WO2022113603A1 - Gas analysis device, gas analysis method, and program for gas analysis device - Google Patents

Gas analysis device, gas analysis method, and program for gas analysis device Download PDF

Info

Publication number
WO2022113603A1
WO2022113603A1 PCT/JP2021/039297 JP2021039297W WO2022113603A1 WO 2022113603 A1 WO2022113603 A1 WO 2022113603A1 JP 2021039297 W JP2021039297 W JP 2021039297W WO 2022113603 A1 WO2022113603 A1 WO 2022113603A1
Authority
WO
WIPO (PCT)
Prior art keywords
desiccant
water content
gas
humidity
measured
Prior art date
Application number
PCT/JP2021/039297
Other languages
French (fr)
Japanese (ja)
Inventor
雅浩 西川
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2022565127A priority Critical patent/JPWO2022113603A1/ja
Priority to DE112021006132.1T priority patent/DE112021006132T5/en
Publication of WO2022113603A1 publication Critical patent/WO2022113603A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour

Definitions

  • the present invention relates to a gas analyzer, a gas analysis method, and a program for a gas analyzer.
  • Patent Document 1 As a gas analyzer for measuring NO X contained in exhaust gas, as shown in Patent Document 1, there is a gas analyzer using a chemiluminescence method (CLD).
  • CLD chemiluminescence method
  • the gas analyzer using this CLD is equipped with an ozone generator that generates ozone ( O3) required for chemiluminescence inside the device. Since this ozone generator generates O3 from the atmosphere sampled as an ozone source separately from the exhaust gas sampling , the detection value of CLD is affected by the decrease in the amount of ozone generated and the quenching effect by the moisture contained in the atmosphere. Will receive.
  • the influence of moisture contained in the atmosphere is reduced by passing the atmosphere introduced into the ozone generator through a desiccant such as silica gel. If the moisture content of this desiccant exceeds the permissible value, it affects the detection value of CLD, so maintenance such as replacement of the desiccant is required before the moisture content that can be absorbed is exceeded.
  • a desiccant such as silica gel.
  • the gas analyzer is a vehicle-mounted type, it is difficult to determine the replacement time (maintenance time). This is because, unlike the bench test in which the temperature, humidity, and atmospheric pressure are controlled in the actual road driving test, the temperature, humidity, and atmospheric pressure fluctuate greatly depending on the climatic conditions at the time of the test, and thereby the moisture in the atmosphere during the test. This is because it is difficult to estimate the amount of water absorbed by the desiccant from the time of use because the amount also changes.
  • the user removes the desiccant before and after the test and compares it with the weight of the desiccant before and after the test to estimate whether or not it can be used in the next test. If the climatic conditions change, the drying capacity may be lost, and the work before and after the test becomes complicated.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to easily determine the maintenance time such as replacement of the desiccant used in the gas analyzer, and to reduce the work for making the determination. That is the main issue.
  • the gas analyzer includes a desiccant that absorbs moisture contained in the atmosphere sampled as an ozone source, and analyzes the components in the gas to be measured using the air that has passed through the desiccant.
  • the drying is performed using at least one of the temperature or humidity measured by the sensor unit and the sensor unit that measures at least one of the temperature or humidity of the atmosphere before passing through the desiccant. It is characterized by including a water content calculation unit for calculating the water content absorbed by the agent.
  • the amount of water absorbed by the desiccant is calculated using at least one of the temperature and humidity measured by the sensor unit, so the remaining amount of water that the desiccant can absorb (allowable amount of water). ) Can be determined, and the maintenance time such as replacement of the desiccant can be easily estimated. Further, since it is not necessary to measure the weight of the desiccant before and after the test as in the conventional case, it is possible to reduce the work for determining the maintenance time.
  • the gas analyzer according to the present invention further includes an output unit that outputs a water content calculated by the water content calculation unit and an allowable water content set in the desiccant so as to be comparable.
  • the gas analyzer compares the water content calculated by the water content calculation unit with the allowable water content set for the desiccant, and the desiccant is used based on the comparison result. It is desirable to further include a notification unit that outputs an alarm indicating that it is not possible. With this configuration, since the device automatically determines the timing of the desiccant, it is possible to prevent a judgment error due to the subjective judgment of the user.
  • the notification unit outputs a prior notification as a step before outputting the alarm.
  • the user can change the test plan, prepare a replacement desiccant, and the like.
  • the climatic conditions are liable to change due to the road test.
  • the analyzer below is preferred. In this way, if it is a vehicle-mounted type, the climatic conditions are likely to change during the road driving test, so by calculating the water content using at least one of the temperature and humidity measured by the sensor unit, the desiccant Will be able to accurately recognize the amount of remaining water that can be absorbed.
  • the water content calculation unit calculate the amount of water absorbed by the desiccant based on the following formula (1).
  • W is the amount of water (g) absorbed by the desiccant
  • P x is the atmospheric pressure (kPa) measured by the sensor unit
  • P 0 is the reference atmospheric pressure, for example, 101.3 ( kPa).
  • L is the sampling flow rate of the atmosphere (cm 3 / sec)
  • a (T x ) is the saturated water vapor amount (g / cm 3 ) at the temperature T x measured by the sensor unit
  • T 0 is.
  • RH x is a relative humidity (%) measured by the sensor unit.
  • a gas that absorbs and removes the moisture contained in the sampled atmosphere with a desiccant and analyzes the components in the gas to be measured using the air that has passed through the desiccant It is an analysis method that measures at least one of the temperature or humidity of the atmosphere before passing through the desiccant, and uses at least one of the measured temperature or humidity to absorb the amount of water absorbed by the desiccant. Is characterized by calculating.
  • the program for a gas analyzer absorbs and removes the moisture contained in the sampled air with a desiccant, and analyzes the components in the gas to be measured using the air that has passed through the desiccant.
  • the gas analyzer 100 of the present embodiment is, for example, a vehicle-mounted type mounted on a vehicle, and analyzes components in exhaust gas discharged from the vehicle during a road driving test.
  • Examples of the vehicle include an engine vehicle, a hybrid vehicle, and a plug-in hybrid vehicle.
  • the gas analyzer 100 continuously measures the concentration of nitrogen oxides (NO X ) in the exhaust gas by the chemiluminescence (CLD) method (chemiluminescence method). Even if the gas analyzer 100 includes an analyzer using a non-dispersed infrared absorption (NDIR) method, an analyzer using a hydrogen flame ionization (FID) method, and a condensed particle counter (CPC). good.
  • CLD chemiluminescence
  • the gas analyzer 100 includes an exhaust gas flow path 2 through which the sampled exhaust gas flows, a CLD detector 3 provided in the exhaust gas flow path 2 and detecting NO in the exhaust gas, and the said gas analyzer 100.
  • An ozone gas introduction path 4 that introduces ozone gas (O 3 ) into the CLD detector 3, an ozone generator 5 that is provided in the ozone gas introduction path 4 and generates ozone gas from the atmosphere, and an ozone generator 5 that introduces the atmosphere.
  • It includes an air introduction path 6 and a desiccant 7 such as silica gel, which is provided in the air introduction path 6 and absorbs moisture in the atmosphere.
  • the exhaust gas flow path 2 is provided with a NOX converter 8 having a catalyst that reduces NO 2 contained in the sampled exhaust gas to NO.
  • NOX converter 8 When the exhaust gas passes through the NO X converter 8, NO 2 is reduced to NO, NO X (NO + NO 2 ) is detected by the CLD detector 3, and the concentration of NO X can be measured.
  • the exhaust gas flow path 2 is provided with a bypass path 21 that bypasses the NO X converter 8, and by flowing the exhaust gas through the bypass path 21, NO is detected by the CLD detector 3 and the concentration of NO is determined. Can be measured. Further, since the concentration of NO X and the concentration of NO can be measured by this flow path configuration, the concentration of NO 2 can be measured by calculating the difference between them.
  • An ozone decomposer 9 for decomposing ozone gas is provided on the downstream side of the CLD detector 3 in the exhaust gas flow path 2.
  • the CLD detector 3 includes a reactor in which the exhaust gas from the exhaust gas flow path 2 and the ozone gas from the ozone gas introduction path 4 are introduced, and a NO oxidation reaction by the ozone gas occurs in the reactor. A part of NO 2 generated at this time becomes an excited state, and the excitation energy when returning from this excited state to the ground state is emitted as a photon. This phenomenon is called chemiluminescence. Then, the NO concentration of the sample gas can be measured by detecting the emission intensity of this chemiluminescence with a photoelectric element.
  • the gas analyzer 100 of the present embodiment has a sensor unit 10 for measuring the temperature, humidity, and pressure of the atmosphere before passing through the desiccant 7, and a sensor unit 10. It is provided with a moisture content calculation unit 11 for calculating the moisture content absorbed by the desiccant 7 using at least one of the measured temperature and humidity.
  • the sensor unit 10 passes through the temperature sensor 10a that measures the temperature of the atmosphere before passing through the desiccant 7, the humidity sensor 10b that measures the relative humidity of the atmosphere before passing through the desiccant 7, and the desiccant 7. It has a humidity sensor 10c that measures the humidity of the previous atmosphere.
  • These sensors 10a, 10b, and 10c continuously measure the ambient temperature, relative humidity, and atmospheric pressure of the gas analyzer 100.
  • a temperature sensor, a humidity sensor, and a barometric pressure sensor mounted on the vehicle may be used as the sensor unit 10.
  • the water content calculation unit 11 exerts its function by the control device COM of the gas analyzer 100.
  • the control device COM is a dedicated or general-purpose computer having a CPU, an internal memory, an input / output interface, an AD converter, and the like. Further, the control device COM includes a data acquisition unit 12 that acquires temperature data, humidity data, and barometric pressure data from the sensor unit 10.
  • the water content calculation unit 11 calculates the water content absorbed by the desiccant 7 based on the following formula (1).
  • W is the amount of water (g) absorbed by the desiccant 7
  • P x is the atmospheric pressure (kPa) measured by the atmospheric pressure sensor 10c
  • P 0 is the reference atmospheric pressure, for example, 101.3 ( kPa).
  • L is the sampling flow rate of the atmosphere (cm 3 / sec)
  • a (T x ) is the saturated water vapor amount (g / cm 3 ) at the temperature T x measured by the temperature sensor 10a
  • T 0 is.
  • RH x is a relative humidity (%) measured by the humidity sensor 10b.
  • the temperature at a certain moment is T 1 (° C) and the relative humidity is RH 1 (%)
  • the water content w 1 (g / cm 3 ) per unit volume contained in the atmosphere at that time is T 1 .
  • the saturated water vapor amount of is expressed by the following formula using a (T 1 ) (g / cm 3 ).
  • the sampling flow rate L (cm 3 / sec) of the atmosphere flowing through the atmosphere introduction path 6 is set to a constant value by design.
  • the weight W 1 (g / sec) of water per unit time sucked by the gas analyzer 100 at a certain moment is expressed by the following equation.
  • the total amount W (g) of water absorbed by the desiccant 7 from the atmosphere during the measurement time t (sec) of the gas analyzer 100 can be calculated by the following formula.
  • the moisture-absorbable water content (allowable water content) W silica of the desiccant 7 can be set by the user from the weight of the desiccant 7 and the specifications of the manufacturer.
  • the control device COM of the present embodiment further includes an output unit 13 that outputs a water content W calculated by the water content calculation unit 11 and an allowable water content W silica set in the desiccant 7 in a comparable manner. There is. The function of the output unit 13 is exhibited by the control device COM of the gas analyzer 100.
  • the output unit 13 of the present embodiment is configured to display a graph G1 showing the calculated water content W and the allowable water content W silica on the display 14.
  • the vertical axis of the graph G1 is the water content (g), and the horizontal axis is the elapsed time.
  • the output unit 13 may display the ratio (%) of the calculated water content W to the allowable water content W silica on the display 13.
  • the vertical axis represents the residual water retention capacity (g) of the desiccant 7
  • the horizontal axis may display the graph G2 of the elapsed time, or the graph G3.
  • a graph in which the vertical axis is normalized by the allowable water content W silia and displayed as a percentage may be displayed.
  • X in FIG. 4 is (W / W silica ) ⁇ 100 (%).
  • the gas analyzer 100 compares the water content W calculated by the water content calculation unit 11 with the allowable water content W silica set in the desiccant 7, and the desiccant 7 is used based on the comparison result.
  • a notification unit 15 that outputs an alarm indicating that it is not possible may be further provided.
  • the function of the notification unit 15 is exhibited by the control device COM of the gas analyzer 100.
  • the notification unit 15 outputs an alarm indicating that the desiccant 7 cannot be used.
  • a mode for outputting an alarm it is conceivable to display alarm information (for example, a warning message) on the display 14, or to change the display mode of an icon for starting an application for displaying the graph G. ..
  • the notification unit 15 may be configured to output a advance notification (PreCaution) as a step before outputting an alarm based on the comparison result between the calculated water content W and the allowable water content W silica . ..
  • a advance notification PreCaution
  • the advance notification information for example, an advance notification message
  • the display mode of the icon for starting the application for displaying the graph G is changed. Can be considered.
  • the notification unit 15 estimates the remaining usable time of the desiccant 7 based on the comparison result between the calculated water content W and the allowable water content W silica , and notifies the user of the usable time. It may be configured as follows. Here, as a method for estimating the usable time, the amount of remaining water that the desiccant 7 can absorb (W silica -W), the temperature and humidity measured by the sensor unit, the atmospheric pressure, other usage modes, and so on. It is conceivable to obtain it from the usage record of (the slope of the graph of the calculated water content W) and the like.
  • the desiccant 7 can determine the amount of remaining water that can absorb moisture (W silica -W), and can easily determine the maintenance time such as replacement of the desiccant 7. Further, since it is not necessary to measure the weight of the desiccant 7 before and after the test as in the conventional case, it is possible to reduce the work for determining the maintenance time.
  • the sensor unit measures the temperature, humidity, and atmospheric pressure, and the measured temperature, humidity, and atmospheric pressure are used to calculate the amount of water absorbed by the desiccant.
  • One of the temperature, humidity, and atmospheric pressure may be measured, and the other of temperature, humidity, and atmospheric pressure may be set as a set value, and the amount of water absorbed by the desiccant may be calculated from them.
  • the concentration of nitrogen oxides (NO X ) in the exhaust gas is measured by the CLD method using ozone generated from the atmosphere that has passed through the desiccant 7, but the desiccant 7 is used. It may be another gas analyzer that analyzes the components in the gas to be measured (for example, any component such as CO, CO 2 or NO) using the passing air.
  • the air that has passed through the desiccant 7 may be used as a diluting gas.
  • the components in the gas to be measured at this time include particulate matter (Particulate Matter: PM) and the number of solid particles (Particle Number: PN).
  • PM particulate Matter
  • PN particle Number
  • a part of the sampled exhaust gas may be filtered with a particle collection filter, and a desiccant may be further passed through the gas from which the floating solid particles have been removed, and the gas may be used as a diluting gas.
  • the present invention it is possible to facilitate the determination of the replacement timing of the desiccant used in the gas analyzer and reduce the work associated with the determination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The present invention facilitates determination of a replacement timing for a drying agent used in a gas analysis device and reduces the work associated with said determination, and moreover provides a gas analysis device 100 comprising a drying agent 7 that absorbs moisture included in sampled air, the gas analysis device 100 analyzing components in a gas being measured by using air that has passed through the drying agent 7, wherein the gas analysis device 100 comprises a sensor unit 10 that measures the temperature and/or humidity of the air before the air passes through the drying agent 7, and a moisture amount calculation unit 11 that calculates the amount of moisture absorbed by the drying agent 7 using the temperature and/or humidity measured by the sensor unit 10.

Description

ガス分析装置、ガス分析方法、ガス分析装置用プログラムGas analyzer, gas analysis method, program for gas analyzer
 本発明は、ガス分析装置、ガス分析方法、ガス分析装置用プログラムに関するものである。 The present invention relates to a gas analyzer, a gas analysis method, and a program for a gas analyzer.
 例えば排ガスに含まれるNOを測定するガス分析装置としては、特許文献1に示すように、化学発光法(CLD)を用いたものがある。このCLDを用いたガス分析装置は、化学発光に必要なオゾン(O)を装置内部で生成するオゾン発生器を備えている。このオゾン発生器は、別途排ガスサンプリングとは別にオゾン源としてサンプリングされた大気からOを生成することから、大気に含まれる水分によってオゾン生成量の減少や消光作用により、CLDの検出値が影響を受けてしまう。 For example, as a gas analyzer for measuring NO X contained in exhaust gas, as shown in Patent Document 1, there is a gas analyzer using a chemiluminescence method (CLD). The gas analyzer using this CLD is equipped with an ozone generator that generates ozone ( O3) required for chemiluminescence inside the device. Since this ozone generator generates O3 from the atmosphere sampled as an ozone source separately from the exhaust gas sampling , the detection value of CLD is affected by the decrease in the amount of ozone generated and the quenching effect by the moisture contained in the atmosphere. Will receive.
 このため、従来のCLDを用いたガス分析装置では、オゾン発生器に導入される大気をシリカゲル等の乾燥剤を通過させることにより、大気に含まれる水分の影響を低減している。この乾燥剤は、吸湿可能な水分量が許容値を超えると、CLDの検出値に影響を及ぼすため、吸湿可能な水分量を超える前に乾燥剤を交換する等のメンテナンスが必要となる。 Therefore, in the conventional gas analyzer using CLD, the influence of moisture contained in the atmosphere is reduced by passing the atmosphere introduced into the ozone generator through a desiccant such as silica gel. If the moisture content of this desiccant exceeds the permissible value, it affects the detection value of CLD, so maintenance such as replacement of the desiccant is required before the moisture content that can be absorbed is exceeded.
特開2018-72032号公報Japanese Unexamined Patent Publication No. 2018-72032
 しかしながら、ガス分析装置が車両搭載型である場合には、その交換時期(メンテナンス時期)の判断が難しい。なぜならば、実路走行試験は、温度及び湿度、気圧が管理された台上試験とは異なり、温度及び湿度、気圧が試験時の気候条件によって大きく変動し、それにより試験中の大気中の水分量も変化するため、使用した時間から乾燥剤が吸湿した水分量を推測することが困難だからである。 However, if the gas analyzer is a vehicle-mounted type, it is difficult to determine the replacement time (maintenance time). This is because, unlike the bench test in which the temperature, humidity, and atmospheric pressure are controlled in the actual road driving test, the temperature, humidity, and atmospheric pressure fluctuate greatly depending on the climatic conditions at the time of the test, and thereby the moisture in the atmosphere during the test. This is because it is difficult to estimate the amount of water absorbed by the desiccant from the time of use because the amount also changes.
 なお、試験前後に乾燥剤を取り外し、試験前後の乾燥剤の重量と比較して、次の試験にも使用可能であるか否かをユーザが推測することも行われているが、次の試験の気候条件が変化した場合に乾燥能力が失われる恐れもあり、また、試験前後の作業が煩雑になってしまう。 It should be noted that the user removes the desiccant before and after the test and compares it with the weight of the desiccant before and after the test to estimate whether or not it can be used in the next test. If the climatic conditions change, the drying capacity may be lost, and the work before and after the test becomes complicated.
 そこで、本発明は上記の問題点を解決すべくなされたものであり、ガス分析装置に用いられる乾燥剤の交換等のメンテナンス時期を容易に判断できるとともに、その判断を行うための作業を軽減することをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and it is possible to easily determine the maintenance time such as replacement of the desiccant used in the gas analyzer, and to reduce the work for making the determination. That is the main issue.
 すなわち、本発明に係るガス分析装置は、オゾン源としてサンプリングされた大気に含まれる水分を吸湿する乾燥剤を備え、当該乾燥剤を通過した大気を用いて、測定対象ガス中の成分を分析するガス分析装置であって、前記乾燥剤を通過する前の前記大気の温度又は湿度の少なくとも一方を計測するセンサ部と、前記センサ部により計測された温度又は湿度の少なくとも一方を用いて、前記乾燥剤が吸収した水分量を算出する水分量算出部とを備えることを特徴とする。 That is, the gas analyzer according to the present invention includes a desiccant that absorbs moisture contained in the atmosphere sampled as an ozone source, and analyzes the components in the gas to be measured using the air that has passed through the desiccant. In a gas analyzer, the drying is performed using at least one of the temperature or humidity measured by the sensor unit and the sensor unit that measures at least one of the temperature or humidity of the atmosphere before passing through the desiccant. It is characterized by including a water content calculation unit for calculating the water content absorbed by the agent.
 このガス分析装置であれば、センサ部により計測された温度又は湿度の少なくとも一方を用いて、乾燥剤が吸収した水分量を算出するので、乾燥剤が吸湿可能な残りの水分量(許容水分量)を判断できるようになり、乾燥剤の交換等のメンテナンス時期を容易に推測できる。また、従来のように試験前後において乾燥剤の重量を計測する必要がないので、メンテナンス時期を判断するための作業を軽減することができる。 With this gas analyzer, the amount of water absorbed by the desiccant is calculated using at least one of the temperature and humidity measured by the sensor unit, so the remaining amount of water that the desiccant can absorb (allowable amount of water). ) Can be determined, and the maintenance time such as replacement of the desiccant can be easily estimated. Further, since it is not necessary to measure the weight of the desiccant before and after the test as in the conventional case, it is possible to reduce the work for determining the maintenance time.
 また、本発明に係るガス分析装置は、前記水分量算出部により算出された水分量と前記乾燥剤に設定された許容水分量とを比較可能に出力する出力部をさらに備えることが望ましい。
 この構成であれば、乾燥剤が吸湿可能な残りの水分量を認識しやすく、乾燥剤の交換等のタイミングを容易に判断することができる。
Further, it is desirable that the gas analyzer according to the present invention further includes an output unit that outputs a water content calculated by the water content calculation unit and an allowable water content set in the desiccant so as to be comparable.
With this configuration, it is easy to recognize the amount of remaining water that the desiccant can absorb, and it is possible to easily determine the timing of replacement of the desiccant.
 さらに、本発明に係るガス分析装置は、前記水分量算出部により算出された水分量と前記乾燥剤に設定された許容水分量とを比較し、その比較結果に基づいて、前記乾燥剤が使用不可であることを示すアラームを出力する報知部を更に備えることが望ましい。
 この構成であれば、装置が乾燥剤のタイミングを自動的に判断しているので、ユーザの主観的判断による判断ミスを防ぐことができる。
Further, the gas analyzer according to the present invention compares the water content calculated by the water content calculation unit with the allowable water content set for the desiccant, and the desiccant is used based on the comparison result. It is desirable to further include a notification unit that outputs an alarm indicating that it is not possible.
With this configuration, since the device automatically determines the timing of the desiccant, it is possible to prevent a judgment error due to the subjective judgment of the user.
 前記報知部は、前記比較結果に基づいて、前記アラームを出力する前段階として事前通知を出力することが望ましい。
 この構成であれば、ユーザは試験計画の変更や交換用の乾燥剤の準備等を行うことができる。
Based on the comparison result, it is desirable that the notification unit outputs a prior notification as a step before outputting the alarm.
With this configuration, the user can change the test plan, prepare a replacement desiccant, and the like.
 本発明の効果をより一層顕著にするためには、車両搭載型のもので路上走行試験中に分析指示値を常に監視するのが通常困難で、路上試験のために気候条件が変化しやすい環境下にある分析装置が望ましい。
 このように車両搭載型のものであれば、路上走行試験中に気候条件が変化しやすいため、センサ部により計測された温度又は湿度の少なくとも一方を用いて水分量を算出することで、乾燥剤が吸湿可能な残りの水分量を正確に認識できるようになる。
In order to make the effect of the present invention even more remarkable, it is usually difficult to constantly monitor the analysis instruction value during the road driving test in the vehicle-mounted type, and the climatic conditions are liable to change due to the road test. The analyzer below is preferred.
In this way, if it is a vehicle-mounted type, the climatic conditions are likely to change during the road driving test, so by calculating the water content using at least one of the temperature and humidity measured by the sensor unit, the desiccant Will be able to accurately recognize the amount of remaining water that can be absorbed.
 乾燥剤が吸湿した水分量を正確に算出するためには、前記水分量算出部は、以下の式(1)に基づいて、前記乾燥剤が吸収した水分量を算出することが望ましい。 In order to accurately calculate the amount of water absorbed by the desiccant, it is desirable that the water content calculation unit calculate the amount of water absorbed by the desiccant based on the following formula (1).
Figure JPOXMLDOC01-appb-M000002
 ここで、Wは、前記乾燥剤が吸収した水分量(g)であり、Pは、前記センサ部により計測された気圧(kPa)、Pは、基準となる気圧で例えば101.3(kPa)である。Lは、前記大気のサンプリング流量(cm/sec)であり、a(T)は、前記センサ部により計測された温度Tにおける飽和水蒸気量(g/cm)であり、Tは、基準となる温度で例えば273.15(℃)、RHは、前記センサ部により計測された相対湿度(%)である。
Figure JPOXMLDOC01-appb-M000002
Here, W is the amount of water (g) absorbed by the desiccant, P x is the atmospheric pressure (kPa) measured by the sensor unit, and P 0 is the reference atmospheric pressure, for example, 101.3 ( kPa). L is the sampling flow rate of the atmosphere (cm 3 / sec), a (T x ) is the saturated water vapor amount (g / cm 3 ) at the temperature T x measured by the sensor unit, and T 0 is. At a reference temperature, for example, 273.15 (° C.), RH x is a relative humidity (%) measured by the sensor unit.
 また、本発明に係るガス分析方法は、サンプリングされた大気に含まれる水分を乾燥剤により吸収して除去し、当該乾燥剤を通過した大気を用いて、測定対象ガス中の成分を分析するガス分析方法であって、前記乾燥剤を通過する前の前記大気の温度又は湿度の少なくとも一方を計測する計測し、計測された温度又は湿度の少なくとも一方を用いて、前記乾燥剤が吸収した水分量を算出することを特徴とする。 Further, in the gas analysis method according to the present invention, a gas that absorbs and removes the moisture contained in the sampled atmosphere with a desiccant and analyzes the components in the gas to be measured using the air that has passed through the desiccant. It is an analysis method that measures at least one of the temperature or humidity of the atmosphere before passing through the desiccant, and uses at least one of the measured temperature or humidity to absorb the amount of water absorbed by the desiccant. Is characterized by calculating.
 さらに、本発明に係るガス分析装置用プログラムは、サンプリングされた大気に含まれる水分を乾燥剤により吸収して除去し、当該乾燥剤を通過した大気を用いて、測定対象ガス中の成分を分析するガス分析装置に用いられるプログラムであって、前記乾燥剤を通過する前の前記大気の温度又は湿度の少なくとも一方を取得する取得部と、前記取得部により取得された温度又は湿度の少なくとも一方を用いて、前記乾燥剤が吸収した水分量を算出する水分量算出部と、としての機能をコンピュータに備えさせることを特徴とする。 Further, the program for a gas analyzer according to the present invention absorbs and removes the moisture contained in the sampled air with a desiccant, and analyzes the components in the gas to be measured using the air that has passed through the desiccant. A program used in a gas analyzer to acquire at least one of the temperature or humidity of the atmosphere before passing through the desiccant, and at least one of the temperature or humidity acquired by the acquisition unit. It is characterized in that the computer is provided with a function as a water content calculation unit for calculating the water content absorbed by the desiccant.
 以上に述べた本発明によれば、ガス分析装置に用いられる乾燥剤の交換タイミングの判断を容易にするとともに、その判断に伴う作業を軽減することができる。 According to the present invention described above, it is possible to facilitate the determination of the replacement timing of the desiccant used in the gas analyzer and reduce the work associated with the determination.
本発明の一実施形態に係るガス分析装置の全体模式図である。It is an overall schematic diagram of the gas analyzer which concerns on one Embodiment of this invention. 同実施形態の制御装置の機能ブロック図である。It is a functional block diagram of the control device of the same embodiment. 同実施形態の表示画面を示す模式図である。It is a schematic diagram which shows the display screen of the same embodiment. 表示画面の変形例を示す模式図である。It is a schematic diagram which shows the modification of the display screen.
100・・・ガス分析装置
7・・・乾燥剤
10・・・センサ部
11・・・水分量算出部
13・・・出力部
15・・・報知部
100 ... Gas analyzer 7 ... Drying agent 10 ... Sensor unit 11 ... Moisture content calculation unit 13 ... Output unit 15 ... Notification unit
 以下、本発明の一実施形態に係るガス分析装置100について、図面を参照しながら説明する。 Hereinafter, the gas analyzer 100 according to the embodiment of the present invention will be described with reference to the drawings.
<装置構成>
 本実施形態のガス分析装置100は、例えば車両に搭載される車両搭載型のものであり、路上走行試験中に車両から排出される排ガス中の成分を分析するものである。なお、車両としては、エンジン車、ハイブリッド車、プラグインハイブリッド車などを挙げることができる。
<Device configuration>
The gas analyzer 100 of the present embodiment is, for example, a vehicle-mounted type mounted on a vehicle, and analyzes components in exhaust gas discharged from the vehicle during a road driving test. Examples of the vehicle include an engine vehicle, a hybrid vehicle, and a plug-in hybrid vehicle.
 具体的にガス分析装置100は、化学発光(CLD)法(ケミルミネッセンス法)により排ガス中の窒素酸化物(NO)の濃度を連続測定するものである。なお、ガス分析装置100には、非分散赤外線吸収(NDIR)法を用いた分析計や、水素炎イオン化(FID)法を用いた分析計や、凝縮粒子カウンタ(CPC)が含まれていても良い。 Specifically, the gas analyzer 100 continuously measures the concentration of nitrogen oxides (NO X ) in the exhaust gas by the chemiluminescence (CLD) method (chemiluminescence method). Even if the gas analyzer 100 includes an analyzer using a non-dispersed infrared absorption (NDIR) method, an analyzer using a hydrogen flame ionization (FID) method, and a condensed particle counter (CPC). good.
 そして、ガス分析装置100は、図1に示すように、サンプリングされた排ガスが流れる排ガス流路2と、当該排ガス流路2に設けられ、排ガス中のNOを検出するCLD検出器3と、当該CLD検出器3にオゾンガス(O)を導入するオゾンガス導入路4と、当該オゾンガス導入路4に設けられ、大気からオゾンガスを生成するオゾン発生器5と、当該オゾン発生器5に大気を導入する大気導入路6と、当該大気導入路6に設けられた大気の水分を吸湿する例えばシリカゲル等の乾燥剤7とを備えている。 Then, as shown in FIG. 1, the gas analyzer 100 includes an exhaust gas flow path 2 through which the sampled exhaust gas flows, a CLD detector 3 provided in the exhaust gas flow path 2 and detecting NO in the exhaust gas, and the said gas analyzer 100. An ozone gas introduction path 4 that introduces ozone gas (O 3 ) into the CLD detector 3, an ozone generator 5 that is provided in the ozone gas introduction path 4 and generates ozone gas from the atmosphere, and an ozone generator 5 that introduces the atmosphere. It includes an air introduction path 6 and a desiccant 7 such as silica gel, which is provided in the air introduction path 6 and absorbs moisture in the atmosphere.
 排ガス流路2には、サンプリングされた排ガスに含まれるNOをNOに還元する触媒を有するNOコンバータ8が設けられている。このNOコンバータ8を排ガスが通過することにより、NOがNOに還元されて、CLD検出器3ではNO(NO+NO)が検出され、NOの濃度を測定することが可能となる。 The exhaust gas flow path 2 is provided with a NOX converter 8 having a catalyst that reduces NO 2 contained in the sampled exhaust gas to NO. When the exhaust gas passes through the NO X converter 8, NO 2 is reduced to NO, NO X (NO + NO 2 ) is detected by the CLD detector 3, and the concentration of NO X can be measured.
 また、排ガス流路2には、NOコンバータ8をバイパスするバイパス路21が設けられており、このバイパス路21に排ガスを流すことにより、CLD検出器3ではNOが検出され、NOの濃度を測定することができる。また、この流路構成により、NOの濃度及びNOの濃度を測定できることから、それらの差を計算することにより、NOの濃度を測定することもできる。なお、排ガス流路2においてCLD検出器3の下流側にはオゾンガスを分解するためのオゾン分解器9が設けられている。 Further, the exhaust gas flow path 2 is provided with a bypass path 21 that bypasses the NO X converter 8, and by flowing the exhaust gas through the bypass path 21, NO is detected by the CLD detector 3 and the concentration of NO is determined. Can be measured. Further, since the concentration of NO X and the concentration of NO can be measured by this flow path configuration, the concentration of NO 2 can be measured by calculating the difference between them. An ozone decomposer 9 for decomposing ozone gas is provided on the downstream side of the CLD detector 3 in the exhaust gas flow path 2.
 CLD検出器3は、排ガス流路2からの排ガスと、オゾンガス導入路4からのオゾンガスとが導入されるリアクタを備えたものであり、リアクタ内ではオゾンガスによるNOの酸化反応が起こる。このとき生成されるNOの一部が励起状態となり、この励起状態から基底状態に戻る際の励起エネルギーを光子として放出される。この現象は化学発光と呼ばれる。そして、この化学発光の発光強度を光電素子で検出することでサンプルガスのNO濃度を測定することができる。 The CLD detector 3 includes a reactor in which the exhaust gas from the exhaust gas flow path 2 and the ozone gas from the ozone gas introduction path 4 are introduced, and a NO oxidation reaction by the ozone gas occurs in the reactor. A part of NO 2 generated at this time becomes an excited state, and the excitation energy when returning from this excited state to the ground state is emitted as a photon. This phenomenon is called chemiluminescence. Then, the NO concentration of the sample gas can be measured by detecting the emission intensity of this chemiluminescence with a photoelectric element.
 しかして、本実施形態のガス分析装置100は、図1及び図2に示すように、乾燥剤7を通過する前の大気の温度及び湿度、気圧を計測するセンサ部10と、センサ部10により計測された温度又は湿度の少なくとも一方を用いて、乾燥剤7が吸湿した水分量を算出する水分量算出部11とを備えている。 As shown in FIGS. 1 and 2, the gas analyzer 100 of the present embodiment has a sensor unit 10 for measuring the temperature, humidity, and pressure of the atmosphere before passing through the desiccant 7, and a sensor unit 10. It is provided with a moisture content calculation unit 11 for calculating the moisture content absorbed by the desiccant 7 using at least one of the measured temperature and humidity.
 センサ部10は、乾燥剤7を通過する前の大気の温度を計測する温度センサ10aと、乾燥剤7を通過する前の大気の相対湿度を計測する湿度センサ10bと、乾燥剤7を通過する前の大気の気圧を計測する気圧センサ10cとを有している。これらセンサ10a、10b、10cは、ガス分析装置100の周囲の温度及び相対湿度、気圧を連続的に計測するものである。なお、センサ部10としては、車両に搭載された温度センサ及び湿度センサ、気圧センサを用いても良い。 The sensor unit 10 passes through the temperature sensor 10a that measures the temperature of the atmosphere before passing through the desiccant 7, the humidity sensor 10b that measures the relative humidity of the atmosphere before passing through the desiccant 7, and the desiccant 7. It has a humidity sensor 10c that measures the humidity of the previous atmosphere. These sensors 10a, 10b, and 10c continuously measure the ambient temperature, relative humidity, and atmospheric pressure of the gas analyzer 100. As the sensor unit 10, a temperature sensor, a humidity sensor, and a barometric pressure sensor mounted on the vehicle may be used.
 水分量算出部11は、図2に示すように、ガス分析装置100の制御装置COMによりその機能が発揮されるものである。なお、制御装置COMは、CPU、内部メモリ、入出力インターフェイス、AD変換器等を有する専用乃至汎用のコンピュータである。また、制御装置COMは、センサ部10から温度データ及び湿度データ、気圧データを取得するデータ取得部12を備えている。 As shown in FIG. 2, the water content calculation unit 11 exerts its function by the control device COM of the gas analyzer 100. The control device COM is a dedicated or general-purpose computer having a CPU, an internal memory, an input / output interface, an AD converter, and the like. Further, the control device COM includes a data acquisition unit 12 that acquires temperature data, humidity data, and barometric pressure data from the sensor unit 10.
 具体的に水分量算出部11は、以下の式(1)に基づいて、乾燥剤7が吸収した水分量を算出する。 Specifically, the water content calculation unit 11 calculates the water content absorbed by the desiccant 7 based on the following formula (1).
Figure JPOXMLDOC01-appb-M000003
 ここで、Wは、乾燥剤7が吸収した水分量(g)であり、Pは、気圧センサ10cにより計測された気圧(kPa)、Pは、基準となる気圧で例えば101.3(kPa)である。Lは、大気のサンプリング流量(cm/sec)であり、a(Tx)は、温度センサ10aにより計測された温度Txにおける飽和水蒸気量(g/cm)であり、Tは、基準となる温度で例えば273.15(℃)、RHxは、湿度センサ10bにより計測された相対湿度(%)である。
Figure JPOXMLDOC01-appb-M000003
Here, W is the amount of water (g) absorbed by the desiccant 7, P x is the atmospheric pressure (kPa) measured by the atmospheric pressure sensor 10c, and P 0 is the reference atmospheric pressure, for example, 101.3 ( kPa). L is the sampling flow rate of the atmosphere (cm 3 / sec), a (T x ) is the saturated water vapor amount (g / cm 3 ) at the temperature T x measured by the temperature sensor 10a, and T 0 is. For example, 273.15 (° C.) at a reference temperature, and RH x is a relative humidity (%) measured by the humidity sensor 10b.
 ここで、ある瞬間の温度をT(℃)、相対湿度をRH(%)とすると、その時の大気に含まれる単位体積当たりの水分量w(g/cm)は、Tでの飽和水蒸気量をa(T)(g/cm)を用いて、以下の式で表される。 Here, assuming that the temperature at a certain moment is T 1 (° C) and the relative humidity is RH 1 (%), the water content w 1 (g / cm 3 ) per unit volume contained in the atmosphere at that time is T 1 . The saturated water vapor amount of is expressed by the following formula using a (T 1 ) (g / cm 3 ).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 大気導入路6に流れる大気のサンプリング流量L(cm/sec)は、設計により一定の値としてある。これにより、ある瞬間にガス分析装置100が吸引する単位時間当たりの水の重量W(g/sec)は、以下の式で表される。 The sampling flow rate L (cm 3 / sec) of the atmosphere flowing through the atmosphere introduction path 6 is set to a constant value by design. As a result, the weight W 1 (g / sec) of water per unit time sucked by the gas analyzer 100 at a certain moment is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 以上から、ガス分析装置100の測定時間t(sec)中に大気から乾燥剤7に吸湿された水分の総量W(g)は、以下の式で求められる。 From the above, the total amount W (g) of water absorbed by the desiccant 7 from the atmosphere during the measurement time t (sec) of the gas analyzer 100 can be calculated by the following formula.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 乾燥剤7の吸湿可能な水分量(許容水分量)Wsilicaは、乾燥剤7の重量及びメーカの仕様から、ユーザが設定可能である。 The moisture-absorbable water content (allowable water content) W silica of the desiccant 7 can be set by the user from the weight of the desiccant 7 and the specifications of the manufacturer.
 そして、本実施形態の制御装置COMは、水分量算出部11により算出された水分量Wと乾燥剤7に設定された許容水分量Wsilicaとを比較可能に出力する出力部13をさらに備えている。この出力部13は、ガス分析装置100の制御装置COMによりその機能が発揮されるものである。 The control device COM of the present embodiment further includes an output unit 13 that outputs a water content W calculated by the water content calculation unit 11 and an allowable water content W silica set in the desiccant 7 in a comparable manner. There is. The function of the output unit 13 is exhibited by the control device COM of the gas analyzer 100.
 本実施形態の出力部13は、図3に示すように、算出された水分量Wと許容水分量Wsilicaとを示すグラフG1をディスプレイ14に表示するように構成されている。このグラフG1の縦軸が水分量(g)であり、横軸が経過時間である。その他、出力部13は、許容水分量Wsilicaに対する算出された水分量Wの割合(%)をディスプレイ13上に表示するものであっても良い。 As shown in FIG. 3, the output unit 13 of the present embodiment is configured to display a graph G1 showing the calculated water content W and the allowable water content W silica on the display 14. The vertical axis of the graph G1 is the water content (g), and the horizontal axis is the elapsed time. In addition, the output unit 13 may display the ratio (%) of the calculated water content W to the allowable water content W silica on the display 13.
 その他、出力部13は、図4に示すように、縦軸が乾燥剤7の残存保水可能量(g)であり、横軸が経過時間のグラフG2を表示しても良いし、グラフG3のように縦軸を許容水分量Wsilicaで正規化してパーセント表示したグラフを表示しても良い。なお、図4におけるXは、(W/Wsilica)×100(%)である。 In addition, as shown in FIG. 4, in the output unit 13, the vertical axis represents the residual water retention capacity (g) of the desiccant 7, and the horizontal axis may display the graph G2 of the elapsed time, or the graph G3. As described above, a graph in which the vertical axis is normalized by the allowable water content W silia and displayed as a percentage may be displayed. In addition, X in FIG. 4 is (W / W silica ) × 100 (%).
 また、ガス分析装置100は、水分量算出部11により算出された水分量Wと乾燥剤7に設定された許容水分量Wsilicaとを比較し、その比較結果に基づいて、乾燥剤7が使用不可であることを示すアラームを出力する報知部15を更に備えていても良い。この報知部15は、ガス分析装置100の制御装置COMによりその機能が発揮されるものである。ここで、算出された水分量Wが許容水分量Wsilicaに達しない限りは使用可能である。つまり、報知部15は、算出された水分量Wが許容水分量Wsilicaに達した場合に、乾燥剤7が使用不可であることを示すアラームを出力する。ここで、アラームを出力する態様としては、ディスプレイ14上にアラーム情報(例えば警告メッセージ)を表示する、又は、グラフGを表示するアプリケーションを起動するためのアイコンの表示態様を変化させる等が考えられる。 Further, the gas analyzer 100 compares the water content W calculated by the water content calculation unit 11 with the allowable water content W silica set in the desiccant 7, and the desiccant 7 is used based on the comparison result. A notification unit 15 that outputs an alarm indicating that it is not possible may be further provided. The function of the notification unit 15 is exhibited by the control device COM of the gas analyzer 100. Here, as long as the calculated water content W does not reach the allowable water content W silica , it can be used. That is, when the calculated water content W reaches the allowable water content W silica , the notification unit 15 outputs an alarm indicating that the desiccant 7 cannot be used. Here, as a mode for outputting an alarm, it is conceivable to display alarm information (for example, a warning message) on the display 14, or to change the display mode of an icon for starting an application for displaying the graph G. ..
 さらに、報知部15は、算出された水分量Wと許容水分量Wsilicaとの比較結果に基づいて、アラームを出力する前段階として事前通知(Pre Caution)を出力するように構成しても良い。例えば、算出された水分量Wが許容水分量WsilicaのX%(例えば80%)に到達した場合に、事前通知を出力することが考えられる。ここで、事前通知を出力する態様としては、ディスプレイ14上に事前通知情報(例えば事前通知メッセージ)を表示する、又は、グラフGを表示するアプリケーションを起動するためのアイコンの表示態様を変化させる等が考えられる。 Further, the notification unit 15 may be configured to output a advance notification (PreCaution) as a step before outputting an alarm based on the comparison result between the calculated water content W and the allowable water content W silica . .. For example, when the calculated water content W reaches X% (for example, 80%) of the allowable water content W silica , it is conceivable to output a prior notice. Here, as an aspect of outputting the advance notification, the advance notification information (for example, an advance notification message) is displayed on the display 14, or the display mode of the icon for starting the application for displaying the graph G is changed. Can be considered.
 その他、報知部15は、算出された水分量Wと許容水分量Wsilicaとの比較結果に基づいて、乾燥剤7の残りの使用可能時間を推定して、その使用可能時間をユーザに通知するように構成しても良い。ここで、使用可能時間を推定する方法としては、乾燥剤7が吸湿可能な残りの水分量(Wsilica-W)、センサ部により計測された温度及び湿度、気圧、その他の使用態様、これまでの使用実績(算出された水分量Wのグラフの傾き)等から求めることが考えられる。 In addition, the notification unit 15 estimates the remaining usable time of the desiccant 7 based on the comparison result between the calculated water content W and the allowable water content W silica , and notifies the user of the usable time. It may be configured as follows. Here, as a method for estimating the usable time, the amount of remaining water that the desiccant 7 can absorb (W silica -W), the temperature and humidity measured by the sensor unit, the atmospheric pressure, other usage modes, and so on. It is conceivable to obtain it from the usage record of (the slope of the graph of the calculated water content W) and the like.
<本実施形態の効果>
 このように構成した本実施形態のガス分析装置100によれば、センサ部10により計測された温度又は湿度の少なくとも一方を用いて、乾燥剤7が吸収した水分量Wを算出するので、乾燥剤7が吸湿可能な残りの水分量(Wsilica-W)を判断できるようになり、乾燥剤7の交換等のメンテナンス時期を容易に判断できる。また、従来のように試験前後において乾燥剤7の重量を計測する必要がないので、メンテナンス時期を判断するための作業を軽減することができる。
<Effect of this embodiment>
According to the gas analyzer 100 of the present embodiment configured as described above, since at least one of the temperature and the humidity measured by the sensor unit 10 is used to calculate the water content W absorbed by the desiccant 7, the desiccant 7 can determine the amount of remaining water that can absorb moisture (W silica -W), and can easily determine the maintenance time such as replacement of the desiccant 7. Further, since it is not necessary to measure the weight of the desiccant 7 before and after the test as in the conventional case, it is possible to reduce the work for determining the maintenance time.
<その他の実施形態>
 なお、本発明は前記実施形態に限られるものではない。
<Other embodiments>
The present invention is not limited to the above embodiment.
 例えば、前記実施形態では、センサ部が温度及び湿度、気圧を計測し、計測された温度及び湿度、気圧を用いて、乾燥剤が吸湿した水分量を算出する構成であったが、センサ部が温度又は湿度、気圧の一方を計測し、温度又は湿度、気圧の他方を設定値として、それらから乾燥剤が吸湿した水分量を算出する構成としても良い。 For example, in the above embodiment, the sensor unit measures the temperature, humidity, and atmospheric pressure, and the measured temperature, humidity, and atmospheric pressure are used to calculate the amount of water absorbed by the desiccant. One of the temperature, humidity, and atmospheric pressure may be measured, and the other of temperature, humidity, and atmospheric pressure may be set as a set value, and the amount of water absorbed by the desiccant may be calculated from them.
 また、前記実施形態では、乾燥剤7を通過した大気から生成されたオゾンを用いてCLD法により排ガス中の窒素酸化物(NO)の濃度を測定するものであったが、乾燥剤7を通過した大気を用いて測定対象ガス中(例えばCO、CO又はNOなどいずれかの成分)の成分を分析するその他のガス分析装置であっても良い。 Further, in the above embodiment, the concentration of nitrogen oxides (NO X ) in the exhaust gas is measured by the CLD method using ozone generated from the atmosphere that has passed through the desiccant 7, but the desiccant 7 is used. It may be another gas analyzer that analyzes the components in the gas to be measured (for example, any component such as CO, CO 2 or NO) using the passing air.
 また、乾燥剤7を通過した大気を希釈用ガスとして用いても良い。このときの測定対象ガス中の成分は、例えば粒子状物質(Particulate Matter:PM)や固体粒子数(Particle Number:PN)が挙げられる。固体粒子数の計測に用いる場合は、サンプリングした排ガスの一部を粒子捕集フィルタで濾過し、浮遊する固体粒子を取り除いたガスからさらに乾燥剤を通過させて、希釈ガスに用いてもよい。 Further, the air that has passed through the desiccant 7 may be used as a diluting gas. Examples of the components in the gas to be measured at this time include particulate matter (Particulate Matter: PM) and the number of solid particles (Particle Number: PN). When used for measuring the number of solid particles, a part of the sampled exhaust gas may be filtered with a particle collection filter, and a desiccant may be further passed through the gas from which the floating solid particles have been removed, and the gas may be used as a diluting gas.
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。 In addition, various modifications and combinations may be made as long as it does not contradict the gist of the present invention.
 本発明によれば、ガス分析装置に用いられる乾燥剤の交換タイミングの判断を容易にするとともに、その判断に伴う作業を軽減することができる。

 
According to the present invention, it is possible to facilitate the determination of the replacement timing of the desiccant used in the gas analyzer and reduce the work associated with the determination.

Claims (8)

  1.  サンプリングされた大気に含まれる水分を吸湿する乾燥剤を備え、当該乾燥剤を通過した大気を用いて、測定対象ガス中の成分を分析するガス分析装置であって、
     前記乾燥剤を通過する前の前記大気の温度又は湿度の少なくとも一方を計測するセンサ部と、
     前記センサ部により計測された温度又は湿度の少なくとも一方を用いて、前記乾燥剤が吸湿した水分量を算出する水分量算出部とを備える、ガス分析装置。
    A gas analyzer that is equipped with a desiccant that absorbs moisture contained in the sampled air and analyzes the components in the gas to be measured using the air that has passed through the desiccant.
    A sensor unit that measures at least one of the temperature and humidity of the atmosphere before passing through the desiccant, and
    A gas analyzer comprising a water content calculation unit that calculates the water content absorbed by the desiccant using at least one of the temperature and humidity measured by the sensor unit.
  2.  前記水分量算出部により算出された水分量と前記乾燥剤に設定された許容水分量とを比較可能に出力する出力部をさらに備える、請求項1に記載のガス分析装置。 The gas analyzer according to claim 1, further comprising an output unit that outputs the water content calculated by the water content calculation unit and the allowable water content set in the desiccant in a comparable manner.
  3.  前記水分量算出部により算出された水分量と前記乾燥剤に設定された許容水分量とを比較し、その比較結果に基づいて、前記乾燥剤が使用不可であることを示すアラームを出力する報知部を更に備える、請求項1又は2に記載のガス分析装置。 A notification that compares the water content calculated by the water content calculation unit with the allowable water content set for the desiccant, and outputs an alarm indicating that the desiccant cannot be used based on the comparison result. The gas analyzer according to claim 1 or 2, further comprising a unit.
  4.  前記報知部は、前記比較結果に基づいて、前記アラームを出力する前段階として事前通知を出力する、請求項3に記載のガス分析装置。 The gas analyzer according to claim 3, wherein the notification unit outputs a prior notification as a step before outputting the alarm based on the comparison result.
  5.  車両搭載型のものであり、車両から排出される排ガス中の成分を分析する、請求項1乃至4の何れか一項に記載のガス分析装置。 The gas analyzer according to any one of claims 1 to 4, which is a vehicle-mounted type and analyzes components in exhaust gas emitted from a vehicle.
  6.  前記水分量算出部は、以下の式(1)に基づいて、前記乾燥剤が吸収した水分量を算出する、請求項1乃至5の何れか一項に記載のガス分析装置。
    Figure JPOXMLDOC01-appb-M000001
     ここで、Wは、前記乾燥剤が吸収した水分量(g)であり、Lは、前記大気のサンプリング流量(cm/sec)であり、a(T)は、前記センサ部により計測された温度Txにおける飽和水蒸気量(g/cm)であり、RHは、前記センサ部により計測された相対湿度(%)である。
    The gas analyzer according to any one of claims 1 to 5, wherein the water content calculation unit calculates the water content absorbed by the desiccant based on the following formula (1).
    Figure JPOXMLDOC01-appb-M000001
    Here, W is the amount of water (g) absorbed by the desiccant, L is the sampling flow rate of the atmosphere (cm 3 / sec), and a (T x ) is measured by the sensor unit. It is the saturated water vapor amount (g / cm 3 ) at the temperature Tx, and RH x is the relative humidity (%) measured by the sensor unit.
  7.  サンプリングされた大気に含まれる水分を乾燥剤により吸湿し、当該乾燥剤を通過した大気を用いて、測定対象ガス中の成分を分析するガス分析方法であって、
     前記乾燥剤を通過する前の前記大気の温度又は湿度の少なくとも一方を計測する計測し、
     計測された温度又は湿度の少なくとも一方を用いて、前記乾燥剤が吸収した水分量を算出する、ガス分析方法。
    It is a gas analysis method in which moisture contained in the sampled air is absorbed by a desiccant, and the components in the gas to be measured are analyzed using the air that has passed through the desiccant.
    Measure and measure at least one of the temperature or humidity of the atmosphere before passing through the desiccant.
    A gas analysis method for calculating the amount of water absorbed by the desiccant using at least one of the measured temperature and humidity.
  8.  サンプリングされた大気に含まれる水分を乾燥剤により吸湿し、当該乾燥剤を通過した大気を用いて、測定対象ガス中の成分を分析するガス分析装置に用いられるプログラムであって、
     前記乾燥剤を通過する前の前記大気の温度又は湿度の少なくとも一方を取得する取得部と、
     前記取得部により取得された温度又は湿度の少なくとも一方を用いて、前記乾燥剤が吸収した水分量を算出する水分量算出部と、としての機能をコンピュータに備えさせることを特徴とする、ガス分析装置用プログラム。
    A program used in a gas analyzer that absorbs moisture contained in the sampled air with a desiccant and analyzes the components in the gas to be measured using the air that has passed through the desiccant.
    An acquisition unit that acquires at least one of the temperature and humidity of the atmosphere before passing through the desiccant, and
    Gas analysis, characterized in that the computer is provided with a function as a water content calculation unit for calculating the water content absorbed by the desiccant using at least one of the temperature and humidity acquired by the acquisition unit. Program for the device.
PCT/JP2021/039297 2020-11-24 2021-10-25 Gas analysis device, gas analysis method, and program for gas analysis device WO2022113603A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022565127A JPWO2022113603A1 (en) 2020-11-24 2021-10-25
DE112021006132.1T DE112021006132T5 (en) 2020-11-24 2021-10-25 GAS ANALYSIS DEVICE, GAS ANALYSIS METHOD AND PROGRAM FOR A GAS ANALYSIS DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020194367 2020-11-24
JP2020-194367 2020-11-24

Publications (1)

Publication Number Publication Date
WO2022113603A1 true WO2022113603A1 (en) 2022-06-02

Family

ID=81754304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039297 WO2022113603A1 (en) 2020-11-24 2021-10-25 Gas analysis device, gas analysis method, and program for gas analysis device

Country Status (3)

Country Link
JP (1) JPWO2022113603A1 (en)
DE (1) DE112021006132T5 (en)
WO (1) WO2022113603A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312685A (en) * 1976-07-21 1978-02-04 Nippon Steel Corp Sampling method for combustion exhaust gas
US6128193A (en) * 1998-05-21 2000-10-03 Nortel Networks Corporation Enhanced humidity control for small modules
JP2010075819A (en) * 2008-09-25 2010-04-08 Shin Nippon Air Technol Co Ltd Dehumidification apparatus and method for operation control of the same
JP2015059771A (en) * 2013-09-17 2015-03-30 株式会社トクヤマ Method of measuring volatile chlorinated hydrocarbon in environmental atmosphere
JP2018072032A (en) * 2016-10-25 2018-05-10 株式会社島津製作所 Chemiluminescent nitrogen oxide concentration meter
JP2020011173A (en) * 2018-07-13 2020-01-23 三菱電機株式会社 Dehumidifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312685A (en) * 1976-07-21 1978-02-04 Nippon Steel Corp Sampling method for combustion exhaust gas
US6128193A (en) * 1998-05-21 2000-10-03 Nortel Networks Corporation Enhanced humidity control for small modules
JP2010075819A (en) * 2008-09-25 2010-04-08 Shin Nippon Air Technol Co Ltd Dehumidification apparatus and method for operation control of the same
JP2015059771A (en) * 2013-09-17 2015-03-30 株式会社トクヤマ Method of measuring volatile chlorinated hydrocarbon in environmental atmosphere
JP2018072032A (en) * 2016-10-25 2018-05-10 株式会社島津製作所 Chemiluminescent nitrogen oxide concentration meter
JP2020011173A (en) * 2018-07-13 2020-01-23 三菱電機株式会社 Dehumidifier

Also Published As

Publication number Publication date
JPWO2022113603A1 (en) 2022-06-02
DE112021006132T5 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
EP1914545B1 (en) Vehicle-mountable exhaust gas analyzer
US10948207B2 (en) Air purifier and air purification method
JP6116360B2 (en) Exhaust gas flow meter and exhaust gas analysis system
JPWO2010007965A1 (en) Particulate matter measuring device
US10309889B2 (en) Exhaust gas analysis system, recording medium recorded with program for exhaust gas analysis system, and exhaust gas analyzing method
US9301709B2 (en) Method for optimizing the gas conversion rate in a respiratory gas analyzer
EP3454037B1 (en) Exhaust gas analysis device, exhaust gas analysis method and program for exhaust gas analysis device
US9194274B2 (en) Particulate measurement system
US20060218988A1 (en) Exhaust gas measuring device and method for measuring exhaust gas
WO2022113603A1 (en) Gas analysis device, gas analysis method, and program for gas analysis device
US20060222563A1 (en) Gas analyzer and method for controlling hydrogen flame ionization detector
JP4956178B2 (en) Particulate matter measuring method and apparatus
JP2006284508A (en) On-vehicle exhaust gas analyzer
US20230024901A1 (en) Method and aerosol measuring device for determining a source-dependent particle size distribution of an aerosol
JP4677462B2 (en) Gas analyzer and gas cell pressure or flow rate control method using the gas analyzer
CN108139348B (en) Refrigerant analyzer and method of use
JP2008196870A (en) Siloxane analysis system
JP2011007534A (en) Gas analyzing device, and method for controlling pressure or flow rate of gas cell using the same
JPH03140843A (en) Concentration measuring device for gaseous mixture
JP2012230011A (en) Gas analyzing device and method for controlling pressure or flow rate of gas cell using the gas analyzing device
JP6213191B2 (en) Gas analyzer
Gautam et al. Measurement of brake-specific NO x emissions using zirconia sensors for in-use, on-board heavy-duty vehicle applications
US20030136194A1 (en) Acoustic particulates density meter
US7117718B2 (en) Device for ascertaining a particle concentration in an exhaust gas flow
CN114660232A (en) Gas analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565127

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021006132

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897580

Country of ref document: EP

Kind code of ref document: A1