WO2022113512A1 - Excess pressure protection device for nuclear reactor housing vessel - Google Patents

Excess pressure protection device for nuclear reactor housing vessel Download PDF

Info

Publication number
WO2022113512A1
WO2022113512A1 PCT/JP2021/035764 JP2021035764W WO2022113512A1 WO 2022113512 A1 WO2022113512 A1 WO 2022113512A1 JP 2021035764 W JP2021035764 W JP 2021035764W WO 2022113512 A1 WO2022113512 A1 WO 2022113512A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pool
reactor
protection device
containment vessel
Prior art date
Application number
PCT/JP2021/035764
Other languages
French (fr)
Japanese (ja)
Inventor
智彦 池側
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2022113512A1 publication Critical patent/WO2022113512A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • Patent Document 2 by using static equipment that does not require an AC power supply, water injection into the reactor can be realized only by controlling a valve that can be operated by a DC power supply (battery), and the core is damaged. Can be prevented.
  • the technique described in Patent Document 2 does not have a function of preventing overpressure damage of the reactor storage container, and in order to prevent overpressure damage of the reactor storage container, the technique described in the above-mentioned Patent Document 1 is used. It is necessary to add additional equipment to prevent overpressure damage to the reactor storage container.
  • FIG. 1 is a system system diagram showing the configuration of the overpressure protection device 100 of the reactor containment vessel 4 according to the first embodiment.
  • the emergency condenser 5 is immersed in the cooling water (pool water) of the emergency condenser pool 9 (IC pool).
  • the emergency condenser start valve 8 is automatically started by a high pressure signal inside the reactor pressure vessel 1, a low water level signal inside the reactor pressure vessel 1, etc., and is automatically opened even when the power is lost. Because it is designed, it is a facility with extremely high start-up reliability.
  • the emergency condenser 5 can condense the water vapor of the reactor pressure vessel 1, water is injected into the reactor pressure vessel 1 from an external water source (water pool or the like) of the reactor storage vessel 4. You can't do it.
  • the internal pressure of the reactor pressure vessel 1 is higher than the internal pressure of the reactor building 10. Therefore, the gas generated in the reactor pressure vessel 1 enters the emergency condenser 5 via the steam intake pipe 6 and the condensed water return pipe 7, and passes through the emergency condenser 5 to the lower header vent pipe. It is discharged from the 17a and the upper header vent pipe 17b into the emergency condenser pool 9. Therefore, at the initial stage of LOCA generation, both the lower header vent pipe 17a and the upper header vent pipe 17b use the gas generated in the reactor pressure vessel 1 as the cooling water (pool water) of the emergency condenser pool 9. Functions as a gas discharge line to discharge.
  • the lower header vent pipe 17a is arranged at a position lower (deeper in water) than the upper header vent pipe 17b in the emergency condenser pool 9. Therefore, one end (opening) of the lower header vent pipe 17a is subjected to a higher water pressure than one end (opening) of the upper header vent pipe 17b.
  • the cooling water (pool water) of the emergency water return device pool 9 flows into the lower header vent pipe 17a, and from the emergency water return device pool 9 to the reactor via the lower header 16 and the condensed water return pipe 7. It is sent to the pressure vessel 1. That is, the cooling water (pool water) of the emergency condenser pool 9 is supplied to the reactor pressure vessel 1.
  • the lower header vent pipe 17a functions as a cooling water supply line for supplying the cooling water (pool water) of the emergency condenser pool 9 to the reactor pressure vessel 1. do.
  • the upper header vent pipe 17b remains functioning as a gas discharge line.
  • the overpressure protection device 100A removes gas (steam containing radioactive substances) from the reactor pressure vessel 1 at the upper header vent pipe 17b, and atomizes from the emergency water condenser pool 9 at the lower header vent pipe 17a. Since the cooling water is supplied (injected) to the reactor pressure vessel 1, water can be quickly injected into the reactor pressure vessel 1.
  • the reactor pressure vessel 1 is further degassed, and the internal pressure of the reactor pressure vessel 1 further decreases. Then, when the internal pressure of the reactor pressure vessel 1 becomes lower than the pressure applied to one end (opening) of the upper header vent pipe 17b, not only the lower header vent pipe 17a but also the emergency water recovery device pool 9
  • the upper header vent pipe 17b which is located higher than the lower header vent pipe 17a inside, is also a cooling water supply line that supplies the cooling water (pool water) of the emergency water recovery device pool 9 to the reactor pressure vessel 1. Functions as.
  • the emergency condenser 5 foams gas on one end of the upper header vent pipe 17b and one end of the lower header vent pipe 17a. It also has dynamic load suppressing devices 19a and 19b for discharging into the water of the emergency condenser pool 9.
  • the dynamic load suppressing devices 19a and 19b for example, a quencher for miniaturizing water vapor bubbles or the like can be used.
  • the dynamic load suppressing devices 19a and 19b are provided at one end (opening) of the lower header vent pipe 17a and the upper header vent pipe 17b.
  • the dynamic load suppressing devices 19a and 19b atomize the gas discharged to the emergency condenser pool 9 into bubbles.
  • the overpressure protection device 100A suppresses the dynamic load applied to the structure (wall or floor) of the emergency water return device pool 9 and becomes the structure (wall or floor) of the emergency water return device pool 9. You can reduce the damage done.
  • the overpressure protection device 100A according to the present embodiment can improve the following points as compared with the overpressure protection device 100 (see FIG. 1) according to the first embodiment.
  • the system configuration is simple because the water vapor is released from the reactor pressure vessel 1 and the cooling water is injected into the reactor pressure vessel 1 via one line (lower header vent pipe 17a). However, it takes a certain amount of time for the amount of water vapor discharged from the lower header vent pipe 17a to be sufficiently reduced, the gas-liquid countercurrent state to be realized, and the water injection into the reactor pressure vessel 1 to start.
  • the dynamic load suppressing devices 19a and 19b are installed in the openings of the lower header vent pipe 17a and the upper header vent pipe 17b on the emergency condenser pool 9 side. Therefore, immediately after opening the lower header vent valve 18a and the upper header vent valve 18b, the high flow rate of steam discharged from the reactor pressure vessel 1 is emergency through the lower header vent pipe 17a and the upper header vent pipe 17b. It is possible to suppress the dynamic load applied to the structure (wall or floor) of the emergency condenser pool 9 when it is discharged into the cooling water of the condenser pool 9. Thereby, the overpressure protection device 100A according to the present embodiment can reduce the possibility of physical damage to the emergency condenser pool 9.
  • the overpressure protection device 100A has a higher reliability of the function of preventing damage to the core 2 by accelerating the timing of starting water injection into the reactor pressure vessel 1 as compared with the first embodiment. It is possible to improve the reliability of damage prevention of the emergency condenser pool 9 by suppressing the dynamic load when the water vapor of the reactor pressure vessel 1 is discharged into the cooling water of the emergency condenser pool 9. can.
  • the overpressure protection device 100B collects particulate radioactive substances on the path for discharging the gas generated in the reactor pressure vessel 1 to the atmosphere.
  • the collection filter 12 is provided.
  • a charcoal filter can be used as the collection filter 12.
  • the overpressure protection device 100B according to the present embodiment can improve the following points as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment.
  • the overpressure protection device 100A according to the second embodiment immediately after opening the lower header vent valve 18a and the upper header vent valve 18b, steam of the reactor pressure vessel 1 passes through the lower header vent pipe 17a and the upper header vent pipe 17b. It is discharged into the cooling water of the emergency condenser pool 9. Therefore, the overpressure protection device 100A according to the second embodiment improves the reliability of damage prevention of the emergency condenser pool 9 by installing the dynamic load suppression devices 19a and 19b at the tips of the respective pipes. ing.
  • the overpressure protection device 100B does not require the dynamic load suppressing devices 19a and 19b at the tip of each pipe, and can simplify the equipment configuration.
  • the overpressure protection device 100B since the water vapor of the reactor pressure vessel 1 is directly discharged into the internal space of the reactor building 10, the scrubbing effect of the cooling water of the emergency condenser pool 9 (Effect of removing radioactive substances) cannot be expected. Therefore, in the overpressure protection device 100B according to the present embodiment, by installing a collection filter 12 for removing particulate radioactive substances on the gas exhaust line 11, the gas is released into the internal space of the reactor building 10. The radioactive material is not released to the outside (atmosphere) of the reactor building 10 as much as possible.
  • the overpressure protection device 100B requires the addition of a collection filter 12 as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment, but is an atom.
  • a collection filter 12 As described above, the overpressure protection device 100B according to the present embodiment requires the addition of a collection filter 12 as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment, but is an atom.
  • FIG. 4 is a system system diagram showing the configuration of the overpressure protection device 100C according to the fourth embodiment.
  • the overpressure protection device 100C according to the fourth embodiment is different from the overpressure protection device 100A (see FIG. 2) according to the second embodiment in the following points.
  • a collection filter 12 for removing particulate radioactive substances is installed on the gas exhaust line 11.
  • An emergency condenser pool 9 is provided with cooling water replenishment means 40 as equipment for replenishing cooling water.
  • the cooling water replenishing means 40 replenishes the emergency water replenisher pool 9 with the replenishment water pool 21 for storing the cooling water to be replenished with the emergency water condensate pool 9.
  • a backflow of cooling water from the make-up water pool 21 to the make-up water pool 21 arranged on the path of the make-up water pipe 23 connecting the water pool 21 and the emergency water return device pool 9 is provided. It has a make-up water pipe check valve 24 to prevent.
  • the overpressure protection device 100C when the cooling water of the emergency water recovery device pool 9 decreases when the LOCA occurs, the overpressure protection device 100C has a head of the cooling water of the emergency water recovery device pool 9 and the make-up water of the make-up water pool 21. Water flows from the make-up water pool 21 to the emergency water return device pool 9 due to the difference in pressure.
  • Such an overpressure protection device 100C can supply water from the make-up water pool 21 to the emergency condenser pool 9 by storing water (make-up water) in the make-up water pool 21.
  • the overpressure protection device 100C supplies water to the make-up water pool 21 to inject cooling water from the outside of the reactor building 10 into the emergency condenser pool 9 and the inside of the reactor pressure vessel 1. be able to.
  • the cooling water (pool water) of the emergency condenser pool 9 is the lower header vent pipe 17a, although it depends on the amount of water stored in the emergency condenser pool 9.
  • the amount of water in the emergency condenser pool 9 may decrease, and the emergency condenser 5 and the upper header vent pipe 17b may be exposed on the water surface. ..
  • the scrubbing effect of the cooling water of the emergency condenser pool 9 cannot be expected, and although the amount is small, the radioactive material inside the reactor pressure vessel 1 is contained in the reactor building 10.
  • the overpressure protection device 100C when the water level of the emergency condenser pool 9 drops, the water depth difference (water head pressure difference) between the emergency condenser pool 9 and the make-up water pool 21 is increased. As a driving force, the cooling water of the make-up water pool 21 is automatically supplied to the emergency condenser pool 9 via the make-up water pipe 23. As a result, the overpressure protection device 100C according to the present embodiment prevents the upper header vent pipe 17b from being exposed on the water surface, and maintains the scrubbing effect of the radioactive material by the cooling water of the emergency condenser pool 9. Can be done.
  • the overpressure protection device 100C by arranging the make-up water pool 21 outside the reactor building 10 having good accessibility, cooling water can be replenished to the make-up water pool 21 by a fire truck or the like. Since it is easy, the scrubbing effect of the radioactive substance can be stably obtained for a long period of time.
  • the overpressure protection device 100C is provided with the make-up water pipe check valve 24 on the path of the make-up water pipe 23, so that the cooling water of the emergency condenser pool 9 containing a small amount of radioactive material is replenished. It is possible to prevent the water from flowing out to the water pool 21 side.
  • the overpressure protection device 100C since the scrubbing effect is maintained, almost all of the small amount of radioactive material released from the reactor pressure vessel 1 is held in the cooling water of the emergency condenser pool 9. However, the radioactive material released to the reactor building 10 that could not be completely removed due to the scrubbing effect is collected by the collection filter 12 before being discharged from the stack 13 via the gas exhaust line 11. (Remove. As a result, the overpressure protection device 100C according to the present embodiment can further reduce the amount of radioactive substances released to the outside of the reactor building 10 as compared with the overpressure protection device 100A according to the second embodiment.
  • the overpressure protection device 100C is provided with a make-up water pool 21 which is easier to replenish the cooling water than the second embodiment by providing the make-up water pool 21 outside the reactor building 10. Since the water level of the water reactor pool 9 can be maintained higher than that of the upper header vent pipe 17b, the scrubbing effect of radioactive substances by the cooling water of the emergency water reactor pool 9 can be continuously obtained, and it is removed by the scrubbing effect. Since the particulate radioactive substances that could not be removed can be collected (removed) by the collection filter 12, the amount of radioactive substances released to the outside of the reactor building 10 can be further reduced over a long period of time. ..
  • the make-up water pool 21 can also be installed inside the reactor building 10. In this case, the make-up water pipe check valve 24 becomes unnecessary.
  • FIG. 5 is a system system diagram showing the configuration of the overpressure protection device 100D according to the fifth embodiment.
  • the overpressure protection device 100D according to the fifth embodiment is cooled to the emergency condenser pool 9 as compared with the overpressure protection device 100C (see FIG. 4) according to the fourth embodiment.
  • the difference is that the equipment for replenishing water is provided with the cooling water replenishing means 40D instead of the cooling water replenishing means 40.
  • the bottom surface of the make-up water pool 21 is arranged at a position lower than the bottom surface of the emergency condenser pool 9.
  • the overpressure protection device 100D replenishes the water assembled from the make-up water pool 21 by the make-up water pump 22 to the emergency condenser pool 9 when LOCA occurs.
  • the make-up water pool 21 can be installed at a place lower than the emergency condenser pool 9. A place lower than the emergency condenser pool 9 can easily secure a relatively large area. Therefore, the overpressure protection device 100D can increase the capacity of the make-up water pool 21.
  • the make-up water pump 22 may be a permanent pump or a portable pump such as a fire engine.
  • FIG. 6 is a system system diagram showing the configuration of the overpressure protection device 100E according to the sixth embodiment.
  • the overpressure protection device 100E according to the sixth embodiment is different from the overpressure protection device 100A according to the second embodiment (see FIG. 2) in the following points.
  • a membrane filter (noble gas filter 25) that blocks radioactive rare gas and allows water vapor to permeate is installed in the opening of the gas exhaust line 11 on the reactor building 10 side.
  • a static catalytic hydrogen recombination device 26 (PAR) is provided inside the reactor building 10 as a power supply-free facility for recombining hydrogen and oxygen to prevent a hydrogen explosion.
  • the overpressure protection device 100E includes a rare gas filter 25 that blocks radioactive rare gas and permeates water vapor on the path for discharging the gas generated in the reactor pressure vessel 1 to the atmosphere.
  • the overpressure protection device 100E is arranged in the reactor building 10 including the reactor containment vessel 4, and is a static catalytic hydrogen regeneration for recombining hydrogen and oxygen.
  • a coupling device 26 is provided.
  • the static catalytic hydrogen recombination device 26 does not require a power source and can bond hydrogen and oxygen by the action of a catalyst.
  • Such an overpressure protection device 100E according to the present embodiment can improve the following points as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment.
  • damage to the core 2 can be prevented by injecting the cooling water of the emergency condenser pool 9 into the reactor pressure vessel 1 via the lower header vent pipe 17a. Is. However, in the unlikely event that the decompression of the reactor pressure vessel 1 and the injection of the cooling water of the emergency water recovery device pool 9 are delayed and the core 2 is damaged, it is confined inside the fuel rod loaded in the core 2.
  • the volatile fission products (Cs, etc.) and radioactive rare gas (Xe, etc.) that had been collected are discharged into the reactor pressure vessel 1, and at the same time, Zircaloy and high-temperature steam used as the cladding tube of the fuel rods. Hydrogen gas is generated inside the reactor pressure vessel 1 by the chemical reaction of.
  • the overpressure protection device 100E according to the present embodiment is volatile due to damage to the core 2 as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment. Even if a situation occurs in which radioactive radioactive substances, radioactive rare gases, hydrogen, etc. are released to the reactor building 10 via the emergency water recovery device pool 9, the volatileness of the cooling water of the emergency water recovery device pool 9 occurs. It is possible to obtain the scrubbing effect of the radioactive substance, the hydrogen removing effect by the static catalytic hydrogen recombination device 26, and the confinement effect of the radioactive rare gas in the reactor building 10 by the rare gas filter 25. Therefore, the overpressure protection device 100E according to the present embodiment can reduce the possibility of hydrogen explosion inside the reactor building 10 and reduce the amount of radioactive substances released to the outside of the reactor building 10. .
  • FIG. 7 is a system system diagram showing the configuration of the overpressure protection device 100F according to the seventh embodiment.
  • the overpressure protection device 100F according to the seventh embodiment is different from the overpressure protection device 100A (see FIG. 2) according to the second embodiment in the following points.
  • the emergency condenser pool 9a has an airtight structure isolated from the reactor building 10.
  • a gas exhaust line 11, a stack 13, and an emergency vent valve 27 for discharging the gas of the gas phase portion 30 of the emergency condenser pool 9a to the outside of the reactor building 10 in an emergency are provided.
  • the emergency condenser pool 9a is a closed space having airtightness, and is discharged from the reactor pressure vessel 1 to the emergency condenser pool 9a. It is possible to confine water vapor containing some radioactive substances in a closed space. Therefore, it is possible to completely prevent the release of radioactive substances to the outside. However, in the unlikely event that the core is damaged, a large amount of gas containing hydrogen is discharged from the reactor pressure vessel 1 to the emergency condenser pool 9a, which may cause overpressure damage to the emergency condenser pool 9a. If so, the overpressure protection device 100F is configured to discharge the gas in the emergency condenser pool 9a to the atmosphere along the gas exhaust line 11 via the stack 13. Therefore, an emergency vent valve 27 that is opened in an emergency is arranged on the gas exhaust line 11.
  • the emergency condenser pool 9a may be arranged inside the reactor building 10 or outside the reactor building 10. That is, the reactor building 10 may be configured such that the emergency condenser pool 9a is arranged inside as shown by the alternate long and short dash line, or the emergency condenser pool 9a may be arranged on the outside as shown by the alternate long and short dash line.
  • the condenser pool 9a may be configured to be arranged.
  • the overpressure protection device 100F according to the present embodiment can improve the following points as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment.
  • the overpressure protection device 100A In the overpressure protection device 100A according to the second embodiment, a very small amount of radioactive material after being scrubbed by the cooling water of the emergency condenser pool 9a is released to the reactor building 10, and one of the very small amount of radioactive material.
  • the unit is discharged from the stack 13 to the outside of the reactor building 10 via the gas exhaust line 11 connected to the reactor building 10.
  • the emergency condenser pool 9a has an airtight structure, so that even a very small amount of radioactive material can be used in the gas phase portion of the emergency condenser pool 9a. It can be stored in 30.
  • the overpressure protection device 100F according to the present embodiment can almost completely prevent the discharge of radioactive substances to the outside of the reactor building 10.
  • the overpressure protection device 100F according to the present embodiment is damaged by overpressure of the emergency condenser pool 9a by sufficiently securing the space volume of the gas phase portion 30 of the emergency condenser pool 9a. Can be prevented. Then, in the overpressure protection device 100F according to the present embodiment, there is a possibility that the pressure of the gas phase portion 30 of the emergency water recovery device pool 9a will exceed the maximum working pressure of the emergency water recovery device pool 9a. If there is, by opening the emergency vent valve 27, the gas in the gas phase portion 30 of the emergency water return device pool 9a is discharged to the outside of the reactor building 10 via the gas exhaust line 11 and the stack 13. Can be done. Thereby, the overpressure protection device 100F according to the present embodiment can prevent the overpressure damage of the emergency condenser pool 9a by any chance.
  • the radioactive substances can be discharged to the outside of the reactor building 10 by using a separate airtight tank instead of the emergency condenser pool 9a as the opening of the lower header vent pipe 17a and the upper header vent pipe 17b. Can be completely prevented.
  • the overpressure protection device 100F according to the present embodiment can realize the same effect with a simpler configuration than such a configuration.
  • the overpressure protection device 100F has an atom by accumulating a very small amount of radioactive material in the gas phase portion 30 of the emergency condenser pool 9a as compared with the second embodiment. It is possible to almost completely prevent the discharge of radioactive substances to the outside of the reactor building 10.
  • the overpressure protection device 100F there is a possibility that the pressure of the gas phase portion 30 of the emergency water recovery device pool 9a will exceed the maximum working pressure of the emergency water recovery device pool 9a. If there is, by opening the emergency vent valve 27, the gas in the gas phase portion 30 of the emergency water return device pool 9a is discharged to the outside of the reactor building 10 via the gas exhaust line 11 and the stack 13. You can also.
  • FIG. 8 is a system system diagram showing the configuration of the overpressure protection device 100G according to the eighth embodiment.
  • the overpressure protection device 100G according to the eighth embodiment is in emergency use via the gas return line 28 as compared with the overpressure protection device 100F (see FIG. 7) according to the seventh embodiment.
  • the difference is that the gas phase portion 30 of the condenser pool 9a and the reactor containment vessel 4 are connected.
  • the overpressure protection device 100G connects the gas phase portion 30 of the emergency condenser pool 9a and the reactor storage container 4, and is inside the gas phase portion 30 of the emergency condenser pool 9a.
  • the gas return line 28 for returning the gas to the reactor storage container 4 and the gas return valve 29 arranged on the path of the gas return line 28 and opening and closing the gas return line are provided.
  • the overpressure protection device 100G according to the present embodiment has a gas return valve 29 installed on the gas return line 28.
  • the overpressure protection device 100G according to the present embodiment is, for example, a dynamic heat removal facility for the reactor containment vessel 4 after a sufficient time has passed since the occurrence of an accident outside the design standard.
  • the gas return valve 29 is opened to open the gas phase of the emergency water return device pool 9a.
  • the gas containing a small amount of radioactive material accumulated in the unit 30 can be returned to the reactor containment vessel 4 via the gas return line 28.
  • the overpressure protection device 100G according to the present embodiment can further reduce the possibility of overpressure damage of the emergency condenser pool 9a.
  • the overpressure protection device 100G does not have to open the emergency vent valve 27.
  • Such an overpressure protection device 100G can reduce the amount of gas released into the atmosphere, and thus the amount of radioactive substances.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is possible to replace a part of the configuration of the embodiment with another configuration, and it is also possible to add another configuration to the configuration of the embodiment. Further, it is possible to add / delete / replace a part of each configuration with another configuration.
  • FIG. 9 is a system system diagram showing a configuration of a modified example of the overpressure protection device 100 according to the first embodiment.
  • the overpressure protection device 100 can obtain the same effect even in the case of an accident outside the design standard of another type of boiling water reactor having a different safety system configuration.
  • the overpressure protection device 100 is installed instead of the emergency core cooling system on the reactor pressure vessel 1 side of the LOCA break port and as close as possible to the reactor pressure vessel 1.
  • the same effect can be obtained even when applied to a boiling water type light water reactor (reactor pressure vessel isolation type plant) provided with an RPV isolation valve 31 directly attached to the reactor pressure vessel 1.
  • the overpressure protection device 100 activates the emergency water recovery device 5 triggered by a high pressure signal inside the reactor pressure vessel 1, a low water level signal inside the reactor pressure vessel 1, or the like, and activates the reactor pressure vessel.
  • the water vapor inside 1 is condensed and returned to water.
  • the overpressure protection device 100 suppresses the pressure rise inside the reactor pressure vessel 1 and returns the condensed water to the reactor pressure vessel 1 to prevent damage to the core 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

An excess pressure protection device (100) comprises: an emergency condenser (5) that is positioned outside of a nuclear reactor housing vessel (4) housing a nuclear reactor pressure vessel (1) therein, and causes steam produced in a reactor core to cool, condense, and revert to water; and an emergency condenser pool (9) that immerses the emergency condenser in water. The emergency condenser has a plurality of heat transmission pipes (15), an upper section header (14) that brings the upper end sides of the heat transmission pipes together, a lower section header (16) that brings the lower end sides of the heat transmission pipes together, a lower section header vent pipe (17a), one end section thereof being positioned near a bottom section within the emergency condenser pool and the other end section thereof being connected to the lower section header, and a lower section header vent (18a) that is positioned on the path of the lower section header vent pipe and is released when there is a decrease in water level that surpasses expectation within the nuclear reactor pressure vessel, or when there is an increase in pressure that surpasses expectation within the nuclear reactor housing vessel.

Description

原子炉格納容器の過圧防護装置Overpressure protection device for reactor containment vessel
 本発明は、冷却材喪失事故(LOCA;loss-of-coolant accident)発生時において、非常用炉心冷却系が機能喪失したとしても、炉心の損傷や原子炉格納容器の過圧破損の防止を可能とする原子炉格納容器の過圧防護装置に関する。 INDUSTRIAL APPLICABILITY The present invention can prevent damage to the core and overpressure damage to the reactor containment vessel even if the emergency core cooling system loses its function in the event of a loss-of-coolant accident (LOCA). Regarding the overpressure protection device for the reactor containment vessel.
 万一、主蒸気管破断事故等の冷却材喪失事故(LOCA)が発生すると、原子炉圧力容器内の炉心を冷却する際に発生する水蒸気が配管の破断部を介して原子炉格納容器内に流入し、原子炉格納容器内の圧力が上昇する。 In the unlikely event of a loss of cooling material accident (LOCA) such as a main steam pipe breakage accident, the steam generated when cooling the core inside the reactor pressure vessel enters the reactor containment vessel via the breakage part of the pipe. It flows in and the pressure inside the reactor containment vessel rises.
 原子炉格納容器の過圧破損を防止するため、例えば沸騰水型軽水炉(BWR;Boiling Water Reactor)では、サイズが小さい、ウェット式の原子炉格納容器が採用されている。ウェット式の原子炉格納容器は、原子炉格納容器の内部を冷却材のないドライウェル領域と冷却材を蓄える圧力抑制室とに2分割し、冷却水(プール水)が充填された圧力抑制プールを液相部として圧力抑制室内に備えている。そして、ウェット式の原子炉格納容器は、ドライウェル領域の気相部と圧力抑制室の液相部(圧力抑制プール)とを複数本のベント管で接続している。 In order to prevent overpressure damage to the reactor containment vessel, for example, in a boiling water reactor (BWR; Boiling Water Reactor), a small-sized wet reactor containment vessel is adopted. The wet reactor containment vessel is a pressure suppression pool filled with cooling water (pool water) by dividing the inside of the reactor containment vessel into a drywell area without cooling material and a pressure suppression chamber for storing cooling material. Is provided in the pressure suppression chamber as a liquid phase part. In the wet reactor containment vessel, the gas phase portion of the drywell region and the liquid phase portion (pressure suppression pool) of the pressure suppression chamber are connected by a plurality of vent pipes.
 ウェット式の原子炉格納容器では、LOCA発生時にドライウェル領域に放出される水蒸気は、ドライウェル領域と圧力抑制室との圧力差を駆動力としてベント管を介して圧力抑制室内の圧力抑制プールに流入する。ウェット式の原子炉格納容器は、水蒸気を圧力抑制プールに充填されたプール水で凝縮させることで、原子炉格納容器内の圧力の上昇を効率よく抑制できる。 In the wet reactor containment vessel, the water vapor released into the drywell region when LOCA occurs is driven by the pressure difference between the drywell region and the pressure suppression chamber into the pressure suppression pool in the pressure suppression chamber via the vent pipe. Inflow. In the wet type containment vessel, the increase in pressure in the reactor containment vessel can be efficiently suppressed by condensing water vapor with pool water filled in the pressure suppression pool.
 また、万一、LOCAが継続した場合に、原子炉圧力容器から水蒸気が流出するため、原子炉圧力容器内の水位が低下するが、非常用炉心冷却系による注水で水位を回復させることができるため、炉心の損傷を防止できる。
 また、原子炉格納容器内の圧力抑制プールに水蒸気が流入し続けることで、圧力抑制プールの水温や原子炉格納容器内の圧力が上昇するが、非常用炉心冷却系の一つである残留熱除去系を用いて圧力抑制プール水を除熱することにより、圧力抑制プール水温及び原子炉格納容器内の圧力を減少させることができ、その結果、原子炉格納容器の過圧破損を防止できる。
In addition, if LOCA continues, water vapor will flow out from the reactor pressure vessel, so the water level inside the reactor pressure vessel will drop, but the water level can be restored by injecting water using the emergency core cooling system. Therefore, damage to the core can be prevented.
In addition, as steam continues to flow into the pressure suppression pool inside the reactor containment vessel, the water temperature in the pressure suppression pool and the pressure inside the reactor containment vessel rise, but residual heat, which is one of the emergency core cooling systems, rises. By removing the heat from the pressure suppression pool water using the removal system, the pressure suppression pool water temperature and the pressure in the reactor containment vessel can be reduced, and as a result, overpressure damage of the reactor containment vessel can be prevented.
 しかしながら、極めて稀な事象ではあるが、LOCA発生時に全ての非常用炉心冷却系が機能を喪失してしまうことが考えられる。このような、設計基準を超える事故(設計基準外事故)が発生したとしても、重大事故(炉心損傷を伴う事故)への事故進展を防止するために、現行のBWRでは、重大事故等対処設備である低圧代替注水系による炉心への注水(炉注水)、格納容器圧力逃し装置(フィルタベント装置)による格納容器の過圧破損防止措置を講じることで、炉心の損傷及び原子炉格納容器の過圧破損を防止できる(例えば特許文献1)。 However, although it is an extremely rare event, it is conceivable that all emergency core cooling systems will lose their functions when LOCA occurs. Even if such an accident that exceeds the design standard (non-design standard accident) occurs, in order to prevent the accident from progressing to a serious accident (accident with core damage), the current BWR has equipment for dealing with serious accidents, etc. By taking measures to prevent overpressure damage of the containment vessel by injecting water into the core (reactor water injection) by the low-pressure alternative water injection system (reactor water injection) and by using the containment vessel pressure relief device (filter vent device), damage to the core and overload of the containment vessel Pressure damage can be prevented (for example, Patent Document 1).
 低圧代替注水系はポンプを使用するため、動力源として代替交流電源が必要となるが、特許文献2のように、直流電源(バッテリ)で操作可能な弁の制御だけで、炉注水を実現し、炉心の損傷を防止する手段も知られている。 Since the low-pressure alternative water injection system uses a pump, an alternative AC power supply is required as a power source, but as in Patent Document 2, reactor water injection can be realized only by controlling a valve that can be operated with a DC power supply (battery). , Means to prevent damage to the core are also known.
特開2016-186427号公報Japanese Unexamined Patent Publication No. 2016-186427 特開2010-112772号公報Japanese Unexamined Patent Publication No. 2010-112772
 上述の特許文献1に記載の技術によれば、放射性物質除去機能を有するフィルタベント装置を介して原子炉格納容器の内部のガスを原子炉格納容器の外部に排出することで、放射性物質の環境への放出量を大幅に抑制しつつ、原子炉格納容器の過圧破損を防止することができる。しかしながら、特許文献1に記載の技術には、原子炉圧力容器への注水機能はなく、炉心の損傷を防止するには、上述の特許文献2に記載の技術の静的注水設備のような、原子炉圧力容器への注水設備を別途追加する必要がある。 According to the technique described in Patent Document 1 described above, the gas inside the reactor containment vessel is discharged to the outside of the reactor containment vessel via a filter vent device having a radioactive substance removal function, whereby the environment of the radioactive material is obtained. It is possible to prevent overpressure damage of the reactor containment vessel while significantly suppressing the amount released to the reactor. However, the technique described in Patent Document 1 does not have a function of injecting water into the reactor pressure vessel, and in order to prevent damage to the core, such as the static water injection facility of the technique described in Patent Document 2 described above, It is necessary to add a separate water injection facility to the reactor pressure vessel.
 一方、上述の特許文献2に記載の技術によれば、交流電源不要の静的設備を用いることで、直流電源(バッテリ)で操作可能な弁の制御だけで炉注水を実現して炉心の損傷を防止することができる。しかしながら、特許文献2に記載の技術には、原子炉格納容器の過圧破損防止機能はなく、原子炉格納容器の過圧破損を防止するには、上述の特許文献1に記載の技術のような原子炉格納容器の過圧破損防止設備を別途追加する必要がある。 On the other hand, according to the technique described in Patent Document 2 described above, by using static equipment that does not require an AC power supply, water injection into the reactor can be realized only by controlling a valve that can be operated by a DC power supply (battery), and the core is damaged. Can be prevented. However, the technique described in Patent Document 2 does not have a function of preventing overpressure damage of the reactor storage container, and in order to prevent overpressure damage of the reactor storage container, the technique described in the above-mentioned Patent Document 1 is used. It is necessary to add additional equipment to prevent overpressure damage to the reactor storage container.
 本発明は、前記した背景に鑑みてなされたものであり、簡素な構成でありながら、非常用炉心冷却系が機能喪失したとしても、LOCA発生時に炉心の損傷や原子炉格納容器の過圧破損を防止する原子炉格納容器の過圧防護装置を提供することを主な目的とする。その他の課題解決の目的は、発明を実施するための形態において適宜説明する。 The present invention has been made in view of the above background, and although it has a simple structure, even if the emergency core cooling system loses its function, the core is damaged or the reactor containment vessel is overpressured when LOCA occurs. The main purpose is to provide an overpressure protection device for the reactor containment vessel. The purpose of solving other problems will be appropriately described in the form for carrying out the invention.
 前記目的を達成するため、本発明は、原子炉格納容器の過圧防護装置であって、原子炉圧力容器を内包する原子炉格納容器の外部に配置され、かつ、前記原子炉圧力容器に内包された炉心で発生する水蒸気を冷却し凝縮させて水に戻す非常用復水器と、前記非常用復水器を水中に浸す非常用復水器プールと、を備え、前記非常用復水器は、複数本の伝熱管と、前記伝熱管の上部側を束ねる上部ヘッダと、前記伝熱管の下部側を束ねる下部ヘッダと、一方の端部が前記非常用復水器プール内の底部付近に配置され、かつ、他方の端部が前記下部ヘッダに接続された下部ヘッダベント管と、前記下部ヘッダベント管の経路上に配置され、かつ、前記原子炉圧力容器内で想定を超える水位低下時もしくは前記原子炉格納容器内で想定を超える圧力増加時に解放される下部ヘッダベント弁と、を有する構成とする。
 その他の手段は、後記する。
In order to achieve the above object, the present invention is an overpressure protection device for a reactor containment vessel, which is arranged outside the reactor containment vessel containing the reactor pressure vessel and is included in the reactor pressure vessel. The emergency water recovery device is provided with an emergency water recovery device that cools and condenses the water vapor generated in the reactor core and returns it to water, and an emergency water recovery device pool that immerses the emergency water recovery device in water. Is a plurality of heat transfer tubes, an upper header that bundles the upper side of the heat transfer tube, a lower header that bundles the lower side of the heat transfer tube, and one end is near the bottom in the emergency water recovery vessel pool. When the water level drops more than expected in the reactor pressure vessel while being arranged and the other end is arranged on the path of the lower header vent pipe connected to the lower header and the lower header vent pipe. Alternatively, it is configured to have a lower header vent valve that is released when the pressure increases more than expected in the reactor storage vessel.
Other means will be described later.
 本発明によれば、簡素な構成でありながら、非常用炉心冷却系が機能喪失したとしても、LOCA発生時に炉心の損傷や原子炉格納容器の過圧破損を防止できる。 According to the present invention, even if the emergency core cooling system loses its function even though it has a simple structure, it is possible to prevent damage to the core and overpressure damage to the reactor containment vessel when LOCA occurs.
第1実施形態に係る原子炉格納容器の過圧防護装置の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the overpressure protection device of the reactor containment vessel which concerns on 1st Embodiment. 第2実施形態に係る原子炉格納容器の過圧防護装置の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the overpressure protection device of the reactor containment vessel which concerns on 2nd Embodiment. 第3実施形態に係る原子炉格納容器の過圧防護装置の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the overpressure protection device of the reactor containment vessel which concerns on 3rd Embodiment. 第4実施形態に係る原子炉格納容器の過圧防護装置の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the overpressure protection device of the reactor containment vessel which concerns on 4th Embodiment. 第5実施形態に係る原子炉格納容器の過圧防護装置の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the overpressure protection device of the reactor containment vessel which concerns on 5th Embodiment. 第6実施形態に係る原子炉格納容器の過圧防護装置の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the overpressure protection device of the reactor containment vessel which concerns on 6th Embodiment. 第7実施形態に係る原子炉格納容器の過圧防護装置の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the overpressure protection device of the reactor containment vessel which concerns on 7th Embodiment. 第8実施形態に係る原子炉格納容器の過圧防護装置の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the overpressure protection device of the reactor containment vessel which concerns on 8th Embodiment. 第1実施形態に係る原子炉格納容器の過圧防護装置の変形例の構成を示すシステム系統図である。It is a system system diagram which shows the structure of the modification of the overpressure protection device of the reactor containment vessel which concerns on 1st Embodiment.
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)について詳細に説明する。各図は、本発明を十分に理解できる程度に、概略的に示しているに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。 Hereinafter, embodiments of the present invention (hereinafter referred to as “the present embodiments”) will be described in detail with reference to the drawings. Each figure is merely schematically shown to the extent that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated examples. Further, in each figure, common components and similar components are designated by the same reference numerals, and duplicate description thereof will be omitted.
 [第1実施形態]
 <原子炉格納容器の過圧防護装置の構成>
 以下、図1を参照して、第1実施形態に係る原子炉格納容器4(PCV;Primary Containment Vessel)の過圧防護装置100の構成について説明する。図1は、第1実施形態に係る原子炉格納容器4の過圧防護装置100の構成を示すシステム系統図である。
[First Embodiment]
<Structure of overpressure protection device for reactor containment vessel>
Hereinafter, the configuration of the overpressure protection device 100 of the reactor containment vessel 4 (PCV; Primary Containment Vessel) according to the first embodiment will be described with reference to FIG. 1. FIG. 1 is a system system diagram showing the configuration of the overpressure protection device 100 of the reactor containment vessel 4 according to the first embodiment.
 図1に示すように、原子炉格納容器4の内部には、複数の燃料集合体を装荷した炉心2を内包する原子炉圧力容器1(RPV;Reactor Pressure Vessel)が設置されている。原子炉格納容器4は、原子炉建屋10の内部に設置される。原子炉格納容器4は、事故時の放射性物質を閉じ込められるように高い気密性を有する。 As shown in FIG. 1, a reactor pressure vessel 1 (RPV; Reactor Pressure Vessel) containing a core 2 loaded with a plurality of fuel assemblies is installed inside the reactor containment vessel 4. The reactor containment vessel 4 is installed inside the reactor building 10. The reactor containment vessel 4 has high airtightness so that radioactive materials in the event of an accident can be trapped.
 原子炉格納容器4の外側かつ原子炉建屋10の内側には、非常用復水器5(IC;Isolation Condenser)が設置されている。非常用復水器5は、炉心2で発生する水蒸気を冷却し凝縮させて水に戻すための複数本の伝熱管15を上部及び下部の2つのヘッダ(上部ヘッダ14、下部ヘッダ16)で束ねたものである。 An emergency condenser 5 (IC; Isolation Condenser) is installed outside the reactor containment vessel 4 and inside the reactor building 10. In the emergency condenser 5, a plurality of heat transfer tubes 15 for cooling and condensing the water vapor generated in the core 2 and returning it to water are bundled by two upper and lower headers (upper header 14 and lower header 16). It is a header.
 非常用復水器5は、上部ヘッダ14、伝熱管15、下部ヘッダ16とを有している。上部ヘッダ14は、水蒸気引き込み管6によって原子炉圧力容器1の気相部(原子炉圧力容器1の内部の水位3(RPV水位)より上)と接続されている。下部ヘッダ16は、凝縮水戻り管7によって原子炉圧力容器1の気相部もしくは液相部と接続されている。また、下部ヘッダ16は、下部ヘッダベント管17aで非常用復水器プール9と接続されている。下部ヘッダベント管17aの一方の端部は、開口部となっている。 The emergency condenser 5 has an upper header 14, a heat transfer tube 15, and a lower header 16. The upper header 14 is connected to the gas phase portion of the reactor pressure vessel 1 (above the water level 3 (RPV water level) inside the reactor pressure vessel 1) by the steam suction pipe 6. The lower header 16 is connected to the gas phase portion or the liquid phase portion of the reactor pressure vessel 1 by the condensed water return pipe 7. Further, the lower header 16 is connected to the emergency condenser pool 9 by a lower header vent pipe 17a. One end of the lower header vent tube 17a is an opening.
 過圧防護装置100は、原子炉圧力容器1を内包する原子炉格納容器4の外部に配置され、かつ、原子炉圧力容器1に内包された炉心で発生する水蒸気を冷却し凝縮させて水に戻す非常用復水器5と、非常用復水器5を水中に浸す非常用復水器プール9と、を備えている。非常用復水器5は、複数本の伝熱管15と、伝熱管15の上部側を束ねる上部ヘッダ14と、伝熱管15の下部側を束ねる下部ヘッダ16と、一方の端部が非常用復水器プール9内の底部付近に配置され、かつ、他方の端部が下部ヘッダ16に接続された下部ヘッダベント管17aと、下部ヘッダベント管17aの経路上に配置され、かつ、原子炉圧力容器1内で想定を超える水位低下時もしくは原子炉格納容器4内で想定を超える圧力増加時に解放される下部ヘッダベント弁18aと、を有する。 The overpressure protection device 100 is arranged outside the reactor storage vessel 4 containing the reactor pressure vessel 1, and cools and condenses the steam generated in the core contained in the reactor pressure vessel 1 into water. It is provided with an emergency condenser 5 for returning and an emergency condenser pool 9 for immersing the emergency condenser 5 in water. In the emergency condenser 5, a plurality of heat transfer tubes 15, an upper header 14 for bundling the upper side of the heat transfer tube 15, a lower header 16 for bundling the lower side of the heat transfer tube 15, and one end thereof are used for emergency recovery. Reactor pressure located near the bottom of the condenser pool 9 and on the path of the lower header vent pipe 17a with the other end connected to the lower header 16 and the lower header vent pipe 17a. It has a lower header vent valve 18a that is released when the water level drops more than expected in the vessel 1 or when the pressure rises more than expected in the reactor containment vessel 4.
 凝縮水戻り管7の経路上には、通常運転時は閉止していて、運転中の異常な過渡時もしくは事故時に炉心2を除熱する必要が生じた場合に開く非常用復水器起動弁8(IC起動弁)が設置されている。 An emergency condenser start valve that is closed during normal operation on the path of the condensed water return pipe 7 and opens when it becomes necessary to remove heat from the core 2 during an abnormal transition during operation or in the event of an accident. 8 (IC start valve) is installed.
 非常用復水器5は、非常用復水器プール9(ICプール)の冷却水(プール水)中に浸漬されている。 The emergency condenser 5 is immersed in the cooling water (pool water) of the emergency condenser pool 9 (IC pool).
 非常用復水器プール9は、底部が原子炉圧力容器1の内部の水位3(RPV水位)よりも高い位置になるように設置されている。これにより、非常用復水器プール9は、冷却材喪失事故(LOCA)発生時にプール水を原子炉圧力容器1の内部に送り込むことができる。 The emergency condenser pool 9 is installed so that the bottom is higher than the water level 3 (RPV water level) inside the reactor pressure vessel 1. As a result, the emergency condenser pool 9 can send the pool water into the reactor pressure vessel 1 in the event of a Loss of Coolant Accident (LOCA).
 下部ヘッダベント管17aの経路上には、通常運転時、運転中の異常な過渡時、及び設計基準事故時は閉止状態で、設計基準事故を超える事故(設計基準外事故)時に必要に応じて開く下部ヘッダベント弁18aが設置されている。 On the path of the lower header vent pipe 17a, it is closed during normal operation, abnormal transition during operation, and design standard accident, and if necessary in the event of an accident exceeding the design standard accident (non-design standard accident). A lower header vent valve 18a that opens is installed.
 原子炉建屋10は、ガス排気ライン11、及びスタック13(排気筒)を介して原子炉建屋10の外部と接続される。原子炉建屋10は、原子炉格納容器4とは異なり、事故時の放射性物質を閉じ込める機能を設計上は要求されないが、通常は、ある程度の気密性を確保できるように保守的に設計される。 The reactor building 10 is connected to the outside of the reactor building 10 via a gas exhaust line 11 and a stack 13 (exhaust stack). Unlike the reactor containment vessel 4, the reactor building 10 is not required to have a function of confining radioactive materials in the event of an accident in terms of design, but is usually designed conservatively so as to ensure a certain degree of airtightness.
 以下、本実施形態に係る過圧防護装置100の、主蒸気管20の破断によるLOCA発生時の動作について説明する。以下の説明では、非常用炉心冷却系が使用不可能な、設計基準事故を超える事故(設計基準外事故)を対象とする。 Hereinafter, the operation of the overpressure protection device 100 according to the present embodiment when LOCA is generated due to the breakage of the main steam pipe 20 will be described. The following explanation targets accidents that exceed the design standard accidents (non-design standard accidents) in which the emergency core cooling system cannot be used.
 主蒸気管20が破断すると、原子炉圧力容器1の内部の高温の水蒸気が破断口を介して原子炉圧力容器1から原子炉格納容器4の内部に流出し、原子炉格納容器4の圧力が徐々に上昇すると共に、原子炉圧力容器1の内部の水量が減少することで、原子炉圧力容器1の水位3(RPV水位)が徐々に減少する。 When the main steam pipe 20 breaks, the high-temperature steam inside the reactor pressure vessel 1 flows out from the reactor pressure vessel 1 to the inside of the reactor containment vessel 4 through the break port, and the pressure of the reactor containment vessel 4 is reduced. The water level 3 (RPV water level) of the reactor pressure vessel 1 gradually decreases as the amount of water inside the reactor pressure vessel 1 gradually increases and decreases.
 非常用復水器起動弁8は、原子炉圧力容器1の内部の圧力高信号や原子炉圧力容器1の内部の水位低信号等によって自動起動する他、電源喪失時にも自動的に開くように設計されているため、起動信頼性の極めて高い設備である。 The emergency condenser start valve 8 is automatically started by a high pressure signal inside the reactor pressure vessel 1, a low water level signal inside the reactor pressure vessel 1, etc., and is automatically opened even when the power is lost. Because it is designed, it is a facility with extremely high start-up reliability.
 そこで、以下、設計基準外事故時においても非常用復水器5は起動に成功すると仮定して説明を行う。LOCAが発生して原子炉圧力容器1の内部の水蒸気が原子炉格納容器4に流出することで、原子炉圧力容器1の内部の水位3(RPV水位)が低下して非常用復水器起動弁8が開き、非常用復水器5が起動する。 Therefore, the following explanation will be given on the assumption that the emergency condenser 5 will be successfully started even in the event of an accident outside the design standards. When LOCA is generated and the water vapor inside the reactor pressure vessel 1 flows out to the reactor storage vessel 4, the water level 3 (RPV water level) inside the reactor pressure vessel 1 drops and the emergency condenser is activated. The valve 8 opens and the emergency condenser 5 starts.
 非常用復水器起動弁8を開くことで、非常用復水器5、凝縮水戻り管7の内部に溜まっていた凝縮水が原子炉圧力容器1に供給されるとともに、水蒸気引き込み管6を介して非常用復水器5に原子炉圧力容器1の内部の水蒸気が引き込まれ、引き込んだ水蒸気を伝熱管15で非常用復水器プール9の冷却水によって凝縮することで、炉心2で発生する崩壊熱を原子炉格納容器4の外部(非常用復水器プール9の冷却水)に排出することができる。 By opening the emergency condenser start valve 8, the condensed water accumulated inside the emergency condenser 5 and the condensed water return pipe 7 is supplied to the reactor pressure vessel 1 and the steam drawing pipe 6 is connected. The water vapor inside the reactor pressure vessel 1 is drawn into the emergency condenser 5 through the heat transfer tube 15, and is condensed by the cooling water of the emergency condenser pool 9 in the heat transfer tube 15 to generate the water in the core 2. The decay heat can be discharged to the outside of the reactor containment vessel 4 (cooling water of the emergency condenser pool 9).
 しかしながら、非常用復水器5は、原子炉圧力容器1の水蒸気を凝縮することはできても、原子炉格納容器4の外部の水源(水プール等)から原子炉圧力容器1への注水を行うことはできない。 However, although the emergency condenser 5 can condense the water vapor of the reactor pressure vessel 1, water is injected into the reactor pressure vessel 1 from an external water source (water pool or the like) of the reactor storage vessel 4. You can't do it.
 LOCAが継続することで、破断口を介して原子炉圧力容器1の内部の冷却水(水蒸気)が原子炉格納容器4に流出し続けるため、非常用復水器5が起動した後も、原子炉圧力容器1の内部の水位3(RPV水位)は徐々に低下し続ける。 As the LOCA continues, the cooling water (steam) inside the reactor pressure vessel 1 continues to flow out to the reactor storage vessel 4 through the break port, so even after the emergency water recovery device 5 is started, the reactor The water level 3 (RPV water level) inside the reactor pressure vessel 1 continues to gradually decrease.
 原子炉圧力容器1と原子炉格納容器4の圧力は、非常用復水器5によって炉心2を除熱、すなわち原子炉圧力容器1及び原子炉格納容器4の内部を除熱することができることから、非常用復水器5の除熱容量次第ではあるが、原子炉格納容器4の圧力上昇速度をある程度抑制することができる。 Since the pressure of the reactor pressure vessel 1 and the reactor containment vessel 4 can deheat the core 2 by the emergency water condensing device 5, that is, the inside of the reactor pressure vessel 1 and the reactor containment vessel 4 can be deheated. Depending on the heat removal capacity of the emergency water recovery device 5, the pressure rise rate of the reactor containment vessel 4 can be suppressed to some extent.
 しかしながら、原子炉圧力容器1の内部の圧力が低下すると水蒸気密度が低下し、非常用復水器5の除熱性能が低下することから、非常用復水器5が起動した後も、原子炉圧力容器1や原子炉格納容器4の圧力が上昇し続ける可能性がある。 However, when the pressure inside the reactor pressure vessel 1 decreases, the water vapor density decreases and the heat removal performance of the emergency water recovery device 5 deteriorates. Therefore, even after the emergency water recovery device 5 is started, the reactor The pressure in the pressure vessel 1 and the reactor containment vessel 4 may continue to rise.
 万一、このような状態が継続すると、炉心2が水面上に露出することで炉心2の損傷が発生し、また、原子炉格納容器4の内部の圧力が上昇し続けることで、原子炉格納容器4が過圧破損する可能性がある。 Should such a state continue, the core 2 will be exposed on the water surface, causing damage to the core 2, and the pressure inside the reactor containment vessel 4 will continue to rise, resulting in reactor containment. The containment vessel 4 may be overpressured and damaged.
 そこで、本実施形態に係る過圧防護装置100は、原子炉圧力容器1の内部の圧力高信号や原子炉圧力容器1の内部の水位低信号等により非常用復水器起動弁8を自動起動もしくは手動で開放する、現行の非常用復水器が持つ機能に加えて、原子炉圧力容器1の内部の水位3(RPV水位)が非常に低くなり炉心2が露出する可能性が発生した時、もしくは原子炉格納容器4の内部の圧力が非常に高くなり原子炉格納容器4が過圧破損する可能性が発生した時に、下部ヘッダベント弁18aを、原子炉格納容器4の内部の圧力高高信号(圧力高信号よりも更に高い圧力で発生する信号)もしくは原子炉圧力容器1の内部の水位低低信号(水位低信号よりも更に低い水位で発生する信号)による自動起動もしくは手動で開放する。 Therefore, the overpressure protection device 100 according to the present embodiment automatically starts the emergency water recovery device start valve 8 by the pressure high signal inside the reactor pressure vessel 1 or the water level low signal inside the reactor pressure vessel 1. Or when the water level 3 (RPV water level) inside the reactor pressure vessel 1 becomes very low and the core 2 may be exposed, in addition to the function of the current emergency water recovery device that opens manually. Or, when the pressure inside the reactor storage container 4 becomes very high and there is a possibility that the reactor storage container 4 may be overpressured and damaged, the lower header vent valve 18a is used to increase the pressure inside the reactor storage container 4. Automatic start-up or manual opening by high signal (signal generated at a pressure higher than the high pressure signal) or low water level signal (signal generated at a water level lower than the low water level signal) inside the reactor pressure vessel 1. do.
 つまり、過圧防護装置100は、冷却材喪失事故(LOCA)が発生し、かつ非常用炉心冷却系が使用できない場合に、非常用復水器プール9(ICプール)の冷却水(プール水)を原子炉格納容器4に供給するために、下部ヘッダベント弁18aを開く。 That is, the overpressure protection device 100 is the cooling water (pool water) of the emergency condenser pool 9 (IC pool) when a loss of cooling material accident (LOCA) occurs and the emergency core cooling system cannot be used. The lower header vent valve 18a is opened in order to supply the reactor containment vessel 4.
 下部ヘッダベント弁18a開放直後は、下部ヘッダベント管17aは、原子炉圧力容器1内の、放射性物質を含む水蒸気を、非常用復水器プール9の冷却水(プール水)に排出するガス排出ラインとして機能する。そして、下部ヘッダベント弁18a開放から時間が暫く経過すると、下部ヘッダベント管17aは、非常用復水器プール9の冷却水(プール水)を原子炉格納容器4に供給する冷却水供給ラインとして機能する。この点について、以下に詳述する。 Immediately after opening the lower header vent valve 18a, the lower header vent pipe 17a discharges gas in the reactor pressure vessel 1 to discharge water vapor containing radioactive substances into the cooling water (pool water) of the emergency condenser pool 9. Functions as a line. Then, after a while has passed since the lower header vent valve 18a was opened, the lower header vent pipe 17a serves as a cooling water supply line for supplying the cooling water (pool water) of the emergency condenser pool 9 to the reactor containment vessel 4. Function. This point will be described in detail below.
 下部ヘッダベント弁18a開放直後は、原子炉圧力容器1の内圧が原子炉建屋10の内圧よりも高圧になっている。そのため、原子炉圧力容器1内で発生したガスは、水蒸気引き込み管6や凝縮水戻り管7を介して非常用復水器5に入り込み、下部ヘッダベント管17aから非常用復水器プール9に排出される。そのため、LOCA発生の初期時において、下部ヘッダベント管17aは、原子炉圧力容器1内で発生したガスを非常用復水器プール9の冷却水(プール水)に排出するガス排出ラインとして機能する。このとき、非常用復水器プール9の冷却水(プール水)は非常用復水器プール9から原子炉格納容器4に送り込まれない。つまり、非常用復水器プール9の冷却水(プール水)は原子炉圧力容器1に供給されない。なお、非常用復水器プール9に排出されたガスの一部は、ガス排気ライン11に沿ってスタック13に導かれ、スタック13を通って大気に排出される。また、原子炉圧力容器1及び原子炉格納容器4は、ガス抜きされて、内圧が低下する。 Immediately after opening the lower header vent valve 18a, the internal pressure of the reactor pressure vessel 1 is higher than the internal pressure of the reactor building 10. Therefore, the gas generated in the reactor pressure vessel 1 enters the emergency condenser 5 via the steam intake pipe 6 and the condensed water return pipe 7, and enters the emergency condenser pool 9 from the lower header vent pipe 17a. It is discharged. Therefore, at the initial stage of LOCA generation, the lower header vent pipe 17a functions as a gas discharge line for discharging the gas generated in the reactor pressure vessel 1 to the cooling water (pool water) of the emergency condenser pool 9. .. At this time, the cooling water (pool water) of the emergency condenser pool 9 is not sent from the emergency condenser pool 9 to the reactor containment vessel 4. That is, the cooling water (pool water) of the emergency condenser pool 9 is not supplied to the reactor pressure vessel 1. A part of the gas discharged to the emergency condenser pool 9 is guided to the stack 13 along the gas exhaust line 11 and discharged to the atmosphere through the stack 13. Further, the reactor pressure vessel 1 and the reactor containment vessel 4 are degassed, and the internal pressure drops.
 そして、下部ヘッダベント弁18a開放から時間が暫く経過すると、原子炉圧力容器1がガス抜きされ、原子炉圧力容器1、及び、LOCA破断口を介して空間的に接続されている原子炉格納容器4の内圧が低下する。このとき、原子炉圧力容器1の圧力と非常用復水器プール9水中に開口する下部ヘッダベント管17aとの圧力差により、非常用復水器プール9の冷却水(プール水)が、下部ヘッダベント管17aに流入し、下部ヘッダ16と凝縮水戻り管7を介して非常用復水器プール9から原子炉圧力容器1に送り込まれる。つまり、非常用復水器プール9の冷却水(プール水)が原子炉圧力容器1に供給される。そのため、LOCAが発生してから時間が暫く経過すると、下部ヘッダベント管17aは、非常用復水器プール9の冷却水(プール水)を原子炉圧力容器1に供給する冷却水供給ラインとして機能する。 Then, after a while from the opening of the lower header vent valve 18a, the reactor pressure vessel 1 is degassed, and the reactor pressure vessel 1 and the reactor storage vessel spatially connected via the LOCA break port are connected. The internal pressure of 4 decreases. At this time, due to the pressure difference between the pressure of the reactor pressure vessel 1 and the lower header vent pipe 17a opening in the water of the emergency water recovery device pool 9, the cooling water (pool water) of the emergency water recovery device pool 9 is lowered. It flows into the header vent pipe 17a and is sent from the emergency water condensate pool 9 to the reactor pressure vessel 1 via the lower header 16 and the condensed water return pipe 7. That is, the cooling water (pool water) of the emergency condenser pool 9 is supplied to the reactor pressure vessel 1. Therefore, after a while after the occurrence of LOCA, the lower header vent pipe 17a functions as a cooling water supply line for supplying the cooling water (pool water) of the emergency condenser pool 9 to the reactor pressure vessel 1. do.
 下部ヘッダベント弁18aを開放することで、下部ヘッダベント管17aを介して原子炉圧力容器1の内部の水蒸気が非常用復水器プール9の冷却水中に放出され、原子炉圧力容器1の内部の圧力、及び主蒸気管20の破断口を介して原子炉圧力容器1と空間的に接続されている原子炉格納容器4の内部の圧力を減少させることができる。以下、この機能を「原子炉格納容器ベント機能」と称する。この原子炉格納容器ベント機能により、過圧防護装置100は、原子炉格納容器4の過圧破損を防止できる。 By opening the lower header vent valve 18a, the water vapor inside the reactor pressure vessel 1 is released into the cooling water of the emergency condenser pool 9 through the lower header vent pipe 17a, and the inside of the reactor pressure vessel 1 is released. And the pressure inside the reactor storage vessel 4 spatially connected to the reactor pressure vessel 1 through the break port of the main steam pipe 20 can be reduced. Hereinafter, this function is referred to as "reactor containment vessel vent function". With this reactor containment vessel vent function, the overpressure protection device 100 can prevent overpressure damage of the reactor containment vessel 4.
 原子炉圧力容器1の内部の水蒸気が非常用復水器プール9の冷却水中に流出することで原子炉圧力容器1の内部の圧力が十分に低下すると、下部ヘッダベント管17aから非常用復水器プール9に排出される水蒸気流量が低下し、非常用復水器プール9の冷却水が、排出され続ける水蒸気を凝縮させつつ、気液対向流として原子炉圧力容器1に注水され始める。以下、この機能を「原子炉圧力容器注水機能」と称する。この原子炉圧力容器注水機能により、過圧防護装置100は、原子炉圧力容器1の内部の水位3(RPV水位)が回復し、炉心2の水面上への露出を防止することで、炉心2の損傷の発生を防止できる。 When the pressure inside the reactor pressure vessel 1 drops sufficiently due to the outflow of water vapor inside the reactor pressure vessel 1 into the cooling water of the emergency condenser pool 9, emergency condenser water is restored from the lower header vent pipe 17a. The flow rate of water vapor discharged to the vessel pool 9 decreases, and the cooling water of the emergency condenser pool 9 begins to be injected into the reactor pressure vessel 1 as a gas-liquid counterflow while condensing the steam that continues to be discharged. Hereinafter, this function will be referred to as "reactor pressure vessel water injection function". With this reactor pressure vessel water injection function, the overpressure protection device 100 recovers the water level 3 (RPV water level) inside the reactor pressure vessel 1 and prevents the core 2 from being exposed on the water surface, thereby preventing the core 2 from being exposed to the water surface. Can prevent the occurrence of damage.
 原子炉圧力容器1から非常用復水器プール9の冷却水中に排出される水蒸気には、炉内構造物が放射化したもの(Co60等)やトリチウム水等の若干の放射性物質が含まれるが、非常用復水器プール9の冷却水中への放射性物質の取り込み効果(スクラビング効果)により、放射性物質のほぼ全量が非常用復水器プール9の冷却水中に保持される。 The water vapor discharged from the reactor pressure vessel 1 into the cooling water of the emergency condenser pool 9 contains activated structures inside the reactor (Co60, etc.) and some radioactive substances such as tritium water. Due to the effect of taking radioactive substances into the cooling water of the emergency condenser pool 9 (scrubbing effect), almost all of the radioactive substances are retained in the cooling water of the emergency condenser pool 9.
 わずかに原子炉建屋10に排出される放射性物質も、原子炉建屋10内の空気で希釈され、ガス排気ライン11及びスタック13を介して高所から原子炉建屋10の外部に排出することで、排気されるガスの拡散を促進し、局所的な被ばく量の増加を大幅に抑制することができる。 The radioactive material slightly discharged to the reactor building 10 is also diluted with the air inside the reactor building 10 and discharged from a high place to the outside of the reactor building 10 via the gas exhaust line 11 and the stack 13. It is possible to promote the diffusion of the exhausted gas and significantly suppress the increase in the local exposure amount.
 なお、従来のこの種の技術では、原子炉格納容器4は事故時に放射性物質を閉じ込めるためのものであり、たとえ設計基準外事故時であっても、原子炉建屋10に放射性物質を含む水蒸気を意図的に排出する手段は検討されていなかった。 In the conventional technique of this type, the reactor containment vessel 4 is for confining radioactive substances in the event of an accident, and even in the event of an accident outside the design standards, the reactor building 10 is filled with water vapor containing radioactive substances. Means of intentional discharge have not been considered.
 これに対して、本実施形態に係る過圧防護装置100は、炉心2の損傷の発生前、すなわち原子炉圧力容器1の内部や原子炉格納容器4の内部に放射性希ガスや核分裂生成物が放出される前に、ある程度の気密性を有する原子炉建屋10への原子炉格納容器ベントを実施する。これにより、本実施形態に係る過圧防護装置100は、少量の放射性物質の放出と引き換えに、炉心2の損傷及び原子炉格納容器4の過圧破損を防止し、放射性希ガスや核分裂生成物が原子炉格納容器4の外部に放出される可能性を排除することができる。このような本実施形態に係る過圧防護装置100は、設計基準外事故発生時に原子炉建屋10の外部に放出される放射性物質量を合理的に低減することが可能となる。 On the other hand, in the overpressure protection device 100 according to the present embodiment, radioactive rare gas and fission products are contained in the reactor pressure vessel 1 and the reactor containment vessel 4 before the damage to the core 2 occurs. Before being released, the reactor containment vessel vent to the reactor building 10 having a certain degree of airtightness is carried out. As a result, the overpressure protection device 100 according to the present embodiment prevents damage to the core 2 and overpressure damage to the reactor containment vessel 4 in exchange for the release of a small amount of radioactive material, and radioactive rare gas and fission products. Can be excluded from the possibility of being released to the outside of the reactor containment vessel 4. The overpressure protection device 100 according to the present embodiment can reasonably reduce the amount of radioactive substances released to the outside of the reactor building 10 when an accident outside the design standard occurs.
 なお、下部ヘッダベント管17aから排出される、放射性物質を含む水蒸気を、気密性を有する別の閉空間(タンク等)に蓄積することで、放射性物質の原子炉建屋10の外部への放出を防止する設備構成等も考えられる。しかしながら、本実施形態に比べて設備構成が複雑化し、人的過誤等に起因する不具合発生、例えばタンクの非常用ガス排出ラインの誤閉止によるタンクや原子炉格納容器4の過圧破損の発生等が懸念される。 By accumulating water vapor containing radioactive substances discharged from the lower header vent pipe 17a in another closed space (tank, etc.) having airtightness, the radioactive substances are released to the outside of the reactor building 10. Equipment configurations to prevent it are also conceivable. However, the equipment configuration is more complicated than that of the present embodiment, and problems occur due to human error, for example, overpressure damage of the tank and the reactor containment vessel 4 occurs due to erroneous closure of the emergency gas discharge line of the tank. Is a concern.
 これに対して、本実施形態に係る過圧防護装置100は、簡素な構成で、炉心2の損傷や原子炉格納容器4の過圧破損の発生を防止できる。 On the other hand, the overpressure protection device 100 according to the present embodiment has a simple configuration and can prevent damage to the core 2 and overpressure damage to the reactor containment vessel 4.
 以上より、本実施形態に係る過圧防護装置100によれば、LOCA発生と非常用炉心冷却系の全台故障(設計基準外事故)時においても、原子炉圧力容器1の内部の水蒸気を非常用復水器プール9の冷却水中に排出することで放射性物質の放出量を抑制しつつ、原子炉圧力容器1及び原子炉格納容器4の内部の圧力を低下させて原子炉格納容器4の過圧破損を防止できると共に、非常用復水器プール9の冷却水を原子炉圧力容器1に注水することで水面上への炉心2の露出を防止して炉心2の損傷を防止できる。
 以上2つの効果によって、本実施形態に係る過圧防護装置100は、簡素な構成で、炉心2の損傷や原子炉格納容器4の過圧破損の発生を防止できる。
From the above, according to the overpressure protection device 100 according to the present embodiment, even when LOCA is generated and all the units of the emergency core cooling system fail (accidents outside the design standard), the water vapor inside the reactor pressure vessel 1 is extremely removed. The pressure inside the reactor pressure vessel 1 and the reactor containment vessel 4 is reduced by discharging the radioactive material into the cooling water of the water condenser pool 9, and the reactor containment vessel 4 is overloaded. In addition to preventing pressure damage, by injecting the cooling water of the emergency water condensate pool 9 into the reactor pressure vessel 1, it is possible to prevent the core 2 from being exposed on the water surface and prevent the core 2 from being damaged.
Due to the above two effects, the overpressure protection device 100 according to the present embodiment can prevent damage to the core 2 and overpressure damage to the reactor containment vessel 4 with a simple configuration.
 なお、本実施形態では、主蒸気管20の破断によるLOCAを対象として原子炉格納容器4の内部の圧力抑制効果を説明した。しかしながら、原子炉圧力容器1に接続された他の配管(給水管等)の破断時にも、同様の効果が得られる。 In this embodiment, the pressure suppressing effect inside the reactor containment vessel 4 was explained for LOCA due to the breakage of the main steam pipe 20. However, the same effect can be obtained when another pipe (water supply pipe or the like) connected to the reactor pressure vessel 1 is broken.
 また、本実施形態では、上部ヘッダ14、伝熱管15、下部ヘッダ16が縦に接続される縦型の非常用復水器5を用いて説明した。しかしながら、U字型の伝熱管を用いる横型の非常用復水器5についても、同様の効果が得られる。 Further, in the present embodiment, the description has been made using a vertical emergency condenser 5 in which the upper header 14, the heat transfer tube 15, and the lower header 16 are vertically connected. However, the same effect can be obtained with the horizontal type emergency condenser 5 using the U-shaped heat transfer tube.
 [第2実施形態]
 以下、図2を参照して、第2実施形態に係る過圧防護装置100Aの構成について説明する。図2は、第2施形態に係る過圧防護装置100Aの構成を示すシステム系統図である。
[Second Embodiment]
Hereinafter, the configuration of the overpressure protection device 100A according to the second embodiment will be described with reference to FIG. 2. FIG. 2 is a system system diagram showing the configuration of the overpressure protection device 100A according to the second embodiment.
 図2に示すように、第2実施形態に係る過圧防護装置100Aは、第1実施形態に係る過圧防護装置100(図1参照)と比較すると、以下の点で相違する。
 (1)下部ヘッダ16と同様に、上部ヘッダ14にも、ベント管及びベント弁(上部ヘッダベント管17b及び上部ヘッダベント弁18b)が設置されている点。
 (2)下部ヘッダベント管17a及び上部ヘッダベント管17bの、非常用復水器プール9側への開口部に、動荷重抑制装置19a,19bが設置されている点。
As shown in FIG. 2, the overpressure protection device 100A according to the second embodiment is different from the overpressure protection device 100 according to the first embodiment (see FIG. 1) in the following points.
(1) Similar to the lower header 16, the upper header 14 is also provided with a vent pipe and a vent valve (upper header vent pipe 17b and upper header vent valve 18b).
(2) The dynamic load suppressing devices 19a and 19b are installed at the openings of the lower header vent pipe 17a and the upper header vent pipe 17b to the emergency condenser pool 9 side.
 本実施形態に係る過圧防護装置100Aでは、非常用復水器5は、一方の端部が非常用復水器プール9の内部において下部ヘッダベント管17aよりも高い位置に配置され、かつ、他方の端部が上部ヘッダ14に接続された上部ヘッダベント管17bと、上部ヘッダベント管17bの経路上に配置され、かつ、原子炉圧力容器1内で想定を超える水位低下時もしくは原子炉格納容器4内で想定を超える圧力増加時に解放される上部ヘッダベント弁18bと、を有する。 In the overpressure protection device 100A according to the present embodiment, one end of the emergency condenser 5 is arranged inside the emergency condenser pool 9 at a position higher than the lower header vent pipe 17a, and the emergency condenser 5 is arranged at a position higher than the lower header vent pipe 17a. The other end is arranged on the path of the upper header vent pipe 17b connected to the upper header 14 and the upper header vent pipe 17b, and when the water level drops more than expected in the reactor pressure vessel 1 or the reactor is retracted. It has an upper header vent valve 18b, which is released when the pressure increases more than expected in the vessel 4.
 LOCA発生の初期時において、下部ヘッダベント管17aと上部ヘッダベント管17bは、共に、原子炉圧力容器1内で発生したガスを非常用復水器プール9の冷却水(プール水)に排出するガス排出ラインとして機能する。そして、LOCAが発生してから時間が暫く経過すると、下部ヘッダベント管17aは、非常用復水器プール9の冷却水(プール水)を原子炉格納容器4に供給する冷却水供給ラインとして機能する。この後、LOCAが発生してから時間がさらに経過すると、上部ヘッダベント管17bも、非常用復水器プール9の冷却水(プール水)を原子炉格納容器4に供給する冷却水供給ラインとして機能する。この点について、以下に詳述する。 At the initial stage of LOCA generation, both the lower header vent pipe 17a and the upper header vent pipe 17b discharge the gas generated in the reactor pressure vessel 1 to the cooling water (pool water) of the emergency condenser pool 9. Functions as a gas discharge line. Then, after a while after the occurrence of LOCA, the lower header vent pipe 17a functions as a cooling water supply line for supplying the cooling water (pool water) of the emergency condenser pool 9 to the reactor containment vessel 4. do. After that, when more time has passed since the occurrence of LOCA, the upper header vent pipe 17b also serves as a cooling water supply line for supplying the cooling water (pool water) of the emergency condenser pool 9 to the reactor containment vessel 4. Function. This point will be described in detail below.
 例えば、LOCA発生の初期時において、原子炉圧力容器1の内圧が原子炉建屋10の内圧よりも高圧になっている。そのため、原子炉圧力容器1内で発生したガスは、水蒸気引き込み管6と凝縮水戻り管7とを介して非常用復水器5に入り込み、非常用復水器5を通って下部ヘッダベント管17aと上部ヘッダベント管17bとから非常用復水器プール9に排出される。そのため、LOCA発生の初期時において、下部ヘッダベント管17aと上部ヘッダベント管17bは、共に、原子炉圧力容器1内で発生したガスを非常用復水器プール9の冷却水(プール水)に排出するガス排出ラインとして機能する。このときは、原子炉圧力容器1から非常用復水器プール9に流出するガス流量が大きいため、非常用復水器プール9の冷却水(プール水)を原子炉圧力容器1に供給できない。なお、非常用復水器プール9に排出されたガスは、原子炉建屋10内の空気と混合し、混合することで単位体積当たりの放射性物質量が減少した原子炉建屋10のガスが、ガス排気ライン11に沿ってスタック13に導かれ、スタック13を通って大気に排出される。また、原子炉圧力容器1及び原子炉格納容器4は、ガス抜きされて、内圧が低下する。 For example, at the initial stage of LOCA generation, the internal pressure of the reactor pressure vessel 1 is higher than the internal pressure of the reactor building 10. Therefore, the gas generated in the reactor pressure vessel 1 enters the emergency condenser 5 via the steam intake pipe 6 and the condensed water return pipe 7, and passes through the emergency condenser 5 to the lower header vent pipe. It is discharged from the 17a and the upper header vent pipe 17b into the emergency condenser pool 9. Therefore, at the initial stage of LOCA generation, both the lower header vent pipe 17a and the upper header vent pipe 17b use the gas generated in the reactor pressure vessel 1 as the cooling water (pool water) of the emergency condenser pool 9. Functions as a gas discharge line to discharge. At this time, since the gas flow rate flowing out from the reactor pressure vessel 1 to the emergency condenser pool 9 is large, the cooling water (pool water) of the emergency condenser pool 9 cannot be supplied to the reactor pressure vessel 1. The gas discharged to the emergency condenser pool 9 is mixed with the air in the reactor building 10, and the gas in the reactor building 10 in which the amount of radioactive substances per unit volume is reduced by mixing is the gas. It is guided to the stack 13 along the exhaust line 11 and discharged to the atmosphere through the stack 13. Further, the reactor pressure vessel 1 and the reactor containment vessel 4 are degassed, and the internal pressure drops.
 LOCAが発生してから時間が暫く経過すると、原子炉圧力容器1及び原子炉格納容器4がガス抜きされて、原子炉圧力容器1及び原子炉格納容器4の内圧が低下する。下部ヘッダベント管17aは、非常用復水器プール9内の上部ヘッダベント管17bよりも低い(水深が深い)位置に配置されている。したがって、下部ヘッダベント管17aの一方の端部(開口部)には、上部ヘッダベント管17bの一方の端部(開口部)よりも高い水圧がかかる。そのため、原子炉圧力容器1の内圧が下部ヘッダベント管17aの一方の端部(開口部)にかかっている圧力よりも低くなると、非常用復水器プール9と原子炉圧力容器1との圧力差により、非常用復水器プール9の冷却水(プール水)が、下部ヘッダベント管17aに流入し、下部ヘッダ16と凝縮水戻り管7を介して非常用復水器プール9から原子炉圧力容器1に送り込まれる。つまり、非常用復水器プール9の冷却水(プール水)が原子炉圧力容器1に供給される。そのため、LOCAが発生してから時間が暫く経過すると、下部ヘッダベント管17aは、非常用復水器プール9の冷却水(プール水)を原子炉圧力容器1に供給する冷却水供給ラインとして機能する。このとき、上部ヘッダベント管17bは、ガス排出ラインとして機能したままになっている。 After a while after the occurrence of LOCA, the reactor pressure vessel 1 and the reactor containment vessel 4 are degassed, and the internal pressures of the reactor pressure vessel 1 and the reactor containment vessel 4 decrease. The lower header vent pipe 17a is arranged at a position lower (deeper in water) than the upper header vent pipe 17b in the emergency condenser pool 9. Therefore, one end (opening) of the lower header vent pipe 17a is subjected to a higher water pressure than one end (opening) of the upper header vent pipe 17b. Therefore, when the internal pressure of the reactor pressure vessel 1 becomes lower than the pressure applied to one end (opening) of the lower header vent pipe 17a, the pressure between the emergency water recovery device pool 9 and the reactor pressure vessel 1 Due to the difference, the cooling water (pool water) of the emergency water return device pool 9 flows into the lower header vent pipe 17a, and from the emergency water return device pool 9 to the reactor via the lower header 16 and the condensed water return pipe 7. It is sent to the pressure vessel 1. That is, the cooling water (pool water) of the emergency condenser pool 9 is supplied to the reactor pressure vessel 1. Therefore, after a while after the occurrence of LOCA, the lower header vent pipe 17a functions as a cooling water supply line for supplying the cooling water (pool water) of the emergency condenser pool 9 to the reactor pressure vessel 1. do. At this time, the upper header vent pipe 17b remains functioning as a gas discharge line.
 この状態において、過圧防護装置100Aは、上部ヘッダベント管17bでガス(放射性物質を含む水蒸気)を原子炉圧力容器1から抜きながら、下部ヘッダベント管17aで非常用復水器プール9から原子炉圧力容器1に冷却水を供給(注水)するため、原子炉圧力容器1に早く注水することができる。 In this state, the overpressure protection device 100A removes gas (steam containing radioactive substances) from the reactor pressure vessel 1 at the upper header vent pipe 17b, and atomizes from the emergency water condenser pool 9 at the lower header vent pipe 17a. Since the cooling water is supplied (injected) to the reactor pressure vessel 1, water can be quickly injected into the reactor pressure vessel 1.
 この後、LOCAが発生してから時間がさらに経過すると、原子炉圧力容器1がさらにガス抜きされて、原子炉圧力容器1の内圧がさらに低下する。そして、原子炉圧力容器1の内圧が上部ヘッダベント管17bの一方の端部(開口部)にかかっている圧力よりも低くなると、下部ヘッダベント管17aだけでなく、非常用復水器プール9内の下部ヘッダベント管17aよりも高い位置に配置されている上部ヘッダベント管17bも、非常用復水器プール9の冷却水(プール水)を原子炉圧力容器1に供給する冷却水供給ラインとして機能する。 After that, when a further time elapses after the occurrence of LOCA, the reactor pressure vessel 1 is further degassed, and the internal pressure of the reactor pressure vessel 1 further decreases. Then, when the internal pressure of the reactor pressure vessel 1 becomes lower than the pressure applied to one end (opening) of the upper header vent pipe 17b, not only the lower header vent pipe 17a but also the emergency water recovery device pool 9 The upper header vent pipe 17b, which is located higher than the lower header vent pipe 17a inside, is also a cooling water supply line that supplies the cooling water (pool water) of the emergency water recovery device pool 9 to the reactor pressure vessel 1. Functions as.
 また、本実施形態に係る過圧防護装置100Aでは、非常用復水器5は、上部ヘッダベント管17bの一方の端部と下部ヘッダベント管17aの一方の端部とに、ガスを泡状にして非常用復水器プール9の水中に排出する動荷重抑制装置19a,19bを有する。なお、動荷重抑制装置19a,19bとしては、例えば、水蒸気泡を微細化するクエンチャ等を用いることができる。 Further, in the overpressure protection device 100A according to the present embodiment, the emergency condenser 5 foams gas on one end of the upper header vent pipe 17b and one end of the lower header vent pipe 17a. It also has dynamic load suppressing devices 19a and 19b for discharging into the water of the emergency condenser pool 9. As the dynamic load suppressing devices 19a and 19b, for example, a quencher for miniaturizing water vapor bubbles or the like can be used.
 下部ヘッダベント管17aと上部ヘッダベント管17bから非常用復水器プール9にガスが排出される際に、ガスから非常用復水器プール9の構造物(壁や床)に動荷重が加わる。非常用復水器プール9は、その動荷重により、構造物(壁や床)にダメージを受ける可能性がある。
 そこで、本実施形態では、下部ヘッダベント管17aと上部ヘッダベント管17bの一方の端部(開口部)に動荷重抑制装置19a,19bが設けられている。動荷重抑制装置19a,19bは、非常用復水器プール9に排出されるガスを泡状に微細化する。これにより、過圧防護装置100Aは、非常用復水器プール9の構造物(壁や床)に加わる動荷重を抑制して、非常用復水器プール9の構造物(壁や床)に与えるダメージを軽減することができる。
When gas is discharged from the lower header vent pipe 17a and the upper header vent pipe 17b to the emergency condenser pool 9, a dynamic load is applied from the gas to the structure (wall or floor) of the emergency condenser pool 9. .. The structure (wall or floor) of the emergency condenser pool 9 may be damaged by its dynamic load.
Therefore, in the present embodiment, the dynamic load suppressing devices 19a and 19b are provided at one end (opening) of the lower header vent pipe 17a and the upper header vent pipe 17b. The dynamic load suppressing devices 19a and 19b atomize the gas discharged to the emergency condenser pool 9 into bubbles. As a result, the overpressure protection device 100A suppresses the dynamic load applied to the structure (wall or floor) of the emergency water return device pool 9 and becomes the structure (wall or floor) of the emergency water return device pool 9. You can reduce the damage done.
 このような本実施形態に係る過圧防護装置100Aは、第1実施形態に係る過圧防護装置100(図1参照)と比較すると、以下の点を改善することができる。 The overpressure protection device 100A according to the present embodiment can improve the following points as compared with the overpressure protection device 100 (see FIG. 1) according to the first embodiment.
 第1実施形態では原子炉圧力容器1からの水蒸気放出及び原子炉圧力容器1への冷却水注水を、1つのライン(下部ヘッダベント管17a)を介して行っていたため、系統構成は簡素ではあるものの、下部ヘッダベント管17aの水蒸気排出量が十分に低減し、気液対向流状態が実現して原子炉圧力容器1への注水が開始するまでにある程度の時間を要する。 In the first embodiment, the system configuration is simple because the water vapor is released from the reactor pressure vessel 1 and the cooling water is injected into the reactor pressure vessel 1 via one line (lower header vent pipe 17a). However, it takes a certain amount of time for the amount of water vapor discharged from the lower header vent pipe 17a to be sufficiently reduced, the gas-liquid countercurrent state to be realized, and the water injection into the reactor pressure vessel 1 to start.
 それに対して、本実施形態に係る過圧防護装置100Aは、非常用復水器プール9の水深が浅い場所に上部ヘッダベント管17b及び上部ヘッダベント弁18bを新たに設けることで、上部ヘッダベント管17bを介した原子炉圧力容器1の内部の水蒸気の放出と、非常用復水器プール9の水深が深い場所に設置される下部ヘッダベント管17aを介した原子炉圧力容器1への非常用復水器プール9の冷却水の注水を並行して実施することが可能となり、原子炉圧力容器1への注水開始タイミングを早めることができる。これにより、本実施形態に係る過圧防護装置100Aは、炉心2の損傷の防止機能の信頼性を向上させることができる。 On the other hand, in the overpressure protection device 100A according to the present embodiment, the upper header vent pipe 17b and the upper header vent valve 18b are newly provided in a place where the water depth of the emergency water recovery vessel pool 9 is shallow, so that the upper header vent can be vented. The release of water vapor inside the reactor pressure vessel 1 through the pipe 17b and the emergency to the reactor pressure vessel 1 via the lower header vent pipe 17a installed in a deep water of the emergency water recovery device pool 9. It is possible to inject the cooling water of the water recovery device pool 9 in parallel, and it is possible to accelerate the timing of injecting water into the reactor pressure vessel 1. As a result, the overpressure protection device 100A according to the present embodiment can improve the reliability of the damage prevention function of the core 2.
 また、本実施形態に係る過圧防護装置100Aは、下部ヘッダベント管17a及び上部ヘッダベント管17bの非常用復水器プール9側の開口部に動荷重抑制装置19a,19bを設置しているので、下部ヘッダベント弁18a及び上部ヘッダベント弁18bを開いた直後に、原子炉圧力容器1から放出される高流量の水蒸気が、下部ヘッダベント管17a及び上部ヘッダベント管17bを介して非常用復水器プール9の冷却水中に排出される際に非常用復水器プール9の構造物(壁や床)に加わる動荷重を抑制することができる。これにより、本実施形態に係る過圧防護装置100Aは、非常用復水器プール9の物理的な破損の可能性を低減することができる。 Further, in the overpressure protection device 100A according to the present embodiment, the dynamic load suppressing devices 19a and 19b are installed in the openings of the lower header vent pipe 17a and the upper header vent pipe 17b on the emergency condenser pool 9 side. Therefore, immediately after opening the lower header vent valve 18a and the upper header vent valve 18b, the high flow rate of steam discharged from the reactor pressure vessel 1 is emergency through the lower header vent pipe 17a and the upper header vent pipe 17b. It is possible to suppress the dynamic load applied to the structure (wall or floor) of the emergency condenser pool 9 when it is discharged into the cooling water of the condenser pool 9. Thereby, the overpressure protection device 100A according to the present embodiment can reduce the possibility of physical damage to the emergency condenser pool 9.
 以上のように、本実施形態に係る過圧防護装置100Aは、第1実施形態と比較すると、原子炉圧力容器1への注水開始タイミングを早めることで炉心2の損傷の防止機能の信頼性を、原子炉圧力容器1の水蒸気が非常用復水器プール9の冷却水中に放出される際の動荷重を抑制することで非常用復水器プール9の破損防止の信頼性を向上させることができる。 As described above, the overpressure protection device 100A according to the present embodiment has a higher reliability of the function of preventing damage to the core 2 by accelerating the timing of starting water injection into the reactor pressure vessel 1 as compared with the first embodiment. It is possible to improve the reliability of damage prevention of the emergency condenser pool 9 by suppressing the dynamic load when the water vapor of the reactor pressure vessel 1 is discharged into the cooling water of the emergency condenser pool 9. can.
 [第3実施形態]
 以下、図3を参照して、第3実施形態に係る過圧防護装置100Bの構成について説明する。図3は、第3実施形態に係る過圧防護装置100Bの構成を示すシステム系統図である。
[Third Embodiment]
Hereinafter, the configuration of the overpressure protection device 100B according to the third embodiment will be described with reference to FIG. FIG. 3 is a system system diagram showing the configuration of the overpressure protection device 100B according to the third embodiment.
 図3に示すように、第3実施形態に係る過圧防護装置100Bは、第2実施形態に係る過圧防護装置100A(図2参照)と比較すると、以下の点で相違する。
 (1)上部ヘッダベント管17bの非常用復水器プール9側の開口部が、非常用復水器プール9の水面よりも上に開口している点。
 (2)上部ヘッダ14及び下部ヘッダ16の動荷重抑制装置19a,19bが削除されている点。
 (3)ガス排気ライン11上に、粒子状の放射性物質を捕集(除去)するための捕集フィルタ12が設置されている点。
As shown in FIG. 3, the overpressure protection device 100B according to the third embodiment is different from the overpressure protection device 100A according to the second embodiment (see FIG. 2) in the following points.
(1) The opening of the upper header vent pipe 17b on the emergency condenser pool 9 side is open above the water surface of the emergency condenser pool 9.
(2) The dynamic load suppressing devices 19a and 19b of the upper header 14 and the lower header 16 have been deleted.
(3) A collection filter 12 for collecting (removing) particulate radioactive substances is installed on the gas exhaust line 11.
 本実施形態に係る過圧防護装置100Bでは、上部ヘッダベント管17bの一方の端部は、非常用復水器プール9の水面よりも上の位置で開口している。上部ヘッダベント管17bは、一方の端部(開口部)が非常用復水器プール9の水面よりも上の位置に配置されているため、上部ヘッダベント管17bから原子炉建屋10にガスが排出される際の動荷重の影響を低減することができる。そのため、過圧防護装置100Bは、非常用復水器プール9の構造物(壁や床)に与えるダメージを軽減することができる。 In the overpressure protection device 100B according to the present embodiment, one end of the upper header vent pipe 17b is opened at a position above the water surface of the emergency condenser pool 9. Since one end (opening) of the upper header vent pipe 17b is located above the water surface of the emergency condenser pool 9, gas flows from the upper header vent pipe 17b to the reactor building 10. The influence of the dynamic load when being discharged can be reduced. Therefore, the overpressure protection device 100B can reduce damage to the structure (wall or floor) of the emergency condenser pool 9.
 また、本実施形態に係る過圧防護装置100Bでは、過圧防護装置100Bは、原子炉圧力容器1内で発生したガスを大気に排出する経路上に、粒子状の放射性物質を捕集するための捕集フィルタ12を備える。捕集フィルタ12としては、例えばチャコールフィルタを用いることができる。 Further, in the overpressure protection device 100B according to the present embodiment, the overpressure protection device 100B collects particulate radioactive substances on the path for discharging the gas generated in the reactor pressure vessel 1 to the atmosphere. The collection filter 12 is provided. As the collection filter 12, for example, a charcoal filter can be used.
 このような本実施形態に係る過圧防護装置100Bは、第2実施形態係る過圧防護装置100A(図2参照)と比較すると、以下の点を改善することができる。 The overpressure protection device 100B according to the present embodiment can improve the following points as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment.
 第2実施形態に係る過圧防護装置100Aでは、下部ヘッダベント弁18a及び上部ヘッダベント弁18bを開いた直後、原子炉圧力容器1の水蒸気が下部ヘッダベント管17a及び上部ヘッダベント管17bを介して非常用復水器プール9の冷却水中に放出される。そのため、第2実施形態に係る過圧防護装置100Aは、各々の管の先端に動荷重抑制装置19a,19bを設置することで、非常用復水器プール9の破損防止の信頼性を向上させている。 In the overpressure protection device 100A according to the second embodiment, immediately after opening the lower header vent valve 18a and the upper header vent valve 18b, steam of the reactor pressure vessel 1 passes through the lower header vent pipe 17a and the upper header vent pipe 17b. It is discharged into the cooling water of the emergency condenser pool 9. Therefore, the overpressure protection device 100A according to the second embodiment improves the reliability of damage prevention of the emergency condenser pool 9 by installing the dynamic load suppression devices 19a and 19b at the tips of the respective pipes. ing.
 これに対して、本実施形態に係る過圧防護装置100Bでは、非常用復水器プール9の冷却水の重さ(水頭圧)がかからない上部ヘッダベント管17bからの水蒸気放出量が支配的となり、非常用復水器プール9の冷却水中に水蒸気が放出される際に発生する動荷重の大きさが大幅に抑制される。そのため、本実施形態に係る過圧防護装置100Bは、各々の管の先端の動荷重抑制装置19a,19bが不要となり、設備構成を簡素化できる。 On the other hand, in the overpressure protection device 100B according to the present embodiment, the amount of water vapor released from the upper header vent pipe 17b, which is not subject to the weight (head pressure) of the cooling water of the emergency condenser pool 9, becomes dominant. , The magnitude of the dynamic load generated when water vapor is released into the cooling water of the emergency condenser pool 9 is greatly suppressed. Therefore, the overpressure protection device 100B according to the present embodiment does not require the dynamic load suppressing devices 19a and 19b at the tip of each pipe, and can simplify the equipment configuration.
 但し、本本実施形態に係る過圧防護装置100Bでは、原子炉圧力容器1の水蒸気が原子炉建屋10の内部空間に直接排出されることから、非常用復水器プール9の冷却水によるスクラビング効果(放射性物質の除去効果)が期待できなくなる。そのため、本本実施形態に係る過圧防護装置100Bでは、ガス排気ライン11上に、粒子状の放射性物質を除去するための捕集フィルタ12を設置することで、原子炉建屋10の内部空間に放出される放射性物質を、原子炉建屋10の外部(大気)に可能な限り放出させない構成としている。 However, in the overpressure protection device 100B according to the present embodiment, since the water vapor of the reactor pressure vessel 1 is directly discharged into the internal space of the reactor building 10, the scrubbing effect of the cooling water of the emergency condenser pool 9 (Effect of removing radioactive substances) cannot be expected. Therefore, in the overpressure protection device 100B according to the present embodiment, by installing a collection filter 12 for removing particulate radioactive substances on the gas exhaust line 11, the gas is released into the internal space of the reactor building 10. The radioactive material is not released to the outside (atmosphere) of the reactor building 10 as much as possible.
 以上のように、本実施形態に係る過圧防護装置100Bは、第2実施形態に係る過圧防護装置100A(図2参照)と比較すると、捕集フィルタ12を追加する必要が生じるものの、原子炉圧力容器1の水蒸気を原子炉建屋10の内部空間に直接排出することで各々の管の先端の動荷重抑制装置19a,19bが不要となり、設備構成を合理化することができる。 As described above, the overpressure protection device 100B according to the present embodiment requires the addition of a collection filter 12 as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment, but is an atom. By directly discharging the water vapor of the reactor pressure vessel 1 into the internal space of the reactor building 10, the dynamic load suppressing devices 19a and 19b at the tips of the respective pipes become unnecessary, and the equipment configuration can be rationalized.
 [第4実施形態]
 以下、図4を参照して、第4実施形態に係る過圧防護装置100Cの構成について説明する。図4は、第4実施形態に係る過圧防護装置100Cの構成を示すシステム系統図である。
[Fourth Embodiment]
Hereinafter, the configuration of the overpressure protection device 100C according to the fourth embodiment will be described with reference to FIG. FIG. 4 is a system system diagram showing the configuration of the overpressure protection device 100C according to the fourth embodiment.
 図4に示すように、第4実施形態に係る過圧防護装置100Cは、第2実施形態に係る過圧防護装置100A(図2参照)と比較すると、以下の点で相違する。
 (1)ガス排気ライン11上に粒子状の放射性物質を除去するための捕集フィルタ12を設置している点。
 (2)非常用復水器プール9への冷却水補給用の設備として、冷却水補給手段40を備えている点。
As shown in FIG. 4, the overpressure protection device 100C according to the fourth embodiment is different from the overpressure protection device 100A (see FIG. 2) according to the second embodiment in the following points.
(1) A collection filter 12 for removing particulate radioactive substances is installed on the gas exhaust line 11.
(2) An emergency condenser pool 9 is provided with cooling water replenishment means 40 as equipment for replenishing cooling water.
 本実施形態に係る過圧防護装置100Cでは、過圧防護装置100Cは、非常用復水器プール9に冷却水を補給する冷却水補給手段40を備える。 In the overpressure protection device 100C according to the present embodiment, the overpressure protection device 100C includes a cooling water supply means 40 for supplying cooling water to the emergency condenser pool 9.
 また、本実施形態に係る過圧防護装置100Cでは、冷却水補給手段40は、非常用復水器プール9に補給する冷却水を溜める補給水プール21と、非常用復水器プール9と補給水プール21とを接続する補給水管23と、補給水管23の経路上に配置され、かつ、補給水プール21から非常用復水器プール9に補給する冷却水の補給水プール21への逆流を防止する補給水管逆止弁24と、を有する。 Further, in the overpressure protection device 100C according to the present embodiment, the cooling water replenishing means 40 replenishes the emergency water replenisher pool 9 with the replenishment water pool 21 for storing the cooling water to be replenished with the emergency water condensate pool 9. A backflow of cooling water from the make-up water pool 21 to the make-up water pool 21 arranged on the path of the make-up water pipe 23 connecting the water pool 21 and the emergency water return device pool 9 is provided. It has a make-up water pipe check valve 24 to prevent.
 補給水プール21の底面は、非常用復水器プール9の底面と同じ高さの位置又は非常用復水器プール9の底面よりも高い位置に配置されている。 The bottom surface of the make-up water pool 21 is arranged at the same height as the bottom surface of the emergency condenser pool 9 or at a position higher than the bottom surface of the emergency condenser pool 9.
 係る構成において、過圧防護装置100Cは、LOCA発生時に、非常用復水器プール9の冷却水が減少すると、非常用復水器プール9の冷却水と補給水プール21の補給水との水頭圧の差によって補給水プール21から非常用復水器プール9に水が流れる。 In such a configuration, when the cooling water of the emergency water recovery device pool 9 decreases when the LOCA occurs, the overpressure protection device 100C has a head of the cooling water of the emergency water recovery device pool 9 and the make-up water of the make-up water pool 21. Water flows from the make-up water pool 21 to the emergency water return device pool 9 due to the difference in pressure.
 このような過圧防護装置100Cは、補給水プール21に水(補給水)を溜めておくことで、補給水プール21から非常用復水器プール9に水を供給することができる。 Such an overpressure protection device 100C can supply water from the make-up water pool 21 to the emergency condenser pool 9 by storing water (make-up water) in the make-up water pool 21.
 また、過圧防護装置100Cは、補給水プール21に水を供給することで、原子炉建屋10の外部から非常用復水器プール9、ひいては原子炉圧力容器1の内部に冷却水を注水することができる。 Further, the overpressure protection device 100C supplies water to the make-up water pool 21 to inject cooling water from the outside of the reactor building 10 into the emergency condenser pool 9 and the inside of the reactor pressure vessel 1. be able to.
 このような本実施形態に係る過圧防護装置100Cは、第2実施形態係る過圧防護装置100A(図2参照)と比較すると、以下の点を改善することができる。 Such an overpressure protection device 100C according to the present embodiment can improve the following points as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment.
 第2実施形態に係る過圧防護装置100Aでは、非常用復水器プール9に貯えておく水量次第ではあるが、非常用復水器プール9の冷却水(プール水)が下部ヘッダベント管17aを介して原子炉圧力容器1に注水されることで、非常用復水器プール9の水量が低下し、非常用復水器5や上部ヘッダベント管17bが水面上に露出する可能性がある。上部ヘッダベント管17bが水面上に露出すると、非常用復水器プール9の冷却水によるスクラビング効果が期待できなくなり、少量ではあるものの、原子炉圧力容器1の内部の放射性物質が原子炉建屋10の内部空間に直接放出される可能性が生じる。消防車等を用いて非常用復水器プール9に冷却水を補給することでこのような事態を回避することは可能だが、設計基準外事故発生時には、原子炉建屋10へのアクセス性が悪化して消防車による冷却水補給が困難になる可能性がある。 In the overpressure protection device 100A according to the second embodiment, the cooling water (pool water) of the emergency condenser pool 9 is the lower header vent pipe 17a, although it depends on the amount of water stored in the emergency condenser pool 9. By injecting water into the reactor pressure vessel 1 via the above, the amount of water in the emergency condenser pool 9 may decrease, and the emergency condenser 5 and the upper header vent pipe 17b may be exposed on the water surface. .. When the upper header vent pipe 17b is exposed above the water surface, the scrubbing effect of the cooling water of the emergency condenser pool 9 cannot be expected, and although the amount is small, the radioactive material inside the reactor pressure vessel 1 is contained in the reactor building 10. There is a possibility that it will be released directly into the internal space of the reactor. It is possible to avoid such a situation by replenishing the emergency condenser pool 9 with cooling water using a fire engine or the like, but in the event of an accident outside the design standards, accessibility to the reactor building 10 deteriorates. Therefore, it may be difficult to replenish the cooling water by the fire engine.
 これに対して、本実施形態に係る過圧防護装置100Cでは、非常用復水器プール9の水位が低下すると、非常用復水器プール9と補給水プール21の水深差(水頭圧差)を駆動力として、補給水管23を介して補給水プール21の冷却水が非常用復水器プール9に自動的に供給される。これにより、本実施形態に係る過圧防護装置100Cは、上部ヘッダベント管17bの水面上への露出を防止し、非常用復水器プール9の冷却水による放射性物質のスクラビング効果を維持することができる。 On the other hand, in the overpressure protection device 100C according to the present embodiment, when the water level of the emergency condenser pool 9 drops, the water depth difference (water head pressure difference) between the emergency condenser pool 9 and the make-up water pool 21 is increased. As a driving force, the cooling water of the make-up water pool 21 is automatically supplied to the emergency condenser pool 9 via the make-up water pipe 23. As a result, the overpressure protection device 100C according to the present embodiment prevents the upper header vent pipe 17b from being exposed on the water surface, and maintains the scrubbing effect of the radioactive material by the cooling water of the emergency condenser pool 9. Can be done.
 また、本実施形態に係る過圧防護装置100Cは、補給水プール21を、アクセス性の良い原子炉建屋10の外部に配置することで、消防車等による補給水プール21への冷却水補給が容易となるため、長期間、安定して放射性物質のスクラビング効果を得ることができる。 Further, in the overpressure protection device 100C according to the present embodiment, by arranging the make-up water pool 21 outside the reactor building 10 having good accessibility, cooling water can be replenished to the make-up water pool 21 by a fire truck or the like. Since it is easy, the scrubbing effect of the radioactive substance can be stably obtained for a long period of time.
 また、本実施形態に係る過圧防護装置100Cは、補給水管23の経路上に補給水管逆止弁24を備えることで、少量の放射性物質を含む非常用復水器プール9の冷却水が補給水プール21側に流出することを防止することができる。 Further, the overpressure protection device 100C according to the present embodiment is provided with the make-up water pipe check valve 24 on the path of the make-up water pipe 23, so that the cooling water of the emergency condenser pool 9 containing a small amount of radioactive material is replenished. It is possible to prevent the water from flowing out to the water pool 21 side.
 また、本実施形態に係る過圧防護装置100Cは、スクラビング効果が持続するため、原子炉圧力容器1から放出される少量の放射性物質のほぼ全量を非常用復水器プール9の冷却水中に保持することができるが、原子炉建屋10に放出される、スクラビング効果によって除去しきれなかった放射性物質は、ガス排気ライン11を介してスタック13から排出される前に、捕集フィルタ12で捕集(除去)する。これにより、本実施形態に係る過圧防護装置100Cは、第2実施形態に係る過圧防護装置100Aよりも、原子炉建屋10の外部への放射性物質の放出量を更に低減することができる。 Further, in the overpressure protection device 100C according to the present embodiment, since the scrubbing effect is maintained, almost all of the small amount of radioactive material released from the reactor pressure vessel 1 is held in the cooling water of the emergency condenser pool 9. However, the radioactive material released to the reactor building 10 that could not be completely removed due to the scrubbing effect is collected by the collection filter 12 before being discharged from the stack 13 via the gas exhaust line 11. (Remove. As a result, the overpressure protection device 100C according to the present embodiment can further reduce the amount of radioactive substances released to the outside of the reactor building 10 as compared with the overpressure protection device 100A according to the second embodiment.
 以上のように、本実施形態に係る過圧防護装置100Cは、第2実施形態と比較すると、冷却水補給が容易な補給水プール21を原子炉建屋10の外部に備えることで、非常用復水器プール9の水位を上部ヘッダベント管17bより高く維持することができるため、非常用復水器プール9の冷却水による放射性物質のスクラビング効果が継続的に得られること、スクラビング効果で除去しきれなかった粒子状の放射性物質を捕集フィルタ12で捕集(除去)することができることから、原子炉建屋10の外部に放出される放射性物質量を長期間に亘って更に低減することができる。 As described above, the overpressure protection device 100C according to the present embodiment is provided with a make-up water pool 21 which is easier to replenish the cooling water than the second embodiment by providing the make-up water pool 21 outside the reactor building 10. Since the water level of the water reactor pool 9 can be maintained higher than that of the upper header vent pipe 17b, the scrubbing effect of radioactive substances by the cooling water of the emergency water reactor pool 9 can be continuously obtained, and it is removed by the scrubbing effect. Since the particulate radioactive substances that could not be removed can be collected (removed) by the collection filter 12, the amount of radioactive substances released to the outside of the reactor building 10 can be further reduced over a long period of time. ..
 なお、補給水プール21は原子炉建屋10の内部に設置することも可能である。この場合、補給水管逆止弁24は不要となる。 The make-up water pool 21 can also be installed inside the reactor building 10. In this case, the make-up water pipe check valve 24 becomes unnecessary.
 [第5実施形態]
 以下、図5を参照して、第5実施形態に係る過圧防護装置100Dの構成について説明する。図5は、第5実施形態に係る過圧防護装置100Dの構成を示すシステム系統図である。
[Fifth Embodiment]
Hereinafter, the configuration of the overpressure protection device 100D according to the fifth embodiment will be described with reference to FIG. FIG. 5 is a system system diagram showing the configuration of the overpressure protection device 100D according to the fifth embodiment.
 図5に示すように、第5実施形態に係る過圧防護装置100Dは、第4実施形態に係る過圧防護装置100C(図4参照)と比較すると、非常用復水器プール9への冷却水補給用の設備として、冷却水補給手段40の代わりに、冷却水補給手段40Dを備えている点で相違する。 As shown in FIG. 5, the overpressure protection device 100D according to the fifth embodiment is cooled to the emergency condenser pool 9 as compared with the overpressure protection device 100C (see FIG. 4) according to the fourth embodiment. The difference is that the equipment for replenishing water is provided with the cooling water replenishing means 40D instead of the cooling water replenishing means 40.
 冷却水補給手段40Dは、非常用復水器プール9に補給する冷却水を溜める補給水プール21と、非常用復水器プール9と補給水プール21とを接続する補給水管23と、補給水管23の経路上に配置され、かつ、重力差に打ち勝って、補給水プール21から冷却水を汲み上げて非常用復水器プール9に送る補給水ポンプ22と、を有する。 The cooling water replenishment means 40D includes a make-up water pool 21 for storing the cooling water to be replenished to the emergency water return device pool 9, a make-up water pipe 23 for connecting the emergency water return device pool 9 and the make-up water pool 21, and a make-up water pipe. It has a make-up water pump 22 which is arranged on the path of 23 and which overcomes the gravity difference and draws cooling water from the make-up water pool 21 and sends it to the emergency water return device pool 9.
 補給水プール21の底面は、非常用復水器プール9の底面よりも低い位置に配置されている。 The bottom surface of the make-up water pool 21 is arranged at a position lower than the bottom surface of the emergency condenser pool 9.
 係る構成において、過圧防護装置100Dは、LOCA発生時に、補給水ポンプ22で補給水プール21から組み上げた水を非常用復水器プール9に補給する。このような過圧防護装置100Dは、補給水プール21を非常用復水器プール9よりも低い場所に設置することができる。非常用復水器プール9よりも低い場所は、比較的大面積を確保し易い。そのため、過圧防護装置100Dは、補給水プール21の大容量化を図ることができる。 In such a configuration, the overpressure protection device 100D replenishes the water assembled from the make-up water pool 21 by the make-up water pump 22 to the emergency condenser pool 9 when LOCA occurs. In such an overpressure protection device 100D, the make-up water pool 21 can be installed at a place lower than the emergency condenser pool 9. A place lower than the emergency condenser pool 9 can easily secure a relatively large area. Therefore, the overpressure protection device 100D can increase the capacity of the make-up water pool 21.
 このような本実施形態に係る過圧防護装置100Dは、第4実施形態に係る過圧防護装置100C(図4参照)と同様に、上部ヘッダベント管17bの水面上への露出を防止し、非常用復水器プール9の冷却水による放射性物質のスクラビング効果を維持することができる。 Such an overpressure protection device 100D according to the present embodiment prevents the upper header vent pipe 17b from being exposed on the water surface, similarly to the overpressure protection device 100C (see FIG. 4) according to the fourth embodiment. The scrubbing effect of radioactive materials by the cooling water of the emergency condenser pool 9 can be maintained.
 なお、補給水ポンプ22は、常設ポンプとしてもよいし、消防車等の可搬型のポンプを用いてもよい。 The make-up water pump 22 may be a permanent pump or a portable pump such as a fire engine.
 [第6実施形態]
 以下、図6を参照して、第6実施形態に係る過圧防護装置100Eの構成について説明する。図6は、第6実施形態に係る過圧防護装置100Eの構成を示すシステム系統図である。
[Sixth Embodiment]
Hereinafter, the configuration of the overpressure protection device 100E according to the sixth embodiment will be described with reference to FIG. FIG. 6 is a system system diagram showing the configuration of the overpressure protection device 100E according to the sixth embodiment.
 図6に示すように、第6実施形態に係る過圧防護装置100Eは、第2実施形態に係る過圧防護装置100A(図2参照)と比較すると、以下の点で相違する。
 (1)ガス排気ライン11の原子炉建屋10側の開口部に、放射性希ガスを遮断し、かつ、水蒸気を透過する膜フィルタ(希ガスフィルタ25)を設置している点。
 (2)原子炉建屋10の内部に、水素と酸素を再結合させて水素爆発を防止するための電源不要設備として静的触媒式水素再結合装置26(PAR)を備えている点。
As shown in FIG. 6, the overpressure protection device 100E according to the sixth embodiment is different from the overpressure protection device 100A according to the second embodiment (see FIG. 2) in the following points.
(1) A membrane filter (noble gas filter 25) that blocks radioactive rare gas and allows water vapor to permeate is installed in the opening of the gas exhaust line 11 on the reactor building 10 side.
(2) A static catalytic hydrogen recombination device 26 (PAR) is provided inside the reactor building 10 as a power supply-free facility for recombining hydrogen and oxygen to prevent a hydrogen explosion.
 本実施形態に係る過圧防護装置100Eは、原子炉圧力容器1内で発生したガスを大気に排出する経路上に、放射性希ガスを遮断するとともに、水蒸気を透過する希ガスフィルタ25を備える。 The overpressure protection device 100E according to the present embodiment includes a rare gas filter 25 that blocks radioactive rare gas and permeates water vapor on the path for discharging the gas generated in the reactor pressure vessel 1 to the atmosphere.
 過圧防護装置100Eは、希ガスフィルタ25を有している。希ガスフィルタ25は、放射性希ガスを遮断するとともに、水蒸気を透過する。これにより、過圧防護装置100Eは、大気に排出される放射性物質の量を低減することができる。希ガスフィルタ25としては、ポリイミドのような高分子膜、炭化ケイ素のようなセラミック膜、酸化グラフェン膜等を用いることができる。これらの膜は、水素や水蒸気のような分子径の小さなガスを透過させ、キセノン(Xe)のような分子径の大きなガスを透過させない性質を有する。なお、過圧防護装置100Eは、図6に示すように、希ガスフィルタ25に加え、ガス排気ライン11上に捕集フィルタ12を有する構成であってよい。 The overpressure protection device 100E has a rare gas filter 25. The rare gas filter 25 blocks radioactive rare gas and allows water vapor to pass through. As a result, the overpressure protection device 100E can reduce the amount of radioactive substances discharged into the atmosphere. As the rare gas filter 25, a polymer film such as polyimide, a ceramic film such as silicon carbide, a graphene oxide film, or the like can be used. These membranes have the property of allowing a gas having a small molecular diameter such as hydrogen or water vapor to permeate and not allowing a gas having a large molecular diameter such as xenon (Xe) to permeate. As shown in FIG. 6, the overpressure protection device 100E may have a collection filter 12 on the gas exhaust line 11 in addition to the noble gas filter 25.
 また、本実施形態に係る過圧防護装置100Eは、原子炉格納容器4を内包する原子炉建屋10内に配置され、かつ、水素と酸素とを再結合させるための、静的触媒式水素再結合装置26を備える。静的触媒式水素再結合装置26は、電源を必要とせず、触媒の作用によって水素と酸素とを結合させることができる。 Further, the overpressure protection device 100E according to the present embodiment is arranged in the reactor building 10 including the reactor containment vessel 4, and is a static catalytic hydrogen regeneration for recombining hydrogen and oxygen. A coupling device 26 is provided. The static catalytic hydrogen recombination device 26 does not require a power source and can bond hydrogen and oxygen by the action of a catalyst.
 このような本実施形態に係る過圧防護装置100Eは、第2実施形態係る過圧防護装置100A(図2参照)と比較すると、以下の点を改善することができる。 Such an overpressure protection device 100E according to the present embodiment can improve the following points as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment.
 第2実施形態に係る過圧防護装置100Aでは、下部ヘッダベント管17aを介して非常用復水器プール9の冷却水を原子炉圧力容器1に注水することで、炉心2の損傷を防止可能である。しかしながら、万一、原子炉圧力容器1の減圧や非常用復水器プール9の冷却水の注水が遅れて炉心2の損傷が発生した場合、炉心2に装荷されている燃料棒の内部に閉じ込められていた揮発性の核分裂生成物(Cs等)や放射性希ガス(Xe等)が原子炉圧力容器1の内部に排出されると同時に、燃料棒の被覆管として使用されているジルカロイと高温水蒸気の化学反応により、原子炉圧力容器1の内部で水素ガスが発生する。 In the overpressure protection device 100A according to the second embodiment, damage to the core 2 can be prevented by injecting the cooling water of the emergency condenser pool 9 into the reactor pressure vessel 1 via the lower header vent pipe 17a. Is. However, in the unlikely event that the decompression of the reactor pressure vessel 1 and the injection of the cooling water of the emergency water recovery device pool 9 are delayed and the core 2 is damaged, it is confined inside the fuel rod loaded in the core 2. The volatile fission products (Cs, etc.) and radioactive rare gas (Xe, etc.) that had been collected are discharged into the reactor pressure vessel 1, and at the same time, Zircaloy and high-temperature steam used as the cladding tube of the fuel rods. Hydrogen gas is generated inside the reactor pressure vessel 1 by the chemical reaction of.
 これらのガスが、上部ヘッダベント管17bを介して非常用復水器プール9の冷却水中に放出されると、スクラビング効果によってCs等の揮発性の核分裂生成物はほぼ全量が非常用復水器プール9の冷却水中に取り込まれるが、非凝縮性ガスである放射性希ガスや水素は取り込まれず、原子炉建屋10に排出される。 When these gases are released into the cooling water of the emergency condenser pool 9 via the upper header vent pipe 17b, almost all of the volatile fission products such as Cs are in the emergency condenser due to the scrubbing effect. Although it is taken into the cooling water of the pool 9, the radioactive rare gas and hydrogen which are non-condensable gases are not taken in and are discharged to the reactor building 10.
 そこで、本実施形態に係る過圧防護装置100Eでは、排出された水素は、静的触媒式水素再結合装置26によって、原子炉建屋10の内部の空気中に含まれる酸素と再結合させて水に戻す。これにより、本実施形態に係る過圧防護装置100Eは、原子炉建屋10の水素爆発発生を防止できる。 Therefore, in the overpressure protection device 100E according to the present embodiment, the discharged hydrogen is recombined with oxygen contained in the air inside the reactor building 10 by the static catalytic hydrogen recombination device 26 to be water. Return to. As a result, the overpressure protection device 100E according to the present embodiment can prevent the occurrence of a hydrogen explosion in the reactor building 10.
 また、本実施形態に係る過圧防護装置100Eは、放射性希ガスを原子炉建屋10の内部に保持しつつ、原子炉建屋10の過圧破損や原子炉建屋10からのガス漏洩を防止するため、希ガスフィルタ25を設置している。このような本実施形態に係る過圧防護装置100Eは、原子炉建屋10の内部の加圧要因となる、静的触媒式水素再結合装置26で処理しきれなかった水素及び非常用復水器プール9から蒸発する水蒸気等を原子炉建屋10から選択的に排出すると共に、放射性希ガス(Xe等)を原子炉建屋10の内部に保持することができる。 Further, the overpressure protection device 100E according to the present embodiment is for preventing overpressure damage of the reactor building 10 and gas leakage from the reactor building 10 while holding the radioactive rare gas inside the reactor building 10. , A rare gas filter 25 is installed. The overpressure protection device 100E according to the present embodiment is a hydrogen and emergency water recovery device that cannot be completely processed by the static catalytic hydrogen recombination device 26, which is a pressurizing factor inside the reactor building 10. The water vapor and the like evaporating from the pool 9 can be selectively discharged from the reactor building 10, and the radioactive rare gas (Xe or the like) can be retained inside the reactor building 10.
 以上のように、本実施形態に係る過圧防護装置100Eは、第2実施形態に係る過圧防護装置100A(図2参照)と比較すると、万一、炉心2の損傷が発生して、揮発性の放射性物質、放射性希ガス、水素等が非常用復水器プール9を介して原子炉建屋10に放出される事態が発生しても、非常用復水器プール9の冷却水による揮発性放射性物質のスクラビング効果、静的触媒式水素再結合装置26による水素除去効果、希ガスフィルタ25による放射性希ガスの原子炉建屋10への閉じ込め効果を得ることができる。そのため、本実施形態に係る過圧防護装置100Eは、原子炉建屋10の内部での水素爆発発生の可能性の低減、及び原子炉建屋10の外部に放出される放射性物質量の低減を実現できる。 As described above, the overpressure protection device 100E according to the present embodiment is volatile due to damage to the core 2 as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment. Even if a situation occurs in which radioactive radioactive substances, radioactive rare gases, hydrogen, etc. are released to the reactor building 10 via the emergency water recovery device pool 9, the volatileness of the cooling water of the emergency water recovery device pool 9 occurs. It is possible to obtain the scrubbing effect of the radioactive substance, the hydrogen removing effect by the static catalytic hydrogen recombination device 26, and the confinement effect of the radioactive rare gas in the reactor building 10 by the rare gas filter 25. Therefore, the overpressure protection device 100E according to the present embodiment can reduce the possibility of hydrogen explosion inside the reactor building 10 and reduce the amount of radioactive substances released to the outside of the reactor building 10. ..
 [第7実施形態]
 以下、図7を参照して、第7実施形態に係る過圧防護装置100Fの構成について説明する。図7は、第7実施形態に係る過圧防護装置100Fの構成を示すシステム系統図である。
[7th Embodiment]
Hereinafter, the configuration of the overpressure protection device 100F according to the seventh embodiment will be described with reference to FIG. 7. FIG. 7 is a system system diagram showing the configuration of the overpressure protection device 100F according to the seventh embodiment.
 図7に示すように、第7実施形態に係る過圧防護装置100Fは、第2実施形態に係る過圧防護装置100A(図2参照)と比較すると、以下の点で相違する。
 (1)非常用復水器プール9aが、原子炉建屋10と隔離された、気密性を有する構造となっている点。
 (2)非常時に非常用復水器プール9aの気相部30のガスを原子炉建屋10の外部に排出するためのガス排気ライン11、スタック13、非常時ベント弁27を備えている点。
As shown in FIG. 7, the overpressure protection device 100F according to the seventh embodiment is different from the overpressure protection device 100A (see FIG. 2) according to the second embodiment in the following points.
(1) The emergency condenser pool 9a has an airtight structure isolated from the reactor building 10.
(2) A gas exhaust line 11, a stack 13, and an emergency vent valve 27 for discharging the gas of the gas phase portion 30 of the emergency condenser pool 9a to the outside of the reactor building 10 in an emergency are provided.
 本実施形態に係る過圧防護装置100Fでは、非常用復水器プール9aは、気密性を有する閉空間になっており、かつ、非常用復水器プール9a内の原子炉圧力容器1内で発生したガスを大気に排出するためのガス排気ライン11が設けられている。 In the overpressure protection device 100F according to the present embodiment, the emergency condenser pool 9a is a closed space having airtightness, and is in the reactor pressure vessel 1 in the emergency condenser pool 9a. A gas exhaust line 11 for discharging the generated gas to the atmosphere is provided.
 また、本実施形態に係る過圧防護装置100Fでは、非常用復水器プール9aは、気密性を有する閉空間になっており、原子炉圧力容器1から非常用復水器プール9aに排出される、若干の放射性物質を含む水蒸気を閉空間内に閉じ込めることができる。そのため、外部への放射性物質放出を完全に防止することができる。しかし、万一、炉心が損傷する等によって原子炉圧力容器1から水素を含む大量のガスが非常用復水器プール9aに排出され、非常用復水器プール9aが過圧破損する恐れが発生した場合は、過圧防護装置100Fは、非常用復水器プール9a内のガスを、スタック13を介してガス排気ライン11に沿って大気に排出する構成になっている。そのため、ガス排気ライン11上には、非常時に開かれる非常時ベント弁27が配置されている。 Further, in the overpressure protection device 100F according to the present embodiment, the emergency condenser pool 9a is a closed space having airtightness, and is discharged from the reactor pressure vessel 1 to the emergency condenser pool 9a. It is possible to confine water vapor containing some radioactive substances in a closed space. Therefore, it is possible to completely prevent the release of radioactive substances to the outside. However, in the unlikely event that the core is damaged, a large amount of gas containing hydrogen is discharged from the reactor pressure vessel 1 to the emergency condenser pool 9a, which may cause overpressure damage to the emergency condenser pool 9a. If so, the overpressure protection device 100F is configured to discharge the gas in the emergency condenser pool 9a to the atmosphere along the gas exhaust line 11 via the stack 13. Therefore, an emergency vent valve 27 that is opened in an emergency is arranged on the gas exhaust line 11.
 なお、非常用復水器プール9aは、原子炉建屋10の内側に配置してもよいし、原子炉建屋10の外側に配置してもよい。つまり、原子炉建屋10は、一点鎖線で示すように、内側に非常用復水器プール9aが配置されるように構成してもよいし、二点鎖線で示すように、外側に非常用復水器プール9aが配置されるように構成してもよい。 The emergency condenser pool 9a may be arranged inside the reactor building 10 or outside the reactor building 10. That is, the reactor building 10 may be configured such that the emergency condenser pool 9a is arranged inside as shown by the alternate long and short dash line, or the emergency condenser pool 9a may be arranged on the outside as shown by the alternate long and short dash line. The condenser pool 9a may be configured to be arranged.
 このような本実施形態に係る過圧防護装置100Fは、第2実施形態係る過圧防護装置100A(図2参照)と比較すると、以下の点を改善することができる。 The overpressure protection device 100F according to the present embodiment can improve the following points as compared with the overpressure protection device 100A (see FIG. 2) according to the second embodiment.
 第2実施形態に係る過圧防護装置100Aでは、非常用復水器プール9aの冷却水によってスクラビングされた後のごく少量の放射性物質は原子炉建屋10に放出され、ごく少量の放射性物質の一部は原子炉建屋10に接続されるガス排気ライン11を介してスタック13から原子炉建屋10の外部に排出される。 In the overpressure protection device 100A according to the second embodiment, a very small amount of radioactive material after being scrubbed by the cooling water of the emergency condenser pool 9a is released to the reactor building 10, and one of the very small amount of radioactive material. The unit is discharged from the stack 13 to the outside of the reactor building 10 via the gas exhaust line 11 connected to the reactor building 10.
 これに対して、本実施形態に係る過圧防護装置100Fでは、非常用復水器プール9aを気密構造としたことにより、ごく少量の放射性物質をも非常用復水器プール9aの気相部30に溜めることができる。このような本実施形態に係る過圧防護装置100Fは、原子炉建屋10の外部への放射性物質の排出をほぼ完全に防止することができる。 On the other hand, in the overpressure protection device 100F according to the present embodiment, the emergency condenser pool 9a has an airtight structure, so that even a very small amount of radioactive material can be used in the gas phase portion of the emergency condenser pool 9a. It can be stored in 30. The overpressure protection device 100F according to the present embodiment can almost completely prevent the discharge of radioactive substances to the outside of the reactor building 10.
 以上のように、本実施形態に係る過圧防護装置100Fは、非常用復水器プール9aの気相部30の空間容積を十分に確保することで非常用復水器プール9aの過圧破損を防止できる。そして、本実施形態に係る過圧防護装置100Fは、万一、非常用復水器プール9aの気相部30の圧力が非常用復水器プール9aの最高使用圧力を超えて上昇する可能性がある場合に、非常時ベント弁27を開くことで、非常用復水器プール9aの気相部30のガスをガス排気ライン11及びスタック13を介して原子炉建屋10の外部に排出することができる。これにより、本実施形態に係る過圧防護装置100Fは、万一の非常用復水器プール9aの過圧破損を防止することができる。 As described above, the overpressure protection device 100F according to the present embodiment is damaged by overpressure of the emergency condenser pool 9a by sufficiently securing the space volume of the gas phase portion 30 of the emergency condenser pool 9a. Can be prevented. Then, in the overpressure protection device 100F according to the present embodiment, there is a possibility that the pressure of the gas phase portion 30 of the emergency water recovery device pool 9a will exceed the maximum working pressure of the emergency water recovery device pool 9a. If there is, by opening the emergency vent valve 27, the gas in the gas phase portion 30 of the emergency water return device pool 9a is discharged to the outside of the reactor building 10 via the gas exhaust line 11 and the stack 13. Can be done. Thereby, the overpressure protection device 100F according to the present embodiment can prevent the overpressure damage of the emergency condenser pool 9a by any chance.
 なお、下部ヘッダベント管17aや上部ヘッダベント管17bの開口先を、非常用復水器プール9aではなく、別の気密構造タンクとすることでも、原子炉建屋10の外部への放射性物質の排出を完全に防止することができる。しかしながら、本実施形態に係る過圧防護装置100Fの方がこのような構成よりも簡素な構成で同じ効果を実現できる。 The radioactive substances can be discharged to the outside of the reactor building 10 by using a separate airtight tank instead of the emergency condenser pool 9a as the opening of the lower header vent pipe 17a and the upper header vent pipe 17b. Can be completely prevented. However, the overpressure protection device 100F according to the present embodiment can realize the same effect with a simpler configuration than such a configuration.
 以上のように、本実施形態に係る過圧防護装置100Fは、第2実施形態と比較すると、ごく少量の放射性物質をも非常用復水器プール9aの気相部30に溜めることで、原子炉建屋10の外部への放射性物質の排出をほぼ完全に防止することができる。 As described above, the overpressure protection device 100F according to the present embodiment has an atom by accumulating a very small amount of radioactive material in the gas phase portion 30 of the emergency condenser pool 9a as compared with the second embodiment. It is possible to almost completely prevent the discharge of radioactive substances to the outside of the reactor building 10.
 また、本実施形態に係る過圧防護装置100Fは、万一、非常用復水器プール9aの気相部30の圧力が非常用復水器プール9aの最高使用圧力を超えて上昇する可能性がある場合は、非常時ベント弁27を開くことで、非常用復水器プール9aの気相部30のガスをガス排気ライン11及びスタック13を介して原子炉建屋10の外部に排出することもできる。 Further, in the overpressure protection device 100F according to the present embodiment, there is a possibility that the pressure of the gas phase portion 30 of the emergency water recovery device pool 9a will exceed the maximum working pressure of the emergency water recovery device pool 9a. If there is, by opening the emergency vent valve 27, the gas in the gas phase portion 30 of the emergency water return device pool 9a is discharged to the outside of the reactor building 10 via the gas exhaust line 11 and the stack 13. You can also.
 [第8実施形態]
 以下、図8を参照して、第8実施形態に係る過圧防護装置100Gの構成について説明する。図8は、第8実施形態に係る過圧防護装置100Gの構成を示すシステム系統図である。
[Eighth Embodiment]
Hereinafter, the configuration of the overpressure protection device 100G according to the eighth embodiment will be described with reference to FIG. FIG. 8 is a system system diagram showing the configuration of the overpressure protection device 100G according to the eighth embodiment.
 図8に示すように、第8実施形態に係る過圧防護装置100Gは、第7実施形態に係る過圧防護装置100F(図7参照)と比較すると、ガス戻しライン28を介して、非常用復水器プール9aの気相部30と原子炉格納容器4とを接続している点で相違している。 As shown in FIG. 8, the overpressure protection device 100G according to the eighth embodiment is in emergency use via the gas return line 28 as compared with the overpressure protection device 100F (see FIG. 7) according to the seventh embodiment. The difference is that the gas phase portion 30 of the condenser pool 9a and the reactor containment vessel 4 are connected.
 本実施形態に係る過圧防護装置100Gは、非常用復水器プール9aの気相部30と原子炉格納容器4とを接続し、かつ、非常用復水器プール9aの気相部30内のガスを原子炉格納容器4に戻すためのガス戻しライン28と、ガス戻しライン28の経路上に配置され、かつ、ガス戻しラインを開閉するガス戻し弁29と、を備える。 The overpressure protection device 100G according to the present embodiment connects the gas phase portion 30 of the emergency condenser pool 9a and the reactor storage container 4, and is inside the gas phase portion 30 of the emergency condenser pool 9a. The gas return line 28 for returning the gas to the reactor storage container 4 and the gas return valve 29 arranged on the path of the gas return line 28 and opening and closing the gas return line are provided.
 本実施形態に係る過圧防護装置100Gは、ガス戻しライン28上にガス戻し弁29を設置している。本実施形態に係る過圧防護装置100Gは、これらの設備を追加することにより、例えば、設計基準外事故発生時から十分な時間が経過して、原子炉格納容器4の動的な除熱設備(ポンプ及び熱交換器を用いた除熱設備)が復旧し、原子炉格納容器4の圧力を減少させた場合に、ガス戻し弁29を開くことで、非常用復水器プール9aの気相部30に蓄積された、少量の放射性物質を含むガスを、ガス戻しライン28を介して原子炉格納容器4に戻すことができる。これにより、本実施形態に係る過圧防護装置100Gは、非常用復水器プール9aの過圧破損の可能性を更に低減することできる。 The overpressure protection device 100G according to the present embodiment has a gas return valve 29 installed on the gas return line 28. By adding these facilities, the overpressure protection device 100G according to the present embodiment is, for example, a dynamic heat removal facility for the reactor containment vessel 4 after a sufficient time has passed since the occurrence of an accident outside the design standard. When (heat removal equipment using a pump and heat exchanger) is restored and the pressure in the reactor containment vessel 4 is reduced, the gas return valve 29 is opened to open the gas phase of the emergency water return device pool 9a. The gas containing a small amount of radioactive material accumulated in the unit 30 can be returned to the reactor containment vessel 4 via the gas return line 28. Thereby, the overpressure protection device 100G according to the present embodiment can further reduce the possibility of overpressure damage of the emergency condenser pool 9a.
 つまり、仮に事故が長期化した場合に、原子炉格納容器4を冷却するための除熱設備が復活する可能性がある。そして、除熱設備が復活した場合に、過圧防護装置100Gは、非常時ベント弁27を開かなくてもよくなる。このような過圧防護装置100Gは、大気に放出されるガスの量、ひいては放射性物質の量を低減することができる。 That is, if the accident is prolonged, there is a possibility that the heat removal equipment for cooling the reactor containment vessel 4 will be restored. Then, when the heat removal equipment is restored, the overpressure protection device 100G does not have to open the emergency vent valve 27. Such an overpressure protection device 100G can reduce the amount of gas released into the atmosphere, and thus the amount of radioactive substances.
 本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。実施形態の構成の一部を他の構成に置き換えることが可能であり、実施形態の構成に他の構成を加えることも可能である。さらに、各構成の一部について、他の構成の追加・削除・置換が可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is possible to replace a part of the configuration of the embodiment with another configuration, and it is also possible to add another configuration to the configuration of the embodiment. Further, it is possible to add / delete / replace a part of each configuration with another configuration.
 例えば、第1実施形態に係る過圧防護装置100(図1参照)は、図9に示すように変形することができる。図9は、第1実施形態に係る過圧防護装置100の変形例の構成を示すシステム系統図である。 For example, the overpressure protection device 100 (see FIG. 1) according to the first embodiment can be deformed as shown in FIG. FIG. 9 is a system system diagram showing a configuration of a modified example of the overpressure protection device 100 according to the first embodiment.
 前記した第1実施形態では、沸騰水型軽水炉の設計基準外事故として、LOCA発生と非常用炉心冷却系の不作動とを仮定して、過圧防護装置100による原子炉格納容器4の圧力抑制効果を説明した。しかしながら、過圧防護装置100は、安全系構成が異なる他のタイプの沸騰水型軽水炉の設計基準外事故時にも同様の効果を得ることができる。 In the first embodiment described above, it is assumed that LOCA occurs and the emergency core cooling system does not operate as an accident outside the design standard of the boiling water reactor, and the pressure of the reactor containment vessel 4 is suppressed by the overpressure protection device 100. Explained the effect. However, the overpressure protection device 100 can obtain the same effect even in the case of an accident outside the design standard of another type of boiling water reactor having a different safety system configuration.
 例えば、図9に示すように、過圧防護装置100は、非常用炉心冷却系の代わりに、LOCA破断口よりも原子炉圧力容器1側、かつ原子炉圧力容器1になるべく近接させて設置する原子炉圧力容器1に直付けされたRPV隔離弁31を設けた沸騰水型軽水炉(原子炉圧力容器隔離型プラント)に適用する場合でも、同様の効果を得ることができる。 For example, as shown in FIG. 9, the overpressure protection device 100 is installed instead of the emergency core cooling system on the reactor pressure vessel 1 side of the LOCA break port and as close as possible to the reactor pressure vessel 1. The same effect can be obtained even when applied to a boiling water type light water reactor (reactor pressure vessel isolation type plant) provided with an RPV isolation valve 31 directly attached to the reactor pressure vessel 1.
 このような構成の原子炉圧力容器隔離型プラントにおいて、設計基準事故であるLOCAが発生した場合は、まず、RPV隔離弁31を閉止することで、LOCA破断口から原子炉圧力容器1の水蒸気が原子炉格納容器4に流出するのを防止する。RPV隔離弁31を閉止すると原子炉圧力容器1が隔離状態となるため、炉心2で発生する水蒸気によって原子炉圧力容器1の内部の圧力が上昇すると共に原子炉圧力容器1の内部の水位3(RPV水位)が低下する。そこで、過圧防護装置100は、原子炉圧力容器1の内部の圧力高信号もしくは原子炉圧力容器1の内部の水位低信号等をトリガとして非常用復水器5を起動し、原子炉圧力容器1の内部の水蒸気を凝縮させて水に戻す。これにより、過圧防護装置100は、原子炉圧力容器1の内部の圧力上昇を抑制すると共に、凝縮水を原子炉圧力容器1に戻すことで炉心2の損傷を防止する。 In a reactor pressure vessel isolation type plant with such a configuration, when LOCA, which is a design standard accident, occurs, first, by closing the RPV isolation valve 31, the water vapor of the reactor pressure vessel 1 is released from the LOCA break port. Prevent it from flowing out to the reactor containment vessel 4. When the RPV isolation valve 31 is closed, the reactor pressure vessel 1 is isolated, so that the pressure inside the reactor pressure vessel 1 rises due to the steam generated in the core 2, and the water level 3 inside the reactor pressure vessel 1 ( RPV water level) drops. Therefore, the overpressure protection device 100 activates the emergency water recovery device 5 triggered by a high pressure signal inside the reactor pressure vessel 1, a low water level signal inside the reactor pressure vessel 1, or the like, and activates the reactor pressure vessel. The water vapor inside 1 is condensed and returned to water. As a result, the overpressure protection device 100 suppresses the pressure rise inside the reactor pressure vessel 1 and returns the condensed water to the reactor pressure vessel 1 to prevent damage to the core 2.
 また、原子炉圧力容器隔離型プラントにおける設計基準外事故が発生した場合、即ち、RPV隔離弁31の閉止に失敗した場合は、非常用炉心冷却系の起動失敗と同じ状況となる。すなわち、この場合は、LOCA破断口から継続的に水蒸気が原子炉圧力容器1から原子炉格納容器4に流出し続け、原子炉格納容器4の内部の圧力が上昇すると共に原子炉圧力容器1の内部の水位3(RPV水位)が低下し続ける状況となる。そのため、原子炉圧力容器隔離型プラントの場合でも、過圧防護装置100は、非常用炉心冷却系を有する沸騰水型軽水炉と同様に、炉心2の損傷や原子炉格納容器4の過圧破損の防止を実現できる。 In addition, if an accident outside the design standard occurs in the reactor pressure vessel isolation type plant, that is, if the RPV isolation valve 31 fails to close, the situation is the same as the emergency core cooling system startup failure. That is, in this case, water vapor continuously flows out from the reactor pressure vessel 1 to the reactor containment vessel 4 from the LOCA break port, the pressure inside the reactor containment vessel 4 rises, and the reactor pressure vessel 1 The internal water level 3 (RPV water level) will continue to decline. Therefore, even in the case of a reactor pressure vessel isolated type plant, the overpressure protection device 100 suffers from damage to the core 2 and overpressure damage to the reactor containment vessel 4, similar to a boiling water reactor having an emergency core cooling system. Prevention can be realized.
1:原子炉圧力容器(RPV)
2:炉心
3:水位(RPV水位)
4:原子炉格納容器(PCV)
5:非常用復水器(IC)
6:水蒸気引き込み管
7:凝縮水戻り管
8:非常用復水器起動弁(IC起動弁)
9:非常用復水器プール(ICプール)
10:原子炉建屋
11:ガス排気ライン
12:捕集フィルタ
13:スタック(排気筒)
14:上部ヘッダ
15:伝熱管
16:下部ヘッダ
17a:下部ヘッダベント管
17b:上部ヘッダベント管
18a:下部ヘッダベント弁
18b:上部ヘッダベント弁
19a,19b:動荷重抑制装置
20:主蒸気管
21:補給水プール
22:補給水ポンプ
23:補給水管
24:補給水管逆止弁
25:希ガスフィルタ
26:静的触媒式水素再結合装置(PAR)
27:非常時ベント弁
28:ガス戻しライン
29:ガス戻し弁
30:非常用復水器プール気相部
31:RPV隔離弁
40,40D:冷却水補給手段
100,100A,100B,100C,100D,100E,100F,100G:過圧防護装置
1: Reactor pressure vessel (RPV)
2: Core 3: Water level (RPV water level)
4: Reactor containment vessel (PCV)
5: Emergency condenser (IC)
6: Steam lead-in pipe 7: Condensed water return pipe 8: Emergency condenser start valve (IC start valve)
9: Emergency condenser pool (IC pool)
10: Reactor building 11: Gas exhaust line 12: Collection filter 13: Stack (exhaust stack)
14: Upper header 15: Heat transfer tube 16: Lower header 17a: Lower header vent pipe 17b: Upper header vent pipe 18a: Lower header vent valve 18b: Upper header vent valve 19a, 19b: Dynamic load suppressing device 20: Main steam pipe 21 : Make-up water pool 22: Make-up water pump 23: Make-up water pipe 24: Make-up water pipe check valve 25: Rare gas filter 26: Static catalytic hydrogen recombination device (PAR)
27: Emergency vent valve 28: Gas return line 29: Gas return valve 30: Emergency condenser pool gas phase part 31: RPV isolation valve 40, 40D: Cooling water replenishment means 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G: Overpressure protection device

Claims (12)

  1.  原子炉圧力容器を内包する原子炉格納容器の外部に配置され、かつ、前記原子炉圧力容器に内包された炉心で発生する水蒸気を冷却し凝縮させて水に戻す非常用復水器と、
     前記非常用復水器を水中に浸す非常用復水器プールと、を備え、
     前記非常用復水器は、
     複数本の伝熱管と、
     前記伝熱管の上部側を束ねる上部ヘッダと、
     前記伝熱管の下部側を束ねる下部ヘッダと、
     一方の端部が前記非常用復水器プール内の底部付近に配置され、かつ、他方の端部が前記下部ヘッダに接続された下部ヘッダベント管と、
     前記下部ヘッダベント管の経路上に配置され、かつ、前記原子炉圧力容器内で想定を超える水位低下時もしくは前記原子炉格納容器内で想定を超える圧力増加時に解放される下部ヘッダベント弁と、を有する
    ことを特徴とする原子炉格納容器の過圧防護装置。
    An emergency condenser that is placed outside the reactor containment vessel that contains the reactor pressure vessel and that cools and condenses the water vapor generated in the core contained in the reactor pressure vessel and returns it to water.
    The emergency condenser pool, which immerses the emergency condenser in water, is provided.
    The emergency condenser is
    With multiple heat transfer tubes,
    An upper header that bundles the upper side of the heat transfer tube and
    A lower header that bundles the lower side of the heat transfer tube and
    A lower header vent pipe having one end located near the bottom of the emergency condenser pool and the other end connected to the lower header.
    A lower header vent valve arranged on the path of the lower header vent pipe and released when the water level drops more than expected in the reactor pressure vessel or when the pressure increases more than expected in the reactor containment vessel. An overpressure protection device for a reactor containment vessel characterized by having.
  2.  請求項1に記載の原子炉格納容器の過圧防護装置において、
     前記非常用復水器は、
     一方の端部が前記非常用復水器プールの内部又は外部において前記下部ヘッダベント管よりも高い位置に配置され、かつ、他方の端部が前記上部ヘッダに接続された上部ヘッダベント管と、
     前記上部ヘッダベント管の経路上に配置され、かつ、前記原子炉圧力容器内で想定を超える水位低下時もしくは前記原子炉格納容器内で想定を超える圧力増加時に解放される上部ヘッダベント弁と、を有する
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 1.
    The emergency condenser is
    An upper header vent pipe having one end located higher than the lower header vent pipe inside or outside the emergency condenser pool and having the other end connected to the upper header.
    An upper header vent valve arranged on the path of the upper header vent pipe and released when the water level drops more than expected in the reactor pressure vessel or when the pressure increases more than expected in the reactor containment vessel. An overpressure protection device for a reactor containment vessel characterized by having.
  3.  請求項2に記載の原子炉格納容器の過圧防護装置において、
     前記非常用復水器は、前記上部ヘッダベント管の一方の端部と前記下部ヘッダベント管の一方の端部とに、前記原子炉圧力容器内で発生したガスを泡状にして前記非常用復水器プールの水中に排出する動荷重抑制装置を有する
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 2.
    In the emergency condenser, the gas generated in the reactor pressure vessel is foamed at one end of the upper header vent pipe and one end of the lower header vent pipe, and the emergency condenser is used. Condenser An overpressure protection device for a reactor containment vessel, characterized by having a dynamic load suppression device that discharges water into the pool.
  4.  請求項2に記載の原子炉格納容器の過圧防護装置において、
     前記上部ヘッダベント管の一方の端部は、前記非常用復水器プールの水面よりも上の位置で開口している
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 2.
    An overpressure protection device for a reactor containment vessel, characterized in that one end of the upper header vent pipe is open above the water surface of the emergency condenser pool.
  5.  請求項1に記載の原子炉格納容器の過圧防護装置において、
     さらに、前記原子炉圧力容器内で発生したガスを大気に排出する経路上に、粒子状の放射性物質を捕集するための捕集フィルタを備える
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 1.
    Further, overpressure protection of the reactor containment vessel is provided with a collection filter for collecting particulate radioactive substances on the path for discharging the gas generated in the reactor pressure vessel to the atmosphere. Device.
  6.  請求項1に記載の原子炉格納容器の過圧防護装置において、
     さらに、前記非常用復水器プールに冷却水を補給する冷却水補給手段を備える
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 1.
    Further, an overpressure protection device for a reactor containment vessel, characterized in that the emergency condenser pool is provided with cooling water replenishment means for replenishing cooling water.
  7.  請求項6に記載の原子炉格納容器の過圧防護装置において、
     前記冷却水補給手段は、
     前記非常用復水器プールに補給する冷却水を溜める補給水プールと、
     前記非常用復水器プールと前記補給水プールとを接続する補給水管と、
     前記補給水管の経路上に配置され、かつ、前記非常用復水器プールに補給する冷却水の逆流を防止する補給水管逆止弁と、を有する
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 6.
    The cooling water replenishment means
    The make-up water pool that stores the cooling water to be replenished in the emergency condenser pool,
    A make-up water pipe connecting the emergency condenser pool and the make-up water pool,
    Overpressure of the reactor containment vessel arranged on the path of the make-up water pipe and having a make-up water pipe check valve for preventing the backflow of cooling water to be replenished to the emergency condenser pool. Protective device.
  8.  請求項6に記載の原子炉格納容器の過圧防護装置において、
     前記冷却水補給手段は、
     前記非常用復水器プールに補給する冷却水を溜める補給水プールと、
     前記非常用復水器プールと前記補給水プールとを接続する補給水管と、
     前記補給水管の経路上に配置され、かつ、前記補給水プールから冷却水を汲み上げて前記非常用復水器プールに送る補給水ポンプと、を有する
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 6.
    The cooling water replenishment means
    The make-up water pool that stores the cooling water to be replenished in the emergency condenser pool,
    A make-up water pipe connecting the emergency condenser pool and the make-up water pool,
    Overpressure of the reactor containment vessel arranged on the path of the make-up water pipe and having a make-up water pump that draws cooling water from the make-up water pool and sends it to the emergency condenser pool. Protective device.
  9.  請求項1に記載の原子炉格納容器の過圧防護装置において、
     さらに、前記原子炉圧力容器内で発生したガスを大気に排出する経路上に、放射性希ガスを遮断するとともに、水蒸気を透過する希ガスフィルタを備える
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 1.
    Further, the overpressure of the reactor containment vessel is provided with a rare gas filter that blocks radioactive rare gas and allows water vapor to pass through the path for discharging the gas generated in the reactor pressure vessel to the atmosphere. Protective device.
  10.  請求項1に記載の原子炉格納容器の過圧防護装置において、
     前記原子炉格納容器を内包する原子炉建屋内に配置され、かつ、水素と酸素とを再結合させるための、静的触媒式水素再結合装置を備える
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 1.
    The reactor containment vessel is located inside the reactor building containing the reactor containment vessel, and is provided with a static catalytic hydrogen recombination device for recoupling hydrogen and oxygen. Pressure protection device.
  11.  請求項1に記載の原子炉格納容器の過圧防護装置において、
     前記非常用復水器プールは、気密性を有する閉空間になっており、かつ、前記非常用復水器プール内の前記原子炉圧力容器内で発生したガスを大気に排出するためのガス排気ラインを備え、気密性を有する閉空間が過圧破損する恐れが発生した場合に開く非常時ベント弁を前記ガス排気ライン上に備える
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 1.
    The emergency condenser pool is a closed space having airtightness, and is a gas exhaust for discharging the gas generated in the reactor pressure vessel in the emergency condenser pool to the atmosphere. An overpressure protection device for a reactor containment vessel comprising a line and providing an emergency vent valve on the gas exhaust line that opens when there is a risk of overpressure damage to an airtight closed space.
  12.  請求項11に記載の原子炉格納容器の過圧防護装置において、
     前記非常用復水器プールの気相部と前記原子炉格納容器とを接続し、かつ、前記非常用復水器プールの気相部内のガスを前記原子炉格納容器に戻すためのガス戻しラインと、
     前記ガス戻しラインの経路上に配置され、かつ、前記ガス戻しラインを開閉するガス戻し弁と、を備える
    ことを特徴とする原子炉格納容器の過圧防護装置。
    In the overpressure protection device for the reactor containment vessel according to claim 11.
    A gas return line for connecting the gas phase portion of the emergency condenser pool and the reactor storage container and returning the gas in the gas phase portion of the emergency condenser pool to the reactor storage container. When,
    An overpressure protection device for a reactor containment vessel, which is arranged on the path of the gas return line and includes a gas return valve for opening and closing the gas return line.
PCT/JP2021/035764 2020-11-27 2021-09-29 Excess pressure protection device for nuclear reactor housing vessel WO2022113512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020196847A JP7422058B2 (en) 2020-11-27 2020-11-27 Overpressure protection device for reactor containment vessel
JP2020-196847 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113512A1 true WO2022113512A1 (en) 2022-06-02

Family

ID=81755529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035764 WO2022113512A1 (en) 2020-11-27 2021-09-29 Excess pressure protection device for nuclear reactor housing vessel

Country Status (2)

Country Link
JP (1) JP7422058B2 (en)
WO (1) WO2022113512A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294680A (en) * 1994-04-25 1995-11-10 Hitachi Ltd Reactor container cooling device
JP2010112772A (en) * 2008-11-05 2010-05-20 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant and control method
JP2013096927A (en) * 2011-11-04 2013-05-20 Hitachi-Ge Nuclear Energy Ltd Emergency condenser for nuclear power plant
JP2014083511A (en) * 2012-10-25 2014-05-12 Hitachi-Ge Nuclear Energy Ltd Siloxane decomposition apparatus
JP2020525789A (en) * 2017-06-28 2020-08-27 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Emergency condenser for a very simplified boiling water reactor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045966B2 (en) 2018-09-20 2022-04-01 日立Geニュークリア・エナジー株式会社 Nuclear plant and its operation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294680A (en) * 1994-04-25 1995-11-10 Hitachi Ltd Reactor container cooling device
JP2010112772A (en) * 2008-11-05 2010-05-20 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant and control method
JP2013096927A (en) * 2011-11-04 2013-05-20 Hitachi-Ge Nuclear Energy Ltd Emergency condenser for nuclear power plant
JP2014083511A (en) * 2012-10-25 2014-05-12 Hitachi-Ge Nuclear Energy Ltd Siloxane decomposition apparatus
JP2020525789A (en) * 2017-06-28 2020-08-27 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc Emergency condenser for a very simplified boiling water reactor

Also Published As

Publication number Publication date
JP2022085255A (en) 2022-06-08
JP7422058B2 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
JP4675926B2 (en) Boiling water reactor
EP2680272B1 (en) Nuclear power plant and passive containment cooling system
JP6716479B2 (en) Emergency core cooling system and boiling water nuclear power plant using the same
US10290379B2 (en) Passive containment cooling and filtered venting system, and nuclear power plant
EP3742455B1 (en) Nuclear reactor containment vessel vent system
KR101382256B1 (en) Passive auxiliary coolant water supplying system in pwr
WO2022113512A1 (en) Excess pressure protection device for nuclear reactor housing vessel
JP7045966B2 (en) Nuclear plant and its operation method
KR20060020756A (en) Integral pwr with diverse emergency cooling and method of operating same
US11915836B2 (en) Cooling system in a nuclear plant
JP2019207174A (en) Nuclear power plant
JP2020173201A (en) Emergency condenser system
JPH08334584A (en) System and method for control of water inventory of condenser pool in boiling water reactor
JP6284889B2 (en) Radioactive substance removal filter device
JP2021189042A (en) Nuclear power plant
JP2007205923A (en) Nuclear power generation plant with boiling water reactor
JP2015078847A (en) Static decay heat removal system and nuclear power plant
EP4047618A1 (en) Nuclear power plant
JP7285201B2 (en) Hydrogen treatment system
KR102660990B1 (en) Passive Emergency Core Cooling System of Nuclear power Plant and Cooling Method using the same
Lekakh et al. ACR-1000 passive features
JP2022144119A (en) Reactor containment vessel vent system
JPH0534484A (en) Cooling facility of nuclear power plant
JP2022051390A (en) Reactor container vent system
JP2022048550A (en) Reactor containment vent system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897490

Country of ref document: EP

Kind code of ref document: A1