WO2022113420A1 - Robot and program - Google Patents

Robot and program Download PDF

Info

Publication number
WO2022113420A1
WO2022113420A1 PCT/JP2021/026618 JP2021026618W WO2022113420A1 WO 2022113420 A1 WO2022113420 A1 WO 2022113420A1 JP 2021026618 W JP2021026618 W JP 2021026618W WO 2022113420 A1 WO2022113420 A1 WO 2022113420A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
functional module
setting information
functional
movable portion
Prior art date
Application number
PCT/JP2021/026618
Other languages
French (fr)
Japanese (ja)
Inventor
正康 二川
Original Assignee
株式会社不二越
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二越 filed Critical 株式会社不二越
Publication of WO2022113420A1 publication Critical patent/WO2022113420A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/04Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof

Definitions

  • the present invention relates to robots and programs.
  • Patent Document 1 discloses a technique capable of preventing an air pipe from interfering with an industrial robot or an external structure by not exposing the air pipe to the outside of the robot body.
  • the present invention has been made in view of such problems, and an object thereof is to provide a robot and a program that can use a new application.
  • the robot according to the first aspect of the present invention is a robot having a movable portion and a mounting portion on which the functional module can be attached and detached, and the robot is set according to the setting information of the robot.
  • the mounting portion can mount two or more of the functional modules in a stacked manner, and the recognition means recognizes the mounting order of each of the mounted functional modules, and the above-mentioned.
  • the changing means changes the setting information according to the recognized mounting order.
  • the setting information includes a mass point model in which the robot is modeled by a mass point, and the control means generates a current for operating the movable portion according to the mass point model. Control.
  • the setting information includes an interference region which is a movable region in which the movable portion interferes with the robot or the functional module, and the control means is described according to the interference region. Controls the movement of moving parts.
  • the program according to the fifth aspect of the present invention is a program for controlling a robot having a movable portion and a mounting portion on which a functional module can be attached and detached, and uses a computer as setting information of the robot.
  • the control means for controlling the operation of the movable portion, the recognition means for recognizing the type of the functional module attached to the mounting portion, and the change for changing the setting information according to the type of the recognized functional module. make it function as a means.
  • a new application can be used by a robot.
  • FIG. 2A is a diagram showing a state in which the first function module is mounted on the mounting portion.
  • FIG. 2B is a diagram showing a state in which the first function module and the second function module are mounted on the mounting portion.
  • FIG. 2A is a diagram showing a state in which the first function module is mounted on the mounting portion.
  • FIG. 2B is a diagram showing a state in which the first function module and the second function module are mounted on the mounting portion.
  • FIG. 2B is a block diagram which shows an example of the functional structure of the robot shown in FIG.
  • It is a flowchart which shows an example of the flow of the process performed by each functional means shown in FIG. 3 in the robot which concerns on this embodiment.
  • the present embodiment will be described with reference to the accompanying drawings.
  • the same components are designated by the same reference numerals as possible in the drawings, and duplicate description is omitted.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of the robot 1 according to the present embodiment.
  • the robot 1 includes a control device 20, a storage device 26, a mounting portion 28, and a movable portion 30.
  • the control device 20 mainly includes a CPU (Central Processing Unit) 22 and a memory 24.
  • a high-speed communication cable is mounted in the robot 1, and for example, the control device 20 communicates with each function module 29 described later using the high-speed communication cable (for example, serial communication).
  • the CPU 22 functions as various functional means by executing a predetermined program stored in the memory 24, the storage device 26, or the like. Details of this functional means will be described later.
  • the storage device 26 is composed of a storage storage or the like represented by a flash memory.
  • the storage device 26 stores various programs and various information necessary for executing the process in the control device 20, and information on the process result.
  • the mounting portion 28 is composed of a mounting bracket or the like to which one or more functional modules (I / O modules) 29 can be attached / detached (attached / detached).
  • the mounting portion 28 allows two or more functional modules 29 to be mounted in a stacked manner.
  • the functional module 29 is separated from the robot 1.
  • Examples of the functional module 29 include a camera, a scanner, a sensor, a light source, a memory, and the like.
  • Such a functional module 29 has an I / O (eg, cable or air piping) required for the corresponding application (specification).
  • the functional module 29 corresponding to a standard application has three air pipes (air solenoid valves).
  • the functional module 29 corresponding to the visual application has a LAN cable, a wiring for lighting, and two air pipes (air solenoid valves).
  • the functional module 29 corresponding to the cross laser visual application includes a LAN cable, a wiring for lighting, a wiring for a laser, and one air pipe (air solenoid valve).
  • the weight, shape (size), driver, and the like of the functional module 29 differ depending on the functional module ID (type of the functional module).
  • the functional module 29 transmits its own functional module ID to the control device 20 at regular intervals via the mounting portion 28 and the high-speed communication cable. For example, when the function modules 29 are mounted in a stacked manner on the mounting portion 28, each function module 29 transmits its own function module ID to the control device 20 in order from the function module 29 closest to the mounting portion 28. .. The functional module 29 may not transmit its own functional module ID to the control device 20 at regular intervals, but may transmit it in response to a request from the control device 20.
  • the movable portion 30 is a portion that can be moved by a motor or the like, and is composed of, for example, a robot arm, a robot hand, or the like.
  • the robot arm slides up and down or horizontally, and rotates along an axis of rotation, for example.
  • the robot hand is attached to the tip of the robot arm, for example, and grips an article or the like.
  • FIG. 2 is a diagram showing an example of a robot 1 in which a functional module 29 is attached to an attachment portion 28 according to the present embodiment.
  • FIG. 2A is a diagram showing a state in which the first function module 29A is attached to the attachment portion 28.
  • FIG. 2B is a diagram showing a state in which the first function module 29A and the second function module 29B are mounted on the mounting portion 28.
  • the mounting portion 28 is attached to a movable portion 30 (robot arm) which is on the upper side in the standard posture of the robot 1 when the robot 1 is set on the floor, for example.
  • the functional module 29 has a connecting portion (not shown) that can be attached to and detached from the mounting portion 28, and a connecting portion (not shown) that allows the other functional modules 29 to be attached and detached.
  • Two or more functional modules 29 can be attached in a stacked manner.
  • the functional module 29 that is determined to be attached to the uppermost portion (end) of the stack may have only one detachable connection portion to the attachment portion 28 or another functional module 29.
  • the user of the robot 1 can configure the robot 1 by combining a plurality of functional modules 29. Therefore, even if the application is changed, the user of the robot 1 can replace, add (add), or remove (reduce) the functional module 29 to change the robot 1 to a new one. It can be adapted to the application.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the robot 1 shown in FIG.
  • the robot 1 includes a storage means 40, a recognition means 42, a change means 44, and a control means 46 as functional configurations.
  • the storage means 40 is realized by one or more storage devices 26.
  • Functional means other than the storage means 40 are realized by the control device 20 executing a program stored in the storage device 26 or the like.
  • the storage means 40 has a function of storing robot information 40A, functional module information 40B, and the like.
  • the robot information 40A includes the setting information of the robot 1.
  • the setting information includes, for example, various parameters such as the mass point model (center of gravity position and weight) of the robot 1, the shape, the current information, and the interference region.
  • This mass point model is, for example, a model of the robot 1 with mass points (abstract body). This mass point is regarded as a point where the entire mass is gathered at the center of gravity of the robot 1 when controlling the movement (movement) of the movable portion 30 and the posture (position) of the robot 1.
  • the shape includes the size (width, depth, height) of the robot 1.
  • the current information includes the current (amount) for operating the movable portion 30 for each movable portion 30 of the robot 1.
  • the interference region includes a movable region (movement amount and rotation amount) that interferes with the robot 1 itself (including cables and pipes) or the functional module 29 for each movable portion 30 of the robot 1.
  • This interference region may be defined in relation to, for example, the movable region of another movable portion 30.
  • various parameters of the setting information are stored as initial values before the functional module 29 is attached, and the recognition means 42 recognizes the attachment (mounting) of the functional module 29 by the changing means 44. The initial value is changed (corrected).
  • the function module information 40B is stored for each function module 29 in association with the function module ID of the function module 29.
  • the functional module information 40B includes, for example, the weight, shape, and driver of the functional module 29.
  • the shape includes the size (width, depth, height) of the functional module 29. This shape is used, for example, to change the interference region of the robot information 40A.
  • the driver includes a program for operating the function (for example, I / O) of the function module 29.
  • the recognition means 42 is a functional means for recognizing the mounting (mounting) of the functional module.
  • the recognition means 42 recognizes the type of the functional module 29 attached to the attachment portion 28.
  • the recognition means 42 automatically recognizes the type of the functional module based on the functional module ID transmitted from the functional module 29.
  • the recognition means 42 recognizes the mounting order of two or more functional modules 29 mounted in a stacked manner on the mounting portion 28. For example, the recognition means 42 recognizes the mounting order of the functional modules based on the order of the functional module IDs transmitted from each of the functional modules 29 and the signal indicating that they are mounted at the top (end) of the stack. ..
  • the changing means 44 is a functional means for changing the setting information in the robot information 40A, particularly the setting information related to the operation of the robot 1.
  • the changing means 44 changes the setting information according to each type of the functional module 29 recognized by the recognizing means 42.
  • the changing means 44 refers to the functional module information 40B and acquires the weight and shape of each of the recognized functional modules 29.
  • the changing means 44 corrects the weight and shape of the robot 1 based on the weight and shape of each of the acquired functional modules 29, and based on this correction result, the mass point model of the setting information in the robot information 40A, the interference region, and the like. , Change various parameters of the setting information.
  • the changing means 44 sets the rotation angle (interference region) at which the robot hand, which is one of the movable portions 30, interferes with the attachment portion 28 as an initial value 240. More than a degree.
  • the changing means 44 sets the rotation angle at which the robot hand interferes with the functional module 29 based on the shape of the functional module 29. Change more than once.
  • the changing means 44 is based on the shape of each of the functional modules 29, and the robot is used. The rotation angle at which the hand interferes with the functional module 29 is changed to 225 degrees or more.
  • the changing means 44 changes the setting information in the robot information 40A according to the recognized mounting order.
  • the changing means 44 adds the weight, shape, etc. of the functional module 29 acquired from the functional module information 40B to the mass point model, shape, etc. of the setting information in the robot information 40A according to the mounting order of the functional modules, and the setting information. Change various parameters of.
  • the control means 46 controls the operation of the movable portion 30 in consideration of the fact that the position of the center of gravity and the shape (size) of the entire functional module differ depending on, for example, the mounting order of the two or more functional modules 29. (For example, the current can be changed or the interference region cannot be moved).
  • the control means 46 is a functional means for controlling the entire robot 1.
  • the control means 46 controls the operation of the movable portion 30 of the robot 1 according to the setting information in the robot information 40A. Further, the control means 46 controls each I / O of the functional module 29 attached to the attachment portion 28.
  • control means 46 controls the current for operating the movable portion 30 according to the mass point model included in the setting information in the robot information 40A. Specifically, the control means 46 increases the current as the mass point affecting the operation of the movable portion 30 in the mass point model increases, that is, as a large number of functional modules 29 are attached, and as the mass point becomes smaller. That is, the current is reduced so that the functional module 29 is not attached.
  • control means 46 controls the operation (movement, rotation, speed) of the movable portion 30 according to the interference region included in the setting information in the robot information 40A. Specifically, the control means 46 controls so that the movable portion 30 does not operate even in the interference region. In other words, the control means 46 controls the movable portion 30 so as not to collide with the robot 1 or the functional module 29. Further, for example, the control means 46 controls so that the operating speed is increased when the movable portion 30 is far from the interference region and the operating speed is decreased when the movable portion 30 is close to the interference region.
  • FIG. 4 is a flowchart showing an example of the flow of processing performed by each functional means shown in FIG. 3 in the robot 1 according to the present embodiment. Further, the processing of the following steps is started, for example, at the timing when the robot 1 is started. The order and contents of the following steps can be changed as appropriate.
  • Step SP10 The recognition means 42 recognizes each of the functional modules 29 attached to the attachment portion 28 in the order of attachment. Then, the process shifts to the process of step SP12.
  • Step SP12 The control means 46 loads the driver of each functional module 29 recognized in step SP10 with reference to the functional module information 40B, and makes the function of each functional module 29 operable (available). Further, the control means 46 may download an application corresponding to the functional module 29. The control means 46 may execute the screen display setting for each recognized functional module 29. Then, the process shifts to the process of step SP14.
  • the changing means 44 refers to the functional module information 40B and acquires the mass and shape of each of the recognized functional modules 29. Subsequently, the changing means 44 adds the mass and shape of each of the functional modules 29 to the mass and shape of the setting information in the robot information 40A according to the mounting order of the functional modules 29, and corrects (updates) the mass and shape. do. Subsequently, the changing means 44 changes various parameters of the setting information based on the corrected mass and shape. Specifically, the changing means 44 changes the mass model based on the corrected mass. Further, the changing means 44 changes the interference region based on the corrected shape. Then, the process shifts to the process of step SP16.
  • Step SP16 The control means 46 controls the operation of the movable portion 30 of the robot 1 according to the setting information in the robot information 40A.
  • the control means 46 controls the current for operating the movable portion 30 according to the mass point model included in the setting information in the robot information 40A, and the interference region corresponds to the interference region included in the setting information.
  • the movable portion 30 is controlled so as not to operate. Then, the process ends a series of processes shown in FIG.
  • the robot 1 has a movable portion 30 and a mounting portion 28 to which the functional module 29 can be attached and detached, and is a recognition means for recognizing the type of the functional module 29 mounted on the mounting portion 28. 42, a changing means 44 that changes the setting information of the robot 1 according to the type of the recognized functional module 29, and a control means 46 that controls the operation of the movable portion 30 according to the setting information.
  • the setting information of the robot 1 is changed according to the type of the functional module 29 attached to the robot 1, and the operation of the movable portion 30 is controlled according to the setting information. Therefore, even if the application of the robot 1 is changed, the user can use the application on the robot 1 by making the robot 1 newly recognize the corresponding function module 29. Further, since the setting information is changed, it is possible to suppress that the operation of the movable portion 30 is hindered.
  • two or more functional modules 29 can be attached to the attachment portion 28 in a stacked manner, and the recognition means 42 recognizes the attachment order of each of the attached functional modules 29 and changes the means 44. Changes the setting information according to the recognized mounting order.
  • the setting information includes a mass point model in which the robot 1 is modeled by mass points, and the control means 46 controls the current for operating the movable portion 30 according to the mass point model.
  • the setting information includes an interference region which is a movable region in which the movable portion 30 interferes with the robot 1 or the functional module 29, and the control means 46 operates the movable portion 30 according to the interference region. Control.
  • the attached functional module 29 suppresses the movable portion 30 from interfering with the robot 1 or the functional module 29. Can be done.
  • control device 20 may communicate with each functional module by wireless, infrared rays, or the like.
  • the control means 46 can control the operation of the movable portion 30 so as not to interfere with the cable or the pipe.
  • the recognition means 42 recognizes the type of the function module 29 based on the function module ID transmitted from the function module 29 has been described. Shapes, dimensions, drivers, etc. may be received. As a result, even when a new functional module 29 is distributed, the user can easily replace or add the functional module 29.
  • the mounting portion 28 is provided in the movable portion 30
  • the mounting portion 28 may be provided in a robot hand (not shown).
  • the recognition means 42 automatically recognizes the type of the function module based on the function module ID transmitted from the function module 29 has been described, but the recognition means 42 has the function module 29.
  • the setting screen may be displayed, the operation of the operator of the setting screen may be accepted, and the type of the functional module may be recognized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A robot 1 can make use of a new application. This robot 1 has a movable part 30 and a attachment part 28 to which a function module 29 can be detachably attached, and the robot is also provided with: a control means 46 which controls the operation of the movable part 30 in accordance with settings information of the robot 1; an identification means 42 which identifies the type of the functional module 29 being attached to the attachment part 28; and an alteration means 44 which alters the settings information in accordance with the identified type of the functional module 29.

Description

ロボット及びプログラムRobots and programs
 本発明は、ロボット及びプログラムに関する。 The present invention relates to robots and programs.
 従来から、アーム内部に各種ケーブルやエアー配管を内蔵するロボットが知られている。 Conventionally, robots with various cables and air pipes built inside the arm have been known.
 例えば、特許文献1には、エアー配管をロボット機体外部に露出させないことにより、エアー配管が産業用ロボットや外部構造物に干渉することを防止できる技術が開示されている。 For example, Patent Document 1 discloses a technique capable of preventing an air pipe from interfering with an industrial robot or an external structure by not exposing the air pipe to the outside of the robot body.
特開2011-218524号公報Japanese Unexamined Patent Publication No. 2011-218524
 このようなロボットにおいて、ロボットの利用者は、様々なアプリケーションにロボットを利用するため、それぞれのアプリケーションでロボットに必要となるケーブル数や配管(ソレノイドバルブ)数が異なる。このため、ロボットメーカーは、ケーブル数や配管数のバリエーションを予め用意しておき、利用者は、アプリケーションに応じて適切なバリエーションを選択(購入)する形式がとられている。しかしながら、利用者によるロボットの購入以降にアプリケーションが変更され、要求されるケーブル数や配管数が変化した場合、利用者は、新たなアプリケーションで当該ロボットを利用できなくなるという問題があった。言い換えれば、既存のロボットでは、新たなアプリケーションを利用できないという問題があった。 In such a robot, since the robot user uses the robot for various applications, the number of cables and the number of pipes (solenoid valves) required for the robot are different for each application. For this reason, the robot manufacturer prepares variations in the number of cables and pipes in advance, and the user selects (purchases) an appropriate variation according to the application. However, if the application is changed after the user purchases the robot and the required number of cables or pipes is changed, there is a problem that the user cannot use the robot in the new application. In other words, there was the problem that new applications could not be used with existing robots.
 本発明はこのような課題に鑑みてなされたものであり、その目的は、新たなアプリケーションを利用できるロボット及びプログラムを提供することにある。 The present invention has been made in view of such problems, and an object thereof is to provide a robot and a program that can use a new application.
 上記課題を解決するために、本発明の第一態様に係るロボットは、可動部と、機能モジュールを脱着可能である取付部と、を有するロボットであって、前記ロボットの設定情報に応じて、前記可動部の動作を制御する制御手段と、前記取付部に取り付けられた機能モジュールの種類を認識する認識手段と、前記認識された機能モジュールの種類に応じて、前記設定情報を変更する変更手段と、を備える。 In order to solve the above problems, the robot according to the first aspect of the present invention is a robot having a movable portion and a mounting portion on which the functional module can be attached and detached, and the robot is set according to the setting information of the robot. A control means for controlling the operation of the movable portion, a recognition means for recognizing the type of the functional module attached to the mounting portion, and a changing means for changing the setting information according to the recognized type of the functional module. And.
 また、本発明の第二態様では、前記取付部は、二以上の前記機能モジュールを積層状に取り付け可能であり、前記認識手段は、前記取り付けられた機能モジュールそれぞれの取付順を認識し、前記変更手段は、前記認識された取付順に応じて、前記設定情報を変更する。 Further, in the second aspect of the present invention, the mounting portion can mount two or more of the functional modules in a stacked manner, and the recognition means recognizes the mounting order of each of the mounted functional modules, and the above-mentioned. The changing means changes the setting information according to the recognized mounting order.
 また、本発明の第三態様では、前記設定情報は、前記ロボットを質点でモデル化した質点モデルを含み、前記制御手段は、前記質点モデルに応じて、前記可動部を動作させるための電流を制御する。 Further, in the third aspect of the present invention, the setting information includes a mass point model in which the robot is modeled by a mass point, and the control means generates a current for operating the movable portion according to the mass point model. Control.
 また、本発明の第四態様では、前記設定情報は、前記可動部が前記ロボット又は前記機能モジュールに干渉する可動領域である干渉領域を含み、前記制御手段は、前記干渉領域に応じて、前記可動部の動作を制御する。 Further, in the fourth aspect of the present invention, the setting information includes an interference region which is a movable region in which the movable portion interferes with the robot or the functional module, and the control means is described according to the interference region. Controls the movement of moving parts.
 また、本発明の第五態様に係るプログラムは、可動部と、機能モジュールを脱着可能である取付部と、を有するロボットを制御するためのプログラムであって、コンピュータを、前記ロボットの設定情報に応じて、前記可動部の動作を制御する制御手段、前記取付部に取り付けられた機能モジュールの種類を認識する認識手段、前記認識された機能モジュールの種類に応じて、前記設定情報を変更する変更手段、として機能させる。 Further, the program according to the fifth aspect of the present invention is a program for controlling a robot having a movable portion and a mounting portion on which a functional module can be attached and detached, and uses a computer as setting information of the robot. Correspondingly, the control means for controlling the operation of the movable portion, the recognition means for recognizing the type of the functional module attached to the mounting portion, and the change for changing the setting information according to the type of the recognized functional module. Make it function as a means.
 本発明によれば、新たなアプリケーションをロボットで利用できる。 According to the present invention, a new application can be used by a robot.
本実施形態に係るロボットの概略構成の一例を示すブロック図である。It is a block diagram which shows an example of the schematic structure of the robot which concerns on this embodiment. 本実施形態に係る取付部に機能モジュールが取り付けられたロボットの一例を示す図である。図2(A)は、取付部に第一機能モジュールが取り付けられた状態を示す図である。図2(B)は、取付部に第一機能モジュールと第二機能モジュールが取り付けられた状態を示す図である。It is a figure which shows an example of the robot which attached the functional module to the attachment part which concerns on this embodiment. FIG. 2A is a diagram showing a state in which the first function module is mounted on the mounting portion. FIG. 2B is a diagram showing a state in which the first function module and the second function module are mounted on the mounting portion. 図1に示すロボットの機能的構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of the robot shown in FIG. 本実施形態に係るロボットにおいて、図3に示す各機能手段が行う処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process performed by each functional means shown in FIG. 3 in the robot which concerns on this embodiment.
 以下、添付図面を参照しながら本発明の実施形態(以下、「本実施形態」という。)について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, an embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as possible in the drawings, and duplicate description is omitted.
<ハードウェア構成>
 図1は、本実施形態に係るロボット1の概略構成の一例を示すブロック図である。
<Hardware configuration>
FIG. 1 is a block diagram showing an example of a schematic configuration of the robot 1 according to the present embodiment.
 図1に示すように、ロボット1は、制御装置20と、記憶装置26と、取付部28と、可動部30と、を備える。制御装置20は、CPU(Central Processing Unit)22及びメモリ24を主に備えて構成される。なお、ロボット1内には、高速通信ケーブルが実装され、例えば、制御装置20は、後述する各機能モジュール29と当該高速通信ケーブルを使用して通信(例えばシリアル通信)する。 As shown in FIG. 1, the robot 1 includes a control device 20, a storage device 26, a mounting portion 28, and a movable portion 30. The control device 20 mainly includes a CPU (Central Processing Unit) 22 and a memory 24. A high-speed communication cable is mounted in the robot 1, and for example, the control device 20 communicates with each function module 29 described later using the high-speed communication cable (for example, serial communication).
 制御装置20では、CPU22がメモリ24或いは記憶装置26等に格納された所定のプログラムを実行することにより、各種の機能手段として機能する。この機能手段の詳細については後述する。 In the control device 20, the CPU 22 functions as various functional means by executing a predetermined program stored in the memory 24, the storage device 26, or the like. Details of this functional means will be described later.
 記憶装置26は、フラッシュメモリに代表される記憶ストレージ等で構成される。記憶装置26は、制御装置20における処理の実行に必要な各種プログラムや各種の情報、及び処理結果の情報を記憶する。 The storage device 26 is composed of a storage storage or the like represented by a flash memory. The storage device 26 stores various programs and various information necessary for executing the process in the control device 20, and information on the process result.
 取付部28は、一又は複数の機能モジュール(I/Oモジュール)29を脱着可能(取り付け及び取り外し可能)な取付ブラケット等により構成される。例えば、取付部28は、二以上の機能モジュール29を積層状に取り付け可能とする。 The mounting portion 28 is composed of a mounting bracket or the like to which one or more functional modules (I / O modules) 29 can be attached / detached (attached / detached). For example, the mounting portion 28 allows two or more functional modules 29 to be mounted in a stacked manner.
 機能モジュール29は、ロボット1と分離されている。機能モジュール29としては、カメラやスキャナ、センサ、光源、メモリ等が挙げられる。このような機能モジュール29は、対応するアプリケーション(仕様)に必要なI/O(例えば、ケーブルやエアー配管)を有する。例えば、標準アプリケーションに対応する機能モジュール29は、3つのエアー配管(エアーソレノイドバルブ)を有する。また、例えば、視覚アプリケーションに対応する機能モジュール29は、LANケーブルと、照明用配線と、2つのエアー配管(エアーソレノイドバルブ)と、を有する。また、例えば、クロスレーザ視覚アプリケーションに対応する機能モジュール29は、LANケーブルと、照明用配線と、レーザ用配線と、1つのエアー配管(エアーソレノイドバルブ)と、を有する。なお、機能モジュール29は、機能モジュールID(機能モジュールの種類)に応じて、重量、形状(大きさ)、ドライバ等が異なる。 The functional module 29 is separated from the robot 1. Examples of the functional module 29 include a camera, a scanner, a sensor, a light source, a memory, and the like. Such a functional module 29 has an I / O (eg, cable or air piping) required for the corresponding application (specification). For example, the functional module 29 corresponding to a standard application has three air pipes (air solenoid valves). Further, for example, the functional module 29 corresponding to the visual application has a LAN cable, a wiring for lighting, and two air pipes (air solenoid valves). Further, for example, the functional module 29 corresponding to the cross laser visual application includes a LAN cable, a wiring for lighting, a wiring for a laser, and one air pipe (air solenoid valve). The weight, shape (size), driver, and the like of the functional module 29 differ depending on the functional module ID (type of the functional module).
 また、機能モジュール29は、取付部28及び高速通信ケーブルを介して、一定周期で自らの機能モジュールIDを制御装置20に送信する。例えば、取付部28に機能モジュール29が積層状に取り付けられている場合、各機能モジュール29は、取付部28から最も近い機能モジュール29から順番に、自らの機能モジュールIDを制御装置20に送信する。なお、機能モジュール29は、一定周期で自らの機能モジュールIDを制御装置20に送信するのではなく、制御装置20からの要求に応じて送信してもよい。 Further, the functional module 29 transmits its own functional module ID to the control device 20 at regular intervals via the mounting portion 28 and the high-speed communication cable. For example, when the function modules 29 are mounted in a stacked manner on the mounting portion 28, each function module 29 transmits its own function module ID to the control device 20 in order from the function module 29 closest to the mounting portion 28. .. The functional module 29 may not transmit its own functional module ID to the control device 20 at regular intervals, but may transmit it in response to a request from the control device 20.
 可動部30は、モーター等によって可動する部位であって、例えば、ロボットアームやロボットハンド等により構成される。ロボットアームは、例えば、上下又は水平方向へのスライドや、回転軸に沿って回転する。ロボットハンドは、例えば、ロボットアームの先端に取り付けられており、物品の把持等を行う。 The movable portion 30 is a portion that can be moved by a motor or the like, and is composed of, for example, a robot arm, a robot hand, or the like. The robot arm slides up and down or horizontally, and rotates along an axis of rotation, for example. The robot hand is attached to the tip of the robot arm, for example, and grips an article or the like.
 図2は、本実施形態に係る取付部28に機能モジュール29が取り付けられたロボット1の一例を示す図である。ここで、図2(A)は、取付部28に第一機能モジュール29Aが取り付けられた状態を示す図である。また、図2(B)は、取付部28に第一機能モジュール29Aと第二機能モジュール29Bが取り付けられた状態を示す図である。 FIG. 2 is a diagram showing an example of a robot 1 in which a functional module 29 is attached to an attachment portion 28 according to the present embodiment. Here, FIG. 2A is a diagram showing a state in which the first function module 29A is attached to the attachment portion 28. Further, FIG. 2B is a diagram showing a state in which the first function module 29A and the second function module 29B are mounted on the mounting portion 28.
 図2(A)及び図2(B)に示すように、取付部28は、例えばロボット1を床に設定した場合に当該ロボット1の標準姿勢時において上側になる可動部30(ロボットアーム)に設けられる。ここで、機能モジュール29は、取付部28に脱着可能である接続部(図示しない)と、他の機能モジュール29を脱着可能である接続部(図示しない)とを有しており、取付部28に二以上の機能モジュール29を積層状に取り付けることができる。なお、積層の最上部(端部)に取り付けられることが確定している機能モジュール29は、取付部28又は他の機能モジュール29に脱着可能な接続部を1つだけ有することとしてもよい。
 これにより、ロボット1の利用者は、複数の機能モジュール29を組み合わせてロボット1を構成することが可能となる。このため、ロボット1の利用者は、アプリケーションが変更された場合であっても、機能モジュール29を交換、増設(追加)、除去(削減)することにより、当該ロボット1を当該変更された新たなアプリケーションに対応させることができる。
As shown in FIGS. 2A and 2B, the mounting portion 28 is attached to a movable portion 30 (robot arm) which is on the upper side in the standard posture of the robot 1 when the robot 1 is set on the floor, for example. It will be provided. Here, the functional module 29 has a connecting portion (not shown) that can be attached to and detached from the mounting portion 28, and a connecting portion (not shown) that allows the other functional modules 29 to be attached and detached. Two or more functional modules 29 can be attached in a stacked manner. The functional module 29 that is determined to be attached to the uppermost portion (end) of the stack may have only one detachable connection portion to the attachment portion 28 or another functional module 29.
As a result, the user of the robot 1 can configure the robot 1 by combining a plurality of functional modules 29. Therefore, even if the application is changed, the user of the robot 1 can replace, add (add), or remove (reduce) the functional module 29 to change the robot 1 to a new one. It can be adapted to the application.
<機能的構成>
 図3は、図1に示すロボット1の機能的構成の一例を示すブロック図である。
<Functional configuration>
FIG. 3 is a block diagram showing an example of the functional configuration of the robot 1 shown in FIG.
 図3に示すように、ロボット1は、機能的構成として、記憶手段40と、認識手段42と、変更手段44と、制御手段46と、を備える。記憶手段40は、一又は複数の記憶装置26で実現される。記憶手段40以外の機能手段は、記憶装置26等に格納されたプログラムを制御装置20が実行することにより実現される。 As shown in FIG. 3, the robot 1 includes a storage means 40, a recognition means 42, a change means 44, and a control means 46 as functional configurations. The storage means 40 is realized by one or more storage devices 26. Functional means other than the storage means 40 are realized by the control device 20 executing a program stored in the storage device 26 or the like.
 記憶手段40は、ロボット情報40Aや、機能モジュール情報40B等を記憶する機能を有する。 The storage means 40 has a function of storing robot information 40A, functional module information 40B, and the like.
 ロボット情報40Aは、ロボット1の設定情報を含む。設定情報は、例えば、ロボット1の質点モデル(重心位置や重量)、形状、電流情報、干渉領域等の各種パラメータを含む。この質点モデルは、例えば、ロボット1を質点(抽象体)でモデル化したものである。この質点は、可動部30の動作(運動)やロボット1の姿勢(位置)を制御する際、ロボット1の重心に全質量が集まった点としてみなされる。形状は、ロボット1の大きさ(幅、奥行き、高さ)を含む。電流情報は、ロボット1の可動部30毎に、当該可動部30を動作させるための電流(量)を含む。干渉領域は、ロボット1の可動部30毎に、ロボット1自身(ケーブルや配管を含む)又は機能モジュール29に干渉する可動領域(移動量や回転量)を含む。この干渉領域は、例えば、他の可動部30の可動領域と関連して定められていてもよい。
 また、例えば、設定情報の各種パラメータは、機能モジュール29が取り付けられる前の値が初期値として記憶され、認識手段42によって機能モジュール29の取り付け(実装)が認識されることにより、変更手段44によって当該初期値が変更(補正)される。
The robot information 40A includes the setting information of the robot 1. The setting information includes, for example, various parameters such as the mass point model (center of gravity position and weight) of the robot 1, the shape, the current information, and the interference region. This mass point model is, for example, a model of the robot 1 with mass points (abstract body). This mass point is regarded as a point where the entire mass is gathered at the center of gravity of the robot 1 when controlling the movement (movement) of the movable portion 30 and the posture (position) of the robot 1. The shape includes the size (width, depth, height) of the robot 1. The current information includes the current (amount) for operating the movable portion 30 for each movable portion 30 of the robot 1. The interference region includes a movable region (movement amount and rotation amount) that interferes with the robot 1 itself (including cables and pipes) or the functional module 29 for each movable portion 30 of the robot 1. This interference region may be defined in relation to, for example, the movable region of another movable portion 30.
Further, for example, various parameters of the setting information are stored as initial values before the functional module 29 is attached, and the recognition means 42 recognizes the attachment (mounting) of the functional module 29 by the changing means 44. The initial value is changed (corrected).
 機能モジュール情報40Bは、機能モジュール29毎に、当該機能モジュール29の機能モジュールIDと対応付けて記憶されている。機能モジュール情報40Bは、例えば、機能モジュール29の重量、形状、ドライバを含む。形状は、機能モジュール29の大きさ(幅、奥行き、高さ)を含む。この形状は、例えばロボット情報40Aの干渉領域を変更するために用いられる。ドライバは、機能モジュール29の機能(例えばI/O)を動作させるためのプログラムを含む。 The function module information 40B is stored for each function module 29 in association with the function module ID of the function module 29. The functional module information 40B includes, for example, the weight, shape, and driver of the functional module 29. The shape includes the size (width, depth, height) of the functional module 29. This shape is used, for example, to change the interference region of the robot information 40A. The driver includes a program for operating the function (for example, I / O) of the function module 29.
 認識手段42は、機能モジュールの取付(実装)を認識する機能手段である。本実施形態では、認識手段42は、取付部28に取り付けられた機能モジュール29の種類を認識する。例えば、認識手段42は、機能モジュール29から送信される機能モジュールIDに基づき、機能モジュールの種類を自動的に認識する。 The recognition means 42 is a functional means for recognizing the mounting (mounting) of the functional module. In the present embodiment, the recognition means 42 recognizes the type of the functional module 29 attached to the attachment portion 28. For example, the recognition means 42 automatically recognizes the type of the functional module based on the functional module ID transmitted from the functional module 29.
 また、認識手段42は、取付部28に積層状に取り付けられた二以上の機能モジュール29の取付順を認識する。例えば、認識手段42は、機能モジュール29それぞれから送信される機能モジュールIDの順番や、積層の最上部(端部)に取り付けられていることを示す信号に基づき、機能モジュールの取付順を認識する。 Further, the recognition means 42 recognizes the mounting order of two or more functional modules 29 mounted in a stacked manner on the mounting portion 28. For example, the recognition means 42 recognizes the mounting order of the functional modules based on the order of the functional module IDs transmitted from each of the functional modules 29 and the signal indicating that they are mounted at the top (end) of the stack. ..
 変更手段44は、ロボット情報40Aにおける設定情報、特にロボット1の動作に係る設定情報を変更する機能手段である。本実施形態では、変更手段44は、認識手段42によって認識された機能モジュール29それぞれの種類に応じて、当該設定情報を変更する。例えば、変更手段44は、機能モジュール情報40Bを参照して、認識された機能モジュール29それぞれの重量や形状を取得する。続いて、変更手段44は、取得した機能モジュール29それぞれの重量や形状に基づき、ロボット1の重量や形状を補正し、この補正結果に基づき、ロボット情報40Aにおける設定情報の質点モデルや干渉領域等、当該設定情報の各種パラメータを変更する。例えば、変更手段44は、取付部28に機能モジュール29が取り付けられていない場合、可動部30の1つであるロボットハンドが取付部28に干渉する回転角度(干渉領域)を初期値である240度以上とする。一方、変更手段44は、取付部28に標準アプリケーションに対応する機能モジュール29が取り付けられている場合、当該機能モジュール29の形状に基づき、当該ロボットハンドが当該機能モジュール29に干渉する回転角度を230度以上に変更する。同様に、変更手段44は、取付部28に標準アプリケーションに対応する機能モジュール29とクロスレーザ視覚アプリケーションに対応する機能モジュール29が取り付けられている場合、当該機能モジュール29それぞれの形状に基づき、当該ロボットハンドが当該機能モジュール29に干渉する回転角度を225度以上に変更する。 The changing means 44 is a functional means for changing the setting information in the robot information 40A, particularly the setting information related to the operation of the robot 1. In the present embodiment, the changing means 44 changes the setting information according to each type of the functional module 29 recognized by the recognizing means 42. For example, the changing means 44 refers to the functional module information 40B and acquires the weight and shape of each of the recognized functional modules 29. Subsequently, the changing means 44 corrects the weight and shape of the robot 1 based on the weight and shape of each of the acquired functional modules 29, and based on this correction result, the mass point model of the setting information in the robot information 40A, the interference region, and the like. , Change various parameters of the setting information. For example, when the function module 29 is not attached to the attachment portion 28, the changing means 44 sets the rotation angle (interference region) at which the robot hand, which is one of the movable portions 30, interferes with the attachment portion 28 as an initial value 240. More than a degree. On the other hand, when the functional module 29 corresponding to the standard application is attached to the attachment portion 28, the changing means 44 sets the rotation angle at which the robot hand interferes with the functional module 29 based on the shape of the functional module 29. Change more than once. Similarly, when the functional module 29 corresponding to the standard application and the functional module 29 corresponding to the cross laser visual application are attached to the mounting portion 28, the changing means 44 is based on the shape of each of the functional modules 29, and the robot is used. The rotation angle at which the hand interferes with the functional module 29 is changed to 225 degrees or more.
 また、変更手段44は、認識された取付順に応じて、ロボット情報40Aにおける設定情報を変更する。例えば、変更手段44は、ロボット情報40Aにおける設定情報の質点モデルや形状等に、機能モジュール情報40Bから取得した機能モジュール29の重量や形状等を機能モジュールの取付順に応じて追加し、当該設定情報の各種パラメータを変更する。これにより、制御手段46は、例えば、二以上の機能モジュール29の取付順によって、機能モジュール全体の重心位置や形状(大きさ)等が異なることを加味して、可動部30の動作を制御する(例えば、電流の変更や、干渉領域まで可動させない)ことが可能となる。 Further, the changing means 44 changes the setting information in the robot information 40A according to the recognized mounting order. For example, the changing means 44 adds the weight, shape, etc. of the functional module 29 acquired from the functional module information 40B to the mass point model, shape, etc. of the setting information in the robot information 40A according to the mounting order of the functional modules, and the setting information. Change various parameters of. As a result, the control means 46 controls the operation of the movable portion 30 in consideration of the fact that the position of the center of gravity and the shape (size) of the entire functional module differ depending on, for example, the mounting order of the two or more functional modules 29. (For example, the current can be changed or the interference region cannot be moved).
 制御手段46は、ロボット1全体を制御する機能手段である。本実施形態では、制御手段46は、ロボット情報40Aにおける設定情報に応じて、ロボット1が有する可動部30の動作を制御する。また、制御手段46は、取付部28に取り付けられた機能モジュール29が有する各I/Oを制御する。 The control means 46 is a functional means for controlling the entire robot 1. In the present embodiment, the control means 46 controls the operation of the movable portion 30 of the robot 1 according to the setting information in the robot information 40A. Further, the control means 46 controls each I / O of the functional module 29 attached to the attachment portion 28.
 また、例えば、制御手段46は、ロボット情報40Aにおける設定情報に含まれる質点モデルに応じて、可動部30を動作させるための電流を制御する。具体的には、制御手段46は、当該質点モデルにおいて可動部30の動作に影響する質点が大きいほど、すなわち多数の機能モジュール29が取り付けられているほど当該電流を大きくし、当該質点が小さいほど、すなわち機能モジュール29が取り付けられていないほど当該電流を小さくする。 Further, for example, the control means 46 controls the current for operating the movable portion 30 according to the mass point model included in the setting information in the robot information 40A. Specifically, the control means 46 increases the current as the mass point affecting the operation of the movable portion 30 in the mass point model increases, that is, as a large number of functional modules 29 are attached, and as the mass point becomes smaller. That is, the current is reduced so that the functional module 29 is not attached.
 また、例えば、制御手段46は、ロボット情報40Aにおける設定情報に含まれる干渉領域に応じて、可動部30の動作(移動や回転、速度)を制御する。具体的には、制御手段46は、当該干渉領域にまで可動部30が動作しないように制御する。言い換えれば、制御手段46は、可動部30がロボット1又は機能モジュール29と衝突しないように制御する。また、例えば、制御手段46は、可動部30が干渉領域から遠い場合には動作速度を高くし、干渉領域から近い場合には動作速度を低くするように制御する。 Further, for example, the control means 46 controls the operation (movement, rotation, speed) of the movable portion 30 according to the interference region included in the setting information in the robot information 40A. Specifically, the control means 46 controls so that the movable portion 30 does not operate even in the interference region. In other words, the control means 46 controls the movable portion 30 so as not to collide with the robot 1 or the functional module 29. Further, for example, the control means 46 controls so that the operating speed is increased when the movable portion 30 is far from the interference region and the operating speed is decreased when the movable portion 30 is close to the interference region.
<処理の流れ>
 図4は、本実施形態に係るロボット1において、図3に示す各機能手段が行う処理の流れの一例を示すフローチャートである。また、以下のステップの処理は、例えば、ロボット1が起動したタイミングで開始される。なお、以下のステップの順番及び内容は、適宜、変更することができる。
<Processing flow>
FIG. 4 is a flowchart showing an example of the flow of processing performed by each functional means shown in FIG. 3 in the robot 1 according to the present embodiment. Further, the processing of the following steps is started, for example, at the timing when the robot 1 is started. The order and contents of the following steps can be changed as appropriate.
(ステップSP10)
 認識手段42は、取付部28に取り付けられた機能モジュール29それぞれを取付順に認識する。そして、処理は、ステップSP12の処理に移行する。
(Step SP10)
The recognition means 42 recognizes each of the functional modules 29 attached to the attachment portion 28 in the order of attachment. Then, the process shifts to the process of step SP12.
(ステップSP12)
 制御手段46は、機能モジュール情報40Bを参照して、ステップSP10において認識された各機能モジュール29のドライバをロードし、当該機能モジュール29それぞれの機能を動作可能(利用可能)にする。また、制御手段46は、機能モジュール29に対応したアプリケーションをダウンロードしてもよい。なお、制御手段46は、当該認識された各機能モジュール29に関する画面表示設定を実行することとしてもよい。そして、処理は、ステップSP14の処理に移行する。
(Step SP12)
The control means 46 loads the driver of each functional module 29 recognized in step SP10 with reference to the functional module information 40B, and makes the function of each functional module 29 operable (available). Further, the control means 46 may download an application corresponding to the functional module 29. The control means 46 may execute the screen display setting for each recognized functional module 29. Then, the process shifts to the process of step SP14.
(ステップSP14)
 変更手段44は、機能モジュール情報40Bを参照して、認識された機能モジュール29それぞれの質量や形状を取得する。続いて、変更手段44は、機能モジュール29の取付順に応じて、ロボット情報40Aにおける設定情報の質量や形状に、機能モジュール29それぞれの質量や形状を追加して、質量や形状を補正(更新)する。続いて、変更手段44は、補正した質量や形状に基づき、当該設定情報の各種パラメータを変更する。具体的には、変更手段44は、補正した質量に基づき、質点モデルを変更する。また、変更手段44は、補正した形状に基づき、干渉領域を変更する。そして、処理は、ステップSP16の処理に移行する。
(Step SP14)
The changing means 44 refers to the functional module information 40B and acquires the mass and shape of each of the recognized functional modules 29. Subsequently, the changing means 44 adds the mass and shape of each of the functional modules 29 to the mass and shape of the setting information in the robot information 40A according to the mounting order of the functional modules 29, and corrects (updates) the mass and shape. do. Subsequently, the changing means 44 changes various parameters of the setting information based on the corrected mass and shape. Specifically, the changing means 44 changes the mass model based on the corrected mass. Further, the changing means 44 changes the interference region based on the corrected shape. Then, the process shifts to the process of step SP16.
(ステップSP16)
 制御手段46は、ロボット情報40Aにおける設定情報に応じて、ロボット1が有する可動部30の動作を制御する。例えば、制御手段46は、ロボット情報40Aにおける設定情報に含まれる質点モデルに応じて、可動部30を動作させるための電流を制御したり、設定情報に含まれる干渉領域に応じて、当該干渉領域にまで可動部30が動作しないように制御したりする。そして、処理は、図4に示す一連の処理を終了する。
(Step SP16)
The control means 46 controls the operation of the movable portion 30 of the robot 1 according to the setting information in the robot information 40A. For example, the control means 46 controls the current for operating the movable portion 30 according to the mass point model included in the setting information in the robot information 40A, and the interference region corresponds to the interference region included in the setting information. The movable portion 30 is controlled so as not to operate. Then, the process ends a series of processes shown in FIG.
<効果>
 以上、本実施形態では、可動部30と、機能モジュール29を脱着可能である取付部28と、を有するロボット1であって、取付部28に取り付けられた機能モジュール29の種類を認識する認識手段42と、認識された機能モジュール29の種類に応じて、ロボット1の設定情報を変更する変更手段44と、設定情報に応じて、可動部30の動作を制御する制御手段46と、を備える。
<Effect>
As described above, in the present embodiment, the robot 1 has a movable portion 30 and a mounting portion 28 to which the functional module 29 can be attached and detached, and is a recognition means for recognizing the type of the functional module 29 mounted on the mounting portion 28. 42, a changing means 44 that changes the setting information of the robot 1 according to the type of the recognized functional module 29, and a control means 46 that controls the operation of the movable portion 30 according to the setting information.
 この構成によれば、ロボット1に取り付けられた機能モジュール29の種類に応じてロボット1の設定情報を変更させ、当該設定情報に応じて可動部30の動作を制御する。このため、利用者は、ロボット1のアプリケーションが変更された場合でも、対応する機能モジュール29をロボット1に新たに認識させることで、当該アプリケーションをロボット1で利用できるようになる。また、設定情報が変更されるので、可動部30の動作に支障が出ることを抑制することができる。 According to this configuration, the setting information of the robot 1 is changed according to the type of the functional module 29 attached to the robot 1, and the operation of the movable portion 30 is controlled according to the setting information. Therefore, even if the application of the robot 1 is changed, the user can use the application on the robot 1 by making the robot 1 newly recognize the corresponding function module 29. Further, since the setting information is changed, it is possible to suppress that the operation of the movable portion 30 is hindered.
 また、本実施形態では、取付部28には、二以上の機能モジュール29を積層状に取り付け可能であり、認識手段42は、取り付けられた機能モジュール29それぞれの取付順を認識し、変更手段44は、認識された取付順に応じて、設定情報を変更する。 Further, in the present embodiment, two or more functional modules 29 can be attached to the attachment portion 28 in a stacked manner, and the recognition means 42 recognizes the attachment order of each of the attached functional modules 29 and changes the means 44. Changes the setting information according to the recognized mounting order.
 この構成によれば、機能モジュール29の取付順に応じて設定情報を変更するため、当該取付順によって可動部30の動作に支障が出ることを抑制することができる。 According to this configuration, since the setting information is changed according to the mounting order of the functional modules 29, it is possible to suppress that the operation of the movable portion 30 is hindered by the mounting order.
 また、本実施形態では、設定情報は、ロボット1を質点でモデル化した質点モデルを含み、制御手段46は、質点モデルに応じて、可動部30を動作させるための電流を制御する。 Further, in the present embodiment, the setting information includes a mass point model in which the robot 1 is modeled by mass points, and the control means 46 controls the current for operating the movable portion 30 according to the mass point model.
 この構成によれば、変更された質点モデルに応じて可動部30を動作させるための電流を制御するため、取り付けられた機能モジュール29によって、可動部30の動作に支障が出ることを抑制することができる。 According to this configuration, in order to control the current for operating the movable portion 30 according to the changed mass point model, it is possible to prevent the movable portion 30 from being hindered by the attached functional module 29. Can be done.
 また、本実施形態では、設定情報は、可動部30がロボット1又は機能モジュール29に干渉する可動領域である干渉領域を含み、制御手段46は、干渉領域に応じて、可動部30の動作を制御する。 Further, in the present embodiment, the setting information includes an interference region which is a movable region in which the movable portion 30 interferes with the robot 1 or the functional module 29, and the control means 46 operates the movable portion 30 according to the interference region. Control.
 この構成によれば、変更された干渉領域に応じて可動部30の動作を制御するため、取り付けられた機能モジュール29によって、可動部30がロボット1や機能モジュール29に干渉することを抑制することができる。 According to this configuration, in order to control the operation of the movable portion 30 according to the changed interference region, the attached functional module 29 suppresses the movable portion 30 from interfering with the robot 1 or the functional module 29. Can be done.
<変形例>
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。
<Modification example>
Although the present embodiment has been described above, the above embodiment is for facilitating the understanding of the present invention, and is not for limiting the interpretation of the present invention. The present invention can be modified and improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof.
 上記実施形態では、ロボット1内には、高速通信ケーブルが実装される場合を説明したが、制御装置20は、各機能モジュールと無線や赤外線等によって通信することとしてもよい。 In the above embodiment, the case where the high-speed communication cable is mounted in the robot 1 has been described, but the control device 20 may communicate with each functional module by wireless, infrared rays, or the like.
 また、上記実施形態では、取付部28に機能モジュール29を脱着可能とする場合を説明したが、ロボットアームの一部を用途別に交換可能としてもよい。 Further, in the above embodiment, the case where the functional module 29 can be attached to and detached from the mounting portion 28 has been described, but a part of the robot arm may be replaceable according to the application.
 また、上記実施形態では、ロボット情報40Aにおける設定情報は、ロボット1の質点モデル等の各種パラメータを含む場合を説明したが、機能モジュール29に取り付けられるケーブルや配管の長さ、太さ、向き等を含むこととしてもよい。これにより、制御手段46は、当該ケーブルや配管に干渉しないように可動部30の動作を制御することができる。 Further, in the above embodiment, the case where the setting information in the robot information 40A includes various parameters such as the mass point model of the robot 1 has been described, but the length, thickness, orientation, etc. of the cables and pipes attached to the functional module 29 have been described. May be included. As a result, the control means 46 can control the operation of the movable portion 30 so as not to interfere with the cable or the pipe.
 また、上記実施形態では、認識手段42は、機能モジュール29から送信される機能モジュールIDに基づき、機能モジュール29の種類を認識する場合を説明したが、機能モジュール29から当該機能モジュール29の重量、形状、寸法、ドライバ等を受信してもよい。これにより、新たな機能モジュール29が流通した場合でも、利用者は、機能モジュール29を容易に交換、増設等することができる。 Further, in the above embodiment, the case where the recognition means 42 recognizes the type of the function module 29 based on the function module ID transmitted from the function module 29 has been described. Shapes, dimensions, drivers, etc. may be received. As a result, even when a new functional module 29 is distributed, the user can easily replace or add the functional module 29.
 また、上記実施形態では、取付部28は、可動部30に設けられる場合を説明したが、不図示のロボットハンドに設けられてもよい。また、可動部30が複数ある場合、ロボットハンドに対する機能モジュール29が多いことや可動部30からロボットハンドへのケーブルが短くなるという観点から、当該ロボットハンドに最も近い可動部30に設けることが好ましい。 Further, in the above embodiment, the case where the mounting portion 28 is provided in the movable portion 30 has been described, but the mounting portion 28 may be provided in a robot hand (not shown). Further, when there are a plurality of movable portions 30, it is preferable to provide them in the movable portion 30 closest to the robot hand from the viewpoint that there are many functional modules 29 for the robot hand and the cable from the movable portion 30 to the robot hand is shortened. ..
 また、上記実施形態では、認識手段42は、機能モジュール29から送信される機能モジュールIDに基づき、機能モジュールの種類を自動的に認識する場合を説明したが、認識手段42は、機能モジュール29が接続された際等に、設定画面を表示し、その設定画面の作業者の操作を受け付けて、機能モジュールの種類を認識してもよい。 Further, in the above embodiment, the case where the recognition means 42 automatically recognizes the type of the function module based on the function module ID transmitted from the function module 29 has been described, but the recognition means 42 has the function module 29. When the connection is made, the setting screen may be displayed, the operation of the operator of the setting screen may be accepted, and the type of the functional module may be recognized.
<符号の説明>
 1…ロボット、28…取付部、29…機能モジュール、30…可動部、42…認識手段、44…変更手段、46…制御手段

 
<Explanation of code>
1 ... Robot, 28 ... Mounting part, 29 ... Functional module, 30 ... Movable part, 42 ... Recognition means, 44 ... Changing means, 46 ... Control means

Claims (5)

  1.  可動部と、機能モジュールを脱着可能である取付部と、を有するロボットであって、
     前記ロボットの設定情報に応じて、前記可動部の動作を制御する制御手段と、
     前記取付部に取り付けられた機能モジュールの種類を認識する認識手段と、
     前記認識された機能モジュールの種類に応じて、前記設定情報を変更する変更手段と、
     を備えるロボット。
    A robot having a movable part and a mounting part on which a functional module can be attached and detached.
    A control means for controlling the operation of the movable portion according to the setting information of the robot, and
    A recognition means for recognizing the type of functional module mounted on the mounting portion, and
    A changing means for changing the setting information according to the type of the recognized functional module, and
    A robot equipped with.
  2.  前記取付部は、二以上の前記機能モジュールを積層状に取り付け可能であり、
     前記認識手段は、前記取り付けられた機能モジュールそれぞれの取付順を認識し、
     前記変更手段は、前記認識された取付順に応じて、前記設定情報を変更する、
     請求項1に記載のロボット。
    The mounting portion can mount two or more of the functional modules in a stacked manner.
    The recognition means recognizes the mounting order of each of the mounted functional modules, and recognizes the mounting order.
    The changing means changes the setting information according to the recognized mounting order.
    The robot according to claim 1.
  3.  前記設定情報は、前記ロボットを質点でモデル化した質点モデルを含み、
     前記制御手段は、前記質点モデルに応じて、前記可動部を動作させるための電流を制御する、
     請求項1又は2に記載のロボット。
    The setting information includes a mass point model in which the robot is modeled by mass points.
    The control means controls the current for operating the movable portion according to the mass point model.
    The robot according to claim 1 or 2.
  4.  前記設定情報は、前記可動部が前記ロボット又は前記機能モジュールに干渉する可動領域である干渉領域を含み、
     前記制御手段は、前記干渉領域に応じて、前記可動部の動作を制御する、
     請求項1乃至3の何れか1項に記載のロボット。
    The setting information includes an interference region, which is a movable region in which the movable portion interferes with the robot or the functional module.
    The control means controls the operation of the movable portion according to the interference region.
    The robot according to any one of claims 1 to 3.
  5.  可動部と、機能モジュールを脱着可能である取付部と、を有するロボットを制御するためのプログラムであって、
     コンピュータを、
     前記ロボットの設定情報に応じて、前記可動部の動作を制御する制御手段と、
     前記取付部に取り付けられた機能モジュールの種類を認識する認識手段、
     前記認識された機能モジュールの種類に応じて、前記設定情報を変更する変更手段、
     として機能させるプログラム。
    A program for controlling a robot having a movable part and a mounting part on which a functional module can be attached and detached.
    Computer,
    A control means for controlling the operation of the movable portion according to the setting information of the robot, and
    A recognition means for recognizing the type of functional module mounted on the mounting portion,
    A changing means for changing the setting information according to the type of the recognized functional module.
    A program that functions as.
PCT/JP2021/026618 2020-11-30 2021-07-15 Robot and program WO2022113420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-198071 2020-11-30
JP2020198071 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022113420A1 true WO2022113420A1 (en) 2022-06-02

Family

ID=81754476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026618 WO2022113420A1 (en) 2020-11-30 2021-07-15 Robot and program

Country Status (2)

Country Link
TW (1) TW202222517A (en)
WO (1) WO2022113420A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237165A (en) * 1994-02-24 1995-09-12 Hitachi Constr Mach Co Ltd Tool change confirming method for robot
JP2004025387A (en) * 2002-06-27 2004-01-29 Nachi Fujikoshi Corp Loading weight of articulated robot and automatic calculation method for position of gravity center of loading weight
JP2011238041A (en) * 2010-05-11 2011-11-24 Mitsubishi Electric Corp Programming apparatus and programming method
JP2017087300A (en) * 2015-11-02 2017-05-25 ファナック株式会社 Off-line robot programming device
JP2018183853A (en) * 2017-04-27 2018-11-22 住友理工株式会社 Contact detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237165A (en) * 1994-02-24 1995-09-12 Hitachi Constr Mach Co Ltd Tool change confirming method for robot
JP2004025387A (en) * 2002-06-27 2004-01-29 Nachi Fujikoshi Corp Loading weight of articulated robot and automatic calculation method for position of gravity center of loading weight
JP2011238041A (en) * 2010-05-11 2011-11-24 Mitsubishi Electric Corp Programming apparatus and programming method
JP2017087300A (en) * 2015-11-02 2017-05-25 ファナック株式会社 Off-line robot programming device
JP2018183853A (en) * 2017-04-27 2018-11-22 住友理工株式会社 Contact detector

Also Published As

Publication number Publication date
TW202222517A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US10631942B2 (en) Remote control robot system
US9821457B1 (en) Adaptive robotic interface apparatus and methods
JP6006256B2 (en) Robot controller with functions to simplify teaching work and improve operation performance
US20170336776A1 (en) Robot motion program generating method and robot motion program generating apparatus
US10328581B2 (en) Method and device for robotic direct lead-through teaching
WO2018147411A1 (en) Robot system and control method therefor
JP2009025879A (en) Communication system for robot device
JP2007041735A (en) Robot control system
JP6904759B2 (en) Robot movement speed control device and method
JP6925794B2 (en) Controller, work control device, multi-axis motion control device, and drive control device
TWI645946B (en) Robot operation method, computer program, and robot system
WO2022113420A1 (en) Robot and program
WO2022043081A1 (en) Method and system for programming a robot
JP2009218933A (en) Smart camera and robot vision system
JP7373028B2 (en) Simulation method, simulation system
JP2004078895A (en) Distributed control system, and distributed control method
JP2020019079A (en) Robot system
JP6990340B2 (en) Robot system
KR101765052B1 (en) Operating apparatus having flexible movement and control method thereof
JPH1190868A (en) Robot control device
JP2020189381A (en) Multi-joint robot device
JP7047370B2 (en) Motor control device, motor control method and program
US11554490B2 (en) Monitoring real-time data of a robotic manipulator
JPH09128024A (en) Method for optimizing operation program of robot having redundant axis
US10859999B2 (en) Numerical controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP