WO2022113448A1 - Ldh-like compound separator and zinc secondary battery - Google Patents

Ldh-like compound separator and zinc secondary battery Download PDF

Info

Publication number
WO2022113448A1
WO2022113448A1 PCT/JP2021/031344 JP2021031344W WO2022113448A1 WO 2022113448 A1 WO2022113448 A1 WO 2022113448A1 JP 2021031344 W JP2021031344 W JP 2021031344W WO 2022113448 A1 WO2022113448 A1 WO 2022113448A1
Authority
WO
WIPO (PCT)
Prior art keywords
ldh
compound
separator
evaluation
compound separator
Prior art date
Application number
PCT/JP2021/031344
Other languages
French (fr)
Japanese (ja)
Inventor
聡太 大河内
昌平 横山
翔 山本
直子 犬飼
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021572068A priority Critical patent/JP7057866B1/en
Priority to CN202180062519.0A priority patent/CN116325247A/en
Priority to DE112021005103.2T priority patent/DE112021005103T5/en
Publication of WO2022113448A1 publication Critical patent/WO2022113448A1/en
Priority to US18/180,276 priority patent/US20230231154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/32Silver accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an LDH-like compound separator and a zinc secondary battery.
  • Patent Document 1 International Publication No. 2013/118561 discloses that an LDH separator is provided between a positive electrode and a negative electrode in a nickel-zinc secondary battery.
  • Patent Document 2 International Publication No. 2016/076047 discloses a separator structure including an LDH separator fitted or bonded to a resin outer frame, and the LDH separator is gas impermeable and has a gas impermeable property. / Or it is disclosed that it has a high degree of density enough to have water impermeableness.
  • Patent Document 3 International Publication No. 2016/067884 discloses various methods for forming an LDH dense film on the surface of a porous substrate to obtain a composite material (LDH separator).
  • a starting material that can give a starting point for LDH crystal growth is uniformly adhered to the porous base material, and the porous base material is subjected to hydrothermal treatment in an aqueous solution of the raw material to form an LDH dense film on the surface of the porous base material. It includes a step of forming the film.
  • Patent Document 4 International Publication No. 2019/124214 contains a porous base material made of a polymer material and a layered double hydroxide (LDH) that closes the pores of the porous base material, and contains an LDH separator.
  • LDH separator in which the average porosity in the central portion in the thickness direction is smaller than the average porosity in the vicinity of the surface of the LDH separator.
  • the present inventors have excellent alkali resistance and further effect the short circuit caused by zinc dendrite. It was found that a hydroxide ion conduction separator (LDH-like compound separator) that can be suppressed can be provided. Further, by closing the pores of the polymer porous substrate with an LDH-like compound so that the average porosity in the central portion in the thickness direction is smaller than the average porosity in the vicinity of the surface, a short circuit caused by zinc dendrite. It was found that an LDH-like compound separator capable of more effectively suppressing the above can be provided.
  • LDH-like compound separator capable of more effectively suppressing the above can be provided.
  • an object of the present invention is to provide a hydroxide ion conduction separator superior to an LDH separator, which has excellent alkali resistance and can more effectively suppress a short circuit caused by zinc dendrite.
  • the LDH-like compound separator comprising a porous base material made of a polymer material and a layered double hydroxide (LDH) -like compound that closes the pores of the porous base material.
  • LDH layered double hydroxide
  • an LDH-like compound separator in which the average porosity in the central portion in the thickness direction of the LDH-like compound separator is smaller than the average porosity in the vicinity of the surface of the LDH-like compound separator.
  • a zinc secondary battery provided with an LDH-like compound separator is provided.
  • a solid alkaline fuel cell provided with the LDH-like compound separator is provided.
  • FIG. 3 is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 3A and its peripheral configuration. It is a schematic cross-sectional view which shows the electrochemical measurement system used in Examples A1 to D3.
  • 6 is a cross-sectional FE-SEM image of a portion near the surface of the LDH separator produced in Example A3 (a region having a depth of 1 to 4 ⁇ m from the surface).
  • the gray region corresponds to the polymer porous substrate
  • the white region corresponds to LDH
  • the black region corresponds to the residual pores.
  • It is a cross-sectional FE-SEM image of the central part of the LDH separator produced in Example A3.
  • the gray region corresponds to the polymer porous substrate
  • the white region corresponds to LDH
  • the black region corresponds to the residual pores.
  • 6 is a surface SEM image of the LDH-like compound separator prepared in Example B1. It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B1.
  • 6 is a surface SEM image of the LDH-like compound separator prepared in Example B2.
  • 6 is a surface SEM image of the LDH-like compound separator prepared in Example B3. It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B3. 6 is a surface SEM image of the LDH-like compound separator prepared in Example B4. It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B4. 6 is a surface SEM image of the LDH-like compound separator prepared in Example B5. It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B5.
  • 6 is a surface SEM image of the LDH-like compound separator prepared in Example B6. It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B6. 6 is a surface SEM image of the LDH-like compound separator prepared in Example B7. It is a surface SEM image of the LDH separator prepared in Example B8 (comparison). It is an X-ray diffraction result of the LDH separator prepared in Example B8 (comparison). 8 is a surface SEM image of the LDH-like compound separator prepared in Example C1. 6 is a surface SEM image of the LDH-like compound separator prepared in Example D1. 6 is a surface SEM image of the LDH-like compound separator prepared in Example D2.
  • the LDH-like compound separator 10 of the present invention contains a porous substrate 12 and a layered double hydroxide (LDH) -like compound 14. ..
  • LDH-like compound separator is a separator containing an LDH-like compound, and is assumed to selectively pass hydroxide ions by utilizing the hydroxide ion conductivity of the LDH-like compound. Defined.
  • the "LDH-like compound” is a hydroxide and / or oxide having a layered crystal structure similar to LDH, although it cannot be called LDH, and is defined as one in which a peak caused by LDH is not detected by the X-ray diffraction method.
  • the region of the LDH-like compound 14 is drawn so as not to be connected between the upper surface and the lower surface of the LDH-like compound separator 10, because the region is drawn two-dimensionally as a cross section.
  • the region of the LDH-like compound 14 is connected between the upper surface and the lower surface of the LDH-like compound separator 10 three-dimensionally in consideration of the depth, thereby ensuring the hydroxide ion conductivity of the LDH-like compound separator 10.
  • the porous base material 12 is made of a polymer material, and the pores of the porous base material 12 are closed by the LDH-like compound 14. However, the pores of the porous substrate 12 are not completely closed, and there are residual pores P (pores that are not closed by the LDH-like compound). Due to the residual pores P, the LDH-like compound separator 10 can be evaluated by the average porosity. The average porosity of the central portion 10a of the LDH-like compound separator 10 in the thickness direction is smaller than the average porosity of the surface-near portion 10b of the LDH-like compound separator 10.
  • the LDH-like compound separator 10 of the present invention has a sparse distribution of residual pores P in the thickness direction, and specifically, the central portion 10a is dense and the surface vicinity portion 10b is sparse. Is. In this way, zinc is formed by closing the pores of the polymer porous substrate 12 with the LDH-like compound 14 so that the average porosity of the central portion 10a in the thickness direction is smaller than the average porosity of the portion near the surface 10b. It is possible to provide an LDH-like compound separator 10 capable of more effectively suppressing a short circuit caused by dendrites.
  • the penetration of the zinc dendrite in the conventional separator is as follows: (i) the zinc dendrite invades the voids or defects contained in the separator, (ii) the dendrite grows and propagates while expanding the separator, and (ii) finally the dendrite. Is presumed to occur by the mechanism of penetrating the separator.
  • the surface near portion 10b since the central portion 10a is dense and the surface near portion 10b is sparse, the surface near portion 10b having a higher average pore ratio than the central portion 10a buffers dendrite invasion. It can function as a layer to allow the growth and extension of zinc dendrites to stay within the surface vicinity portion 10b.
  • the extension of zinc dendrite in the thickness direction of the LDH-like compound separator 10 can be significantly suppressed, and therefore the short circuit caused by the zinc dendrite can be more effectively suppressed. It can be suppressed.
  • an LDH-like compound described later as a hydroxide ion conductive substance instead of the conventional LDH, water having excellent alkali resistance and capable of more effectively suppressing short circuit due to zinc dendrite.
  • An oxide ion conduction separator (LDH-like compound separator) can be provided.
  • the LDH-like compound separator 10 of the present invention has the desired ionic conductivity required as a separator based on the hydroxide ion conductivity of the LDH-like compound, as well as flexibility and strength. Is also excellent. This is due to the flexibility and strength of the polymer porous base material 12 itself contained in the LDH-like compound separator 10. That is, since the LDH-like compound separator 10 is densified so that the pores of the polymer porous base material 12 are sufficiently closed with the LDH-like compound, the polymer porous base material 12 and the LDH-like compound 14 are combined.
  • the rigidity and brittleness resulting from the LDH-like compound 14, which is a ceramic material, is offset or offset by the flexibility and strength of the polymeric porous substrate 12. It can be said that it will be reduced.
  • the average porosity of the central portion 10a in the thickness direction is smaller than the average porosity of the surface vicinity portion 10b.
  • the central portion 10a means the portion located in the center when the LDH-like compound separator 10 is divided into three equal parts in the thickness direction
  • the surface vicinity portion 10b means the LDH-like compound separator 10 in thickness. It shall mean the portion on the side closer to the surface (that is, the portion on the outer side of the central portion 10a) when divided into three equal parts in the isth direction.
  • the average porosity of the surface vicinity portion 10b is 3% or more, and the average porosity of the central portion 10a is 2% or less, and more preferably, the average porosity of the surface vicinity portion 10b is 3 to 15. %, And the average porosity of the central portion 10a is 1% or less, more preferably, the average porosity of the surface vicinity portion 10b is 5 to 10%, and the average porosity of the central portion 10a is. It is 0.01 to 1%.
  • the central portion 10a and the surface near portion 10b have an average pore ratio within the above range, the growth of the zinc dendrite can be further suppressed in the surface near portion 10b, and therefore the short circuit caused by the zinc dendrite is further effective.
  • the average porosity is measured by a) polishing the cross section of the LDH-like compound separator with a cross section polisher (CP), and b) cross-section of the functional layer at a magnification of 50,000 times with FE-SEM (electron emission scanning electron microscope). Two images were acquired, and c) the pore ratio of each of the two regions was calculated using image inspection software (for example, HDdev, manufactured by MVTecSoftware) based on the image data of the acquired cross-sectional image, and d) the obtained pore ratio. It can be done by finding the average value of.
  • image inspection software for example, HDdev, manufactured by MVTecSoftware
  • the LDH-like compound separator 10 preferably has an ionic conductivity of 0.1 mS / cm or more, more preferably 1.0 mS / cm or more, still more preferably 1.5 mS / cm or more, and particularly preferably 2.0 mS / cm. That is all. Within such a range, the LDH-like compound separator can exhibit a sufficient function as a hydroxide ion conduction separator. The higher the ionic conductivity, the better, so the upper limit thereof is not particularly limited, but is, for example, 10 mS / cm. The ionic conductivity is calculated based on the resistance of the LDH-like compound separator and the thickness and area of the LDH-like compound separator.
  • the resistance of the LDH-like compound separator 10 is determined by using an electrochemical measurement system (potential / galvanostat-frequency response analyzer) for the LDH-like compound separator 10 immersed in a KOH aqueous solution having a predetermined concentration (for example, 5.4 M).
  • the measurement can be performed in a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and the section of the real number axis can be determined as the resistance of the LDH-like compound separator.
  • the LDH-like compound separator 10 is a separator containing a layered double hydroxide (LDH) -like compound 14, and when incorporated into a zinc secondary battery, separates a positive electrode plate and a negative electrode plate so that hydroxide ions can be conducted. It is a thing. That is, the LDH-like compound separator 10 exhibits a function as a hydroxide ion conduction separator.
  • the preferred LDH-like compound separator 10 has gas impermeable and / or water impermeable. In other words, the LDH-like compound separator 10 is preferably densified to have gas impermeableness and / or water impermeableness.
  • "having gas impermeable” in the present specification means that helium gas is brought into contact with one side of an object to be measured in water with a differential pressure of 0.5 atm. However, it means that the generation of bubbles due to helium gas is not observed from the other side.
  • “having water impermeable” means that water in contact with one side of the object to be measured does not permeate to the other side as described in Patent Documents 2 and 3. .. That is, the fact that the LDH-like compound separator 10 has gas impermeableness and / or water impermeableness means that the LDH-like compound separator 10 has a high degree of density so as to be impermeable to gas or water.
  • the LDH-like compound separator 10 selectively passes only hydroxide ions due to its hydroxide ion conductivity, and can exhibit a function as a battery separator. Therefore, the configuration is extremely effective in physically preventing the penetration of the separator by the zinc dendrite generated during charging to prevent a short circuit between the positive and negative electrodes. Since the LDH-like compound separator 10 has hydroxide ion conductivity, it enables efficient transfer of necessary hydroxide ions between the positive electrode plate and the negative electrode plate, and realizes a charge / discharge reaction in the positive electrode plate and the negative electrode plate. can do.
  • the LDH-like compound separator 10 preferably has a He permeability per unit area of 3.0 cm / min ⁇ atm or less, more preferably 2.0 cm / min ⁇ atm or less, still more preferably 1.0 cm / min ⁇ . It is less than or equal to atm.
  • a separator having a He permeability of 3.0 cm / min ⁇ atm or less can extremely effectively suppress the permeation of Zn (typically the permeation of zinc ion or zinc acid ion) in the electrolytic solution.
  • Zn typically the permeation of zinc ion or zinc acid ion
  • the He permeability is determined through a step of supplying He gas to one surface of the separator to allow the Sepa to permeate the He gas, and a step of calculating the He permeability to evaluate the denseness of the hydroxide ion conduction separator. Be measured.
  • the He permeability is determined by the formula of F / (P ⁇ S) using the permeation amount F of the He gas per unit time, the differential pressure P applied to the separator when the He gas permeates, and the film area S through which the He gas permeates. calculate.
  • He gas has the smallest structural unit among the various atoms or molecules that can compose the gas, and its reactivity is extremely low. That is, He constitutes He gas by a single He atom without forming a molecule. In this respect, since hydrogen gas is composed of H 2 molecules, the He atom alone is smaller as a gas constituent unit.
  • H 2 gas is dangerous because it is a flammable gas.
  • the index of He gas permeability defined by the above formula, it is possible to easily perform an objective evaluation of the fineness regardless of the difference in various sample sizes and measurement conditions. In this way, it is possible to easily, safely and effectively evaluate whether or not the separator has sufficiently high density suitable for a zinc secondary battery separator.
  • the measurement of He permeability can be preferably performed according to the procedure shown in Evaluation 5 of Examples described later.
  • the LDH-like compound 14 closes the pores of the porous substrate 12.
  • the LDH-like compound is (A) A hydroxide and / or oxide having a layered crystal structure containing Mg and at least one element containing at least Ti selected from the group consisting of Ti, Y and Al, or (b) (i). ) Ti, Y, and optionally Al and / or Mg, and (ii) a layered crystal structure comprising at least one additive element M selected from the group consisting of In, Bi, Ca, Sr and Ba.
  • Hydroxides and / or oxides or (c) hydroxides and / or oxides of a layered crystal structure containing Mg, Ti, Y, and optionally Al and / or In, said (c).
  • the LDH-like compound is present in the form of a mixture with In (OH) 3 .
  • the LDH-like compound 14 is hydroxylated in a layered crystal structure containing Mg and at least one element containing Ti selected from the group consisting of Ti, Y and Al. It can be an object and / or an oxide.
  • a typical LDH-like compound 14 is a composite hydroxide and / or composite oxide of Mg, Ti, optionally Y and optionally Al.
  • the element may be replaced with another element or ion to the extent that the basic properties of the LDH-like compound 14 are not impaired, but the LDH-like compound 14 preferably does not contain Ni.
  • LDH-like compound 14 may further contain Zn and / or K. By doing so, the ionic conductivity of the LDH-like compound separator 10 can be further improved.
  • LDH-like compound 14 can be identified by X-ray diffraction. Specifically, when X-ray diffraction is performed on the surface of the LDH-like compound separator 10, the LDH-like compound separator 10 is typically in the range of 5 ° ⁇ 2 ⁇ ⁇ 10 °, and more typically 7 ° ⁇ 2 ⁇ ⁇ . Peaks derived from LDH-like compounds are detected in the range of 10 °. As described above, LDH is a substance having an alternating laminated structure in which exchangeable anions and H2O are present as an intermediate layer between the stacked hydroxide basic layers.
  • the interlayer distance of the layered crystal structure can be determined by the Bragg equation using 2 ⁇ corresponding to the peak derived from the LDH-like compound in X-ray diffraction.
  • the interlayer distance of the layered crystal structure constituting the LDH-like compound 14 thus determined is typically 0.883 to 1.8 nm, and more typically 0.883 to 1.3 nm.
  • the LDH-like compound separator 10 has an atomic ratio of Mg / (Mg + Ti + Y + Al) in LDH-like compound 14 determined by energy dispersive X-ray analysis (EDS) of 0.03 to 0.25. Is preferable, and more preferably 0.05 to 0.2.
  • the atomic ratio of Ti / (Mg + Ti + Y + Al) in the LDH-like compound 14 is preferably 0.40 to 0.97, more preferably 0.47 to 0.94.
  • the atomic ratio of Y / (Mg + Ti + Y + Al) in the LDH-like compound 14 is preferably 0 to 0.45, more preferably 0 to 0.37.
  • the atomic ratio of Al / (Mg + Ti + Y + Al) in the LDH-like compound 14 is preferably 0 to 0.05, more preferably 0 to 0.03. Within the above range, the alkali resistance is further excellent, and the effect of suppressing a short circuit caused by zinc dendrite (that is, dendrite resistance) can be more effectively realized.
  • LDH conventionally known for LDH separators has a general formula: M 2+ 1-x M 3+ x (OH) 2 Ann- x / n ⁇ mH 2 O (in the formula, M 2+ is a divalent cation, M.
  • LDH-like compound 14 generally has a composition ratio (atomic ratio) different from that of the conventional LDH.
  • an EDS analyzer for example, X-act, manufactured by Oxford Instruments
  • X-act for example, X-act, manufactured by Oxford Instruments
  • the LDH-like compound 14 contains (i) Ti, Y, and optionally Al and / or Mg, and (ii) an additive element M in a layered crystal structure. It can be a hydroxide and / or an oxide of.
  • a typical LDH-like compound 14 is a composite hydroxide and / or composite oxide of Ti, Y, additive element M, optionally Al and optionally Mg.
  • the additive element M is In, Bi, Ca, Sr, Ba or a combination thereof.
  • the element may be replaced with another element or ion to the extent that the basic properties of the LDH-like compound 14 are not impaired, but the LDH-like compound 14 preferably does not contain Ni.
  • the LDH-like compound separator 10 has an atomic ratio of Ti / (Mg + Al + Ti + Y + M) in the LDH-like compound 14 determined by energy dispersive X-ray analysis (EDS) of 0.50 to 0.85. Is preferable, and more preferably 0.56 to 0.81.
  • the atomic ratio of Y / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0.03 to 0.20, more preferably 0.07 to 0.15.
  • the atomic ratio of M / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0.03 to 0.35, more preferably 0.03 to 0.32.
  • the atomic ratio of Mg / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0 to 0.10, more preferably 0 to 0.02.
  • the atomic ratio of Al / (Mg + Al + Ti + Y + M) in the LDH-like compound 14 is preferably 0 to 0.05, more preferably 0 to 0.04.
  • the alkali resistance is further excellent, and the effect of suppressing a short circuit caused by zinc dendrite (that is, dendrite resistance) can be more effectively realized.
  • LDH conventionally known for LDH separators has a general formula: M 2+ 1-x M 3+ x (OH) 2 Ann- x / n ⁇ mH 2 O (in the formula, M 2+ is a divalent cation, M. 3+ is a trivalent cation, An- is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more).
  • M 2+ is a divalent cation
  • M. 3+ is a trivalent cation
  • An- is an n-valent anion
  • n is an integer of 1 or more
  • x is 0.1 to 0.4
  • m is 0 or more
  • the atomic ratio of LDH-like compound 14 generally deviates from the above general formula of LDH. Therefore, it can be said that the LDH-like compound 14 in this embodiment generally has a composition ratio (atomic ratio) different from that of the conventional LDH.
  • an EDS analyzer for example, X-act, manufactured by Oxford Instruments
  • X-act for example, X-act, manufactured by Oxford Instruments
  • the LDH-like compound 14 is a hydroxide and / or oxide having a layered crystal structure containing Mg, Ti, Y, and optionally Al and / or In.
  • the LDH-like compound 14 may be present in the form of a mixture with In (OH) 3 .
  • the LDH-like compound of this embodiment is a hydroxide and / or oxide having a layered crystal structure containing Mg, Ti, Y, and optionally Al and / or In.
  • typical LDH-like compounds are composite hydroxides and / or composite oxides of Mg, Ti, Y, optionally Al, and optionally In.
  • LDH-like compound The In that can be contained in the LDH-like compound is not only intentionally added to the LDH-like compound, but is inevitably mixed in the LDH-like compound due to the formation of In (OH) 3 and the like. It may be a compound.
  • the above elements may be replaced with other elements or ions to the extent that the basic properties of the LDH-like compound are not impaired, but the LDH-like compound preferably does not contain Ni.
  • LDH conventionally known for LDH separators has a general formula: M 2+ 1-x M 3+ x (OH) 2 Ann- x / n ⁇ mH 2 O (in the formula, M 2+ is a divalent cation, M.
  • LDH-like compound in this embodiment generally has a composition ratio (atomic ratio) different from that of the conventional LDH.
  • the mixture according to the above aspect (c) contains not only an LDH-like compound but also In (OH) 3 (typically composed of an LDH-like compound and In (OH) 3 ).
  • the inclusion of In (OH) 3 can effectively improve the alkali resistance and dendrite resistance of the LDH-like compound separator 10.
  • the content ratio of In (OH) 3 in the mixture is preferably an amount capable of improving alkali resistance and dendrite resistance without impairing the hydroxide ion conductivity of the LDH-like compound separator 10, and is not particularly limited.
  • In (OH) 3 may have a cube-shaped crystal structure, or the crystal of In (OH) 3 may be surrounded by an LDH-like compound.
  • In (OH) 3 can be identified by X-ray diffraction. The X-ray diffraction measurement can be preferably performed according to the procedure shown in the examples described later.
  • the LDH-like compound separator 10 contains the LDH-like compound 14 and the porous substrate 12 (typically composed of the porous substrate 12 and the LDH-like compound 14), and the LDH-like compound separator 10 is hydroxylated.
  • the LDH-like compound closes the pores of the porous substrate so as to exhibit ionic conductivity and gas impermeableness (hence to function as an LDH-like compound separator exhibiting hydroxide ionic conductivity). It is particularly preferable that the LDH-like compound 14 is incorporated over the entire area of the polymer porous substrate 12 in the thickness direction.
  • the thickness of the LDH-like compound separator is preferably 3 to 80 ⁇ m, more preferably 3 to 60 ⁇ m, and even more preferably 3 to 40 ⁇ m.
  • the porous base material 12 is made of a polymer material.
  • the polymer porous substrate 12 has 1) flexibility (hence, it is hard to break even if it is thinned), 2) easy to increase the porosity, and 3) easy to increase the conductivity (increasing the porosity). However, it has the advantages of being easy to manufacture and handle) (because the thickness can be reduced). Further, taking advantage of the flexibility of 1) above, there is also an advantage that the LDH-like compound separator containing a porous substrate made of a polymer material can be easily bent or sealed and bonded. be.
  • Preferred examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluororesin: PTFE, etc.), cellulose, nylon, polyethylene and any combination thereof. .. More preferably, from the viewpoint of a thermoplastic resin suitable for heat pressing, polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluororesin: PTFE, etc.), nylon, polyethylene and any of them. Examples include the combination of the above. All of the various preferred materials described above have alkali resistance as resistance to the electrolytic solution of the battery.
  • Particularly preferable polymer materials are polyolefins such as polypropylene and polyethylene, and most preferably polypropylene or polyethylene, because they are excellent in heat resistance, acid resistance and alkali resistance and are low in cost.
  • the porous substrate is composed of a polymer material, LDH-like compounds are incorporated over the entire thickness direction of the porous substrate (for example, most or almost all the pores inside the porous substrate are LDH-like. It is particularly preferable that it is filled with a compound).
  • a commercially available polymer microporous membrane can be preferably used as such a polymer porous substrate.
  • the production method of the LDH-like compound separator 10 is not particularly limited, and various conditions (particularly LDH raw material composition) of the already known LDH-containing functional layer and composite material production method (see, for example, Patent Documents 1 to 4) are appropriately used. It can be produced by changing it. For example, (1) a porous substrate is prepared, and (2) a solution containing titania sol (or further yttrium sol and / or alumina sol) is applied to the porous substrate and dried to form a titania-containing layer.
  • a solution containing titania sol or further yttrium sol and / or alumina sol
  • the pH value rises due to the generation of ammonia in the solution by utilizing the hydrolysis of urea, and the coexisting metal ions are hydroxide and / or oxidized. It is considered that an LDH-like compound can be obtained by forming a substance.
  • the porous base material 12 is composed of a polymer material and the LDH-like compound 14 is incorporated over the entire thickness direction of the porous base material (that is, an LDH-like compound separator) is produced.
  • the preferred coating method include a dip coat, a filtration coat and the like, and a dip coat is particularly preferable. By adjusting the number of times of application of the dip coat or the like, the amount of adhesion of the mixed sol solution can be adjusted.
  • the base material coated with the mixed sol solution by dip coating or the like may be dried and then the above steps (3) and (4) may be carried out.
  • the porous base material 12 is made of a polymer material
  • the pressing method may be, for example, a roll press, a uniaxial pressure press, a CIP (cold isotropic pressure pressurization), or the like, and is not particularly limited, but is preferably a roll press. It is preferable to perform this press while heating because the pores of the porous substrate can be sufficiently closed with the LDH-like compound by softening the polymer porous substrate.
  • a temperature for sufficient softening for example, in the case of polypropylene or polyethylene, it is preferable to heat at 60 to 200 ° C.
  • a press such as a roll press in such a temperature range
  • the residual pores of the LDH-like compound separator can be significantly reduced.
  • the LDH-like compound separator can be extremely highly densified, and therefore short circuits caused by zinc dendrites can be suppressed even more effectively.
  • the morphology of the residual pores can be controlled by appropriately adjusting the roll gap and the roll temperature, whereby an LDH-like compound separator having a desired density can be obtained.
  • Zinc secondary battery The LDH-like compound separator of the present invention is preferably applied to a zinc secondary battery. Therefore, according to a preferred embodiment of the present invention, a zinc secondary battery provided with an LDH-like compound separator is provided.
  • a typical zinc secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and the positive electrode and the negative electrode are separated from each other via an LDH-like compound separator.
  • the zinc secondary battery of the present invention is not particularly limited as long as it is a secondary battery using zinc as a negative electrode and using an electrolytic solution (typically, an aqueous alkali metal hydroxide solution).
  • the positive electrode contains nickel hydroxide and / or nickel oxyhydroxide, whereby the zinc secondary battery forms a nickel-zinc secondary battery.
  • the positive electrode may be an air electrode, whereby the zinc secondary battery may be a zinc air secondary battery.
  • the LDH-like compound separator of the present invention can also be applied to a solid alkaline fuel cell. That is, by using an LDH-like compound separator in which the pores of the polymer porous substrate are closed with an LDH-like compound so that the average porosity in the central portion in the thickness direction is smaller than the average porosity in the vicinity of the surface. It is possible to provide a solid alkaline fuel cell capable of effectively suppressing a decrease in electromotive force due to permeation of fuel to the air electrode side (for example, crossover of methanol).
  • a solid alkaline fuel cell with an LDH-like compound separator there is provided a solid alkaline fuel cell with an LDH-like compound separator.
  • a typical solid alkaline fuel cell according to this embodiment has an air electrode to which oxygen is supplied, a fuel electrode to which a liquid fuel and / or a gaseous fuel is supplied, and an LDH-like intervening between the fuel electrode and the air electrode. It is equipped with a compound separator.
  • the LDH-like compound separator of the present invention can be used not only for nickel-zinc batteries and solid alkaline fuel cells, but also for nickel-metal hydride batteries, for example.
  • the LDH-like compound separator functions to block the nitride shuttle (movement of nitric acid groups between electrodes), which is a factor of self-discharge of the battery.
  • the LDH-like compound separator of the present invention can also be used for a lithium battery (a battery having a negative electrode of lithium metal as a negative electrode), a lithium ion battery (a battery having a negative electrode of carbon or the like), a lithium air battery or the like.
  • Examples A1 to A8 shown below are reference examples or comparative examples regarding LDH separators, but the experimental procedures and results in these examples are generally applicable to LDH-like compound separators as well.
  • the evaluation method of the LDH separator produced in the following example was as follows.
  • Evaluation 1 Identification of LDH separator
  • the crystal phase of the LDH separator was measured by an X-ray diffractometer (Rigaku, RINT TTR III) under the measurement conditions of voltage: 50 kV, current value: 300 mA, and measurement range: 10 to 70 °. The measurement was performed to obtain an XRD profile. Regarding the obtained XRD profile, JCPDS card No. Identification was performed using the diffraction peak of LDH (hydrotalcite compound) described in 35-0964.
  • Evaluation 2 Measurement of thickness The thickness of the LDH separator was measured using a micrometer. The thickness was measured at three points, and the average value thereof was adopted as the thickness of the LDH separator.
  • Evaluation 3 Average porosity measurement
  • Cross-section polishing of LDH separator by cross-section polisher (CP), and acquisition of 2 cross-sectional images of LDH separator at 50,000 times magnification by FE-SEM (ULTRA55, manufactured by Carl Zeiss) did.
  • the porosity of each of the two fields was calculated using image inspection software (HDdevrop, manufactured by MVTecSoftware), and the average value thereof was taken as the average porosity of the LDH separator.
  • the average porosity was measured in the vicinity of the surface of the LDH separator (a region having a depth of 1 to 4 ⁇ m from the surface) and in the center of the LDH separator.
  • Evaluation 4 Continuous charge test An accelerated test was conducted in which a measuring device 210 as shown in FIG. 2 was constructed to continuously grow zinc dendrites. Specifically, a rectangular parallelepiped container 212 made of ABS resin was prepared, and zinc poles 214a and copper poles 214b were arranged in the container 212 so as to be separated from each other by 0.5 cm and face each other.
  • the zinc pole 214a is a metal zinc plate
  • the copper pole 214b is a metal copper plate.
  • the LDH separator was coated with an epoxy resin adhesive along the outer periphery thereof and attached to a jig made of ABS resin having an opening in the center to form an LDH separator structure containing the LDH separator 216.
  • the jig and the LDH separator were sufficiently sealed with the above adhesive so as to ensure liquidtightness at the joint.
  • the LDH separator structure is arranged in the container 212 so that the first compartment 215a containing the zinc pole 214a and the second compartment 215b containing the copper pole 214b do not allow liquid communication with each other at a place other than the LDH separator 216. Isolated on.
  • an epoxy resin-based adhesive was used to bond the three outer edges of the LDH separator structure (that is, the three outer edges of the ABS resin jig) to the inner wall of the container 212 so as to ensure liquidtightness.
  • the joint portion between the separator structure containing the LDH separator 216 and the container 212 was sealed so as not to allow liquid communication.
  • a 5.4 mol / L KOH aqueous solution as an alkaline aqueous solution 218 was placed in the first compartment 215a and the second compartment 215b together with ZnO powder corresponding to the saturated solubility.
  • the zinc pole 214a and the copper pole 214b were connected to the negative electrode and the positive electrode of the constant current power supply, respectively, and a voltmeter was connected in parallel with the constant current power supply.
  • the water level of the alkaline aqueous solution 218 is such that the entire region of the LDH separator 216 is immersed in the alkaline aqueous solution 218, and the height of the LDH separator structure (including the jig) is high. It was set to the extent that it did not exceed the limit.
  • a constant current of 20 mA / cm 2 was continuously passed between the zinc pole 214a and the copper pole 214b for a maximum of 200 hours.
  • the value of the voltage flowing between the zinc pole 214a and the copper pole 214b was monitored with a voltmeter to confirm the presence or absence of a zinc dendrite short circuit (rapid voltage drop) between the zinc pole 214a and the copper pole 214b.
  • a short circuit does not occur for 100 hours or more (or 200 hours or more), it is determined as "no short circuit", and if a short circuit occurs in less than 100 hours (or less than 200 hours), it is determined as "with a short circuit”. did.
  • the He permeation test was performed as follows. First, the He permeability measuring system 310 shown in FIGS. 3A and 3B was constructed. In the He permeability measuring system 310, the He gas from the gas cylinder filled with the He gas is supplied to the sample holder 316 via the pressure gauge 312 and the flow meter 314 (digital flow meter), and the LDH held in the sample holder 316. The separator 318 was configured to be permeated from one surface to the other surface and discharged.
  • the sample holder 316 has a structure including a gas supply port 316a, a closed space 316b, and a gas discharge port 316c, and was assembled as follows. First, the adhesive 322 was applied along the outer circumference of the LDH separator 318 and attached to a jig 324 (made of ABS resin) having an opening in the center. Packing made of butyl rubber is arranged as sealing members 326a and 326b at the upper and lower ends of the jig 324, and support members 328a and 328b (manufactured by PTFE) having openings made of flanges from the outside of the sealing members 326a and 326b. ).
  • the sealed space 316b was partitioned by the LDH separator 318, the jig 324, the sealing member 326a, and the support member 328a.
  • the support members 328a and 328b were fastened tightly to each other by the fastening means 330 using screws so that the Hegas did not leak from the portion other than the gas discharge port 316c.
  • a gas supply pipe 334 was connected to the gas supply port 316a of the sample holder 316 thus assembled via a joint 332.
  • He gas was supplied to the He permeability measuring system 310 via the gas supply pipe 334, and was permeated through the LDH separator 318 held in the sample holder 316.
  • the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314.
  • the He permeation was calculated.
  • the calculation of He permeability is performed by the permeation amount F (cm 3 / min) of He gas per unit time, the differential pressure P (atm) applied to the LDH separator when the He gas permeates, and the film area S (cm) through which the He gas permeates. It was calculated by the formula of F / (P ⁇ S) using 2 ).
  • the permeation amount F (cm 3 / min) of He gas was read directly from the flow meter 314. Further, as the differential pressure P, the gauge pressure read from the pressure gauge 312 was used. The He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm.
  • the ionic conductivity of the LDH separator in the electrolytic solution was measured as follows using the electrochemical measurement system shown in FIG.
  • the LDH separator sample S was sandwiched between both sides with a 1 mm thick silicone packing 440 and incorporated into a PTFE flange type cell 442 having an inner diameter of 6 mm.
  • As the electrodes 446 a nickel wire mesh of # 100 mesh was incorporated into the cell 442 in a cylindrical shape having a diameter of 6 mm so that the distance between the electrodes was 2.2 mm.
  • As the electrolytic solution 444 a 5.4 M aqueous solution of KOH was filled in the cell 442.
  • the measurement was performed under the conditions of a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and a section of the real number axis. was taken as the resistance of the LDH separator sample S.
  • the conductivity was determined using the resistance of the obtained LDH separator and the thickness and area of the LDH separator.
  • Example A1 (comparison) (1) Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 ⁇ m and a thickness of 20 ⁇ m was prepared as the polymer porous substrate, and 2.0 cm ⁇ 2. It was cut out to a size of 0 cm.
  • Alumina-titania sol coating on polymer porous substrate Atypical alumina solution (Al-ML15, manufactured by Taki Chemical Co., Ltd.) and titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) are mixed with Ti / Al (M6, manufactured by Taki Chemical Co., Ltd.).
  • the mixed sol was impregnated into the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed sol, pulling it up vertically, and drying it in a dryer at 90 ° C. for 5 minutes.
  • Nickel nitrate hexahydrate Ni (NO 3 ) 2.6H 2 O, manufactured by Kanto Chemical Co., Inc., and urea ( (NH 2) 2 CO , manufactured by Sigma Aldrich
  • the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to form LDH in the pores of the porous substrate.
  • a composite material containing LDH was obtained.
  • Evaluation Results Evaluations 1 to 6 were performed on the obtained LDH separator. As a result of Evaluation 1, it was identified that the LDH separator of this example is LDH (hydrotalcite compound). The results of evaluations 2 to 6 were as shown in Table 1. As shown in Table 1, zinc dendrite short circuit did not occur in the continuous charging time up to 100 hours, but zinc dendrite short circuit occurred in the continuous charging time less than 200 hours.
  • Examples A2 and A3 (reference) LDH separators were prepared in the same manner as in Example A1 except that the drying temperature after impregnation with alumina / titaniasol in (2) was changed to the values shown in Table 1, and evaluated in the same manner.
  • LDH separator of this example is LDH (hydrotalcite compound).
  • the results of evaluations 2 to 6 were as shown in Table 1.
  • zinc dendrite short circuit did not occur even in the continuous charging time of 200 hours or more.
  • FIGS. 5A and 5B show cross-sectional FE-SEM images of the LDH separator obtained in the evaluation 3 of Example A3 near the surface and in the center, respectively.
  • Example A4 (comparison) The LDH separator was prepared and evaluated in the same manner as in Example A1 except that the densification was not performed by the roll press in (5) above. As a result of Evaluation 1, it was identified that the LDH separator of this example is LDH (hydrotalcite compound). The results of evaluations 2 to 6 were as shown in Table 1. As shown in Table 1, in Rating 4, a zinc dendrite short circuit occurred with a continuous charge time of less than 100 hours.
  • Examples A5 and A6 (reference) LDH separators were prepared and evaluated in the same manner as in Example A1 except for the following a) to c).
  • a) The drying temperature after impregnation with alumina / titaniasol in (2) above was changed to the value shown in Table 1.
  • LDH separator of this example is LDH (hydrotalcite compound).
  • the results of evaluations 2 to 6 were as shown in Table 1. As shown in Table 1, in each of Examples A5 and A6, zinc dendrite short circuit did not occur even in the continuous charging time of 200 hours or more.
  • Example B1 to B8 Examples B1 to B7 shown below are reference examples relating to LDH-like compound separators, while Example B8 is a comparative example relating to LDH separators.
  • LDH-like compound separators and LDH separators are collectively referred to as hydroxide ion conduction separators.
  • the evaluation method of the hydroxide ion conduction separator produced in the following example was as follows.
  • Evaluation 1 Observation of surface microstructure The surface microstructure of the hydroxide ion conduction separator was observed with an acceleration voltage of 10 to 20 kV using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL Ltd.).
  • Evaluation 2 STEM analysis of layered structure The layered structure of the hydroxide ion conduction separator was observed at an acceleration voltage of 200 kV using a scanning transmission electron microscope (STEM) (product name: JEM-ARM200F, manufactured by JEOL).
  • STEM scanning transmission electron microscope
  • Evaluation 3 Elemental analysis evaluation (EDS) The composition of the surface of the hydroxide ion conduction separator was analyzed using an EDS analyzer (device name: X-act, manufactured by Oxford Instruments), and the composition ratio of Mg: Ti: Y: Al (atomic ratio). ) was calculated. In this analysis, 1) an image is captured at an acceleration voltage of 20 kV and a magnification of 5,000 times, 2) three-point analysis is performed at intervals of about 5 ⁇ m in the point analysis mode, and 3) 1) and 2) above are performed once more. It was repeated, and 4) it was performed by calculating the average value of a total of 6 points.
  • EDS Elemental analysis evaluation
  • Evaluation 4 X-ray diffraction measurement With an X-ray diffractometer (Rigaku, RINT TTR III), a hydroxide ion conduction separator under measurement conditions of voltage: 50 kV, current value: 300 mA, and measurement range: 5 to 40 °. The crystal phase of was measured to obtain an XRD profile. In addition, the interlayer distance of the layered crystal structure was determined by the Bragg's formula using 2 ⁇ corresponding to the peak derived from the LDH-like compound.
  • Evaluation 5 He Permeation Measurement A He permeation test was performed in the same procedure as in Evaluation 5 of Examples A1 to A6 in order to evaluate the denseness of the hydroxide ion conduction separator from the viewpoint of He permeability.
  • the measurement was performed under the conditions of a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and a section of the real number axis.
  • a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV was taken as the resistance of the hydroxide ion conduction separator sample S.
  • the same measurement as above was performed with the configuration without the hydroxide ion conduction separator sample S, and the blank resistance was also determined.
  • the difference between the resistance of the hydroxide ion conduction separator sample S and the blank resistance was taken as the resistance of the hydroxide ion conduction separator.
  • the conductivity was determined using the resistance of the obtained hydroxide ion conductive separator and the thickness and area of the hydroxide ion conductive separator.
  • Evaluation 7 Alkali resistance evaluation A 5.4 M KOH aqueous solution containing zinc oxide at a concentration of 0.4 M was prepared. 0.5 mL of the prepared KOH aqueous solution and a hydroxide ion conduction separator sample having a size of 2 cm square were placed in a closed container made of Teflon (registered trademark). Then, after holding at 90 ° C. for 1 week (that is, 168 hours), the hydroxide ion conduction separator sample was taken out from the closed container. The removed hydroxide ion conduction separator sample was dried overnight at room temperature. For the obtained sample, the He permeability was calculated by the same method as in Evaluation 5, and it was determined whether or not there was a change in the He permeability before and after the alkali immersion.
  • Evaluation 8 Evaluation of dendrite resistance (cycle test) A cycle test was conducted as follows to evaluate the short-circuit suppression effect (dendrite resistance) caused by zinc dendrite of the hydroxide ion conduction separator. First, each of the positive electrode (containing nickel hydroxide and / or nickel oxyhydroxide) and the negative electrode (containing zinc and / or zinc oxide) was wrapped in a non-woven fabric, and the current extraction terminal was welded. The positive electrode and the negative electrode thus prepared were opposed to each other via a hydroxide ion conduction separator, sandwiched between the laminated films provided with current extraction ports, and the three sides of the laminated film were heat-sealed.
  • An electrolytic solution (a solution in which 0.4 M zinc oxide is dissolved in a 5.4 M KOH aqueous solution) is added to the cell container with an open top thus obtained, and the electrolytic solution is sufficiently applied to the positive electrode and the negative electrode by vacuuming or the like. Infiltrated. Then, the remaining one side of the laminated film was also heat-sealed to form a simple sealed cell.
  • a charging / discharging device TOSCAT3100 manufactured by Toyo System Co., Ltd.
  • chemical conversion was carried out for a simple sealed cell by 0.1C charging and 0.2C discharging. Then, a 1C charge / discharge cycle was carried out.
  • Example B1 (reference) (1) Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 ⁇ m and a thickness of 20 ⁇ m was prepared as the polymer porous substrate, and 2.0 cm ⁇ 2. It was cut out to a size of 0 cm.
  • Titania sol coating on a polymer porous substrate A titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of a sol solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to form LDH-like compounds in the pores of the porous substrate.
  • an LDH-like compound separator was obtained.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B1 was as shown in FIG. 6A.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg and Ti, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator.
  • the composition ratios (atomic ratios) of Mg and Ti on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
  • Figure 6B shows the XRD profile obtained in Example B1.
  • the two peaks observed at 20 ⁇ 2 ⁇ ° ⁇ 25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate.
  • the interlayer distance of the layered crystal structure in the LDH-like compound was 0.94 nm.
  • -Evaluation 5 As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 2, high ionic conductivity was confirmed.
  • -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
  • -Evaluation 8 As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
  • Example B2 (reference) Preparation and evaluation of LDH-like compound separator in the same manner as in Example B1 except that the raw material aqueous solution of (3) above was prepared as follows and the temperature of the hydrothermal treatment in (4) above was set to 90 ° C. Was done.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B2 was as shown in FIG. 7A.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg and Ti, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator.
  • the composition ratios (atomic ratios) of Mg and Ti on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
  • Figure 7B shows the XRD profile obtained in Example B2.
  • the two peaks observed at 20 ⁇ 2 ⁇ ° ⁇ 25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate.
  • the interlayer distance of the layered crystal structure in the LDH-like compound was 1.2 nm.
  • -Evaluation 5 As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 2, high ionic conductivity was confirmed.
  • -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
  • -Evaluation 8 As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
  • Example B3 (reference) LDH-like compound separators were prepared and evaluated in the same manner as in Example B1 except that titania-itriasol coating on a polymer porous substrate was performed as follows instead of (2) above.
  • Titanium oxide sol solution M6, manufactured by Taki Chemical Co., Ltd.
  • the obtained mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B3 was as shown in FIG. 8A.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator.
  • the composition ratios (atomic ratios) of Mg, Ti and Y on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
  • Figure 8B shows the XRD profile obtained in Example B3.
  • the two peaks observed at 20 ⁇ 2 ⁇ ° ⁇ 25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate.
  • the interlayer distance of the layered crystal structure in the LDH-like compound was 1.1 nm.
  • -Evaluation 5 As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 2, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is less than 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
  • Example B4 (reference) The LDH-like compound separator was prepared and evaluated in the same manner as in Example B1 except that the titania-itria-alumina sol coat was applied to the polymer porous substrate instead of the above (2) as follows.
  • the mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B4 was as shown in FIG. 9A.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator.
  • the two peaks observed at 20 ⁇ 2 ⁇ ° ⁇ 25 of the XRD profile are peaks derived from polyethylene constituting the porous substrate.
  • the interlayer distance of the layered crystal structure in the LDH-like compound was 1.1 nm.
  • -Evaluation 5 As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 2, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
  • Example B5 (reference) Examples except that the titania-itria sol coating on the polymer porous substrate instead of the above (2) was performed as follows, and the raw material aqueous solution of the above (3) was prepared as follows. LDH-like compound separators were prepared and evaluated in the same manner as in B1.
  • Titanium oxide sol solution M6, manufactured by Taki Chemical Co., Ltd.
  • the obtained mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B5 was as shown in FIG. 10A.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator.
  • the composition ratios (atomic ratios) of Mg, Ti and Y on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
  • Figure 10B shows the XRD profile obtained in Example B5.
  • the two peaks observed at 20 ⁇ 2 ⁇ ° ⁇ 25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate.
  • the interlayer distance of the layered crystal structure in the LDH-like compound was 0.99 nm.
  • -Evaluation 5 As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 2, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
  • Example B6 (reference) Example B1 except that the titania-alumina sol coat was applied to the polymer porous substrate instead of the above (2) as follows, and the raw material aqueous solution of the above (3) was prepared as follows.
  • the LDH-like compound separator was prepared and evaluated in the same manner as above.
  • Ti / Al (molar ratio) 18.
  • the mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • magnesium nitrate hexahydrate Mg (NO 3 ) 2.6H 2 O , manufactured by Kanto Chemical Co., Ltd.
  • yttrium nitrate n hydrate Y (NO 3 ) 3. nH 2 O, Fujifilm Wako Jun Yaku Co., Ltd.
  • urea ((NH 2 ) 2CO , manufactured by Sigma Aldrich) were prepared.
  • Magnesium nitrate hexahydrate was weighed to 0.0015 mol / L and placed in a beaker.
  • yttrium nitrate n hydrate was weighed to 0.0075 mol / L and placed in the beaker, ion-exchanged water was added thereto to make the total volume 75 ml, and the obtained solution was stirred.
  • Urea weighed at a ratio of urea / NO 3- ( molar ratio) 9.8 was added to this solution, and the mixture was further stirred to obtain an aqueous raw material solution.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B6 was as shown in FIG. 11A.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator.
  • the two peaks observed at 20 ⁇ 2 ⁇ ° ⁇ 25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate.
  • the interlayer distance of the layered crystal structure in the LDH-like compound was 1.2 nm.
  • -Evaluation 5 As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 2, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
  • Example B7 (reference) The LDH-like compound separator was prepared and evaluated in the same manner as in Example B6 except that the raw material aqueous solution of (3) was prepared as follows.
  • magnesium nitrate hexahydrate Mg (NO 3 ) 2.6H 2 O , manufactured by Kanto Chemical Co., Ltd.
  • yttrium nitrate n hydrate Y (NO 3 ) 3. nH 2 O, Fujifilm Wako Jun Yaku Co., Ltd.
  • urea ((NH 2 ) 2CO , manufactured by Sigma Aldrich) were prepared.
  • Magnesium nitrate hexahydrate was weighed to 0.0075 mol / L and placed in a beaker.
  • yttrium nitrate n hydrate was weighed to 0.0075 mol / L and placed in the beaker, ion-exchanged water was added thereto to make the total volume 75 ml, and the obtained solution was stirred.
  • Urea weighed at a ratio of urea / NO 3- ( molar ratio) 25.6 was added to this solution, and the mixture was further stirred to obtain an aqueous raw material solution.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B7 was as shown in FIG. -Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti and Y on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
  • -Evaluation 5 As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 2, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
  • Example B8 (comparison) The LDH separator was prepared and evaluated in the same manner as in Example B1 except that the alumina sol coat was applied instead of the above (2) as follows.
  • Alumina sol coating on polymer porous substrate Amorphous alumina sol (Al-ML15, manufactured by TAKI CHEMICAL CO., LTD.) was applied to the substrate prepared in (1) above by dip coating. The dip coating was carried out by immersing the substrate in 100 ml of amorphous alumina sol, pulling it up vertically, and drying it at room temperature for 3 hours.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH separator (before roll press) obtained in Example B8 was as shown in FIG. 13A.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg and Al, which are LDH constituent elements, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Mg and Al on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 2.
  • -Evaluation 4 Figure 13B shows the XRD profile obtained in Example B8.
  • Examples C1 to C9 shown below are reference examples relating to LDH-like compound separators.
  • the method for evaluating the LDH-like compound separator produced in the following example is, except that the composition ratio (atomic ratio) of Mg: Al: Ti: Y: additive element M was calculated in evaluation 3, Examples B1 to B8. It was the same as.
  • Example C1 (reference) (1) Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 ⁇ m and a thickness of 20 ⁇ m was prepared as the polymer porous substrate, and 2.0 cm ⁇ 2. It was cut out to a size of 0 cm.
  • the mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • -Evaluation 1 The SEM image of the surface microstructure of the LDH-like compound separator (before roll pressing) obtained in Example C1 was as shown in FIG. -Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Al, Ti, Y and In, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Al, Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Example C2 (reference) In the addition of indium by the dipping treatment of (6) above, LDH-like compound separators were prepared and evaluated in the same manner as in Example C1 except that the dipping treatment time was changed to 24 hours.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Al, Ti, Y and In, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Al, Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Example C3 (reference) LDH-like compound separators were prepared and evaluated in the same manner as in Example C1 except that titania-itria sol coat was applied instead of (2) above.
  • Titanium oxide sol solution M6, manufactured by Taki Chemical Co., Ltd.
  • the obtained mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Ti, Y and In, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is less than 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Example C4 Same as Example C1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and bismuth was added by dipping treatment instead of (6) as follows. LDH-like compound separators were prepared and evaluated.
  • the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain an LDH-like compound separator to which bismuth was added.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Example C5 (reference) LDH-like compound separators were prepared and evaluated in the same manner as in Example C4, except that the time of the dipping treatment was changed to 12 hours in the addition of bismuth by the dipping treatment.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Example C6 (reference) In the addition of bismuth by the above dipping treatment, LDH-like compound separators were prepared and evaluated in the same manner as in Example C4, except that the dipping treatment time was changed to 24 hours.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Example C7 Same as Example C1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and calcium was added by dipping treatment instead of (6) as follows. LDH-like compound separators were prepared and evaluated.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Ca, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Ca on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Example C8 (reference) Same as Example C1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and strontium was added by dipping treatment instead of (6) as follows. LDH-like compound separators were prepared and evaluated.
  • Strontium nitrate (Sr (NO 3 ) 2 ) was prepared as a raw material.
  • Strontium nitrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. The obtained solution was stirred to obtain a raw material aqueous solution (II).
  • the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain an LDH-like compound separator to which strontium was added.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and Sr, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Sr on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Example C9 Same as Example C1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and barium was added by dipping treatment instead of (6) as follows. LDH-like compound separators were prepared and evaluated.
  • -Evaluation 2 From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
  • -Evaluation 3 As a result of EDS elemental analysis, Al, Ti, Y and Ba, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Al, Ti, Y and Ba on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
  • -Evaluation 5 As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min ⁇ atm, which was extremely high density.
  • -Evaluation 6 As shown in Table 3, high ionic conductivity was confirmed.
  • -Evaluation 7 The He permeability after alkali immersion is 0.0 cm / min ⁇ atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
  • -Evaluation 8 As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
  • Examples D1 and D2 shown below are reference examples regarding LDH-like compound separators.
  • the method for evaluating the LDH-like compound separator produced in the following example is the same as in Examples B1 to B8 except that the composition ratio (atomic ratio) of Mg: Al: Ti: Y: In was calculated in evaluation 3. And said.
  • Example D1 (reference) (1) Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 ⁇ m and a thickness of 20 ⁇ m was prepared as the polymer porous substrate, and 2.0 cm ⁇ 2. It was cut out to a size of 0 cm.
  • the mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • magnesium nitrate hexahydrate Mg (NO 3 ) 2.6H 2 O , manufactured by Kanto Chemical Co., Ltd.
  • indium sulfate n hydrate In 2 (SO 4 ) 3 . nH 2 O, manufactured by Fujifilm Wako Junyaku Co., Ltd.
  • urea ((NH 2 ) 2 CO, manufactured by Sigma Aldrich) were prepared.
  • the substrate is taken out of the closed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and the LDH-like compound and In (OH) 3 containing functional layer are contained in the pores of the porous substrate. Was formed. Thus, an LDH-like compound separator was obtained.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Al, Ti, Y and In, which are constituent elements of the LDH-like compound or In (OH) 3 , were detected on the surface of the LDH-like compound separator. In addition, In, which is a constituent element of In (OH) 3 , was detected in the cube-shaped crystals existing on the surface of the LDH-like compound separator.
  • the composition ratios (atomic ratios) of Mg, Al, Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 4.
  • -Evaluation 4 From the peak of the obtained XRD profile, it was identified that In (OH) 3 was present in the LDH-like compound separator.
  • Example D2 (reference) LDH-like compound separators were prepared and evaluated in the same manner as in Example D1 except that titania-itria sol coat was applied instead of (2) above.
  • Titanium oxide sol solution M6, manufactured by Taki Chemical Co., Ltd.
  • the obtained mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
  • -Evaluation 3 As a result of EDS elemental analysis, Mg, Ti, Y and In, which are constituent elements of the LDH-like compound or In (OH) 3 , were detected on the surface of the LDH-like compound separator. In addition, In, which is a constituent element of In (OH) 3 , was detected in the cube-shaped crystals existing on the surface of the LDH-like compound separator.
  • the composition ratios (atomic ratios) of Mg, Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 4.
  • -Evaluation 4 From the peak of the obtained XRD profile, it was identified that In (OH) 3 was present in the LDH-like compound separator.

Abstract

Provided is a hydroxide ion conductive separator that has excellent alkali resistance, can more effectively suppress short circuiting caused by zinc dendrites, and is thus superior to LDH separators. This LDH-like compound separator includes: a porous substrate made from a polymer material; and a layered double hydroxide (LDH)-like compound that blocks the pores of the porous substrate. The average porosity of the central section of the LDH-like compound separator in the thickness direction is less than the average porosity of the section near the surface of the LDH-like compound separator.

Description

LDH様化合物セパレータ及び亜鉛二次電池LDH-like compound separator and zinc secondary battery
 本発明は、LDH様化合物セパレータ及び亜鉛二次電池に関する。 The present invention relates to an LDH-like compound separator and a zinc secondary battery.
 ニッケル亜鉛二次電池、空気亜鉛二次電池等の亜鉛二次電池では、充電時に負極から金属亜鉛がデンドライト状に析出し、不織布等のセパレータの空隙を貫通して正極に到達し、その結果、短絡を引き起こすことが知られている。このような亜鉛デンドライトに起因する短絡は繰り返し充放電寿命の短縮を招く。 In zinc secondary batteries such as nickel-zinc secondary batteries and air-zinc secondary batteries, metallic zinc precipitates in the form of dendrite from the negative electrode during charging and reaches the positive electrode through the voids of the separator such as non-woven fabric. It is known to cause short circuits. Such a short circuit caused by zinc dendrite shortens the repeated charge / discharge life.
 上記問題に対処すべく、水酸化物イオンを選択的に透過させながら、亜鉛デンドライトの貫通を阻止する、層状複水酸化物(LDH)セパレータを備えた電池が提案されている。例えば、特許文献1(国際公開第2013/118561号)には、ニッケル亜鉛二次電池においてLDHセパレータを正極及び負極間に設けることが開示されている。また、特許文献2(国際公開第2016/076047号)には、樹脂製外枠に嵌合又は接合されたLDHセパレータを備えたセパレータ構造体が開示されており、LDHセパレータがガス不透過性及び/又は水不透過性を有する程の高い緻密性を有することが開示されている。また、この文献にはLDHセパレータが多孔質基材と複合化されうることも開示されている。さらに、特許文献3(国際公開第2016/067884号)には多孔質基材の表面にLDH緻密膜を形成して複合材料(LDHセパレータ)を得るための様々な方法が開示されている。この方法は、多孔質基材にLDHの結晶成長の起点を与えうる起点物質を均一に付着させ、原料水溶液中で多孔質基材に水熱処理を施してLDH緻密膜を多孔質基材の表面に形成させる工程を含むものである。 In order to deal with the above problem, a battery equipped with a layered double hydroxide (LDH) separator that selectively permeates hydroxide ions and blocks the penetration of zinc dendrites has been proposed. For example, Patent Document 1 (International Publication No. 2013/118561) discloses that an LDH separator is provided between a positive electrode and a negative electrode in a nickel-zinc secondary battery. Further, Patent Document 2 (International Publication No. 2016/076047) discloses a separator structure including an LDH separator fitted or bonded to a resin outer frame, and the LDH separator is gas impermeable and has a gas impermeable property. / Or it is disclosed that it has a high degree of density enough to have water impermeableness. The document also discloses that LDH separators can be composited with porous substrates. Further, Patent Document 3 (International Publication No. 2016/067884) discloses various methods for forming an LDH dense film on the surface of a porous substrate to obtain a composite material (LDH separator). In this method, a starting material that can give a starting point for LDH crystal growth is uniformly adhered to the porous base material, and the porous base material is subjected to hydrothermal treatment in an aqueous solution of the raw material to form an LDH dense film on the surface of the porous base material. It includes a step of forming the film.
 ところで、特許文献4(国際公開第2019/124214号)には、高分子材料製の多孔質基材と、多孔質基材の孔を塞ぐ層状複水酸化物(LDH)とを含み、LDHセパレータの厚さ方向の中央部の平均気孔率がLDHセパレータの表面近傍部の平均気孔率よりも小さい、LDHセパレータが開示されている。 By the way, Patent Document 4 (International Publication No. 2019/124214) contains a porous base material made of a polymer material and a layered double hydroxide (LDH) that closes the pores of the porous base material, and contains an LDH separator. There is disclosed an LDH separator in which the average porosity in the central portion in the thickness direction is smaller than the average porosity in the vicinity of the surface of the LDH separator.
国際公開第2013/118561号International Publication No. 2013/118561 国際公開第2016/076047号International Publication No. 2016/076047 国際公開第2016/067884号International Publication No. 2016/067884 国際公開第2019/124214号International Publication No. 2019/122141
 上述したようなLDHセパレータを用いてニッケル亜鉛電池等の亜鉛二次電池を構成した場合、亜鉛デンドライトによる短絡等をある程度防止できる。しかしながら、デンドライト短絡防止効果の更なる改善が望まれる。 When a zinc secondary battery such as a nickel-zinc battery is configured by using the LDH separator as described above, a short circuit due to zinc dendrite can be prevented to some extent. However, further improvement of the dendrite short circuit prevention effect is desired.
 本発明者らは、今般、従来のLDHの代わりに、水酸化物イオン伝導物質として、後述するLDH様化合物を用いることにより、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能な水酸化物イオン伝導セパレータ(LDH様化合物セパレータ)を提供できるとの知見を得た。また、高分子多孔質基材の孔を、厚さ方向の中央部の平均気孔率が表面近傍部の平均気孔率よりも小さくなるようにLDH様化合物で塞ぐことで、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDH様化合物セパレータを提供できるとの知見を得た。 By using an LDH-like compound described later as a hydroxide ion conductive substance instead of the conventional LDH, the present inventors have excellent alkali resistance and further effect the short circuit caused by zinc dendrite. It was found that a hydroxide ion conduction separator (LDH-like compound separator) that can be suppressed can be provided. Further, by closing the pores of the polymer porous substrate with an LDH-like compound so that the average porosity in the central portion in the thickness direction is smaller than the average porosity in the vicinity of the surface, a short circuit caused by zinc dendrite. It was found that an LDH-like compound separator capable of more effectively suppressing the above can be provided.
 したがって、本発明の目的は、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能な、LDHセパレータよりも優れた水酸化物イオン伝導セパレータを提供することにある。 Therefore, an object of the present invention is to provide a hydroxide ion conduction separator superior to an LDH separator, which has excellent alkali resistance and can more effectively suppress a short circuit caused by zinc dendrite.
 本発明の一態様によれば、高分子材料製の多孔質基材と、前記多孔質基材の孔を塞ぐ層状複水酸化物(LDH)様化合物とを含む、LDH様化合物セパレータであって、
 前記LDH様化合物セパレータの厚さ方向の中央部の平均気孔率が前記LDH様化合物セパレータの表面近傍部の平均気孔率よりも小さい、LDH様化合物セパレータが提供される。
According to one aspect of the present invention, the LDH-like compound separator comprising a porous base material made of a polymer material and a layered double hydroxide (LDH) -like compound that closes the pores of the porous base material. ,
Provided is an LDH-like compound separator in which the average porosity in the central portion in the thickness direction of the LDH-like compound separator is smaller than the average porosity in the vicinity of the surface of the LDH-like compound separator.
 本発明の他の一態様によれば、LDH様化合物セパレータを備えた、亜鉛二次電池が提供される。 According to another aspect of the present invention, a zinc secondary battery provided with an LDH-like compound separator is provided.
 本発明の他の一態様によれば、前記LDH様化合物セパレータを備えた、固体アルカリ形燃料電池が提供される。 According to another aspect of the present invention, a solid alkaline fuel cell provided with the LDH-like compound separator is provided.
本発明のLDH様化合物セパレータを概念的に示す模式断面図である。It is a schematic sectional drawing conceptually showing LDH-like compound separator of this invention. 例A1~A4のデンドライト短絡確認試験で使用された測定装置の模式断面図である。It is a schematic cross-sectional view of the measuring apparatus used in the dendrite short circuit confirmation test of Examples A1 to A4. 例A1~D3で使用されたHe透過度測定系の一例を示す概念図である。It is a conceptual diagram which shows an example of the He permeability measurement system used in Examples A1 to D3. 図3Aに示される測定系に用いられる試料ホルダ及びその周辺構成の模式断面図である。FIG. 3 is a schematic cross-sectional view of a sample holder used in the measurement system shown in FIG. 3A and its peripheral configuration. 例A1~D3で用いた電気化学測定系を示す模式断面図である。It is a schematic cross-sectional view which shows the electrochemical measurement system used in Examples A1 to D3. 例A3において作製されたLDHセパレータの表面近傍部(表面より深さ1~4μmの領域)の断面FE-SEM像である。図中、灰色領域が高分子多孔質基材に、白色領域がLDHに、黒色領域が残留気孔にそれぞれ相当する。6 is a cross-sectional FE-SEM image of a portion near the surface of the LDH separator produced in Example A3 (a region having a depth of 1 to 4 μm from the surface). In the figure, the gray region corresponds to the polymer porous substrate, the white region corresponds to LDH, and the black region corresponds to the residual pores. 例A3において作製されたLDHセパレータの中央部の断面FE-SEM像である。図中、灰色領域が高分子多孔質基材に、白色領域がLDHに、黒色領域が残留気孔にそれぞれ相当する。It is a cross-sectional FE-SEM image of the central part of the LDH separator produced in Example A3. In the figure, the gray region corresponds to the polymer porous substrate, the white region corresponds to LDH, and the black region corresponds to the residual pores. 例B1において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example B1. 例B1において作製されたLDH様化合物セパレータのX線回折結果である。It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B1. 例B2において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example B2. 例B2において作製されたLDH様化合物セパレータのX線回折結果である。It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B2. 例B3において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example B3. 例B3において作製されたLDH様化合物セパレータのX線回折結果である。It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B3. 例B4において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example B4. 例B4において作製されたLDH様化合物セパレータのX線回折結果である。It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B4. 例B5において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example B5. 例B5において作製されたLDH様化合物セパレータのX線回折結果である。It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B5. 例B6において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example B6. 例B6において作製されたLDH様化合物セパレータのX線回折結果である。It is an X-ray diffraction result of the LDH-like compound separator prepared in Example B6. 例B7において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example B7. 例B8(比較)において作製されたLDHセパレータの表面SEM像である。It is a surface SEM image of the LDH separator prepared in Example B8 (comparison). 例B8(比較)において作製されたLDHセパレータのX線回折結果である。It is an X-ray diffraction result of the LDH separator prepared in Example B8 (comparison). 例C1において作製されたLDH様化合物セパレータの表面SEM像である。8 is a surface SEM image of the LDH-like compound separator prepared in Example C1. 例D1において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example D1. 例D2において作製されたLDH様化合物セパレータの表面SEM像である。6 is a surface SEM image of the LDH-like compound separator prepared in Example D2.
 LDH様化合物セパレータ
 図1に模式断面図が概念的に示されるように、本発明のLDH様化合物セパレータ10は、多孔質基材12と、層状複水酸化物(LDH)様化合物14とを含む。なお、本明細書において「LDH様化合物セパレータ」は、LDH様化合物を含むセパレータであって、専らLDH様化合物の水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。また、「LDH様化合物」とは、LDHとは呼べないがそれに類する層状結晶構造の水酸化物及び/又は酸化物であり、X線回折法においてLDHに起因するピークが検出されないものとして定義される。なお、図1においてLDH様化合物セパレータ10の上面と下面の間でLDH様化合物14の領域が繋がっていないように描かれているが、これは断面として二次元的に描かれているためであり、奥行きを考慮した三次元的にはLDH様化合物セパレータ10の上面と下面の間でLDH様化合物14の領域が繋がっており、それによりLDH様化合物セパレータ10の水酸化物イオン伝導性が確保されている。多孔質基材12は高分子材料製であり、多孔質基材12の孔をLDH様化合物14が塞いでいる。もっとも、多孔質基材12の孔は完全に塞がれている訳ではなく、残留気孔P(LDH様化合物で塞がれていない気孔)が存在する。かかる残留気孔Pに起因して、LDH様化合物セパレータ10は平均気孔率で評価することができる。そして、LDH様化合物セパレータ10の厚さ方向の中央部10aの平均気孔率がLDH様化合物セパレータ10の表面近傍部10bの平均気孔率よりも小さい。すなわち、本発明のLDH様化合物セパレータ10は、厚さ方向における残留気孔Pの分布に疎密があるものであり、具体的には、中央部10aが密でかつ表面近傍部10bが疎であるものである。このように高分子多孔質基材12の孔を、厚さ方向の中央部10aの平均気孔率が表面近傍部10bの平均気孔率よりも小さくなるようにLDH様化合物14で塞ぐことで、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能なLDH様化合物セパレータ10を提供することができる。すなわち、従来のセパレータにおける亜鉛デンドライトの貫通は、(i)セパレータに含まれる空隙又は欠陥に亜鉛デンドライトが侵入し、(ii)セパレータを押し広げながらデンドライトが成長及び進展し、(iii)最後にデンドライトがセパレータを貫通する、というメカニズムで起こるのではないかと推定される。これに対し、本発明のLDH様化合物セパレータ10は、中央部10aが密でかつ表面近傍部10bが疎であるため、中央部10aよりも平均気孔率が高い表面近傍部10bがデンドライト侵入の緩衝層として機能して、亜鉛デンドライトの成長及び伸展を表面近傍部10b内に留まらせることができる。その結果、LDH様化合物セパレータ10の厚さ方向への亜鉛デンドライトの伸展(特に中央部10aの貫通)を有意に抑制することができ、それ故、亜鉛デンドライトに起因する短絡をより一層効果的に抑制することができる。とりわけ、従来のLDHの代わりに、水酸化物イオン伝導物質として、後述するLDH様化合物を用いることにより、耐アルカリ性に優れ、かつ、亜鉛デンドライトに起因する短絡をより一層効果的に抑制可能な水酸化物イオン伝導セパレータ(LDH様化合物セパレータ)を提供することができる。
LDH-like compound separator As a schematic cross-sectional view is conceptually shown in FIG. 1, the LDH-like compound separator 10 of the present invention contains a porous substrate 12 and a layered double hydroxide (LDH) -like compound 14. .. In the present specification, the "LDH-like compound separator" is a separator containing an LDH-like compound, and is assumed to selectively pass hydroxide ions by utilizing the hydroxide ion conductivity of the LDH-like compound. Defined. Further, the "LDH-like compound" is a hydroxide and / or oxide having a layered crystal structure similar to LDH, although it cannot be called LDH, and is defined as one in which a peak caused by LDH is not detected by the X-ray diffraction method. To. In FIG. 1, the region of the LDH-like compound 14 is drawn so as not to be connected between the upper surface and the lower surface of the LDH-like compound separator 10, because the region is drawn two-dimensionally as a cross section. The region of the LDH-like compound 14 is connected between the upper surface and the lower surface of the LDH-like compound separator 10 three-dimensionally in consideration of the depth, thereby ensuring the hydroxide ion conductivity of the LDH-like compound separator 10. ing. The porous base material 12 is made of a polymer material, and the pores of the porous base material 12 are closed by the LDH-like compound 14. However, the pores of the porous substrate 12 are not completely closed, and there are residual pores P (pores that are not closed by the LDH-like compound). Due to the residual pores P, the LDH-like compound separator 10 can be evaluated by the average porosity. The average porosity of the central portion 10a of the LDH-like compound separator 10 in the thickness direction is smaller than the average porosity of the surface-near portion 10b of the LDH-like compound separator 10. That is, the LDH-like compound separator 10 of the present invention has a sparse distribution of residual pores P in the thickness direction, and specifically, the central portion 10a is dense and the surface vicinity portion 10b is sparse. Is. In this way, zinc is formed by closing the pores of the polymer porous substrate 12 with the LDH-like compound 14 so that the average porosity of the central portion 10a in the thickness direction is smaller than the average porosity of the portion near the surface 10b. It is possible to provide an LDH-like compound separator 10 capable of more effectively suppressing a short circuit caused by dendrites. That is, the penetration of the zinc dendrite in the conventional separator is as follows: (i) the zinc dendrite invades the voids or defects contained in the separator, (ii) the dendrite grows and propagates while expanding the separator, and (ii) finally the dendrite. Is presumed to occur by the mechanism of penetrating the separator. On the other hand, in the LDH-like compound separator 10 of the present invention, since the central portion 10a is dense and the surface near portion 10b is sparse, the surface near portion 10b having a higher average pore ratio than the central portion 10a buffers dendrite invasion. It can function as a layer to allow the growth and extension of zinc dendrites to stay within the surface vicinity portion 10b. As a result, the extension of zinc dendrite in the thickness direction of the LDH-like compound separator 10 (particularly through the central portion 10a) can be significantly suppressed, and therefore the short circuit caused by the zinc dendrite can be more effectively suppressed. It can be suppressed. In particular, by using an LDH-like compound described later as a hydroxide ion conductive substance instead of the conventional LDH, water having excellent alkali resistance and capable of more effectively suppressing short circuit due to zinc dendrite. An oxide ion conduction separator (LDH-like compound separator) can be provided.
 また、本発明のLDH様化合物セパレータ10は、LDH様化合物の有する水酸化物イオン伝導性に基づき、セパレータとして要求される所望のイオン伝導性を備えることは勿論のこと、可撓性及び強度にも優れている。これは、LDH様化合物セパレータ10に含まれる高分子多孔質基材12自体の可撓性及び強度に起因するものである。すなわち、高分子多孔質基材12の孔がLDH様化合物で十分に塞がれた形でLDH様化合物セパレータ10が緻密化されているため、高分子多孔質基材12とLDH様化合物14とが高度に複合化された材料として渾然一体化しており、それ故、セラミックス材料であるLDH様化合物14に起因する剛性や脆さが高分子多孔質基材12の可撓性や強度によって相殺又は軽減されるといえる。 Further, the LDH-like compound separator 10 of the present invention has the desired ionic conductivity required as a separator based on the hydroxide ion conductivity of the LDH-like compound, as well as flexibility and strength. Is also excellent. This is due to the flexibility and strength of the polymer porous base material 12 itself contained in the LDH-like compound separator 10. That is, since the LDH-like compound separator 10 is densified so that the pores of the polymer porous base material 12 are sufficiently closed with the LDH-like compound, the polymer porous base material 12 and the LDH-like compound 14 are combined. Are all integrated as a highly composited material, and therefore the rigidity and brittleness resulting from the LDH-like compound 14, which is a ceramic material, is offset or offset by the flexibility and strength of the polymeric porous substrate 12. It can be said that it will be reduced.
 上述のとおり、LDH様化合物セパレータ10は、厚さ方向の中央部10aの平均気孔率が表面近傍部10bの平均気孔率よりも小さい。なお、本明細書において、中央部10aとはLDH様化合物セパレータ10を厚さ方向に3等分した場合における中央に位置する部分を意味し、表面近傍部10bとはLDH様化合物セパレータ10を厚さ方向に3等分した場合における表面に近い側の部分(すなわち中央部10aよりも外側の部分)を意味するものとする。好ましくは、表面近傍部10bの平均気孔率が3%以上であり、かつ、中央部10aの平均気孔率が2%以下であり、より好ましくは、表面近傍部10bの平均気孔率が3~15%であり、かつ、中央部10aの平均気孔率が1%以下であり、さらに好ましくは、表面近傍部10bの平均気孔率が5~10%であり、かつ、中央部10aの平均気孔率が0.01~1%である。中央部10a及び表面近傍部10bが上記範囲内の平均気孔率であると、亜鉛デンドライトの成長を表面近傍部10b内により一層留めることができ、それ故、亜鉛デンドライトに起因する短絡をより一層効果的に抑制することができる。また、有意に高いイオン伝導率を実現することができ、LDH様化合物セパレータ10が水酸化物イオン伝導セパレータとしての十分な機能を呈することができる。平均気孔率の測定は、a)クロスセクションポリッシャ(CP)によりLDH様化合物セパレータを断面研磨し、b)FE-SEM(電界放出形走査電子顕微鏡)により50,000倍の倍率で機能層の断面イメージを2視野取得し、c)取得した断面イメージの画像データをもとに画像検査ソフト(例えばHDevelop、MVTecSoftware製)を用いて2視野それぞれの気孔率を算出し、d)得られた気孔率の平均値を求めることにより行うことができる。 As described above, in the LDH-like compound separator 10, the average porosity of the central portion 10a in the thickness direction is smaller than the average porosity of the surface vicinity portion 10b. In the present specification, the central portion 10a means the portion located in the center when the LDH-like compound separator 10 is divided into three equal parts in the thickness direction, and the surface vicinity portion 10b means the LDH-like compound separator 10 in thickness. It shall mean the portion on the side closer to the surface (that is, the portion on the outer side of the central portion 10a) when divided into three equal parts in the isth direction. Preferably, the average porosity of the surface vicinity portion 10b is 3% or more, and the average porosity of the central portion 10a is 2% or less, and more preferably, the average porosity of the surface vicinity portion 10b is 3 to 15. %, And the average porosity of the central portion 10a is 1% or less, more preferably, the average porosity of the surface vicinity portion 10b is 5 to 10%, and the average porosity of the central portion 10a is. It is 0.01 to 1%. When the central portion 10a and the surface near portion 10b have an average pore ratio within the above range, the growth of the zinc dendrite can be further suppressed in the surface near portion 10b, and therefore the short circuit caused by the zinc dendrite is further effective. Can be suppressed. In addition, a significantly high ionic conductivity can be realized, and the LDH-like compound separator 10 can exhibit a sufficient function as a hydroxide ion conductive separator. The average porosity is measured by a) polishing the cross section of the LDH-like compound separator with a cross section polisher (CP), and b) cross-section of the functional layer at a magnification of 50,000 times with FE-SEM (electron emission scanning electron microscope). Two images were acquired, and c) the pore ratio of each of the two regions was calculated using image inspection software (for example, HDdev, manufactured by MVTecSoftware) based on the image data of the acquired cross-sectional image, and d) the obtained pore ratio. It can be done by finding the average value of.
 LDH様化合物セパレータ10はイオン伝導率が0.1mS/cm以上であるのが好ましく、より好ましくは1.0mS/cm以上、さらに好ましくは1.5mS/cm以上、特に好ましくは2.0mS/cm以上である。このような範囲内であるとLDH様化合物セパレータが水酸化物イオン伝導セパレータとしての十分な機能を呈することができる。イオン伝導率は高ければ高い方が良いため、その上限値は特に限定されないが、例えば10mS/cmである。イオン伝導率は、LDH様化合物セパレータの抵抗、並びにLDH様化合物セパレータの厚み及び面積に基づいて算出される。LDH様化合物セパレータ10の抵抗は、所定濃度(例えば5.4M)のKOH水溶液中に浸漬させたLDH様化合物セパレータ10に対して、電気化学測定システム(ポテンショ/ガルバノスタット-周波数応答アナライザ)を用いて、周波数範囲1MHz~0.1Hz及び印加電圧10mVで測定を行い、実数軸の切片をLDH様化合物セパレータの抵抗として求めることにより決定することができる。 The LDH-like compound separator 10 preferably has an ionic conductivity of 0.1 mS / cm or more, more preferably 1.0 mS / cm or more, still more preferably 1.5 mS / cm or more, and particularly preferably 2.0 mS / cm. That is all. Within such a range, the LDH-like compound separator can exhibit a sufficient function as a hydroxide ion conduction separator. The higher the ionic conductivity, the better, so the upper limit thereof is not particularly limited, but is, for example, 10 mS / cm. The ionic conductivity is calculated based on the resistance of the LDH-like compound separator and the thickness and area of the LDH-like compound separator. The resistance of the LDH-like compound separator 10 is determined by using an electrochemical measurement system (potential / galvanostat-frequency response analyzer) for the LDH-like compound separator 10 immersed in a KOH aqueous solution having a predetermined concentration (for example, 5.4 M). The measurement can be performed in a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and the section of the real number axis can be determined as the resistance of the LDH-like compound separator.
 LDH様化合物セパレータ10は層状複水酸化物(LDH)様化合物14を含むセパレータであり、亜鉛二次電池に組み込まれた場合に、正極板と負極板とを水酸化物イオン伝導可能に隔離するものである。すなわち、LDH様化合物セパレータ10は水酸化物イオン伝導セパレータとしての機能を呈する。好ましいLDH様化合物セパレータ10はガス不透過性及び/又は水不透過性を有する。換言すれば、LDH様化合物セパレータ10はガス不透過性及び/又は水不透過性を有するほどに緻密化されているのが好ましい。なお、本明細書において「ガス不透過性を有する」とは、特許文献2及び3に記載されるように、水中で測定対象物の一面側にヘリウムガスを0.5atmの差圧で接触させても他面側からヘリウムガスに起因する泡の発生がみられないことを意味する。また、本明細書において「水不透過性を有する」とは、特許文献2及び3に記載されるように、測定対象物の一面側に接触した水が他面側に透過しないことを意味する。すなわち、LDH様化合物セパレータ10がガス不透過性及び/又は水不透過性を有するということは、LDH様化合物セパレータ10が気体又は水を通さない程の高度な緻密性を有することを意味し、透水性又はガス透過性を有する多孔性フィルムやその他の多孔質材料ではないことを意味する。こうすることで、LDH様化合物セパレータ10は、その水酸化物イオン伝導性に起因して水酸化物イオンのみを選択的に通すものとなり、電池用セパレータとしての機能を呈することができる。このため、充電時に生成する亜鉛デンドライトによるセパレータの貫通を物理的に阻止して正負極間の短絡を防止するのに極めて効果的な構成となっている。LDH様化合物セパレータ10は水酸化物イオン伝導性を有するため、正極板と負極板との間で必要な水酸化物イオンの効率的な移動を可能として正極板及び負極板における充放電反応を実現することができる。 The LDH-like compound separator 10 is a separator containing a layered double hydroxide (LDH) -like compound 14, and when incorporated into a zinc secondary battery, separates a positive electrode plate and a negative electrode plate so that hydroxide ions can be conducted. It is a thing. That is, the LDH-like compound separator 10 exhibits a function as a hydroxide ion conduction separator. The preferred LDH-like compound separator 10 has gas impermeable and / or water impermeable. In other words, the LDH-like compound separator 10 is preferably densified to have gas impermeableness and / or water impermeableness. As described in Patent Documents 2 and 3, "having gas impermeable" in the present specification means that helium gas is brought into contact with one side of an object to be measured in water with a differential pressure of 0.5 atm. However, it means that the generation of bubbles due to helium gas is not observed from the other side. Further, in the present specification, "having water impermeable" means that water in contact with one side of the object to be measured does not permeate to the other side as described in Patent Documents 2 and 3. .. That is, the fact that the LDH-like compound separator 10 has gas impermeableness and / or water impermeableness means that the LDH-like compound separator 10 has a high degree of density so as to be impermeable to gas or water. It means that it is not a porous film or other porous material having water permeability or gas permeability. By doing so, the LDH-like compound separator 10 selectively passes only hydroxide ions due to its hydroxide ion conductivity, and can exhibit a function as a battery separator. Therefore, the configuration is extremely effective in physically preventing the penetration of the separator by the zinc dendrite generated during charging to prevent a short circuit between the positive and negative electrodes. Since the LDH-like compound separator 10 has hydroxide ion conductivity, it enables efficient transfer of necessary hydroxide ions between the positive electrode plate and the negative electrode plate, and realizes a charge / discharge reaction in the positive electrode plate and the negative electrode plate. can do.
 LDH様化合物セパレータ10は、単位面積あたりのHe透過度が3.0cm/min・atm以下であるのが好ましく、より好ましくは2.0cm/min・atm以下、さらに好ましくは1.0cm/min・atm以下である。He透過度が3.0cm/min・atm以下であるセパレータは、電解液中においてZnの透過(典型的には亜鉛イオン又は亜鉛酸イオンの透過)を極めて効果的に抑制することができる。このように本態様のセパレータは、Zn透過が顕著に抑制されることで、亜鉛二次電池に用いた場合に亜鉛デンドライトの成長を効果的に抑制できるものと原理的に考えられる。He透過度は、セパレータの一方の面にHeガスを供給してセパレータにHeガスを透過させる工程と、He透過度を算出して水酸化物イオン伝導セパレータの緻密性を評価する工程とを経て測定される。He透過度は、単位時間あたりのHeガスの透過量F、Heガス透過時にセパレータに加わる差圧P、及びHeガスが透過する膜面積Sを用いて、F/(P×S)の式により算出する。このようにHeガスを用いてガス透過性の評価を行うことにより、極めて高いレベルでの緻密性の有無を評価することができ、その結果、水酸化物イオン以外の物質(特に亜鉛デンドライト成長を引き起こすZn)を極力透過させない(極微量しか透過させない)といった高度な緻密性を効果的に評価することができる。これは、Heガスが、ガスを構成しうる多種多様な原子ないし分子の中でも最も小さい構成単位を有しており、しかも反応性が極めて低いためである。すなわち、Heは、分子を形成することなく、He原子単体でHeガスを構成する。この点、水素ガスはH分子により構成されるため、ガス構成単位としてはHe原子単体の方がより小さい。そもそもHガスは可燃性ガスのため危険である。そして、上述した式により定義されるHeガス透過度という指標を採用することで、様々な試料サイズや測定条件の相違を問わず、緻密性に関する客観的な評価を簡便に行うことができる。こうして、セパレータが亜鉛二次電池用セパレータに適した十分に高い緻密性を有するのか否かを簡便、安全かつ効果的に評価することができる。He透過度の測定は、後述する実施例の評価5に示される手順に従って好ましく行うことができる。 The LDH-like compound separator 10 preferably has a He permeability per unit area of 3.0 cm / min · atm or less, more preferably 2.0 cm / min · atm or less, still more preferably 1.0 cm / min ·. It is less than or equal to atm. A separator having a He permeability of 3.0 cm / min · atm or less can extremely effectively suppress the permeation of Zn (typically the permeation of zinc ion or zinc acid ion) in the electrolytic solution. As described above, it is considered in principle that the separator of this embodiment can effectively suppress the growth of zinc dendrite when used in a zinc secondary battery by significantly suppressing Zn permeation. The He permeability is determined through a step of supplying He gas to one surface of the separator to allow the Sepa to permeate the He gas, and a step of calculating the He permeability to evaluate the denseness of the hydroxide ion conduction separator. Be measured. The He permeability is determined by the formula of F / (P × S) using the permeation amount F of the He gas per unit time, the differential pressure P applied to the separator when the He gas permeates, and the film area S through which the He gas permeates. calculate. By evaluating the gas permeability using He gas in this way, it is possible to evaluate the presence or absence of denseness at an extremely high level, and as a result, substances other than hydroxide ions (particularly zinc dendrite growth) can be evaluated. It is possible to effectively evaluate a high degree of denseness such that the causing Zn) is not permeated as much as possible (only a very small amount is permeated). This is because He gas has the smallest structural unit among the various atoms or molecules that can compose the gas, and its reactivity is extremely low. That is, He constitutes He gas by a single He atom without forming a molecule. In this respect, since hydrogen gas is composed of H 2 molecules, the He atom alone is smaller as a gas constituent unit. In the first place, H 2 gas is dangerous because it is a flammable gas. Then, by adopting the index of He gas permeability defined by the above formula, it is possible to easily perform an objective evaluation of the fineness regardless of the difference in various sample sizes and measurement conditions. In this way, it is possible to easily, safely and effectively evaluate whether or not the separator has sufficiently high density suitable for a zinc secondary battery separator. The measurement of He permeability can be preferably performed according to the procedure shown in Evaluation 5 of Examples described later.
 LDH様化合物セパレータ10においては、LDH様化合物14が多孔質基材12の孔を塞いでいる。好ましくは、LDH様化合物は、
(a)Mgと、Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物である、又は
(b)(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である、又は
(c)Mg、Ti、Y、及び所望によりAl及び/又はInを含む層状結晶構造の水酸化物及び/又は酸化物であり、該(c)において前記LDH様化合物がIn(OH)との混合物の形態で存在する。
In the LDH-like compound separator 10, the LDH-like compound 14 closes the pores of the porous substrate 12. Preferably, the LDH-like compound is
(A) A hydroxide and / or oxide having a layered crystal structure containing Mg and at least one element containing at least Ti selected from the group consisting of Ti, Y and Al, or (b) (i). ) Ti, Y, and optionally Al and / or Mg, and (ii) a layered crystal structure comprising at least one additive element M selected from the group consisting of In, Bi, Ca, Sr and Ba. Hydroxides and / or oxides, or (c) hydroxides and / or oxides of a layered crystal structure containing Mg, Ti, Y, and optionally Al and / or In, said (c). The LDH-like compound is present in the form of a mixture with In (OH) 3 .
 本発明の好ましい態様(a)によれば、LDH様化合物14は、Mgと、Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物でありうる。したがって、典型的なLDH様化合物14は、Mg、Ti、所望によりY及び所望によりAlの複合水酸化物及び/又は複合酸化物である。LDH様化合物14の基本的特性を損なわない程度に上記元素は他の元素又はイオンで置き換えられてもよいが、LDH様化合物14はNiを含まないのが好ましい。例えば、LDH様化合物14は、Zn及び/又はKをさらに含むものであってもよい。こうすることで、LDH様化合物セパレータ10のイオン伝導率をより一層向上することができる。 According to the preferred embodiment (a) of the present invention, the LDH-like compound 14 is hydroxylated in a layered crystal structure containing Mg and at least one element containing Ti selected from the group consisting of Ti, Y and Al. It can be an object and / or an oxide. Thus, a typical LDH-like compound 14 is a composite hydroxide and / or composite oxide of Mg, Ti, optionally Y and optionally Al. The element may be replaced with another element or ion to the extent that the basic properties of the LDH-like compound 14 are not impaired, but the LDH-like compound 14 preferably does not contain Ni. For example, LDH-like compound 14 may further contain Zn and / or K. By doing so, the ionic conductivity of the LDH-like compound separator 10 can be further improved.
 LDH様化合物14はX線回折により同定することができる。具体的には、LDH様化合物セパレータ10は、その表面に対してX線回折を行った場合、典型的には5°≦2θ≦10°の範囲に、より典型的には7°≦2θ≦10°の範囲にLDH様化合物に由来するピークが検出される。前述のとおり、LDHは積み重なった水酸化物基本層の間に、中間層として交換可能な陰イオン及びHOが存在する交互積層構造を有する物質である。この点、LDHをX線回折法により測定した場合、本来的には2θ=11~12°の位置にLDHの結晶構造に起因したピーク(すなわちLDHの(003)ピーク)が検出される。これに対して、LDH様化合物14をX線回折法により測定した場合、典型的にはLDHの上記ピーク位置よりも低角側にシフトした上述の範囲でピークが検出される。また、X線回折におけるLDH様化合物に由来するピークに対応する2θを用いてBraggの式により、層状結晶構造の層間距離を決定することができる。こうして決定されるLDH様化合物14を構成する層状結晶構造の層間距離は0.883~1.8nmであるのが典型的であり、より典型的には0.883~1.3nmである。 LDH-like compound 14 can be identified by X-ray diffraction. Specifically, when X-ray diffraction is performed on the surface of the LDH-like compound separator 10, the LDH-like compound separator 10 is typically in the range of 5 ° ≤ 2θ ≤ 10 °, and more typically 7 ° ≤ 2θ ≤. Peaks derived from LDH-like compounds are detected in the range of 10 °. As described above, LDH is a substance having an alternating laminated structure in which exchangeable anions and H2O are present as an intermediate layer between the stacked hydroxide basic layers. In this regard, when LDH is measured by the X-ray diffraction method, a peak due to the crystal structure of LDH (that is, the (003) peak of LDH) is originally detected at a position of 2θ = 11 to 12 °. On the other hand, when LDH-like compound 14 is measured by an X-ray diffraction method, a peak is typically detected in the above-mentioned range shifted to a lower angle side than the above-mentioned peak position of LDH. Further, the interlayer distance of the layered crystal structure can be determined by the Bragg equation using 2θ corresponding to the peak derived from the LDH-like compound in X-ray diffraction. The interlayer distance of the layered crystal structure constituting the LDH-like compound 14 thus determined is typically 0.883 to 1.8 nm, and more typically 0.883 to 1.3 nm.
 上記態様(a)によるLDH様化合物セパレータ10は、エネルギー分散型X線分析(EDS)により決定される、LDH様化合物14におけるMg/(Mg+Ti+Y+Al)の原子比が0.03~0.25であるのが好ましく、より好ましくは0.05~0.2である。また、LDH様化合物14におけるTi/(Mg+Ti+Y+Al)の原子比は0.40~0.97であるのが好ましく、より好ましくは0.47~0.94である。さらに、LDH様化合物14におけるY/(Mg+Ti+Y+Al)の原子比は0~0.45であるのが好ましく、より好ましくは0~0.37である。そして、LDH様化合物14におけるAl/(Mg+Ti+Y+Al)の原子比は0~0.05であるのが好ましく、より好ましくは0~0.03である。上記範囲内であると、耐アルカリ性により一層優れ、かつ、亜鉛デンドライトに起因する短絡の抑制効果(すなわちデンドライト耐性)をより効果的に実現することができる。ところで、LDHセパレータに関して従来から知られるLDHは一般式:M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4であり、mは0以上である)なる基本組成で表しうる。これに対して、LDH様化合物14における上記原子比は、LDHの上記一般式から概して逸脱している。このため、本態様におけるLDH様化合物14は、概して、従来のLDHとは異なる組成比(原子比)を有するといえる。なお、EDS分析は、EDS分析装置(例えばX-act、オックスフォード・インストゥルメンツ社製)を用いて、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行うのが好ましい。 The LDH-like compound separator 10 according to the above aspect (a) has an atomic ratio of Mg / (Mg + Ti + Y + Al) in LDH-like compound 14 determined by energy dispersive X-ray analysis (EDS) of 0.03 to 0.25. Is preferable, and more preferably 0.05 to 0.2. The atomic ratio of Ti / (Mg + Ti + Y + Al) in the LDH-like compound 14 is preferably 0.40 to 0.97, more preferably 0.47 to 0.94. Further, the atomic ratio of Y / (Mg + Ti + Y + Al) in the LDH-like compound 14 is preferably 0 to 0.45, more preferably 0 to 0.37. The atomic ratio of Al / (Mg + Ti + Y + Al) in the LDH-like compound 14 is preferably 0 to 0.05, more preferably 0 to 0.03. Within the above range, the alkali resistance is further excellent, and the effect of suppressing a short circuit caused by zinc dendrite (that is, dendrite resistance) can be more effectively realized. By the way, LDH conventionally known for LDH separators has a general formula: M 2+ 1-x M 3+ x (OH) 2 Ann- x / n · mH 2 O (in the formula, M 2+ is a divalent cation, M. 3+ is a trivalent cation, An- is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). Can be represented. On the other hand, the atomic ratio of LDH-like compound 14 generally deviates from the above general formula of LDH. Therefore, it can be said that the LDH-like compound 14 in this embodiment generally has a composition ratio (atomic ratio) different from that of the conventional LDH. For EDS analysis, an EDS analyzer (for example, X-act, manufactured by Oxford Instruments) is used to 1) capture an image at an acceleration voltage of 20 kV and a magnification of 5,000 times, and 2) 5 μm in the point analysis mode. It is preferable to perform a three-point analysis at intervals, repeat the above 1) and 2) once more, and 4) calculate the average value of a total of 6 points.
 本発明の別の好ましい態様(b)によれば、LDH様化合物14は、(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物でありうる。したがって、典型的なLDH様化合物14は、Ti、Y、添加元素M、所望によりAl及び所望によりMgの複合水酸化物及び/又は複合酸化物である。添加元素Mは、In、Bi、Ca、Sr、Ba又はそれらの組合せである。LDH様化合物14の基本的特性を損なわない程度に上記元素は他の元素又はイオンで置き換えられてもよいが、LDH様化合物14はNiを含まないのが好ましい。 According to another preferred embodiment (b) of the present invention, the LDH-like compound 14 contains (i) Ti, Y, and optionally Al and / or Mg, and (ii) an additive element M in a layered crystal structure. It can be a hydroxide and / or an oxide of. Thus, a typical LDH-like compound 14 is a composite hydroxide and / or composite oxide of Ti, Y, additive element M, optionally Al and optionally Mg. The additive element M is In, Bi, Ca, Sr, Ba or a combination thereof. The element may be replaced with another element or ion to the extent that the basic properties of the LDH-like compound 14 are not impaired, but the LDH-like compound 14 preferably does not contain Ni.
 上記態様(b)によるLDH様化合物セパレータ10は、エネルギー分散型X線分析(EDS)により決定される、LDH様化合物14におけるTi/(Mg+Al+Ti+Y+M)の原子比が0.50~0.85であるのが好ましく、より好ましくは0.56~0.81である。LDH様化合物14におけるY/(Mg+Al+Ti+Y+M)の原子比は0.03~0.20であるのが好ましく、より好ましくは0.07~0.15である。LDH様化合物14におけるM/(Mg+Al+Ti+Y+M)の原子比は0.03~0.35であるのが好ましく、より好ましくは0.03~0.32である。LDH様化合物14におけるMg/(Mg+Al+Ti+Y+M)の原子比は0~0.10であるのが好ましく、より好ましくは0~0.02である。そして、LDH様化合物14におけるAl/(Mg+Al+Ti+Y+M)の原子比は0~0.05であるのが好ましく、より好ましくは0~0.04である。上記範囲内であると、耐アルカリ性により一層優れ、かつ、亜鉛デンドライトに起因する短絡の抑制効果(すなわちデンドライト耐性)をより効果的に実現することができる。ところで、LDHセパレータに関して従来から知られるLDHは一般式:M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4であり、mは0以上である)なる基本組成で表しうる。これに対して、LDH様化合物14における上記原子比は、LDHの上記一般式から概して逸脱している。このため、本態様におけるLDH様化合物14は、概して、従来のLDHとは異なる組成比(原子比)を有するといえる。なお、EDS分析は、EDS分析装置(例えばX-act、オックスフォード・インストゥルメンツ社製)を用いて、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行うのが好ましい。 The LDH-like compound separator 10 according to the above aspect (b) has an atomic ratio of Ti / (Mg + Al + Ti + Y + M) in the LDH-like compound 14 determined by energy dispersive X-ray analysis (EDS) of 0.50 to 0.85. Is preferable, and more preferably 0.56 to 0.81. The atomic ratio of Y / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0.03 to 0.20, more preferably 0.07 to 0.15. The atomic ratio of M / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0.03 to 0.35, more preferably 0.03 to 0.32. The atomic ratio of Mg / (Mg + Al + Ti + Y + M) in LDH-like compound 14 is preferably 0 to 0.10, more preferably 0 to 0.02. The atomic ratio of Al / (Mg + Al + Ti + Y + M) in the LDH-like compound 14 is preferably 0 to 0.05, more preferably 0 to 0.04. Within the above range, the alkali resistance is further excellent, and the effect of suppressing a short circuit caused by zinc dendrite (that is, dendrite resistance) can be more effectively realized. By the way, LDH conventionally known for LDH separators has a general formula: M 2+ 1-x M 3+ x (OH) 2 Ann- x / n · mH 2 O (in the formula, M 2+ is a divalent cation, M. 3+ is a trivalent cation, An- is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). Can be represented. On the other hand, the atomic ratio of LDH-like compound 14 generally deviates from the above general formula of LDH. Therefore, it can be said that the LDH-like compound 14 in this embodiment generally has a composition ratio (atomic ratio) different from that of the conventional LDH. For EDS analysis, an EDS analyzer (for example, X-act, manufactured by Oxford Instruments) is used to 1) capture an image at an acceleration voltage of 20 kV and a magnification of 5,000 times, and 2) 5 μm in the point analysis mode. It is preferable to perform a three-point analysis at intervals, repeat the above 1) and 2) once more, and 4) calculate the average value of a total of 6 points.
 本発明の更に別の好ましい態様(c)によれば、LDH様化合物14は、Mg、Ti、Y、及び所望によりAl及び/又はInを含む層状結晶構造の水酸化物及び/又は酸化物であり、LDH様化合物14がIn(OH)との混合物の形態で存在するものでありうる。この態様のLDH様化合物は、Mg、Ti、Y、及び所望によりAl及び/又はInを含む、層状結晶構造の水酸化物及び/又は酸化物である。したがって、典型的なLDH様化合物は、Mg、Ti、Y、所望によりAl、及び所望によりInの、複合水酸化物及び/又は複合酸化物である。なお、LDH様化合物に含まれうるInは、LDH様化合物中に意図的に添加されたもののみならず、In(OH)の形成等に由来してLDH様化合物中に不可避的に混入したものであってもよい。LDH様化合物の基本的特性を損なわない程度に上記元素は他の元素又はイオンで置き換えられてもよいが、LDH様化合物はNiを含まないのが好ましい。ところで、LDHセパレータに関して従来から知られるLDHは一般式:M2+ 1-x3+ (OH)n- x/n・mHO(式中、M2+は2価の陽イオン、M3+は3価の陽イオンであり、An-はn価の陰イオン、nは1以上の整数、xは0.1~0.4であり、mは0以上である)なる基本組成で表しうる。これに対して、LDH様化合物における原子比は、LDHの上記一般式から概して逸脱している。このため、本態様におけるLDH様化合物は、概して、従来のLDHとは異なる組成比(原子比)を有するといえる。 According to yet another preferred embodiment (c) of the present invention, the LDH-like compound 14 is a hydroxide and / or oxide having a layered crystal structure containing Mg, Ti, Y, and optionally Al and / or In. Yes, the LDH-like compound 14 may be present in the form of a mixture with In (OH) 3 . The LDH-like compound of this embodiment is a hydroxide and / or oxide having a layered crystal structure containing Mg, Ti, Y, and optionally Al and / or In. Thus, typical LDH-like compounds are composite hydroxides and / or composite oxides of Mg, Ti, Y, optionally Al, and optionally In. The In that can be contained in the LDH-like compound is not only intentionally added to the LDH-like compound, but is inevitably mixed in the LDH-like compound due to the formation of In (OH) 3 and the like. It may be a compound. The above elements may be replaced with other elements or ions to the extent that the basic properties of the LDH-like compound are not impaired, but the LDH-like compound preferably does not contain Ni. By the way, LDH conventionally known for LDH separators has a general formula: M 2+ 1-x M 3+ x (OH) 2 Ann- x / n · mH 2 O (in the formula, M 2+ is a divalent cation, M. 3+ is a trivalent cation, An- is an n-valent anion, n is an integer of 1 or more, x is 0.1 to 0.4, and m is 0 or more). Can be represented. In contrast, the atomic ratios of LDH-like compounds generally deviate from the above general formula of LDH. Therefore, it can be said that the LDH-like compound in this embodiment generally has a composition ratio (atomic ratio) different from that of the conventional LDH.
 上記態様(c)による混合物はLDH様化合物のみならずIn(OH)をも含む(典型的にはLDH様化合物及びIn(OH)で構成される)。In(OH)の含有により、LDH様化合物セパレータ10における耐アルカリ性及びデンドライト耐性を効果的に向上することができる。混合物におけるIn(OH)の含有割合は、LDH様化合物セパレータ10の水酸化物イオン伝導性を殆ど損なわずに耐アルカリ性及びデンドライト耐性を向上できる量であるのが好ましく、特に限定されない。In(OH)はキューブ状の結晶構造を有するものであってもよく、In(OH)の結晶がLDH様化合物で取り囲まれている構成であってもよい。In(OH)はX線回折により同定することができる。X線回折測定は、後述する実施例に示される手順に従って好ましく行うことができる。 The mixture according to the above aspect (c) contains not only an LDH-like compound but also In (OH) 3 (typically composed of an LDH-like compound and In (OH) 3 ). The inclusion of In (OH) 3 can effectively improve the alkali resistance and dendrite resistance of the LDH-like compound separator 10. The content ratio of In (OH) 3 in the mixture is preferably an amount capable of improving alkali resistance and dendrite resistance without impairing the hydroxide ion conductivity of the LDH-like compound separator 10, and is not particularly limited. In (OH) 3 may have a cube-shaped crystal structure, or the crystal of In (OH) 3 may be surrounded by an LDH-like compound. In (OH) 3 can be identified by X-ray diffraction. The X-ray diffraction measurement can be preferably performed according to the procedure shown in the examples described later.
 前述したとおり、LDH様化合物セパレータ10はLDH様化合物14と多孔質基材12とを含み(典型的には多孔質基材12及びLDH様化合物14からなり)、LDH様化合物セパレータ10は水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDH様化合物セパレータとして機能するように)LDH様化合物が多孔質基材の孔を塞いでいる。LDH様化合物14は高分子多孔質基材12の厚さ方向の全域にわたって組み込まれているのが特に好ましい。LDH様化合物セパレータの厚さは、好ましくは3~80μmであり、より好ましくは3~60μm、さらに好ましくは3~40μmである。 As described above, the LDH-like compound separator 10 contains the LDH-like compound 14 and the porous substrate 12 (typically composed of the porous substrate 12 and the LDH-like compound 14), and the LDH-like compound separator 10 is hydroxylated. The LDH-like compound closes the pores of the porous substrate so as to exhibit ionic conductivity and gas impermeableness (hence to function as an LDH-like compound separator exhibiting hydroxide ionic conductivity). It is particularly preferable that the LDH-like compound 14 is incorporated over the entire area of the polymer porous substrate 12 in the thickness direction. The thickness of the LDH-like compound separator is preferably 3 to 80 μm, more preferably 3 to 60 μm, and even more preferably 3 to 40 μm.
 多孔質基材12は高分子材料製である。高分子多孔質基材12には、1)可撓性を有する(それ故薄くしても割れにくい)、2)気孔率を高くしやすい、3)伝導率を高くしやすい(気孔率を高めながら厚さを薄くできるため)、4)製造及びハンドリングしやすいといった利点がある。また、上記1)の可撓性に由来する利点を活かして、5)高分子材料製の多孔質基材を含むLDH様化合物セパレータを簡単に折り曲げる又は封止接合することができるとの利点もある。高分子材料の好ましい例としては、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、セルロース、ナイロン、ポリエチレン及びそれらの任意の組合せが挙げられる。より好ましくは、加熱プレスに適した熱可塑性樹脂という観点から、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂(四フッ素化樹脂:PTFE等)、ナイロン、ポリエチレン及びそれらの任意の組合せ等が挙げられる。上述した各種の好ましい材料はいずれも電池の電解液に対する耐性として耐アルカリ性を有するものである。特に好ましい高分子材料は、耐熱水性、耐酸性及び耐アルカリ性に優れ、しかも低コストである点から、ポリプロピレン、ポリエチレン等のポリオレフィンであり、最も好ましくはポリプロピレン又はポリエチレンである。多孔質基材が高分子材料で構成される場合、LDH様化合物が多孔質基材の厚さ方向の全域にわたって組み込まれている(例えば多孔質基材内部の大半又はほぼ全部の孔がLDH様化合物で埋まっている)のが特に好ましい。このような高分子多孔質基材として、市販の高分子微多孔膜を好ましく用いることができる。 The porous base material 12 is made of a polymer material. The polymer porous substrate 12 has 1) flexibility (hence, it is hard to break even if it is thinned), 2) easy to increase the porosity, and 3) easy to increase the conductivity (increasing the porosity). However, it has the advantages of being easy to manufacture and handle) (because the thickness can be reduced). Further, taking advantage of the flexibility of 1) above, there is also an advantage that the LDH-like compound separator containing a porous substrate made of a polymer material can be easily bent or sealed and bonded. be. Preferred examples of the polymer material include polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluororesin: PTFE, etc.), cellulose, nylon, polyethylene and any combination thereof. .. More preferably, from the viewpoint of a thermoplastic resin suitable for heat pressing, polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin (tetrafluororesin: PTFE, etc.), nylon, polyethylene and any of them. Examples include the combination of the above. All of the various preferred materials described above have alkali resistance as resistance to the electrolytic solution of the battery. Particularly preferable polymer materials are polyolefins such as polypropylene and polyethylene, and most preferably polypropylene or polyethylene, because they are excellent in heat resistance, acid resistance and alkali resistance and are low in cost. When the porous substrate is composed of a polymer material, LDH-like compounds are incorporated over the entire thickness direction of the porous substrate (for example, most or almost all the pores inside the porous substrate are LDH-like. It is particularly preferable that it is filled with a compound). As such a polymer porous substrate, a commercially available polymer microporous membrane can be preferably used.
 製造方法
 LDH様化合物セパレータ10の製造方法は特に限定されず、既に知られるLDH含有機能層及び複合材料の製造方法(例えば特許文献1~4を参照)の諸条件(特にLDH原料組成)を適宜変更することにより作製することができる。例えば、(1)多孔質基材を用意し、(2)多孔質基材に、チタニアゾル(あるいはさらにイットリウムゾル及び/又はアルミナゾル)を含む溶液を塗布して乾燥することでチタニア含有層を形成させ、(3)マグネシウムイオン(Mg2+)及び尿素(あるいはさらにイットリウムイオン(Y3+))を含む原料水溶液に多孔質基材を浸漬させ、(4)原料水溶液中で多孔質基材を水熱処理して、LDH様化合物含有機能層を多孔質基材上及び/又は多孔質基材中に形成させることにより、LDH様化合物含有機能層及び複合材料(すなわちLDH様化合物セパレータ)を製造することができる。また、上記工程(3)において尿素が存在することで、尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し、共存する金属イオンが水酸化物及び/又は酸化物を形成することによりLDH様化合物を得ることができるものと考えられる。
Production Method The production method of the LDH-like compound separator 10 is not particularly limited, and various conditions (particularly LDH raw material composition) of the already known LDH-containing functional layer and composite material production method (see, for example, Patent Documents 1 to 4) are appropriately used. It can be produced by changing it. For example, (1) a porous substrate is prepared, and (2) a solution containing titania sol (or further yttrium sol and / or alumina sol) is applied to the porous substrate and dried to form a titania-containing layer. , (3) Immerse the porous substrate in a raw material aqueous solution containing magnesium ion (Mg 2+ ) and urea (or further yttrium ion (Y 3+ )), and (4) hydrothermally heat the porous base material in the raw material aqueous solution. By forming the LDH-like compound-containing functional layer on the porous substrate and / or in the porous substrate, the LDH-like compound-containing functional layer and the composite material (that is, the LDH-like compound separator) can be produced. .. Further, due to the presence of urea in the above step (3), the pH value rises due to the generation of ammonia in the solution by utilizing the hydrolysis of urea, and the coexisting metal ions are hydroxide and / or oxidized. It is considered that an LDH-like compound can be obtained by forming a substance.
 特に、多孔質基材12が高分子材料で構成され、LDH様化合物14が多孔質基材の厚さ方向の全域にわたって組み込まれている複合材料(すなわちLDH様化合物セパレータ)を作製する場合、上記(2)における混合ゾル溶液の基材への塗布を、混合ゾル溶液を基材内部の全体又は大部分に浸透させるような手法で行うのが好ましい。こうすることで最終的に多孔質基材内部の大半又はほぼ全部の孔をLDH様化合物で埋めることができる。好ましい塗布手法の例としては、ディップコート、ろ過コート等が挙げられ、特に好ましくはディップコートである。ディップコート等の塗布回数を調整することで、混合ゾル溶液の付着量を調整することができる。ディップコート等により混合ゾル溶液が塗布された基材は、乾燥させた後、上記(3)及び(4)の工程を実施すればよい。 In particular, when the porous base material 12 is composed of a polymer material and the LDH-like compound 14 is incorporated over the entire thickness direction of the porous base material (that is, an LDH-like compound separator) is produced. It is preferable to apply the mixed sol solution to the substrate in (2) by a method of allowing the mixed sol solution to permeate the entire or most of the inside of the substrate. By doing so, most or almost all the pores inside the porous substrate can be finally filled with the LDH-like compound. Examples of the preferred coating method include a dip coat, a filtration coat and the like, and a dip coat is particularly preferable. By adjusting the number of times of application of the dip coat or the like, the amount of adhesion of the mixed sol solution can be adjusted. The base material coated with the mixed sol solution by dip coating or the like may be dried and then the above steps (3) and (4) may be carried out.
 多孔質基材12が高分子材料で構成される場合、上記方法等によって得られたLDH様化合物セパレータに対してプレス処理を施すのが好ましい。こうすることで、緻密性により一層優れたLDH様化合物セパレータを得ることができる。プレス手法は、例えばロールプレス、一軸加圧プレス、CIP(冷間等方圧加圧)等であってよく、特に限定されないが、好ましくはロールプレスである。このプレスは加熱しながら行うのが高分子多孔質基材を軟化させることで、多孔質基材の孔をLDH様化合物で十分に塞ぐことができる点で好ましい。十分に軟化する温度として、例えば、ポリプロピレンやポリエチレンの場合は60~200℃で加熱するのが好ましい。このような温度域でロールプレス等のプレスを行うことで、LDH様化合物セパレータの残留気孔を大幅に低減することができる。その結果、LDH様化合物セパレータを極めて高度に緻密化することができ、それ故、亜鉛デンドライトに起因する短絡をより一層効果的に抑制することができる。ロールプレスを行う際、ロールギャップ及びロール温度を適宜調整することで残留気孔の形態を制御することができ、それにより所望の緻密性のLDH様化合物セパレータを得ることができる。 When the porous base material 12 is made of a polymer material, it is preferable to press the LDH-like compound separator obtained by the above method or the like. By doing so, it is possible to obtain an LDH-like compound separator having even better compactness. The pressing method may be, for example, a roll press, a uniaxial pressure press, a CIP (cold isotropic pressure pressurization), or the like, and is not particularly limited, but is preferably a roll press. It is preferable to perform this press while heating because the pores of the porous substrate can be sufficiently closed with the LDH-like compound by softening the polymer porous substrate. As a temperature for sufficient softening, for example, in the case of polypropylene or polyethylene, it is preferable to heat at 60 to 200 ° C. By performing a press such as a roll press in such a temperature range, the residual pores of the LDH-like compound separator can be significantly reduced. As a result, the LDH-like compound separator can be extremely highly densified, and therefore short circuits caused by zinc dendrites can be suppressed even more effectively. When performing a roll press, the morphology of the residual pores can be controlled by appropriately adjusting the roll gap and the roll temperature, whereby an LDH-like compound separator having a desired density can be obtained.
 亜鉛二次電池
 本発明のLDH様化合物セパレータは亜鉛二次電池に適用されるのが好ましい。したがって、本発明の好ましい態様によれば、LDH様化合物セパレータを備えた、亜鉛二次電池が提供される。典型的な亜鉛二次電池は、正極と、負極と、電解液とを備え、LDH様化合物セパレータを介して正極と負極が互いに隔離されるものである。本発明の亜鉛二次電池は、亜鉛を負極として用い、かつ、電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、その他各種のアルカリ亜鉛二次電池であることができる。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。あるいは、正極が空気極であり、それにより亜鉛二次電池が亜鉛空気二次電池をなしてもよい。
Zinc secondary battery The LDH-like compound separator of the present invention is preferably applied to a zinc secondary battery. Therefore, according to a preferred embodiment of the present invention, a zinc secondary battery provided with an LDH-like compound separator is provided. A typical zinc secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and the positive electrode and the negative electrode are separated from each other via an LDH-like compound separator. The zinc secondary battery of the present invention is not particularly limited as long as it is a secondary battery using zinc as a negative electrode and using an electrolytic solution (typically, an aqueous alkali metal hydroxide solution). Therefore, it can be a nickel-zinc secondary battery, a silver-zinc oxide secondary battery, a manganese zinc oxide secondary battery, a zinc-air secondary battery, and various other alkaline zinc secondary batteries. For example, it is preferable that the positive electrode contains nickel hydroxide and / or nickel oxyhydroxide, whereby the zinc secondary battery forms a nickel-zinc secondary battery. Alternatively, the positive electrode may be an air electrode, whereby the zinc secondary battery may be a zinc air secondary battery.
 固体アルカリ形燃料電池
 本発明のLDH様化合物セパレータは固体アルカリ形燃料電池に適用することも可能である。すなわち、高分子多孔質基材の孔を、厚さ方向の中央部の平均気孔率が表面近傍部の平均気孔率よりも小さくなるようにLDH様化合物で塞いだLDH様化合物セパレータを用いることで、燃料の空気極側への透過(例えばメタノールのクロスオーバー)に起因する起電力の低下を効果的に抑制可能な、固体アルカリ形燃料電池を提供できる。LDH様化合物セパレータの有する水酸化物イオン伝導性を発揮させながら、メタノール等の燃料のLDH様化合物セパレータの透過を効果的に抑制できるためである。したがって、本発明の別の好ましい態様によれば、LDH様化合物セパレータを備えた、固体アルカリ形燃料電池が提供される。本態様による典型的な固体アルカリ形燃料電池は、酸素が供給される空気極と、液体燃料及び/又は気体燃料が供給される燃料極と、燃料極と空気極の間に介在されるLDH様化合物セパレータとを備える。
Solid Alkaline Fuel Cell The LDH-like compound separator of the present invention can also be applied to a solid alkaline fuel cell. That is, by using an LDH-like compound separator in which the pores of the polymer porous substrate are closed with an LDH-like compound so that the average porosity in the central portion in the thickness direction is smaller than the average porosity in the vicinity of the surface. It is possible to provide a solid alkaline fuel cell capable of effectively suppressing a decrease in electromotive force due to permeation of fuel to the air electrode side (for example, crossover of methanol). This is because the permeation of the LDH-like compound separator of a fuel such as methanol can be effectively suppressed while exhibiting the hydroxide ion conductivity of the LDH-like compound separator. Therefore, according to another preferred embodiment of the present invention, there is provided a solid alkaline fuel cell with an LDH-like compound separator. A typical solid alkaline fuel cell according to this embodiment has an air electrode to which oxygen is supplied, a fuel electrode to which a liquid fuel and / or a gaseous fuel is supplied, and an LDH-like intervening between the fuel electrode and the air electrode. It is equipped with a compound separator.
 その他の電池
 本発明のLDH様化合物セパレータはニッケル亜鉛電池や固体アルカリ形燃料電池の他、例えばニッケル水素電池にも使用することができる。この場合、LDH様化合物セパレータは当該電池の自己放電の要因であるナイトライドシャトル(nitride shuttle)(硝酸基の電極間移動)をブロックする機能を果たす。また、本発明のLDH様化合物セパレータは、リチウム電池(リチウム金属が負極の電池)、リチウムイオン電池(負極がカーボン等の電池)あるいはリチウム空気電池等にも使用可能である。
Other Batteries The LDH-like compound separator of the present invention can be used not only for nickel-zinc batteries and solid alkaline fuel cells, but also for nickel-metal hydride batteries, for example. In this case, the LDH-like compound separator functions to block the nitride shuttle (movement of nitric acid groups between electrodes), which is a factor of self-discharge of the battery. Further, the LDH-like compound separator of the present invention can also be used for a lithium battery (a battery having a negative electrode of lithium metal as a negative electrode), a lithium ion battery (a battery having a negative electrode of carbon or the like), a lithium air battery or the like.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described in more detail by the following examples.
[例A1~A6]
 以下に示す例A1~A8はLDHセパレータに関する参考例又は比較例であるが、これらの例における実験手順及び結果はLDH様化合物セパレータにも概ね同様に当てはまる。なお、以下の例で作製されるLDHセパレータの評価方法は以下のとおりとした。
[Examples A1 to A6]
Examples A1 to A8 shown below are reference examples or comparative examples regarding LDH separators, but the experimental procedures and results in these examples are generally applicable to LDH-like compound separators as well. The evaluation method of the LDH separator produced in the following example was as follows.
 評価1:LDHセパレータの同定
 X線回折装置(リガク社製、RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10~70°の測定条件で、LDHセパレータの結晶相を測定してXRDプロファイルを得た。得られたXRDプロファイルについて、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて同定を行った。
Evaluation 1 : Identification of LDH separator The crystal phase of the LDH separator was measured by an X-ray diffractometer (Rigaku, RINT TTR III) under the measurement conditions of voltage: 50 kV, current value: 300 mA, and measurement range: 10 to 70 °. The measurement was performed to obtain an XRD profile. Regarding the obtained XRD profile, JCPDS card No. Identification was performed using the diffraction peak of LDH (hydrotalcite compound) described in 35-0964.
 評価2:厚さの測定
 マイクロメータを用いてLDHセパレータの厚さを測定した。3箇所で厚さを測定し、それらの平均値をLDHセパレータの厚さとして採用した。
Evaluation 2 : Measurement of thickness The thickness of the LDH separator was measured using a micrometer. The thickness was measured at three points, and the average value thereof was adopted as the thickness of the LDH separator.
 評価3:平均気孔率測定
 クロスセクションポリッシャ(CP)により、LDHセパレータを断面研磨し、FE-SEM(ULTRA55、カールツァイス製)により、50,000倍の倍率でLDHセパレータの断面イメージを2視野取得した。この画像データをもとに、画像検査ソフト(HDevelop、MVTecSoftware製)を用いて、2視野それぞれの気孔率を算出し、それらの平均値をLDHセパレータの平均気孔率とした。なお、平均気孔率の測定は、LDHセパレータの表面近傍部(表面より深さ1~4μmの領域)と、LDHセパレータの中央部についてそれぞれ行った。
Evaluation 3 : Average porosity measurement Cross-section polishing of LDH separator by cross-section polisher (CP), and acquisition of 2 cross-sectional images of LDH separator at 50,000 times magnification by FE-SEM (ULTRA55, manufactured by Carl Zeiss) did. Based on this image data, the porosity of each of the two fields was calculated using image inspection software (HDdevrop, manufactured by MVTecSoftware), and the average value thereof was taken as the average porosity of the LDH separator. The average porosity was measured in the vicinity of the surface of the LDH separator (a region having a depth of 1 to 4 μm from the surface) and in the center of the LDH separator.
 評価4:連続充電試験
 図2に示されるような測定装置210を構築して亜鉛デンドライトを連続的に成長させる加速試験を行った。具体的には、ABS樹脂の直方体型の容器212を用意して、その中に亜鉛極214a及び銅極214bを互いに0.5cm離間し且つ対向するように配置した。亜鉛極214aは金属亜鉛板であり、銅極214bは金属銅板である。一方、LDHセパレータについてはその外周に沿ってエポキシ樹脂系接着剤を塗布して、中央に開口部を有するABS樹脂製の治具に取り付けて、LDHセパレータ216を含むLDHセパレータ構造体とした。このとき、治具とLDHセパレータの接合箇所で液密性が確保されるように上記接着剤で十分に封止した。そして、容器212内にLDHセパレータ構造体として配置して、亜鉛極214aを含む第一区画215aと銅極214bを含む第二区画215bとを互いにLDHセパレータ216以外の箇所で液体連通を許容しないように隔離した。このとき、エポキシ樹脂系接着剤を用いてLDHセパレータ構造体の外縁3辺(すなわちABS樹脂製の治具の外縁3辺)を容器212の内壁に液密性を確保できるように接着させた。すなわち、LDHセパレータ216を含むセパレータ構造体と容器212の接合部分は液体連通を許容しないように封止された。第一区画215aと第二区画215bにアルカリ水溶液218として5.4mol/LのKOH水溶液を飽和溶解度相当のZnO粉末とともに入れた。亜鉛極214a及び銅極214bを定電流電源の負極と正極にそれぞれ接続するとともに、定電流電源と並列に電圧計を接続した。第一区画215a及び第二区画215bのいずれにおいてもアルカリ水溶液218の水位はLDHセパレータ216の全領域がアルカリ水溶液218に浸漬されるようにし、かつ、LDHセパレータ構造体(治具を含む)の高さを超えない程度とした。こうして構築された測定装置210において、亜鉛極214a及び銅極214bの間に20mA/cmの定電流を最大200時間にわたって継続的に流した。その間、亜鉛極214a及び銅極214b間に流れる電圧の値を電圧計でモニタリングし、亜鉛極214a及び銅極214b間における亜鉛デンドライト短絡(急激な電圧低下)の有無を確認した。このとき、100時間以上(又は200時間以上)にわたって短絡が生じなかった場合は「短絡なし」と判定し、100時間未満(又は200時間未満)で短絡が生じた場合は「短絡あり」と判定した。
Evaluation 4 : Continuous charge test An accelerated test was conducted in which a measuring device 210 as shown in FIG. 2 was constructed to continuously grow zinc dendrites. Specifically, a rectangular parallelepiped container 212 made of ABS resin was prepared, and zinc poles 214a and copper poles 214b were arranged in the container 212 so as to be separated from each other by 0.5 cm and face each other. The zinc pole 214a is a metal zinc plate, and the copper pole 214b is a metal copper plate. On the other hand, the LDH separator was coated with an epoxy resin adhesive along the outer periphery thereof and attached to a jig made of ABS resin having an opening in the center to form an LDH separator structure containing the LDH separator 216. At this time, the jig and the LDH separator were sufficiently sealed with the above adhesive so as to ensure liquidtightness at the joint. Then, the LDH separator structure is arranged in the container 212 so that the first compartment 215a containing the zinc pole 214a and the second compartment 215b containing the copper pole 214b do not allow liquid communication with each other at a place other than the LDH separator 216. Isolated on. At this time, an epoxy resin-based adhesive was used to bond the three outer edges of the LDH separator structure (that is, the three outer edges of the ABS resin jig) to the inner wall of the container 212 so as to ensure liquidtightness. That is, the joint portion between the separator structure containing the LDH separator 216 and the container 212 was sealed so as not to allow liquid communication. A 5.4 mol / L KOH aqueous solution as an alkaline aqueous solution 218 was placed in the first compartment 215a and the second compartment 215b together with ZnO powder corresponding to the saturated solubility. The zinc pole 214a and the copper pole 214b were connected to the negative electrode and the positive electrode of the constant current power supply, respectively, and a voltmeter was connected in parallel with the constant current power supply. In both the first section 215a and the second section 215b, the water level of the alkaline aqueous solution 218 is such that the entire region of the LDH separator 216 is immersed in the alkaline aqueous solution 218, and the height of the LDH separator structure (including the jig) is high. It was set to the extent that it did not exceed the limit. In the measuring device 210 constructed in this way, a constant current of 20 mA / cm 2 was continuously passed between the zinc pole 214a and the copper pole 214b for a maximum of 200 hours. During that time, the value of the voltage flowing between the zinc pole 214a and the copper pole 214b was monitored with a voltmeter to confirm the presence or absence of a zinc dendrite short circuit (rapid voltage drop) between the zinc pole 214a and the copper pole 214b. At this time, if a short circuit does not occur for 100 hours or more (or 200 hours or more), it is determined as "no short circuit", and if a short circuit occurs in less than 100 hours (or less than 200 hours), it is determined as "with a short circuit". did.
 評価5:He透過測定
 He透過性の観点からLDHセパレータの緻密性を評価すべく、He透過試験を以下のとおり行った。まず、図3A及び図3Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持されたLDHセパレータ318の一方の面から他方の面に透過させて排出させるように構成した。
Evaluation 5 : He Permeation Measurement In order to evaluate the denseness of the LDH separator from the viewpoint of He permeability, the He permeation test was performed as follows. First, the He permeability measuring system 310 shown in FIGS. 3A and 3B was constructed. In the He permeability measuring system 310, the He gas from the gas cylinder filled with the He gas is supplied to the sample holder 316 via the pressure gauge 312 and the flow meter 314 (digital flow meter), and the LDH held in the sample holder 316. The separator 318 was configured to be permeated from one surface to the other surface and discharged.
 試料ホルダ316は、ガス供給口316a、密閉空間316b及びガス排出口316cを備えた構造を有するものであり、次のようにして組み立てた。まず、LDHセパレータ318の外周に沿って接着剤322を塗布して、中央に開口部を有する治具324(ABS樹脂製)に取り付けた。この治具324の上端及び下端に密封部材326a,326bとしてブチルゴム製のパッキンを配設し、さらに密封部材326a,326bの外側から、フランジからなる開口部を備えた支持部材328a,328b(PTFE製)で挟持した。こうして、LDHセパレータ318、治具324、密封部材326a及び支持部材328aにより密閉空間316bを区画した。支持部材328a,328bを、ガス排出口316c以外の部分からHeガsスの漏れが生じないように、ネジを用いた締結手段330で互いに堅く締め付けた。こうして組み立てられた試料ホルダ316のガス供給口316aに、継手332を介してガス供給管334を接続した。 The sample holder 316 has a structure including a gas supply port 316a, a closed space 316b, and a gas discharge port 316c, and was assembled as follows. First, the adhesive 322 was applied along the outer circumference of the LDH separator 318 and attached to a jig 324 (made of ABS resin) having an opening in the center. Packing made of butyl rubber is arranged as sealing members 326a and 326b at the upper and lower ends of the jig 324, and support members 328a and 328b (manufactured by PTFE) having openings made of flanges from the outside of the sealing members 326a and 326b. ). In this way, the sealed space 316b was partitioned by the LDH separator 318, the jig 324, the sealing member 326a, and the support member 328a. The support members 328a and 328b were fastened tightly to each other by the fastening means 330 using screws so that the Hegas did not leak from the portion other than the gas discharge port 316c. A gas supply pipe 334 was connected to the gas supply port 316a of the sample holder 316 thus assembled via a joint 332.
 次いで、He透過度測定系310にガス供給管334を経てHeガスを供給し、試料ホルダ316内に保持されたLDHセパレータ318に透過させた。このとき、圧力計312及び流量計314によりガス供給圧と流量をモニタリングした。Heガスの透過を1~30分間行った後、He透過度を算出した。He透過度の算出は、単位時間あたりのHeガスの透過量F(cm/min)、Heガス透過時にLDHセパレータに加わる差圧P(atm)、及びHeガスが透過する膜面積S(cm)を用いて、F/(P×S)の式により算出した。Heガスの透過量F(cm/min)は流量計314から直接読み取った。また、差圧Pは圧力計312から読み取ったゲージ圧を用いた。なお、Heガスは差圧Pが0.05~0.90atmの範囲内となるように供給された。 Next, He gas was supplied to the He permeability measuring system 310 via the gas supply pipe 334, and was permeated through the LDH separator 318 held in the sample holder 316. At this time, the gas supply pressure and the flow rate were monitored by the pressure gauge 312 and the flow meter 314. After permeating the He gas for 1 to 30 minutes, the He permeation was calculated. The calculation of He permeability is performed by the permeation amount F (cm 3 / min) of He gas per unit time, the differential pressure P (atm) applied to the LDH separator when the He gas permeates, and the film area S (cm) through which the He gas permeates. It was calculated by the formula of F / (P × S) using 2 ). The permeation amount F (cm 3 / min) of He gas was read directly from the flow meter 314. Further, as the differential pressure P, the gauge pressure read from the pressure gauge 312 was used. The He gas was supplied so that the differential pressure P was in the range of 0.05 to 0.90 atm.
 評価6:イオン伝導率の測定
 電解液中でのLDHセパレータのイオン伝導率を図4に示される電気化学測定系を用いて以下のようにして測定した。LDHセパレータ試料Sを両側から厚み1mmシリコーンパッキン440で挟み、内径6mmのPTFE製フランジ型セル442に組み込んだ。電極446として、#100メッシュのニッケル金網をセル442内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液444として、5.4MのKOH水溶液をセル442内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット-周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz~0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片をLDHセパレータ試料Sの抵抗とした。得られたLDHセパレータの抵抗と、LDHセパレータの厚み及び面積を用いて伝導率を求めた。
Evaluation 6 : Measurement of ionic conductivity The ionic conductivity of the LDH separator in the electrolytic solution was measured as follows using the electrochemical measurement system shown in FIG. The LDH separator sample S was sandwiched between both sides with a 1 mm thick silicone packing 440 and incorporated into a PTFE flange type cell 442 having an inner diameter of 6 mm. As the electrodes 446, a nickel wire mesh of # 100 mesh was incorporated into the cell 442 in a cylindrical shape having a diameter of 6 mm so that the distance between the electrodes was 2.2 mm. As the electrolytic solution 444, a 5.4 M aqueous solution of KOH was filled in the cell 442. Using an electrochemical measurement system (potential / galvanostat-frequency response analyzer, Solartron 1287A and 1255B types), the measurement was performed under the conditions of a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and a section of the real number axis. Was taken as the resistance of the LDH separator sample S. The conductivity was determined using the resistance of the obtained LDH separator and the thickness and area of the LDH separator.
 例A1(比較)
(1)高分子多孔質基材の準備
 気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
Example A1 (comparison)
(1) Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 μm and a thickness of 20 μm was prepared as the polymer porous substrate, and 2.0 cm × 2. It was cut out to a size of 0 cm.
(2)高分子多孔質基材へのアルミナ・チタニアゾルコート
 無定形アルミナ溶液(Al-ML15、多木化学株式会社製)と酸化チタンゾル溶液(M6、多木化学株式会社製)をTi/Al(モル比)=2となるように混合して混合ゾルを作製した。混合ゾルを、上記(1)で用意された基材へディップコートにより含浸させた。ディップコートは、混合ゾル100mlに基材を浸漬させてから垂直に引き上げ、90℃の乾燥機中で5分間乾燥させることにより行った。
(2) Alumina-titania sol coating on polymer porous substrate Atypical alumina solution (Al-ML15, manufactured by Taki Chemical Co., Ltd.) and titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) are mixed with Ti / Al (M6, manufactured by Taki Chemical Co., Ltd.). A mixed sol was prepared by mixing so that the molar ratio) = 2. The mixed sol was impregnated into the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed sol, pulling it up vertically, and drying it in a dryer at 90 ° C. for 5 minutes.
(3)原料水溶液の作製
 原料として、硝酸ニッケル六水和物(Ni(NO・6HO、関東化学株式会社製、及び尿素((NHCO、シグマアルドリッチ製)を用意した。0.015mol/Lとなるように、硝酸ニッケル六水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO (モル比)=16の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(3) Preparation of raw material aqueous solution Nickel nitrate hexahydrate (Ni (NO 3 ) 2.6H 2 O, manufactured by Kanto Chemical Co., Inc., and urea ( (NH 2) 2 CO , manufactured by Sigma Aldrich) are prepared as raw materials. Nickel nitrate hexahydrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. After stirring the obtained solution, the solution was added. Urea weighed at a ratio of urea / NO 3- ( molar ratio) = 16 was added thereto, and the mixture was further stirred to obtain an aqueous raw material solution.
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度120℃で24時間水熱処理を施すことにより基材表面と内部にLDHの形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDHを形成させた。こうして、LDHを含む複合材料を得た。
(4) Film formation by hydrothermal treatment A raw material aqueous solution and a dip-coated base material were enclosed together in a closed container (autoclave container, content 100 ml, outer stainless steel jacket) made of Teflon (registered trademark). At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and placed horizontally so that the solution was in contact with both sides of the base material. Then, LDH was formed on the surface and the inside of the substrate by subjecting it to hydrothermal treatment at a hydrothermal temperature of 120 ° C. for 24 hours. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to form LDH in the pores of the porous substrate. Thus, a composite material containing LDH was obtained.
(5)ロールプレスによる緻密化
 上記LDHを含む複合材料を、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ロール温度110℃、ロールギャップ60μmにてロールプレスを行い、LDHセパレータを得た。
(5) Densification by roll press The composite material containing LDH is sandwiched between a pair of PET films (Toray Industries, Inc., Lumirror (registered trademark), thickness 40 μm), roll rotation speed 3 mm / s, roll temperature 110. Roll pressing was performed at ° C. and a roll gap of 60 μm to obtain an LDH separator.
(6)評価結果
 得られたLDHセパレータに対して評価1~6を行った。評価1の結果、本例のLDHセパレータは、LDH(ハイドロタルサイト類化合物)であることが同定された。評価2~6の結果は表1に示されるとおりであった。表1に示されるように、100時間までの連続充電時間では亜鉛デンドライト短絡が発生しなかったが、200時間未満の連続充電時間で亜鉛デンドライト短絡が発生した。
(6) Evaluation Results Evaluations 1 to 6 were performed on the obtained LDH separator. As a result of Evaluation 1, it was identified that the LDH separator of this example is LDH (hydrotalcite compound). The results of evaluations 2 to 6 were as shown in Table 1. As shown in Table 1, zinc dendrite short circuit did not occur in the continuous charging time up to 100 hours, but zinc dendrite short circuit occurred in the continuous charging time less than 200 hours.
 例A2及びA3(参考)
 上記(2)におけるアルミナ・チタニアゾル含浸後の乾燥温度を表1に示される値に変更したこと以外は、例A1と同様にしてLDHセパレータを作製し、同様に評価した。評価1の結果、本例のLDHセパレータは、LDH(ハイドロタルサイト類化合物)であることが同定された。評価2~6の結果は表1に示されるとおりであった。表1に示されるように、例A2及びA3はいずれも200時間以上の連続充電時間においても亜鉛デンドライト短絡が発生しなかった。また、図5A及び5Bに例A3の評価3で得られたLDHセパレータの表面近傍部及び中央部の断面FE-SEM像をそれぞれ示す。
Examples A2 and A3 (reference)
LDH separators were prepared in the same manner as in Example A1 except that the drying temperature after impregnation with alumina / titaniasol in (2) was changed to the values shown in Table 1, and evaluated in the same manner. As a result of Evaluation 1, it was identified that the LDH separator of this example is LDH (hydrotalcite compound). The results of evaluations 2 to 6 were as shown in Table 1. As shown in Table 1, in each of Examples A2 and A3, zinc dendrite short circuit did not occur even in the continuous charging time of 200 hours or more. Further, FIGS. 5A and 5B show cross-sectional FE-SEM images of the LDH separator obtained in the evaluation 3 of Example A3 near the surface and in the center, respectively.
 例A4(比較)
 上記(5)のロールプレスによる緻密化を行わなかったこと以外は、例A1と同様にしてLDHセパレータの作製及び評価を行った。評価1の結果、本例のLDHセパレータは、LDH(ハイドロタルサイト類化合物)であることが同定された。評価2~6の結果は表1に示されるとおりであった。表1に示されるように、評価4は、100時間未満の連続充電時間で亜鉛デンドライト短絡が発生した。
Example A4 (comparison)
The LDH separator was prepared and evaluated in the same manner as in Example A1 except that the densification was not performed by the roll press in (5) above. As a result of Evaluation 1, it was identified that the LDH separator of this example is LDH (hydrotalcite compound). The results of evaluations 2 to 6 were as shown in Table 1. As shown in Table 1, in Rating 4, a zinc dendrite short circuit occurred with a continuous charge time of less than 100 hours.
 例A5及びA6(参考)
 下記a)~c)以外は、例A1と同様にしてLDHセパレータの作製及び評価を行った。
a)上記(2)におけるアルミナ・チタニアゾル含浸後の乾燥温度を表1に示される値に変更したこと。
b)上記(3)の原料として、硝酸ニッケル六水和物の代わりに、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)を用い、0.03mol/Lとなるように、硝酸マグネシウム六水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した後、溶液中に尿素/NO (モル比)=8の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得たこと。
c)上記(4)の水熱温度を90℃としたこと。
Examples A5 and A6 (reference)
LDH separators were prepared and evaluated in the same manner as in Example A1 except for the following a) to c).
a) The drying temperature after impregnation with alumina / titaniasol in (2) above was changed to the value shown in Table 1.
b) As the raw material of the above (3), magnesium nitrate hexahydrate (Mg (NO 3 ) 2.6H2O , manufactured by Kanto Chemical Co., Ltd.) was used instead of nickel nitrate hexahydrate, and 0.03 mol. Weigh magnesium nitrate hexahydrate so that it becomes / L, put it in a beaker, add ion-exchanged water to make the total volume 75 ml, stir the obtained solution, and then add urea / NO 3 in the solution. -Weighed urea at a ratio of (molar ratio) = 8, and further stirred to obtain a raw material aqueous solution.
c) The water heat temperature in (4) above was set to 90 ° C.
 評価1の結果、本例のLDHセパレータは、LDH(ハイドロタルサイト類化合物)であることが同定された。評価2~6の結果は表1に示されるとおりであった。表1に示されるように、例A5及びA6はいずれも200時間以上の連続充電時間においても亜鉛デンドライト短絡が発生しなかった。 As a result of evaluation 1, it was identified that the LDH separator of this example is LDH (hydrotalcite compound). The results of evaluations 2 to 6 were as shown in Table 1. As shown in Table 1, in each of Examples A5 and A6, zinc dendrite short circuit did not occur even in the continuous charging time of 200 hours or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[例B1~B8]
 以下に示す例B1~B7はLDH様化合物セパレータに関する参考例である一方、例B8はLDHセパレータに関する比較例である。LDH様化合物セパレータ及びLDHセパレータをまとめて水酸化物イオン伝導セパレータと総称する。なお、以下の例で作製される水酸化物イオン伝導セパレータの評価方法は以下のとおりとした。
[Examples B1 to B8]
Examples B1 to B7 shown below are reference examples relating to LDH-like compound separators, while Example B8 is a comparative example relating to LDH separators. LDH-like compound separators and LDH separators are collectively referred to as hydroxide ion conduction separators. The evaluation method of the hydroxide ion conduction separator produced in the following example was as follows.
 評価1:表面微構造の観察
 水酸化物イオン伝導セパレータの表面微構造を走査型電子顕微鏡(SEM、JSM-6610LV、JEOL社製)を用いて10~20kVの加速電圧で観察した。
Evaluation 1 : Observation of surface microstructure The surface microstructure of the hydroxide ion conduction separator was observed with an acceleration voltage of 10 to 20 kV using a scanning electron microscope (SEM, JSM-6610LV, manufactured by JEOL Ltd.).
 評価2:層状構造のSTEM解析
 水酸化物イオン伝導セパレータの層状構造を走査透過電子顕微鏡(STEM)(製品名:JEM-ARM200F、JEOL社製)を用いて、200kVの加速電圧で観察した。
Evaluation 2 : STEM analysis of layered structure The layered structure of the hydroxide ion conduction separator was observed at an acceleration voltage of 200 kV using a scanning transmission electron microscope (STEM) (product name: JEM-ARM200F, manufactured by JEOL).
 評価3:元素分析評価(EDS)
 水酸化物イオン伝導セパレータ表面に対してEDS分析装置(装置名:X-act、オックスフォード・インストゥルメンツ社製)を用いて組成分析を行い、Mg:Ti:Y:Alの組成比(原子比)を算出した。この分析は、1)加速電圧20kV、倍率5,000倍で像を取り込み、2)点分析モードで5μm程度間隔を空け、3点分析を行い、3)上記1)及び2)をさらに1回繰り返し行い、4)合計6点の平均値を算出することにより行った。
Evaluation 3 : Elemental analysis evaluation (EDS)
The composition of the surface of the hydroxide ion conduction separator was analyzed using an EDS analyzer (device name: X-act, manufactured by Oxford Instruments), and the composition ratio of Mg: Ti: Y: Al (atomic ratio). ) Was calculated. In this analysis, 1) an image is captured at an acceleration voltage of 20 kV and a magnification of 5,000 times, 2) three-point analysis is performed at intervals of about 5 μm in the point analysis mode, and 3) 1) and 2) above are performed once more. It was repeated, and 4) it was performed by calculating the average value of a total of 6 points.
 評価4:X線回折測定
 X線回折装置(リガク社製、RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:5~40°の測定条件で、水酸化物イオン伝導セパレータの結晶相を測定してXRDプロファイルを得た。また、LDH様化合物に由来するピークに対応する2θを用いてBraggの式により、層状結晶構造の層間距離を決定した。
Evaluation 4 : X-ray diffraction measurement With an X-ray diffractometer (Rigaku, RINT TTR III), a hydroxide ion conduction separator under measurement conditions of voltage: 50 kV, current value: 300 mA, and measurement range: 5 to 40 °. The crystal phase of was measured to obtain an XRD profile. In addition, the interlayer distance of the layered crystal structure was determined by the Bragg's formula using 2θ corresponding to the peak derived from the LDH-like compound.
 評価5:He透過測定
 He透過性の観点から水酸化物イオン伝導セパレータの緻密性を評価すべくHe透過試験を例A1~A6の評価5と同様の手順で行った。
Evaluation 5 : He Permeation Measurement A He permeation test was performed in the same procedure as in Evaluation 5 of Examples A1 to A6 in order to evaluate the denseness of the hydroxide ion conduction separator from the viewpoint of He permeability.
 評価6:イオン伝導率の測定
 電解液中での水酸化物イオン伝導セパレータの伝導率を図4に示される電気化学測定系を用いて以下のようにして測定した。水酸化物イオン伝導セパレータ試料Sを両側から厚み1mmシリコーンパッキン440で挟み、内径6mmのPTFE製フランジ型セル442に組み込んだ。電極446として、#100メッシュのニッケル金網をセル442内に直径6mmの円筒状にして組み込み、電極間距離が2.2mmになるようにした。電解液444として、5.4MのKOH水溶液をセル442内に充填した。電気化学測定システム(ポテンショ/ガルバノスタット-周波数応答アナライザ、ソーラトロン社製1287A型及び1255B型)を用い、周波数範囲は1MHz~0.1Hz、印加電圧は10mVの条件で測定を行い、実数軸の切片を水酸化物イオン伝導セパレータ試料Sの抵抗とした。上記同様の測定を水酸化物イオン伝導セパレータ試料S無しの構成で行い、ブランク抵抗も求めた。水酸化物イオン伝導セパレータ試料Sの抵抗とブランク抵抗の差を水酸化物イオン伝導セパレータの抵抗とした。得られた水酸化物イオン伝導セパレータの抵抗と、水酸化物イオン伝導セパレータの厚み及び面積を用いて伝導率を求めた。
Evaluation 6 : Measurement of ionic conductivity The conductivity of the hydroxide ion conductive separator in the electrolytic solution was measured as follows using the electrochemical measurement system shown in FIG. The hydroxide ion conduction separator sample S was sandwiched between both sides with a 1 mm thick silicone packing 440 and incorporated into a PTFE flange type cell 442 having an inner diameter of 6 mm. As the electrodes 446, a nickel wire mesh of # 100 mesh was incorporated into the cell 442 in a cylindrical shape having a diameter of 6 mm so that the distance between the electrodes was 2.2 mm. As the electrolytic solution 444, a 5.4 M aqueous solution of KOH was filled in the cell 442. Using an electrochemical measurement system (potential / galvanostat-frequency response analyzer, Solartron 1287A and 1255B types), the measurement was performed under the conditions of a frequency range of 1 MHz to 0.1 Hz and an applied voltage of 10 mV, and a section of the real number axis. Was taken as the resistance of the hydroxide ion conduction separator sample S. The same measurement as above was performed with the configuration without the hydroxide ion conduction separator sample S, and the blank resistance was also determined. The difference between the resistance of the hydroxide ion conduction separator sample S and the blank resistance was taken as the resistance of the hydroxide ion conduction separator. The conductivity was determined using the resistance of the obtained hydroxide ion conductive separator and the thickness and area of the hydroxide ion conductive separator.
 評価7:耐アルカリ性評価
 0.4Mの濃度で酸化亜鉛を含む5.4MのKOH水溶液を用意した。用意したKOH水溶液0.5mLと、2cm四方のサイズの水酸化物イオン伝導セパレータ試料をテフロン(登録商標)製密閉容器に入れた。その後、90℃で1週間(すなわち168時間)保持した後、水酸化物イオン伝導セパレータ試料を密閉容器から取り出した。取り出した水酸化物イオン伝導セパレータ試料を室温で1晩乾燥させた。得られた試料について、評価5と同様の方法でHe透過度を算出し、アルカリ浸漬前後におけるHe透過度の変化の有無を判定した。
Evaluation 7 : Alkali resistance evaluation A 5.4 M KOH aqueous solution containing zinc oxide at a concentration of 0.4 M was prepared. 0.5 mL of the prepared KOH aqueous solution and a hydroxide ion conduction separator sample having a size of 2 cm square were placed in a closed container made of Teflon (registered trademark). Then, after holding at 90 ° C. for 1 week (that is, 168 hours), the hydroxide ion conduction separator sample was taken out from the closed container. The removed hydroxide ion conduction separator sample was dried overnight at room temperature. For the obtained sample, the He permeability was calculated by the same method as in Evaluation 5, and it was determined whether or not there was a change in the He permeability before and after the alkali immersion.
 評価8:デンドライト耐性の評価(サイクル試験)
 水酸化物イオン伝導セパレータの亜鉛デンドライトに起因する短絡の抑制効果(デンドライト耐性)を評価すべくサイクル試験を以下のとおり行った。まず、正極(水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む)と負極(亜鉛及び/又は酸化亜鉛を含む)の各々を不織布で包むとともに、電流取り出し端子を溶接した。こうして準備された正極及び負極を、水酸化物イオン伝導セパレータを介して対向させ、電流取り出し口が設けられたラミネートフィルムに挟んで、ラミネートフィルムの3辺を熱融着した。こうして得られた上部開放されたセル容器に電解液(5.4MのKOH水溶液中に0.4Mの酸化亜鉛を溶解させたもの)を加え、真空引き等により電解液を十分に正極及び負極に浸透させた。その後、ラミネートフィルムの残りの1辺も熱融着して、簡易密閉セルとした。充放電装置(東洋システム株式会社製、TOSCAT3100)を用いて、簡易密閉セルに対し、0.1C充電及び0.2C放電で化成を実施した。その後、1C充放電サイクルを実施した。同一条件で繰り返し充放電サイクルを実施しながら、正極及び負極間の電圧を電圧計でモニタリングし、正極及び負極間における亜鉛デンドライトに起因する短絡に伴う急激な電圧低下(具体的には直前にプロットされた電圧に対して5mV以上の電圧低下)の有無を調べ、以下の基準で評価した。
・短絡なし:300サイクル後も充電中に上記急激な電圧低下が見られなかった。
・短絡あり:300サイクル未満で充電中に上記急激な電圧低下が見られた。
Evaluation 8 : Evaluation of dendrite resistance (cycle test)
A cycle test was conducted as follows to evaluate the short-circuit suppression effect (dendrite resistance) caused by zinc dendrite of the hydroxide ion conduction separator. First, each of the positive electrode (containing nickel hydroxide and / or nickel oxyhydroxide) and the negative electrode (containing zinc and / or zinc oxide) was wrapped in a non-woven fabric, and the current extraction terminal was welded. The positive electrode and the negative electrode thus prepared were opposed to each other via a hydroxide ion conduction separator, sandwiched between the laminated films provided with current extraction ports, and the three sides of the laminated film were heat-sealed. An electrolytic solution (a solution in which 0.4 M zinc oxide is dissolved in a 5.4 M KOH aqueous solution) is added to the cell container with an open top thus obtained, and the electrolytic solution is sufficiently applied to the positive electrode and the negative electrode by vacuuming or the like. Infiltrated. Then, the remaining one side of the laminated film was also heat-sealed to form a simple sealed cell. Using a charging / discharging device (TOSCAT3100 manufactured by Toyo System Co., Ltd.), chemical conversion was carried out for a simple sealed cell by 0.1C charging and 0.2C discharging. Then, a 1C charge / discharge cycle was carried out. While repeatedly performing charge / discharge cycles under the same conditions, the voltage between the positive electrode and the negative electrode is monitored with a voltmeter, and a sudden voltage drop due to a short circuit caused by zinc dendrite between the positive electrode and the negative electrode (specifically, plotted immediately before). The presence or absence of a voltage drop of 5 mV or more with respect to the measured voltage) was examined and evaluated according to the following criteria.
-No short circuit: The above-mentioned sudden voltage drop was not observed during charging even after 300 cycles.
-With short circuit: The above-mentioned sudden voltage drop was observed during charging in less than 300 cycles.
 例B1(参考)
(1)高分子多孔質基材の準備
 気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
Example B1 (reference)
(1) Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 μm and a thickness of 20 μm was prepared as the polymer porous substrate, and 2.0 cm × 2. It was cut out to a size of 0 cm.
(2)高分子多孔質基材へのチタニアゾルコート
 酸化チタンゾル溶液(M6、多木化学株式会社製)を上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、ゾル溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(2) Titania sol coating on a polymer porous substrate A titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of a sol solution, pulling it up vertically, and drying it at room temperature for 3 hours.
(3)原料水溶液の作製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO (モル比)=48の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(3) Preparation of aqueous solution of raw material Magnesium nitrate hexahydrate (Mg (NO 3 ) 2.6H 2 O, manufactured by Kanto Chemical Co., Inc.) and urea ( (NH 2) 2 CO , manufactured by Sigma Aldrich) are prepared as raw materials. did. Magnesium nitrate hexahydrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. After stirring the obtained solution, urea weighed at a ratio of urea / NO 3- ( molar ratio) = 48 was added to the solution, and the mixture was further stirred to obtain a raw material aqueous solution.
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で24時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDH様化合物を形成させた。こうして、LDH様化合物セパレータを得た。
(4) Film formation by hydrothermal treatment A raw material aqueous solution and a dip-coated base material were enclosed together in a closed container (autoclave container, content 100 ml, outer stainless steel jacket) made of Teflon (registered trademark). At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and installed vertically so that the solution was in contact with both sides of the base material. Then, the LDH-like compound was formed on the surface and the inside of the substrate by subjecting it to hydrothermal treatment at a hydrothermal temperature of 120 ° C. for 24 hours. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to form LDH-like compounds in the pores of the porous substrate. Thus, an LDH-like compound separator was obtained.
(5)ロールプレスによる緻密化
 上記LDH様化合物セパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDH様化合物セパレータを得た。
(5) Densification by roll press The LDH-like compound separator is sandwiched between a pair of PET films (Toray Industries, Inc., Lumirror (registered trademark), thickness 40 μm), roll rotation speed 3 mm / s, roller heating temperature 70. Roll pressing was performed at ° C. at a roll gap of 70 μm to obtain a further densified LDH-like compound separator.
(6)評価結果
 得られたLDH様化合物セパレータに対して評価1~8を行った。結果は以下のとおりであった。
(6) Evaluation Results Evaluations 1 to 8 were performed on the obtained LDH-like compound separator. The results were as follows.
‐評価1:例B1で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図6Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg及びTiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg及びTiの組成比(原子比)は表2に示されるとおりであった。
‐評価4:図6Bに例B1で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=9.4°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は0.94nmであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B1 was as shown in FIG. 6A.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg and Ti, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg and Ti on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
-Evaluation 4: Figure 6B shows the XRD profile obtained in Example B1. In the obtained XRD profile, a peak was observed near 2θ = 9.4 °. Normally, the (003) peak position of LDH is observed at 2θ = 11 to 12 °, so it is considered that the peak is the one in which the (003) peak of LDH is shifted to the low angle side. Therefore, it is suggested that the peak is derived from a compound similar to LDH (that is, LDH-like compound) although it cannot be called LDH. The two peaks observed at 20 <2θ ° <25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate. The interlayer distance of the layered crystal structure in the LDH-like compound was 0.94 nm.
-Evaluation 5: As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 2, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
-Evaluation 8: As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
 例B2(参考)
 上記(3)の原料水溶液の作製を以下のように行ったこと、及び上記(4)における水熱処理の温度を90℃にしたこと以外は例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example B2 (reference)
Preparation and evaluation of LDH-like compound separator in the same manner as in Example B1 except that the raw material aqueous solution of (3) above was prepared as follows and the temperature of the hydrothermal treatment in (4) above was set to 90 ° C. Was done.
(原料水溶液の作製)
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.03mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した後、溶液中に尿素/NO-(モル比)=8の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(Preparation of raw material aqueous solution)
Magnesium nitrate hexahydrate (Mg (NO 3 ) 2.6H 2 O, manufactured by Kanto Chemical Co., Inc.) and urea ((NH 2 ) 2 CO, manufactured by Sigma - Aldrich) were prepared as raw materials. Weigh magnesium nitrate hexahydrate to 0.03 mol / L and put it in a beaker. Add ion-exchanged water to make the total volume 75 ml. After stirring the obtained solution, urea / in the solution. Urea weighed at a ratio of NO 3- (molar ratio) = 8 was added, and the mixture was further stirred to obtain a raw material aqueous solution.
‐評価1:例B2で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図7Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg及びTiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg及びTiの組成比(原子比)は表2に示されるとおりであった。
‐評価4:図7Bに例B2で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=7.2°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は1.2nmであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B2 was as shown in FIG. 7A.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg and Ti, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg and Ti on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
-Evaluation 4: Figure 7B shows the XRD profile obtained in Example B2. In the obtained XRD profile, a peak was observed near 2θ = 7.2 °. Normally, the (003) peak position of LDH is observed at 2θ = 11 to 12 °, so it is considered that the peak is the one in which the (003) peak of LDH is shifted to the low angle side. Therefore, it is suggested that the peak is derived from a compound similar to LDH (that is, LDH-like compound) although it cannot be called LDH. The two peaks observed at 20 <2θ ° <25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate. The interlayer distance of the layered crystal structure in the LDH-like compound was 1.2 nm.
-Evaluation 5: As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 2, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
-Evaluation 8: As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
 例B3(参考)
 上記(2)の代わりに高分子多孔質基材へのチタニア・イットリアゾルコートを以下のように行ったこと以外は、例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example B3 (reference)
LDH-like compound separators were prepared and evaluated in the same manner as in Example B1 except that titania-itriasol coating on a polymer porous substrate was performed as follows instead of (2) above.
(高分子多孔質基材へのチタニア・イットリアゾルコート)
 酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=4となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(Titania-itriasol coat on polymer porous substrate)
Titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) and yttrium sol were mixed so that Ti / Y (molar ratio) = 4. The obtained mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
‐評価1:例B3で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図8Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Ti及びYの組成比(原子比)は表2に示されるとおりであった。
‐評価4:図8Bに例B3で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=8.0°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は1.1nmであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atm未満であり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B3 was as shown in FIG. 8A.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Ti and Y on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
-Evaluation 4: Figure 8B shows the XRD profile obtained in Example B3. In the obtained XRD profile, a peak was observed near 2θ = 8.0 °. Normally, the (003) peak position of LDH is observed at 2θ = 11 to 12 °, so it is considered that the peak is the one in which the (003) peak of LDH is shifted to the low angle side. Therefore, it is suggested that the peak is derived from a compound similar to LDH (that is, LDH-like compound) although it cannot be called LDH. The two peaks observed at 20 <2θ ° <25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate. The interlayer distance of the layered crystal structure in the LDH-like compound was 1.1 nm.
-Evaluation 5: As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 2, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is less than 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
 例B4(参考)
 上記(2)の代わりに高分子多孔質基材へのチタニア・イットリア・アルミナゾルコートを以下のように行ったこと以外は、例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example B4 (reference)
The LDH-like compound separator was prepared and evaluated in the same manner as in Example B1 except that the titania-itria-alumina sol coat was applied to the polymer porous substrate instead of the above (2) as follows.
(高分子多孔質基材へのチタニア・イットリア・アルミナゾルコート)
 酸化チタンゾル溶液(M6、多木化学株式会社製)、イットリウムゾル、及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/(Y+Al)(モル比)=2、及びY/Al(モル比)=8となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(Titania, yttrium, alumina sol coat on polymer porous substrate)
Titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.), yttrium sol, and amorphous alumina solution (Al-ML15, manufactured by Taki Chemical Co., Ltd.) are mixed with Ti / (Y + Al) (molar ratio) = 2, and Y /. The mixture was mixed so that Al (molar ratio) = 8. The mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
‐評価1:例B4で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図9Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti及びYの組成比(原子比)は表2に示されるとおりであった。
‐評価4:図9Bに例B4で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=7.8°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は1.1nmであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B4 was as shown in FIG. 9A.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti and Y on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
-Evaluation 4: Figure 9B shows the XRD profile obtained in Example B4. In the obtained XRD profile, a peak was observed near 2θ = 7.8 °. Normally, the (003) peak position of LDH is observed at 2θ = 11 to 12 °, so it is considered that the peak is the one in which the (003) peak of LDH is shifted to the low angle side. Therefore, it is suggested that the peak is derived from a compound similar to LDH (that is, LDH-like compound) although it cannot be called LDH. The two peaks observed at 20 <2θ ° <25 of the XRD profile are peaks derived from polyethylene constituting the porous substrate. The interlayer distance of the layered crystal structure in the LDH-like compound was 1.1 nm.
-Evaluation 5: As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 2, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
 例B5(参考)
 上記(2)の代わりに高分子多孔質基材へのチタニア・イットリアゾルコートを以下のように行ったこと、及び上記(3)の原料水溶液の作製を以下のように行ったこと以外は例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example B5 (reference)
Examples except that the titania-itria sol coating on the polymer porous substrate instead of the above (2) was performed as follows, and the raw material aqueous solution of the above (3) was prepared as follows. LDH-like compound separators were prepared and evaluated in the same manner as in B1.
(高分子多孔質基材へのチタニア・イットリアゾルコート)
 酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=18となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(Titania-itriasol coat on polymer porous substrate)
Titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) and yttrium sol were mixed so that Ti / Y (molar ratio) = 18. The obtained mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
(原料水溶液の作製)
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.0075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した。この溶液中に尿素/NO (モル比)=96の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(Preparation of raw material aqueous solution)
Magnesium nitrate hexahydrate (Mg (NO 3 ) 2.6H 2 O, manufactured by Kanto Chemical Co., Inc.) and urea ((NH 2 ) 2 CO, manufactured by Sigma - Aldrich) were prepared as raw materials. Magnesium nitrate hexahydrate was weighed to 0.0075 mol / L and placed in a beaker, ion-exchanged water was added thereto to make the total volume 75 ml, and the obtained solution was stirred. Urea weighed at a ratio of urea / NO 3- ( molar ratio) = 96 was added to this solution, and the mixture was further stirred to obtain an aqueous raw material solution.
‐評価1:例B5で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図10Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Ti及びYの組成比(原子比)は表2に示されるとおりであった。
‐評価4:図10Bに例B5で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=8.9°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は0.99nmであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B5 was as shown in FIG. 10A.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Ti and Y on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
-Evaluation 4: Figure 10B shows the XRD profile obtained in Example B5. In the obtained XRD profile, a peak was observed near 2θ = 8.9 °. Normally, the (003) peak position of LDH is observed at 2θ = 11 to 12 °, so it is considered that the peak is the one in which the (003) peak of LDH is shifted to the low angle side. Therefore, it is suggested that the peak is derived from a compound similar to LDH (that is, LDH-like compound) although it cannot be called LDH. The two peaks observed at 20 <2θ ° <25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate. The interlayer distance of the layered crystal structure in the LDH-like compound was 0.99 nm.
-Evaluation 5: As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 2, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
 例B6(参考)
 上記(2)の代わりに高分子多孔質基材へのチタニア・アルミナゾルコートを以下のように行ったこと、及び上記(3)の原料水溶液の作製を以下のように行ったこと以外は例B1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example B6 (reference)
Example B1 except that the titania-alumina sol coat was applied to the polymer porous substrate instead of the above (2) as follows, and the raw material aqueous solution of the above (3) was prepared as follows. The LDH-like compound separator was prepared and evaluated in the same manner as above.
(高分子多孔質基材へのチタニア・アルミナゾルコート)
 酸化チタンゾル溶液(M6、多木化学株式会社製)及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/Al(モル比)=18となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(Titania / alumina sol coat on polymer porous substrate)
A titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) and an amorphous alumina solution (Al-ML15, manufactured by Taki Chemical Co., Ltd.) were mixed so that Ti / Al (molar ratio) = 18. The mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
(原料水溶液の作製)
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)、硝酸イットリウムn水和物(Y(NO・nHO、富士フイルム和光純薬株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.0015mol/Lとなるように秤量してビーカーに入れた。さらに、硝酸イットリウムn水和物を0.0075mol/Lとなるように秤量して上記ビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した。この溶液中に尿素/NO (モル比)=9.8の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(Preparation of raw material aqueous solution)
As raw materials, magnesium nitrate hexahydrate (Mg (NO 3 ) 2.6H 2 O , manufactured by Kanto Chemical Co., Ltd.), yttrium nitrate n hydrate (Y (NO 3 ) 3. nH 2 O, Fujifilm Wako Jun Yaku Co., Ltd.) and urea ((NH 2 ) 2CO , manufactured by Sigma Aldrich) were prepared. Magnesium nitrate hexahydrate was weighed to 0.0015 mol / L and placed in a beaker. Further, yttrium nitrate n hydrate was weighed to 0.0075 mol / L and placed in the beaker, ion-exchanged water was added thereto to make the total volume 75 ml, and the obtained solution was stirred. Urea weighed at a ratio of urea / NO 3- ( molar ratio) = 9.8 was added to this solution, and the mixture was further stirred to obtain an aqueous raw material solution.
‐評価1:例B6で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図11Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti及びYの組成比(原子比)は表2に示されるとおりであった。
‐評価4:図11Bに例B6で得られたXRDプロファイルを示す。得られたXRDプロファイルにおいて、2θ=7.2°付近にピークが観察された。通常、LDHの(003)ピーク位置は、2θ=11~12°に観察されるため、上記ピークはLDHの(003)ピークが低角側にシフトしたものであると考えられる。このため、上記ピークはLDHとは呼べないもののそれに類する化合物(すなわちLDH様化合物)に由来するピークであることを示唆するものである。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。また、LDH様化合物における層状結晶構造の層間距離は1.2nmであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B6 was as shown in FIG. 11A.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti and Y on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
-Evaluation 4: Figure 11B shows the XRD profile obtained in Example B6. In the obtained XRD profile, a peak was observed near 2θ = 7.2 °. Normally, the (003) peak position of LDH is observed at 2θ = 11 to 12 °, so it is considered that the peak is the one in which the (003) peak of LDH is shifted to the low angle side. Therefore, it is suggested that the peak is derived from a compound similar to LDH (that is, LDH-like compound) although it cannot be called LDH. The two peaks observed at 20 <2θ ° <25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate. The interlayer distance of the layered crystal structure in the LDH-like compound was 1.2 nm.
-Evaluation 5: As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 2, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
 例B7(参考)
 上記(3)の原料水溶液の作製を以下のように行ったこと以外は例B6と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example B7 (reference)
The LDH-like compound separator was prepared and evaluated in the same manner as in Example B6 except that the raw material aqueous solution of (3) was prepared as follows.
(原料水溶液の作製)
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)、硝酸イットリウムn水和物(Y(NO・nHO、富士フイルム和光純薬株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.0075mol/Lとなるように秤量してビーカーに入れた。さらに、硝酸イットリウムn水和物を0.0075mol/Lとなるように秤量して上記ビーカーに入れ、そこにイオン交換水を加えて全量を75mlとし、得られた溶液を攪拌した。この溶液中に尿素/NO (モル比)=25.6の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
(Preparation of raw material aqueous solution)
As raw materials, magnesium nitrate hexahydrate (Mg (NO 3 ) 2.6H 2 O , manufactured by Kanto Chemical Co., Ltd.), yttrium nitrate n hydrate (Y (NO 3 ) 3. nH 2 O, Fujifilm Wako Jun Yaku Co., Ltd.) and urea ((NH 2 ) 2CO , manufactured by Sigma Aldrich) were prepared. Magnesium nitrate hexahydrate was weighed to 0.0075 mol / L and placed in a beaker. Further, yttrium nitrate n hydrate was weighed to 0.0075 mol / L and placed in the beaker, ion-exchanged water was added thereto to make the total volume 75 ml, and the obtained solution was stirred. Urea weighed at a ratio of urea / NO 3- ( molar ratio) = 25.6 was added to this solution, and the mixture was further stirred to obtain an aqueous raw material solution.
‐評価1:例B7で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図12に示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti及びYが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti及びYの組成比(原子比)は表2に示されるとおりであった。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表2に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example B7 was as shown in FIG.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti and Y, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti and Y on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 2.
-Evaluation 5: As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 2, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 2, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
 例B8(比較)
 上記(2)の代わりにアルミナゾルコートを以下のように行ったこと以外は、例B1と同様にしてLDHセパレータの作製及び評価を行った。
Example B8 (comparison)
The LDH separator was prepared and evaluated in the same manner as in Example B1 except that the alumina sol coat was applied instead of the above (2) as follows.
(高分子多孔質基材へのアルミナゾルコート)
 無定形アルミナゾル(Al-ML15、多木化学株式会社製)を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、無定形アルミナゾル100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(Alumina sol coating on polymer porous substrate)
Amorphous alumina sol (Al-ML15, manufactured by TAKI CHEMICAL CO., LTD.) Was applied to the substrate prepared in (1) above by dip coating. The dip coating was carried out by immersing the substrate in 100 ml of amorphous alumina sol, pulling it up vertically, and drying it at room temperature for 3 hours.
‐評価1:例B8で得られたLDHセパレータ(ロールプレス前)の表面微構造のSEM画像は図13Aに示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDHセパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDHセパレータ表面において、LDH構成元素であるMg及びAlが検出された。また、EDS元素分析により算出された、LDHセパレータ表面のMg及びAlの組成比(原子比)は表2に示されるとおりであった。
‐評価4:図13Bに例B8で得られたXRDプロファイルを示す。得られたXRDプロファイルにおける2θ=11.5°付近のピークから、例B8で得られたLDHセパレータは、LDH(ハイドロタルサイト類化合物)であることが同定された。この同定は、JCPDSカードNO.35-0964に記載されるLDH(ハイドロタルサイト類化合物)の回折ピークを用いて行った。なお、XRDプロファイルの20<2θ°<25に観察される2本のピークは、多孔質基材を構成するポリエチレン由来のピークである。
‐評価5:表2に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表2に示されるとおり、高いイオン伝導率が確認された。
‐評価7:90℃もの高温で1週間にわたるアルカリ浸漬の結果、評価5で0.0cm/min・atmであったHe透過度が10cm/min・atmを超えてしまったことから、耐アルカリ性に劣ることが判明した。
‐評価8:表2に示されるとおり、300サイクル未満で亜鉛デンドライトに起因する短絡が生じたことから、デンドライト耐性に劣ることが判明した。
-Evaluation 1: The SEM image of the surface microstructure of the LDH separator (before roll press) obtained in Example B8 was as shown in FIG. 13A.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg and Al, which are LDH constituent elements, were detected on the surface of the LDH separator. The composition ratios (atomic ratios) of Mg and Al on the surface of the LDH separator calculated by EDS elemental analysis are as shown in Table 2.
-Evaluation 4: Figure 13B shows the XRD profile obtained in Example B8. From the peak near 2θ = 11.5 ° in the obtained XRD profile, it was identified that the LDH separator obtained in Example B8 is LDH (hydrotalcite compound). This identification is based on the JCPDS card No. This was performed using the diffraction peak of LDH (hydrotalcite compound) described in 35-0964. The two peaks observed at 20 <2θ ° <25 in the XRD profile are peaks derived from polyethylene constituting the porous substrate.
-Evaluation 5: As shown in Table 2, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 2, high ionic conductivity was confirmed.
-Evaluation 7: As a result of alkali immersion at a high temperature of 90 ° C for one week, the He permeability, which was 0.0 cm / min · atm in evaluation 5, exceeded 10 cm / min · atm, resulting in alkali resistance. It turned out to be inferior.
-Evaluation 8: As shown in Table 2, it was found that the dendrite resistance was inferior because the short circuit caused by zinc dendrite occurred in less than 300 cycles.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[例C1~C9]
 以下に示す例C1~C9はLDH様化合物セパレータに関する参考例である。なお、以下の例で作製されるLDH様化合物セパレータの評価方法は、評価3でMg:Al:Ti:Y:添加元素Mの組成比(原子比)を算出したこと以外は、例B1~B8と同様とした。
[Examples C1 to C9]
Examples C1 to C9 shown below are reference examples relating to LDH-like compound separators. The method for evaluating the LDH-like compound separator produced in the following example is, except that the composition ratio (atomic ratio) of Mg: Al: Ti: Y: additive element M was calculated in evaluation 3, Examples B1 to B8. It was the same as.
 例C1(参考)
(1)高分子多孔質基材の準備
 気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
Example C1 (reference)
(1) Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 μm and a thickness of 20 μm was prepared as the polymer porous substrate, and 2.0 cm × 2. It was cut out to a size of 0 cm.
(2)高分子多孔質基材へのチタニア・イットリア・アルミナゾルコート
 酸化チタンゾル溶液(M6、多木化学株式会社製)、イットリウムゾル、及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/(Y+Al)(モル比)=2、及びY/Al(モル比)=8となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(2) Titania-itria-alumina sol coat on polymer porous substrate Titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.), yttrium sol, and amorphous alumina solution (Al-ML15, manufactured by Taki Chemical Co., Ltd.) ) Was mixed so that Ti / (Y + Al) (molar ratio) = 2 and Y / Al (molar ratio) = 8. The mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
(3)原料水溶液(I)の作製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO (モル比)=48の割合で秤量した尿素を加え、更に攪拌して原料水溶液(I)を得た。
(3) Preparation of aqueous raw material solution (I) Magnesium nitrate hexahydrate (Mg (NO 3 ) 2.6H 2 O, manufactured by Kanto Chemical Co., Inc.) and urea ( (NH 2) 2 CO , manufactured by Sigma Aldrich) are used as raw materials. ) Was prepared. Magnesium nitrate hexahydrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. After stirring the obtained solution, urea weighed at a ratio of urea / NO 3- ( molar ratio) = 48 was added to the solution, and the mixture was further stirred to obtain a raw material aqueous solution (I).
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(I)とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で22時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDH様化合物を形成させた。
(4) Film formation by hydrothermal treatment A Teflon (registered trademark) closed container (autoclave container, content 100 ml, outer stainless steel jacket) was filled with the raw material aqueous solution (I) and the dip-coated base material. At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and installed vertically so that the solution was in contact with both sides of the base material. Then, the LDH-like compound was formed on the surface and the inside of the substrate by subjecting it to hydrothermal treatment at a hydrothermal temperature of 120 ° C. for 22 hours. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to form LDH-like compounds in the pores of the porous substrate.
(5)原料水溶液(II)の作製
 原料として、硫酸インジウムn水和物(In(SO・nHO、富士フイルム和光純薬株式会社製)を用意した。硫酸インジウムn水和物を0.0075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(5) Preparation of Raw Material Aqueous Solution (II) Indium sulfate n hydrate (In 2 (SO 4 ) 3.nH 2 O, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was prepared as a raw material. Indium sulfate n hydrate was weighed to 0.0075 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. The obtained solution was stirred to obtain a raw material aqueous solution (II).
(6)浸漬処理によるインジウム添加
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で1時間浸漬処理を施すことによりインジウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、インジウムが添加されたLDH様化合物セパレータを得た。
(6) Addition of indium by dipping treatment In a closed container (autoclave container, content 100 ml, outer stainless steel jacket) made of Teflon (registered trademark), both the raw material aqueous solution (II) and the LDH-like compound separator obtained in (4) above are placed together. Enclosed. At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and installed vertically so that the solution was in contact with both sides of the base material. Then, indium was added by immersing at 30 ° C. for 1 hour. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain an LDH-like compound separator to which indium was added.
(7)ロールプレスによる緻密化
 上記LDH様化合物セパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDH様化合物セパレータを得た。
(7) Densification by roll press The LDH-like compound separator is sandwiched between a pair of PET films (Toray Industries, Inc., Lumirror (registered trademark), thickness 40 μm), roll rotation speed 3 mm / s, roller heating temperature 70. Roll pressing was performed at ° C. at a roll gap of 70 μm to obtain a further densified LDH-like compound separator.
(8)評価結果
 得られたLDH様化合物セパレータに対して各種評価を行った。結果は以下のとおりであった。
(8) Evaluation Results Various evaluations were performed on the obtained LDH-like compound separator. The results were as follows.
‐評価1:例C1で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図14に示されるとおりであった。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びInが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のAl、Ti、Y及びInの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll pressing) obtained in Example C1 was as shown in FIG.
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Al, Ti, Y and In, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Al, Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例C2(参考)
 上記(6)の浸漬処理によるインジウム添加において、浸漬処理の時間を24時間に変更したこと以外は、例C1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example C2 (reference)
In the addition of indium by the dipping treatment of (6) above, LDH-like compound separators were prepared and evaluated in the same manner as in Example C1 except that the dipping treatment time was changed to 24 hours.
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びInが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のAl、Ti、Y及びInの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Al, Ti, Y and In, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Al, Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例C3(参考)
 上記(2)の代わりにチタニア・イットリアゾルコートを以下のように行ったこと以外は、例C1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example C3 (reference)
LDH-like compound separators were prepared and evaluated in the same manner as in Example C1 except that titania-itria sol coat was applied instead of (2) above.
(高分子多孔質基材へのチタニア・イットリアゾルコート)
 酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=2となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(Titania-itriasol coat on polymer porous substrate)
Titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) and yttrium sol were mixed so that Ti / Y (molar ratio) = 2. The obtained mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるTi、Y及びInが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のTi、Y及びInの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atm未満であり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Ti, Y and In, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is less than 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例C4(参考)
 上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるビスマス添加を以下のように行ったこと以外は、例C1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example C4 (reference)
Same as Example C1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and bismuth was added by dipping treatment instead of (6) as follows. LDH-like compound separators were prepared and evaluated.
(原料水溶液(II)の作製)
 原料として、硝酸ビスマス五水和物(Bi(NO・5HO)を用意した。硝酸ビスマス五水和物を0.00075mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(Preparation of raw material aqueous solution (II))
As a raw material, bismuth nitrate pentahydrate (Bi (NO 3 ) 3.5H 2 O) was prepared. Bismuth nitrate pentahydrate was weighed to 0.00075 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make a total volume of 75 ml. The obtained solution was stirred to obtain a raw material aqueous solution (II).
(浸漬処理によるビスマス添加)
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で1時間浸漬処理を施すことによりビスマス添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、ビスマスが添加されたLDH様化合物セパレータを得た。
(Addition of bismuth by immersion treatment)
The raw material aqueous solution (II) and the LDH-like compound separator obtained in (4) above were enclosed in a Teflon (registered trademark) closed container (autoclave container, content 100 ml, jacket made of stainless steel on the outside). At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and installed vertically so that the solution was in contact with both sides of the base material. Then, bismuth was added by subjecting it to a dipping treatment at 30 ° C. for 1 hour. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain an LDH-like compound separator to which bismuth was added.
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例C5(参考)
 上記浸漬処理によるビスマス添加において、浸漬処理の時間を12時間に変更したこと以外は、例C4と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example C5 (reference)
LDH-like compound separators were prepared and evaluated in the same manner as in Example C4, except that the time of the dipping treatment was changed to 12 hours in the addition of bismuth by the dipping treatment.
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例C6(参考)
 上記浸漬処理によるビスマス添加において、浸漬処理の時間を24時間に変更したこと以外は、例C4と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example C6 (reference)
In the addition of bismuth by the above dipping treatment, LDH-like compound separators were prepared and evaluated in the same manner as in Example C4, except that the dipping treatment time was changed to 24 hours.
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びBiが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びBiの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti, Y and Bi, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Bi on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例C7(参考)
 上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるカルシウム添加を以下のように行ったこと以外は、例C1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example C7 (reference)
Same as Example C1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and calcium was added by dipping treatment instead of (6) as follows. LDH-like compound separators were prepared and evaluated.
(原料水溶液(II)の作製)
 原料として、硝酸カルシウム四水和物(Ca(NO・4HO)を用意した。硝酸カルシウム四水和物を0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(Preparation of raw material aqueous solution (II))
As a raw material, calcium nitrate tetrahydrate (Ca (NO 3 ) 2.4H 2 O ) was prepared. Calcium nitrate tetrahydrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make a total volume of 75 ml. The obtained solution was stirred to obtain a raw material aqueous solution (II).
(浸漬処理によるカルシウム添加)
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりカルシウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、カルシウムが添加されたLDH様化合物セパレータを得た。
(Calcium addition by immersion treatment)
The raw material aqueous solution (II) and the LDH-like compound separator obtained in (4) above were enclosed in a Teflon (registered trademark) closed container (autoclave container, content 100 ml, jacket made of stainless steel on the outside). At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and installed vertically so that the solution was in contact with both sides of the base material. Then, calcium was added by subjecting it to a dipping treatment at 30 ° C. for 6 hours. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain an LDH-like compound separator to which calcium was added.
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びCaが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びCaの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti, Y and Ca, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Ca on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in evaluation 5, and excellent resistance to change in He permeability even after alkali immersion at a high temperature of 90 ° C for one week. Alkaline was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例C8(参考)
 上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるストロンチウム添加を以下のように行ったこと以外は、例C1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example C8 (reference)
Same as Example C1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and strontium was added by dipping treatment instead of (6) as follows. LDH-like compound separators were prepared and evaluated.
(原料水溶液(II)の作製)
 原料として、硝酸ストロンチウム(Sr(NO)を用意した。硝酸ストロンチウムを0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(Preparation of raw material aqueous solution (II))
Strontium nitrate (Sr (NO 3 ) 2 ) was prepared as a raw material. Strontium nitrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. The obtained solution was stirred to obtain a raw material aqueous solution (II).
(浸漬処理によるストロンチウム添加)
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりストロンチウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、ストロンチウムが添加されたLDH様化合物セパレータを得た。
(Addition of strontium by immersion treatment)
The raw material aqueous solution (II) and the LDH-like compound separator obtained in (4) above were enclosed in a Teflon (registered trademark) closed container (autoclave container, content 100 ml, jacket made of stainless steel on the outside). At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and installed vertically so that the solution was in contact with both sides of the base material. Then, strontium was added by subjecting it to a dipping treatment at 30 ° C. for 6 hours. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain an LDH-like compound separator to which strontium was added.
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるMg、Al、Ti、Y及びSrが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びSrの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti, Y and Sr, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and Sr on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例C9(参考)
 上記(5)の原料水溶液(II)の作製を以下のように行ったこと、及び上記(6)の代わりに浸漬処理によるバリウム添加を以下のように行ったこと以外は、例C1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example C9 (reference)
Same as Example C1 except that the raw material aqueous solution (II) of (5) was prepared as follows, and barium was added by dipping treatment instead of (6) as follows. LDH-like compound separators were prepared and evaluated.
(原料水溶液(II)の作製)
 原料として、硝酸バリウム(Ba(NO)を用意した。硝酸バリウムを0.015mol/Lとなるように秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液(II)を得た。
(Preparation of raw material aqueous solution (II))
Barium nitrate (Ba (NO 3 ) 2 ) was prepared as a raw material. Barium nitrate was weighed to 0.015 mol / L and placed in a beaker, and ion-exchanged water was added thereto to make the total volume 75 ml. The obtained solution was stirred to obtain a raw material aqueous solution (II).
(浸漬処理によるバリウム添加)
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液(II)と上記(4)で得たLDH様化合物セパレータを共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、30℃で6時間浸漬処理を施すことによりバリウム添加を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、バリウムが添加されたLDH様化合物セパレータを得た。
(Addition of barium by immersion treatment)
The raw material aqueous solution (II) and the LDH-like compound separator obtained in (4) above were enclosed in a Teflon (registered trademark) closed container (autoclave container, content 100 ml, jacket made of stainless steel on the outside). At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and installed vertically so that the solution was in contact with both sides of the base material. Then, barium was added by subjecting it to a dipping treatment at 30 ° C. for 6 hours. After a lapse of a predetermined time, the substrate was taken out of the closed container, washed with ion-exchanged water, and dried at 70 ° C. for 10 hours to obtain an LDH-like compound separator to which barium was added.
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータの多孔質基材以外の部分が層状結晶構造の化合物であることが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物の構成元素であるAl、Ti、Y及びBaが検出された。また、EDS元素分析により算出された、LDH様化合物セパレータ表面のAl、Ti、Y及びBaの組成比(原子比)は表3に示されるとおりであった。
‐評価5:表3に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表3に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度の変化が無いという優れた耐アルカリ性が確認された。
‐評価8:表3に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 2: From the result that layered plaids could be confirmed, it was confirmed that the portion of the LDH-like compound separator other than the porous substrate was a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Al, Ti, Y and Ba, which are constituent elements of the LDH-like compound, were detected on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Al, Ti, Y and Ba on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 3.
-Evaluation 5: As shown in Table 3, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 3, high ionic conductivity was confirmed.
-Evaluation 7: The He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and the He permeability does not change even after alkaline immersion at a high temperature of 90 ° C for one week, which is an excellent resistance. Alkaline was confirmed.
-Evaluation 8: As shown in Table 3, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[例D1及びD2]
 以下に示す例D1及びD2はLDH様化合物セパレータに関する参考例である。なお、以下の例で作製されるLDH様化合物セパレータの評価方法は、評価3でMg:Al:Ti:Y:Inの組成比(原子比)を算出したこと以外は、例B1~B8と同様とした。
[Examples D1 and D2]
Examples D1 and D2 shown below are reference examples regarding LDH-like compound separators. The method for evaluating the LDH-like compound separator produced in the following example is the same as in Examples B1 to B8 except that the composition ratio (atomic ratio) of Mg: Al: Ti: Y: In was calculated in evaluation 3. And said.
 例D1(参考)
(1)高分子多孔質基材の準備
 気孔率50%、平均気孔径0.1μm及び厚さ20μmの市販のポリエチレン微多孔膜を高分子多孔質基材として用意し、2.0cm×2.0cmの大きさになるように切り出した。
Example D1 (reference)
(1) Preparation of Polymer Porous Substrate A commercially available polyethylene microporous membrane having a porosity of 50%, an average pore diameter of 0.1 μm and a thickness of 20 μm was prepared as the polymer porous substrate, and 2.0 cm × 2. It was cut out to a size of 0 cm.
(2)高分子多孔質基材へのチタニア・イットリア・アルミナゾルコート
 酸化チタンゾル溶液(M6、多木化学株式会社製)、イットリウムゾル、及び無定形アルミナ溶液(Al-ML15、多木化学株式会社製)をTi/(Y+Al)(モル比)=2、及びY/Al(モル比)=8となるように混合した。混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(2) Titania-itria-alumina sol coat on polymer porous substrate Titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.), yttrium sol, and amorphous alumina solution (Al-ML15, manufactured by Taki Chemical Co., Ltd.) ) Was mixed so that Ti / (Y + Al) (molar ratio) = 2 and Y / Al (molar ratio) = 8. The mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
(3)原料水溶液の作製
 原料として、硝酸マグネシウム六水和物(Mg(NO・6HO、関東化学株式会社製)、硫酸インジウムn水和物(In(SO・nHO、富士フイルム和光純薬株式会社製)及び尿素((NHCO、シグマアルドリッチ製)を用意した。硝酸マグネシウム六水和物及び硫酸インジウムn水和物をそれぞれ0.0075mol/L、尿素を1.44mol/Lとなるように秤量してビーカーへ入れた後に、イオン交換水を加えて全量を75mlとした。得られた溶液を攪拌して原料水溶液を得た。
(3) Preparation of aqueous raw material As raw materials, magnesium nitrate hexahydrate (Mg (NO 3 ) 2.6H 2 O , manufactured by Kanto Chemical Co., Ltd.), indium sulfate n hydrate (In 2 (SO 4 ) 3 . nH 2 O, manufactured by Fujifilm Wako Junyaku Co., Ltd.) and urea ((NH 2 ) 2 CO, manufactured by Sigma Aldrich) were prepared. Weigh magnesium nitrate hexahydrate and indium sulfate n hydrate to 0.0075 mol / L and urea to 1.44 mol / L, put them in a beaker, and then add ion-exchanged water to make the total volume 75 ml. And said. The obtained solution was stirred to obtain a raw material aqueous solution.
(4)水熱処理による成膜
 テフロン(登録商標)製密閉容器(オートクレーブ容器、内容量100ml、外側がステンレス製ジャケット)に原料水溶液とディップコートされた基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように垂直に設置した。その後、水熱温度120℃で22時間水熱処理を施すことにより基材表面と内部にLDH様化合物の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、多孔質基材の孔内にLDH様化合物及びIn(OH)含有機能層を形成させた。こうして、LDH様化合物セパレータを得た。
(4) Film formation by hydrothermal treatment A raw material aqueous solution and a dip-coated base material were enclosed together in a closed container (autoclave container, content 100 ml, outer stainless steel jacket) made of Teflon (registered trademark). At this time, the base material was floated and fixed from the bottom of a closed container made of Teflon (registered trademark), and installed vertically so that the solution was in contact with both sides of the base material. Then, the LDH-like compound was formed on the surface and the inside of the substrate by subjecting it to hydrothermal treatment at a hydrothermal temperature of 120 ° C. for 22 hours. After a lapse of a predetermined time, the substrate is taken out of the closed container, washed with ion-exchanged water, dried at 70 ° C. for 10 hours, and the LDH-like compound and In (OH) 3 containing functional layer are contained in the pores of the porous substrate. Was formed. Thus, an LDH-like compound separator was obtained.
(5)ロールプレスによる緻密化
 上記LDH様化合物セパレータを、1対のPETフィルム(東レ株式会社製、ルミラー(登録商標)、厚さ40μm)で挟み、ロール回転速度3mm/s、ローラ加熱温度70℃、ロールギャップ70μmにてロールプレスを行い、さらに緻密化されたLDH様化合物セパレータを得た。
(5) Densification by roll press The LDH-like compound separator is sandwiched between a pair of PET films (Toray Industries, Inc., Lumirror (registered trademark), thickness 40 μm), roll rotation speed 3 mm / s, roller heating temperature 70. Roll pressing was performed at ° C. at a roll gap of 70 μm to obtain a further densified LDH-like compound separator.
(6)評価結果
 得られたLDH様化合物セパレータに対して評価1~8を行った。結果は以下のとおりであった。
(6) Evaluation Results Evaluations 1 to 8 were performed on the obtained LDH-like compound separator. The results were as follows.
‐評価1:例D1で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図16に示されるとおりであった。図16に示されるように、LDH様化合物セパレータ表面には、キューブ状の結晶が存在することが確認された。後述するEDS元素分析及びX線回折測定の結果から、このキューブ状の結晶はIn(OH)であると推定される。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータが層状結晶構造の化合物を含むことが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物ないしIn(OH)の構成元素であるMg、Al、Ti、Y及びInが検出された。また、LDH様化合物セパレータ表面に存在するキューブ状の結晶中において、In(OH)の構成元素であるInが検出された。なお、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Al、Ti、Y及びInの組成比(原子比)は表4に示されるとおりであった。
‐評価4:得られたXRDプロファイルのピークから、In(OH)がLDH様化合物セパレータ中に存在することが同定された。この同定は、JCPDSカードNo.01-085-1338に記載されるIn(OH)の回折ピークを用いて行った。
‐評価5:表4に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表4に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表4に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll press) obtained in Example D1 was as shown in FIG. As shown in FIG. 16, it was confirmed that cube-shaped crystals were present on the surface of the LDH-like compound separator. From the results of EDS elemental analysis and X-ray diffraction measurement described later, it is presumed that this cube-shaped crystal is In (OH) 3 .
-Evaluation 2: From the result that layered plaids can be confirmed, it was confirmed that the LDH-like compound separator contains a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Al, Ti, Y and In, which are constituent elements of the LDH-like compound or In (OH) 3 , were detected on the surface of the LDH-like compound separator. In addition, In, which is a constituent element of In (OH) 3 , was detected in the cube-shaped crystals existing on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Al, Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 4.
-Evaluation 4: From the peak of the obtained XRD profile, it was identified that In (OH) 3 was present in the LDH-like compound separator. This identification is based on JCPDS Card No. This was done using the diffraction peak of In (OH) 3 described in 01-085-1338.
-Evaluation 5: As shown in Table 4, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 4, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
-Evaluation 8: As shown in Table 4, excellent dendrite resistance was confirmed, with no short circuit due to zinc dendrite even after 300 cycles.
 例D2(参考)
 上記(2)の代わりにチタニア・イットリアゾルコートを以下のように行ったこと以外は、例D1と同様にしてLDH様化合物セパレータの作製及び評価を行った。
Example D2 (reference)
LDH-like compound separators were prepared and evaluated in the same manner as in Example D1 except that titania-itria sol coat was applied instead of (2) above.
(高分子多孔質基材へのチタニア・イットリアゾルコート)
 酸化チタンゾル溶液(M6、多木化学株式会社製)及びイットリウムゾルをTi/Y(モル比)=2となるように混合した。得られた混合溶液を、上記(1)で用意された基材にディップコートにより塗布した。ディップコートは、混合溶液100mlに基材を浸漬させてから垂直に引き上げ、室温で3時間乾燥させることにより行った。
(Titania-itriasol coat on polymer porous substrate)
Titanium oxide sol solution (M6, manufactured by Taki Chemical Co., Ltd.) and yttrium sol were mixed so that Ti / Y (molar ratio) = 2. The obtained mixed solution was applied to the substrate prepared in (1) above by dip coating. Dip coating was performed by immersing the substrate in 100 ml of the mixed solution, pulling it up vertically, and drying it at room temperature for 3 hours.
‐評価1:例D2で得られたLDH様化合物セパレータ(ロールプレス前)の表面微構造のSEM画像は図17に示されるとおりであった。図17に示されるように、LDH様化合物セパレータ表面には、キューブ状の結晶が存在することが確認された。後述するEDS元素分析及びX線回折測定の結果から、このキューブ状の結晶はIn(OH)であると推定される。
‐評価2:層状の格子縞が確認できるという結果からLDH様化合物セパレータが層状結晶構造の化合物を含むことが確認された。
‐評価3:EDS元素分析の結果、LDH様化合物セパレータ表面において、LDH様化合物ないしIn(OH)の構成元素であるMg、Ti、Y及びInが検出された。また、LDH様化合物セパレータ表面に存在するキューブ状の結晶中において、In(OH)の構成元素であるInが検出された。なお、EDS元素分析により算出された、LDH様化合物セパレータ表面のMg、Ti、Y及びInの組成比(原子比)は表4に示されるとおりであった。
‐評価4:得られたXRDプロファイルのピークから、In(OH)がLDH様化合物セパレータ中に存在することが同定された。この同定は、JCPDSカードNo.01-085-1338に記載されるIn(OH)の回折ピークを用いて行った。
‐評価5:表4に示されるとおり、He透過度0.0cm/min・atmという極めて高い緻密性が確認された。
‐評価6:表4に示されるとおり、高いイオン伝導率が確認された。
‐評価7:アルカリ浸漬後におけるHe透過度は評価5と同様、0.0cm/min・atmであり、90℃もの高温で1週間にわたるアルカリ浸漬によってもHe透過度が変化しないという優れた耐アルカリ性が確認された。
‐評価8:表4に示されるとおり、300サイクル後でも亜鉛デンドライトに起因する短絡が無いという優れたデンドライト耐性が確認された。
-Evaluation 1: The SEM image of the surface microstructure of the LDH-like compound separator (before roll pressing) obtained in Example D2 was as shown in FIG. As shown in FIG. 17, it was confirmed that cube-shaped crystals were present on the surface of the LDH-like compound separator. From the results of EDS elemental analysis and X-ray diffraction measurement described later, it is estimated that this cube-shaped crystal is In (OH) 3 .
-Evaluation 2: From the result that layered plaids can be confirmed, it was confirmed that the LDH-like compound separator contains a compound having a layered crystal structure.
-Evaluation 3: As a result of EDS elemental analysis, Mg, Ti, Y and In, which are constituent elements of the LDH-like compound or In (OH) 3 , were detected on the surface of the LDH-like compound separator. In addition, In, which is a constituent element of In (OH) 3 , was detected in the cube-shaped crystals existing on the surface of the LDH-like compound separator. The composition ratios (atomic ratios) of Mg, Ti, Y and In on the surface of the LDH-like compound separator calculated by EDS elemental analysis are as shown in Table 4.
-Evaluation 4: From the peak of the obtained XRD profile, it was identified that In (OH) 3 was present in the LDH-like compound separator. This identification is based on JCPDS Card No. This was done using the diffraction peak of In (OH) 3 described in 01-085-1338.
-Evaluation 5: As shown in Table 4, it was confirmed that the He permeability was 0.0 cm / min · atm, which was extremely high density.
-Evaluation 6: As shown in Table 4, high ionic conductivity was confirmed.
-Evaluation 7: He permeability after alkali immersion is 0.0 cm / min · atm as in Evaluation 5, and excellent alkali resistance that the He permeability does not change even after alkali immersion at a high temperature of 90 ° C for one week. Was confirmed.
-Evaluation 8: As shown in Table 4, excellent dendrite resistance was confirmed, in which there was no short circuit due to zinc dendrite even after 300 cycles.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (11)

  1.  高分子材料製の多孔質基材と、前記多孔質基材の孔を塞ぐ層状複水酸化物(LDH)様化合物とを含む、LDH様化合物セパレータであって、
     前記LDH様化合物セパレータの厚さ方向の中央部の平均気孔率が前記LDH様化合物セパレータの表面近傍部の平均気孔率よりも小さい、LDH様化合物セパレータ。
    An LDH-like compound separator comprising a porous substrate made of a polymer material and a layered double hydroxide (LDH) -like compound that closes the pores of the porous substrate.
    An LDH-like compound separator in which the average porosity in the central portion in the thickness direction of the LDH-like compound separator is smaller than the average porosity in the vicinity of the surface of the LDH-like compound separator.
  2.  前記LDH様化合物が、
    (a)Mgと、Ti、Y及びAlからなる群から選択される少なくともTiを含む1以上の元素とを含む層状結晶構造の水酸化物及び/又は酸化物である、又は
    (b)(i)Ti、Y、及び所望によりAl及び/又はMgと、(ii)In、Bi、Ca、Sr及びBaからなる群から選択される少なくとも1種である添加元素Mとを含む、層状結晶構造の水酸化物及び/又は酸化物である、又は
    (c)Mg、Ti、Y、及び所望によりAl及び/又はInを含む層状結晶構造の水酸化物及び/又は酸化物であり、該(c)において前記LDH様化合物がIn(OH)との混合物の形態で存在する、請求項1に記載のLDH様化合物セパレータ。
    The LDH-like compound
    (A) A hydroxide and / or oxide having a layered crystal structure containing Mg and at least one element containing at least Ti selected from the group consisting of Ti, Y and Al, or (b) (i). ) Ti, Y, and optionally Al and / or Mg, and (ii) a layered crystal structure comprising at least one additive element M selected from the group consisting of In, Bi, Ca, Sr and Ba. Hydroxides and / or oxides, or (c) hydroxides and / or oxides of a layered crystalline structure containing Mg, Ti, Y, and optionally Al and / or In, said (c). The LDH-like compound separator according to claim 1, wherein the LDH-like compound exists in the form of a mixture with In (OH) 3 .
  3.  前記表面近傍部の平均気孔率が3%以上であり、かつ、前記中央部の平均気孔率が2%以下である、請求項1又は2に記載のLDH様化合物セパレータ。 The LDH-like compound separator according to claim 1 or 2, wherein the average porosity in the vicinity of the surface is 3% or more, and the average porosity in the central portion is 2% or less.
  4.  前記表面近傍部の平均気孔率が3~15%であり、かつ、前記中央部の平均気孔率が1%以下である、請求項1~3のいずれか一項に記載のLDH様化合物セパレータ。 The LDH-like compound separator according to any one of claims 1 to 3, wherein the average porosity in the vicinity of the surface is 3 to 15%, and the average porosity in the central portion is 1% or less.
  5.  前記LDH様化合物が前記多孔質基材の厚さ方向の全域にわたって組み込まれている、請求項1~4のいずれか一項に記載のLDH様化合物セパレータ。 The LDH-like compound separator according to any one of claims 1 to 4, wherein the LDH-like compound is incorporated over the entire area of the porous substrate in the thickness direction.
  6.  前記LDH様化合物セパレータの単位面積あたりのHe透過度が3.0cm/atm・min以下である、請求項1~5のいずれか一項に記載のLDH様化合物セパレータ。 The LDH-like compound separator according to any one of claims 1 to 5, wherein the He permeability per unit area of the LDH-like compound separator is 3.0 cm / atm · min or less.
  7.  前記LDH様化合物セパレータのイオン伝導率が2.0mS/cm以上である、請求項1~6のいずれか一項に記載のLDH様化合物セパレータ。 The LDH-like compound separator according to any one of claims 1 to 6, wherein the LDH-like compound separator has an ionic conductivity of 2.0 mS / cm or more.
  8.  前記高分子材料が、ポリスチレン、ポリエーテルサルフォン、ポリプロピレン、エポキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂、セルロース、ナイロン、及びポリエチレンからなる群から選択される、請求項1~7のいずれか一項に記載のLDH様化合物セパレータ。 The invention according to any one of claims 1 to 7, wherein the polymer material is selected from the group consisting of polystyrene, polyether sulfone, polypropylene, epoxy resin, polyphenylene sulfide, fluororesin, cellulose, nylon, and polyethylene. LDH-like compound separator.
  9.  前記多孔質基材及び前記LDH様化合物からなる、請求項1~8のいずれか一項に記載のLDH様化合物セパレータ。 The LDH-like compound separator according to any one of claims 1 to 8, which comprises the porous substrate and the LDH-like compound.
  10.  請求項1~9のいずれか一項に記載のLDH様化合物セパレータを備えた、亜鉛二次電池。 A zinc secondary battery provided with the LDH-like compound separator according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか一項に記載のLDH様化合物セパレータを備えた、固体アルカリ形燃料電池。 A solid alkaline fuel cell provided with the LDH-like compound separator according to any one of claims 1 to 9.
PCT/JP2021/031344 2020-11-30 2021-08-26 Ldh-like compound separator and zinc secondary battery WO2022113448A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021572068A JP7057866B1 (en) 2020-11-30 2021-08-26 LDH-like compound separator and zinc secondary battery
CN202180062519.0A CN116325247A (en) 2020-11-30 2021-08-26 LDH-like compound separator and zinc secondary battery
DE112021005103.2T DE112021005103T5 (en) 2020-11-30 2021-08-26 SEPARATOR WITH LDH-LIKE CONNECTION AND ZINC SECONDARY BATTERY
US18/180,276 US20230231154A1 (en) 2020-11-30 2023-03-08 Ldh-like compound separator and zinc secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-198983 2020-11-30
JP2020198983 2020-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/180,276 Continuation US20230231154A1 (en) 2020-11-30 2023-03-08 Ldh-like compound separator and zinc secondary battery

Publications (1)

Publication Number Publication Date
WO2022113448A1 true WO2022113448A1 (en) 2022-06-02

Family

ID=81754471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031344 WO2022113448A1 (en) 2020-11-30 2021-08-26 Ldh-like compound separator and zinc secondary battery

Country Status (1)

Country Link
WO (1) WO2022113448A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124214A1 (en) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldh separator and zinc secondary battery
WO2020255856A1 (en) * 2019-06-19 2020-12-24 日本碍子株式会社 Hydroxide ion conductive separator and zinc secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124214A1 (en) * 2017-12-18 2019-06-27 日本碍子株式会社 Ldh separator and zinc secondary battery
WO2020255856A1 (en) * 2019-06-19 2020-12-24 日本碍子株式会社 Hydroxide ion conductive separator and zinc secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GÁBOR VARGAA, MÁRTON SZABADOSA, ÁKOS KUKOVECZ, ZOLTÁN KÓNYA, TAMÁS VARGA, PÁL SIPOS, ISTVÁN PÁLINKÓ: "Layered double alkoxides a novel group of layered double hydroxides without water content.", MATERIALS RESEARCH LETTERS., vol. 8, no. 2, pages 68 - 74, XP055934985, ISSN: 2166-3831, DOI: 10.1080/21663831.2019.1700199 *

Similar Documents

Publication Publication Date Title
JP6889340B1 (en) Hydroxide ion conduction separator and zinc secondary battery
JP6949142B2 (en) LDH separator and zinc secondary battery
WO2019131688A1 (en) Ldh separator and zinc secondary battery
JP6905086B2 (en) LDH separator and zinc secondary battery
US11211672B2 (en) LDH separator and zinc secondary battery
WO2019124212A1 (en) Ldh separator and zinc secondary cell
US20230045074A1 (en) Ldh separator and zinc secondary battery
JP7057866B1 (en) LDH-like compound separator and zinc secondary battery
WO2022113448A1 (en) Ldh-like compound separator and zinc secondary battery
JP7057867B1 (en) LDH-like compound separator and zinc secondary battery
WO2022113446A1 (en) Ldh-like compound separator and zinc secondary battery
JP7048830B1 (en) LDH-like compound separator and zinc secondary battery
WO2022118503A1 (en) Ldh-like compound separator and zinc secondary battery
JP7048831B1 (en) LDH-like compound separator and zinc secondary battery
WO2022118504A1 (en) Ldh-like compound separator and zinc secondary battery
WO2021229917A1 (en) Ldh separator and zinc secondary battery
WO2022107568A1 (en) Ldh separator and zinc secondary battery
WO2022034803A1 (en) Ldh separator
JP6905085B2 (en) LDH separator and zinc secondary battery
WO2023058268A1 (en) Ldh separator, manufacturing method therefor, and rechargeable zinc battery
US11532855B2 (en) LDH separator and secondary zinc battery

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021572068

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897426

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21897426

Country of ref document: EP

Kind code of ref document: A1