positive rate) is called Youden Index, and it is a method of selecting the point where it becomes the maximum. Another method is to select a point where the positive rate is the target value (for example, 0.9), or a point where the false positive rate is the target value (for example, 0.1). ..
  • FIG. 7 is a flowchart showing another specific example of step S23 (determination of whether or not a predetermined condition is satisfied) in FIG.
  • the determination unit 53 determines whether or not a predetermined condition is satisfied, the block having the largest area in the medical image and the other block among the two or more blocks indicated by the block information. It is determined whether or not the minimum value of the distance in the medical image with each of the above is equal to or less than the second threshold value (S23b).
  • the determination unit 53 determines that the minimum value of the distance between the block having the largest area in the medical image and each of the other blocks in the medical image is equal to or less than the second threshold value (Yes in S23b). , Recognizes that the anatomical structure that should be detected as one block, not the noise on the image or image processing, is separated into two or more, and the anatomical structure contained in the medical image is abnormal. (To S24 in FIG. 3).
  • the determination unit 53 determines the image (No in S23b). Recognizes that the anatomical structure that should be detected as one block is separated into two or more due to noise on the top or image processing, and determines that the anatomical structure contained in the medical image is not abnormal. (To S22 in FIG. 3).
  • FIG. 8A is a schematic diagram showing an example of an anatomical structure (here, a descending aorta shadow) in a medical image for explaining an example of the result of the determination shown in FIGS. 3 and 7. More specifically, (a) of FIG. 8A shows an example of a descending aortic shadow that is determined to be "not abnormal" because it was detected as one block 60 (Yes in step S21 of FIG. 3). (B) of FIG. 8A is detected as two blocks 60c and 60d (No in step S21 of FIG. 3), and each of the block 60d and the other block having the largest area in the medical image (here, the block).
  • an anatomical structure here, a descending aorta shadow
  • FIG. 8B is a diagram showing an actual imaging example of an anatomical structure (here, a descending aorta shadow) in a medical image for explaining an example of the result of the determination shown in FIG. 7.
  • FIG. 8B shows an image of the descending aorta shadow actually extracted as a block.
  • 8B (a) to 8B show medical treatment with the block having the largest area in the medical image (here, 70b, 70d, 70f) and each of the other blocks (here, 70a, 70c, 70e).
  • FIG. 8B (d). Is that the minimum value of the distance in the medical image between the block having the largest area in the medical image (here, 70h) and the other blocks (here, 70g), 70i) is equal to or less than the second threshold value. (No in step S23b of FIG. 7), an example of a descending aorta shadow that is correctly determined to be "abnormal" is shown.
  • the blocks 70a and 70b shown in FIG. 8B (a) are the detection results of the descending aortic shadow, and show an example in which a break occurs but it is determined to be “not abnormal”.
  • Blocks 70c and 70d shown in FIG. 8B (b) are the detection results of the diaphragm dome shadow on the right side, and show an example in which a break is generated but it is determined to be “not abnormal”.
  • Blocks 70e and 70f shown in FIG. 8B (c) are the detection results of the left ventricular shadow, and show an example in which a break occurs but it is determined to be “not abnormal”.
  • the block 70g, the block 70h, and the block 70i shown in FIG. 8B (d) are different detection results of the left ventricular shadow, and show an example of being determined to be "abnormal" because a small break is generated. ..
  • step S23 determination of whether or not a predetermined condition is satisfied
  • the determination is limited to the determination using the area shown in FIG. 4 and the determination using the distance shown in FIG. I can't.
  • the determination may be made using both the determination using the area and the determination using the distance.
  • FIG. 9 is a flowchart showing an example of a determination using both the determination using the area and the determination using the distance. That is, FIG. 9 is a flowchart showing still another specific example of step S23 (determination of whether or not a predetermined condition is satisfied) in FIG.
  • the determination unit 53 first determines whether or not a predetermined condition is satisfied, and the block having the second largest area in the medical image among the two or more blocks indicated by the block information. Determines whether or not has an area equal to or greater than the first threshold value (S23a).
  • the determination unit 53 is originally one due to noise on the image or image processing. It is recognized that the anatomical structure to be detected as one block is separated into two or more, and it is determined that the anatomical structure included in the medical image is not abnormal (to S22 in FIG. 3).
  • the determination unit 53 subsequently performs among the two or more blocks indicated by the block information. It is determined whether or not the minimum value of the distance in the medical image between the block having the largest area in the medical image and each of the other blocks is equal to or less than the second threshold value (S23b).
  • the determination unit 53 determines that the minimum value of the distance between the block having the largest area in the medical image and each of the other blocks in the medical image is equal to or less than the second threshold value (Yes in S23b). , Recognizes that the anatomical structure that should be detected as one block, not the noise on the image or image processing, is separated into two or more, and the anatomical structure contained in the medical image is abnormal. (To S24 in FIG. 3).
  • the determination unit 53 determines the image (No in S23b). Recognizes that the anatomical structure that should be detected as one block is separated into two or more due to noise on the top or image processing, and determines that the anatomical structure contained in the medical image is not abnormal. (To S22 in FIG. 3).
  • the anatomical structure included in the medical image is found when the condition for the area is satisfied (Yes in S23a) and the condition for the distance is satisfied (Yes in S23b). It was determined to be abnormal, and in other cases, the anatomical structure contained in the medical image was determined not to be abnormal, but instead, the condition for area (S23a) and the distance When at least one of the conditions (S23b) is satisfied, the anatomical structure contained in the medical image is determined to be abnormal, and in other cases, the anatomical structure contained in the medical image is determined to be abnormal. It may be determined that it is not abnormal.
  • step S23 determination of whether or not a predetermined condition is satisfied
  • FIG. 3 which of the determination examples shown in FIGS. 4, 7, 9, and the like is adopted is the target of determination.
  • the judgment method with the highest accuracy of abnormal / normal judgment is determined. You may.
  • FIG. 10A is a flowchart showing a method of determining a first threshold value used for determination using the area shown in FIG.
  • the determination unit 53 determines whether or not the predetermined condition is satisfied, and the area in the medical image is the second largest among the two or more blocks indicated by the block information. Whether or not the block has an area equal to or larger than the first threshold value is determined, and the method for determining the first threshold value used at that time is as follows.
  • the abnormality detection system 50 is made to make a judgment by changing the first threshold value used for the judgment shown in FIG. ) Is calculated (S30).
  • the first threshold value corresponding to the point closest to the upper left corner is determined as the threshold value used for the determination shown in FIG. 4 (S31).
  • FIG. 10B is a flowchart showing a method of determining a second threshold value used for determination using the distance shown in FIG. 7.
  • the determination unit 53 determines whether or not the predetermined condition is satisfied with the block having the largest area in the medical image among the two or more blocks indicated by the block information. It is determined whether or not the minimum value of the distance in the medical image with each of the other blocks is equal to or less than the second threshold value, and the method for determining the second threshold value used at that time is as follows. ..
  • the abnormality detection system 50 is made to make a judgment by changing the second threshold value used for the judgment shown in FIG. 7, thereby (a) to (c) of FIG. ) Is calculated (S40).
  • the second threshold value corresponding to the point closest to the upper left corner is determined as the threshold value used for the determination shown in FIG. 7 (S41).
  • the method for determining the first threshold value shown in FIG. 10A and the method for determining the second threshold value shown in FIG. 10B obtain ROC curves for distinguishing between abnormal and normal anatomical structures. It can be said that this is an example of a determination step for determining a predetermined condition (here, a first threshold value and a second threshold value) based on the acquired ROC curve.
  • the abnormality detection system 50 constituting the diagnosis support system 10 has an abnormality in one pre-specified anatomical structure included in the medical image based on the medical image.
  • the acquisition unit 52 that acquires block information indicating a block that is a region in which pixels indicating an anatomical structure are connected in a medical image, which is a system for detecting the presence or absence, and the block information acquired by the acquisition unit 52 indicate.
  • the determination unit 53 includes a determination unit 53 that determines whether or not the anatomical structure is abnormal based on the number of blocks and outputs the determination unit 53 when the number of blocks indicated by the block information is 1. When it is determined that the anatomical structure is not abnormal and the number of blocks indicated by the block information is 2 or more, and the blocks indicated by the block information satisfy a predetermined condition, the anatomical structure is abnormal. Is determined.
  • the presence or absence of an abnormality is determined based on whether or not the anatomical structure that should originally be detected as one block is detected as one block, so that it is difficult to determine in the past (for example, for medical use). Even in the case where a part of the normal structure of an organ is overlapped with other abnormal things such as tumor and water in the image), correct judgment is possible. Therefore, the presence or absence of abnormalities in the anatomical structure can be detected with higher accuracy than before.
  • the predetermined condition is a condition relating to the block having the second largest area in the medical image among the two or more blocks indicated by the block information. More specifically, the predetermined condition is that, of the two or more blocks indicated by the block information, the block having the second largest area in the medical image has an area equal to or larger than the first threshold value.
  • the determination accuracy of the determination unit 53 is improved as compared with the determination accuracy based on the conventional image processing.
  • the predetermined condition among the two or more blocks indicated by the block information, the minimum value of the distance in the medical image between the block having the largest area in the medical image and each of the other blocks is equal to or less than the second threshold value. It may be.
  • the predetermined condition may be that, of the two or more blocks indicated by the block information, the block having the second largest area in the medical image has an area of the first threshold value or more.
  • the abnormality / normality of the anatomical structure is determined based on the information on what kind of multiple blocks the anatomical structure that should originally be detected as one block is detected. Even in difficult cases, it may be possible to make a correct judgment.
  • the first threshold value may be a value obtained in advance for various areas and determined depending on the ROC curve for distinguishing between abnormal and normal anatomical structures.
  • the second threshold may be a value preliminarily obtained for various distances that is determined depending on the ROC curve for distinguishing between abnormal and normal anatomical structures.
  • the first threshold value and the second threshold value are determined from the ROC curve obtained for the case in which the abnormality / normality is known in advance, so that the presence or absence of the abnormality in the anatomical structure is detected with high accuracy.
  • the abnormality detection method is an abnormality detection by an abnormality detection system 50 that detects the presence or absence of an abnormality in one pre-specified anatomical structure included in the medical image based on the medical image. It is a method, and the number of blocks indicated by the block information acquired in the acquisition step S1 and the acquisition step S1 for acquiring the block information indicating the block which is the area where the pixels indicating the anatomical structure are connected in the medical image. Including the determination step S2 for determining whether or not the anatomical structure is abnormal based on the determination step S2, in the determination step S2, when the number of blocks indicated by the block information is 1, the anatomical structure is included. It is determined that the object is not abnormal, and when the number of blocks indicated by the block information is 2 or more and the blocks indicated by the block information satisfy a predetermined condition, it is determined that the anatomical structure is abnormal.
  • the presence or absence of an abnormality is determined based on whether or not the anatomical structure that should originally be detected as one block is detected as one block, so that it is difficult to determine in the past (for example, for medical use). Even in the case where a part of the normal structure of an organ is overlapped with other abnormal things such as tumor and water in the image), correct judgment is possible. Therefore, the presence or absence of abnormalities in the anatomical structure can be detected with higher accuracy than before.
  • a determination step in which an ROC curve for distinguishing between an abnormality and a normality of an anatomical structure is acquired and a predetermined condition is determined based on the acquired ROC curve. May include.
  • predetermined conditions including the first threshold value and the second threshold value are determined from the ROC curve obtained for the case in which the abnormality / normality is known in advance, so that the anatomical structure is abnormal with high accuracy. The presence or absence of is detected.
  • the diagnostic support system, the abnormality detection system for medical images, and the abnormality detection method of the present disclosure have been described above based on the embodiment, but the present disclosure is not limited to this embodiment. As long as it does not deviate from the gist of the present disclosure, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and other forms constructed by combining some components in the embodiment are also within the scope of the present disclosure. Included in.
  • the present disclosure may be realized as a program for executing the steps included in the abnormality detection method in the above embodiment, or as a computer-readable non-temporary recording medium such as a DVD on which the program is recorded. You may.
  • the program may be stored in one storage device, or may be distributed and stored in a plurality of storage devices. Further, the program may be executed by one computer or may be executed in a distributed manner by a plurality of computers connected by a communication path.
  • the abnormality detection method in the above embodiment includes steps by the acquisition unit 52 and the determination unit 53, but the steps are not limited to these steps, and the block information generation unit 51, the image processing unit 54, and the photographing device 20 are not limited to these steps. And at least one of the processes by the viewer device 40 may be included.
  • a plurality of determination examples are shown as predetermined conditions, but these plurality of determination examples may be determined by the abnormality detection system 50 based on instructions from the user, or may be used for medical purposes.
  • the abnormality detection system 50 may automatically determine and update the determination example having the highest hit rate in the past according to the type of image or anatomical structure.
  • the first threshold value and the second threshold value used under the predetermined conditions are determined to be values corresponding to the points closest to the upper left corner in the ROC curve, but to another point close to that point. It may be determined or may be selected by the user from multiple points near the upper left corner.
  • the abnormality detection system and abnormality detection method for medical images are systems for detecting the presence or absence of abnormalities in anatomical structures contained in medical images, for example, a doctor efficiently diagnoses a disease. It can be used as a system to support.
  • Diagnosis support system 20 Imaging device 30 Image server 31a, 31b, 32a, 32b Medical image 40 Viewer device 50 Abnormality detection system 51 Block information generation unit 52 Acquisition unit 53 Judgment unit 54 Image processing unit 60, 60a to 60f, 70a to 70f block

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Multimedia (AREA)
  • Physiology (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Abstract

異常検出システム(50)は、医療用画像に基づいて医療用画像に含まれる予め特定された一の解剖学的構造物について異常の有無を検出するシステムであって、医療用画像において解剖学的構造物を示す画素が繋がった領域であるブロックを示すブロック情報を取得する取得部(52)と、取得部(52)が取得したブロック情報が示すブロックの数に基づいて解剖学的構造物が異常であるか否かを判定して出力する判定部(53)とを備え、判定部(53)は、ブロック情報が示すブロックの数が1である場合に、解剖学的構造物が異常でないと判定し、ブロック情報が示すブロックの数が2以上である場合に、ブロック情報が示すブロックが所定の条件を満たすときに、解剖学的構造物が異常であると判定する。

Description

医療用画像の異常検出システム及び異常検出方法
 本開示は、医療用画像の異常検出システム及び異常検出方法に関し、特に、医療用画像に含まれる解剖学的構造物について異常の有無を検出するシステム等に関する。
 従来、医療用画像に基づいて臓器等の解剖学的構造物について異常の有無を検出する技術が提案されている(例えば、特許文献1参照)。特許文献1では、医療用画像に対して画像セグメンテーションを施して医療用画像から関心領域を分離し、分離した関心領域の重心位置、ボリューム、形状、強度、密度及び透明度等によって、異常の有無を判定している。なお、本明細書において、「異常」/「正常」とは、医学的な見地での(つまり、診断上の)「異常」/「正常」を意味する。
特表2019-530488号公報
 しかしながら、特許文献1のような画像セグメンテーションで分離した関心領域の特性を利用する方法では、例えば、医療用画像において臓器の正常な構造の一部に腫瘍や水等の他の異常なものが重なっているケースでは、異常な症例を判別できない場合がある。
 そこで、本開示は、より高い精度で解剖学的構造物について異常の有無を検出することができる医療用画像の異常検出システム及び異常検出方法を提供することを目的とする。
 上記目的を達成するために、本開示の一形態に係る医療用画像の異常検出システムは、医療用画像に基づいて前記医療用画像に含まれる予め特定された一の解剖学的構造物について異常の有無を検出する異常検出システムであって、前記医療用画像において前記解剖学的構造物を示す画素が繋がった領域であるブロックを示すブロック情報を取得する取得部と、前記取得部が取得した前記ブロック情報が示すブロックの数に基づいて前記解剖学的構造物が異常であるか否かを判定して出力する判定部とを備え、前記判定部は、前記ブロック情報が示すブロックの数が1である場合に、前記解剖学的構造物が異常でないと判定し、前記ブロック情報が示すブロックの数が2以上である場合に、前記ブロック情報が示すブロックが所定の条件を満たすときに、前記解剖学的構造物が異常であると判定する。
 また、上記目的を達成するために、本開示の一形態に係る医療用画像の異常検出方法は、医療用画像に基づいて前記医療用画像に含まれる予め特定された一の解剖学的構造物について異常の有無を検出する異常検出システムによる異常検出方法であって、前記医療用画像において前記解剖学的構造物を示す画素が繋がった領域であるブロックを示すブロック情報を取得する取得ステップと、前記取得ステップで取得した前記ブロック情報が示すブロックの数に基づいて前記解剖学的構造物が異常であるか否かを判定して出力する判定ステップとを含み、前記判定ステップでは、前記ブロック情報が示すブロックの数が1である場合に、前記解剖学的構造物が異常でないと判定し、前記ブロック情報が示すブロックの数が2以上である場合に、前記ブロック情報が示すブロックが所定の条件を満たすときに、前記解剖学的構造物が異常であると判定する。
 本開示により、より高い精度で解剖学的構造物について異常の有無を検出することができる医療用画像の異常検出システム及び異常検出方法が提供される。
図1は、実施の形態に係る診断支援システムの構成を示すブロック図である。 図2Aは、医療用画像における解剖学的構造物の例を示す図である。 図2Bは、医療用画像における解剖学的構造物の他の例を示す図である。 図2Cは、医療用画像における解剖学的構造物の他の例を示す図である。 図2Dは、医療用画像における解剖学的構造物の他の例を示す図である。 図3は、図1における異常検出システムの主要な動作を示すフローチャートである。 図4は、図3におけるステップS23の具体例を示すフローチャートである。 図5は、図3及び図4に示された判定の結果例を説明するための医療用画像における解剖学的構造物の例を示す模式図である。 図6は、図4に示された判定を評価するための症例を用いた実験の結果を示す図である。 図7は、図3におけるステップS23の他の具体例を示すフローチャートである。 図8Aは、図3及び図7に示された判定の結果例を説明するための医療用画像における解剖学的構造物の例を示す模式図である。 図8Bは、図7に示された判定の結果例を説明するための医療用画像における解剖学的構造物の撮像例を示す図である。 図9は、図3におけるステップS23のさらに他の具体例を示すフローチャートである。 図10Aは、図4に示される面積を用いた判定に用いられる第1閾値の決定方法を示すフローチャートである。 図10Bは、図7に示される距離を用いた判定に用いられる第2閾値の決定方法を示すフローチャートである。
 以下、本開示の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、本開示を限定する主旨ではない。また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。
 図1は、実施の形態に係る診断支援システム10の構成を示すブロック図である。診断支援システム10は、医療用画像に基づいて解剖学的構造物について医師が効率的に診断するのを支援するシステムであり、インターネット等の通信路で接続された撮影装置20、画像サーバ30、ビューワ装置40、及び、異常検出システム50を備える。
 撮影装置20は、人の解剖学的構造物を撮影することで医療用画像31aを生成する装置であり、本実施の形態では、医療用画像として胸部X線画像を生成して画像サーバ30に格納するX線撮影装置である。なお、医療用画像としては、胸部X線画像に限られず、他の部位のX線画像であってもよいし、CTスキャン、PET/CTスキャン、SPECTスキャン、MRI、超音波、X線、乳房撮影、血管造影、蛍光撮影、顕微鏡写真、又は、これらの組み合わせにより提供される画像であってもよい。
 画像サーバ30は、撮影装置20によって生成された医療用画像31a、及び、異常検出システム50によって生成された検出後の医療用画像32aを保持したり、保持している医療用画像32bをビューワ装置40に提供したりするデータサーバであり、例えば、ハードディスク等のストレージを備えるコンピュータ装置である。なお、画像サーバ30が他の装置とやりとりするデータには、医療用画像だけでなく、医療用画像に付随する各種情報(撮影日時、患者に関する情報、検出結果等)が含まれてもよい。
 ビューワ装置40は、GUI(Graphical User Interface)を介して得たユーザからの指示に従って、画像サーバ30に保持されている医療用画像32b及び医療用画像に付随する各種情報を様々な態様で表示する装置であり、例えば、ディスプレイ、マウス等の入力装置、ハードディスク等の記憶装置等の周辺装置を備えるコンピュータ装置である。
 異常検出システム50は、画像サーバ30から取得した検出対象の医療用画像31bに基づいて、医療用画像に含まれる予め特定された一の解剖学的構造物について医学的な異常の有無を検出するシステムであり、ブロック情報生成部51、取得部52、判定部53、及び、画像処理部54を備える。
 ブロック情報生成部51は、画像サーバ30から取得した検出対象の医療用画像31bから、医療用画像31bに含まれる解剖学的構造物を示す画素が繋がった領域であるブロックを示すブロック情報を生成する、つまり、医療用画像31bに対してラベリング処理を施して画像の塊に分離する。ブロック情報は、医療用画像31bにおける個々のブロックを特定する情報であれば、特定のフォーマットに限定されない。例えば、ブロック情報は、医療用画像31bにおける個々のブロックに属する画素とそれ以外の画素とを区別する情報(例えば、ブロックを構成する画素を「1」、それ以外の画素を「0」とする2値画像)であってもよいし、個々のブロックの特性を示す情報(例えば、上記2値画像を解析することで得られる各ブロックの面積、輪郭情報など)であってもよい。
 取得部52は、ブロック情報生成部51が生成したブロック情報を取得する。
 判定部53は、取得部52が取得したブロック情報が示すブロックの数に基づいて、医療用画像31bに含まれる解剖学的構造物が異常であるか否かを判定して出力する。このとき、判定部53は、ブロック情報が示すブロックの数が1である場合に、本来一つのブロックとして検出されるべき解剖学的構造物が一つのブロックとして検出されていると認識し、医療用画像31bに含まれる解剖学的構造物が異常でないと判定する。一方、判定部53は、ブロック情報が示すブロックの数が2以上である場合に、ブロック情報が示すブロックが所定の条件を満たすときに、画像上又は画像処理上のノイズではなく本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像31bに含まれる解剖学的構造物が異常であると判定する。
 ここで、所定の条件は、例えば、ブロック情報が示す2以上のブロックのうち、医療用画像31bにおける面積が2番目に大きいブロックに関する条件である。より詳しくは、所定の条件は、ブロック情報が示す2以上のブロックのうち、医療用画像31bにおける面積が2番目に大きいブロックが第1閾値以上の面積を有することである。
 また、所定の条件は、例えば、ブロック情報が示す2以上のブロックのうち、医療用画像31bにおける面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像31bにおける距離のうちの最小値が第2閾値以下であることである。このとき、所定の条件は、さらに、ブロック情報が示す2以上のブロックのうち、医療用画像31bにおける面積が2番目に大きいブロックが第1閾値以上の面積を有することを含んでもよい。
 画像処理部54は、判定部53による判定結果を、検出対象の医療用画像31bに反映することで、検出後の医療用画像32aを生成し、画像サーバ30に格納する。
 なお、異常検出システム50を構成するブロック情報生成部51、取得部52、判定部53、及び、画像処理部54は、具体的には、プログラムを保持する不揮発性メモリ、一時作業領域としての揮発性メモリ、プログラムを実行するプロセッサ、通信インタフェース及び通信ポートを含む入出力回路等を備える少なくとも一つのコンピュータで実現される。
 また、異常検出システム50を構成するブロック情報生成部51、取得部52、判定部53、及び、画像処理部54は、一つのコンピュータ又は画像処理装置で実現されてもよいし、通信路で接続された複数のコンピュータ又は画像処理装置によって分散して実現されてもよい。
 また、診断支援システム10は、通信路で接続された撮影装置20、画像サーバ30、ビューワ装置40、及び、異常検出システム50で構成されたが、これらの構成要素の全部又は一部が一つの装置として組み立てられていてもよい。
 また、異常検出システム50は、必ずしもブロック情報生成部51及び画像処理部54を備える必要はなく、少なくとも取得部52及び判定部53を備えればよい。そのような構成であっても、医療用画像に含まれる解剖学的構造物について異常の有無を検出することができる。逆に、異常検出システム50は、撮影装置20、画像サーバ30及びビューワ装置40の少なくとも一つの機能を備えてもよい。
 図2A~図2Dは、医療用画像における(つまり、医療用画像に含まれる)解剖学的構造物の例(合計、7種類の解剖学的構造物の例)を示す図である。より詳しくは、図2A~図2Dは、解剖学的構造物の例として、それぞれ、右房陰影及び左室陰影、下行大動脈陰影、右横隔膜ドーム陰影及び左横隔膜ドーム陰影、右肺外側陰影及び左肺外側陰影を示す。図2A~図2Dのそれぞれの表では、左から順に、胸部X線画像、解剖学的構造物名、解剖学的構造物の領域、胸部X線画像と解剖学的構造物との重畳の例が示されている。
 胸部X線画像上における解剖学的構造物とは、図2A~図2Cに示されるように、右房陰影、左室陰影、下行大動脈陰影、横隔膜ドーム陰影等である。右房陰影は、胸部X線画像上における右房とその周辺との境界に描出される境界線である。左室陰影は、胸部X線画像上における左室とその周辺との境界に描出される境界線である。下行大動脈陰影は、胸部X線画像上における下行大動脈とその周辺との境界に描出される境界線である。横隔膜ドーム陰影は、胸部X線画像上における横隔膜とその周辺との境界に描出される境界線である。
 なお、胸部X線画像上における解剖学的構造物は、これらに限定されない。解剖学的構造物は、例えば、図2Dに示されるように、胸部X線画像上における肺の外側部分とその周辺との境界に描出される境界線である肺外縁の陰影であってもよく、その他の構造物または臓器等の陰影であってもよい。また、解剖学的構造物は、胸部X線画像に含まれる構造物等に限定されるものではなく、CT画像やMRI画像など、その他の撮影装置で撮影した医療用画像に含まれる構造物等であってもよい。
 次に、以上のように構成される本実施の形態に係る診断支援システム10の動作について、診断支援システム10を構成する特徴的な異常検出システム50の動作を中心に、説明する。
 図3は、図1における異常検出システム50の主要な動作(つまり、異常検出方法)を示すフローチャートである。図3の(a)は、異常検出システム50の主要な動作の流れを示し、図3の(b)は、図3の(a)におけるステップS2の詳細を示す。
 まず、取得部52は、ブロック情報生成部51が生成したブロック情報を取得する(取得ステップS1)。
 次に、判定部53は、取得部52が取得したブロック情報が示すブロックの数に基づいて、医療用画像に含まれる解剖学的構造物が異常であるか否かを判定して出力する(判定ステップS2)。より詳しくは、判定部53は、ブロック情報が示すブロックの数を判定し(S21)、ブロックの数が1である場合に(S21でYes)、本来一つのブロックとして検出されるべき解剖学的構造物が一つのブロックとして検出されていると認識し、医療用画像に含まれる解剖学的構造物が異常でないと判定する(S22)。
 一方、判定部53は、ブロック情報が示すブロックの数が2以上である場合に、ブロック情報が示すブロックが所定の条件を満たすか否かを判定し(S23)、所定の条件を満たすときに(S23でYes)、画像上又は画像処理上のノイズではなく本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常であると判定し(S24)、所定の条件を満たさないときに(S23でNo)、画像上又は画像処理上のノイズによって本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常でないと判定する(S22)。
 図4は、図3におけるステップS23(所定の条件を満たすか否かの判定)の具体例を示すフローチャートである。
 本図に示される判定例では、判定部53は、所定の条件を満たすか否かの判定として、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有するか否かを判定する(S23a)。
 その結果、判定部53は、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有する場合には(S23aでYes)、画像上又は画像処理上のノイズではなく本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常であると判定する(図3のS24へ)。
 一方、判定部53は、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有さない場合には(S23aでNo)、画像上又は画像処理上のノイズによって本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常でないと判定する(図3のS22へ)。
 図5は、図3及び図4に示された判定の結果例を説明するための医療用画像における解剖学的構造物(ここでは、下行大動脈陰影)の例を示す模式図である。より詳しくは、図5の(a)は、1つのブロック60として検出されたために(図3のステップS21でYes)、「異常でない」と判定される下行大動脈陰影の例を示す。図5の(b)は、2つのブロック60a及び60bとして検出され(図3のステップS21でNo)、かつ、2番目に大きいブロック60aが第1閾値以上の面積を有するために(図4のステップS23aでYes)、「異常である」と判定される下行大動脈陰影の例を示す。図5の(c)は、2つのブロック60c及び60dとして検出されたが(図3のステップS21でNo)、2番目に大きいブロック60cが第1閾値以上の面積を有さないために(図4のステップS23aでNo)、「異常でない」と判定される下行大動脈陰影の例を示す。
 図6は、図4に示された判定を評価するための症例を用いた実験の結果を示す図である。より詳しくは、図6の(a)は、右房陰影を解剖学的構造物として異常の有無を判定した場合のROC曲線(receiver operating characteristic curve)を示し、図6の(b)は、左室陰影を解剖学的構造物として異常の有無を判定した場合のROC曲線を示し、図6の(c)は、下行大動脈陰影を解剖学的構造物として異常の有無を判定した場合のROC曲線を示し、図6の(d)は、図6の(a)~(c)に示されたROC曲線の閾値選択結果及びAUC(Area Under the Curve)を示す図である。
 図6の(a)~(c)に示されるROC曲線において、横軸は、偽陽性率(つまり、正常と判明している症例を異常検出システム50が異常と判定した確率(1-特異度))を示し、縦軸は、陽性率(つまり、異常と判明している症例を異常検出システム50が異常と判定した確率(感度))を示す。これらのROC曲線は、正常及び異常が判明している複数の症例について、図4に示される判定に用いられる第1閾値を変化させて得られた異常検出システム50による判定結果をプロットしたものである。
 ROC曲線は、左上隅に近い位置を通る曲線であるほど、症例に対して正しい判定ができていることを示す。発明者らの比較によれば、図6の(b)及び(c)に示される左室陰影及び下行大動脈陰影に関する症例に対する判定精度は、従来の画像処理に基づく判定精度よりも改善されていることが判明している。これは、一つの解剖学的構造物について、医療用画像から抽出されるブロックの数、及び、2番目に面積が大きいブロックの大きさに基づいて異常/正常を判定する手法により、従来では判定が難しいケース(例えば、医療用画像において臓器の正常な構造の一部に腫瘍や水等の他の異常なものが重なっているケース)であっても、正しい判定ができているためと考えられる。なお、ROC曲線において、左上隅に最も近いポイント(図6の(a)~(c)における黒点)に対応する第1閾値が図4に示される判定に用いる閾値として最もふさわしいといえる。
 なお、ROC曲線において、判定に用いる閾値の選定方法にはいくつかある。例えば、ROC曲線上で陽性率+(1-偽陽性率)の値が最も大きくなる点(図6の(a)~(c)における黒点)を選択する方法である。陽性率+(1-偽陽性率)はYouden Indexと呼ばれるもので、それが最大になる点を選択する方法である。他には、陽性率を目標値(例えば0.9)になるような点を選択したり、偽陽性率を目標値(例えば0.1)となるような点を選択したりする方法もある。
 図7は、図3におけるステップS23(所定の条件を満たすか否かの判定)の他の具体例を示すフローチャートである。
 本図に示される判定例では、判定部53は、所定の条件を満たすか否かの判定として、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下であるか否かを判定する(S23b)。
 その結果、判定部53は、医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下である場合には(S23bでYes)、画像上又は画像処理上のノイズではなく本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常であると判定する(図3のS24へ)。
 一方、判定部53は、医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下でない場合には(S23bでNo)、画像上又は画像処理上のノイズによって本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常でないと判定する(図3のS22へ)。
 図8Aは、図3及び図7に示された判定の結果例を説明するための医療用画像における解剖学的構造物(ここでは、下行大動脈陰影)の例を示す模式図である。より詳しくは、図8Aの(a)は、1つのブロック60として検出されたために(図3のステップS21でYes)、「異常でない」と判定される下行大動脈陰影の例を示す。図8Aの(b)は、2つのブロック60c及び60dとして検出され(図3のステップS21でNo)、かつ、医療用画像における面積が最も大きいブロック60dと他のブロックのそれぞれ(ここでは、ブロック60c)との医療用画像における距離のうちの最小値(ここでは、ブロック60dとブロック60cとの距離)が第2閾値以下であるために(図7のステップS23bでYes)、「異常である」と判定される下行大動脈陰影の例を示す。図8Aの(c)は、2つのブロック60e及び60fとして検出されたが(図3のステップS21でNo)、医療用画像における面積が最も大きいブロック60fと他のブロックのそれぞれ(ここでは、ブロック60e)との医療用画像における距離のうちの最小値(ここでは、ブロック60fとブロック60eとの距離)が第2閾値以下でないために(図7のステップS23bでNo)、「異常でない」と判定される下行大動脈陰影の例を示す。
 図8Bは、図7に示された判定の結果例を説明するための医療用画像における解剖学的構造物(ここでは、下行大動脈陰影)の実際の撮像例を示す図である。図8Bには、実際にブロックとして抽出された下行大動脈陰影の像が示されている。図8Bの(a)~(c)は、医療用画像における面積が最も大きいブロック(ここでは、70b、70d、70f)と他のブロックのそれぞれ(ここでは、70a、70c、70e)との医療用画像における距離のうちの最小値が第2閾値以下でないために(図7のステップS23bでNo)、「異常でない」と正しく判定される下行大動脈陰影の例を示し、図8Bの(d)は、医療用画像における面積が最も大きいブロック(ここでは、70h)と他のブロック(ここでは、70g)、70i)のそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下であるために(図7のステップS23bでNo)、「異常である」と正しく判定される下行大動脈陰影の例を示す。
 具体的には、図8Bの(a)に示すブロック70aとブロック70bは、下行大動脈陰影の検出結果であり、とぎれが生じているが「異常でない」と判定される例を示している。図8Bの(b)に示すブロック70cとブロック70dは、右側の横隔膜ドーム陰影の検出結果であり、とぎれが生じているが「異常でない」と判定される例を示している。図8Bの(c)に示すブロック70eとブロック70fは、左室陰影の検出結果であり、とぎれが生じているが「異常でない」と判定される例を示している。図8Bの(d)に示すブロック70gとブロック70hとブロック70iは、左室陰影の別の検出結果であり、小さなとぎれが生じているので「異常である」と判定される例を示している。
 なお、図3におけるステップS23(所定の条件を満たすか否かの判定)の具体例としては、図4に示される面積を用いた判定、及び、図7に示される距離を用いた判定に限られない。面積を用いた判定、及び、距離を用いた判定の両方を用いた判定であってもよい。図9は、面積を用いた判定、及び、距離を用いた判定の両方を用いた判定の一例を示すフローチャートである。つまり、図9は、図3におけるステップS23(所定の条件を満たすか否かの判定)のさらに他の具体例を示すフローチャートである。
 本図に示される判定例では、判定部53は、まず、所定の条件を満たすか否かの判定として、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有するか否かを判定する(S23a)。
 その結果、判定部53は、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有さない場合には(S23aでNo)、画像上又は画像処理上のノイズによって本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常でないと判定する(図3のS22へ)。
 一方、判定部53は、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有する場合には(S23aでYes)、続いて、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下であるか否かを判定する(S23b)。
 その結果、判定部53は、医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下である場合には(S23bでYes)、画像上又は画像処理上のノイズではなく本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常であると判定する(図3のS24へ)。
 一方、判定部53は、医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下でない場合には(S23bでNo)、画像上又は画像処理上のノイズによって本来一つのブロックとして検出されるべき解剖学的構造物が2以上に分離されていると認識し、医療用画像に含まれる解剖学的構造物が異常でないと判定する(図3のS22へ)。
 なお、図9に示される判定では、面積についての条件を満たし(S23aでYes)、かつ、距離についての条件を満たす(S23bでYes)場合に、医療用画像に含まれる解剖学的構造物が異常であると判定され、それ以外の場合に、医療用画像に含まれる解剖学的構造物が異常でないと判定されたが、これに代えて、面積についての条件(S23a)、及び、距離についての条件(S23b)の少なくとも一方を満たす場合に、医療用画像に含まれる解剖学的構造物が異常であると判定され、それ以外の場合に、医療用画像に含まれる解剖学的構造物が異常でないと判定されてもよい。
 また、図3におけるステップS23(所定の条件を満たすか否かの判定)の具体例として、図4、図7、図9等で示された判定例のいずれを採用するかは、判定の対象とする解剖学的構造物の種類等に依存して、予め異常/正常が判明している症例に対して実験しておくことで、異常/正常判定の的中率が最も高い判定方法に決定してもよい。
 図10Aは、図4に示される面積を用いた判定に用いられる第1閾値の決定方法を示すフローチャートである。図4に示される面積を用いた判定では、判定部53は、所定の条件を満たすか否かの判定として、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有するか否かを判定するが、そのときに用いられる第1閾値の決定方法は、以下の通りである。
 まず、正常及び異常と判明している複数の症例について、図4に示される判定に用いられる第1閾値を変化させて異常検出システム50に判定させることで、図6の(a)~(c)に示されるようなROC曲線を算出する(S30)。次に、算出されたROC曲線において、左上隅に最も近いポイントに対応する第1閾値を、図4に示される判定に用いる閾値として決定する(S31)。
 つまり、予め、様々な第1閾値を用いて暫定的な判定をし、最も高い的中率を出した第1閾値を、異常/正常が未知の解剖学的構造物に対する判定の閾値として採用する。これにより、高い精度で解剖学的構造物について異常の有無が検出される。
 図10Bは、図7に示される距離を用いた判定に用いられる第2閾値の決定方法を示すフローチャートである。図7に示される距離を用いた判定では、判定部53は、所定の条件を満たすか否かの判定として、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下であるか否かを判定するが、そのときに用いられる第2閾値の決定方法は、以下の通りである。
 まず、正常及び異常と判明している複数の症例について、図7に示される判定に用いられる第2閾値を変化させて異常検出システム50に判定させることで、図6の(a)~(c)に示されるようなROC曲線を算出する(S40)。次に、算出されたROC曲線において、左上隅に最も近いポイントに対応する第2閾値が図7に示される判定に用いる閾値として決定する(S41)。
 つまり、予め、様々な第2閾値を用いて暫定的な判定をし、最も高い的中率を出した第2閾値を、異常/正常が未知の解剖学的構造物に対する判定の閾値として採用する。これにより、高い精度で解剖学的構造物について異常の有無が検出される。
 なお、図10Aに示される第1閾値の決定方法、及び、図10Bに示される第2閾値の決定方法は、解剖学的構造物の異常と正常とを区別するためのROC曲線を取得し、取得したROC曲線に基づいて、所定の条件(ここでは、第1閾値、第2閾値)を決定する決定ステップの一例といえる。
 以上のように、本実施の形態に係る診断支援システム10を構成する異常検出システム50は、医療用画像に基づいて医療用画像に含まれる予め特定された一の解剖学的構造物について異常の有無を検出するシステムであって、医療用画像において解剖学的構造物を示す画素が繋がった領域であるブロックを示すブロック情報を取得する取得部52と、取得部52が取得したブロック情報が示すブロックの数に基づいて解剖学的構造物が異常であるか否かを判定して出力する判定部53とを備え、判定部53は、ブロック情報が示すブロックの数が1である場合に、解剖学的構造物が異常でないと判定し、ブロック情報が示すブロックの数が2以上である場合に、ブロック情報が示すブロックが所定の条件を満たすときに、解剖学的構造物が異常であると判定する。
 これにより、本来一つのブロックとして検出されるべき解剖学的構造物が一つのブロックとして検出されたか否かに基づいて異常の有無が判定されるので、従来では判定が難しいケース(例えば、医療用画像において臓器の正常な構造の一部に腫瘍や水等の他の異常なものが重なっているケース)であっても、正しい判定が可能になる。よって、従来よりも高い精度で解剖学的構造物について異常の有無が検出される。
 また、一例として、所定の条件は、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が2番目に大きいブロックに関する条件である。より詳しくは、所定の条件は、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有することである。
 これにより、図6の(b)及び(c)に示される実験結果のように、判定部53の判定精度は、従来の画像処理に基づく判定精度よりも改善される。
 また、所定の条件は、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの医療用画像における距離のうちの最小値が第2閾値以下であることであってもよい。ここで、所定の条件は、さらに、ブロック情報が示す2以上のブロックのうち、医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有することであってもよい。
 これにより、本来一つのブロックとして検出されるべき解剖学的構造物がどのような複数のブロックとして検出されたかの情報に基づいて解剖学的構造物の異常/正常が判定されるので、従来では判定が難しいケースであっても、正しい判定が可能になり得る。
 また、第1閾値は、様々な面積について予め得られる、解剖学的構造物の異常と正常とを区別するためのROC曲線に依存して定まる値であってもよい。同様に、第2閾値は、様々な距離について予め得られる、解剖学的構造物の異常と正常とを区別するためのROC曲線に依存して定まる値であってもよい。
 これにより、予め異常/正常が判明している症例に対して得られたROC曲線から第1閾値及び第2閾値が決定されるので、高い精度で解剖学的構造物について異常の有無が検出される。
 また、本実施の形態に係る異常検出方法は、医療用画像に基づいて医療用画像に含まれる予め特定された一の解剖学的構造物について異常の有無を検出する異常検出システム50による異常検出方法であって、医療用画像において解剖学的構造物を示す画素が繋がった領域であるブロックを示すブロック情報を取得する取得ステップS1と、取得ステップS1で取得したブロック情報が示すブロックの数に基づいて解剖学的構造物が異常であるか否かを判定して出力する判定ステップS2とを含み、判定ステップS2では、ブロック情報が示すブロックの数が1である場合に、解剖学的構造物が異常でないと判定し、ブロック情報が示すブロックの数が2以上である場合に、ブロック情報が示すブロックが所定の条件を満たすときに、解剖学的構造物が異常であると判定する。
 これにより、本来一つのブロックとして検出されるべき解剖学的構造物が一つのブロックとして検出されたか否かに基づいて異常の有無が判定されるので、従来では判定が難しいケース(例えば、医療用画像において臓器の正常な構造の一部に腫瘍や水等の他の異常なものが重なっているケース)であっても、正しい判定が可能になる。よって、従来よりも高い精度で解剖学的構造物について異常の有無が検出される。
 また、さらに、解剖学的構造物の異常と正常とを区別するためのROC曲線を取得し、取得したROC曲線に基づいて、所定の条件を決定する決定ステップ(S30~S31、S40~S41)を含んでもよい。これにより、予め異常/正常が判明している症例に対して得られたROC曲線から第1閾値及び第2閾値を含む所定の条件が決定されるので、高い精度で解剖学的構造物について異常の有無が検出される。
 以上、本開示の診断支援システム、医療用画像の異常検出システム及び異常検出方法について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲内に含まれる。
 例えば、本開示は、上記実施の形態における異常検出方法に含まれるステップを実行するプログラムとして実現したり、そのプログラムが記録されたDVD等のコンピュータ読み取り可能な非一時的な記録媒体として実現したりしてもよい。そのプログラムは、1つの記憶装置に保存されてもよいし、複数の記憶装置に分散して記憶されてもよい。また、そのプログラムは、1台のコンピュータによって実行されてもよいし、通信路で接続された複数のコンピュータによって分散して実行されてもよい。
 また、上記実施の形態における異常検出方法には、取得部52及び判定部53によるステップが含まれたが、これらのステップだけに限られず、ブロック情報生成部51、画像処理部54、撮影装置20による処理、及び、ビューワ装置40による処理の少なくとも一つが含まれてもよい。
 また、上記実施の形態では、所定の条件として、複数の判定例が示されたが、これら複数の判定例は、ユーザから指示に基づいて異常検出システム50が決定してもよいし、医療用画像又は解剖学的構造物の種類に応じて過去において最も的中率の高かった判定例を異常検出システム50が自動で決定及び更新してもよい。
 また、上記実施の形態では、所定の条件に用いられる第1閾値及び第2閾値は、ROC曲線において左上隅に最も近いポイントに対応する値に決定されたが、そのポイントに近い別のポイントに決定されてもよいし、左上隅に近い複数のポイントからユーザによって選択されてもよい。
 本開示に係る医療用画像の異常検出システム及び異常検出方法は、医療用画像に含まれる解剖学的構造物について異常の有無を検出するシステムとして、例えば、医師が効率的に病気を診断するのを支援するシステムとして、利用できる。
 10 診断支援システム
 20 撮影装置
 30 画像サーバ
 31a、31b、32a、32b 医療用画像
 40 ビューワ装置
 50 異常検出システム
 51 ブロック情報生成部
 52 取得部
 53 判定部
 54 画像処理部
 60、60a~60f、70a~70f ブロック

Claims (9)

  1.  医療用画像に基づいて前記医療用画像に含まれる予め特定された一の解剖学的構造物について異常の有無を検出する異常検出システムであって、
     前記医療用画像において前記解剖学的構造物を示す画素が繋がった領域であるブロックを示すブロック情報を取得する取得部と、
     前記取得部が取得した前記ブロック情報が示すブロックの数に基づいて前記解剖学的構造物が異常であるか否かを判定して出力する判定部とを備え、
     前記判定部は、前記ブロック情報が示すブロックの数が1である場合に、前記解剖学的構造物が異常でないと判定し、前記ブロック情報が示すブロックの数が2以上である場合に、前記ブロック情報が示すブロックが所定の条件を満たすときに、前記解剖学的構造物が異常であると判定する、
     異常検出システム。
  2.  前記所定の条件は、前記ブロック情報が示す2以上のブロックのうち、前記医療用画像における面積が2番目に大きいブロックに関する条件である、
     請求項1記載の異常検出システム。
  3.  前記所定の条件は、前記ブロック情報が示す2以上のブロックのうち、前記医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有することである、
     請求項2記載の異常検出システム。
  4.  前記所定の条件は、前記ブロック情報が示す2以上のブロックのうち、前記医療用画像における面積が最も大きいブロックと他のブロックのそれぞれとの前記医療用画像における距離のうちの最小値が第2閾値以下であることである、
     請求項1記載の異常検出システム。
  5.  前記所定の条件は、さらに、前記ブロック情報が示す2以上のブロックのうち、前記医療用画像における面積が2番目に大きいブロックが第1閾値以上の面積を有することである、
     請求項4記載の異常検出システム。
  6.  前記第1閾値は、様々な前記面積について予め得られる、前記解剖学的構造物の異常と正常とを区別するためのROC曲線(receiver operating characteristic curve)に依存して定まる値である、
     請求項3又は5記載の異常検出システム。
  7.  前記第2閾値は、様々な前記距離について予め得られる、前記解剖学的構造物の異常と正常とを区別するためのROC曲線に依存して定まる値である、
     請求項4記載の異常検出システム。
  8.  医療用画像に基づいて前記医療用画像に含まれる予め特定された一の解剖学的構造物について異常の有無を検出する異常検出システムによる異常検出方法であって、
     前記医療用画像において前記解剖学的構造物を示す画素が繋がった領域であるブロックを示すブロック情報を取得する取得ステップと、
     前記取得ステップで取得した前記ブロック情報が示すブロックの数に基づいて前記解剖学的構造物が異常であるか否かを判定して出力する判定ステップとを含み、
     前記判定ステップでは、前記ブロック情報が示すブロックの数が1である場合に、前記解剖学的構造物が異常でないと判定し、前記ブロック情報が示すブロックの数が2以上である場合に、前記ブロック情報が示すブロックが所定の条件を満たすときに、前記解剖学的構造物が異常であると判定する、
     異常検出方法。
  9.  さらに、前記解剖学的構造物の異常と正常とを区別するためのROC曲線を取得し、取得した前記ROC曲線に基づいて、前記所定の条件を決定する決定ステップを含む、
     請求項8記載の異常検出方法。
PCT/JP2021/041902 2020-11-25 2021-11-15 医療用画像の異常検出システム及び異常検出方法 WO2022113801A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180077325.8A CN116490130A (zh) 2020-11-25 2021-11-15 医学图像的异常检测系统以及异常检测方法
JP2022565238A JPWO2022113801A1 (ja) 2020-11-25 2021-11-15
EP21897775.9A EP4252657A4 (en) 2020-11-25 2021-11-15 SYSTEM FOR DETECTING ANOMALIES IN A MEDICAL IMAGE AND METHOD FOR DETECTING ANOMALIES
US18/200,693 US20230289965A1 (en) 2020-11-25 2023-05-23 Medical image abnormality detection system and abnormality detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-195390 2020-11-25
JP2020195390 2020-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/200,693 Continuation US20230289965A1 (en) 2020-11-25 2023-05-23 Medical image abnormality detection system and abnormality detection method

Publications (1)

Publication Number Publication Date
WO2022113801A1 true WO2022113801A1 (ja) 2022-06-02

Family

ID=81755996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041902 WO2022113801A1 (ja) 2020-11-25 2021-11-15 医療用画像の異常検出システム及び異常検出方法

Country Status (5)

Country Link
US (1) US20230289965A1 (ja)
EP (1) EP4252657A4 (ja)
JP (1) JPWO2022113801A1 (ja)
CN (1) CN116490130A (ja)
WO (1) WO2022113801A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230305551A1 (en) * 2022-03-25 2023-09-28 Yokogawa Electric Corporation Method and system for automated fault detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087112A1 (ja) * 2009-01-27 2010-08-05 国立大学法人大阪大学 画像解析装置、画像解析方法、画像解析プログラムおよび記録媒体
WO2018088055A1 (ja) * 2016-11-09 2018-05-17 キヤノン株式会社 画像処理装置、画像処理方法、画像処理システム及びプログラム
WO2019102829A1 (ja) * 2017-11-24 2019-05-31 国立大学法人大阪大学 画像解析方法、画像解析装置、画像解析システム、画像解析プログラム、記録媒体
CN110555850A (zh) * 2018-06-04 2019-12-10 青岛海信医疗设备股份有限公司 识别图像中肋骨区域的方法、装置、电子设备和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615243A (en) * 1996-03-12 1997-03-25 University Of Pittsburgh Identification of suspicious mass regions in mammograms
US20100168665A1 (en) * 2008-12-30 2010-07-01 Wilson-Cook Medical Inc. Segmented balloon for catheter tip deflection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087112A1 (ja) * 2009-01-27 2010-08-05 国立大学法人大阪大学 画像解析装置、画像解析方法、画像解析プログラムおよび記録媒体
WO2018088055A1 (ja) * 2016-11-09 2018-05-17 キヤノン株式会社 画像処理装置、画像処理方法、画像処理システム及びプログラム
WO2019102829A1 (ja) * 2017-11-24 2019-05-31 国立大学法人大阪大学 画像解析方法、画像解析装置、画像解析システム、画像解析プログラム、記録媒体
CN110555850A (zh) * 2018-06-04 2019-12-10 青岛海信医疗设备股份有限公司 识别图像中肋骨区域的方法、装置、电子设备和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEO SHIMIZU: "Three-dimensional Structure of Sinusoids of Normal Human Liver and Hepatocellular Carcinoma", MEDICAL IMAGING TECHNOLOGY, vol. 15, no. 5, 1 September 1997 (1997-09-01), JP , pages 597 - 602, XP008169037, ISSN: 0288-450X *
See also references of EP4252657A4

Also Published As

Publication number Publication date
EP4252657A4 (en) 2024-01-24
JPWO2022113801A1 (ja) 2022-06-02
EP4252657A1 (en) 2023-10-04
US20230289965A1 (en) 2023-09-14
CN116490130A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US10846853B2 (en) Medical image processing apparatus, medical image processing method, and medical image processing program
KR101887194B1 (ko) 피검체의 의료 영상의 판독을 지원하는 방법 및 이를 이용한 장치
US9536316B2 (en) Apparatus and method for lesion segmentation and detection in medical images
US10997475B2 (en) COPD classification with machine-trained abnormality detection
KR101874348B1 (ko) 피검체의 흉부 pa 영상의 판독을 지원하는 방법 및 이를 이용한 장치
CN101231678B (zh) 医用图像处理装置及医用图像处理方法
US20150173705A1 (en) Apparatus and method for adapting diagnostic model for computer-aided diagnosis
JP2020511190A (ja) 超音波分析のためのシステムおよび方法
US20220366562A1 (en) Medical image analysis apparatus and method, and medical image visualization apparatus and method
JP2019033966A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
US20120166211A1 (en) Method and apparatus for aiding imaging diagnosis using medical image, and image diagnosis aiding system for performing the method
US10290101B1 (en) Heat map based medical image diagnostic mechanism
US20150003702A1 (en) Processing and displaying a breast image
KR102245219B1 (ko) 의료 영상에서 악성의심 병변을 구별하는 방법, 이를 이용한 의료 영상 판독 방법 및 컴퓨팅 장치
WO2004049948A1 (ja) コンピュータ支援診断装置
JP7525248B2 (ja) 医用情報処理装置及び医用情報処理プログラム
EP3939003B1 (en) Systems and methods for assessing a likelihood of cteph and identifying characteristics indicative thereof
WO2022113801A1 (ja) 医療用画像の異常検出システム及び異常検出方法
WO2020235461A1 (ja) 異常検出方法、異常検出プログラム、異常検出装置、サーバ装置及び情報処理方法
JP2022117177A (ja) 情報処理装置、情報処理方法及び情報処理プログラム
CN116580819B (zh) 用于自动化地确定图像序列中的检查结果的方法和系统
US8478007B2 (en) Method for detecting ground glass opacity using chest computed tomography
WO2021197176A1 (en) Systems and methods for tumor characterization
JP2007330419A (ja) 画像表示装置および方法並びにプログラム
JP7114003B1 (ja) 医療用画像表示システム、医療用画像表示方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565238

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180077325.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897775

Country of ref document: EP

Effective date: 20230626