WO2022113414A1 - Polyimide-containing heat-resistant release sheet and pressure forming method for work - Google Patents

Polyimide-containing heat-resistant release sheet and pressure forming method for work Download PDF

Info

Publication number
WO2022113414A1
WO2022113414A1 PCT/JP2021/025410 JP2021025410W WO2022113414A1 WO 2022113414 A1 WO2022113414 A1 WO 2022113414A1 JP 2021025410 W JP2021025410 W JP 2021025410W WO 2022113414 A1 WO2022113414 A1 WO 2022113414A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
release sheet
film
less
mass
Prior art date
Application number
PCT/JP2021/025410
Other languages
French (fr)
Japanese (ja)
Inventor
桂也 ▲徳▼田
哲雄 奥山
直樹 渡辺
正幸 横山
治美 米虫
伝一朗 水口
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022536481A priority Critical patent/JPWO2022113414A1/ja
Publication of WO2022113414A1 publication Critical patent/WO2022113414A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a polyimide-containing heat-resistant mold release sheet and a method for pressurizing a workpiece using the polyimide-containing heat-resistant mold release sheet.
  • Hot plate presses, roll laminators, double belt presses, etc. are devices widely used in molding and laminating.
  • a method using a hot plate pressing method or a double belt method is known.
  • a carrier sheet (conveying sheet) is made of a resin sheet material having excellent mold releasability, such as a pair of mold-released steel sheets or fluororesin sheet materials, and a workpiece is sandwiched between the carrier sheets. It is a method of sandwiching a resin and feeding it between heated presses to pressurize it for a predetermined time.
  • the double belt method is a method in which a carrier sheet and a work piece are continuously fed between a pair of endless steel belts, and the work piece is pressed while being heated while being moved while being sandwiched between the belts.
  • a mold release sheet is used in order to prevent the pressurized body and the workpiece (object to be molded, laminate) from adhering to each other during molding and laminating.
  • a heat resistant mold release sheet having excellent heat resistance and mechanical strength is required.
  • Silicone rubber sheets, fluororesin sheets, and the like are often used as heat-resistant mold release sheets. Such silicone rubber sheets and fluororesin sheets have poor mechanical strength and are gradually deformed by repeated use, making it difficult to obtain a molded product with good reproducibility. Further, since the thickness accuracy is low, the thickness unevenness of the object to be molded is likely to occur, and it is not always possible to meet the demand for high accuracy. Furthermore, silicone rubber sheets and fluororesins do not always have sufficient durability at high temperatures, and the resin components deteriorate and decompose when used for a long period of time, and relatively low molecular weight silicone resins and fluororesins are applied to the surface of the object to be molded.
  • the carrier sheet contains a considerable amount of water in a normal environment, and when the temperature rises, the water evaporates from the carrier sheet, and the dimensional change that accompanies it causes the object to be molded to be pulled by the carrier sheet, causing wrinkles and the like. It often became.
  • a release sheet (see Patent Document 1) formed by laminating an ethylene-tetrafluoroethylene copolymer film on one side of a metal plate having a plate thickness of 0.05 to 0.5 mm, a sheet base material, and this sheet base material.
  • a release sheet equipped with a release layer coated on the surface of the above, wherein the release layer contains a fluororesin and an acrylic resin (see Patent Document 2), and heat resistant to one or both sides of an expanded graphite sheet.
  • a heat-resistant mold-removing sheet having a resin layer having properties and releasability such as a heat-resistant mold releasable sheet in which the resin layer is made of a thermosetting polyimide resin or a fluororesin (see Patent Document 3) has been proposed.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a polyimide-containing heat-resistant mold release sheet capable of obtaining a molded product with high accuracy and reproducibility even after repeated use. be. Another object of the present invention is to provide a method for pressurizing a workpiece using the polyimide-containing heat-resistant mold release sheet.
  • the present inventors have conducted intensive research on a polyimide-containing heat-resistant mold release sheet and a pressure processing method for a workpiece using the polyimide-containing heat-resistant mold release sheet. As a result, they have found that by adopting the following configuration, it is possible to obtain a molded product with high accuracy and good reproducibility even after repeated use, and have completed the present invention.
  • the present invention provides the following.
  • (1) It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
  • the average value of thickness spots is 5% or less
  • the surface roughness Ra is 0.05 ⁇ m or less, and the surface roughness Ra is 0.05 ⁇ m or less.
  • the tensile elastic modulus is 6 GPa or more,
  • the dimensional change due to water evaporation is small, and the following formula (1) can be satisfied.
  • the conditions for sheet formation can be appropriately adjusted to cause thickness unevenness and surface surface. Roughness and tensile elastic modulus are easy to obtain good physical properties as a release sheet.
  • the average value of the thickness unevenness is 5% or less, if the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, it is possible to perform pressure processing among a plurality of workpieces. The difference in shape becomes smaller. Further, since the average value of the thickness unevenness is 5% or less, if the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, the inside of the workpiece in one processing is performed. It is possible to reduce the thickness unevenness in. That is, it is possible to obtain a molded product with high accuracy and good reproduction.
  • the surface roughness Ra is 0.05 ⁇ m or less
  • the surface shape of the release sheet is applied to the work piece. It is possible to suppress the transfer of (unevenness due to surface roughness). As a result, it is possible to obtain a molded product with high accuracy and good reproduction.
  • the tensile elastic modulus is 6 GPa or more, the mechanical strength is good. Therefore, when the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, deformation is unlikely to occur even if the release sheet is repeatedly used.
  • the present invention has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide, the average value of the thickness spot is 5% or less, and the surface roughness Ra is. If the release sheet is sandwiched between the workpiece and the press plate or the like and subjected to pressure processing in order to satisfy the above formula (1) with a tensile elastic modulus of 0.05 ⁇ m or less and a tensile elastic modulus of 6 GPa or more. Even after repeated use, a molded product can be obtained with high accuracy and good reproducibility.
  • the coefficient of linear thermal expansion is preferably 6 ppm / K or less.
  • the present invention also provides the following. (3) Including a step of pressurizing the workpiece with the workpiece sandwiched between the polyimide-containing heat-resistant mold release sheets.
  • the polyimide-containing heat-resistant mold release sheet is It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
  • the average value of thickness spots is 5% or less
  • the surface roughness Ra is 0.05 ⁇ m or less
  • the surface roughness Ra is 0.05 ⁇ m or less.
  • the tensile elastic modulus is 6 GPa or more
  • a method for pressurizing a workpiece which is characterized by satisfying the following formula (1).
  • A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating
  • A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C.
  • A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
  • the present invention it is possible to provide a polyimide-containing heat-resistant mold release sheet capable of obtaining a molded product with high accuracy and good reproducibility even after repeated use. Further, it is possible to provide a pressure processing method for a workpiece using the polyimide-containing heat-resistant mold release sheet.
  • the polyimide-containing heat-resistant mold release sheet (hereinafter, also referred to as “release sheet” or “polyimide film”) according to the present embodiment is It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
  • the average value of thickness spots is 5% or less
  • the surface roughness Ra is 0.05 ⁇ m or less
  • the surface roughness Ra is 0.05 ⁇ m or less.
  • the tensile elastic modulus is 6 GPa or more, The following formula (1) is satisfied.
  • A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating
  • A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C.
  • A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
  • the release sheet is a polyimide film having a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
  • a polyimide film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • a polyamic acid polyimide precursor
  • precursor film polyamic acid film
  • the green film is heat-treated at high temperature to perform a dehydration ring closure reaction on or in a state of being peeled off from the support for producing a polyimide film. It can be obtained by.
  • the green film refers to a polyamic acid film containing a solvent and having self-supporting properties.
  • the solvent content of the green film is not particularly limited as long as it has self-supporting property, but is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Yes, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Further, it is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • a polyimide solution obtained by a dehydration ring closure reaction between diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film, dried, and contains, for example, 1 to 50% by mass of a solvent. It can also be obtained by treating a polyimide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyimide film or in a state of being peeled off from the support.
  • diaminobenzanilide is used as the diamines for obtaining the release sheet.
  • diaminobenzanilide 4,4'-diaminobenzanilide (hereinafter, also referred to as DABAN) is preferable.
  • the content of the diaminobenzanilide is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass when the total diamine component is 100% by mass. % Or more, particularly preferably 100% by mass.
  • the diamines other than the diaminobenzanilide are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines and the like usually used for polyimide synthesis can be used.
  • biphenyltetracarboxylic acid dianhydride is used as the tetracarboxylic acids for obtaining the release sheet.
  • biphenyltetracarboxylic acid dianhydride 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, also referred to as BPDA) is preferable.
  • the content of the biphenyltetracarboxylic acid dianhydride is preferably 80% by mass or more, more preferably 90% by mass or more, when the total tetracarboxylic acid component is 100% by mass. , More preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the tetracarboxylic acids other than the biphenyltetracarboxylic acid dianhydride are not particularly limited, and aromatic tetracarboxylic acids (including the acid anhydride thereof) and aliphatic tetracarboxylic acids (the acid anhydride thereof) usually used for polyimide synthesis are not particularly limited. (Including the substance), alicyclic tetracarboxylic acids (including the acid anhydride thereof) can be used. When these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good.
  • the release sheet uses diaminobenzanilide as the diamines for obtaining the release sheet and biphenyltetracarboxylic acid dianhydride as the tetracarboxylic acids
  • the release sheet uses biphenyltetra. It will have a structural unit derived from carboxylic acid dianhydride and diaminobenzanilide.
  • the release sheet preferably has a structural unit derived from BPDA and DABAN.
  • the total structural units contained in the release sheet are 100% by mass
  • the total of the structural units derived from BPDA and DABAN is preferably 80% by mass or more, more preferably 90% by mass or more. It is more preferably 95% by mass or more, and particularly preferably 100% by mass.
  • the release sheet may contain a composition other than BPDA and polyimide having a structural unit derived from DABAN.
  • the content of the polyimide (BPDA and the polyimide having a structural unit derived from DABAN) contained in the release sheet is preferably 80% by mass or more, more preferably 90% by mass or more, and further. It is preferably 95% by mass or more, and may be 100% by mass.
  • the composition other than BPDA and polyimide having a structural unit derived from DABAN is not particularly limited as long as it does not contradict the gist of the present invention, and those usually used for polyimide-based mold release sheets may be used. can.
  • the release sheet has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide
  • the thickness unevenness, surface roughness, and tensile elastic modulus are good physical properties as the release sheet.
  • the reason for this is that the present inventors presume that the structural unit is highly oriented when the sheet is formed.
  • the physical characteristics such as thickness unevenness, surface roughness, and tensile elastic modulus are good as a release sheet because they have structural units derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
  • the physical properties can be further controlled by the conditions for sheet formation (particularly, imidization conditions).
  • the peeling sheet has an average value of 5% or less of thickness spots.
  • the average value of the thickness spots is preferably 4.5% or less, more preferably 4% or less, and further preferably 3.5% or less.
  • the lower limit of the average value of the thickness spots is not particularly limited, but is, for example, 0.5% or more and 1% or more for molding processing and laminating processing applications. Since the average value of the thickness spots is 5% or less, if the release sheet is sandwiched between the workpiece and the press plate and subjected to pressure processing, the shape between the plurality of workpieces can be changed. The difference is small.
  • the average value of the thickness unevenness is 5% or less, if the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, the inside of the workpiece in one processing is performed. It is possible to reduce the thickness unevenness in. That is, it is possible to obtain a molded product with high accuracy and good reproduction.
  • a method for controlling the average value of the thickness spots to 5% or less a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the release sheet. Further, a method of appropriately controlling the conditions for forming a sheet (particularly, imidization conditions) and the like can be mentioned.
  • the average value of the thickness spots means a value obtained by the following method. ⁇ How to calculate the average value of thickness spots:
  • a strip-shaped sample is cut out from the vicinity of the center in the width direction (TD).
  • the size of the strip is 5 cm in width and 5 cm in length.
  • four strips are cut out at a pitch of 1 m in the length direction (MD) to obtain a total of five samples.
  • the thickness of each strip is measured at a total of 5 points, that is, a center, a point 5 cm away from the center in the length direction (2 points), and a point 10 cm away from the center (2 points).
  • the thickness spot is calculated by the following calculation.
  • Thickness spot 100 x (maximum thickness-minimum thickness) / (average thickness) Finally, the thickness spots of the five strips are averaged, and this is taken as the average value of the thickness spots.
  • the release sheet has a surface roughness Ra of 0.05 ⁇ m or less.
  • the surface roughness Ra is preferably 0.04 ⁇ m or less, more preferably 0.03 ⁇ m or less, and further preferably 0.025 ⁇ m or less.
  • the lower limit of the surface roughness Ra is not particularly limited, but is, for example, 0.001 ⁇ m or more, 0.002 ⁇ m or more, and the like for molding and laminating processing applications. Since the surface roughness Ra is 0.05 ⁇ m or less, if the release sheet is sandwiched between the work piece and the press plate and subjected to pressure processing, the surface shape (surface) of the release sheet will be applied to the work piece. It is possible to suppress the transfer of unevenness due to roughness).
  • a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide may be adopted as the structure of the release sheet.
  • a method of appropriately controlling the conditions for forming a sheet (particularly, imidization conditions) and the like can be mentioned.
  • the details of the method for measuring the surface roughness Ra are according to the method described in Examples.
  • the release sheet has a tensile elastic modulus of 6 GPa or more.
  • the tensile elastic modulus is preferably 6.5 GPa or more, and more preferably 7 GPa or more. Further, the tensile elastic modulus is preferably 30 GPa or less, more preferably 25 GPa or less because of difficulty in manufacturing. Since the tensile elastic modulus is 6 GPa or more, the mechanical strength is good. Therefore, when the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, deformation is unlikely to occur even if the release sheet is repeatedly used. As a result, even if it is used repeatedly, it is possible to obtain a molded product with high accuracy and good reproducibility.
  • a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the release sheet, or a sheet is formed.
  • Examples thereof include a method of appropriately controlling the conditions (particularly, imidization conditions).
  • the details of the method for measuring the tensile elastic modulus are as described in Examples.
  • the tensile elastic modulus means an average value in the MD direction and the TD direction.
  • the release sheet satisfies the following formula (1). 100 ⁇
  • the release sheet contains a large amount of water, the first heating and cooling causes evaporation of water, and the dimensions of the release sheet change significantly.
  • the second time is heating and cooling in a state where the water is evaporated, the dimensional change becomes small and the value of "100 ⁇
  • / A0" is less than 0.04.
  • / A0" is preferably 0.0038 or less, and more preferably 0.0035 or less.
  • the lower limit is not particularly limited, but may be 0.0005 or more, or 0.001 or more, as long as it is used for molding or laminating. Since the value of "100 x
  • the structure of the release sheet is derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide. Adopting a configuration having a unit, setting the imidization condition within the range described later, and the like can be mentioned.
  • / A0" are based on the method described in Examples. In this specification, the measured value in the MD direction is used for the calculation of "100 ⁇
  • the release sheet preferably has a coefficient of linear expansion (CTE) of 6 ppm / K or less, more preferably 5.5 ppm / K or less, and further preferably 5 ppm / K or less.
  • the lower limit of the coefficient of linear expansion (CTE) is not particularly limited, but is ⁇ 10 ppm / K or more, ⁇ 5 ppm / K or more, and the like for molding and laminating processing applications.
  • the coefficient of linear expansion (CTE) is 6 ppm / K or less, it can be said that the dimensional stability (heat resistance) is superior. As a result, a molded product can be obtained with higher accuracy and reproducibility.
  • the coefficient of linear expansion refers to the average value of the respective values in the MD direction and the TD direction of the release sheet.
  • the release sheet preferably has a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and even more preferably 400 ° C. or higher. When the melting point is 250 ° C. or higher, the heat resistance is more excellent.
  • the release sheet preferably has a glass transition temperature of 200 ° C. or higher, more preferably 320 ° C. or higher, and even more preferably 380 ° C. or higher. When the glass transition temperature is 200 ° C. or higher, the heat resistance is more excellent.
  • the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it is determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
  • the amount of solvent (residual solvent amount) contained in the release sheet is preferably 0.01 to 10 ppm, more preferably 0.01 to 5 ppm, still more preferably 0.01 to 1 ppm.
  • the residual amount of the solvent is measured by gas chromatograph measurement. Specifically, the amount of residual solvent in the release sheet is quantified and measured by the following method. First, the release sheet, which is the object to be measured, is sampled to a size of about 10 mg, and its mass is accurately measured.
  • the sample is filled in a glass insert for gas chromatograph, and the glass insert is set in the inlet of the gas chromatograph mounted on a packed column. While maintaining the inlet temperature at 350 ° C., purge with nitrogen carrier gas for 30 minutes, and trap the vaporized solvent component in the packed column at room temperature.
  • the trapped material is analyzed by gas chromatograph as it is with a FID detector, and the amount of residual solvent in the measurement film is quantified by the direct calibration curve method.
  • the standard solution used to prepare the calibration curve is water or methanol, which is spiked at the inlet to perform the same measurement as the film.
  • the measurement conditions of the gas chromatograph are shown below.
  • the method for setting the amount of the residual solvent contained in the release sheet within a predetermined range is not particularly limited, but can be controlled by the drying conditions of the green film which is the precursor of the release sheet.
  • the release sheet is a polyamic acid (polyimide precursor) solution obtained by reacting biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent. Is applied to a support for producing a polyimide film and dried to obtain a green film (also referred to as “polyimide acid film”), and the green film is heated at a high temperature on the support for producing a polyimide film or in a state of being peeled off from the support. It is obtained by heat treatment to carry out a dehydration ring closure reaction.
  • a polyimide solution obtained by a dehydration ring closure reaction with biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent is used as a support for producing a polyimide film. It is coated and dried to form a polyimide film containing, for example, 1 to 50% by mass of a solvent, and further, a polyimide containing 1 to 50% by mass of a solvent on a support for producing a polyimide film or in a state of being peeled off from the support. It can also be obtained by treating the film at a high temperature and drying it.
  • the solvent used when polymerizing biphenyltetracarboxylic acid dianhydride and diaminobenzanilide to obtain polyamic acid is not particularly limited as long as it dissolves both the raw material monomer and the produced polyamic acid.
  • Polar organic solvents are preferred, for example N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethyl.
  • Examples thereof include phosphoric amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols.
  • N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferably applied.
  • These solvents can be used alone or in admixture.
  • the amount of the solvent used may be an amount sufficient to dissolve the monomer as a raw material, and the specific amount used is such that the mass of the monomer in the solution in which the monomer is dissolved is usually 5 to 40% by mass.
  • the amount is preferably 10 to 20% by mass.
  • the polypolyamic acid can be produced by a known production method. That is, one or more kinds of tetracarboxylic acid anhydrous components (including biphenyltetracarboxylic acid dianhydride) and one or more kinds of diamine components (including diaminobenzanilide) which are raw materials are used. , Polymerize in the solvent to obtain a polyamic acid solution.
  • the reaction apparatus is preferably equipped with a temperature adjusting device for controlling the reaction temperature, and the reaction temperature is preferably 0 ° C. or higher and 80 ° C. or lower, and further 15 ° C. or higher and 60 ° C. or lower is the reverse of polymerization. It is preferable because it suppresses the hydrolysis of the polyamic acid, which is a reaction, and the viscosity of the polyamic acid tends to increase.
  • an imidization catalyst, inorganic fine particles, or the like may be added to the polyamic acid solution.
  • a tertiary amine As the tertiary amine, a heterocyclic tertiary amine is preferable. Preferred specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like.
  • the amount of the imidization catalyst used is preferably 0.01 to 2.00 equivalents, more preferably 0.02 to 1.20 equivalents, relative to the reaction site of the polyamic acid (polyimide precursor). When the amount of the imidization catalyst used is 0.01 equivalent or more, the effect of the catalyst can be sufficiently obtained. Further, when the amount of the imidization catalyst used is 2.00 equivalents or less, the proportion of the catalyst not involved in the reaction can be reduced, which is preferable in terms of cost.
  • the inorganic fine particles include inorganic oxide powders such as fine-grained silicon dioxide (silica) powder and aluminum oxide powder; and inorganic salt powders such as fine-grained calcium carbonate powder and calcium phosphate powder. If the inorganic fine particles are present as coarse particles, they may cause defects in the next and subsequent steps. Therefore, it is preferable that the inorganic fine particles are uniformly dispersed in the polyamic acid solution. ..
  • the reduced viscosity ( ⁇ sp / C) of the polyamic acid solution or the polyimide solution is preferably 0.1 or more, more preferably 1 or more, and further preferably 2 or more. Further, it is preferably 5 or less, more preferably 4.5 or less, and further preferably 4 or less.
  • the drying temperature is preferably 70 to 130 ° C., more preferably 80. It is about 125 ° C., more preferably 85 to 120 ° C.
  • the drying temperature is preferably 70 to 130 ° C. or lower. It is about 125 ° C., more preferably 85 to 120 ° C.
  • the drying time is preferably 5 to 90 minutes, more preferably 15 to 80 minutes, although it depends on the drying temperature.
  • the drying time is preferably 5 to 90 minutes, more preferably 15 to 80 minutes, although it depends on the drying temperature.
  • By setting the drying time to 90 minutes or less it is possible to suppress a decrease in molecular weight and brittleness of the film. Further, by setting the drying time to 5 minutes or more, it is possible to suppress deterioration of handleability due to insufficient drying.
  • Conventionally known drying devices can be applied, and examples thereof include hot air, hot nitrogen, far infrared rays, and high frequency induction heating.
  • the number of steps is preferably 2 or more, and more preferably 3 or more.
  • the number of steps is preferably 10 or less, more preferably 5 or less.
  • the number of steps is too large, a temperature range in which a reverse reaction is likely to occur is used, and the mechanical properties of the obtained polyimide film may deteriorate. Therefore, by setting the number of steps to 10 or less, it is possible to suppress deterioration of the mechanical properties of the obtained polyimide film.
  • imidization heat treatment
  • the temperature and time in each step are set from the following viewpoints.
  • First step By preferably removing the residual solvent, the average value of the thickness unevenness of the film and the surface roughness are improved.
  • 1st to 2nd steps Imidization and tension control are performed with a certain amount of solvent remaining to achieve high orientation. Also, avoid temperature ranges where reverse reactions are likely to occur.
  • the imidization is completed and the terminals produced by the reverse reaction are recombined.
  • the preferable range of temperature and time in each step is as follows.
  • the imidization temperature in the first step is preferably 150 ° C. or higher, more preferably, because the average value of the thickness unevenness of the film and the surface roughness can be improved by removing the residual solvent. Is more than 180 ° C., more preferably 185 ° C. or higher, and particularly preferably 190 ° C. or higher.
  • the imidization temperature of the first step is preferably 220 ° C. or lower, more preferably 210 ° C. or lower.
  • the imidization time of the first step is preferably 1 minute or longer, more preferably 2 minutes or longer.
  • the imidization time of the first step is preferably 10 minutes or less, more preferably 5 minutes or less.
  • the imidization reaction (heat treatment) of the second step is performed.
  • the imidization temperature of the second step is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 240 ° C. or higher.
  • the imidization temperature in the second step is preferably 280 ° C. or lower, more preferably 270 ° C. or lower.
  • the imidization time of the second step is preferably 1 minute or longer, more preferably 2 minutes or longer.
  • the imidization time of the second step is preferably 10 minutes or less, more preferably 5 minutes or less.
  • the imidization reaction (heat treatment) of the third step is performed.
  • the imidization temperature in the third step is preferably more than 280 ° C, more preferably 290 ° C or higher, and even more preferably 295 ° C or higher.
  • the imidization temperature in the third step is preferably less than 480 ° C, more preferably 400 ° C or lower, and further preferably 400 ° C or less, because the average value of the thickness unevenness of the film and the surface roughness are good. It is preferably 350 ° C. or lower.
  • the imidization time of the third step is preferably 2 minutes or more, more preferably 4 minutes or more.
  • the imidization time of the third step is preferably 20 minutes or less, more preferably 10 minutes or less.
  • Imidization heat treatment
  • a pin tenter or a clip a clip
  • tension in the width direction and the longitudinal direction of the film it is preferable to make the tension in the width direction and the longitudinal direction of the film as uniform as possible.
  • both ends of the film are pressed with a brush so that the pins are evenly pierced into the film.
  • the brush is preferably a rigid and heat-resistant fibrous brush, and a high-strength and high elastic modulus monofilament can be adopted.
  • the release sheet is preferably manufactured via a green film of polyamic acid. That is, by imidizing the grease film, a release sheet having more excellent peelability and heat resistance can be obtained.
  • the release sheet is usually preferably a non-stretched sheet, but may be a uniaxially or biaxially stretched sheet.
  • the non-stretched sheet means a film obtained by tenter stretching, roll stretching, inflation stretching, or the like without intentionally applying a mechanical external force in the surface expansion direction of the film.
  • the pressure processing method of the workpiece is Including a step of pressurizing the workpiece with the workpiece sandwiched between the polyimide-containing heat-resistant mold release sheets.
  • the polyimide-containing heat-resistant mold release sheet is It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
  • the average value of thickness spots is 5% or less
  • the surface roughness Ra is 0.05 ⁇ m or less
  • the surface roughness Ra is 0.05 ⁇ m or less.
  • the tensile elastic modulus is 6 GPa or more, A method for pressurizing a workpiece, which is characterized by satisfying the following formula (1).
  • A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating
  • A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C.
  • A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
  • the method for pressurizing the workpiece according to the present embodiment includes a step of pressurizing the workpiece with the workpiece sandwiched between the polyimide-containing heat-resistant mold release sheets.
  • the workpiece is not particularly limited as long as it is processed by pressurization, and examples thereof include those made of resin.
  • Examples of the pressure processing include molding processing and laminating processing.
  • a molded product can be obtained by pressurizing (heating if necessary) the workpiece (workpiece).
  • a laminated body (molded product) can be obtained by pressurizing (heating if necessary) in a state where two or more workpieces (workpieces) are stacked.
  • Examples of the device for forming and laminating include a hot plate pressing method and a double belt method.
  • the hot plate pressing method the pair of polyimide-containing heat-resistant mold release sheets are used as carrier sheets (conveying sheets), a work piece is sandwiched between the carrier sheets, and the workpiece is fed between the heated presses to determine a predetermined value. Pressurize for hours.
  • the double belt method the polyimide-containing heat-resistant mold release sheet and the workpiece are continuously fed between the pair of endless steel belts, and the work piece is pressed while being moved while being sandwiched between the belts.
  • the polyimide-containing heat-resistant mold release sheet is used during the pressure processing, a molded product can be obtained with high accuracy and good reproducibility.
  • N- Colloidal silica is a dispersion of dimethylacetamide (DMAc) and colloidal silica (lubricant) dispersed in dimethylacetamide ("Snowtex (registered trademark) DMAC-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.).
  • DMAc dimethylacetamide
  • Snowtex colloidal silica
  • ⁇ Preparation Example 2 Preparation of Polyamic Acid Solution 2> A container equipped with a nitrogen introduction tube, a thermometer and a stirring rod was replaced with nitrogen, and then 4,4'-diaminodiphenyl ether (ODA) was added. Next, DMAc was added to completely dissolve it, and then pyrolimetic acid anhydride (PMDA) was added to polymerize ODA and PMDA as monomers in DMAc at a molar ratio of 1/1, and the monomer charging concentration was 15. The mixture was adjusted to be mass% and stirred at 25 ° C. for 5 hours to obtain a brown viscous polyamic acid solution 2. The reduced viscosity ( ⁇ sp / C) was 2.1 dl / g.
  • ⁇ Preparation Example 3 Preparation of Polyamic Acid Solution 3> 60 mol% of ODA on a total diamine basis is supplied and dissolved in DMAc, followed by paraphenylenediamine (1,4-phenylenediamine) P-PDA (40 mol%) and PMDA, which are sequentially supplied at room temperature and about. The mixture was stirred for 1 hour. Finally, a solution having a polyamic acid concentration of 20% by mass consisting of a tetracarboxylic acid dianhydride component and a diamine component of about 100 mol% stoichiometry was prepared. This polyamic acid solution was ice-cooled, acetic anhydride and ⁇ -picoline were added, and the mixture was stirred to obtain a polyamic acid solution 3.
  • Preparation Example 4 Preparation of Polyamic Acid Solution 4> A container equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was replaced with nitrogen, and then P-PDA was placed. Next, DMAc was added to completely dissolve it, and then PMDA was added to polymerize P-PDA and PMDA as monomers in DMAc at a molar ratio of 1.0 / 1.0, and the monomer charging concentration was 15. When the content was adjusted to% by mass and stirred at 25 ° C. for 5 hours, a brown viscous polyamic acid solution 4 was obtained.
  • ⁇ Preparation Example 5 Preparation of Polyamic Acid Solution 5> After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a thermometer and a stirring rod, 500 parts by mass of 5-amino-2- (p-aminophenyl) benzoxazole was charged. Next, 5000 parts by mass of N-methyl-2-pyrrolidone was added and completely dissolved, and then Snowtex (trade name) DMAc-Zl (manufactured by Nissan Chemical Industry Co., Ltd.) 40 in which colloidal silica was dispersed in dimethylacetamide.
  • ⁇ Preparation Example 6 Preparation of Polyamic Acid Solution 6> After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 11.36 parts by mass of 4,4'-diaminobenzanilide (DABAN) and 11.32 parts by mass of 2,2' -A dispersion consisting of bis (trifluoromethyl) benzidine (TFMB), 21.1 parts by mass of N, N-dimethylacetamide (DMAc), and colloidal silica (lubricant) dispersed in dimethylacetamide (manufactured by Nissan Chemical Industries, Ltd.).
  • DABAN 4,4'-diaminobenzanilide
  • TFMB bis (trifluoromethyl) benzidine
  • DMAc N-dimethylacetamide
  • colloidal silica lubricant
  • silica (lubricant) had a total polymer solid content of 0.4% by mass in the polyamic acid solution) and was completely dissolved. Then, 22.73 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA) was added separately as a solid, and then stirred at room temperature for 24 hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 6 having a solid content (NV) of 12% by mass and a reduction viscosity ( ⁇ sp / C) of 3.28 dl / g.
  • NV solid content
  • ⁇ sp / C reduction viscosity
  • Preparation Example 7 Preparation of Polyamic Acid Solution 7> After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod with nitrogen, 930 parts by mass of 1,3-bis (4-aminophenoxy) benzene was added, and 15,000 parts by mass of N, N-dimethylacetamide was introduced. After stirring well to make it uniform, Snowtex (trade name) DMAc-Zl (manufactured by Nissan Chemical Industry Co., Ltd.), which is obtained by dispersing colloidal silica in dimethylacetamide, 40.5 parts by mass (silica 8.1). (Including parts by mass) was added.
  • Snowtex trade name
  • DMAc-Zl manufactured by Nissan Chemical Industry Co., Ltd.
  • the solution was cooled to 0 ° C., 990 parts by mass of 4,4'-oxydiphthalic anhydride was added, and the mixture was stirred for 17 hours. A pale yellow and viscous polyamic acid solution 7 was obtained. The reduced viscosity ( ⁇ sp / C) of the obtained solution was 3.1 dl / g.
  • ⁇ Preparation Example 8 Preparation of Polyimide Solution 1> While introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark tube and a reflux tube, a thermometer, and a stirring rod, 19.86 parts by mass of 4,4'-diaminodiphenyl sulfone (4,4') was introduced. -DDS), 4.97 parts by mass of 3,3'-diaminodiphenyl sulfone (3,3'-DDS) and 80 parts by mass of gamma butyrolactone (GBL) were added.
  • GBL gamma butyrolactone
  • ⁇ Preparation Example 9 Preparation of Polyimide Solution 2> 32.02 parts by mass of 2,2'-ditrifluoromethyl-4, while introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark tube, a reflux tube, a thermometer, and a stirring rod.
  • TFMB 4'-diaminobiphenyl
  • DMAc N-dimethylacetamide
  • 6FDA 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride
  • -ST-ZL a dispersing colloidal silica (lubricant) in dimethylacetamide (Snowtex (registered trademark) DMAC manufactured by Nissan Chemical Industries, Ltd.).
  • silica (lubricant) had a total polymer solid content of 1.4% by mass in the polyimide solution to obtain a uniform polyimide solution 2.
  • Example 1 Production of polyimide film F1>
  • the polyamic acid solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 ⁇ m using a comma coater.
  • the polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After drying, the self-supporting polyamic acid film (green film) is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break.
  • the pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes to carry out the imidization reaction. I made it progress. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F1 having a width of 450 mm.
  • Example 2 Production of polyimide film F2> A polyimide film F2 was obtained in the same manner as in Example 1 except that the polyamic acid solution 1 was changed to the polyamic acid solution 6.
  • Example 3 Production of polyimide film F10>
  • the polyamic acid solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 ⁇ m using a comma coater.
  • the polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After drying, the self-supporting polyamic acid film (green film) is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break.
  • the pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 210 ° C for 2 minutes, 260 ° C for 2 minutes, and 330 ° C for 5 minutes to carry out the imidization reaction. I made it progress. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F10 having a width of 450 mm.
  • Example 4 Production of polyimide film F11> A polyimide film F11 was obtained in the same manner as in Example 3 except that the polyamic acid solution 1 was changed to the polyamic acid solution 6.
  • ⁇ Comparative Example 1 Production of Polyimide Film F3>
  • the polyamic acid solution 2 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 ⁇ m using a comma coater.
  • the polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time.
  • the self-supporting polyamic acid film (green film) is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break.
  • the pin sheet spacing is adjusted and conveyed so that unnecessary slack does not occur, and the film is heated at 180 ° C for 3 minutes, 250 ° C for 3 minutes, and 480 ° C for 5 minutes to carry out the imidization reaction. I made it progress.
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F3 having a width of 450 mm.
  • ⁇ Comparative Example 4 Production of Polyimide Film F6>
  • the polyimide solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 ⁇ m using a comma coater.
  • the polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time.
  • a solvent-containing polyimide film (green film) that has obtained self-support after drying is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film breaks.
  • the film was transported by adjusting the pin sheet spacing so as not to prevent unnecessary slack and to prevent unnecessary slack, and was heated and dried under the conditions of 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes. ..
  • the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F6 having a width of 450 mm.
  • thermoforming sheet (workpiece)>
  • the above polyamic acid solution 7 is coated on the non-slip agent surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) having a thickness of 188 ⁇ m using a comma coater (gap is 200 ⁇ m, coating width is 700 mm), and 110 After drying at ° C. for 5 minutes, the polyamic acid film was wound up without peeling from the support.
  • the obtained polyamic acid film was attached to the unwinding portion of the film-making machine, and the above-mentioned polyamic acid solution 5 was coated on the surface of the polyamic acid film 7 using a comma coater (gap: 800 ⁇ m, coating width 700 mm). After drying at 110 ° C. for 20 minutes, the polyamic acid film was wound up without peeling from the support. The obtained polyamic acid film was reattached to the unwinding portion of the film-making machine, and the above-mentioned polyamic acid solution 7 was coated on the surface of the polyamic acid film 5 using a comma coater (gap: 200 ⁇ m, coating width 700 mm). ), Dryed at 110 ° C.
  • a polyamic acid film (green film) having a three-layer structure of (polyamic acid 7) / (polyamic acid 5) / (polyamic acid 7) was obtained.
  • the above multilayer polyamic acid film is passed through a pin tenter having three heat treatment zones, and heat treatment is performed for the first stage at 150 ° C. ⁇ 2 minutes, the second stage at 220 ° C. ⁇ 2 minutes, and the third stage at 475 ° C. ⁇ 4 minutes to a width of 500 mm.
  • the slit was made to obtain a thermoforming sheet having a thickness of 50 ⁇ m.
  • the thickness ratio of (polyamic acid 7) / (polyamic acid 5) / (polyamic acid 7) in this thermoforming sheet is 0.25 / 1 / 0.25.
  • the obtained thermoforming sheet was embedded in an epoxy resin, cut with a microtome so that the cross section could be observed, and the cross section was observed with a transmission electron microscope. In the electron micrograph of the cross section, the boundaries between the layers having different compositions could be observed in a striped pattern, and the thickness ratio was almost the same as the thickness ratio obtained from the coating thickness.
  • This sheet was slit to a width of 450 mm and used for thermoforming.
  • ⁇ Surface roughness Ra> The surface roughness Ra of the polyimide films of Examples and Comparative Examples was determined by the following method. It was measured with a stylus type surface roughness meter (SV-C3100S4 manufactured by Mitutoyo Co., Ltd.) according to the center line average roughness (hereinafter referred to as Ra) in JISB0601: 2013 (definition and display of surface roughness). Measurements were performed at rtip 2 ⁇ m and ⁇ c 0.8 mm. The results are shown in Table 1.
  • the dimensional change rate in the MD direction was measured under the following conditions. (When the polyimide film is in the form of a roll) A strip-shaped sample was cut out from the vicinity of the center in the width direction (TD). The size of the strip was 10 mm in width and 100 mm in length. Then, four strips were cut out at a pitch of 1 m in the length direction (MD) to obtain a total of five samples. Each sample was further cut into a sample length of 10 mm and a sample width of 2 mm.
  • the dimensions of the polyimide film (strip) before heating were measured at room temperature (25 ° C.), and this was defined as A0 (10 mm).
  • the polyimide film was heated from 25 ° C. to 150 ° C., and the dimensions when the temperature was returned to 25 ° C. were measured, and this was designated as A1.
  • the polyimide film after measuring the dimensions of A1 was heated to 150 ° C. again, and the dimensions when the temperature was returned to 25 ° C. were measured, and this was designated as A2. Then, 100 ⁇
  • CTE coefficient of thermal expansion
  • release sheet polyimide film
  • CTE coefficient of linear thermal expansion
  • the glass transition temperature of the polyimide films of Examples and Comparative Examples was determined by the following method. It was measured by a differential scanning calorimeter (SII, DSC-200). A sample (polyimide film) of 5 mg was placed in an aluminum presser lid type container, crimped and sealed. First, the temperature was raised from room temperature (25 ° C.) to 550 ° C. at 20 ° C./min. In the heat absorption curve obtained in the process, the extension of the baseline before the heat absorption peak appears (below the glass transition temperature) and the tangent line toward the heat absorption peak (maximum slope from the rising part of the peak to the peak).
  • Example 1 The temperature at the intersection with the tangent line indicating) was defined as the glass transition temperature.
  • Example 2 Comparative Example 1, Comparative Example 2, Comparative Example 5, and Comparative Example 6, glass transition did not occur even at 500 ° C., and thermal decomposition occurred earlier when the temperature was further raised. The transition temperature could not be measured.
  • thermoforming sheet surface smoothness of the object to be molded and the state of the mold release sheet after use
  • Two polyimide films of Examples and Comparative Examples were slit to a width of 450 mm to prepare two sheets, which were used as release sheets.
  • Five thermoforming sheets obtained in the above ⁇ Preparation of thermoforming sheet> were sandwiched between these two release sheets, and thermoforming and pressure molding was continuously performed by a hot plate pressing method.
  • a hot plate pressing portion having a width of 470 mm and a length of 300 mm is adopted, the heating temperature is 320 ° C., the pressurizing pressure is 40 MPa, and the pressing time per press is 3 minutes.
  • the sheet was fed out by about 150 mm, and a polyimide molded sheet having a length of about 3 m was produced in about 60 minutes.
  • the polyimide molded sheet produced by using the polyimide film of Example 1 had excellent surface smoothness, and was finished with a substantially uniform thickness of about 250 ⁇ m regardless of the thickness of any portion.
  • the manufactured polyimide molded sheet is peeled off into a thermoforming sheet and a mold release sheet, and the surface smoothness of the surface of the thermoforming sheet (object to be molded) in contact with the release sheet and the thermoforming of the mold release sheet are used. The state of the surface in contact with the sheet (the state of the release sheet after use) was observed.
  • the mold release property of the object to be molded is good.
  • the surface smoothness of the thermoforming sheet the state of the surface of the thermoforming sheet and the presence or absence of peeling between the thermoforming sheets when the cross section of the thermoforming sheet was observed with a microscope were confirmed. Those with no problem were marked with ⁇ , those with slight surface abnormalities and peeling were marked with ⁇ , and those with surface conditions and peeling were marked with ⁇ . Specifically, the surface was observed at 10 locations using a VH-Z100R manufactured by KEYENCE at a magnification of 100 times.

Abstract

A polyimide-containing heat-resistant release sheet which comprises structural units derived from biphenyltetracarboxylic dianhydride and diaminobenzanilide, has an average thickness unevenness of 5% or less, a surface roughness Ra of 0.05 μm or less, and a tensile modulus of 6 GPa or greater, and satisfies 100×│A1-A2│/A0<0.004 (where A0 is a dimension at 25°C of the polyimide-containing heat-resistant release sheet which has not been heated, A1 is a dimension of the sheet which has been heated from 25°C to 150°C and then returned to 25°C, and A2 is a dimension of the sheet which, after the measurement of A1 dimension, has been heated again to 150°C and then returned to 25°C.)

Description

ポリイミド含有耐熱離型シート、及び、被成形物の加圧成形方法Polyimide-containing heat-resistant mold release sheet and pressure molding method for objects to be molded
 本発明は、ポリイミド含有耐熱離型シート、及び、当該ポリイミド含有耐熱離型シートを用いた被加工物の加圧方法に関する。 The present invention relates to a polyimide-containing heat-resistant mold release sheet and a method for pressurizing a workpiece using the polyimide-containing heat-resistant mold release sheet.
 熱板プレス、ロールラミネータ、ダブルベルトプレス等は、成形加工、積層加工において広く使われている装置である。成形加工、積層加工を行うための装置として熱板プレス法やダブルベルト法を用いて行う方法が知られている。熱板プレス法とは、一対の離型処理したスチールシート又はフッ素樹脂シート材のような離型性に優れる樹脂シート材をキャリアシート(搬送用シート)とし、このキャリアシートの間に被加工物を挟み込み、これを加熱されているプレス間に送り込んで所定時間加圧する方法である。また、ダブルベルト法とは、一対のエンドレススチールベルト間にキャリアシート及び被加工物を連続的に送り込み、ベルト間で挟んだ状態で移動させつつ加熱しながら加圧を行う方法である。かかる装置において成形加工、積層加工する際に加圧体と、被加工物(被成形物、被積層物)とが接着してしまうことを避けるために離型シートが用いられている。特に高温、高圧での成形加工、積層加工においては、耐熱性と機械的強度に優れる耐熱離型シートが必要になる。 Hot plate presses, roll laminators, double belt presses, etc. are devices widely used in molding and laminating. As an apparatus for performing molding and laminating, a method using a hot plate pressing method or a double belt method is known. In the hot plate pressing method, a carrier sheet (conveying sheet) is made of a resin sheet material having excellent mold releasability, such as a pair of mold-released steel sheets or fluororesin sheet materials, and a workpiece is sandwiched between the carrier sheets. It is a method of sandwiching a resin and feeding it between heated presses to pressurize it for a predetermined time. Further, the double belt method is a method in which a carrier sheet and a work piece are continuously fed between a pair of endless steel belts, and the work piece is pressed while being heated while being moved while being sandwiched between the belts. In such an apparatus, a mold release sheet is used in order to prevent the pressurized body and the workpiece (object to be molded, laminate) from adhering to each other during molding and laminating. Especially in high temperature and high pressure molding and laminating, a heat resistant mold release sheet having excellent heat resistance and mechanical strength is required.
 従来、これらの離型シートとして多くの提案がなされている。耐熱離型シートとしては、シリコーンゴムシート、フッ素樹脂シートなどが多用されている。かかるシリコーンゴムシートやフッ素樹脂シートは、機械的強度に乏しく、繰り返し用いられることにより次第に変形を生じ、再現よく成形物を得ることが困難であった。また、厚さ精度が低いために被成型物の厚さ斑を生じやすく、必ずしも高精度な要求には応えることができなかった。さらに、シリコーンゴムシートやフッ素樹脂は必ずしも高温での耐久性が十分ではなく、長期間使用した場合に樹脂成分の劣化分解が進み、比較的低分子量のシリコーン樹脂やフッ素樹脂が被成形体表面に移行し、種々の問題を生ずることがあった。
 また、キャリアシートは通常環境では少なからず水分を含んでおり、温度上昇時にキャリアシートから水分が蒸発し、それに伴う寸法変化によって、被成形物がキャリアシートに引っ張られてしまい、シワなどの原因となることが多かった。
Conventionally, many proposals have been made as these release sheets. Silicone rubber sheets, fluororesin sheets, and the like are often used as heat-resistant mold release sheets. Such silicone rubber sheets and fluororesin sheets have poor mechanical strength and are gradually deformed by repeated use, making it difficult to obtain a molded product with good reproducibility. Further, since the thickness accuracy is low, the thickness unevenness of the object to be molded is likely to occur, and it is not always possible to meet the demand for high accuracy. Furthermore, silicone rubber sheets and fluororesins do not always have sufficient durability at high temperatures, and the resin components deteriorate and decompose when used for a long period of time, and relatively low molecular weight silicone resins and fluororesins are applied to the surface of the object to be molded. It was migrated and could cause various problems.
In addition, the carrier sheet contains a considerable amount of water in a normal environment, and when the temperature rises, the water evaporates from the carrier sheet, and the dimensional change that accompanies it causes the object to be molded to be pulled by the carrier sheet, causing wrinkles and the like. It often became.
 これらの課題を解決するため、近年多数の提案がなされている。例えば、板厚0.05~0.5mmの金属板の片面にエチレン-テトラフルオロエチレン共重合体フィルムを積層してなる離型シート(特許文献1参照)、シート基材と、このシート基材の表面に被覆された剥離層とを装備する離型シートであって、剥離層がフッ素樹脂とアクリル樹脂とを含有する離型シート(特許文献2参照)、膨張黒鉛シートの片面または両面に耐熱性と離型性がある樹脂層を有する耐熱離型シートであって、前記樹脂層が熱硬化性ポリイミド樹脂又はフッ素樹脂からなる耐熱離型シート(特許文献3参照)などが提案されている。 In recent years, many proposals have been made to solve these problems. For example, a release sheet (see Patent Document 1) formed by laminating an ethylene-tetrafluoroethylene copolymer film on one side of a metal plate having a plate thickness of 0.05 to 0.5 mm, a sheet base material, and this sheet base material. A release sheet equipped with a release layer coated on the surface of the above, wherein the release layer contains a fluororesin and an acrylic resin (see Patent Document 2), and heat resistant to one or both sides of an expanded graphite sheet. A heat-resistant mold-removing sheet having a resin layer having properties and releasability, such as a heat-resistant mold releasable sheet in which the resin layer is made of a thermosetting polyimide resin or a fluororesin (see Patent Document 3) has been proposed.
特開2000-062089号公報Japanese Unexamined Patent Publication No. 2000-62089 特開2000-290897号公報Japanese Unexamined Patent Publication No. 2000-290897 特開2003-127267号公報Japanese Patent Application Laid-Open No. 2003-127267
 しかしながら、これらの離型シートにおいても、繰り返し使用することにより、成形物の再現性が低下する等の課題を抱えている。 However, even with these release sheets, there are problems such as deterioration of the reproducibility of the molded product due to repeated use.
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、繰り返し使用しても、高精度で再現よく成形物を得ることが可能なポリイミド含有耐熱離型シートを提供することにある。また、当該ポリイミド含有耐熱離型シートを使用した被加工物の加圧加工方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a polyimide-containing heat-resistant mold release sheet capable of obtaining a molded product with high accuracy and reproducibility even after repeated use. be. Another object of the present invention is to provide a method for pressurizing a workpiece using the polyimide-containing heat-resistant mold release sheet.
 本発明者らは、ポリイミド含有耐熱離型シート、及び、当該ポリイミド含有耐熱離型シートを使用した被加工物の加圧加工方法について鋭意研究を行った。その結果、下記の構成を採用することにより、繰り返し使用しても、高精度で再現よく成形物を得ることが可能であることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive research on a polyimide-containing heat-resistant mold release sheet and a pressure processing method for a workpiece using the polyimide-containing heat-resistant mold release sheet. As a result, they have found that by adopting the following configuration, it is possible to obtain a molded product with high accuracy and good reproducibility even after repeated use, and have completed the present invention.
 すなわち、本発明は以下を提供する。
(1)ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有し、
 厚さ斑の平均値が5%以下であり、
 表面粗さRaが0.05μm以下であり、
 引張弾性率が6GPa以上であり、
 下記式(1)を満たすことを特徴とするポリイミド含有耐熱離型シート。
  100×|A1-A2|/A0<0.004   式(1)
(ここで、A0は、加熱前の25℃での前記ポリイミド含有耐熱離型シートの寸法であり、A1は、25℃から150℃まで加熱し、25℃に戻した際の寸法であり、A2は、A1の寸法の測定後、再度150℃に加熱し、25℃に戻した際の寸法である。)
That is, the present invention provides the following.
(1) It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
The average value of thickness spots is 5% or less,
The surface roughness Ra is 0.05 μm or less, and the surface roughness Ra is 0.05 μm or less.
The tensile elastic modulus is 6 GPa or more,
A polyimide-containing heat-resistant mold release sheet characterized by satisfying the following formula (1).
100 × | A1-A2 | / A0 <0.004 Equation (1)
(Here, A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating, and A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C., and A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
 前記構成によれば、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有するため、水分蒸発による寸法変化が小さく、下記式(1)を満たすことが可能となる。また、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有するため、シート化する際の条件(特に、イミド化条件)を好適に調整することにより、厚さ斑、表面粗さ、引張弾性率を離型シートとして良好な物性とし易い。
 また、厚さ斑の平均値が5%以下であるため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施せば、複数の被加工物の間での形状の相違が小さくなる。また、厚さ斑の平均値が5%以下であるため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施せば、1回の加工における被加工物内での厚みムラを小さくすることができる。すなわち、高精度で再現よく成形物を得ることができる。
 また、表面粗さRaが0.05μm以下であるため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施せば、被加工物に離型シートの表面形状(表面粗さに起因する凹凸)が転写されることを抑制することができる。その結果、高精度で再現よく成形物を得ることができる。
 また、引張弾性率が6GPa以上であるため、機械的強度が良好である。従って、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施す際に、繰り返し用いたとしても変形が生じにくい。その結果、繰り返し使用したとしても、高精度で再現よく成形物を得ることができる。
 また、「100×|A1-A2|/A0」の値が0.04未満であるため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施す際、温度上昇時に当該剥離シートから水分が蒸発し、それに伴う寸法変化が生じることを抑制することができる。その結果、被加工物が剥離シートに引っ張られてしまい、シワなどの原因となることを抑制することができる。
 このように、本発明によれば、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有し、厚さ斑の平均値が5%以下であり、表面粗さRaが0.05μm以下であり、引張弾性率が6GPa以上であり、上記式(1)を満たすため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施せば、繰り返し使用しても、高精度で再現よく成形物を得ることができる。
According to the above configuration, since it has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide, the dimensional change due to water evaporation is small, and the following formula (1) can be satisfied. In addition, since it has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide, the conditions for sheet formation (particularly, imidization conditions) can be appropriately adjusted to cause thickness unevenness and surface surface. Roughness and tensile elastic modulus are easy to obtain good physical properties as a release sheet.
Further, since the average value of the thickness unevenness is 5% or less, if the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, it is possible to perform pressure processing among a plurality of workpieces. The difference in shape becomes smaller. Further, since the average value of the thickness unevenness is 5% or less, if the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, the inside of the workpiece in one processing is performed. It is possible to reduce the thickness unevenness in. That is, it is possible to obtain a molded product with high accuracy and good reproduction.
Further, since the surface roughness Ra is 0.05 μm or less, if the release sheet is sandwiched between the work piece and the press plate or the like and pressure processing is applied, the surface shape of the release sheet is applied to the work piece. It is possible to suppress the transfer of (unevenness due to surface roughness). As a result, it is possible to obtain a molded product with high accuracy and good reproduction.
Further, since the tensile elastic modulus is 6 GPa or more, the mechanical strength is good. Therefore, when the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, deformation is unlikely to occur even if the release sheet is repeatedly used. As a result, even if it is used repeatedly, it is possible to obtain a molded product with high accuracy and good reproducibility.
Further, since the value of "100 × | A1-A2 | / A0" is less than 0.04, the temperature when the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed. It is possible to prevent the moisture from evaporating from the release sheet at the time of ascending and causing a dimensional change accompanying the evaporation. As a result, it is possible to prevent the workpiece from being pulled by the release sheet and causing wrinkles and the like.
As described above, according to the present invention, it has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide, the average value of the thickness spot is 5% or less, and the surface roughness Ra is. If the release sheet is sandwiched between the workpiece and the press plate or the like and subjected to pressure processing in order to satisfy the above formula (1) with a tensile elastic modulus of 0.05 μm or less and a tensile elastic modulus of 6 GPa or more. Even after repeated use, a molded product can be obtained with high accuracy and good reproducibility.
 (2)前記(1)の構成においては、線熱膨張係数が6ppm/K以下であることが好ましい。 (2) In the configuration of (1) above, the coefficient of linear thermal expansion is preferably 6 ppm / K or less.
 線膨張係数(CTE)が6ppm/K以下であると、寸法安定性(耐熱性)により優れるといえる。その結果、より高精度で再現よく成形物を得ることができる。 When the coefficient of linear expansion (CTE) is 6 ppm / K or less, it can be said that it is superior in dimensional stability (heat resistance). As a result, a molded product can be obtained with higher accuracy and reproducibility.
 また、本発明は以下を提供する。
(3)ポリイミド含有耐熱離型シートの間に被加工物を挟み込んだ状態で、前記被加工物を加圧する工程を含み、
 前記ポリイミド含有耐熱離型シートは、
  ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有し、
  厚さ斑の平均値が5%以下であり、
  表面粗さRaが0.05μm以下であり、
  引張弾性率が6GPa以上であり、
  下記式(1)を満たすことを特徴とする被加工物の加圧加工方法。
  100×|A1-A2|/A0<0.004   式(1)
(ここで、A0は、加熱前の25℃での前記ポリイミド含有耐熱離型シートの寸法であり、A1は、25℃から150℃まで加熱し、25℃に戻した際の寸法であり、A2は、A1の寸法の測定後、再度150℃に加熱し、25℃に戻した際の寸法である。)
The present invention also provides the following.
(3) Including a step of pressurizing the workpiece with the workpiece sandwiched between the polyimide-containing heat-resistant mold release sheets.
The polyimide-containing heat-resistant mold release sheet is
It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
The average value of thickness spots is 5% or less,
The surface roughness Ra is 0.05 μm or less, and the surface roughness Ra is 0.05 μm or less.
The tensile elastic modulus is 6 GPa or more,
A method for pressurizing a workpiece, which is characterized by satisfying the following formula (1).
100 × | A1-A2 | / A0 <0.004 Equation (1)
(Here, A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating, and A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C., and A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
 前記構成によれば、前記ポリイミド含有耐熱離型シートを用いて被加工物を加圧加工するため、高精度で再現よく成形物を得ることができる。 According to the above configuration, since the workpiece is pressure-processed using the polyimide-containing heat-resistant mold release sheet, a molded product can be obtained with high accuracy and good reproducibility.
 本発明によれば、繰り返し使用しても、高精度で再現よく成形物を得ることが可能なポリイミド含有耐熱離型シートを提供することができる。また、当該ポリイミド含有耐熱離型シートを使用した被加工物の加圧加工方法を提供することができる。 According to the present invention, it is possible to provide a polyimide-containing heat-resistant mold release sheet capable of obtaining a molded product with high accuracy and good reproducibility even after repeated use. Further, it is possible to provide a pressure processing method for a workpiece using the polyimide-containing heat-resistant mold release sheet.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
<ポリイミド含有耐熱離型シート>
 本実施形態に係るポリイミド含有耐熱離型シート(以下、「離型シート」または「ポリイミドフィルム」ともいう)は、
 ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有し、
 厚さ斑の平均値が5%以下であり、
 表面粗さRaが0.05μm以下であり、
 引張弾性率が6GPa以上であり、
 下記式(1)を満たす。
  100×|A1-A2|/A0<0.004   式(1)
(ここで、A0は、加熱前の25℃での前記ポリイミド含有耐熱離型シートの寸法であり、A1は、25℃から150℃まで加熱し、25℃に戻した際の寸法であり、A2は、A1の寸法の測定後、再度150℃に加熱し、25℃に戻した際の寸法である。)
<Polyimide-containing heat-resistant mold release sheet>
The polyimide-containing heat-resistant mold release sheet (hereinafter, also referred to as “release sheet” or “polyimide film”) according to the present embodiment is
It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
The average value of thickness spots is 5% or less,
The surface roughness Ra is 0.05 μm or less, and the surface roughness Ra is 0.05 μm or less.
The tensile elastic modulus is 6 GPa or more,
The following formula (1) is satisfied.
100 × | A1-A2 | / A0 <0.004 Equation (1)
(Here, A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating, and A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C., and A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
 前記離型シートは、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有するポリイミドフィルムである。 The release sheet is a polyimide film having a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
 一般的に、ポリイミドフィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(以下では「前駆体フィルム」、「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態で、グリーンフィルムを高温熱処理して脱水閉環反応を行わせることで得られる。ここで、グリーンフィルムとは、溶媒を含有し、自己支持性を有するポリアミド酸のフィルムをいう。グリーンフィルムの溶媒含有量は、自己支持性を有していれば特に限定されないが、1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上であり、よりさらに好ましくは20質量%以上であり、特に好ましくは30質量%以上である。また、80質量%以下であることが好ましく、より好ましくは70質量%以下であり、さらに好ましくは60質量%以下であり、特に好ましくは50質量%以下である。
 また、別の方法として、溶媒中でジアミン類とテトラカルボン酸類との脱水閉環反応により得られるポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させることでも得られる。
Generally, a polyimide film is a green film (hereinafter referred to as a green film) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried. (Also referred to as "precursor film" or "polyamic acid film"), and the green film is heat-treated at high temperature to perform a dehydration ring closure reaction on or in a state of being peeled off from the support for producing a polyimide film. It can be obtained by. Here, the green film refers to a polyamic acid film containing a solvent and having self-supporting properties. The solvent content of the green film is not particularly limited as long as it has self-supporting property, but is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Yes, more preferably 20% by mass or more, and particularly preferably 30% by mass or more. Further, it is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
As another method, a polyimide solution obtained by a dehydration ring closure reaction between diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film, dried, and contains, for example, 1 to 50% by mass of a solvent. It can also be obtained by treating a polyimide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyimide film or in a state of being peeled off from the support.
 本実施形態では、前記離型シートを得るためのジアミン類として、ジアミノベンズアニリドを用いる。前記ジアミノベンズアニリドとしては、4,4’-ジアミノベンズアニリド(以下、DABANともいう)が好ましい。 In this embodiment, diaminobenzanilide is used as the diamines for obtaining the release sheet. As the diaminobenzanilide, 4,4'-diaminobenzanilide (hereinafter, also referred to as DABAN) is preferable.
 前記ジアミノベンズアニリド(特に、DABAN)の含有量は、全ジアミン成分を100質量%としたとき、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特別に好ましくは、100質量%である。 The content of the diaminobenzanilide (particularly DABAN) is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass when the total diamine component is 100% by mass. % Or more, particularly preferably 100% by mass.
 前記ジアミノベンズアニリド以外のジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。 The diamines other than the diaminobenzanilide are not particularly limited, and aromatic diamines, aliphatic diamines, alicyclic diamines and the like usually used for polyimide synthesis can be used.
 また、本実施形態では、前記離型シートを得るためのテトラカルボン酸類として、ビフェニルテトラカルボン酸二無水物を用いる。前記ビフェニルテトラカルボン酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう)が好ましい。 Further, in the present embodiment, biphenyltetracarboxylic acid dianhydride is used as the tetracarboxylic acids for obtaining the release sheet. As the biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter, also referred to as BPDA) is preferable.
 前記ビフェニルテトラカルボン酸二無水物(特に、BPDA)の含有量は、全テトラカルボン酸成分を100質量%としたとき、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特別に好ましくは、100質量%である。 The content of the biphenyltetracarboxylic acid dianhydride (particularly BPDA) is preferably 80% by mass or more, more preferably 90% by mass or more, when the total tetracarboxylic acid component is 100% by mass. , More preferably 95% by mass or more, and particularly preferably 100% by mass.
 前記ビフェニルテトラカルボン酸二無水物以外のテトラカルボン酸類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。 The tetracarboxylic acids other than the biphenyltetracarboxylic acid dianhydride are not particularly limited, and aromatic tetracarboxylic acids (including the acid anhydride thereof) and aliphatic tetracarboxylic acids (the acid anhydride thereof) usually used for polyimide synthesis are not particularly limited. (Including the substance), alicyclic tetracarboxylic acids (including the acid anhydride thereof) can be used. When these are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. good.
 上述の通り、前記離型シートは、前記離型シートを得るためのジアミン類としてジアミノベンズアニリドを用い、テトラカルボン酸類としてビフェニルテトラカルボン酸二無水物を用いるため、前記離型シートは、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有することとなる。 As described above, since the release sheet uses diaminobenzanilide as the diamines for obtaining the release sheet and biphenyltetracarboxylic acid dianhydride as the tetracarboxylic acids, the release sheet uses biphenyltetra. It will have a structural unit derived from carboxylic acid dianhydride and diaminobenzanilide.
 前記離型シートは、なかでも、BPDA、及び、DABANに由来する構造単位を有するものであることが好ましい。前記離型シートに含まれる全構造単位を100質量%としたとき、BPDA、及び、DABANに由来する構造単位の合計が80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは、100質量%である。 The release sheet preferably has a structural unit derived from BPDA and DABAN. When the total structural units contained in the release sheet are 100% by mass, the total of the structural units derived from BPDA and DABAN is preferably 80% by mass or more, more preferably 90% by mass or more. It is more preferably 95% by mass or more, and particularly preferably 100% by mass.
 前記離型シートは、BPDA、及び、DABANに由来する構造単位を有するポリイミド以外の組成を含有していてもよい。前記離型シートに含まれる前記ポリイミド(BPDA、及び、DABANに由来する構造単位を有するポリイミド)の含有量は、80質量%以上であることが好ましく、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、100質量%であっても差し支えない。
 BPDA、及び、DABANに由来する構造単位を有するポリイミド以外の組成としては、本発明の趣旨に反しない限りにおいて特に限定されず、通常、ポリイミド系の離型シートに使用されるものを用いることができる。
The release sheet may contain a composition other than BPDA and polyimide having a structural unit derived from DABAN. The content of the polyimide (BPDA and the polyimide having a structural unit derived from DABAN) contained in the release sheet is preferably 80% by mass or more, more preferably 90% by mass or more, and further. It is preferably 95% by mass or more, and may be 100% by mass.
The composition other than BPDA and polyimide having a structural unit derived from DABAN is not particularly limited as long as it does not contradict the gist of the present invention, and those usually used for polyimide-based mold release sheets may be used. can.
 前記離型シートは、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有するため、厚さ斑、表面粗さ、引張弾性率が離型シートとして良好な物性となる。その理由としては、本発明者らは、シートとした際に前記構造単位が高配向するためと推察している。
 なお、厚さ斑、表面粗さ、引張弾性率等の各物性は、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有することにより離型シートとして良好な物性となるが、後述するように、シート化する際の条件(特に、イミド化条件)によっても、さらに、良好な物性にコントロールすることができる。
Since the release sheet has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide, the thickness unevenness, surface roughness, and tensile elastic modulus are good physical properties as the release sheet. The reason for this is that the present inventors presume that the structural unit is highly oriented when the sheet is formed.
The physical characteristics such as thickness unevenness, surface roughness, and tensile elastic modulus are good as a release sheet because they have structural units derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide. However, as will be described later, the physical properties can be further controlled by the conditions for sheet formation (particularly, imidization conditions).
 前記剥離シートは、厚さ斑の平均値が5%以下である。前記厚さ斑の平均値は、好ましくは4.5%以下であり、より好ましくは4%以下であり、さらに好ましくは3.5%以下である。前記厚さ斑の平均値の下限は特に限定されないが、成形加工や積層加工用途であれば、例えば、0.5%以上、1%以上等である。厚さ斑の平均値が5%以下であるため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施せば、複数の被加工物の間での形状の相違が小さくなる。また、厚さ斑の平均値が5%以下であるため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施せば、1回の加工における被加工物内での厚みムラを小さくすることができる。すなわち、高精度で再現よく成形物を得ることができる。
 前記厚さ斑の平均値を5%以下にコントロールする方法としては、前記剥離シートの構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、シート化する際の条件(特に、イミド化条件)を適切にコントロールする方法等が挙げられる。
The peeling sheet has an average value of 5% or less of thickness spots. The average value of the thickness spots is preferably 4.5% or less, more preferably 4% or less, and further preferably 3.5% or less. The lower limit of the average value of the thickness spots is not particularly limited, but is, for example, 0.5% or more and 1% or more for molding processing and laminating processing applications. Since the average value of the thickness spots is 5% or less, if the release sheet is sandwiched between the workpiece and the press plate and subjected to pressure processing, the shape between the plurality of workpieces can be changed. The difference is small. Further, since the average value of the thickness unevenness is 5% or less, if the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, the inside of the workpiece in one processing is performed. It is possible to reduce the thickness unevenness in. That is, it is possible to obtain a molded product with high accuracy and good reproduction.
As a method for controlling the average value of the thickness spots to 5% or less, a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the release sheet. Further, a method of appropriately controlling the conditions for forming a sheet (particularly, imidization conditions) and the like can be mentioned.
 本明細書において、厚さ斑の平均値は、以下の方法により求まる値をいう。
 <厚さ斑の平均値の求め方:離型シートがロール状の場合>
 幅方向(TD)の中央付近から、短冊状の試料を切り出す。短冊のサイズは、幅5cm、長さ5cmとする。その後、長さ方向(MD)に1mピッチで4枚の短冊を切り出し、合計5枚の試料を得る。
 各短冊につき、中央、及び、中央から長さ方向にそれぞれ5cm離間した箇所(2点)、及び、10cm離間した箇所(2点)の合計5点で厚さを測定する。
 各短冊につき、厚さ斑を、下記の計算により求める。
   厚さ斑=100×(最大厚-最小厚)/(平均厚さ)
 最後に、5枚の短冊の厚さ斑を平均し、これを、厚さ斑の平均値とする。
 <厚さ斑の平均値の求め方:離型シートが長方形(枚葉)の場合>
 隅の4箇所と中央の1箇所の合計5箇所の厚さを測定する。測定する隅の4カ所は、近接する2辺からの距離が10cmの箇所とする。
 5箇所の厚さを平均し、これを厚さ斑の平均値とする。
In the present specification, the average value of the thickness spots means a value obtained by the following method.
<How to calculate the average value of thickness spots: When the release sheet is in the form of a roll>
A strip-shaped sample is cut out from the vicinity of the center in the width direction (TD). The size of the strip is 5 cm in width and 5 cm in length. Then, four strips are cut out at a pitch of 1 m in the length direction (MD) to obtain a total of five samples.
The thickness of each strip is measured at a total of 5 points, that is, a center, a point 5 cm away from the center in the length direction (2 points), and a point 10 cm away from the center (2 points).
For each strip, the thickness spot is calculated by the following calculation.
Thickness spot = 100 x (maximum thickness-minimum thickness) / (average thickness)
Finally, the thickness spots of the five strips are averaged, and this is taken as the average value of the thickness spots.
<How to calculate the average value of thickness spots: When the release sheet is rectangular (single leaf)>
Measure the thickness of 4 points in the corner and 1 point in the center, for a total of 5 points. The four corners to be measured shall be 10 cm away from the two adjacent sides.
The thickness of 5 points is averaged, and this is taken as the average value of the thickness spots.
 前記剥離シートは、表面粗さRaが0.05μm以下である。前記表面粗さRaは、好ましくは0.04μm以下であり、より好ましくは0.03μm以下であり、さらに好ましくは0.025μm以下である。前記表面粗さRaの下限は特に限定されないが、成形加工や積層加工用途であれば、例えば、0.001μm以上、0.002μm以上等である。表面粗さRaが0.05μm以下であるため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施せば、被加工物に離型シートの表面形状(表面粗さに起因する凹凸)が転写されることを抑制することができる。その結果、高精度で再現よく成形物を得ることができる。
 前記表面粗さRaを0.05μm以下にコントロールする方法としては、前記剥離シートの構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、シート化する際の条件(特に、イミド化条件)を適切にコントロールする方法等が挙げられる。
 前記表面粗さRaの測定方法の詳細は、実施例に記載の方法による。
The release sheet has a surface roughness Ra of 0.05 μm or less. The surface roughness Ra is preferably 0.04 μm or less, more preferably 0.03 μm or less, and further preferably 0.025 μm or less. The lower limit of the surface roughness Ra is not particularly limited, but is, for example, 0.001 μm or more, 0.002 μm or more, and the like for molding and laminating processing applications. Since the surface roughness Ra is 0.05 μm or less, if the release sheet is sandwiched between the work piece and the press plate and subjected to pressure processing, the surface shape (surface) of the release sheet will be applied to the work piece. It is possible to suppress the transfer of unevenness due to roughness). As a result, it is possible to obtain a molded product with high accuracy and good reproduction.
As a method for controlling the surface roughness Ra to 0.05 μm or less, a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide may be adopted as the structure of the release sheet. , A method of appropriately controlling the conditions for forming a sheet (particularly, imidization conditions) and the like can be mentioned.
The details of the method for measuring the surface roughness Ra are according to the method described in Examples.
 前記剥離シートは、引張弾性率が6GPa以上である。前記引張弾性率は、好ましくは6.5GPa以上であり、より好ましくは7GPa以上である。また、前記引張弾性率は、製造する困難性などから30GPa以下であることが好ましく、より好ましくは25GPa以下である。
 引張弾性率が6GPa以上であるため、機械的強度が良好である。従って、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施す際に、繰り返し用いたとしても変形が生じにくい。その結果、繰り返し使用したとしても、高精度で再現よく成形物を得ることができる。
 前記引張弾性率を6GPa以上にコントロールする方法としては、前記剥離シートの構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、シート化する際の条件(特に、イミド化条件)を適切にコントロールする方法等が挙げられる。
 前記引張弾性率の測定方法の詳細は、実施例に記載の方法による。
 なお、本明細書において、引張弾性率は、MD方向とTD方向との平均値をいう。
The release sheet has a tensile elastic modulus of 6 GPa or more. The tensile elastic modulus is preferably 6.5 GPa or more, and more preferably 7 GPa or more. Further, the tensile elastic modulus is preferably 30 GPa or less, more preferably 25 GPa or less because of difficulty in manufacturing.
Since the tensile elastic modulus is 6 GPa or more, the mechanical strength is good. Therefore, when the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, deformation is unlikely to occur even if the release sheet is repeatedly used. As a result, even if it is used repeatedly, it is possible to obtain a molded product with high accuracy and good reproducibility.
As a method for controlling the tensile elastic modulus to 6 GPa or more, a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the release sheet, or a sheet is formed. Examples thereof include a method of appropriately controlling the conditions (particularly, imidization conditions).
The details of the method for measuring the tensile elastic modulus are as described in Examples.
In the present specification, the tensile elastic modulus means an average value in the MD direction and the TD direction.
 前記剥離シートは、下記式(1)を満たす。
  100×|A1-A2|/A0<0.004   式(1)
(ここで、A0は、加熱前の25℃での前記ポリイミド含有耐熱離型シートの寸法であり、A1は、25℃から150℃まで加熱し、25℃に戻した際の寸法であり、A2は、A1の寸法の測定後、再度150℃に加熱し、25℃に戻した際の寸法である。)
 すなわち、前記離型シートは、1回目の加熱冷却後の寸法(A1)と2回目の加熱冷却後の寸法(A2)の差(絶対値)が、加熱冷却前の寸法とほぼ変化がなく、水分蒸発による寸法変化が小さいものである。
 仮に、離型シートに水分が多く含まれている場合には、1回目の加熱冷却により水分蒸発が生じ、剥離シートの寸法が大きく変化する。一方、2回目は水分が蒸発した状態での加熱冷却となることから、寸法変化は小さくなり、「100×|A1-A2|/A0」の値は大きくなることとなる。
 しかしながら、本実施形態に係る前記剥離シートは、水分を含む量が少ないため、「100×|A1-A2|/A0」の値は0.04未満である。「100×|A1-A2|/A0」の値は、好ましくは0.0038以下であり、より好ましくは0.0035以下である。下限は特に限定されないが、成形加工や積層加工用途であれば、0.0005以上であっても良く、0.001以上であっても差し支えない。
 「100×|A1-A2|/A0」の値が0.04未満であるため、当該離型シートを被加工物とプレス板等との間に挟んで加圧加工を施す際、温度上昇時に当該剥離シートから水分が蒸発し、それに伴う寸法変化が生じることを抑制することができる。その結果、被加工物が剥離シートに引っ張られてしまい、シワなどの原因となることを抑制することができる。
 前記「100×|A1-A2|/A0」の値を0.04未満にコントロールする方法としては、前記剥離シートの構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、イミド化の条件を後述の範囲とすること等が挙げられる。
 前記「100×|A1-A2|/A0」の値の求め方の詳細は、実施例に記載の方法による。
 なお、本明細書において、前記「100×|A1-A2|/A0」の算出には、MD方向の測定値を用いる。MD、TDの方向がわからない場合には、2方向で測定し、値が大きい方をMD方向であることとする。
The release sheet satisfies the following formula (1).
100 × | A1-A2 | / A0 <0.004 Equation (1)
(Here, A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating, and A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C., and A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
That is, the difference (absolute value) between the dimension (A1) after the first heating and cooling and the dimension (A2) after the second heating and cooling of the release sheet is almost the same as the dimension before heating and cooling. The dimensional change due to water evaporation is small.
If the release sheet contains a large amount of water, the first heating and cooling causes evaporation of water, and the dimensions of the release sheet change significantly. On the other hand, since the second time is heating and cooling in a state where the water is evaporated, the dimensional change becomes small and the value of "100 × | A1-A2 | / A0" becomes large.
However, since the release sheet according to the present embodiment contains a small amount of water, the value of "100 × | A1-A2 | / A0" is less than 0.04. The value of "100 × | A1-A2 | / A0" is preferably 0.0038 or less, and more preferably 0.0035 or less. The lower limit is not particularly limited, but may be 0.0005 or more, or 0.001 or more, as long as it is used for molding or laminating.
Since the value of "100 x | A1-A2 | / A0" is less than 0.04, when the release sheet is sandwiched between the workpiece and the press plate or the like and pressure processing is performed, when the temperature rises. It is possible to suppress the evaporation of water from the release sheet and the accompanying dimensional change. As a result, it is possible to prevent the workpiece from being pulled by the release sheet and causing wrinkles and the like.
As a method for controlling the value of "100 × | A1-A2 | / A0" to less than 0.04, the structure of the release sheet is derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide. Adopting a configuration having a unit, setting the imidization condition within the range described later, and the like can be mentioned.
The details of how to obtain the value of "100 × | A1-A2 | / A0" are based on the method described in Examples.
In this specification, the measured value in the MD direction is used for the calculation of "100 × | A1-A2 | / A0". If the directions of MD and TD are unknown, the measurement is performed in two directions, and the one with the larger value is the MD direction.
 前記離型シートは、線膨張係数(CTE)が6ppm/K以下であることが好ましく、より好ましくは5.5ppm/K以下であり、さらに好ましくは5ppm/K以下である。前記線膨張係数(CTE)の下限は特に限定されないが、成形加工や積層加工用途であれば、-10ppm/K以上、-5ppm/K以上等である。線膨張係数(CTE)が6ppm/K以下であると、寸法安定性(耐熱性)により優れるといえる。その結果、より高精度で再現よく成形物を得ることができる。
 前記線膨張係数(CTE)を6ppm/K以下にコントロールする方法としては、前記剥離シートの構成として、ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有する構成を採用することや、イミド化時にフィルムにかかるテンションを適切にコントロールする方法等が挙げられる。
 なお、本明細書において、線熱膨張係数は、離型シートのMD方向とTD方向のそれぞれの値の平均値をいう。
The release sheet preferably has a coefficient of linear expansion (CTE) of 6 ppm / K or less, more preferably 5.5 ppm / K or less, and further preferably 5 ppm / K or less. The lower limit of the coefficient of linear expansion (CTE) is not particularly limited, but is −10 ppm / K or more, −5 ppm / K or more, and the like for molding and laminating processing applications. When the coefficient of linear expansion (CTE) is 6 ppm / K or less, it can be said that the dimensional stability (heat resistance) is superior. As a result, a molded product can be obtained with higher accuracy and reproducibility.
As a method for controlling the coefficient of linear expansion (CTE) to 6 ppm / K or less, a structure having a biphenyltetracarboxylic acid dianhydride and a structural unit derived from diaminobenzanilide is adopted as the structure of the release sheet. This includes a method of appropriately controlling the tension applied to the film during imidization.
In the present specification, the coefficient of linear thermal expansion refers to the average value of the respective values in the MD direction and the TD direction of the release sheet.
 前記離型シートは、好ましくは融点が250℃以上であり、より好ましくは300℃以上であり、さらに好ましくは400℃以上である。融点が250℃以上であると、耐熱性により優れる。また、前記離型シートは、ガラス転移温度が200℃以上であることが好ましく、より好ましくは320℃以上であり、さらに好ましくは380℃以上である。ガラス転移温度が200℃以上であると、耐熱性により優れる。本明細書において、融点、及び、ガラス転移温度は、示差熱分析(DSC)により求めるものである。なお、融点が500℃を超える場合には、該当温度にて加熱した際の熱変形挙動を目視観察することで融点に達しているか否かを判断する。 The release sheet preferably has a melting point of 250 ° C. or higher, more preferably 300 ° C. or higher, and even more preferably 400 ° C. or higher. When the melting point is 250 ° C. or higher, the heat resistance is more excellent. The release sheet preferably has a glass transition temperature of 200 ° C. or higher, more preferably 320 ° C. or higher, and even more preferably 380 ° C. or higher. When the glass transition temperature is 200 ° C. or higher, the heat resistance is more excellent. In the present specification, the melting point and the glass transition temperature are determined by differential thermal analysis (DSC). When the melting point exceeds 500 ° C., it is determined whether or not the melting point has been reached by visually observing the thermal deformation behavior when heated at the corresponding temperature.
 前記離型シートに含まれる溶媒量(残存溶媒量)は、0.01~10ppmであることが好ましく、より好ましくは0.01~5ppmであり、さらに好ましくは0.01~1ppmである。前記溶媒量(残存溶媒量)は、少なければ少ないほど好ましいが、製造の容易性、コスト等を考慮すれば、実質的に不具合が生じない程度にすればよく、その下限としては、具体的には0.01ppmである。
 前記溶媒残存量の測定は、ガスクロマトグラフ測定による。具体的には、離型シート内の残存溶媒量を次の方法で定量化測定する。まず、測定対象物である離型シートを約10mgの大きさに採取し、その質量を正確に計量する。計量後サンプルをガスクロマトグラフ用ガラスインサートに充填し、そのガラスインサートを充填カラム装着ガスクロマトグラフの注入口にセットする。注入口温度を350℃に保ったまま、窒素キャリヤーガスで30分間パージし、気化した溶剤成分を室温状態で充填カラムにトラップさせる。そのトラップしたものをFID検出器で、そのままガスクロマトグラフ分析を行い、直接検量線法により測定フィルムの残存溶媒量を定量化する。検量線作成に用いる標準液は、水またはメタノールであり、注入口にスパイクして、フィルムと同様の測定を行う。下記に、ガスクロマトグラフの測定条件を示す。
[測定条件]
  装置:島津GC14A
  分離カラム:内径3mm×1.6mガラス製
  充填剤:TENAX-TA
  キャリヤーガス:N2、40ml/min.
  注入口温度:350℃
  オーブン温度:室温トラップ30分→80~250℃(15℃/min.)
The amount of solvent (residual solvent amount) contained in the release sheet is preferably 0.01 to 10 ppm, more preferably 0.01 to 5 ppm, still more preferably 0.01 to 1 ppm. The smaller the amount of the solvent (residual solvent amount) is, the more preferable it is. However, in consideration of ease of production, cost, etc. Is 0.01 ppm.
The residual amount of the solvent is measured by gas chromatograph measurement. Specifically, the amount of residual solvent in the release sheet is quantified and measured by the following method. First, the release sheet, which is the object to be measured, is sampled to a size of about 10 mg, and its mass is accurately measured. After weighing, the sample is filled in a glass insert for gas chromatograph, and the glass insert is set in the inlet of the gas chromatograph mounted on a packed column. While maintaining the inlet temperature at 350 ° C., purge with nitrogen carrier gas for 30 minutes, and trap the vaporized solvent component in the packed column at room temperature. The trapped material is analyzed by gas chromatograph as it is with a FID detector, and the amount of residual solvent in the measurement film is quantified by the direct calibration curve method. The standard solution used to prepare the calibration curve is water or methanol, which is spiked at the inlet to perform the same measurement as the film. The measurement conditions of the gas chromatograph are shown below.
[Measurement condition]
Equipment: Shimadzu GC14A
Separation column: Inner diameter 3 mm x 1.6 m Glass filler: TENAX-TA
Carrier gas: N2, 40 ml / min.
Injection port temperature: 350 ° C
Oven temperature: Room temperature trap 30 minutes → 80-250 ° C (15 ° C / min.)
 前記離形シートに含まれる残存溶媒量を所定の範囲とするための方法は、特に限定されないが、離型シートの前駆体であるグリーンフィルムの乾燥条件等によりコントロールすることができる。 The method for setting the amount of the residual solvent contained in the release sheet within a predetermined range is not particularly limited, but can be controlled by the drying conditions of the green film which is the precursor of the release sheet.
 上述した通り、前記離型シートは、溶媒中でビフェニルテトラカルボン酸二無水物(テトラカルボン酸類)、及び、ジアミノベンズアニリド(ジアミン類)とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(「ポリアミド酸フィルム」ともいう)とし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。
 また、別の方法として、溶媒中でビフェニルテトラカルボン酸二無水物(テトラカルボン酸類)、及び、ジアミノベンズアニリド(ジアミン類)との脱水閉環反応により得られるポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して、例えば1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させることでも得られる。
As described above, the release sheet is a polyamic acid (polyimide precursor) solution obtained by reacting biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent. Is applied to a support for producing a polyimide film and dried to obtain a green film (also referred to as “polyimide acid film”), and the green film is heated at a high temperature on the support for producing a polyimide film or in a state of being peeled off from the support. It is obtained by heat treatment to carry out a dehydration ring closure reaction.
As another method, a polyimide solution obtained by a dehydration ring closure reaction with biphenyltetracarboxylic acid dianhydride (tetracarboxylic acids) and diaminobenzanilide (diamines) in a solvent is used as a support for producing a polyimide film. It is coated and dried to form a polyimide film containing, for example, 1 to 50% by mass of a solvent, and further, a polyimide containing 1 to 50% by mass of a solvent on a support for producing a polyimide film or in a state of being peeled off from the support. It can also be obtained by treating the film at a high temperature and drying it.
 ビフェニルテトラカルボン酸二無水物とジアミノベンズアニリドとを重合してポリアミド酸を得るときに用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等があげられる。なかでもN-メチル-2-ピロリドン、N,N-ジメチルアセトアミドが好ましく適用される。これらの溶媒は、単独あるいは混合して使用することができる。溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、モノマーを溶解した溶液に占めるモノマーの質量が、通常5~40質量%、好ましくは10~20質量%となるような量が挙げられる。 The solvent used when polymerizing biphenyltetracarboxylic acid dianhydride and diaminobenzanilide to obtain polyamic acid is not particularly limited as long as it dissolves both the raw material monomer and the produced polyamic acid. Polar organic solvents are preferred, for example N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethyl. Examples thereof include phosphoric amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols. Of these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferably applied. These solvents can be used alone or in admixture. The amount of the solvent used may be an amount sufficient to dissolve the monomer as a raw material, and the specific amount used is such that the mass of the monomer in the solution in which the monomer is dissolved is usually 5 to 40% by mass. The amount is preferably 10 to 20% by mass.
 前記ポリポリアミド酸は公知の製造方法により製造可能である。すなわち、原料である1種または2種以上のテトラカルボン酸無水成分(ビフェニルテトラカルボン酸二無水物を含む)、及び、1種または2種以上のジアミン成分(ジアミノベンズアニリドを含む)を使用し、前記溶媒中で重合してポリアミド酸溶液を得る。反応装置には、反応温度を制御するための温度調整装置を備えていることが好ましく、反応温度としては0℃以上80℃以下が好ましく、さらに15℃以上60℃以下であることが重合の逆反応であるポリアミド酸の加水分解を抑制し、しかもポリアミド酸の粘度が上昇しやすいことから好ましい。 The polypolyamic acid can be produced by a known production method. That is, one or more kinds of tetracarboxylic acid anhydrous components (including biphenyltetracarboxylic acid dianhydride) and one or more kinds of diamine components (including diaminobenzanilide) which are raw materials are used. , Polymerize in the solvent to obtain a polyamic acid solution. The reaction apparatus is preferably equipped with a temperature adjusting device for controlling the reaction temperature, and the reaction temperature is preferably 0 ° C. or higher and 80 ° C. or lower, and further 15 ° C. or higher and 60 ° C. or lower is the reverse of polymerization. It is preferable because it suppresses the hydrolysis of the polyamic acid, which is a reaction, and the viscosity of the polyamic acid tends to increase.
 前記ポリアミド酸溶液には、必要に応じでイミド化触媒、無機微粒子等を加えてもよい。 If necessary, an imidization catalyst, inorganic fine particles, or the like may be added to the polyamic acid solution.
 前記イミド化触媒としては、3級アミンを用いることが好ましい。前記3級アミンとしては複素環式の3級アミンが好ましい。前記複素環式の3級アミンの好ましい具体例としては、ピリジン、2,5-ジエチルピリジン、ピコリン、キノリン、イソキノリンなどを挙げることができる。前記イミド化触媒の使用量は、ポリアミド酸(ポリイミド前駆体)の反応部位に対して0.01~2.00当量が好ましく、0.02~1.20当量がより好ましい。前記イミド化触媒の使用量を0.01当量以上にすると、触媒の効果を十分に得ることができる。また、前記イミド化触媒の使用量を2.00当量以下にすると、反応に関与しない触媒の割合を減らすことができ、費用の面で好適である。 It is preferable to use a tertiary amine as the imidization catalyst. As the tertiary amine, a heterocyclic tertiary amine is preferable. Preferred specific examples of the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline, isoquinoline and the like. The amount of the imidization catalyst used is preferably 0.01 to 2.00 equivalents, more preferably 0.02 to 1.20 equivalents, relative to the reaction site of the polyamic acid (polyimide precursor). When the amount of the imidization catalyst used is 0.01 equivalent or more, the effect of the catalyst can be sufficiently obtained. Further, when the amount of the imidization catalyst used is 2.00 equivalents or less, the proportion of the catalyst not involved in the reaction can be reduced, which is preferable in terms of cost.
 前記無機微粒子としては、微粒子状の二酸化ケイ素(シリカ)粉末、酸化アルミニウム粉末等の無機酸化物粉末;微粒子状の炭酸カルシウム粉末、リン酸カルシウム粉末等の無機塩粉末を挙げることができる。前記無機微粒子が粗大な粒として存在していると、次工程以降での欠陥の原因となる可能性があるため、前記無機微粒子は、前記ポリアミド酸溶液中に、均一に分散されることが好ましい。 Examples of the inorganic fine particles include inorganic oxide powders such as fine-grained silicon dioxide (silica) powder and aluminum oxide powder; and inorganic salt powders such as fine-grained calcium carbonate powder and calcium phosphate powder. If the inorganic fine particles are present as coarse particles, they may cause defects in the next and subsequent steps. Therefore, it is preferable that the inorganic fine particles are uniformly dispersed in the polyamic acid solution. ..
 ポリアミド酸(ポリイミド前駆体)溶液、又は、ポリイミド溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート、カーテンコート、スリットダイコート等従来公知の溶液の塗布手段を適宜用いることができる。 Conventional methods such as spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, curtain coating, and slit die coating have been applied to the polyamic acid (polyimide precursor) solution or the polyimide solution. A known solution coating means can be appropriately used.
 前記ポリアミド酸溶液、又は、ポリイミド溶液の還元粘度(ηsp/C)は、0.1以上であることが好ましく、より好ましくは1以上であり、さらに好ましくは2以上である。また5以下であることが好ましく、より好ましくは4.5以下であり、さらに好ましくは4以下である。 The reduced viscosity (ηsp / C) of the polyamic acid solution or the polyimide solution is preferably 0.1 or more, more preferably 1 or more, and further preferably 2 or more. Further, it is preferably 5 or less, more preferably 4.5 or less, and further preferably 4 or less.
 グリーンフィルムを得るための乾燥条件(塗布したポリアミド酸の乾燥条件)としては、例えば、N,N-ジメチルアセトアミドを溶媒として用いる場合は、乾燥温度は、好ましくは70~130℃、より好ましくは80~125℃であり、さらに好ましくは85~120℃である。前記乾燥温度を130℃以下とすることにより、分子量低下がおこり、グリーンフィルムが脆くなることを防止することができる。また、前記乾燥温度を130℃以下とすることにより、グリーンフィルム製造時にイミド化が一部進行し、イミド化工程時に所望の物性が得られにくくなることを防止することかできる。また、前記乾燥温度を70℃以上とすることにより、乾燥時間が長くなること、分子量低下がおこりやすくなること、及び、乾燥不十分によるハンドリング性の低下を抑制することができる。また、乾燥時間としては、乾燥温度にもよるが、好ましくは5~90分間であり、より好ましくは15~80分間である。乾燥時間を90分以下とすることにより、分子量低下やフィルムが脆くなることを抑制することができる。また、乾燥時間を5分以上とすることにより、乾燥不十分によるハンドリング性の低下を抑制することができる。
 乾燥装置は従来公知のものを適用でき、熱風、熱窒素、遠赤外線、高周波誘導加熱などを挙げることができる。
As the drying conditions for obtaining the green film (drying conditions for the applied polyamic acid), for example, when N, N-dimethylacetamide is used as a solvent, the drying temperature is preferably 70 to 130 ° C., more preferably 80. It is about 125 ° C., more preferably 85 to 120 ° C. By setting the drying temperature to 130 ° C. or lower, it is possible to prevent the green film from becoming brittle due to a decrease in molecular weight. Further, by setting the drying temperature to 130 ° C. or lower, it is possible to prevent the imidization from partially progressing during the production of the green film and making it difficult to obtain the desired physical properties during the imidization step. Further, by setting the drying temperature to 70 ° C. or higher, it is possible to suppress a long drying time, a tendency for a decrease in molecular weight, and a decrease in handleability due to insufficient drying. The drying time is preferably 5 to 90 minutes, more preferably 15 to 80 minutes, although it depends on the drying temperature. By setting the drying time to 90 minutes or less, it is possible to suppress a decrease in molecular weight and brittleness of the film. Further, by setting the drying time to 5 minutes or more, it is possible to suppress deterioration of handleability due to insufficient drying.
Conventionally known drying devices can be applied, and examples thereof include hot air, hot nitrogen, far infrared rays, and high frequency induction heating.
 グリーンフィルムをイミド化する具体的な方法としては、加熱処理を複数ステップで行いイミド化させることが好ましい。ステップ数としては、2以上であることが好ましく、より好ましくは3以上である。またステップ数としては、10以下が好ましく、より好ましくは5以下である。
 ステップ数を2以上(より好ましくは3以上)とすることにより、急激な加熱による溶媒の急激な蒸発を防止することができる。その結果、表面平滑性を良好とすることができる。また、ステップ数を2以上(より好ましくは3以上)とすることにより、分子が動き易くなり、テンションコントロールにより分子配向を高め易くすることができる。
 一方でステップ数が多すぎると逆反応が起こりやすい温度帯を使用することになり、得られるポリイミドフィルムの力学物性が低下するおそれがある。そこで、ステップ数を10以下とすることにより、得られるポリイミドフィルムの力学物性が低下することを抑制することができる。
 イミド化(加熱処理)を3ステップで行う場合、各ステップにおける温度や時間は、以下の観点で設定する。
 第1ステップ:残存溶媒を好適に除去することにより、フィルムの厚さ斑の平均値や表面粗さを良好とする。
 第1~第2ステップ:ある程度溶媒が残った状態でイミド化とテンションコントロールを行い、高配向とする。また、逆反応の起こりやすい温度域を避ける。
 第3ステップ:イミド化を完了させ、逆反応により生じた末端を再結合させる。
 具体的に、イミド化(加熱処理)を3ステップで行う場合の各ステップにおける温度や時間の好ましい範囲は、以下の通りである。
 第1ステップのイミド化温度としては、残存溶媒を除去することにより、フィルムの厚さ斑の平均値や表面粗さを良好とすることができることから、150℃以上であることが好ましく、より好ましくは180℃超であり、さらに好ましくは185℃以上であり、特に、好ましくは190℃以上である。また、第1ステップのイミド化温度は、220℃以下であることが好ましく、より好ましくは210℃以下である。
 第1ステップのイミド化時間としては、1分以上であることが好ましく、より好ましくは2分以上である。また、第1ステップのイミド化時間としては、10分以下であることが好ましく、より好ましくは5分以下である。
 第1ステップ終了後、第2ステップのイミド化反応(加熱処理)を行う。第2ステップのイミド化温度としては、220℃超であることが好ましく、より好ましくは230℃以上であり、さらに好ましくは240℃以上である。また、第2ステップのイミド化温度としては、280℃以下であることが好ましく、より好ましくは270℃以下である。
 第2ステップのイミド化時間としては、1分以上であることが好ましく、より好ましくは2分以上である。また、第2ステップのイミド化時間としては、10分以下であることが好ましく、より好ましくは5分以下である。
 第2ステップ終了後、第3ステップのイミド化反応(加熱処理)を行う。第3ステップのイミド化温度としては、280℃超であることが好ましく、より好ましくは290℃以上であり、さらに好ましくは295℃以上である。また、第3ステップのイミド化温度としては、フィルムの厚さ斑の平均値や表面粗さが良好となることから、480℃未満であることが好ましく、より好ましくは400℃以下であり、さらに好ましくは350℃以下である。
 第3ステップのイミド化時間としては、2分以上であることが好ましく、より好ましくは4分以上である。また、第3ステップのイミド化時間としては、20分以下であることが好ましく、より好ましくは10分以下である。
 上記複数ステップを経由することで、フィルムの厚さ斑の平均値や表面粗さが良好な離型シートを得ることができる。
As a specific method for imidizing the green film, it is preferable to perform a heat treatment in a plurality of steps to imidize the green film. The number of steps is preferably 2 or more, and more preferably 3 or more. The number of steps is preferably 10 or less, more preferably 5 or less.
By setting the number of steps to 2 or more (more preferably 3 or more), it is possible to prevent rapid evaporation of the solvent due to rapid heating. As a result, the surface smoothness can be improved. Further, by setting the number of steps to 2 or more (more preferably 3 or more), the molecules can move easily, and the tension control can easily increase the molecular orientation.
On the other hand, if the number of steps is too large, a temperature range in which a reverse reaction is likely to occur is used, and the mechanical properties of the obtained polyimide film may deteriorate. Therefore, by setting the number of steps to 10 or less, it is possible to suppress deterioration of the mechanical properties of the obtained polyimide film.
When imidization (heat treatment) is performed in three steps, the temperature and time in each step are set from the following viewpoints.
First step: By preferably removing the residual solvent, the average value of the thickness unevenness of the film and the surface roughness are improved.
1st to 2nd steps: Imidization and tension control are performed with a certain amount of solvent remaining to achieve high orientation. Also, avoid temperature ranges where reverse reactions are likely to occur.
Third step: The imidization is completed and the terminals produced by the reverse reaction are recombined.
Specifically, when imidization (heat treatment) is performed in three steps, the preferable range of temperature and time in each step is as follows.
The imidization temperature in the first step is preferably 150 ° C. or higher, more preferably, because the average value of the thickness unevenness of the film and the surface roughness can be improved by removing the residual solvent. Is more than 180 ° C., more preferably 185 ° C. or higher, and particularly preferably 190 ° C. or higher. The imidization temperature of the first step is preferably 220 ° C. or lower, more preferably 210 ° C. or lower.
The imidization time of the first step is preferably 1 minute or longer, more preferably 2 minutes or longer. The imidization time of the first step is preferably 10 minutes or less, more preferably 5 minutes or less.
After the completion of the first step, the imidization reaction (heat treatment) of the second step is performed. The imidization temperature of the second step is preferably 220 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 240 ° C. or higher. The imidization temperature in the second step is preferably 280 ° C. or lower, more preferably 270 ° C. or lower.
The imidization time of the second step is preferably 1 minute or longer, more preferably 2 minutes or longer. The imidization time of the second step is preferably 10 minutes or less, more preferably 5 minutes or less.
After the completion of the second step, the imidization reaction (heat treatment) of the third step is performed. The imidization temperature in the third step is preferably more than 280 ° C, more preferably 290 ° C or higher, and even more preferably 295 ° C or higher. The imidization temperature in the third step is preferably less than 480 ° C, more preferably 400 ° C or lower, and further preferably 400 ° C or less, because the average value of the thickness unevenness of the film and the surface roughness are good. It is preferably 350 ° C. or lower.
The imidization time of the third step is preferably 2 minutes or more, more preferably 4 minutes or more. The imidization time of the third step is preferably 20 minutes or less, more preferably 10 minutes or less.
By going through the above-mentioned plurality of steps, a release sheet having a good average value of film thickness unevenness and surface roughness can be obtained.
 イミド化(加熱処理)は、フィルム両端をピンテンターやクリップで把持して実施される。その際、フィルムの均一性を保持するためには、可能な限りフィルムの幅方向及び長手方向の張力を均一にすることが好ましい。具体的には、フィルムをピンテンターに供する直前に、フィルム両端部をブラシで押さえ、ピンが均一にフィルムに突き刺さるような工夫を挙げることができる。ブラシは、剛直で耐熱性のある繊維状のものが望ましく、高強度高弾性率モノフィラメントを採用することができる。これらイミド化の条件(温度、時間、張力)を満たすことにより、フィルム内部(表裏や平面方向)の配向歪の発生を抑制し、厚さ斑の平均値、表面粗さRa、残存溶媒量等が所定範囲となり、かつ機械的な物性(特に、引張弾性率、引張破断強度等)を充分に維持した離型シート(ポリイミドフィルム)を得ることができる。 Imidization (heat treatment) is carried out by grasping both ends of the film with a pin tenter or a clip. At that time, in order to maintain the uniformity of the film, it is preferable to make the tension in the width direction and the longitudinal direction of the film as uniform as possible. Specifically, just before the film is applied to the pin tenter, both ends of the film are pressed with a brush so that the pins are evenly pierced into the film. The brush is preferably a rigid and heat-resistant fibrous brush, and a high-strength and high elastic modulus monofilament can be adopted. By satisfying these imidization conditions (temperature, time, tension), the occurrence of orientation distortion inside the film (front and back and plane direction) is suppressed, and the average value of thickness unevenness, surface roughness Ra, residual solvent amount, etc. It is possible to obtain a release sheet (polyimide film) having a predetermined range and sufficiently maintaining mechanical properties (particularly, tensile elastic modulus, tensile breaking strength, etc.).
 前記離型シートは、ポリアミド酸のグリーンフィルムを経由して製造されることが好ましい。すなわち、グリーフィルムをイミド化反応することで、より剥離性や耐熱性に優れた剥離シートを得ることができる。 The release sheet is preferably manufactured via a green film of polyamic acid. That is, by imidizing the grease film, a release sheet having more excellent peelability and heat resistance can be obtained.
 前記離型シートは、通常は無延伸のシートであることが好ましいが、1軸または2軸に延伸されたシートであっても構わない。ここで、無延伸のシートとは、テンター延伸、ロール延伸、インフレーション延伸などによってフィルムの面拡張方向に機械的な外力を意図的に加えずに得られるフィルムをいう。 The release sheet is usually preferably a non-stretched sheet, but may be a uniaxially or biaxially stretched sheet. Here, the non-stretched sheet means a film obtained by tenter stretching, roll stretching, inflation stretching, or the like without intentionally applying a mechanical external force in the surface expansion direction of the film.
<被加工物の加圧加工方法>
 本実施形態に係る被加工物の加圧加工方法は、
 ポリイミド含有耐熱離型シートの間に被加工物を挟み込んだ状態で、前記被加工物を加圧する工程を含み、
 前記ポリイミド含有耐熱離型シートは、
  ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有し、
  厚さ斑の平均値が5%以下であり、
  表面粗さRaが0.05μm以下であり、
  引張弾性率が6GPa以上であり、
  下記式(1)を満たすことを特徴とする被加工物の加圧加工方法。
  100×|A1-A2|/A0<0.004   式(1)
(ここで、A0は、加熱前の25℃での前記ポリイミド含有耐熱離型シートの寸法であり、A1は、25℃から150℃まで加熱し、25℃に戻した際の寸法であり、A2は、A1の寸法の測定後、再度150℃に加熱し、25℃に戻した際の寸法である。)
<Pressurization method of workpiece>
The pressure processing method of the workpiece according to this embodiment is
Including a step of pressurizing the workpiece with the workpiece sandwiched between the polyimide-containing heat-resistant mold release sheets.
The polyimide-containing heat-resistant mold release sheet is
It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
The average value of thickness spots is 5% or less,
The surface roughness Ra is 0.05 μm or less, and the surface roughness Ra is 0.05 μm or less.
The tensile elastic modulus is 6 GPa or more,
A method for pressurizing a workpiece, which is characterized by satisfying the following formula (1).
100 × | A1-A2 | / A0 <0.004 Equation (1)
(Here, A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating, and A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C., and A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
 本実施形態に係る被加工物の加圧加工方法において使用するポリイミド含有耐熱離型シートについてはすでに説明したので、ここでの説明は省略することとする。 Since the polyimide-containing heat-resistant mold release sheet used in the pressure processing method for the workpiece according to the present embodiment has already been described, the description here will be omitted.
 本実施形態に係る被加工物の加圧加工方法は、前記ポリイミド含有耐熱離型シートの間に被加工物を挟み込んだ状態で、前記被加工物を加圧する工程を含む。 The method for pressurizing the workpiece according to the present embodiment includes a step of pressurizing the workpiece with the workpiece sandwiched between the polyimide-containing heat-resistant mold release sheets.
 被加工物としては、加圧により加工されるものであれば、特に限定されず、例えば、樹脂製のものが挙げられる。 The workpiece is not particularly limited as long as it is processed by pressurization, and examples thereof include those made of resin.
 前記加圧加工としては、成形加工、積層加工が挙げられる。成形加工の場合、被成形物(被加工物)を加圧(必要に応じて加熱)することにより、成形物を得ることができる。積層加工の場合、2以上の被積層物(被加工物)を重ねた状態で加圧(必要に応じて加熱)することにより、積層体(成形物)を得ることができる。 Examples of the pressure processing include molding processing and laminating processing. In the case of molding, a molded product can be obtained by pressurizing (heating if necessary) the workpiece (workpiece). In the case of laminating processing, a laminated body (molded product) can be obtained by pressurizing (heating if necessary) in a state where two or more workpieces (workpieces) are stacked.
 成形加工、積層加工を行うための装置としては、熱板プレス法、ダブルベルト法が挙げられる。熱板プレス法の場合、一対の前記ポリイミド含有耐熱離型シートをキャリアシート(搬送用シート)として、このキャリアシートの間に被加工物を挟み込み、これを加熱されているプレス間に送り込んで所定時間加圧する。また、ダブルベルト法の場合、一対のエンドレススチールベルト間に前記ポリイミド含有耐熱離型シート、被加工物を連続的に送り込み、ベルト間で挟んだ状態で移動させつつ加熱しながら加圧を行う。 Examples of the device for forming and laminating include a hot plate pressing method and a double belt method. In the case of the hot plate pressing method, the pair of polyimide-containing heat-resistant mold release sheets are used as carrier sheets (conveying sheets), a work piece is sandwiched between the carrier sheets, and the workpiece is fed between the heated presses to determine a predetermined value. Pressurize for hours. Further, in the case of the double belt method, the polyimide-containing heat-resistant mold release sheet and the workpiece are continuously fed between the pair of endless steel belts, and the work piece is pressed while being moved while being sandwiched between the belts.
 本実施形態に係る被加工物の加圧加工方法によれば、加圧加工する際に、前記ポリイミド含有耐熱離型シートを用いるため、高精度で再現よく成形物を得ることができる。 According to the pressure processing method for the workpiece according to the present embodiment, since the polyimide-containing heat-resistant mold release sheet is used during the pressure processing, a molded product can be obtained with high accuracy and good reproducibility.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
<作製例1:ポリアミド酸溶液1の作製>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、22.73質量部の4,4’-ジアミノベンズアニリド(DABAN)と、201.1質量部のN,N-ジメチルアセトアミド(DMAc)と、コロイダルシリカ(滑剤)をジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とを、コロイダルシリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%になるように加え、完全に溶解させた。次いで、22.73質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、173.1質量部のDMAcを加え希釈し、固形分(NV)12質量%、還元粘度(ηsp/C)3.10dl/gのポリアミド酸溶液1を得た。
<Preparation Example 1: Preparation of Polyamic Acid Solution 1>
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 22.73 parts by mass of 4,4'-diaminobenzanilide (DABAN) and 21.1 parts by mass of N, N- Colloidal silica (lubricant) is a dispersion of dimethylacetamide (DMAc) and colloidal silica (lubricant) dispersed in dimethylacetamide ("Snowtex (registered trademark) DMAC-ST-ZL" manufactured by Nissan Chemical Industries, Ltd.). The total amount of polymer solids in the polyamic acid solution was added to 0.4% by mass, and the mixture was completely dissolved. Then, 22.73 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA) was added separately as a solid, and then stirred at room temperature for 24 hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 1 having a solid content (NV) of 12% by mass and a reduction viscosity (ηsp / C) of 3.10 dl / g.
<作製例2:ポリアミド酸溶液2の作製>
 窒素導入管、温度計、攪拌棒を備えた容器を窒素置換した後、4,4’-ジアミノジフェニルエーテル(ODA)を入れた。次いで、DMAcを加えて完全に溶解させてから、ピロリメット酸無水物(PMDA)を加えて、モノマーとしてのODAとPMDAとが1/1のモル比でDMAc中で重合し、モノマー仕込濃度が15質量%となるようにし、25℃にて5時間攪拌すると、褐色の粘調なポリアミド酸溶液2を得た。還元粘度(ηsp/C)は2.1dl/gであった。
<Preparation Example 2: Preparation of Polyamic Acid Solution 2>
A container equipped with a nitrogen introduction tube, a thermometer and a stirring rod was replaced with nitrogen, and then 4,4'-diaminodiphenyl ether (ODA) was added. Next, DMAc was added to completely dissolve it, and then pyrolimetic acid anhydride (PMDA) was added to polymerize ODA and PMDA as monomers in DMAc at a molar ratio of 1/1, and the monomer charging concentration was 15. The mixture was adjusted to be mass% and stirred at 25 ° C. for 5 hours to obtain a brown viscous polyamic acid solution 2. The reduced viscosity (ηsp / C) was 2.1 dl / g.
<作製例3:ポリアミド酸溶液3の作製>
 DMAc中にODAを全ジアミン基準で60モル%供給して溶解させ、続いてパラフェニレンジアミン(1,4―フェニレンジアミン)P-PDA(40モル%)およびPMDAを順次供給し、室温で、約1時間撹拌した。最終的にテトラカルボン酸二無水物成分とジアミン成分が約100モル%化学量論からなるポリアミド酸濃度20質量%の溶液を調製した。このポリアミド酸溶液を氷冷し、無水酢酸、β-ピコリンを加え撹拌し、ポリアミド酸溶液3を得た。
<Preparation Example 3: Preparation of Polyamic Acid Solution 3>
60 mol% of ODA on a total diamine basis is supplied and dissolved in DMAc, followed by paraphenylenediamine (1,4-phenylenediamine) P-PDA (40 mol%) and PMDA, which are sequentially supplied at room temperature and about. The mixture was stirred for 1 hour. Finally, a solution having a polyamic acid concentration of 20% by mass consisting of a tetracarboxylic acid dianhydride component and a diamine component of about 100 mol% stoichiometry was prepared. This polyamic acid solution was ice-cooled, acetic anhydride and β-picoline were added, and the mixture was stirred to obtain a polyamic acid solution 3.
<作製例4:ポリアミド酸溶液4の作製>
 窒素導入管、温度計、攪拌棒を備えた容器を窒素置換した後、P-PDAを入れた。次いで、DMAcを加えて完全に溶解させてから、PMDAを加えて、モノマーとしてのP-PDAとPMDAとが1.0/1.0のモル比でDMAc中で重合し、モノマー仕込濃度が15質量%となるようにし、25℃にて5時間攪拌すると、褐色の粘調なポリアミド酸溶液4が得られた。
<Preparation Example 4: Preparation of Polyamic Acid Solution 4>
A container equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was replaced with nitrogen, and then P-PDA was placed. Next, DMAc was added to completely dissolve it, and then PMDA was added to polymerize P-PDA and PMDA as monomers in DMAc at a molar ratio of 1.0 / 1.0, and the monomer charging concentration was 15. When the content was adjusted to% by mass and stirred at 25 ° C. for 5 hours, a brown viscous polyamic acid solution 4 was obtained.
<作製例5:ポリアミド酸溶液5の作製>
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール500質量部を仕込んだ。次いで、N-メチル-2-ピロリドン5000質量部を加えて完全に溶解させた後、コロイダルシリカをジメチルアセトアミドに分散してなるスノーテックス(商品名)DMAc-Zl(日産化学工業株式会社製)40.5質量部(シリカを8.1質量部含む)を加え、ピロメリット酸二無水物485質量部を加え、25℃の反応温度で48時間攪拌すると、淡黄色で粘調なポリアミド酸溶液5が得られた。得られた溶液の還元粘度(ηsp/C)は4.2dl/gであった。
<Preparation Example 5: Preparation of Polyamic Acid Solution 5>
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a thermometer and a stirring rod, 500 parts by mass of 5-amino-2- (p-aminophenyl) benzoxazole was charged. Next, 5000 parts by mass of N-methyl-2-pyrrolidone was added and completely dissolved, and then Snowtex (trade name) DMAc-Zl (manufactured by Nissan Chemical Industry Co., Ltd.) 40 in which colloidal silica was dispersed in dimethylacetamide. Add 5.5 parts by mass (including 8.1 parts by mass of silica), add 485 parts by mass of pyromellitic dianhydride, and stir at a reaction temperature of 25 ° C. for 48 hours to obtain a pale yellow and viscous polyamic acid solution 5. was gotten. The reduced viscosity (ηsp / C) of the obtained solution was 4.2 dl / g.
<作製例6:ポリアミド酸溶液6の作製>
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、11.36質量部の4,4’-ジアミノベンズアニリド(DABAN)と、11.32質量部の2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)と、201.1質量部のN,N-ジメチルアセトアミド(DMAc)と、コロイダルシリカ(滑剤)をジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)とを、シリカ(滑剤)がポリアミド酸溶液中のポリマー固形分総量にて0.4質量%)になるように加え完全に溶解させた。次いで、22.73質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を固体のまま分割添加した後、室温で24時間攪拌した。その後、173.1質量部のDMAcを加え希釈し、固形分(NV)12質量%、還元粘度(ηsp/C)3.28dl/gのポリアミド酸溶液6を得た。
<Preparation Example 6: Preparation of Polyamic Acid Solution 6>
After nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a reflux tube and a stirring rod, 11.36 parts by mass of 4,4'-diaminobenzanilide (DABAN) and 11.32 parts by mass of 2,2' -A dispersion consisting of bis (trifluoromethyl) benzidine (TFMB), 21.1 parts by mass of N, N-dimethylacetamide (DMAc), and colloidal silica (lubricant) dispersed in dimethylacetamide (manufactured by Nissan Chemical Industries, Ltd.). "Snowtex (registered trademark) DMAC-ST-ZL") was added so that silica (lubricant) had a total polymer solid content of 0.4% by mass in the polyamic acid solution) and was completely dissolved. Then, 22.73 parts by mass of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA) was added separately as a solid, and then stirred at room temperature for 24 hours. Then, 173.1 parts by mass of DMAc was added and diluted to obtain a polyamic acid solution 6 having a solid content (NV) of 12% by mass and a reduction viscosity (ηsp / C) of 3.28 dl / g.
<作製例7:ポリアミド酸溶液7の作製>
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、1,3-ビス(4-アミノフェノキシ)ベンゼン930質量部を入れ、N,N-ジメチルアセトアミド15000質量部を導入し、均一になるようによく攪拌した後、コロイダルシリカをジメチルアセトアミドに分散してなるスノーテックス(商品名)DMAc-Zl(日産化学工業株式会社製)40.5質量部(シリカを8.1質量部含む)を加えた。この溶液を0℃まで冷やし、4,4’-オキシジフタル酸無水物990質量部を添加して、17時間攪拌した。薄黄色で粘調なポリアミド酸溶液7が得られた。得られた溶液の還元粘度(ηsp/C )は3.1dl/gであった。
<Preparation Example 7: Preparation of Polyamic Acid Solution 7>
After replacing the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod with nitrogen, 930 parts by mass of 1,3-bis (4-aminophenoxy) benzene was added, and 15,000 parts by mass of N, N-dimethylacetamide was introduced. After stirring well to make it uniform, Snowtex (trade name) DMAc-Zl (manufactured by Nissan Chemical Industry Co., Ltd.), which is obtained by dispersing colloidal silica in dimethylacetamide, 40.5 parts by mass (silica 8.1). (Including parts by mass) was added. The solution was cooled to 0 ° C., 990 parts by mass of 4,4'-oxydiphthalic anhydride was added, and the mixture was stirred for 17 hours. A pale yellow and viscous polyamic acid solution 7 was obtained. The reduced viscosity (ηsp / C) of the obtained solution was 3.1 dl / g.
<作製例8:ポリイミド溶液1の作製>
 窒素導入管、ディーン・スターク管及び還流管、温度計、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、19.86質量部の4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、4.97質量部の3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、80質量部のガンマブチロラクトン(GBL)を加えた。続いて31.02質量部の4,4’-オキシジフタル酸無二水物(ODPA)、24質量部のGBL、13質量部のトルエンを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、固形分が20質量%濃度となるようにGBLを加え、還元粘度0.70(ηsp/C)dl/gのポリイミド溶液1を得た。
<Preparation Example 8: Preparation of Polyimide Solution 1>
While introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark tube and a reflux tube, a thermometer, and a stirring rod, 19.86 parts by mass of 4,4'-diaminodiphenyl sulfone (4,4') was introduced. -DDS), 4.97 parts by mass of 3,3'-diaminodiphenyl sulfone (3,3'-DDS) and 80 parts by mass of gamma butyrolactone (GBL) were added. Subsequently, 31.02 parts by mass of 4,4'-oxydiphthalic acid unihydrate (ODPA), 24 parts by mass of GBL, and 13 parts by mass of toluene were added at room temperature, and then the temperature was raised to 160 ° C. The mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature, GBL was added so that the solid content had a concentration of 20% by mass, and a polyimide solution 1 having a reduced viscosity of 0.70 (ηsp / C) dl / g was obtained.
<作製例9:ポリイミド溶液2の作製>
 窒素導入管、ディーン・スターク管、還流管、温度計、及び、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、32.02質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)に、230質量部のN,N-ジメチルアセトアミド(DMAc)を加えて完全に溶解させた。次いで、44.42質量部の4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)を固体のまま分割添加した(6FDA/TFMBのモル比=1.00/1.00)後、室温で24時間攪拌した。これにより、固形分25質量%、還元粘度1.10dl/gのポリアミド酸溶液を得た。
 次に、得られたポリアミド酸溶液にDMAc204質量部を加えてポリアミド酸の濃度が15質量%になるように希釈した後、イミド化触媒としてイソキノリン1.3質量部を加えた。次いで、ポリアミド酸溶液を攪拌しながら、イミド化剤として無水酢酸12.25質量部をゆっくりと滴下した。その後、24時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
 次に、得られたポリイミド溶液100質量部を攪拌装置と攪拌機を備えた反応容器に移し替え、120rpmの速度で攪拌した。次いで、そこにメタノール150質量部をゆっくりと滴下させたところ、粉体状のポリイミドの析出が確認された。
 その後、内容物を吸引濾過にて濾別し、メタノールを用いて、洗浄した。濾別したポリイミド粉体を乾燥機を用いて、50℃で24時間乾燥させた後、260℃で更に5時間乾燥させ、目的とするポリイミド粉体を得た。
 得られたポリイミド粉体20質量部を80質量部のDMAcに溶解させて、さらに、コロイダルシリカ(滑剤)をジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST-ZL」)を、シリカ(滑剤)がポリイミド溶液中のポリマー固形分総量にて1.4質量%になるように加え、均一なポリイミド溶液2を得た。
<Preparation Example 9: Preparation of Polyimide Solution 2>
32.02 parts by mass of 2,2'-ditrifluoromethyl-4, while introducing nitrogen gas into a reaction vessel equipped with a nitrogen introduction tube, a Dean Stark tube, a reflux tube, a thermometer, and a stirring rod. To 4'-diaminobiphenyl (TFMB), 230 parts by mass of N, N-dimethylacetamide (DMAc) was added and completely dissolved. Then, 44.42 parts by mass of 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride (6FDA) was added separately in a solid state (molar ratio of 6FDA / TFMB = 1.00 /). After 1.00), the mixture was stirred at room temperature for 24 hours. As a result, a polyamic acid solution having a solid content of 25% by mass and a reduction viscosity of 1.10 dl / g was obtained.
Next, 204 parts by mass of DMAc was added to the obtained polyamic acid solution to dilute the polyamic acid concentration to 15% by mass, and then 1.3 parts by mass of isoquinoline was added as an imidization catalyst. Then, while stirring the polyamic acid solution, 12.25 parts by mass of acetic anhydride was slowly added dropwise as an imidizing agent. Then, stirring was continued for 24 hours and a chemical imidization reaction was carried out to obtain a polyimide solution.
Next, 100 parts by mass of the obtained polyimide solution was transferred to a reaction vessel equipped with a stirrer and a stirrer, and the mixture was stirred at a speed of 120 rpm. Then, when 150 parts by mass of methanol was slowly added dropwise thereto, precipitation of powdery polyimide was confirmed.
Then, the contents were filtered off by suction filtration and washed with methanol. The polyimide powder separated by filtration was dried at 50 ° C. for 24 hours using a dryer, and then dried at 260 ° C. for another 5 hours to obtain the desired polyimide powder.
A dispersion obtained by dissolving 20 parts by mass of the obtained polyimide powder in 80 parts by mass of DMAc and further dispersing colloidal silica (lubricant) in dimethylacetamide (Snowtex (registered trademark) DMAC manufactured by Nissan Chemical Industries, Ltd.). -ST-ZL ") was added so that silica (lubricant) had a total polymer solid content of 1.4% by mass in the polyimide solution to obtain a uniform polyimide solution 2.
<実施例1:ポリイミドフィルムF1の製造>
 ポリアミド酸溶液1を、ポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製の支持体)の無滑材面上にコンマコーターを用いて最終膜厚が15μmとなるよう調整してコーティングした。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルム(グリーンフィルム)を支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF1を500m得た。
<Example 1: Production of polyimide film F1>
The polyamic acid solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 μm using a comma coater. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After drying, the self-supporting polyamic acid film (green film) is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. The pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 200 ° C for 3 minutes, 250 ° C for 3 minutes, and 300 ° C for 6 minutes to carry out the imidization reaction. I made it progress. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F1 having a width of 450 mm.
<実施例2:ポリイミドフィルムF2の製造>
 ポリアミド酸溶液1をポリアミド酸溶液6に変更した以外は実施例1と同様にしてポリイミドフィルムF2を得た。
<Example 2: Production of polyimide film F2>
A polyimide film F2 was obtained in the same manner as in Example 1 except that the polyamic acid solution 1 was changed to the polyamic acid solution 6.
<実施例3:ポリイミドフィルムF10の製造>
 ポリアミド酸溶液1を、ポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製の支持体)の無滑材面上にコンマコーターを用いて最終膜厚が15μmとなるよう調整してコーティングした。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルム(グリーンフィルム)を支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、210℃で2分、260℃で2分、330℃で5分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF10を500m得た。
<Example 3: Production of polyimide film F10>
The polyamic acid solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 μm using a comma coater. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After drying, the self-supporting polyamic acid film (green film) is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. The pin sheet spacing is adjusted and transported so that unnecessary slack does not occur, and the film is heated at 210 ° C for 2 minutes, 260 ° C for 2 minutes, and 330 ° C for 5 minutes to carry out the imidization reaction. I made it progress. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F10 having a width of 450 mm.
<実施例4:ポリイミドフィルムF11の製造>
ポリアミド酸溶液1をポリアミド酸溶液6に変更した以外は実施例3と同様にしてポリイミドフィルムF11を得た。
<Example 4: Production of polyimide film F11>
A polyimide film F11 was obtained in the same manner as in Example 3 except that the polyamic acid solution 1 was changed to the polyamic acid solution 6.
<比較例1:ポリイミドフィルムF3の製造>
 ポリアミド酸溶液2を、ポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製の支持体)の無滑材面上にコンマコーターを用いて最終膜厚が15μmとなるよう調整してコーティングした。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。乾燥後に自己支持性を得たポリアミド酸フィルム(グリーンフィルム)を支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、180℃で3分、250℃で3分、480℃で5分の条件で加熱し、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF3を500m得た。
<Comparative Example 1: Production of Polyimide Film F3>
The polyamic acid solution 2 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 μm using a comma coater. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. After drying, the self-supporting polyamic acid film (green film) is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film does not break. The pin sheet spacing is adjusted and conveyed so that unnecessary slack does not occur, and the film is heated at 180 ° C for 3 minutes, 250 ° C for 3 minutes, and 480 ° C for 5 minutes to carry out the imidization reaction. I made it progress. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F3 having a width of 450 mm.
<比較例2:ポリイミドフィルムF4の製造>
 ポリアミド酸溶液2をポリアミド酸溶液3に変更した以外はポリイミドフィルムF3の比較例1と同様にしてポリイミドフィルムF4を得た。
<Comparative Example 2: Production of Polyimide Film F4>
A polyimide film F4 was obtained in the same manner as in Comparative Example 1 of the polyimide film F3 except that the polyamic acid solution 2 was changed to the polyamic acid solution 3.
<比較例3:ポリイミドフィルムF5の製造>
 ポリアミド酸溶液2をポリアミド酸溶液4に変更した以外はポリイミドフィルムF3の比較例1と同様にしてポリイミドフィルムF5を得た。
<Comparative Example 3: Production of Polyimide Film F5>
A polyimide film F5 was obtained in the same manner as in Comparative Example 1 of the polyimide film F3 except that the polyamic acid solution 2 was changed to the polyamic acid solution 4.
<比較例4:ポリイミドフィルムF6の製造>
 ポリイミド溶液1を、ポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製の支持体)の無滑材面上にコンマコーターを用いて最終膜厚が15μmとなるよう調整してコーティングした。ポリエチレンテレフタレート製フィルムA4100は、熱風炉内に通過して、巻き取られてゆき、この時に100℃にて10分間乾燥した。乾燥後に自己支持性を得た溶媒含有ポリイミドフィルム(グリーンフィルム)を支持体から剥離し、ピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンに差し込むことにより把持し、フィルムが破断しないように、かつ不必要なたるみが生じないようにピンシート間隔を調整して搬送し、200℃で3分、250℃で3分、300℃で6分の条件で加熱し、乾燥させた。その後、2分間で室温にまで冷却し、フィルムの両端の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、幅450mmのポリイミドフィルムF6を500m得た。
<Comparative Example 4: Production of Polyimide Film F6>
The polyimide solution 1 was coated on the non-slip material surface of the polyethylene terephthalate film A4100 (support manufactured by Toyobo Co., Ltd.) by adjusting the final film thickness to 15 μm using a comma coater. The polyethylene terephthalate film A4100 passed through a hot air furnace, was wound up, and was dried at 100 ° C. for 10 minutes at this time. A solvent-containing polyimide film (green film) that has obtained self-support after drying is peeled off from the support, passed through a pin tenter having a pin sheet on which pins are arranged, and the film end is gripped by inserting it into the pins, and the film breaks. The film was transported by adjusting the pin sheet spacing so as not to prevent unnecessary slack and to prevent unnecessary slack, and was heated and dried under the conditions of 200 ° C. for 3 minutes, 250 ° C. for 3 minutes, and 300 ° C. for 6 minutes. .. Then, the film was cooled to room temperature in 2 minutes, and the portions of the film having poor flatness were cut off with a slitter and wound into a roll to obtain 500 m of a polyimide film F6 having a width of 450 mm.
<比較例5:ポリイミドフィルムF7の製造>
 ポリイミド溶液1をポリイミド溶液2に変更した以外はポリイミドフィルムF6と同様にしてポリイミドフィルムF7を得た。
<Comparative Example 5: Production of Polyimide Film F7>
A polyimide film F7 was obtained in the same manner as the polyimide film F6 except that the polyimide solution 1 was changed to the polyimide solution 2.
<比較例6:ポリイミドフィルムF8の製造>
 ポリアミド酸溶液1を使用した以外は比較例1と同様にしてポリイミドフィルムF8を得た。
<Comparative Example 6: Production of Polyimide Film F8>
A polyimide film F8 was obtained in the same manner as in Comparative Example 1 except that the polyamic acid solution 1 was used.
<比較例7:ポリイミドフィルムF9の製造>
 ポリアミド酸溶液6を使用した以外は比較例1と同様にしてポリイミドフィルムF8を得た。
<Comparative Example 7: Production of Polyimide Film F9>
A polyimide film F8 was obtained in the same manner as in Comparative Example 1 except that the polyamic acid solution 6 was used.
<熱成形用シート(被加工物)の作製>
 上記のポリアミド酸溶液7を、厚さ188μmのポリエチレンテレフタレート製フィルムA4100(東洋紡株式会社製)の無滑剤面上に、コンマコーターを用いてコーティングし(ギャップは、200μm、塗工幅700mm)、110℃にて5分間乾燥後、支持体から剥がさずにポリアミド酸フィルムを巻き取った。
 得られたポリアミド酸フィルムを製膜機の巻きだし部に取り付け、上記のポリアミド酸溶液5を、コンマコーターを用いてポリアミド酸フィルム7の面にコーティングし(ギャップは、800μm、塗工幅700mm)、110℃にて20分間乾燥後、支持体から剥がさずにポリアミド酸フィルムを巻き取った。
 得られたポリアミド酸フィルムを再度製膜機の巻きだし部に取り付け、上記のポリアミド酸溶液7を、コンマコーターを用いてポリアミド酸フィルム5の面にコーティングし(ギャップは、200μm、塗工幅700mm)、110℃にて5分間乾燥した。乾燥後に支持体から剥離することで、(ポリアミド酸7)/(ポリアミド酸5)/(ポリアミド酸7)3層構成のポリアミド酸フィルム(グリーンフィルム)を得た。
 上記の多層ポリアミド酸フィルムを3つの熱処理ゾーンを有するピンテンターに通し、一段目150℃×2分、2段目220℃×2分、3段目475℃×4分間の熱処理を行い、500mm幅にスリットして、厚さ50μmの熱成形用シートを得た。この熱成形用シートにおける(ポリアミド酸7)/(ポリアミド酸5)/(ポリアミド酸7)の厚さの比は、0.25/1/0.25である。得られた熱成形用シートをエポキシ樹脂に包埋し、断面が観察できるようにミクロトームで切断し透過型電子顕微鏡にて断面を観察した。断面の電子顕微鏡画像においては組成の異なる層の境目が縞状に観察でき、その厚さ比率は塗布厚から求めた厚さ比率とほぼ一致していた。このシートを450mm幅にスリットして熱成形に使用した。
<Manufacturing of thermoforming sheet (workpiece)>
The above polyamic acid solution 7 is coated on the non-slip agent surface of a polyethylene terephthalate film A4100 (manufactured by Toyobo Co., Ltd.) having a thickness of 188 μm using a comma coater (gap is 200 μm, coating width is 700 mm), and 110 After drying at ° C. for 5 minutes, the polyamic acid film was wound up without peeling from the support.
The obtained polyamic acid film was attached to the unwinding portion of the film-making machine, and the above-mentioned polyamic acid solution 5 was coated on the surface of the polyamic acid film 7 using a comma coater (gap: 800 μm, coating width 700 mm). After drying at 110 ° C. for 20 minutes, the polyamic acid film was wound up without peeling from the support.
The obtained polyamic acid film was reattached to the unwinding portion of the film-making machine, and the above-mentioned polyamic acid solution 7 was coated on the surface of the polyamic acid film 5 using a comma coater (gap: 200 μm, coating width 700 mm). ), Dryed at 110 ° C. for 5 minutes. By peeling from the support after drying, a polyamic acid film (green film) having a three-layer structure of (polyamic acid 7) / (polyamic acid 5) / (polyamic acid 7) was obtained.
The above multilayer polyamic acid film is passed through a pin tenter having three heat treatment zones, and heat treatment is performed for the first stage at 150 ° C. × 2 minutes, the second stage at 220 ° C. × 2 minutes, and the third stage at 475 ° C. × 4 minutes to a width of 500 mm. The slit was made to obtain a thermoforming sheet having a thickness of 50 μm. The thickness ratio of (polyamic acid 7) / (polyamic acid 5) / (polyamic acid 7) in this thermoforming sheet is 0.25 / 1 / 0.25. The obtained thermoforming sheet was embedded in an epoxy resin, cut with a microtome so that the cross section could be observed, and the cross section was observed with a transmission electron microscope. In the electron micrograph of the cross section, the boundaries between the layers having different compositions could be observed in a striped pattern, and the thickness ratio was almost the same as the thickness ratio obtained from the coating thickness. This sheet was slit to a width of 450 mm and used for thermoforming.
<ポリアミド酸溶液、ポリイミド溶液の還元粘度(ηsp/C)>
 ポリマー濃度が0.2g/dlとなるようにN-メチル-2-ピロリドンに溶解した溶液をウベローデ型の粘度管により30℃で測定した。
<Reducing viscosity of polyamic acid solution and polyimide solution (ηsp / C)>
A solution dissolved in N-methyl-2-pyrrolidone so that the polymer concentration was 0.2 g / dl was measured at 30 ° C. using an Ubbelohde type viscosity tube.
<厚さ斑の平均値>
 実施例、比較例のポリイミドフィルムの厚さ斑の平均値を、以下の方法により求めた。
 <厚さ斑の平均値の求め方:離型シートがロール状の場合>
 幅方向(TD)の中央付近から、短冊状の試料を切り出した。短冊のサイズは、幅5cm、長さ5cmとした。その後、長さ方向(MD)に1mピッチで4枚の短冊を切り出し、合計5枚の試料を得た。
 各短冊につき、中央、及び、中央から長さ方向にそれぞれ5cm離間した箇所(2点)、及び、10cm離間した箇所(2点)の合計5点で厚さを測定した。
 各短冊につき、厚さ斑を、下記の計算により求めた。
   厚さ斑=100×(最大厚-最小厚)/(平均厚さ)
 最後に、5枚の短冊の厚さ斑を平均し、これを、厚さ斑の平均値とした。
 <厚さ斑の平均値の求め方:離型シートが長方形(枚葉)の場合>
 隅の4箇所と中央の1箇所の合計5箇所の厚さを測定した。測定する隅の4カ所は、近接する2辺からの距離が10cmの箇所とした。
 5箇所の厚さを平均し、これを厚さ斑の平均値とした。
 なお、各箇所での厚さの測定は、マイクロメーター(ファインリューフ社製、ミリトロン1254D)を用いて測定した。
 結果を表1に示す。
<Average value of thickness spots>
The average value of the thickness spots of the polyimide films of Examples and Comparative Examples was obtained by the following method.
<How to calculate the average value of thickness spots: When the release sheet is in the form of a roll>
A strip-shaped sample was cut out from the vicinity of the center in the width direction (TD). The size of the strip was 5 cm in width and 5 cm in length. Then, four strips were cut out at a pitch of 1 m in the length direction (MD) to obtain a total of five samples.
The thickness of each strip was measured at a total of 5 points, that is, a center, a point separated by 5 cm in the length direction from the center (2 points), and a point separated by 10 cm (2 points).
For each strip, the thickness spots were calculated by the following calculation.
Thickness spot = 100 x (maximum thickness-minimum thickness) / (average thickness)
Finally, the thickness spots of the five strips were averaged, and this was taken as the average value of the thickness spots.
<How to calculate the average value of thickness spots: When the release sheet is rectangular (single leaf)>
The thickness of 4 points in the corner and 1 point in the center was measured in total of 5 points. The four corners to be measured were set to have a distance of 10 cm from two adjacent sides.
The thicknesses at 5 points were averaged, and this was taken as the average value of the thickness spots.
The thickness at each location was measured using a micrometer (Millitron 1254D, manufactured by Fine Wolf Co., Ltd.).
The results are shown in Table 1.
<表面粗さRa>
 実施例、比較例のポリイミドフィルムの表面粗さRaを、以下の方法により求めた。
 JISB0601:2013(表面粗さの定義と表示)における中心線平均粗さ(以下Raと記載する)に準じて、触針式表面粗さ計(ミツトヨ社製、SV-C3100S4)にて測定した。rtip2μm、λc0.8mmにて測定を行った。
 結果を表1に示す。
<Surface roughness Ra>
The surface roughness Ra of the polyimide films of Examples and Comparative Examples was determined by the following method.
It was measured with a stylus type surface roughness meter (SV-C3100S4 manufactured by Mitutoyo Co., Ltd.) according to the center line average roughness (hereinafter referred to as Ra) in JISB0601: 2013 (definition and display of surface roughness). Measurements were performed at rtip 2 μm and λc 0.8 mm.
The results are shown in Table 1.
<離型シート(ポリイミドフィルム)の引張弾性率>
 実施例、比較例のポリイミドフィルムの引張弾性率を、以下の方法により求めた。
 乾燥後のフィルムを長手方向(MD方向)および幅方向(TD方向)にそれぞれ長さ100mm、幅10mmの短冊状に切り出して試験片とし、引張試験機(島津製作所製オートグラフ(商品名)機種名AG-5000A)を用い、引張速度50mm/分、チャック間距離40mmの条件で、引張弾性率を測定した。測定時の温度は、25℃とした。
MD方向とTD方向とで測定を行い、その平均値を引張弾性率とした。
 結果を表1に示す。
<Tension elastic modulus of mold release sheet (polyimide film)>
The tensile elastic modulus of the polyimide films of Examples and Comparative Examples was determined by the following method.
The dried film is cut into strips with a length of 100 mm and a width of 10 mm in the longitudinal direction (MD direction) and the width direction (TD direction), respectively, and used as test pieces. The tensile elastic modulus was measured using the name AG-5000A) under the conditions of a tensile speed of 50 mm / min and a chuck distance of 40 mm. The temperature at the time of measurement was 25 ° C.
Measurements were made in the MD direction and the TD direction, and the average value was taken as the tensile elastic modulus.
The results are shown in Table 1.
<100×|A1-A2|/A0の算出>
 実施例、比較例のポリイミドフィルムの100×|A1-A2|/A0を、以下の方法により求めた。
 測定対象のポリイミドフィルムについて、下記条件でMD方向の寸法変化率をそれぞれ測定した。
 (ポリイミドフィルムがロール状の場合)
 幅方向(TD)の中央付近から、短冊状の試料を切り出した。短冊のサイズは、幅10mm、長さ100mmとした。その後、長さ方向(MD)に1mピッチで4枚の短冊を切り出し、合計5枚の試料を得た。
 各試料を、さらに、試料長さ;10mm、試料幅;2mmに切り出した。
 室温(25℃)にて、加熱前のポリイミドフィルム(短冊)の寸法を測定し、これを、A0(10mm)とした。
 次に、前記ポリイミドフィルムを25℃から150℃まで加熱し、25℃に戻した際の寸法を測定し、これを、A1とした。
 次に、A1の寸法測定後のポリイミドフィルムを再度150℃に加熱し、25℃に戻した際の寸法を測定し、これをA2とした。
 その後、100×|A1-A2|/A0を算出した。
 これを、5つの短冊に対して行い、100×|A1-A2|/A0の平均値を実施例、比較例のポリイミドフィルムの100×|A1-A2|/A0の値とした。
 (ポリイミドフィルムが長方形(枚葉)の場合)
 隅の4箇所と中央の1箇所の合計5箇所から短冊状の試料を切り出した。短冊のサイズは、幅10mm、長さ100mmとした。隅の4カ所の試料は、端から幅方向に20mmの箇所を中心とする短冊とした。
 その後、上述の方法にて100×|A1-A2|/A0を算出した。
 これを、5つの短冊に対して行い、100×|A1-A2|/A0の平均値を実施例、比較例のポリイミドフィルムの100×|A1-A2|/A0の値とした。
  装置名;BRUKER社製TMA4000SA
  試料長さ;10mm
  試料幅;2mm
  昇温開始温度;25℃
  昇温終了温度;150℃
  昇温終了温度での保持時間;30min
  昇温速度;20℃/min
  降温速度;5℃/min
  雰囲気;アルゴン
 試料は予め23℃50%RHで24時間以上調湿したものを使用した。
 結果を表1に示す。
<100 × | A1-A2 | / Calculation of A0>
100 × | A1-A2 | / A0 of the polyimide films of Examples and Comparative Examples was determined by the following method.
For the polyimide film to be measured, the dimensional change rate in the MD direction was measured under the following conditions.
(When the polyimide film is in the form of a roll)
A strip-shaped sample was cut out from the vicinity of the center in the width direction (TD). The size of the strip was 10 mm in width and 100 mm in length. Then, four strips were cut out at a pitch of 1 m in the length direction (MD) to obtain a total of five samples.
Each sample was further cut into a sample length of 10 mm and a sample width of 2 mm.
The dimensions of the polyimide film (strip) before heating were measured at room temperature (25 ° C.), and this was defined as A0 (10 mm).
Next, the polyimide film was heated from 25 ° C. to 150 ° C., and the dimensions when the temperature was returned to 25 ° C. were measured, and this was designated as A1.
Next, the polyimide film after measuring the dimensions of A1 was heated to 150 ° C. again, and the dimensions when the temperature was returned to 25 ° C. were measured, and this was designated as A2.
Then, 100 × | A1-A2 | / A0 was calculated.
This was done for five strips, and the average value of 100 × | A1-A2 | / A0 was taken as the value of 100 × | A1-A2 | / A0 of the polyimide film of the example and the comparative example.
(When the polyimide film is rectangular (single leaf))
Strip-shaped samples were cut out from a total of 5 locations, 4 in the corner and 1 in the center. The size of the strip was 10 mm in width and 100 mm in length. The samples at the four corners were strips centered at 20 mm in the width direction from the end.
Then, 100 × | A1-A2 | / A0 was calculated by the above method.
This was done for five strips, and the average value of 100 × | A1-A2 | / A0 was taken as the value of 100 × | A1-A2 | / A0 of the polyimide film of the example and the comparative example.
Device name; TMA4000SA manufactured by BRUKER
Sample length; 10 mm
Sample width; 2 mm
Temperature rise start temperature; 25 ° C
Temperature rise end temperature; 150 ° C
Retention time at the end temperature of temperature rise; 30 min
Temperature rise rate; 20 ° C / min
Temperature down rate; 5 ° C / min
Atmosphere: Argon A sample was used which had been preliminarily adjusted to a humidity of 23 ° C. and 50% RH for 24 hours or more.
The results are shown in Table 1.
<離型シート(ポリイミドフィルム)の熱線膨張係数(CTE)>
 実施例、比較例のポリイミドフィルムの熱線膨張係数(CTE)を、以下の方法により求めた。
 測定対象の離型シート(ポリイミドフィルム)について、下記条件でMD方向およびTD方向の寸法変化率をそれぞれ測定し、30℃~45℃、45℃~60℃、・・・と15℃の間隔での寸法変化率/温度を測定し、この測定を300℃まで行い、全測定値の平均値をCTEとして算出した。
  装置名    ; MACサイエンス社製TMA4000S
  試料長さ   ; 20mm
  試料幅    ; 2mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 400℃
  昇温速度   ; 5℃/min
  雰囲気    ; アルゴン
 結果を表1に示す。
<Coefficient of thermal expansion (CTE) of release sheet (polyimide film)>
The coefficient of linear thermal expansion (CTE) of the polyimide films of Examples and Comparative Examples was determined by the following method.
For the release sheet (polygonite film) to be measured, measure the dimensional change rates in the MD direction and TD direction under the following conditions, respectively, at intervals of 30 ° C to 45 ° C, 45 ° C to 60 ° C, ... And 15 ° C. The dimensional change rate / temperature was measured, this measurement was performed up to 300 ° C., and the average value of all the measured values was calculated as CTE.
Device name; TMA4000S manufactured by MAC Science
Sample length; 20 mm
Sample width; 2 mm
Temperature rise start temperature; 25 ° C
Temperature rise end temperature; 400 ° C
Temperature rise rate; 5 ° C / min
Atmosphere; Argon The results are shown in Table 1.
<離型シート(ポリイミドフィルム)のガラス転移温度の測定>
 実施例、比較例のポリイミドフィルムのガラス転移温度を、以下の方法により求めた。
 示差走査型熱量計(SII社、DSC-200)により測定した。試料(ポリイミドフィルム)5mgをアルミニウム押え蓋型容器に入れ、クリンプして密封したものを用いた。まず、室温(25℃)から550℃まで20℃/分にて昇温させた。その過程にて得られる吸熱曲線において、吸熱ピークが出る前(ガラス転移温度以下)のベースラインの延長線と、吸熱ピークに向かう接線(ピークの立ち上がり部分からピークの頂点までの間での最大傾斜を示す接線)との交点の温度をもって、ガラス転移温度とした。
 結果を表1に示す。なお、実施例1、実施例2、比較例1、比較例2、比較例5、比較例6では、500℃においてもガラス転移が起こらず、さらに昇温すると先に熱分解が起こったため、ガラス転移温度の測定はできなかった。
<Measurement of glass transition temperature of release sheet (polyimide film)>
The glass transition temperature of the polyimide films of Examples and Comparative Examples was determined by the following method.
It was measured by a differential scanning calorimeter (SII, DSC-200). A sample (polyimide film) of 5 mg was placed in an aluminum presser lid type container, crimped and sealed. First, the temperature was raised from room temperature (25 ° C.) to 550 ° C. at 20 ° C./min. In the heat absorption curve obtained in the process, the extension of the baseline before the heat absorption peak appears (below the glass transition temperature) and the tangent line toward the heat absorption peak (maximum slope from the rising part of the peak to the peak). The temperature at the intersection with the tangent line indicating) was defined as the glass transition temperature.
The results are shown in Table 1. In Example 1, Example 2, Comparative Example 1, Comparative Example 2, Comparative Example 5, and Comparative Example 6, glass transition did not occur even at 500 ° C., and thermal decomposition occurred earlier when the temperature was further raised. The transition temperature could not be measured.
<離型シートとして使用した際の評価(被成形体の表面平滑性、及び、使用後の離型シート状態)>
 実施例、比較例のポリイミドフィルムを幅450mmにスリットして2枚準備し、離型シートとした。この2枚の離型シートの間に上記<熱成形用シートの作製>にて得られた熱成形用シートを5枚挟み、熱板プレス法により加熱加圧成形を連続して行った。このときの熱板プレス条件として、熱板プレス部は幅470mm、長さ300mmの大きさのものを採用し、加熱温度が320℃、加圧圧力が40MPaで1回あたりのプレス時間を3分として製造をした。1回のプレス終了毎に、シートを約150mm送り出し、約60分で長さ約3mのポリイミド成形シートを作製した。
 なお、実施例1のポリイミドフィルムを用いて製造されたポリイミド成形シートは表面平滑性に優れ、どの部位の厚さを測定しても約250μmとほぼ均一な厚さで仕上がっていた。
 製造されたポリイミド成形シートを、熱成形用シートと離型シートに剥離し、熱成形用シート(被成形体)の剥離シートに接していた面の表面平滑性と、離型シートの熱成形用シートに接していた面の状態(使用後の離型シート状態)を観察した。ここで、表面平滑性及び使用後の離型シート状態が良好であれば、被成形体の離型性が良好であるといえる。
 なお、熱成形用シートの表面平滑性は、熱成形用シートの表面の状態と、熱成形用シートの断面を顕微鏡で観察した際の各熱成形用シート間における剥がれの有無とを確認し、全く問題のないものを◎、僅かに表面異常や剥がれのあるものを△、表面の状態、剥がれともに異常のあるものを×とした。
 具体的に、表面の観察は、キーエンス製のVH-Z100Rを用いて、倍率100倍にて10か所の観察を行った。断面観察ついては、ポリイミド成形シートおよび熱成形用シートの片面(それぞれ熱成形用シートまたはポリイミド成形シートと接していない方の面)を樹脂で保護した後、ミクロトームを用いて断面を作製した。作製した断面についてニコン製の微分干渉顕微鏡で倍率100倍にて、10か所の観察を行った。
 また、使用後の離型シート状態を観察し、しわ、亀裂などの欠陥が全くないものを◎、僅かにそれらの見られるものを△、それらが多く見られるものを×として判定した。
 結果を表1に示す。
<Evaluation when used as a mold release sheet (surface smoothness of the object to be molded and the state of the mold release sheet after use)>
Two polyimide films of Examples and Comparative Examples were slit to a width of 450 mm to prepare two sheets, which were used as release sheets. Five thermoforming sheets obtained in the above <Preparation of thermoforming sheet> were sandwiched between these two release sheets, and thermoforming and pressure molding was continuously performed by a hot plate pressing method. As the hot plate pressing conditions at this time, a hot plate pressing portion having a width of 470 mm and a length of 300 mm is adopted, the heating temperature is 320 ° C., the pressurizing pressure is 40 MPa, and the pressing time per press is 3 minutes. Manufactured as. After each press, the sheet was fed out by about 150 mm, and a polyimide molded sheet having a length of about 3 m was produced in about 60 minutes.
The polyimide molded sheet produced by using the polyimide film of Example 1 had excellent surface smoothness, and was finished with a substantially uniform thickness of about 250 μm regardless of the thickness of any portion.
The manufactured polyimide molded sheet is peeled off into a thermoforming sheet and a mold release sheet, and the surface smoothness of the surface of the thermoforming sheet (object to be molded) in contact with the release sheet and the thermoforming of the mold release sheet are used. The state of the surface in contact with the sheet (the state of the release sheet after use) was observed. Here, if the surface smoothness and the state of the mold release sheet after use are good, it can be said that the mold release property of the object to be molded is good.
Regarding the surface smoothness of the thermoforming sheet, the state of the surface of the thermoforming sheet and the presence or absence of peeling between the thermoforming sheets when the cross section of the thermoforming sheet was observed with a microscope were confirmed. Those with no problem were marked with ⊚, those with slight surface abnormalities and peeling were marked with Δ, and those with surface conditions and peeling were marked with ×.
Specifically, the surface was observed at 10 locations using a VH-Z100R manufactured by KEYENCE at a magnification of 100 times. For cross-section observation, one side of the polyimide molded sheet and the thermoforming sheet (the side not in contact with the thermoforming sheet or the polyimide molded sheet, respectively) was protected with a resin, and then a cross section was prepared using a microtome. The prepared cross section was observed at 10 points with a differential interference microscope manufactured by Nikon at a magnification of 100 times.
In addition, the state of the release sheet after use was observed, and those having no defects such as wrinkles and cracks were judged as ⊚, those with a few of them were judged as Δ, and those with many of them were judged as ×.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (3)

  1.  ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有し、
     厚さ斑の平均値が5%以下であり、
     表面粗さRaが0.05μm以下であり、
     引張弾性率が6GPa以上であり、
     下記式(1)を満たすことを特徴とするポリイミド含有耐熱離型シート。
      100×|A1-A2|/A0<0.004   式(1)
    (ここで、A0は、加熱前の25℃での前記ポリイミド含有耐熱離型シートの寸法であり、A1は、25℃から150℃まで加熱し、25℃に戻した際の寸法であり、A2は、A1の寸法の測定後、再度150℃に加熱し、25℃に戻した際の寸法である。)
    It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
    The average value of thickness spots is 5% or less,
    The surface roughness Ra is 0.05 μm or less, and the surface roughness Ra is 0.05 μm or less.
    The tensile elastic modulus is 6 GPa or more,
    A polyimide-containing heat-resistant mold release sheet characterized by satisfying the following formula (1).
    100 × | A1-A2 | / A0 <0.004 Equation (1)
    (Here, A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating, and A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C., and A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
  2.  線熱膨張係数が6ppm/K以下であることを特徴とする請求項1に記載のポリイミド含有耐熱離型シート。 The polyimide-containing heat-resistant mold release sheet according to claim 1, wherein the linear thermal expansion coefficient is 6 ppm / K or less.
  3.  ポリイミド含有耐熱離型シートの間に被加工物を挟み込んだ状態で、前記被加工物を加圧する工程を含み、
     前記ポリイミド含有耐熱離型シートは、
      ビフェニルテトラカルボン酸二無水物、及び、ジアミノベンズアニリドに由来する構造単位を有し、
      厚さ斑の平均値が5%以下であり、
      表面粗さRaが0.05μm以下であり、
      引張弾性率が6GPa以上であり、
      下記式(1)を満たすことを特徴とする被加工物の加圧加工方法。
      100×|A1-A2|/A0<0.004   式(1)
    (ここで、A0は、加熱前の25℃での前記ポリイミド含有耐熱離型シートの寸法であり、A1は、25℃から150℃まで加熱し、25℃に戻した際の寸法であり、A2は、A1の寸法の測定後、再度150℃に加熱し、25℃に戻した際の寸法である。)
    Including the step of pressurizing the workpiece with the workpiece sandwiched between the polyimide-containing heat-resistant mold release sheets.
    The polyimide-containing heat-resistant mold release sheet is
    It has a structural unit derived from biphenyltetracarboxylic acid dianhydride and diaminobenzanilide.
    The average value of thickness spots is 5% or less,
    The surface roughness Ra is 0.05 μm or less, and the surface roughness Ra is 0.05 μm or less.
    The tensile elastic modulus is 6 GPa or more,
    A method for pressurizing a workpiece, which is characterized by satisfying the following formula (1).
    100 × | A1-A2 | / A0 <0.004 Equation (1)
    (Here, A0 is the dimension of the polyimide-containing heat-resistant mold release sheet at 25 ° C. before heating, and A1 is the dimension when heated from 25 ° C. to 150 ° C. and returned to 25 ° C., and A2. Is the dimension when the dimension of A1 is measured, then heated to 150 ° C. and returned to 25 ° C.).
PCT/JP2021/025410 2020-11-27 2021-07-06 Polyimide-containing heat-resistant release sheet and pressure forming method for work WO2022113414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536481A JPWO2022113414A1 (en) 2020-11-27 2021-07-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-196625 2020-11-27
JP2020196625 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022113414A1 true WO2022113414A1 (en) 2022-06-02

Family

ID=81754449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025410 WO2022113414A1 (en) 2020-11-27 2021-07-06 Polyimide-containing heat-resistant release sheet and pressure forming method for work

Country Status (2)

Country Link
JP (1) JPWO2022113414A1 (en)
WO (1) WO2022113414A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150453A (en) * 1988-12-01 1990-06-08 Sumitomo Bakelite Co Ltd Polyimide film and its production
JP2003127267A (en) * 2001-10-29 2003-05-08 Fukui Prefecture Heat-resistant release sheet and method for manufacturing the sheet
JP2009067859A (en) * 2007-09-12 2009-04-02 Du Pont Toray Co Ltd Polyimide film and copper-clad laminate using the same as base material
JP2019528368A (en) * 2016-08-23 2019-10-10 デリム コーポレイション カンパニー リミテッド Polyimide precursor resin composition having improved resin stability and heat resistance and transparency, method for producing polyimide film using the same, and polyimide film produced thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150453A (en) * 1988-12-01 1990-06-08 Sumitomo Bakelite Co Ltd Polyimide film and its production
JP2003127267A (en) * 2001-10-29 2003-05-08 Fukui Prefecture Heat-resistant release sheet and method for manufacturing the sheet
JP2009067859A (en) * 2007-09-12 2009-04-02 Du Pont Toray Co Ltd Polyimide film and copper-clad laminate using the same as base material
JP2019528368A (en) * 2016-08-23 2019-10-10 デリム コーポレイション カンパニー リミテッド Polyimide precursor resin composition having improved resin stability and heat resistance and transparency, method for producing polyimide film using the same, and polyimide film produced thereby

Also Published As

Publication number Publication date
JPWO2022113414A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
TWI408200B (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal laminated laminate
TWI447201B (en) Then the film
WO2006115258A1 (en) Novel polyimide film and use thereof
JP6325265B2 (en) Polyimide film and manufacturing method thereof
JP4963960B2 (en) Novel polyimide film and laminate including the polyimide film
JP5402254B2 (en) Multilayer polyimide film
JP4893240B2 (en) Heat-resistant release sheet
JP5870396B2 (en) Polyimide film
JP2008081577A (en) Adhesive sheet, metal-laminated sheet, and printed wiring board
JP2007169494A (en) Aromatic polyimide film, cover-lay film and flexible laminated plate
US20080038568A1 (en) Method for Producting Synthetic Resin Film and Synthetic Resin Film
JP6523736B2 (en) Polyimide film
JP7287536B2 (en) Polyimide film and its manufacturing method
JP3947994B2 (en) Polyimide film, its production method and use
JP4880911B2 (en) Dimensionally stable polyimide film and use thereof
WO2022113414A1 (en) Polyimide-containing heat-resistant release sheet and pressure forming method for work
JP3912617B2 (en) Adhesive sheet, metal laminate sheet and printed wiring board
JP2006044254A (en) Method for manufacturing synthetic resin film having controlled molecular orientation and its use
JP5874184B2 (en) Coating die for solution casting and solution casting method
JP5549360B2 (en) Method for producing polyimide film and polyimide film roll
JP2006045353A (en) Polyimide benzoxazole film and method for producing the same
WO2008050705A1 (en) Polyimide film and method for production thereof
JP3912618B2 (en) Adhesive sheet, metal laminate sheet and printed wiring board
JP2006117792A (en) Novel polyimide film
JP7287535B2 (en) Polyimide film and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022536481

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21897394

Country of ref document: EP

Kind code of ref document: A1