WO2022113550A1 - Drive circuit, motor system, and switched reluctance motor - Google Patents

Drive circuit, motor system, and switched reluctance motor Download PDF

Info

Publication number
WO2022113550A1
WO2022113550A1 PCT/JP2021/037863 JP2021037863W WO2022113550A1 WO 2022113550 A1 WO2022113550 A1 WO 2022113550A1 JP 2021037863 W JP2021037863 W JP 2021037863W WO 2022113550 A1 WO2022113550 A1 WO 2022113550A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
semiconductor switch
diode
drive circuit
Prior art date
Application number
PCT/JP2021/037863
Other languages
French (fr)
Japanese (ja)
Inventor
昇 新口
勝弘 平田
一晶 高原
寛典 鈴木
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2022565104A priority Critical patent/JPWO2022113550A1/ja
Publication of WO2022113550A1 publication Critical patent/WO2022113550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors

Definitions

  • the present invention relates to a drive circuit for driving a switched reluctance motor, a motor system including a drive circuit, and a switched reluctance motor used in the motor system.
  • Patent Document 1 discloses a switched reluctance motor.
  • An object of the present invention is to provide a drive circuit, a motor system, and a switched reluctance motor capable of reducing manufacturing costs while maintaining the drive performance of the switched reluctance motor.
  • the drive circuit includes three arms connected in parallel to the first input end and the second input end of the power supply.
  • Each of the three arms is composed of a series circuit of a first semiconductor switch, a second semiconductor switch, and a diode.
  • the first semiconductor switch is connected to the first input end and has a first regenerative diode.
  • the second semiconductor switch is connected to the second input end and has a second regenerative diode.
  • the diode is connected between the first semiconductor switch and the second semiconductor switch.
  • a plurality of coils included in the stator of the switched reluctance motor can be connected to each of the three arms.
  • the drive circuit rotates the rotor of the switched reluctance motor by passing a current through each of the plurality of coils to excite them.
  • the motor system includes the drive circuit, the switched reluctance motor driven by the drive circuit supplied with electric power from the power source, and the switched reluctance motor. To prepare for.
  • the switched reluctance motor includes a stator and a rotor.
  • the stator has a plurality of pairs of first salient poles to which a plurality of coils are attached.
  • the rotor has a plurality of second salient poles, and rotates by passing an electric current through each of the plurality of coils to excite them.
  • the plurality of coils are connected to each other so as to form a closed loop.
  • a drive circuit, a motor system, and a switched reluctance motor capable of reducing manufacturing costs while maintaining the drive performance of the switched reluctance motor are provided.
  • FIG. 1 is a circuit diagram showing a configuration of a motor system including a drive circuit according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the switched reluctance motor according to the embodiment.
  • FIG. 3 is a circuit diagram showing an operation example of the drive circuit according to the embodiment.
  • FIG. 4 is a circuit diagram showing an operation example of the drive circuit according to the embodiment.
  • FIG. 5 is a circuit diagram showing an operation example of the drive circuit according to the embodiment.
  • FIG. 6 is a circuit diagram showing a configuration of a drive circuit of a comparative example.
  • FIG. 7A is a waveform diagram showing the torque of the switched reluctance motor according to the embodiment in the discontinuous energization mode.
  • FIG. 7A is a waveform diagram showing the torque of the switched reluctance motor according to the embodiment in the discontinuous energization mode.
  • FIG. 7A is a waveform diagram showing the torque of the switched reluctance motor according to the
  • FIG. 7B is a waveform diagram showing the torque of the switched reluctance motor according to the embodiment in the continuous energization mode.
  • FIG. 8A is a waveform diagram showing a current flowing through any one coil of the switched reluctance motor according to the embodiment in the discontinuous energization mode.
  • FIG. 8B is a waveform diagram showing a current flowing through any one coil of the switched reluctance motor according to the embodiment in the continuous energization mode.
  • FIG. 9 is a circuit diagram showing a drive circuit according to an embodiment and another example of a switched reluctance motor according to the embodiment.
  • FIG. 10 is a circuit diagram showing a drive circuit of a comparative example and another example of the switched reluctance motor according to the embodiment.
  • FIG. 1 is a circuit diagram showing a configuration of a motor system 100 including a drive circuit 1 according to an embodiment.
  • the drive circuit 1 constitutes a motor system 100 together with the switched reluctance motor 3. That is, the motor system 100 includes a drive circuit 1 and a switched reluctance motor 3 driven by the drive circuit 1 supplied with electric power from the power source 6.
  • the switched reluctance motor 3 is driven by the drive circuit 1 supplied with electric power from the power source 6.
  • FIG. 2 is a schematic diagram showing the configuration of the switched reluctance motor 3 according to the embodiment.
  • the switched reluctance motor 3 includes a stator 4 and a rotor 5.
  • the switched reluctance motor 3 is a motor in which the stator 4 has 12 poles and the rotor 5 has 10 poles.
  • the stator 4 has a main body 41, a plurality of first salient poles (teeth) 42, and a plurality of coils L0. As described above, in the embodiment, since the stator 4 has 12 poles, the number of the first salient poles 42 is 12.
  • the main body 41 is annular in a plan view and is formed of a magnetic material such as a non-directional silicon steel plate.
  • the term "planar view” as used herein refers to viewing the switched reluctance motor 3 from the axial direction of the drive shaft 53 (described later).
  • the plurality of first salient poles 42 have a rectangular shape in a plan view, and are integrally formed with the main body 41 so as to project inward in the radial direction from the inner side surface of the main body 41.
  • the plurality of first salient poles 42 are arranged at equal intervals in the circumferential direction of the main body 41.
  • a coil L0 is attached to each first salient pole 42 by centrally winding a conducting wire.
  • a coil L0 through which the same phase current flows is attached to a pair of first salient poles 42 facing each other with the rotor 5 interposed therebetween in a plan view.
  • the coils L0 attached to each of the pair of first salient poles 42 may be connected in series or in parallel.
  • a first coil L1 (also referred to as “coil A”) is attached to each of the pair of first salient poles 42 to which “A” is attached, and “B”.
  • a second coil L2 (also referred to as “coil B”) is attached to each of the pair of first salient poles 42 marked with "”.
  • a third coil L3 (also referred to as “coil C”) is attached to each of the pair of first salient poles 42 marked with "C”
  • the pair of first salient poles marked with "D” is attached.
  • a fourth coil L4 (also referred to as “coil D”) is attached to each of the poles 42.
  • a fifth coil L5 (also referred to as “coil E") is attached to each of the pair of first salient poles 42 marked with "E", and the pair of first salient poles marked with “F” is attached.
  • a sixth coil L6 (also referred to as “coil F”) is attached to each of the poles 42. That is, the number of the plurality of coils L0 is six.
  • the stator 4 has a plurality of pairs of first salient poles 42, and a plurality of coils L0 are attached to each.
  • the number of the first salient poles 42 of the plurality of pairs is an integral multiple of 6.
  • the plurality of coils L0 are connected to each other at the neutral point N1. That is, the first coil L1 (coil A), the second coil L2 (coil B), the third coil L3 (coil C), the fourth coil L4 (coil D), the fifth coil L5 (coil E), and the sixth coil.
  • Each end of coil L6 (coil F) is connected to the same neutral point N1.
  • the rotor 5 is located inside the stator 4 and is rotatable relative to the stator 4.
  • the rotor 5 has a main body 51, a plurality of second salient poles (teeth) 52, and a drive shaft 53.
  • the number of the second salient poles 52 is 10. That is, the number of the plurality of second salient poles 52 is an integral multiple of 5.
  • the main body 51 has a circular shape in a plan view, and is formed of a magnetic material such as a non-directional silicon steel plate.
  • the plurality of second salient poles 52 have a rectangular shape in a plan view, and are integrally formed with the main body 51 so as to project outward in the radial direction from the outer surface of the main body 51.
  • the plurality of second salient poles 52 are arranged at equal intervals in the circumferential direction of the main body 51.
  • the drive shaft 53 passes through the center of the main body 51 in a plan view, has a long rod shape along the thickness direction of the main body 51, and is integrally formed with the main body 51.
  • the drive shaft 53 rotates with the rotation of the rotor 5.
  • the operating principle of the switched reluctance motor 3 will be briefly explained.
  • the magnetic flux generated by one or more coils L0 exerts a force on the rotor 5 to minimize the magnetic resistance. It works.
  • the second salient pole 52 in the vicinity of the first salient pole 42 provided with one or more coils L0 moves to the position facing the first salient pole 42, so that the first salient pole 42 is moved. It is sucked by 42.
  • a plurality of coils L0 are sequentially excited by the drive circuit 1, so that the second salient pole 52 is repeatedly attracted to the first salient pole 42 and moves, and the rotor 5 rotates with respect to the stator 4. do.
  • the drive circuit 1 includes three arms 10 and a control circuit 2.
  • the drive circuit 1 may be provided with at least three arms 10 and may not be provided with the control circuit 2. That is, the control circuit 2 may be an additional component to the drive circuit 1.
  • the three arms 10 are connected in parallel to the first input terminal 61 and the second input end 62 of the power supply 6.
  • the power supply 6 is a DC power supply, and a DC voltage is applied between the first input terminal 61 and the second input terminal 62.
  • the first input terminal 61 has a positive potential, and the second input end 62 is connected to the ground.
  • Each of the three arms 10 is composed of a series circuit of the first semiconductor switch S1, the second semiconductor switch S2, and the diode D3.
  • the first semiconductor switch S1 is connected to the first input end 61 and has a first regenerative diode D1.
  • the second semiconductor switch S2 is connected to the second input terminal 62 and has a second regenerative diode D2.
  • the diode D3 is connected between the first semiconductor switch S1 and the second semiconductor switch S2.
  • the diode D3 has an anode connected to the second semiconductor switch S2 and a cathode connected to the first semiconductor switch S1.
  • the first semiconductor switch S1 and the second semiconductor switch S2 are, for example, an n-channel enhancement type MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an insulated gate type bipolar transistor (Insulated Gate Bipolar Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • insulated gate type bipolar transistor Insulated Gate Bipolar Transistor
  • the first semiconductor switch S1 and the second semiconductor switch S2 are not limited to MOSFETs or isolated gate type bipolar transistors, and may be, for example, junction FETs (Field-Effect Transistors) or the like.
  • the first regenerative diode D1 is an external diode connected between the drain and the source of the first semiconductor switch S1
  • the second regenerative diode D2 is connected between the drain and the source of the second semiconductor switch S2. It may be an external diode.
  • a plurality of coils L0 included in the stator 4 of the switched reluctance motor 3 can be connected to each of the three arms 10. Then, the drive circuit 1 rotates the rotor 5 of the switched reluctance motor 3 by passing a current through each of the plurality of coils L0 to excite them.
  • the arm 10 located on the leftmost side of the three arms 10 is referred to as the "first arm 11”
  • the arm 10 located in the middle is referred to as the "second arm 12”
  • the arm 10 located on the rightmost side is referred to as the rightmost arm 10.
  • the first semiconductor switch S1 of the first arm 11 is "switch A”
  • the second semiconductor switch S2 of the first arm 11 is "switch D”
  • the first semiconductor switch of the second arm 12 is the first semiconductor switch.
  • the second semiconductor switch S2 is also referred to as "switch E”
  • the first semiconductor switch S1 of the third arm 13 is also referred to as “switch C”
  • the second semiconductor switch S2 is also referred to as "switch F”.
  • the diode D3 of the first arm 11 is also referred to as “diode ⁇ ”
  • the diode D3 of the second arm 12 is referred to as “diode ⁇ ”
  • the diode D3 of the third arm 13 is also referred to as “diode ⁇ ”.
  • the drain of the first semiconductor switch S1 (switch A) is connected to the first input terminal 61 of the power supply 6, and the source is connected to the cathode of the diode D3 (diode ⁇ ).
  • the anode is connected to the source of the first semiconductor switch S1 (switch A)
  • the cathode is connected to the drain of the first semiconductor switch S1 (switch A).
  • the drain of the second semiconductor switch S2 (switch D) is connected to the anode of the diode D3 (diode ⁇ ), and the source is connected to the second input terminal 62 of the power supply 6.
  • the anode is connected to the source of the second semiconductor switch S2 (switch D)
  • the cathode is connected to the drain of the second semiconductor switch S2 (switch D).
  • one end of the first coil L1 (coil A) is connected to the connection point between the first semiconductor switch S1 (switch A) and the diode D3 (diode ⁇ ). The other end of the first coil L1 (coil A) is connected to the neutral point N1.
  • one end of the fourth coil L4 (coil D) is connected to the connection point between the second semiconductor switch S2 (switch D) and the diode D3 (diode ⁇ ). The other end of the fourth coil L4 (coil D) is connected to the neutral point N1.
  • the drain of the first semiconductor switch S1 (switch E) is connected to the first input terminal 61 of the power supply 6, and the source is connected to the cathode of the diode D3 (diode ⁇ ).
  • the anode is connected to the source of the first semiconductor switch S1 (switch E)
  • the cathode is connected to the drain of the first semiconductor switch S1 (switch E).
  • the drain of the second semiconductor switch S2 (switch B) is connected to the anode of the diode D3 (diode ⁇ ), and the source is connected to the second input terminal 62 of the power supply 6.
  • the anode is connected to the source of the second semiconductor switch S2 (switch B), and the cathode is connected to the drain of the second semiconductor switch S2 (switch B).
  • one end of the fifth coil L5 (coil E) is connected to the connection point between the first semiconductor switch S1 (switch E) and the diode D3 (diode ⁇ ).
  • the other end of the fifth coil L5 (coil E) is connected to the neutral point N1.
  • one end of the second coil L2 (coil B) is connected to the connection point between the second semiconductor switch S2 (switch B) and the diode D3 (diode ⁇ ).
  • the other end of the second coil L2 (coil B) is connected to the neutral point N1.
  • the drain of the first semiconductor switch S1 (switch C) is connected to the first input terminal 61 of the power supply 6, and the source is connected to the cathode of the diode D3 (diode ⁇ ).
  • the anode is connected to the source of the first semiconductor switch S1 (switch C)
  • the cathode is connected to the drain of the first semiconductor switch S1 (switch C).
  • the drain of the second semiconductor switch S2 (switch F) is connected to the anode of the diode D3 (diode ⁇ ), and the source is connected to the second input terminal 62 of the power supply 6.
  • the anode is connected to the source of the second semiconductor switch S2 (switch F)
  • the cathode is connected to the drain of the second semiconductor switch S2 (switch F).
  • one end of the third coil L3 (coil C) is connected to the connection point between the first semiconductor switch S1 (switch C) and the diode D3 (diode ⁇ ). The other end of the third coil L3 (coil C) is connected to the neutral point N1.
  • one end of the sixth coil L6 (coil F) is connected to the connection point between the second semiconductor switch S2 (switch F) and the diode D3 (diode ⁇ ). The other end of the sixth coil L6 (coil F) is connected to the neutral point N1.
  • the control circuit 2 is composed of a circuit including a processor and a memory, such as a microcontroller.
  • the control circuit 2 controls the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10. Specifically, the control circuit 2 gives a pulsed drive signal to the gates of the first semiconductor switch S1 and the second semiconductor switch S2 of each arm 10, so that the first semiconductor switch S1 and the second semiconductor switch S1 and the second of each arm 10 are given.
  • the semiconductor switch S2 is turned on / off individually.
  • the control circuit 2 controls the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10 so as to sequentially excite the six coils L0 at intervals of 60 degrees of electrical angle. ..
  • the control circuit 2 includes the excitation of the coils A, B, and C, the excitation of the coils B, C, and D, the excitation of the coils C, D, and E, the excitation of the coils D, E, and F, and the coils E and F.
  • A, and the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10 are controlled so as to sequentially repeat the excitation of the coils F, A, and B.
  • the drive circuit 1 has a recirculation path using a diode D3 in order to prevent a surge voltage, which is a relatively high voltage, from being applied to the first semiconductor switch S1 and the second semiconductor switch S2. That is, the drive circuit 1 consumes the energy stored in the coil L0, which is the source of the surge voltage, by passing a current through the return path.
  • the energy stored in the coil A is stored by the current flowing in the return path via the diode ⁇ . Is consumed. Further, when transitioning from the excitation of the coils B, C, D to the excitation of the coils C, D, E, the energy stored in the coil B is consumed by the current flowing in the recirculation path via the diode ⁇ . To.
  • FIGS. 3 to 5 are circuit diagrams showing an operation example of the drive circuit 1 according to the embodiment.
  • the description of the first semiconductor switch S1 and the second semiconductor switch S2 is changed in order to clearly indicate the on / off of the first semiconductor switch S1 and the second semiconductor switch S2.
  • FIG. 3 shows a state in which a drive signal is given to the gates of the switches A to F so that the control circuit 2 switches the switches A, B, and C on and the switches D, E, and F off.
  • current flows in the order of the first input end 61 of the power supply 6, the switch A, the coil A, the neutral point N1, the coil B, the switch B, and the second input end 62 of the power supply 6 (solid arrow). See A1).
  • current flows in the order of the first input end 61 of the power supply 6, the switch C, the coil C, the neutral point N1, the coil B, the switch B, and the second input end 62 of the power supply 6 (see the solid arrow A2). Therefore, when the switches A, B, and C are on, the rotor 5 is excited so that the coils A, B, and C are excited and the coils A, B, and C are attracted to the first salient pole 42 provided. Rotate.
  • FIG. 4 shows a state in which a drive signal is given to the gate of the switch A so that the control circuit 2 switches the switch A from on to off in the state shown in FIG. That is, in the state shown in FIG. 4, the switches B and C are on, and the switches A, D, E and F are off.
  • a reflux path is formed in this order through the coil A, the neutral point N1, the coil B, the switch B, the second regenerative diode D2 of the switch D, the diode ⁇ , and the coil A (see the solid arrow A3).
  • a reflux path is formed in this order through the coil A, the neutral point N1, the coil D, the diode ⁇ , and the coil A (see the solid arrow A4). Therefore, in the state shown in FIG. 4, the energy stored in the coil A, which is the source of the surge voltage, is consumed by the current flowing through these return paths.
  • FIG. 5 shows a state in which a drive signal is given to the gate of the switch D so that the control circuit 2 switches the switch D from off to on in the state shown in FIG. That is, in the state shown in FIG. 5, switches B, C, and D are on, and switches A, E, and F are off.
  • the control circuit 2 may transition to the next state after all the energy stored in the coil L0, which is the source of the surge voltage, is consumed, that is, after the current flowing in the return path becomes zero. However, the transition to the next state may be performed without waiting for the current flowing in the return path to become zero. For example, when the source of the surge voltage is the coil A, the control circuit 2 may transition from the state shown in FIG. 4 to the state shown in FIG. 5 after the current flowing through the coil A becomes zero, or the coil. The state shown in FIG. 4 may be changed to the state shown in FIG. 5 before the current flowing through A becomes zero.
  • the control circuit 2 includes the excitation of the coils C, D, E, the excitation of the coils D, E, F, the excitation of the coils E, F, A, the excitation of the coils F, A, B, and the coils A, B, C.
  • the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10 are controlled so as to sequentially repeat.
  • the rotor 5 of the switched reluctance motor 3 rotates, that is, the switched reluctance motor 3 is driven.
  • FIG. 6 is a circuit diagram showing the configuration of the drive circuit 1A of the comparative example.
  • the drive circuit 1A of the comparative example is different from the drive circuit 1 according to the embodiment in that it includes six arms 10A.
  • each arm 10A includes one semiconductor switch S0 and one diode D0. That is, the drive circuit 1A of the comparative example includes six semiconductor switches S0 and six diodes D0, and further includes three more diodes D0 as compared with the drive circuit 1 according to the embodiment. ing.
  • one end of the first coil L1 (coil A) is provided at the connection point between the semiconductor switch S0 (switch A) and the diode D0. It is connected. The other end of the first coil L1 (coil A) is connected to the neutral point N1.
  • one end of the second coil L2 (coil B) is connected to the connection point between the semiconductor switch S0 (switch B) and the diode D0. The other end of the second coil L2 (coil B) is connected to the neutral point N1.
  • one end of the third coil L3 (coil C) is connected to the connection point between the semiconductor switch S0 (switch C) and the diode D0.
  • the other end of the third coil L3 (coil C) is connected to the neutral point N1.
  • one end of the fourth coil L4 (coil D) is connected to the connection point between the semiconductor switch S0 (switch D) and the diode D0.
  • the other end of the fourth coil L4 (coil D) is connected to the neutral point N1.
  • one end of the fifth coil L5 (coil E) is connected to the connection point between the semiconductor switch S0 (switch E) and the diode D0.
  • the other end of the fifth coil L5 (coil E) is connected to the neutral point N1.
  • one end of the sixth coil L6 (coil F) is connected to the connection point between the semiconductor switch S0 (switch F) and the diode D0.
  • the other end of the sixth coil L6 (coil F) is connected to the neutral point N1.
  • the control circuit 2 excites the coils A, B, C, excites the coils B, C, D, and the coils C, D, E.
  • the semiconductor switch S0 of each arm 10A is controlled so as to repeat the excitation of the coils D, E, F, the excitation of the coils E, F, A, and the excitation of the coils F, A, B.
  • the rotor 5 of the switched reluctance motor 3 rotates, that is, the switched reluctance motor 3 is driven.
  • a surge voltage is generated by passing a current through the return path via the diode D0 in order to prevent a surge voltage which is a relatively high voltage from being applied to the semiconductor switch S0.
  • the energy stored in the coil L0, which is the source, is consumed.
  • FIG. 7A is a waveform diagram showing the torque of the switched reluctance motor 3 according to the embodiment in the discontinuous energization mode.
  • FIG. 7B is a waveform diagram showing the torque of the switched reluctance motor 3 according to the embodiment in the continuous energization mode.
  • the discontinuous energization mode refers to an operation mode in which the frequency of the current flowing through the coil L0 is relatively low and the current flows intermittently through the coil L0.
  • the continuous energization mode refers to an operation mode in which the frequency of the current flowing through the coil L0 is relatively high and the current continuously flows through the coil L0.
  • the vertical axis represents torque (unit is "Nm")
  • the horizontal axis represents time (unit is "second").
  • the solid line shows the torque waveform when the drive circuit 1 according to the embodiment is used
  • the broken line shows the torque waveform when the drive circuit 1A of the comparative example is used. ..
  • FIG. 7A only the solid line is shown at the place where the solid line and the broken line overlap.
  • FIG. 7B since the solid line and the broken line overlap with each other, only the solid line is shown.
  • the torque waveforms are almost the same regardless of which drive circuits 1 and 1A are used. That is, with respect to the torque of the switched reluctance motor 3, the performance of the drive circuit 1 according to the embodiment is equal to or higher than the performance of the drive circuit 1A of the comparative example.
  • FIGS. 8A and 8B are waveform diagram showing a current flowing through the coil L0 of any one of the switched reluctance motors 3 according to the embodiment in the discontinuous energization mode.
  • FIG. 8B is a waveform diagram showing a current flowing through the coil L0 of any one of the switched reluctance motors 3 according to the embodiment in the continuous energization mode.
  • FIGS. 8A and 8B the waveforms of the currents flowing through the first coil L1 (coil A) are shown, but the waveforms of the currents flowing through the other coils L0 are the same except that the phases are different.
  • the vertical axis represents current (unit is “A”)
  • the horizontal axis represents time (unit is “second”).
  • the solid line shows the current waveform when the drive circuit 1 according to the embodiment is used
  • the broken line shows the current waveform when the drive circuit 1A of the comparative example is used. ing.
  • FIG. 8A only the solid line is shown at the place where the solid line and the broken line overlap.
  • FIG. 8B since the solid line and the broken line overlap with each other, only the solid line is shown.
  • the current waveforms are almost the same regardless of which drive circuits 1 and 1A are used. That is, with respect to the current flowing through the coil L0 of the switched reluctance motor 3, the performance of the drive circuit 1 according to the embodiment is equal to or higher than the performance of the drive circuit 1A of the comparative example.
  • the drive circuit 1 according to the embodiment is equivalent to or equal to the drive circuit 1A of the comparative example even though the number of diodes D3 in each arm 10 is smaller than that of the drive circuit 1A of the comparative example.
  • the above performance can be demonstrated. Therefore, the drive circuit 1 according to the embodiment has an advantage that the manufacturing cost can be reduced while maintaining the drive performance of the switched reluctance motor 3.
  • the plurality of coils L0 in the switched reluctance motor 3 are connected to each other at the neutral point N1, but the present invention is not limited to this.
  • a plurality of coils L0 may be connected to each other so as to connect a closed loop.
  • FIG. 9 is a circuit diagram showing the drive circuit 1 according to the embodiment and another example of the switched reluctance motor 3 according to the embodiment.
  • the plurality of coils L0 are connected to each other in a hexagonal shape (in other words, the plurality of coils L0 are composed of hex connections).
  • the winding start of the first coil L1 (coil A) and the winding end of the second coil L2 (coil B) are connected, and the winding start of the second coil L2 (coil B) and the winding end of the third coil L3 are connected.
  • the end of winding of (coil C) is connected.
  • the switched reluctance motor 3 having a configuration in which a plurality of coils L0 are connected to each other so as to form a closed loop can be used together with the drive circuit 1A of the comparative example, for example, as shown in FIG. ..
  • FIG. 10 is a circuit diagram showing a drive circuit 1A of a comparative example and another example of the switched reluctance motor 3 according to the embodiment. That is, the switched reluctance motor 3 can be used together with various drive circuits if it is configured as follows. That is, the switched reluctance motor 3 includes a stator 4 and a rotor 5.
  • the stator 4 has a plurality of pairs of first salient poles 42 to which a plurality of coils L0 are attached.
  • the rotor 5 has a plurality of second salient poles 52, and rotates by passing a current through each of the plurality of coils L0 to excite them.
  • the plurality of coils L0 are connected to each other so as to form a closed loop.
  • the number of the first salient poles 42 of a plurality of pairs is 6 pairs (12), and the number of the plurality of second salient poles 52 is 10. Not limited to this.
  • the number of the first salient poles 42 of a plurality of pairs may be 3 pairs (6), and the number of the plurality of second salient poles 52 may be 5. That is, in the switched reluctance motor 3, if the number of the first salient poles 42 of a plurality of pairs is an integral multiple of 6, and the number of the plurality of second salient poles 52 is an integral multiple of 5, the drive circuit 1 Can be suitably used.
  • the drive circuit 1 according to the embodiment can be suitably used for the switched reluctance motor 3 according to the embodiment, but the present invention is not limited to this. That is, the type of switched reluctance motor 3 that can be driven by the drive circuit 1 according to the embodiment is not particularly limited, and can be applied to various switched reluctance motors 3.
  • the drive circuit 1 includes three arms 10 connected in parallel to the first input terminal 61 and the second input end 62 of the power supply 6.
  • Each of the three arms 10 is composed of a series circuit of the first semiconductor switch S1, the second semiconductor switch S2, and the diode D3.
  • the first semiconductor switch S1 is connected to the first input end 61 and has a first regenerative diode.
  • the second semiconductor switch S2 is connected to the second input end 62 and has a second regenerative diode.
  • the diode D3 is connected between the first semiconductor switch S1 and the second semiconductor switch S2.
  • a plurality of coils L0 included in the stator 4 of the switched reluctance motor 3 can be connected to each of the three arms 10.
  • the drive circuit 1 rotates the rotor 5 of the switched reluctance motor 3 by passing a current through each of the plurality of coils L0 to excite them.
  • the number of diodes D3 required to provide the return path can be reduced, so that the manufacturing cost can be reduced while maintaining the drive performance of the switched reluctance motor 3. It has the advantage of being able to do it.
  • the number of the plurality of coils L0 is six.
  • the first coil L1 of the plurality of coils L0 is connected between the first semiconductor switch S1 and the diode D3, and the second semiconductor switch S2
  • the fourth coil L4 of the plurality of coils L0 is connected to the diode D3.
  • the fifth coil L5 of the plurality of coils L0 is connected between the first semiconductor switch S1 and the diode D3, and the second semiconductor switch S2
  • the second coil L2 of the plurality of coils L0 is connected to the diode D3.
  • the third coil L3 of the plurality of coils L0 is connected between the first semiconductor switch S1 and the diode D3, and the second semiconductor switch S2
  • the sixth coil L6 of the plurality of coils L0 is connected to the diode D3.
  • a plurality of coils L0 are connected to each other at a neutral point N1.
  • a plurality of coils L0 are connected to each other so as to form a closed loop.
  • each coil L0 does not require a space as compared with the case where one end of each of the plurality of coils L0 is connected to the neutral point N1.
  • the drive circuit 1 further includes a control circuit 2 for controlling the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10.
  • the control circuit 2 controls the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10 so as to sequentially excite the six coils L0 at intervals of an electric angle of 60 degrees.
  • the switched reluctance motor 3 has a plurality of pairs of first salient poles 42, which the stator 4 has and to which a plurality of coils L0 are attached, and a plurality of second poles, which the rotor 5 has. It is provided with a salient pole 52.
  • the number of the first salient poles 42 in a plurality of pairs is an integral multiple of 6, and the number of the plurality of second salient poles 52 is an integral multiple of 5.
  • the motor system 100 includes the above-mentioned drive circuit 1 and a switched reluctance motor 3 driven by the drive circuit 1 supplied with electric power from the power source 6.
  • the number of diodes D3 required to provide the return path can be reduced, so that the manufacturing cost can be reduced while maintaining the drive performance of the switched reluctance motor 3. It has the advantage of being able to do it.
  • the switched reluctance motor 3 is driven by the drive circuit 1 described above, which is supplied with electric power from the power source 6.
  • the switched reluctance motor 3 includes a stator 4 and a rotor 5.
  • the stator 4 has a plurality of pairs of first salient poles 42 to which a plurality of coils L0 are attached.
  • the rotor 5 has a plurality of second salient poles 52, and rotates by passing a current through each of the plurality of coils L0 to excite them.
  • the plurality of coils L0 are connected to each other so as to form a closed loop.
  • the present invention can be used as a circuit for driving a switched reluctance motor mounted on a device such as a traction motor of an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Synchronous Machinery (AREA)

Abstract

A drive circuit (1) comprises three arms (10) connected in parallel to a first input terminal (61) and a second input terminal (62) of a power supply (6). Each of the three arms (10) is formed of a series circuit of a first semiconductor switch (S1), a second semiconductor switch (S2), and a diode (D3). The first semiconductor switch (S1) is connected to the first input terminal (61) and has a first regenerative diode (D1). The second semiconductor switch (S2) is connected to the second input terminal (62) and has a second regenerative diode (D2). The diode (D3) is connected between the first semiconductor switch (S1) and the second semiconductor switch (S2).

Description

駆動回路、モータシステム、及びスイッチトリラクタンスモータDrive circuits, motor systems, and switched reluctance motors
 本発明は、スイッチトリラクタンスモータを駆動する駆動回路、駆動回路を備えるモータシステム、及びモータシステムに用いられるスイッチトリラクタンスモータに関する。 The present invention relates to a drive circuit for driving a switched reluctance motor, a motor system including a drive circuit, and a switched reluctance motor used in the motor system.
 特許文献1には、スイッチトリラクタンスモータが開示されている。 Patent Document 1 discloses a switched reluctance motor.
特開2017-147778号公報Japanese Unexamined Patent Publication No. 2017-147778
 本発明は、スイッチトリラクタンスモータの駆動性能を維持しつつ、製造コストの低減を図ることができる駆動回路、モータシステム、及びスイッチトリラクタンスモータを提供することを目的とする。 An object of the present invention is to provide a drive circuit, a motor system, and a switched reluctance motor capable of reducing manufacturing costs while maintaining the drive performance of the switched reluctance motor.
 上記目的を達成するために、本発明の一形態に係る駆動回路は、電源の第1入力端及び第2入力端に対して並列に接続される3つのアームを備える。前記3つのアームの各々は、第1半導体スイッチと、第2半導体スイッチと、ダイオードと、の直列回路で構成される。前記第1半導体スイッチは、前記第1入力端に接続されて第1回生ダイオードを有する。前記第2半導体スイッチは、前記第2入力端に接続されて第2回生ダイオードを有する。前記ダイオードは、前記第1半導体スイッチと前記第2半導体スイッチとの間に接続される。前記3つのアームの各々には、スイッチトリラクタンスモータの固定子が有する複数のコイルが接続可能である。前記駆動回路は、前記複数のコイルの各々に電流を流して励磁させることにより、前記スイッチトリラクタンスモータの回転子を回転させる。 In order to achieve the above object, the drive circuit according to one embodiment of the present invention includes three arms connected in parallel to the first input end and the second input end of the power supply. Each of the three arms is composed of a series circuit of a first semiconductor switch, a second semiconductor switch, and a diode. The first semiconductor switch is connected to the first input end and has a first regenerative diode. The second semiconductor switch is connected to the second input end and has a second regenerative diode. The diode is connected between the first semiconductor switch and the second semiconductor switch. A plurality of coils included in the stator of the switched reluctance motor can be connected to each of the three arms. The drive circuit rotates the rotor of the switched reluctance motor by passing a current through each of the plurality of coils to excite them.
 また、上記目的を達成するために、本発明の一形態に係るモータシステムは、前記駆動回路と、前記電源からの電力の供給を受けた前記駆動回路により駆動される前記スイッチトリラクタンスモータと、を備える。 Further, in order to achieve the above object, the motor system according to one embodiment of the present invention includes the drive circuit, the switched reluctance motor driven by the drive circuit supplied with electric power from the power source, and the switched reluctance motor. To prepare for.
 また、上記目的を達成するために、本発明の一形態に係るスイッチトリラクタンスモータは、固定子と、回転子と、を備える。前記固定子は、複数のコイルがそれぞれ取り付けられる複数対の第1突極を有する。前記回転子は、複数の第2突極を有し、前記複数のコイルの各々に電流を流して励磁させることで回転する。前記複数のコイルは、閉ループを構成するように互いに接続されている。 Further, in order to achieve the above object, the switched reluctance motor according to one embodiment of the present invention includes a stator and a rotor. The stator has a plurality of pairs of first salient poles to which a plurality of coils are attached. The rotor has a plurality of second salient poles, and rotates by passing an electric current through each of the plurality of coils to excite them. The plurality of coils are connected to each other so as to form a closed loop.
 本発明により、スイッチトリラクタンスモータの駆動性能を維持しつつ、製造コストの低減を図ることができる駆動回路、モータシステム、及びスイッチトリラクタンスモータが提供される。 INDUSTRIAL APPLICABILITY According to the present invention, a drive circuit, a motor system, and a switched reluctance motor capable of reducing manufacturing costs while maintaining the drive performance of the switched reluctance motor are provided.
図1は、実施の形態に係る駆動回路を含むモータシステムの構成を示す回路図である。FIG. 1 is a circuit diagram showing a configuration of a motor system including a drive circuit according to an embodiment. 図2は、実施の形態に係るスイッチトリラクタンスモータの構成を示す概要図である。FIG. 2 is a schematic diagram showing the configuration of the switched reluctance motor according to the embodiment. 図3は、実施の形態に係る駆動回路の動作例を示す回路図である。FIG. 3 is a circuit diagram showing an operation example of the drive circuit according to the embodiment. 図4は、実施の形態に係る駆動回路の動作例を示す回路図である。FIG. 4 is a circuit diagram showing an operation example of the drive circuit according to the embodiment. 図5は、実施の形態に係る駆動回路の動作例を示す回路図である。FIG. 5 is a circuit diagram showing an operation example of the drive circuit according to the embodiment. 図6は、比較例の駆動回路の構成を示す回路図である。FIG. 6 is a circuit diagram showing a configuration of a drive circuit of a comparative example. 図7Aは、非連続通電モードにおける実施の形態に係るスイッチトリラクタンスモータのトルクを示す波形図である。FIG. 7A is a waveform diagram showing the torque of the switched reluctance motor according to the embodiment in the discontinuous energization mode. 図7Bは、連続通電モードにおける実施の形態に係るスイッチトリラクタンスモータのトルクを示す波形図である。FIG. 7B is a waveform diagram showing the torque of the switched reluctance motor according to the embodiment in the continuous energization mode. 図8Aは、非連続通電モードにおける実施の形態に係るスイッチトリラクタンスモータのいずれか1つのコイルに流れる電流を示す波形図である。FIG. 8A is a waveform diagram showing a current flowing through any one coil of the switched reluctance motor according to the embodiment in the discontinuous energization mode. 図8Bは、連続通電モードにおける実施の形態に係るスイッチトリラクタンスモータのいずれか1つのコイルに流れる電流を示す波形図である。FIG. 8B is a waveform diagram showing a current flowing through any one coil of the switched reluctance motor according to the embodiment in the continuous energization mode. 図9は、実施の形態に係る駆動回路と、実施の形態に係るスイッチトリラクタンスモータの他の一例と、を示す回路図である。FIG. 9 is a circuit diagram showing a drive circuit according to an embodiment and another example of a switched reluctance motor according to the embodiment. 図10は、比較例の駆動回路と、実施の形態に係るスイッチトリラクタンスモータの他の一例と、を示す回路図である。FIG. 10 is a circuit diagram showing a drive circuit of a comparative example and another example of the switched reluctance motor according to the embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示す。以下の実施の形態で示される数値、形状、手法、構成要素、構成要素の接続形態、ステップ、ステップの順序等は、一例であり、本発明を限定する主旨ではない。また、各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, all of the embodiments described below show a specific example of the present invention. The numerical values, shapes, methods, components, connection forms of components, steps, order of steps, etc. shown in the following embodiments are examples, and are not intended to limit the present invention. Further, in each figure, substantially the same configuration may be designated by the same reference numerals, and duplicate description may be omitted or simplified.
 [1.構成]
 実施の形態に係る駆動回路1は、図1に示すように、スイッチトリラクタンスモータ3を駆動するための回路である。図1は、実施の形態に係る駆動回路1を含むモータシステム100の構成を示す回路図である。駆動回路1は、スイッチトリラクタンスモータ3と共に、モータシステム100を構成している。つまり、モータシステム100は、駆動回路1と、電源6からの電力の供給を受けた駆動回路1により駆動されるスイッチトリラクタンスモータ3と、を備える。言い換えれば、スイッチトリラクタンスモータ3は、電源6からの電力の供給を受けた駆動回路1により駆動される。
[1. Constitution]
As shown in FIG. 1, the drive circuit 1 according to the embodiment is a circuit for driving the switched reluctance motor 3. FIG. 1 is a circuit diagram showing a configuration of a motor system 100 including a drive circuit 1 according to an embodiment. The drive circuit 1 constitutes a motor system 100 together with the switched reluctance motor 3. That is, the motor system 100 includes a drive circuit 1 and a switched reluctance motor 3 driven by the drive circuit 1 supplied with electric power from the power source 6. In other words, the switched reluctance motor 3 is driven by the drive circuit 1 supplied with electric power from the power source 6.
 [1-1.スイッチトリラクタンスモータ]
 まず、実施の形態に係るスイッチトリラクタンスモータ3の構成について、図2を用いて説明する。図2は、実施の形態に係るスイッチトリラクタンスモータ3の構成を示す概要図である。スイッチトリラクタンスモータ3は、固定子4と、回転子5と、を備えている。実施の形態では、スイッチトリラクタンスモータ3は、固定子4が12極、回転子5が10極のモータである。
[1-1. Switched reluctance motor]
First, the configuration of the switched reluctance motor 3 according to the embodiment will be described with reference to FIG. FIG. 2 is a schematic diagram showing the configuration of the switched reluctance motor 3 according to the embodiment. The switched reluctance motor 3 includes a stator 4 and a rotor 5. In the embodiment, the switched reluctance motor 3 is a motor in which the stator 4 has 12 poles and the rotor 5 has 10 poles.
 固定子4は、本体41と、複数の第1突極(ティース)42と、複数のコイルL0と、を有している。上述のように、実施の形態では、固定子4が12極であるため、第1突極42の数は12個である。 The stator 4 has a main body 41, a plurality of first salient poles (teeth) 42, and a plurality of coils L0. As described above, in the embodiment, since the stator 4 has 12 poles, the number of the first salient poles 42 is 12.
 本体41は、平面視で円環状であって、例えば無方向性ケイ素鋼板等の磁性材料により形成されている。ここでいう「平面視」は、スイッチトリラクタンスモータ3を駆動軸53(後述する)の軸方向から見ることをいう。 The main body 41 is annular in a plan view and is formed of a magnetic material such as a non-directional silicon steel plate. The term "planar view" as used herein refers to viewing the switched reluctance motor 3 from the axial direction of the drive shaft 53 (described later).
 複数の第1突極42は、平面視で矩形状であって、本体41の内側面から径方向の内向きに突出するように、本体41と一体に形成されている。複数の第1突極42は、本体41の周方向において等間隔に並んでいる。各第1突極42には、導線を集中巻することでコイルL0が取り付けられている。実施の形態では、平面視で回転子5を挟んで対向する一対の第1突極42には、同じ相電流が流れるコイルL0が取り付けられている。一対の第1突極42の各々に取り付けられたコイルL0は、直列に接続されていてもよいし、並列に接続されていてもよい。 The plurality of first salient poles 42 have a rectangular shape in a plan view, and are integrally formed with the main body 41 so as to project inward in the radial direction from the inner side surface of the main body 41. The plurality of first salient poles 42 are arranged at equal intervals in the circumferential direction of the main body 41. A coil L0 is attached to each first salient pole 42 by centrally winding a conducting wire. In the embodiment, a coil L0 through which the same phase current flows is attached to a pair of first salient poles 42 facing each other with the rotor 5 interposed therebetween in a plan view. The coils L0 attached to each of the pair of first salient poles 42 may be connected in series or in parallel.
 具体的には、図2に示すように、「A」が付された一対の第1突極42には、それぞれ第1コイルL1(「コイルA」ともいう)が取り付けられており、「B」が付された一対の第1突極42には、それぞれ第2コイルL2(「コイルB」ともいう)が取り付けられている。また、「C」が付された一対の第1突極42には、それぞれ第3コイルL3(「コイルC」ともいう)が取り付けられており、「D」が付された一対の第1突極42には、それぞれ第4コイルL4(「コイルD」ともいう)が取り付けられている。また、「E」が付された一対の第1突極42には、それぞれ第5コイルL5(「コイルE」ともいう)が取り付けられており、「F」が付された一対の第1突極42には、それぞれ第6コイルL6(「コイルF」ともいう)が取り付けられている。つまり、複数のコイルL0は、6つである。 Specifically, as shown in FIG. 2, a first coil L1 (also referred to as “coil A”) is attached to each of the pair of first salient poles 42 to which “A” is attached, and “B”. A second coil L2 (also referred to as "coil B") is attached to each of the pair of first salient poles 42 marked with "". Further, a third coil L3 (also referred to as "coil C") is attached to each of the pair of first salient poles 42 marked with "C", and the pair of first salient poles marked with "D" is attached. A fourth coil L4 (also referred to as “coil D”) is attached to each of the poles 42. Further, a fifth coil L5 (also referred to as "coil E") is attached to each of the pair of first salient poles 42 marked with "E", and the pair of first salient poles marked with "F" is attached. A sixth coil L6 (also referred to as “coil F”) is attached to each of the poles 42. That is, the number of the plurality of coils L0 is six.
 上述のように、複数対の第1突極42は、固定子4が有し、複数のコイルL0がそれぞれ取り付けられる。そして、複数対の第1突極42の数は、6の整数倍である。 As described above, the stator 4 has a plurality of pairs of first salient poles 42, and a plurality of coils L0 are attached to each. The number of the first salient poles 42 of the plurality of pairs is an integral multiple of 6.
 実施の形態では、図1に示すように、複数のコイルL0は、中性点N1で互いに接続されている。つまり、第1コイルL1(コイルA)、第2コイルL2(コイルB)、第3コイルL3(コイルC)、第4コイルL4(コイルD)、第5コイルL5(コイルE)、及び第6コイルL6(コイルF)の各々の一端は、同じ中性点N1に接続されている。 In the embodiment, as shown in FIG. 1, the plurality of coils L0 are connected to each other at the neutral point N1. That is, the first coil L1 (coil A), the second coil L2 (coil B), the third coil L3 (coil C), the fourth coil L4 (coil D), the fifth coil L5 (coil E), and the sixth coil. Each end of coil L6 (coil F) is connected to the same neutral point N1.
 回転子5は、固定子4の内側に位置し、固定子4に対して相対的に回転可能となっている。回転子5は、本体51と、複数の第2突極(ティース)52と、駆動軸53と、を有している。上述のように、実施の形態では、回転子5が10極であるため、第2突極52の数は10個である。つまり、複数の第2突極52の数は、5の整数倍である。 The rotor 5 is located inside the stator 4 and is rotatable relative to the stator 4. The rotor 5 has a main body 51, a plurality of second salient poles (teeth) 52, and a drive shaft 53. As described above, in the embodiment, since the rotor 5 has 10 poles, the number of the second salient poles 52 is 10. That is, the number of the plurality of second salient poles 52 is an integral multiple of 5.
 本体51は、平面視で円形状であって、例えば無方向性ケイ素鋼板等の磁性材料により形成されている。 The main body 51 has a circular shape in a plan view, and is formed of a magnetic material such as a non-directional silicon steel plate.
 複数の第2突極52は、平面視で矩形状であって、本体51の外側面から径方向の外向きに突出するように、本体51と一体に形成されている。複数の第2突極52は、本体51の周方向において等間隔に並んでいる。 The plurality of second salient poles 52 have a rectangular shape in a plan view, and are integrally formed with the main body 51 so as to project outward in the radial direction from the outer surface of the main body 51. The plurality of second salient poles 52 are arranged at equal intervals in the circumferential direction of the main body 51.
 駆動軸53は、平面視で本体51の中心を通り、本体51の厚さ方向に沿って長尺の棒状であり、本体51と一体に形成されている。駆動軸53は、回転子5の回転に伴って回転する。 The drive shaft 53 passes through the center of the main body 51 in a plan view, has a long rod shape along the thickness direction of the main body 51, and is integrally formed with the main body 51. The drive shaft 53 rotates with the rotation of the rotor 5.
 ここで、スイッチトリラクタンスモータ3の動作原理について簡単に説明する。駆動回路1から電流が供給され、固定子4において1以上のコイルL0が励磁されると、1以上のコイルL0が発生する磁束により、回転子5には磁気抵抗が最小となるような力が作用する。このとき、1以上のコイルL0が設けられた1以上の第1突極42の近傍にある第2突極52は、第1突極42と対向する位置に移動するように、第1突極42に吸引される。以下、駆動回路1により複数のコイルL0が順次励磁されることで、第2突極52が第1突極42に吸引されて移動するのを繰り返し、回転子5が固定子4に対して回転する。 Here, the operating principle of the switched reluctance motor 3 will be briefly explained. When a current is supplied from the drive circuit 1 and one or more coils L0 are excited in the stator 4, the magnetic flux generated by one or more coils L0 exerts a force on the rotor 5 to minimize the magnetic resistance. It works. At this time, the second salient pole 52 in the vicinity of the first salient pole 42 provided with one or more coils L0 moves to the position facing the first salient pole 42, so that the first salient pole 42 is moved. It is sucked by 42. Hereinafter, a plurality of coils L0 are sequentially excited by the drive circuit 1, so that the second salient pole 52 is repeatedly attracted to the first salient pole 42 and moves, and the rotor 5 rotates with respect to the stator 4. do.
 [1-2.駆動回路]
 次に、実施の形態に係る駆動回路1の構成について、図1を用いて説明する。駆動回路1は、3つのアーム10と、制御回路2と、を備えている。なお、駆動回路1は、少なくとも3つのアーム10を備えていればよく、制御回路2を備えていなくてもよい。つまり、制御回路2は、駆動回路1に対する付加的な構成要素であってもよい。
[1-2. Drive circuit]
Next, the configuration of the drive circuit 1 according to the embodiment will be described with reference to FIG. The drive circuit 1 includes three arms 10 and a control circuit 2. The drive circuit 1 may be provided with at least three arms 10 and may not be provided with the control circuit 2. That is, the control circuit 2 may be an additional component to the drive circuit 1.
 3つのアーム10は、電源6の第1入力端61及び第2入力端62に対して並列に接続されている。実施の形態では、電源6は直流電源であって、第1入力端61と第2入力端62との間に直流電圧を印加する。実施の形態では、第1入力端61が正電位であって、第2入力端62はグランドに接続されている。 The three arms 10 are connected in parallel to the first input terminal 61 and the second input end 62 of the power supply 6. In the embodiment, the power supply 6 is a DC power supply, and a DC voltage is applied between the first input terminal 61 and the second input terminal 62. In the embodiment, the first input terminal 61 has a positive potential, and the second input end 62 is connected to the ground.
 3つのアーム10の各々は、第1半導体スイッチS1と、第2半導体スイッチS2と、ダイオードD3と、の直列回路で構成されている。第1半導体スイッチS1は、第1入力端61に接続されて、第1回生ダイオードD1を有している。第2半導体スイッチS2は、第2入力端62に接続されて、第2回生ダイオードD2を有している。ダイオードD3は、第1半導体スイッチS1と第2半導体スイッチS2との間に接続されている。実施の形態では、ダイオードD3は、アノードが第2半導体スイッチS2、カソードが第1半導体スイッチS1に接続されている。 Each of the three arms 10 is composed of a series circuit of the first semiconductor switch S1, the second semiconductor switch S2, and the diode D3. The first semiconductor switch S1 is connected to the first input end 61 and has a first regenerative diode D1. The second semiconductor switch S2 is connected to the second input terminal 62 and has a second regenerative diode D2. The diode D3 is connected between the first semiconductor switch S1 and the second semiconductor switch S2. In the embodiment, the diode D3 has an anode connected to the second semiconductor switch S2 and a cathode connected to the first semiconductor switch S1.
 第1半導体スイッチS1及び第2半導体スイッチS2は、例えばnチャネルのエンハンスメント型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、又は絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor)である。実施の形態では、第1半導体スイッチS1及び第2半導体スイッチS2は、MOSFETである。したがって、第1回生ダイオードD1は第1半導体スイッチS1の寄生ダイオードであり、第2回生ダイオードD2は第2半導体スイッチS2の寄生ダイオードである。なお、第1半導体スイッチS1及び第2半導体スイッチS2は、MOSFET又は絶縁ゲート型バイポーラトランジスタに限らず、例えば接合型FET(Field-Effect Transistor)等であってもよい。この場合、第1回生ダイオードD1は第1半導体スイッチS1のドレイン-ソース間に接続される外付けのダイオードであり、第2回生ダイオードD2は第2半導体スイッチS2のドレイン-ソース間に接続される外付けのダイオードであってもよい。 The first semiconductor switch S1 and the second semiconductor switch S2 are, for example, an n-channel enhancement type MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an insulated gate type bipolar transistor (Insulated Gate Bipolar Transistor). In the embodiment, the first semiconductor switch S1 and the second semiconductor switch S2 are MOSFETs. Therefore, the first live diode D1 is a parasitic diode of the first semiconductor switch S1, and the second live diode D2 is a parasitic diode of the second semiconductor switch S2. The first semiconductor switch S1 and the second semiconductor switch S2 are not limited to MOSFETs or isolated gate type bipolar transistors, and may be, for example, junction FETs (Field-Effect Transistors) or the like. In this case, the first regenerative diode D1 is an external diode connected between the drain and the source of the first semiconductor switch S1, and the second regenerative diode D2 is connected between the drain and the source of the second semiconductor switch S2. It may be an external diode.
 3つのアーム10の各々には、スイッチトリラクタンスモータ3の固定子4が有する複数のコイルL0が接続可能である。そして、駆動回路1は、複数のコイルL0の各々に電流を流して励磁させることにより、スイッチトリラクタンスモータ3の回転子5を回転させる。 A plurality of coils L0 included in the stator 4 of the switched reluctance motor 3 can be connected to each of the three arms 10. Then, the drive circuit 1 rotates the rotor 5 of the switched reluctance motor 3 by passing a current through each of the plurality of coils L0 to excite them.
 以下、駆動回路1の構成について更に詳細に説明する。以下では、説明の便宜上、3つのアーム10のうち最も左側に位置するアーム10を「第1アーム11」、真ん中に位置するアーム10を「第2アーム12」、最も右側に位置するアーム10を「第3アーム13」ともいう。また、以下では、説明の便宜上、第1アーム11の第1半導体スイッチS1を「スイッチA」、第1アーム11の第2半導体スイッチS2を「スイッチD」、第2アーム12の第1半導体スイッチS1を「スイッチB」、第2半導体スイッチS2を「スイッチE」、第3アーム13の第1半導体スイッチS1を「スイッチC」、第2半導体スイッチS2を「スイッチF」ともいう。また、以下では、第1アーム11のダイオードD3を「ダイオードα」、第2アーム12のダイオードD3を「ダイオードβ」、第3アーム13のダイオードD3を「ダイオードγ」ともいう。 Hereinafter, the configuration of the drive circuit 1 will be described in more detail. In the following, for convenience of explanation, the arm 10 located on the leftmost side of the three arms 10 is referred to as the "first arm 11", the arm 10 located in the middle is referred to as the "second arm 12", and the arm 10 located on the rightmost side is referred to as the rightmost arm 10. Also referred to as "third arm 13". In the following, for convenience of explanation, the first semiconductor switch S1 of the first arm 11 is "switch A", the second semiconductor switch S2 of the first arm 11 is "switch D", and the first semiconductor switch of the second arm 12 is the first semiconductor switch. S1 is also referred to as "switch B", the second semiconductor switch S2 is also referred to as "switch E", the first semiconductor switch S1 of the third arm 13 is also referred to as "switch C", and the second semiconductor switch S2 is also referred to as "switch F". Further, in the following, the diode D3 of the first arm 11 is also referred to as “diode α”, the diode D3 of the second arm 12 is referred to as “diode β”, and the diode D3 of the third arm 13 is also referred to as “diode γ”.
 第1アーム11において、第1半導体スイッチS1(スイッチA)のドレインは、電源6の第1入力端61に接続され、ソースはダイオードD3(ダイオードα)のカソードに接続されている。第1回生ダイオードD1は、アノードが第1半導体スイッチS1(スイッチA)のソース、カソードが第1半導体スイッチS1(スイッチA)のドレインに接続されている。 In the first arm 11, the drain of the first semiconductor switch S1 (switch A) is connected to the first input terminal 61 of the power supply 6, and the source is connected to the cathode of the diode D3 (diode α). In the first-generation diode D1, the anode is connected to the source of the first semiconductor switch S1 (switch A), and the cathode is connected to the drain of the first semiconductor switch S1 (switch A).
 第1アーム11において、第2半導体スイッチS2(スイッチD)のドレインは、ダイオードD3(ダイオードα)のアノードに接続され、ソースは電源6の第2入力端62に接続されている。第2回生ダイオードD2は、アノードが第2半導体スイッチS2(スイッチD)のソース、カソードが第2半導体スイッチS2(スイッチD)のドレインに接続されている。 In the first arm 11, the drain of the second semiconductor switch S2 (switch D) is connected to the anode of the diode D3 (diode α), and the source is connected to the second input terminal 62 of the power supply 6. In the second regenerative diode D2, the anode is connected to the source of the second semiconductor switch S2 (switch D), and the cathode is connected to the drain of the second semiconductor switch S2 (switch D).
 第1アーム11において、第1半導体スイッチS1(スイッチA)とダイオードD3(ダイオードα)との間の接続点には、第1コイルL1(コイルA)の一端が接続されている。第1コイルL1(コイルA)の他端は、中性点N1に接続されている。また、第1アーム11において、第2半導体スイッチS2(スイッチD)とダイオードD3(ダイオードα)との間の接続点には、第4コイルL4(コイルD)の一端が接続されている。第4コイルL4(コイルD)の他端は、中性点N1に接続されている。 In the first arm 11, one end of the first coil L1 (coil A) is connected to the connection point between the first semiconductor switch S1 (switch A) and the diode D3 (diode α). The other end of the first coil L1 (coil A) is connected to the neutral point N1. Further, in the first arm 11, one end of the fourth coil L4 (coil D) is connected to the connection point between the second semiconductor switch S2 (switch D) and the diode D3 (diode α). The other end of the fourth coil L4 (coil D) is connected to the neutral point N1.
 第2アーム12において、第1半導体スイッチS1(スイッチE)のドレインは、電源6の第1入力端61に接続され、ソースはダイオードD3(ダイオードβ)のカソードに接続されている。第1回生ダイオードD1は、アノードが第1半導体スイッチS1(スイッチE)のソース、カソードが第1半導体スイッチS1(スイッチE)のドレインに接続されている。 In the second arm 12, the drain of the first semiconductor switch S1 (switch E) is connected to the first input terminal 61 of the power supply 6, and the source is connected to the cathode of the diode D3 (diode β). In the first regenerative diode D1, the anode is connected to the source of the first semiconductor switch S1 (switch E), and the cathode is connected to the drain of the first semiconductor switch S1 (switch E).
 第2アーム12において、第2半導体スイッチS2(スイッチB)のドレインは、ダイオードD3(ダイオードβ)のアノードに接続され、ソースは電源6の第2入力端62に接続されている。第2回生ダイオードD2は、アノードが第2半導体スイッチS2(スイッチB)のソース、カソードが第2半導体スイッチS2(スイッチB)のドレインに接続されている。 In the second arm 12, the drain of the second semiconductor switch S2 (switch B) is connected to the anode of the diode D3 (diode β), and the source is connected to the second input terminal 62 of the power supply 6. In the second generation diode D2, the anode is connected to the source of the second semiconductor switch S2 (switch B), and the cathode is connected to the drain of the second semiconductor switch S2 (switch B).
 第2アーム12において、第1半導体スイッチS1(スイッチE)とダイオードD3(ダイオードβ)との間の接続点には、第5コイルL5(コイルE)の一端が接続されている。第5コイルL5(コイルE)の他端は、中性点N1に接続されている。また、第2アーム12において、第2半導体スイッチS2(スイッチB)とダイオードD3(ダイオードβ)との間の接続点には、第2コイルL2(コイルB)の一端が接続されている。第2コイルL2(コイルB)の他端は、中性点N1に接続されている。 In the second arm 12, one end of the fifth coil L5 (coil E) is connected to the connection point between the first semiconductor switch S1 (switch E) and the diode D3 (diode β). The other end of the fifth coil L5 (coil E) is connected to the neutral point N1. Further, in the second arm 12, one end of the second coil L2 (coil B) is connected to the connection point between the second semiconductor switch S2 (switch B) and the diode D3 (diode β). The other end of the second coil L2 (coil B) is connected to the neutral point N1.
 第3アーム13において、第1半導体スイッチS1(スイッチC)のドレインは、電源6の第1入力端61に接続され、ソースはダイオードD3(ダイオードγ)のカソードに接続されている。第1回生ダイオードD1は、アノードが第1半導体スイッチS1(スイッチC)のソース、カソードが第1半導体スイッチS1(スイッチC)のドレインに接続されている。 In the third arm 13, the drain of the first semiconductor switch S1 (switch C) is connected to the first input terminal 61 of the power supply 6, and the source is connected to the cathode of the diode D3 (diode γ). In the first-generation diode D1, the anode is connected to the source of the first semiconductor switch S1 (switch C), and the cathode is connected to the drain of the first semiconductor switch S1 (switch C).
 第3アーム13において、第2半導体スイッチS2(スイッチF)のドレインは、ダイオードD3(ダイオードγ)のアノードに接続され、ソースは電源6の第2入力端62に接続されている。第2回生ダイオードD2は、アノードが第2半導体スイッチS2(スイッチF)のソース、カソードが第2半導体スイッチS2(スイッチF)のドレインに接続されている。 In the third arm 13, the drain of the second semiconductor switch S2 (switch F) is connected to the anode of the diode D3 (diode γ), and the source is connected to the second input terminal 62 of the power supply 6. In the second regenerative diode D2, the anode is connected to the source of the second semiconductor switch S2 (switch F), and the cathode is connected to the drain of the second semiconductor switch S2 (switch F).
 第3アーム13において、第1半導体スイッチS1(スイッチC)とダイオードD3(ダイオードγ)との間の接続点には、第3コイルL3(コイルC)の一端が接続されている。第3コイルL3(コイルC)の他端は、中性点N1に接続されている。また、第3アーム13において、第2半導体スイッチS2(スイッチF)とダイオードD3(ダイオードγ)との間の接続点には、第6コイルL6(コイルF)の一端が接続されている。第6コイルL6(コイルF)の他端は、中性点N1に接続されている。 In the third arm 13, one end of the third coil L3 (coil C) is connected to the connection point between the first semiconductor switch S1 (switch C) and the diode D3 (diode γ). The other end of the third coil L3 (coil C) is connected to the neutral point N1. Further, in the third arm 13, one end of the sixth coil L6 (coil F) is connected to the connection point between the second semiconductor switch S2 (switch F) and the diode D3 (diode γ). The other end of the sixth coil L6 (coil F) is connected to the neutral point N1.
 制御回路2は、例えばマイクロコントローラ等、プロセッサ及びメモリを備えた回路により構成される。制御回路2は、3つのアーム10の各々の第1半導体スイッチS1及び第2半導体スイッチS2を制御する。具体的には、制御回路2は、各アーム10の第1半導体スイッチS1及び第2半導体スイッチS2のゲートにパルス状の駆動信号を与えることにより、各アーム10の第1半導体スイッチS1及び第2半導体スイッチS2のオン/オフを個別に切り替える。 The control circuit 2 is composed of a circuit including a processor and a memory, such as a microcontroller. The control circuit 2 controls the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10. Specifically, the control circuit 2 gives a pulsed drive signal to the gates of the first semiconductor switch S1 and the second semiconductor switch S2 of each arm 10, so that the first semiconductor switch S1 and the second semiconductor switch S1 and the second of each arm 10 are given. The semiconductor switch S2 is turned on / off individually.
 実施の形態では、制御回路2は、6つのコイルL0を順次、電気角60度の間隔で励磁させるように、3つのアーム10の各々の第1半導体スイッチS1及び第2半導体スイッチS2を制御する。具体的には、制御回路2は、コイルA,B,Cの励磁、コイルB,C,Dの励磁、コイルC,D,Eの励磁、コイルD,E,Fの励磁、コイルE,F,Aの励磁、及びコイルF,A,Bの励磁を順次繰り返すように、3つのアーム10の各々の第1半導体スイッチS1及び第2半導体スイッチS2を制御する。 In the embodiment, the control circuit 2 controls the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10 so as to sequentially excite the six coils L0 at intervals of 60 degrees of electrical angle. .. Specifically, the control circuit 2 includes the excitation of the coils A, B, and C, the excitation of the coils B, C, and D, the excitation of the coils C, D, and E, the excitation of the coils D, E, and F, and the coils E and F. , A, and the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10 are controlled so as to sequentially repeat the excitation of the coils F, A, and B.
 ここで、任意の1組(ここでは、3つ)のコイルL0の組み合わせの励磁から、次の1組のコイルL0の組み合わせの励磁へと遷移する際に、前者のコイルL0の組み合わせのうち後者のコイルL0の組み合わせでは励磁されないコイルL0では、サージ電圧が発生する。例えば、コイルA,B,Cの励磁からコイルB,C,Dの励磁に遷移する際には、スイッチAがオフに切り替わることにより、コイルAにて電源6から電流が供給されなくなり、サージ電圧が発生する。 Here, when transitioning from the excitation of an arbitrary set of coils L0 (here, three) to the excitation of the next set of coils L0, the latter of the former combinations of coils L0. A surge voltage is generated in the coil L0 which is not excited by the combination of the coils L0. For example, when transitioning from the excitation of the coils A, B, C to the excitation of the coils B, C, D, the switch A is switched off, so that the current is not supplied from the power supply 6 in the coil A, and the surge voltage. Occurs.
 そこで、駆動回路1は、比較的高電圧であるサージ電圧が第1半導体スイッチS1及び第2半導体スイッチS2に印加されるのを防止すべく、ダイオードD3を用いた還流経路を有している。つまり、駆動回路1は、還流経路に電流を流すことにより、サージ電圧の発生源であるコイルL0に蓄積されたエネルギーを消費させている。 Therefore, the drive circuit 1 has a recirculation path using a diode D3 in order to prevent a surge voltage, which is a relatively high voltage, from being applied to the first semiconductor switch S1 and the second semiconductor switch S2. That is, the drive circuit 1 consumes the energy stored in the coil L0, which is the source of the surge voltage, by passing a current through the return path.
 具体的には、コイルA,B,Cの励磁からコイルB,C,Dの励磁に遷移する際には、ダイオードαを介した還流経路に電流が流れることにより、コイルAに蓄積されたエネルギーが消費される。また、コイルB,C,Dの励磁からコイルC,D,Eの励磁に遷移する際には、ダイオードβを介した還流経路に電流が流れることにより、コイルBに蓄積されたエネルギーが消費される。 Specifically, when transitioning from the excitation of the coils A, B, C to the excitation of the coils B, C, D, the energy stored in the coil A is stored by the current flowing in the return path via the diode α. Is consumed. Further, when transitioning from the excitation of the coils B, C, D to the excitation of the coils C, D, E, the energy stored in the coil B is consumed by the current flowing in the recirculation path via the diode β. To.
 また、コイルC,D,Eの励磁からコイルD,E,Fの励磁に遷移する際には、ダイオードγを介した還流経路に電流が流れることにより、コイルCに蓄積されたエネルギーが消費される。また、コイルD,E,Fの励磁からコイルE,F,Aの励磁に遷移する際には、ダイオードαを介した還流経路に電流が流れることにより、コイルDに蓄積されたエネルギーが消費される。 Further, when transitioning from the excitation of the coils C, D, E to the excitation of the coils D, E, F, the energy stored in the coil C is consumed by the current flowing in the recirculation path via the diode γ. To. Further, when transitioning from the excitation of the coils D, E, F to the excitation of the coils E, F, A, the energy stored in the coil D is consumed by the current flowing in the recirculation path via the diode α. To.
 また、コイルE,F,Aの励磁からコイルF,A,Bの励磁に遷移する際には、ダイオードβを介した還流経路に電流が流れることにより、コイルEに蓄積されたエネルギーが消費される。また、コイルF,A,Bの励磁からコイルA,B,Cの励磁に遷移する際には、ダイオードγを介した還流経路に電流が流れることにより、コイルFに蓄積されたエネルギーが消費される。 Further, when transitioning from the excitation of the coils E, F, A to the excitation of the coils F, A, B, the energy stored in the coil E is consumed by the current flowing in the recirculation path via the diode β. To. Further, when transitioning from the excitation of the coils F, A, B to the excitation of the coils A, B, C, the energy stored in the coil F is consumed by the current flowing in the recirculation path via the diode γ. To.
 [2.動作]
 以下、実施の形態に係る駆動回路1の動作について、図3~図5を用いて説明する。図3~図5は、いずれも実施の形態に係る駆動回路1の動作例を示す回路図である。図3~図5では、説明の便宜上、第1半導体スイッチS1及び第2半導体スイッチS2のオン/オフを明示すべく、第1半導体スイッチS1及び第2半導体スイッチS2の記載を変更している。
[2. motion]
Hereinafter, the operation of the drive circuit 1 according to the embodiment will be described with reference to FIGS. 3 to 5. 3 to 5 are circuit diagrams showing an operation example of the drive circuit 1 according to the embodiment. In FIGS. 3 to 5, for convenience of explanation, the description of the first semiconductor switch S1 and the second semiconductor switch S2 is changed in order to clearly indicate the on / off of the first semiconductor switch S1 and the second semiconductor switch S2.
 図3は、制御回路2がスイッチA,B,Cをオン、スイッチD,E,Fをオフに切り替えるように、各スイッチA~Fのゲートに駆動信号を与えた状態を示している。図3に示す状態では、電源6の第1入力端61、スイッチA、コイルA、中性点N1、コイルB、スイッチB、電源6の第2入力端62の順に電流が流れる(実線の矢印A1参照)。また、電源6の第1入力端61、スイッチC、コイルC、中性点N1、コイルB、スイッチB、電源6の第2入力端62の順に電流が流れる(実線の矢印A2参照)。したがって、スイッチA,B,Cがオンである場合、コイルA,B,Cが励磁され、コイルA,B,Cが各々設けられた第1突極42に吸引されるように回転子5が回転する。 FIG. 3 shows a state in which a drive signal is given to the gates of the switches A to F so that the control circuit 2 switches the switches A, B, and C on and the switches D, E, and F off. In the state shown in FIG. 3, current flows in the order of the first input end 61 of the power supply 6, the switch A, the coil A, the neutral point N1, the coil B, the switch B, and the second input end 62 of the power supply 6 (solid arrow). See A1). Further, current flows in the order of the first input end 61 of the power supply 6, the switch C, the coil C, the neutral point N1, the coil B, the switch B, and the second input end 62 of the power supply 6 (see the solid arrow A2). Therefore, when the switches A, B, and C are on, the rotor 5 is excited so that the coils A, B, and C are excited and the coils A, B, and C are attracted to the first salient pole 42 provided. Rotate.
 図4は、図3に示す状態において、制御回路2がスイッチAをオンからオフに切り替えるように、スイッチAのゲートに駆動信号を与えた状態を示している。つまり、図4に示す状態では、スイッチB,Cがオンであり、スイッチA,D,E,Fはオフである。図4に示す状態では、コイルA、中性点N1、コイルB、スイッチB、スイッチDの第2回生ダイオードD2、ダイオードα、コイルAを順に通る還流経路が形成される(実線の矢印A3参照)。また、コイルA、中性点N1、コイルD、ダイオードα、コイルAを順に通る還流経路が形成される(実線の矢印A4参照)。このため、図4に示す状態では、これらの還流経路に電流が流れることにより、サージ電圧の発生源であるコイルAに蓄積されたエネルギーが消費される。 FIG. 4 shows a state in which a drive signal is given to the gate of the switch A so that the control circuit 2 switches the switch A from on to off in the state shown in FIG. That is, in the state shown in FIG. 4, the switches B and C are on, and the switches A, D, E and F are off. In the state shown in FIG. 4, a reflux path is formed in this order through the coil A, the neutral point N1, the coil B, the switch B, the second regenerative diode D2 of the switch D, the diode α, and the coil A (see the solid arrow A3). ). Further, a reflux path is formed in this order through the coil A, the neutral point N1, the coil D, the diode α, and the coil A (see the solid arrow A4). Therefore, in the state shown in FIG. 4, the energy stored in the coil A, which is the source of the surge voltage, is consumed by the current flowing through these return paths.
 図5は、図4に示す状態において、制御回路2がスイッチDをオフからオンに切り替えるように、スイッチDのゲートに駆動信号を与えた状態を示している。つまり、図5に示す状態では、スイッチB,C,Dがオンであり、スイッチA,E,Fはオフである。図5に示す状態では、電源6の第1入力端61、スイッチC、コイルC、中性点N1、コイルB、スイッチB、電源6の第2入力端62の順に電流が流れる(実線の矢印A5参照)。また、電源6の第1入力端61、スイッチC、コイルC、中性点N1、コイルD、スイッチD、電源6の第2入力端62の順に電流が流れる(実線の矢印A6参照)。したがって、スイッチB,C,Dがオンである場合、コイルB,C,Dが励磁され、コイルB,C,Dが各々設けられた第1突極42に吸引されるように回転子5が回転する。 FIG. 5 shows a state in which a drive signal is given to the gate of the switch D so that the control circuit 2 switches the switch D from off to on in the state shown in FIG. That is, in the state shown in FIG. 5, switches B, C, and D are on, and switches A, E, and F are off. In the state shown in FIG. 5, current flows in the order of the first input end 61 of the power supply 6, the switch C, the coil C, the neutral point N1, the coil B, the switch B, and the second input end 62 of the power supply 6 (solid arrow). See A5). Further, current flows in the order of the first input end 61 of the power supply 6, the switch C, the coil C, the neutral point N1, the coil D, the switch D, and the second input end 62 of the power supply 6 (see the solid arrow A6). Therefore, when the switches B, C, and D are on, the rotor 5 is excited so that the coils B, C, and D are excited and the coils B, C, and D are attracted to the first salient pole 42 provided. Rotate.
 図5に示す状態において、コイルAに蓄積されたエネルギーが未だ消費されていない場合、コイルA、中性点N1、コイルB、スイッチB、スイッチD、ダイオードα、コイルAを順に通る還流経路が形成される(破線の矢印A7参照)。また、コイルA、中性点N1、コイルD、スイッチD、電源6の第2入力端62を順に通る還流経路が形成される(破線の矢印A8参照)。これらの還流経路に電流が流れることにより、サージ電圧の発生源であるコイルAに蓄積されたエネルギーが消費される。 In the state shown in FIG. 5, when the energy stored in the coil A has not been consumed yet, the reflux path passing through the coil A, the neutral point N1, the coil B, the switch B, the switch D, the diode α, and the coil A in this order It is formed (see dashed arrow A7). Further, a return path is formed in this order through the coil A, the neutral point N1, the coil D, the switch D, and the second input end 62 of the power supply 6 (see the broken line arrow A8). When a current flows through these return paths, the energy stored in the coil A, which is the source of the surge voltage, is consumed.
 なお、制御回路2は、サージ電圧の発生源であるコイルL0に蓄積されたエネルギーが全て消費されてから、つまり還流経路に流れる電流が零になってから、次の状態に遷移してもよいし、還流経路に流れる電流が零になるのを待たずに、次の状態に遷移してもよい。例えば、制御回路2は、サージ電圧の発生源がコイルAである場合、コイルAに流れる電流が零になってから図4に示す状態から図5に示す状態に遷移してもよいし、コイルAに流れる電流が零になる前に図4に示す状態から図5に示す状態に遷移してもよい。 The control circuit 2 may transition to the next state after all the energy stored in the coil L0, which is the source of the surge voltage, is consumed, that is, after the current flowing in the return path becomes zero. However, the transition to the next state may be performed without waiting for the current flowing in the return path to become zero. For example, when the source of the surge voltage is the coil A, the control circuit 2 may transition from the state shown in FIG. 4 to the state shown in FIG. 5 after the current flowing through the coil A becomes zero, or the coil. The state shown in FIG. 4 may be changed to the state shown in FIG. 5 before the current flowing through A becomes zero.
 以下、制御回路2は、コイルC,D,Eの励磁、コイルD,E,Fの励磁、コイルE,F,Aの励磁、コイルF,A,B、及びコイルA,B,Cの励磁を順次繰り返すように、3つのアーム10の各々の第1半導体スイッチS1及び第2半導体スイッチS2を制御する。これにより、スイッチトリラクタンスモータ3の回転子5が回転する、つまりスイッチトリラクタンスモータ3が駆動する。 Hereinafter, the control circuit 2 includes the excitation of the coils C, D, E, the excitation of the coils D, E, F, the excitation of the coils E, F, A, the excitation of the coils F, A, B, and the coils A, B, C. The first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10 are controlled so as to sequentially repeat. As a result, the rotor 5 of the switched reluctance motor 3 rotates, that is, the switched reluctance motor 3 is driven.
 [3.利点]
 以下、実施の形態に係る駆動回路1の利点について、図6に示す比較例の駆動回路1Aとの比較を交えて説明する。図6は、比較例の駆動回路1Aの構成を示す回路図である。比較例の駆動回路1Aは、6つのアーム10Aを備えている点で、実施の形態に係る駆動回路1と相違する。
[3. advantage]
Hereinafter, the advantages of the drive circuit 1 according to the embodiment will be described with reference to the drive circuit 1A of the comparative example shown in FIG. FIG. 6 is a circuit diagram showing the configuration of the drive circuit 1A of the comparative example. The drive circuit 1A of the comparative example is different from the drive circuit 1 according to the embodiment in that it includes six arms 10A.
 具体的には、各アーム10Aは、1つの半導体スイッチS0と、1つのダイオードD0と、を備えている。つまり、比較例の駆動回路1Aでは、6つの半導体スイッチS0と、6つのダイオードD0と、を備えており、実施の形態に係る駆動回路1と比較して、更に3つ多くのダイオードD0を備えている。 Specifically, each arm 10A includes one semiconductor switch S0 and one diode D0. That is, the drive circuit 1A of the comparative example includes six semiconductor switches S0 and six diodes D0, and further includes three more diodes D0 as compared with the drive circuit 1 according to the embodiment. ing.
 図6に示すように、6つのアーム10Aのうちの第1アーム11Aでは、半導体スイッチS0(スイッチA)とダイオードD0との間の接続点には、第1コイルL1(コイルA)の一端が接続されている。第1コイルL1(コイルA)の他端は、中性点N1に接続されている。また、6つのアーム10Aのうちの第2アーム12Aでは、半導体スイッチS0(スイッチB)とダイオードD0との間の接続点には、第2コイルL2(コイルB)の一端が接続されている。第2コイルL2(コイルB)の他端は、中性点N1に接続されている。 As shown in FIG. 6, in the first arm 11A of the six arms 10A, one end of the first coil L1 (coil A) is provided at the connection point between the semiconductor switch S0 (switch A) and the diode D0. It is connected. The other end of the first coil L1 (coil A) is connected to the neutral point N1. Further, in the second arm 12A of the six arms 10A, one end of the second coil L2 (coil B) is connected to the connection point between the semiconductor switch S0 (switch B) and the diode D0. The other end of the second coil L2 (coil B) is connected to the neutral point N1.
 また、6つのアーム10Aのうちの第3アーム13Aでは、半導体スイッチS0(スイッチC)とダイオードD0との間の接続点には、第3コイルL3(コイルC)の一端が接続されている。第3コイルL3(コイルC)の他端は、中性点N1に接続されている。また、6つのアーム10Aのうちの第4アーム14Aでは、半導体スイッチS0(スイッチD)とダイオードD0との間の接続点には、第4コイルL4(コイルD)の一端が接続されている。第4コイルL4(コイルD)の他端は、中性点N1に接続されている。 Further, in the third arm 13A of the six arms 10A, one end of the third coil L3 (coil C) is connected to the connection point between the semiconductor switch S0 (switch C) and the diode D0. The other end of the third coil L3 (coil C) is connected to the neutral point N1. Further, in the fourth arm 14A of the six arms 10A, one end of the fourth coil L4 (coil D) is connected to the connection point between the semiconductor switch S0 (switch D) and the diode D0. The other end of the fourth coil L4 (coil D) is connected to the neutral point N1.
 また、6つのアーム10Aのうちの第5アーム15Aでは、半導体スイッチS0(スイッチE)とダイオードD0との間の接続点には、第5コイルL5(コイルE)の一端が接続されている。第5コイルL5(コイルE)の他端は、中性点N1に接続されている。また、6つのアーム10Aのうちの第6アーム16Aでは、半導体スイッチS0(スイッチF)とダイオードD0との間の接続点には、第6コイルL6(コイルF)の一端が接続されている。第6コイルL6(コイルF)の他端は、中性点N1に接続されている。 Further, in the fifth arm 15A of the six arms 10A, one end of the fifth coil L5 (coil E) is connected to the connection point between the semiconductor switch S0 (switch E) and the diode D0. The other end of the fifth coil L5 (coil E) is connected to the neutral point N1. Further, in the sixth arm 16A of the six arms 10A, one end of the sixth coil L6 (coil F) is connected to the connection point between the semiconductor switch S0 (switch F) and the diode D0. The other end of the sixth coil L6 (coil F) is connected to the neutral point N1.
 比較例の駆動回路1Aにおいても、実施の形態に係る駆動回路1と同様に、制御回路2は、コイルA,B,Cの励磁、コイルB,C,Dの励磁、コイルC,D,Eの励磁、コイルD,E,Fの励磁、コイルE,F,Aの励磁、及びコイルF,A,Bの励磁を繰り返すように、各アーム10Aの半導体スイッチS0を制御する。これにより、スイッチトリラクタンスモータ3の回転子5が回転する、つまりスイッチトリラクタンスモータ3が駆動する。また、比較例の駆動回路1Aでも、比較的高電圧であるサージ電圧が半導体スイッチS0に印加されるのを防止すべく、ダイオードD0を介した還流経路に電流を流すことにより、サージ電圧の発生源であるコイルL0に蓄積されたエネルギーを消費させている。 In the drive circuit 1A of the comparative example, similarly to the drive circuit 1 according to the embodiment, the control circuit 2 excites the coils A, B, C, excites the coils B, C, D, and the coils C, D, E. The semiconductor switch S0 of each arm 10A is controlled so as to repeat the excitation of the coils D, E, F, the excitation of the coils E, F, A, and the excitation of the coils F, A, B. As a result, the rotor 5 of the switched reluctance motor 3 rotates, that is, the switched reluctance motor 3 is driven. Further, even in the drive circuit 1A of the comparative example, a surge voltage is generated by passing a current through the return path via the diode D0 in order to prevent a surge voltage which is a relatively high voltage from being applied to the semiconductor switch S0. The energy stored in the coil L0, which is the source, is consumed.
 ここで、実施の形態に係る駆動回路1を用いてスイッチトリラクタンスモータ3を駆動した場合のトルク波形と、比較例の駆動回路1Aを用いてスイッチトリラクタンスモータ3を駆動した場合のトルク波形と、の比較結果を図7A及び図7Bに示す。図7Aは、非連続通電モードにおける実施の形態に係るスイッチトリラクタンスモータ3のトルクを示す波形図である。図7Bは、連続通電モードにおける実施の形態に係るスイッチトリラクタンスモータ3のトルクを示す波形図である。 Here, a torque waveform when the switched reluctance motor 3 is driven by using the drive circuit 1 according to the embodiment, and a torque waveform when the switched reluctance motor 3 is driven by using the drive circuit 1A of the comparative example. , And the comparison results are shown in FIGS. 7A and 7B. FIG. 7A is a waveform diagram showing the torque of the switched reluctance motor 3 according to the embodiment in the discontinuous energization mode. FIG. 7B is a waveform diagram showing the torque of the switched reluctance motor 3 according to the embodiment in the continuous energization mode.
 ここで、非連続通電モードは、コイルL0を流れる電流の周波数が比較的低く、コイルL0に断続的に電流が流れる場合の動作モードをいう。また、連続通電モードは、コイルL0を流れる電流の周波数が比較的高く、コイルL0に連続的に電流が流れる場合の動作モードをいう。 Here, the discontinuous energization mode refers to an operation mode in which the frequency of the current flowing through the coil L0 is relatively low and the current flows intermittently through the coil L0. Further, the continuous energization mode refers to an operation mode in which the frequency of the current flowing through the coil L0 is relatively high and the current continuously flows through the coil L0.
 図7A及び図7Bの各々において、縦軸はトルク(単位は「N・m」)、横軸は時間(単位は「秒」)を表している。また、図7A及び図7Bにおいて、実線は実施の形態に係る駆動回路1を用いた場合のトルク波形を示しており、破線は比較例の駆動回路1Aを用いた場合のトルク波形を示している。なお、図7Aにおいて、実線と破線とが重なる箇所については、実線のみを記載している。また、図7Bにおいては、全体にわたって実線と破線とが重なっているため、実線のみを記載している。 In each of FIGS. 7A and 7B, the vertical axis represents torque (unit is "Nm"), and the horizontal axis represents time (unit is "second"). Further, in FIGS. 7A and 7B, the solid line shows the torque waveform when the drive circuit 1 according to the embodiment is used, and the broken line shows the torque waveform when the drive circuit 1A of the comparative example is used. .. In FIG. 7A, only the solid line is shown at the place where the solid line and the broken line overlap. Further, in FIG. 7B, since the solid line and the broken line overlap with each other, only the solid line is shown.
 図7A及び図7Bの各々に示すように、いずれの駆動回路1,1Aを用いた場合でも、トルク波形は概ね一致している。つまり、スイッチトリラクタンスモータ3のトルクに関して、実施の形態に係る駆動回路1の性能は、比較例の駆動回路1Aの性能と同等又はそれ以上である。 As shown in FIGS. 7A and 7B, the torque waveforms are almost the same regardless of which drive circuits 1 and 1A are used. That is, with respect to the torque of the switched reluctance motor 3, the performance of the drive circuit 1 according to the embodiment is equal to or higher than the performance of the drive circuit 1A of the comparative example.
 また、実施の形態に係る駆動回路1を用いてスイッチトリラクタンスモータ3を駆動した場合のコイルL0に流れる電流波形と、比較例の駆動回路1Aを用いてスイッチトリラクタンスモータ3を駆動した場合のコイルL0に流れる電流波形と、の比較結果を図8A及び図8Bに示す。図8Aは、非連続通電モードにおける実施の形態に係るスイッチトリラクタンスモータ3のいずれか1つのコイルL0に流れる電流を示す波形図である。図8Bは、連続通電モードにおける実施の形態に係るスイッチトリラクタンスモータ3のいずれか1つのコイルL0に流れる電流を示す波形図である。 Further, the current waveform flowing through the coil L0 when the switched reluctance motor 3 is driven by using the drive circuit 1 according to the embodiment, and the switched reluctance motor 3 when the switched reluctance motor 3 is driven by using the drive circuit 1A of the comparative example. The results of comparison with the current waveform flowing through the coil L0 are shown in FIGS. 8A and 8B. FIG. 8A is a waveform diagram showing a current flowing through the coil L0 of any one of the switched reluctance motors 3 according to the embodiment in the discontinuous energization mode. FIG. 8B is a waveform diagram showing a current flowing through the coil L0 of any one of the switched reluctance motors 3 according to the embodiment in the continuous energization mode.
 図8A及び図8Bでは、いずれも第1コイルL1(コイルA)に流れる電流の波形を示しているが、他のコイルL0に流れる電流の波形も位相が異なるだけで同様である。図8A及び図8Bの各々において、縦軸は電流(単位は「A」)、横軸は時間(単位は「秒」)を表している。また、図8A及び図8Bの各々において、実線は実施の形態に係る駆動回路1を用いた場合の電流波形を示しており、破線は比較例の駆動回路1Aを用いた場合の電流波形を示している。なお、図8Aにおいて、実線と破線とが重なる箇所については、実線のみを記載している。また、図8Bにおいては、全体にわたって実線と破線とが重なっているため、実線のみを記載している。 In FIGS. 8A and 8B, the waveforms of the currents flowing through the first coil L1 (coil A) are shown, but the waveforms of the currents flowing through the other coils L0 are the same except that the phases are different. In each of FIGS. 8A and 8B, the vertical axis represents current (unit is “A”), and the horizontal axis represents time (unit is “second”). Further, in each of FIGS. 8A and 8B, the solid line shows the current waveform when the drive circuit 1 according to the embodiment is used, and the broken line shows the current waveform when the drive circuit 1A of the comparative example is used. ing. In FIG. 8A, only the solid line is shown at the place where the solid line and the broken line overlap. Further, in FIG. 8B, since the solid line and the broken line overlap with each other, only the solid line is shown.
 図8A及び図8Bの各々に示すように、いずれの駆動回路1,1Aを用いた場合でも、電流波形は概ね一致している。つまり、スイッチトリラクタンスモータ3のコイルL0に流れる電流に関して、実施の形態に係る駆動回路1の性能は、比較例の駆動回路1Aの性能と同等又はそれ以上である。 As shown in FIGS. 8A and 8B, the current waveforms are almost the same regardless of which drive circuits 1 and 1A are used. That is, with respect to the current flowing through the coil L0 of the switched reluctance motor 3, the performance of the drive circuit 1 according to the embodiment is equal to or higher than the performance of the drive circuit 1A of the comparative example.
 上述のように、実施の形態に係る駆動回路1は、各アーム10においてダイオードD3の数が比較例の駆動回路1Aと比較して少ないにも関わらず、比較例の駆動回路1Aと同等又はそれ以上の性能を発揮し得る。このため、実施の形態に係る駆動回路1は、スイッチトリラクタンスモータ3の駆動性能を維持しつつ、製造コストの低減を図ることができる、という利点がある。 As described above, the drive circuit 1 according to the embodiment is equivalent to or equal to the drive circuit 1A of the comparative example even though the number of diodes D3 in each arm 10 is smaller than that of the drive circuit 1A of the comparative example. The above performance can be demonstrated. Therefore, the drive circuit 1 according to the embodiment has an advantage that the manufacturing cost can be reduced while maintaining the drive performance of the switched reluctance motor 3.
 [4.変形例]
 以上、本発明の駆動回路、モータシステム、及びスイッチトリラクタンスモータについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、実施の形態における一部の構成要素を組み合わせて構築される別の形態も、本発明の範囲内に含まれる。
[4. Modification example]
Although the drive circuit, the motor system, and the switched reluctance motor of the present invention have been described above based on the embodiments, the present invention is not limited to the embodiments. As long as the gist of the present invention is not deviated, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and other embodiments constructed by combining some components in the embodiment are also within the scope of the present invention. Included in.
 実施の形態では、スイッチトリラクタンスモータ3における複数のコイルL0は、中性点N1で互いに接続されているが、これに限られない。例えば、図9に示すように、スイッチトリラクタンスモータ3において、複数のコイルL0は、閉ループを接続するように互いに接続されていてもよい。図9は、実施の形態に係る駆動回路1と、実施の形態に係るスイッチトリラクタンスモータ3の他の一例と、を示す回路図である。図9に示す例では、複数のコイルL0は、六角形状に互いに接続されている(言い換えれば、複数のコイルL0は、ヘックス結線で構成されている)。 In the embodiment, the plurality of coils L0 in the switched reluctance motor 3 are connected to each other at the neutral point N1, but the present invention is not limited to this. For example, as shown in FIG. 9, in the switched reluctance motor 3, a plurality of coils L0 may be connected to each other so as to connect a closed loop. FIG. 9 is a circuit diagram showing the drive circuit 1 according to the embodiment and another example of the switched reluctance motor 3 according to the embodiment. In the example shown in FIG. 9, the plurality of coils L0 are connected to each other in a hexagonal shape (in other words, the plurality of coils L0 are composed of hex connections).
 具体的には、第1コイルL1(コイルA)の巻き始めと、第2コイルL2(コイルB)の巻き終わりとが接続され、第2コイルL2(コイルB)の巻き始めと第3コイルL3(コイルC)の巻き終わりとが接続されている。また、第3コイルL3(コイルC)の巻き始めと第4コイルL4(コイルD)の巻き終わりとが接続され、第4コイルL4(コイルD)の巻き始めと第5コイルL5(コイルE)の巻き終わりとが接続されている。そして、第5コイルL5(コイルE)の巻き始めと第6コイルL6(コイルF)の巻き終わりとが接続され、第6コイルL6(コイルF)の巻き始めと第1コイルL1(コイルA)の巻き終わりとが接続されている。 Specifically, the winding start of the first coil L1 (coil A) and the winding end of the second coil L2 (coil B) are connected, and the winding start of the second coil L2 (coil B) and the winding end of the third coil L3 are connected. The end of winding of (coil C) is connected. Further, the winding start of the third coil L3 (coil C) and the winding end of the fourth coil L4 (coil D) are connected, and the winding start of the fourth coil L4 (coil D) and the winding end of the fifth coil L5 (coil E) are connected. Is connected to the end of the winding. Then, the winding start of the 5th coil L5 (coil E) and the winding end of the 6th coil L6 (coil F) are connected, and the winding start of the 6th coil L6 (coil F) and the winding end of the 1st coil L1 (coil A) are connected. Is connected to the end of the winding.
 上述のように、複数のコイルL0が閉ループを構成するように互いに接続されている場合、以下のような利点がある。すなわち、中性点N1を設ける場合、各コイルL0の一端が集中して接続される部位をスイッチトリラクタンスモータ3に設けるためのスペースが必要であるのに対して、上記接続では、このようなスペースが不要である、という利点がある。また、中性点N1を設ける場合、各コイルL0には一方向にしか電流を流せないのに対して、上記接続では、各コイルL0に双方向に電流を流すことが可能であり、電流の自由度が高い、という利点もある。 As described above, when a plurality of coils L0 are connected to each other so as to form a closed loop, there are the following advantages. That is, when the neutral point N1 is provided, a space is required for the switched reluctance motor 3 to provide a portion where one end of each coil L0 is centrally connected, whereas in the above connection, such a connection is required. It has the advantage of not requiring space. Further, when the neutral point N1 is provided, a current can flow through each coil L0 in only one direction, whereas in the above connection, a current can flow through each coil L0 in both directions, and the current can flow. It also has the advantage of having a high degree of freedom.
 ところで、上述のように複数のコイルL0を閉ループを構成するように互いに接続した構成のスイッチトリラクタンスモータ3は、例えば図10に示すように、比較例の駆動回路1Aと共に用いることが可能である。図10は、比較例の駆動回路1Aと、実施の形態に係るスイッチトリラクタンスモータ3の他の一例と、を示す回路図である。つまり、スイッチトリラクタンスモータ3は、以下のように構成されていれば、種々の駆動回路と共に用いることが可能である。すなわち、スイッチトリラクタンスモータ3は、固定子4と、回転子5と、を備える。固定子4は、複数のコイルL0がそれぞれ取り付けられる複数対の第1突極42を有する。回転子5は、複数の第2突極52を有し、複数のコイルL0の各々に電流を流して励磁させることで回転する。複数のコイルL0は、閉ループを構成するように互いに接続されている。 By the way, as described above, the switched reluctance motor 3 having a configuration in which a plurality of coils L0 are connected to each other so as to form a closed loop can be used together with the drive circuit 1A of the comparative example, for example, as shown in FIG. .. FIG. 10 is a circuit diagram showing a drive circuit 1A of a comparative example and another example of the switched reluctance motor 3 according to the embodiment. That is, the switched reluctance motor 3 can be used together with various drive circuits if it is configured as follows. That is, the switched reluctance motor 3 includes a stator 4 and a rotor 5. The stator 4 has a plurality of pairs of first salient poles 42 to which a plurality of coils L0 are attached. The rotor 5 has a plurality of second salient poles 52, and rotates by passing a current through each of the plurality of coils L0 to excite them. The plurality of coils L0 are connected to each other so as to form a closed loop.
 実施の形態では、スイッチトリラクタンスモータ3において、複数対の第1突極42の数が6対(12個)であり、かつ、複数の第2突極52の数が10個であるが、これに限られない。例えば、スイッチトリラクタンスモータ3において、複数対の第1突極42の数が3対(6個)であり、かつ、複数の第2突極52の数が5個であってもよい。つまり、スイッチトリラクタンスモータ3において、複数対の第1突極42の数が6の整数倍であり、かつ、複数の第2突極52の数が5の整数倍であれば、駆動回路1を好適に利用可能である。 In the embodiment, in the switched reluctance motor 3, the number of the first salient poles 42 of a plurality of pairs is 6 pairs (12), and the number of the plurality of second salient poles 52 is 10. Not limited to this. For example, in the switched reluctance motor 3, the number of the first salient poles 42 of a plurality of pairs may be 3 pairs (6), and the number of the plurality of second salient poles 52 may be 5. That is, in the switched reluctance motor 3, if the number of the first salient poles 42 of a plurality of pairs is an integral multiple of 6, and the number of the plurality of second salient poles 52 is an integral multiple of 5, the drive circuit 1 Can be suitably used.
 実施の形態に係る駆動回路1は、実施の形態に係るスイッチトリラクタンスモータ3に好適に利用可能であるが、これに限られない。すなわち、実施の形態に係る駆動回路1により駆動可能なスイッチトリラクタンスモータ3の種類は特に限定されず、種々のスイッチトリラクタンスモータ3にも適用可能である。 The drive circuit 1 according to the embodiment can be suitably used for the switched reluctance motor 3 according to the embodiment, but the present invention is not limited to this. That is, the type of switched reluctance motor 3 that can be driven by the drive circuit 1 according to the embodiment is not particularly limited, and can be applied to various switched reluctance motors 3.
 [5.まとめ]
 以上述べたように、実施の形態に係る駆動回路1は、電源6の第1入力端61及び第2入力端62に対して並列に接続される3つのアーム10を備える。3つのアーム10の各々は、第1半導体スイッチS1と、第2半導体スイッチS2と、ダイオードD3と、の直列回路で構成されている。第1半導体スイッチS1は、第1入力端61に接続されて第1回生ダイオードを有する。第2半導体スイッチS2は、第2入力端62に接続されて第2回生ダイオードを有する。ダイオードD3は、第1半導体スイッチS1と第2半導体スイッチS2との間に接続される。3つのアーム10の各々には、スイッチトリラクタンスモータ3の固定子4が有する複数のコイルL0が接続可能である。駆動回路1は、複数のコイルL0の各々に電流を流して励磁させることにより、スイッチトリラクタンスモータ3の回転子5を回転させる。
[5. summary]
As described above, the drive circuit 1 according to the embodiment includes three arms 10 connected in parallel to the first input terminal 61 and the second input end 62 of the power supply 6. Each of the three arms 10 is composed of a series circuit of the first semiconductor switch S1, the second semiconductor switch S2, and the diode D3. The first semiconductor switch S1 is connected to the first input end 61 and has a first regenerative diode. The second semiconductor switch S2 is connected to the second input end 62 and has a second regenerative diode. The diode D3 is connected between the first semiconductor switch S1 and the second semiconductor switch S2. A plurality of coils L0 included in the stator 4 of the switched reluctance motor 3 can be connected to each of the three arms 10. The drive circuit 1 rotates the rotor 5 of the switched reluctance motor 3 by passing a current through each of the plurality of coils L0 to excite them.
 このような駆動回路1によれば、還流経路を設けるのに必要なダイオードD3の数を減らすことができるので、スイッチトリラクタンスモータ3の駆動性能を維持しつつ、製造コストの低減を図ることができる、という利点がある。 According to such a drive circuit 1, the number of diodes D3 required to provide the return path can be reduced, so that the manufacturing cost can be reduced while maintaining the drive performance of the switched reluctance motor 3. It has the advantage of being able to do it.
 また、例えば、駆動回路1では、複数のコイルL0は、6つである。3つのアーム10のうちの第1アーム11において、第1半導体スイッチS1とダイオードD3との間には、複数のコイルL0のうちの第1コイルL1が接続され、かつ、第2半導体スイッチS2とダイオードD3との間には、複数のコイルL0のうちの第4コイルL4が接続される。3つのアーム10のうちの第2アーム12において、第1半導体スイッチS1とダイオードD3との間には、複数のコイルL0のうちの第5コイルL5が接続され、かつ、第2半導体スイッチS2とダイオードD3との間には、複数のコイルL0のうちの第2コイルL2が接続される。3つのアーム10のうちの第3アーム13において、第1半導体スイッチS1とダイオードD3との間には、複数のコイルL0のうちの第3コイルL3が接続され、かつ、第2半導体スイッチS2とダイオードD3との間には、複数のコイルL0のうちの第6コイルL6が接続される。 Further, for example, in the drive circuit 1, the number of the plurality of coils L0 is six. In the first arm 11 of the three arms 10, the first coil L1 of the plurality of coils L0 is connected between the first semiconductor switch S1 and the diode D3, and the second semiconductor switch S2 The fourth coil L4 of the plurality of coils L0 is connected to the diode D3. In the second arm 12 of the three arms 10, the fifth coil L5 of the plurality of coils L0 is connected between the first semiconductor switch S1 and the diode D3, and the second semiconductor switch S2 The second coil L2 of the plurality of coils L0 is connected to the diode D3. In the third arm 13 of the three arms 10, the third coil L3 of the plurality of coils L0 is connected between the first semiconductor switch S1 and the diode D3, and the second semiconductor switch S2 The sixth coil L6 of the plurality of coils L0 is connected to the diode D3.
 このような駆動回路1によれば、6相のスイッチトリラクタンスモータ3の駆動性能を維持しつつ、製造コストの低減を図ることができる、という利点がある。 According to such a drive circuit 1, there is an advantage that the manufacturing cost can be reduced while maintaining the drive performance of the 6-phase switched reluctance motor 3.
 また、例えば、駆動回路1では、複数のコイルL0は、中性点N1で互いに接続されている。 Further, for example, in the drive circuit 1, a plurality of coils L0 are connected to each other at a neutral point N1.
 このような駆動回路1によれば、中性点N1を設けずに複数のコイルL0を接続した場合と比較して、駆動回路1の素子数を低減しやすい、という利点がある。 According to such a drive circuit 1, there is an advantage that the number of elements of the drive circuit 1 can be easily reduced as compared with the case where a plurality of coils L0 are connected without providing the neutral point N1.
 また、例えば、駆動回路1では、複数のコイルL0は、閉ループを構成するように互いに接続されている。 Further, for example, in the drive circuit 1, a plurality of coils L0 are connected to each other so as to form a closed loop.
 このような駆動回路1によれば、中性点N1に複数のコイルL0の各々の一端を接続する場合と比較して、中性点N1を設けるスペースを必要とせず、かつ、各コイルL0に流れる電流の自由度が向上する、という利点がある。 According to such a drive circuit 1, a space for providing the neutral point N1 is not required and each coil L0 does not require a space as compared with the case where one end of each of the plurality of coils L0 is connected to the neutral point N1. There is an advantage that the degree of freedom of the flowing current is improved.
 また、例えば、駆動回路1は、3つのアーム10の各々の第1半導体スイッチS1及び第2半導体スイッチS2を制御する制御回路2を更に備える。制御回路2は、6つのコイルL0を順次、電気角60度の間隔で励磁させるように、3つのアーム10の各々の第1半導体スイッチS1及び第2半導体スイッチS2を制御する。 Further, for example, the drive circuit 1 further includes a control circuit 2 for controlling the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10. The control circuit 2 controls the first semiconductor switch S1 and the second semiconductor switch S2 of each of the three arms 10 so as to sequentially excite the six coils L0 at intervals of an electric angle of 60 degrees.
 このような駆動回路1によれば、固定子4に対して回転子5を円滑に回転させやすく、トルクの損失が発生しにくい、という利点がある。 According to such a drive circuit 1, there is an advantage that the rotor 5 can be easily rotated with respect to the stator 4 and torque loss is unlikely to occur.
 また、例えば、駆動回路1では、スイッチトリラクタンスモータ3は、固定子4が有し、複数のコイルL0がそれぞれ取り付けられる複数対の第1突極42と、回転子5が有する複数の第2突極52と、を備える。複数対の第1突極42の数は、6の整数倍であって、複数の第2突極52の数は、5の整数倍である。 Further, for example, in the drive circuit 1, the switched reluctance motor 3 has a plurality of pairs of first salient poles 42, which the stator 4 has and to which a plurality of coils L0 are attached, and a plurality of second poles, which the rotor 5 has. It is provided with a salient pole 52. The number of the first salient poles 42 in a plurality of pairs is an integral multiple of 6, and the number of the plurality of second salient poles 52 is an integral multiple of 5.
 このような駆動回路1によれば、スイッチトリラクタンスモータ3に制動が掛かりにくく、スイッチトリラクタンスモータ3を円滑に回転させやすい、という利点がある。 According to such a drive circuit 1, there is an advantage that braking is hard to be applied to the switched reluctance motor 3 and it is easy to rotate the switched reluctance motor 3 smoothly.
 また、例えば、モータシステム100は、上記の駆動回路1と、電源6からの電力の供給を受けた駆動回路1により駆動されるスイッチトリラクタンスモータ3と、を備える。 Further, for example, the motor system 100 includes the above-mentioned drive circuit 1 and a switched reluctance motor 3 driven by the drive circuit 1 supplied with electric power from the power source 6.
 このようなモータシステム100によれば、還流経路を設けるのに必要なダイオードD3の数を減らすことができるので、スイッチトリラクタンスモータ3の駆動性能を維持しつつ、製造コストの低減を図ることができる、という利点がある。 According to such a motor system 100, the number of diodes D3 required to provide the return path can be reduced, so that the manufacturing cost can be reduced while maintaining the drive performance of the switched reluctance motor 3. It has the advantage of being able to do it.
 また、例えば、スイッチトリラクタンスモータ3は、電源6からの電力の供給を受けた、上記の駆動回路1により駆動される。 Further, for example, the switched reluctance motor 3 is driven by the drive circuit 1 described above, which is supplied with electric power from the power source 6.
 また、例えばスイッチトリラクタンスモータ3は、固定子4と、回転子5と、を備える。固定子4は、複数のコイルL0がそれぞれ取り付けられる複数対の第1突極42を有する。回転子5は、複数の第2突極52を有し、複数のコイルL0の各々に電流を流して励磁させることで回転する。複数のコイルL0は、閉ループを構成するように互いに接続されている。 Further, for example, the switched reluctance motor 3 includes a stator 4 and a rotor 5. The stator 4 has a plurality of pairs of first salient poles 42 to which a plurality of coils L0 are attached. The rotor 5 has a plurality of second salient poles 52, and rotates by passing a current through each of the plurality of coils L0 to excite them. The plurality of coils L0 are connected to each other so as to form a closed loop.
 このようなスイッチトリラクタンスモータ3によれば、中性点N1に複数のコイルL0の各々の一端を接続する場合と比較して、中性点N1を設けるスペースを必要とせず、かつ、各コイルL0に流れる電流の自由度が向上する、という利点がある。 According to such a switched reluctance motor 3, a space for providing the neutral point N1 is not required and each coil is not required as compared with the case where one end of each of the plurality of coils L0 is connected to the neutral point N1. There is an advantage that the degree of freedom of the current flowing through L0 is improved.
 本発明は、例えば電気自動車のトラクションモータ等、機器に搭載されるスイッチトリラクタンスモータを駆動する回路として、利用できる。 The present invention can be used as a circuit for driving a switched reluctance motor mounted on a device such as a traction motor of an electric vehicle.
 100 モータシステム
 1 駆動回路
 10 アーム
 11 第1アーム
 12 第2アーム
 13 第3アーム
 S1 第1半導体スイッチ
 D1 第1回生ダイオード
 S2 第2半導体スイッチ
 D2 第2回生ダイオード
 D3 ダイオード
 1A 比較例の駆動回路
 10A アーム
 11A 第1アーム
 12A 第2アーム
 13A 第3アーム
 14A 第4アーム
 15A 第5アーム
 16A 第6アーム
 S0 半導体スイッチ
 D0 ダイオード
 2 制御回路
 3 スイッチトリラクタンスモータ
 4 固定子
 41 本体
 42 第1突極
 L0 コイル
 L1 第1コイル
 L2 第2コイル
 L3 第3コイル
 L4 第4コイル
 L5 第5コイル
 L6 第6コイル
 N1 中性点
 5 回転子
 51 本体
 52 第2突極
 53 駆動軸
 6 電源
 61 第1入力端
 62 第2入力端
 A1~A8 矢印
100 Motor system 1 Drive circuit 10 Arm 11 1st arm 12 2nd arm 13 3rd arm S1 1st semiconductor switch D1 1st live diode S2 2nd semiconductor switch D2 2nd live diode D3 diode 1A Drive circuit of comparative example 10A arm 11A 1st arm 12A 2nd arm 13A 3rd arm 14A 4th arm 15A 5th arm 16A 6th arm S0 Semiconductor switch D0 Diode 2 Control circuit 3 Switch Tractance motor 4 Steader 41 Main body 42 1st salient pole L0 Coil L1 1st coil L2 2nd coil L3 3rd coil L4 4th coil L5 5th coil L6 6th coil N1 Neutral point 5 Rotor 51 Main body 52 2nd salient pole 53 Drive shaft 6 Power supply 61 1st input end 62 2nd Input end A1 to A8 Arrow

Claims (9)

  1.  電源の第1入力端及び第2入力端に対して並列に接続される3つのアームを備え、
     前記3つのアームの各々は、
     前記第1入力端に接続されて第1回生ダイオードを有する第1半導体スイッチと、
     前記第2入力端に接続されて第2回生ダイオードを有する第2半導体スイッチと、
     前記第1半導体スイッチと前記第2半導体スイッチとの間に接続されるダイオードと、の直列回路で構成され、
     前記3つのアームの各々には、スイッチトリラクタンスモータの固定子が有する複数のコイルが接続可能であり、前記複数のコイルの各々に電流を流して励磁させることにより、前記スイッチトリラクタンスモータの回転子を回転させる、
     駆動回路。
    It has three arms connected in parallel to the first and second input ends of the power supply.
    Each of the three arms
    A first semiconductor switch connected to the first input terminal and having a first regenerative diode,
    A second semiconductor switch connected to the second input end and having a second regenerative diode,
    It is composed of a series circuit of a diode connected between the first semiconductor switch and the second semiconductor switch.
    A plurality of coils of the stator of the switched reluctance motor can be connected to each of the three arms, and the switched reluctance motor is rotated by applying an electric current to each of the plurality of coils to excite them. Rotate the child,
    Drive circuit.
  2.  前記複数のコイルは、6つであって、
     前記3つのアームのうちの第1アームにおいて、前記第1半導体スイッチと前記ダイオードとの間には、前記複数のコイルのうちの第1コイルが接続され、かつ、前記第2半導体スイッチと前記ダイオードとの間には、前記複数のコイルのうちの第4コイルが接続され、
     前記3つのアームのうちの第2アームにおいて、前記第1半導体スイッチと前記ダイオードとの間には、前記複数のコイルのうちの第5コイルが接続され、かつ、前記第2半導体スイッチと前記ダイオードとの間には、前記複数のコイルのうちの第2コイルが接続され、
     前記3つのアームのうちの第3アームにおいて、前記第1半導体スイッチと前記ダイオードとの間には、前記複数のコイルのうちの第3コイルが接続され、かつ、前記第2半導体スイッチと前記ダイオードとの間には、前記複数のコイルのうちの第6コイルが接続される、
     請求項1に記載の駆動回路。
    The plurality of coils is six,
    In the first arm of the three arms, the first coil of the plurality of coils is connected between the first semiconductor switch and the diode, and the second semiconductor switch and the diode are connected. The fourth coil of the plurality of coils is connected to and from.
    In the second arm of the three arms, the fifth coil of the plurality of coils is connected between the first semiconductor switch and the diode, and the second semiconductor switch and the diode are connected. The second coil of the plurality of coils is connected to and from.
    In the third arm of the three arms, the third coil of the plurality of coils is connected between the first semiconductor switch and the diode, and the second semiconductor switch and the diode are connected. The sixth coil of the plurality of coils is connected between the coil and the coil.
    The drive circuit according to claim 1.
  3.  前記複数のコイルは、中性点で互いに接続されている、
     請求項2に記載の駆動回路。
    The plurality of coils are connected to each other at a neutral point.
    The drive circuit according to claim 2.
  4.  前記複数のコイルは、閉ループを構成するように互いに接続されている、
     請求項2に記載の駆動回路。
    The plurality of coils are connected to each other so as to form a closed loop.
    The drive circuit according to claim 2.
  5.  前記3つのアームの各々の前記第1半導体スイッチ及び前記第2半導体スイッチを制御する制御回路を更に備え、
     前記制御回路は、前記6つのコイルを順次、電気角60度の間隔で励磁させるように、前記3つのアームの各々の前記第1半導体スイッチ及び前記第2半導体スイッチを制御する、
     請求項2~4のいずれか1項に記載の駆動回路。
    Further, a control circuit for controlling the first semiconductor switch and the second semiconductor switch of each of the three arms is provided.
    The control circuit controls the first semiconductor switch and the second semiconductor switch of each of the three arms so as to sequentially excite the six coils at intervals of 60 degrees of electrical angle.
    The drive circuit according to any one of claims 2 to 4.
  6.  前記スイッチトリラクタンスモータは、
     前記固定子が有し、前記複数のコイルがそれぞれ取り付けられる複数対の第1突極と、
     前記回転子が有する複数の第2突極と、を備え、
     前記複数対の第1突極の数は、6の整数倍であって、
     前記複数の第2突極の数は、5の整数倍である、
     請求項1~5のいずれか1項に記載の駆動回路。
    The switched reluctance motor is
    A plurality of pairs of first salient poles possessed by the stator and to which the plurality of coils are attached, respectively.
    With a plurality of second salient poles of the rotor,
    The number of the first salient poles of the plurality of pairs is an integral multiple of 6.
    The number of the plurality of second salient poles is an integral multiple of 5.
    The drive circuit according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか1項に記載の駆動回路と、
     前記電源からの電力の供給を受けた前記駆動回路により駆動される前記スイッチトリラクタンスモータと、を備える、
     モータシステム。
    The drive circuit according to any one of claims 1 to 6.
    The switched reluctance motor, which is driven by the drive circuit supplied with electric power from the power source, is provided.
    Motor system.
  8.  前記電源からの電力の供給を受けた、請求項1~6のいずれか1項に記載の駆動回路により駆動される、
     スイッチトリラクタンスモータ。
    The drive circuit according to any one of claims 1 to 6, which is supplied with electric power from the power source.
    Switched reluctance motor.
  9.  複数のコイルがそれぞれ取り付けられる複数対の第1突極を有する固定子と、
     複数の第2突極を有し、前記複数のコイルの各々に電流を流して励磁させることで回転する回転子と、を備え、
     前記複数のコイルは、閉ループを構成するように互いに接続されている、
     スイッチトリラクタンスモータ。
    A stator with multiple pairs of first salient poles to which multiple coils are attached, and
    It has a plurality of second salient poles, and includes a rotor that rotates by passing an electric current through each of the plurality of coils to excite them.
    The plurality of coils are connected to each other so as to form a closed loop.
    Switched reluctance motor.
PCT/JP2021/037863 2020-11-26 2021-10-13 Drive circuit, motor system, and switched reluctance motor WO2022113550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022565104A JPWO2022113550A1 (en) 2020-11-26 2021-10-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020195652 2020-11-26
JP2020-195652 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022113550A1 true WO2022113550A1 (en) 2022-06-02

Family

ID=81754249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037863 WO2022113550A1 (en) 2020-11-26 2021-10-13 Drive circuit, motor system, and switched reluctance motor

Country Status (2)

Country Link
JP (1) JPWO2022113550A1 (en)
WO (1) WO2022113550A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203722450U (en) * 2014-01-26 2014-07-16 北京中纺锐力机电有限公司 Six-phase switch reluctance motor system
CN110798121A (en) * 2019-10-22 2020-02-14 华中科技大学 Thyristor-based magnetic field modulation switched reluctance motor driving system and control method
CN111525847A (en) * 2020-05-21 2020-08-11 华中科技大学 Magnetic field modulation driving topology of dual-channel switched reluctance motor and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203722450U (en) * 2014-01-26 2014-07-16 北京中纺锐力机电有限公司 Six-phase switch reluctance motor system
CN110798121A (en) * 2019-10-22 2020-02-14 华中科技大学 Thyristor-based magnetic field modulation switched reluctance motor driving system and control method
CN111525847A (en) * 2020-05-21 2020-08-11 华中科技大学 Magnetic field modulation driving topology of dual-channel switched reluctance motor and control method thereof

Also Published As

Publication number Publication date
JPWO2022113550A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US7675254B2 (en) Electric drive for a vehicle
JP6262336B2 (en) Modular multiphase motor
US20110241599A1 (en) System including a plurality of motors and a drive circuit therefor
JP5916201B2 (en) Switched reluctance motor controller
US20120175997A1 (en) Switched reluctance motor
KR20130067218A (en) Motor
JP6723349B2 (en) Permanent magnet type motor
CN102934352B (en) For running method and the control device of three-phase brushless DC motor
US20050007043A1 (en) Brushless dc motor and circuit for controlling the same
JP6287602B2 (en) Switched reluctance motor control system
WO2022113550A1 (en) Drive circuit, motor system, and switched reluctance motor
JP2017225203A (en) Switched reluctance motor drive system
US20080030157A1 (en) High steps brushless dc (bldc) motor
US10027252B2 (en) Rotating electric machine system
JP2013042574A (en) Permanent magnet type rotating electrical machine
JP5325513B2 (en) Switched reluctance motor and switched reluctance motor device
JP2002034300A (en) Control circuit of sr generator
CN111684709B (en) Driving device for rotary electric machine
US20170346435A1 (en) Motor apparatus comprising at least twelve coils
US20230198452A1 (en) Power conversion apparatus, motor, and electric power steering apparatus
JP2007318977A (en) Electric motor
US7358692B2 (en) Alignment method
JP6874765B2 (en) Motor control device, in-vehicle motor control device and in-vehicle motor system
JP4140105B2 (en) Inverter device
JP5228383B2 (en) Driver circuit and electric motor provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897528

Country of ref document: EP

Kind code of ref document: A1