WO2022113319A1 - Cutting tool, cutting system, and installing method - Google Patents

Cutting tool, cutting system, and installing method Download PDF

Info

Publication number
WO2022113319A1
WO2022113319A1 PCT/JP2020/044421 JP2020044421W WO2022113319A1 WO 2022113319 A1 WO2022113319 A1 WO 2022113319A1 JP 2020044421 W JP2020044421 W JP 2020044421W WO 2022113319 A1 WO2022113319 A1 WO 2022113319A1
Authority
WO
WIPO (PCT)
Prior art keywords
shank
load
distance
sensor
strain sensor
Prior art date
Application number
PCT/JP2020/044421
Other languages
French (fr)
Japanese (ja)
Inventor
小池雄介
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022506246A priority Critical patent/JP7168124B2/en
Priority to PCT/JP2020/044421 priority patent/WO2022113319A1/en
Priority to PCT/JP2021/041545 priority patent/WO2022113750A1/en
Priority to JP2022525263A priority patent/JP7294536B2/en
Publication of WO2022113319A1 publication Critical patent/WO2022113319A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/04Tool holders for a single cutting tool
    • B23B29/12Special arrangements on tool holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool

Definitions

  • This disclosure relates to cutting tools, cutting systems and mounting methods.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2019-209420 discloses the following cutting processing system. That is, the cutting system is a processing device main body that performs cutting by contacting the cutting edge provided at the end of the cutting tool that is fixed to the tool fixing portion and extends at a predetermined length with the rotating work piece.
  • a cutting system including a data acquisition device and an information processing device, in which a plurality of strain sensors that measure strain generated in the cutting tool due to cutting resistance during cutting are provided along the longitudinal direction of the cutting tool.
  • the measurement data acquisition device is provided side by side, and the measurement data acquisition device acquires sensor data which is data based on each output signal of the strain sensor, and the information processing device receives the sensor data of each of the plurality of strain sensors.
  • the deflection of the cutting tool is obtained based on the sensor data of each of the plurality of strain sensors, and the machining error in the cutting process is obtained based on the deflection.
  • the cutting tool of the present disclosure is a cutting tool for turning, and includes a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank.
  • a shear strain sensor capable of measuring the shear strain of the shank, in a first direction in which the shank height of the shank is W, parallel to the bottom surface of the shank, and orthogonal to the axis of the shank.
  • the distance between the center of the shank and the reference point of the cutting edge at the mounting position is defined as the distance dx, and the center of the shank at the mounting position and the shank in the second direction orthogonal to the bottom surface of the shank.
  • the distance to the reference point is defined as the distance dy
  • the distance between the mounting position and the reference point in the third direction parallel to the axis is defined as the sensor distance D
  • the distance dx and the distance dy are defined.
  • the sensor distance D of the shear strain sensor satisfies the formula (A). D ⁇ 0.74W + 2.09maxdxy ... (A)
  • the cutting tool of the present disclosure is a cutting tool for turning, and includes a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank.
  • a first shear strain sensor capable of measuring the shear strain of the shank, the shank comprising four surfaces surrounding an axis, the first shear strain sensor being at least one of the four surfaces.
  • the cutting tool of the present disclosure is a cutting tool for turning, and includes a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank.
  • a first vertical strain sensor capable of measuring the vertical strain of the shank, the shank comprising four surfaces surrounding an axis, the first vertical strain sensor being the cutting edge of the four surfaces.
  • the nearest third surface of the four surfaces facing the first surface is divided into three equal regions arranged in the circumferential direction of the shank, the three regions on the third surface are divided into three equal parts.
  • the region farthest from the reference point and the fourth surface of the four surfaces facing the second surface are divided into three equal regions arranged in the circumferential direction of the shank, the first It is mounted on any one of the three regions on the surface, which is the furthest from the reference point.
  • FIG. 1 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a state in which a cutting tool according to the first embodiment of the present disclosure is attached to a machine tool.
  • FIG. 3 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram showing a configuration of a processing device in the cutting system according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram showing an example of the configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a state in which a cutting tool according to the first embodiment of the present disclosure is attached to a machine tool.
  • FIG. 7 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 8 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 11 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 12 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 13 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 14 is a diagram showing an example of the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure.
  • FIG. 15 is a cross-sectional view showing the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view showing the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure.
  • FIG. 17 is a diagram showing an example of the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure.
  • FIG. 18 is a cross-sectional view showing the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure.
  • FIG. 19 is a cross-sectional view showing the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure.
  • FIG. 20 is a diagram showing an example of the configuration of a cutting tool according to the third modification of the first embodiment of the present disclosure.
  • FIG. 21 is a cross-sectional view showing the configuration of the cutting tool according to the third modification of the first embodiment of the present disclosure.
  • FIG. 22 is a cross-sectional view showing the configuration of the cutting tool according to the third modification of the first embodiment of the present disclosure.
  • FIG. 23 is a diagram showing an example of the configuration of the cutting tool according to the modified example 4 of the first embodiment of the present disclosure.
  • FIG. 24 is a diagram showing an example of the configuration of the cutting tool according to the modification 5 of the first embodiment of the present disclosure.
  • FIG. 25 is a diagram showing an example of the configuration of the cutting tool according to the modification 6 of the first embodiment of the present disclosure.
  • FIG. 26 is a diagram showing an example of the configuration of the cutting tool according to the modification 7 of the first embodiment of the present disclosure.
  • FIG. 27 is a diagram showing an example of the configuration of the cutting tool according to the modification 8 of the first embodiment of the present disclosure.
  • FIG. 28 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 8 of the first embodiment of the present disclosure.
  • FIG. 29 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 8 of the first embodiment of the present disclosure.
  • FIG. 30 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 8 of the first embodiment of the present disclosure.
  • FIG. 31 is a diagram showing an example of the configuration of the cutting tool according to the modified example 9 of the first embodiment of the present disclosure.
  • FIG. 32 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 9 of the first embodiment of the present disclosure.
  • FIG. 33 is a diagram showing an example of the configuration of the cutting tool according to the modification 10 of the first embodiment of the present disclosure.
  • FIG. 34 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 10 of the first embodiment of the present disclosure.
  • FIG. 35 is a diagram showing an example of the configuration of the cutting tool according to the modification 11 of the first embodiment of the present disclosure.
  • FIG. 36 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 11 of the first embodiment of the present disclosure.
  • FIG. 37 is a diagram showing a configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 38 is a cross-sectional view showing the configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 38 is a cross-sectional view showing the configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 39 is a diagram showing a calculation result of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 40 is a diagram showing a calculation result of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 41 is a diagram showing a calculation result of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 42 is a diagram showing a calculation result of a shear strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 40 is a diagram showing a calculation result of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 41 is a diagram showing a calculation result of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 42 is
  • FIG. 43 is a diagram showing a calculation result of a shear strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 44 is a diagram showing a calculation result of a shear strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 45 is a diagram showing a configuration of a sword bite which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 46 is a cross-sectional view showing the configuration of a sword bite, which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 47 is a diagram showing a calculation result of vertical strain in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 48 is a diagram showing a calculation result of shear strain in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 49 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 50 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 50 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure.
  • FIG. 51 is a diagram showing the relationship between the shank height and the equal strain distance in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 52 is a diagram showing the relationship between the shank height and the equal strain distance in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 53 is a flowchart defining an example of a mounting method when mounting a strain sensor on a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 54 is a diagram showing an example of the configuration of the cutting tool according to the second embodiment of the present disclosure.
  • FIG. 55 is a cross-sectional view showing the configuration of the cutting tool according to the second embodiment of the present disclosure.
  • FIG. 56 is a diagram showing an example of the configuration of the cutting tool according to the third embodiment of the present disclosure.
  • FIG. 57 is a cross-sectional view showing the configuration of the cutting tool according to the third embodiment of the present disclosure.
  • FIG. 58 is a diagram showing an example of the configuration of the cutting tool according to the fourth embodiment of the present disclosure.
  • FIG. 59 is a diagram showing another example of the mounting position of the strain sensor in the cutting tool according to the first to fourth embodiments of the present disclosure.
  • FIG. 60 is a diagram showing another example of the mounting position of the strain sensor in the cutting tool according to the first to fourth embodiments of the present disclosure.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is to provide a cutting tool, a cutting system and a mounting method capable of measuring the strain of a shank with higher sensitivity by using a strain sensor. It is to be.
  • the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank.
  • the sensor is a shear strain sensor capable of measuring the shear strain of the shank, the shank height of the shank is W, parallel to the bottom surface of the shank, and orthogonal to the axis of the shank.
  • the distance dx is the distance between the center of the shank at the mounting position and the reference point of the cutting edge in the first direction, which is the direction, and the mounting in the second direction perpendicular to the bottom surface of the shank.
  • the distance between the center of the shank and the reference point at the position is defined as the distance dy
  • the distance between the mounting position and the reference point in the third direction parallel to the axis is defined as the sensor distance D.
  • the sensor distance D of the shear strain sensor satisfies the equation (1). D ⁇ 0.74W + 2.09maxdxy ... (1)
  • the configuration in which the sensor distance D of the shear strain sensor satisfies the above equation (1) is different from the configuration in which the vertical strain sensor capable of measuring the vertical strain of the shank is used instead of the shear strain sensor, in the first direction or.
  • the shear strain generated by the load in the second direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the sensor distance D of the shear strain sensor satisfies the equation (2).
  • the shear strain generated by the load in the first direction or the load in the second direction can be measured with higher sensitivity as compared with the configuration in which the vertical strain sensor is used instead of the shear strain sensor. ..
  • the cutting tool includes a plurality of the sensors, at least two of the plurality of sensors are the shear strain sensors, and each sensor distance of the two shear strain sensors. D satisfies the above formula (2).
  • shear strain on a plurality of surfaces of a shank can be measured with high sensitivity.
  • one of the two shear strain sensors is a first load which is a load in the first direction, a second load which is a load in the second direction, and a load in the third direction.
  • the third load it has the highest sensitivity to the second load, and the other of the two shear strain sensors is the first of the first load, the second load and the third load. Has maximum sensitivity to loads.
  • the cutting tool includes a plurality of the sensors, and at least one of the plurality of sensors is a vertical strain sensor capable of measuring the vertical strain of the shank.
  • the vertical strain sensor has a first load which is a load in the first direction, a second load which is a load in the second direction, and a third load which is a load in the third direction. Among them, it has the maximum sensitivity to the third load.
  • the sensor distance D of the vertical strain sensor satisfies the equation (3). 0.74W + 2.09mindxy ⁇ D ⁇ 0.74W + 2.09maxdxy ... (3)
  • the vertical strain sensor is a first load which is a load in the first direction, a second load which is a load in the second direction, and a load in the third direction.
  • the vertical strain sensor has the maximum sensitivity to the first load, and when the distance dy is larger than the distance dx, the first load, the second load, and the second load. Of the three loads, it has the highest sensitivity to the second load.
  • the strain generated by the first load or the second load can be measured with higher sensitivity by using the vertical strain sensor.
  • the cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank.
  • the sensor is a first shear strain sensor capable of measuring the shear strain of the shank, the shank includes four surfaces surrounding an axis, and the first shear strain sensor is the fourth.
  • the mounting surface which is at least one of the three surfaces, is divided into three equal regions arranged in the circumferential direction of the shank, the mounting surface is mounted in the middle of the three regions.
  • the shear strain sensor in the middle region of the three equally divided regions on the mounting surface, the shear strain generated by the load in the first direction or the second direction is higher. It can be measured by sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the first shear strain sensor is mounted in the middle of the five regions when the mounting surface is divided into five equal regions arranged in the circumferential direction of the shank. Ru.
  • the shear strain of the shank can be measured with even higher sensitivity.
  • the first shear strain sensor is mounted on the surface of the four surfaces closest to the reference point of the cutting edge.
  • the shear strain of the shank can be measured with even higher sensitivity.
  • the cutting tool further includes, as the sensor, a second shear strain sensor capable of measuring the shear strain of the shank, and the second shear strain sensor is among the four surfaces.
  • the adjacent surface adjacent to the mounting surface is divided into three equal regions arranged in the circumferential direction of the shank, the surface is mounted in the middle of the three regions.
  • the shear strain on each of the two surfaces of the shank can be measured with higher sensitivity.
  • the second shear strain sensor is mounted in the middle of the five regions when the adjacent surface is divided into five equal regions arranged in the circumferential direction of the shank. Ru.
  • the second shear strain sensor is mounted on the surface of the four surfaces that is second closest to the reference point of the cutting edge.
  • one of the first shear strain sensor and the second shear strain sensor is a first load that is parallel to the bottom surface of the shank and is a load in a direction orthogonal to the axis.
  • the first load has the highest sensitivity to the first load, and the first shear strain.
  • the other of the sensor and the second shear strain sensor has the highest sensitivity to the second load of the first load, the second load and the third load.
  • the cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank.
  • the sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, the shank includes four surfaces surrounding an axis, and the first vertical strain sensor is the fourth.
  • the second surface of the four surfaces closest to the reference point is divided into three regions arranged in the circumferential direction of the shank, the three regions on the second surface are divided into three equal parts.
  • the region closest to the reference point among the regions and the third surface of the four surfaces facing the first surface are divided into three equal regions arranged in the circumferential direction of the shank, the first The region of the three surfaces farthest from the reference point, and the fourth surface of the four surfaces facing the second surface are arranged in the three regions of the shank in the circumferential direction.
  • it is mounted on any one of the three regions on the fourth surface, which is the furthest from the reference point.
  • the vertical strain sensor is mounted in the vicinity of the boundary portion closest to the reference point or the boundary portion farthest from the reference point in the boundary portion of the surface of the shank, so that the direction is parallel to the axis.
  • the vertical strain caused by the load can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the first vertical strain sensor divides the first surface into five equal regions arranged in the circumferential direction of the shank
  • the first of the five regions on the first surface is said.
  • the region closest to the reference point the region closest to the reference point among the five regions on the second surface when the second surface is divided into five regions arranged in the circumferential direction of the shank.
  • the region farthest from the reference point among the five regions on the third surface when the third surface is divided into five regions arranged in the circumferential direction of the shank and the fourth surface. Is mounted in any one of the five regions on the fourth surface, which is the furthest from the reference point, when the shank is divided into five regions arranged in the circumferential direction.
  • the cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank.
  • the sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, wherein the shank comprises four surfaces surrounding an axis and of the cutting edge of the four surfaces.
  • the surface closest to the reference point is the first surface
  • the surface second closest to the reference point among the four surfaces is the second surface
  • the surface faces the first surface of the four surfaces.
  • the surface is the third surface and the surface of the four surfaces facing the second surface is the fourth surface, either the first surface or the third surface is of the shank.
  • the distance between the cutting edge and the reference point is defined as the distance dx
  • the distance between the center of the shank and the reference point at the mounting position in the direction perpendicular to the bottom surface is defined as the distance dy
  • the equation ( 4) is satisfied, 10dx ⁇ dy + W / 6 ...
  • the first vertical strain sensor is mounted on the first surface or the third surface.
  • the vertical strain sensor is mounted on the surface closest to the reference point or the surface facing the reference point in the shank of the cutting tool whose distance dx is small with respect to the distance dy, such as a sword bite.
  • the vertical strain caused by the load in the direction parallel to the axis can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank.
  • the sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, wherein the shank comprises four surfaces surrounding an axis and of the cutting edge of the four surfaces.
  • the surface closest to the reference point is the first surface
  • the surface second closest to the reference point among the four surfaces is the second surface
  • the surface faces the first surface of the four surfaces.
  • the surface is the third surface and the surface of the four surfaces facing the second surface is the fourth surface, either the second surface or the fourth surface is of the shank.
  • the distance between the cutting edge and the reference point is defined as the distance dx
  • the distance between the center of the shank and the reference point at the mounting position in the direction perpendicular to the bottom surface is defined as the distance dy
  • the equation ( 5) is satisfied, 10dy ⁇ dx + W / 6 ...
  • the first vertical strain sensor is mounted on the first surface or the third surface.
  • the vertical strain sensor is mounted on the surface closest to the reference point or the surface facing the reference point in the shank of the cutting tool in which the distance dy is smaller than the distance dx, so that the vertical strain sensor is mounted in the direction parallel to the axis.
  • the vertical strain generated by the load can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the cutting tool further includes, as the sensor, a first shear strain sensor and a second shear strain sensor capable of measuring the shear strain of the shank, and the first shear strain sensor.
  • the first shear strain sensor is mounted in the middle of the three regions when the first surface is divided into three equal regions arranged in the circumferential direction of the shank, and the second shear strain sensor is the second shear strain sensor.
  • the two surfaces are divided into three regions arranged in the circumferential direction of the shank, the two surfaces are mounted on the region in the middle of the three regions, and the first vertical strain sensor is parallel to the bottom surface of the shank.
  • the second load is a load in the direction orthogonal to the bottom surface
  • the third load is a load in the direction parallel to the axis. It has the maximum sensitivity to the third load, and one of the first shear strain sensor and the second shear strain sensor is the first load, the second load, and the third load. It has the maximum sensitivity to the first load, and the other of the first shear strain sensor and the second shear strain sensor is the first load, the second load, and the third load. It has the maximum sensitivity to the second load.
  • the cutting tool further includes, as the sensor, a third vertical strain sensor capable of measuring the vertical strain of the shank and a shear strain sensor capable of measuring the shear strain of the shank.
  • the third vertical strain sensor is mounted on the bottom surface of the shank of the four surfaces or the surface surface of the four surfaces facing the bottom surface, and the shear strain sensor is the shear strain sensor.
  • the vertical strain sensor has a first load that is parallel to the bottom surface and is a load in a direction orthogonal to the axis, a second load that is a load in a direction orthogonal to the bottom surface, and a load in a direction parallel to the axis.
  • the third vertical strain sensor has the maximum sensitivity to the third load
  • the third vertical strain sensor is the third of the first load, the second load, and the third load. It has the maximum sensitivity to two loads
  • the shear strain sensor has the maximum sensitivity to the first load among the first load, the second load and the third load.
  • the cutting tool further includes, as the sensor, a second vertical strain sensor capable of measuring the vertical strain of the shank and a shear strain sensor capable of measuring the shear strain of the shank.
  • the second vertical strain sensor is mounted on the first side surface of the four surfaces adjacent to the bottom surface of the shank, or on the second side surface of the four surfaces facing the first side surface.
  • the shear strain sensor divides the surface of the first side surface and the second side surface closest to the reference point into three regions arranged in the circumferential direction of the shank, the shear strain sensor is located in the middle of the three regions.
  • the first vertical strain sensor mounted on the region has a first load that is parallel to the bottom surface and is a load in a direction orthogonal to the axis, and a second load that is a load in a direction orthogonal to the bottom surface.
  • the third load which is a load in the direction parallel to the axis, has the maximum sensitivity to the third load
  • the second vertical strain sensor is the first load and the second load.
  • the shear strain sensor has the maximum sensitivity to the first load among the third loads, and the shear strain sensor is attached to the second load among the first load, the second load and the third load. On the other hand, it has the maximum sensitivity.
  • the cutting tool further comprises, as the sensor, a second vertical strain sensor and a third vertical strain sensor capable of measuring the vertical strain of the shank, the second vertical strain sensor.
  • the second vertical strain sensor Is mounted on the first side surface of the four surfaces adjacent to the bottom surface of the shank, or on the second side surface of the four surfaces facing the first side surface, and the third vertical strain sensor is ,
  • the first vertical strain sensor mounted on the bottom surface of the shank of the four surfaces or the surface of the four surfaces facing the bottom surface, the first vertical strain sensor being parallel to the bottom surface.
  • the third of the first load which is a load perpendicular to the axis
  • the second load which is a load perpendicular to the bottom surface
  • the third load which is a load parallel to the axis.
  • the second vertical strain sensor has the maximum sensitivity to the load
  • the second vertical strain sensor has the maximum sensitivity to the first load among the first load, the second load, and the third load.
  • the third vertical strain sensor has the maximum sensitivity to the second load among the first load, the second load and the third load.
  • the width of the shank and the shank height of the shank are equal.
  • the cutting system includes the cutting tool and a processing device, and the processing device causes an abnormality related to the cutting tool based on the measurement result of the sensor at the time of cutting. Detect.
  • the mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and the sensor.
  • the sensor is a shear strain sensor capable of measuring the shear strain of the shank
  • the step of mounting the sensor includes a step of preparing the shank and a step of mounting the sensor on the surface of the shank.
  • the shank height of the shank is W, and the center of the shank and the reference point of the cutting edge at the mounting position in the first direction parallel to the bottom surface of the shank and perpendicular to the axis of the shank.
  • the distance between the shank and the reference point is defined as the distance dx
  • the distance between the center of the shank and the reference point at the mounting position in the second direction orthogonal to the bottom surface of the shank is defined as the distance dy.
  • the distance between the mounting position and the reference point in the third direction, which is a parallel direction, is defined as the sensor distance D, and when the distance dx and the distance dy are different values, the distance dx and the distance dy are used.
  • the sensor distance D of the shear strain sensor is given by the equation (6).
  • the shear strain sensor is mounted on the surface of the shank so as to satisfy the above conditions. D ⁇ 0.74W + 2.09maxdxy ... (6)
  • the first direction or The shear strain generated by the load in the second direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and the sensor.
  • the sensor is a shear strain sensor capable of measuring the shear strain of the shank, and the shank includes four steps surrounding the axis.
  • the shear strain sensor is placed in three regions where the mounting surface, which is at least one of the four surfaces of the shank, is aligned in the circumferential direction of the shank. When it is divided into three equal parts, it is mounted on the area in the middle of the three areas.
  • the shear strain sensor in the middle region of the three equally divided regions on the mounting surface, the shear strain generated by the load in the first direction or the second direction is higher. It can be measured by sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be mounted, and the sensor.
  • the first surface of the four surfaces which includes the surrounding four surfaces and is closest to the reference point of the cutting edge, is the circumferential direction of the shank.
  • the region closest to the reference point among the three regions on the first surface, and the second region closest to the reference point among the four surfaces When divided into three equal parts, the region closest to the reference point among the three regions on the second surface, and the first of the four surfaces.
  • the third surface facing the surface is divided into three equal parts in the circumferential direction of the shank, the region farthest from the reference point among the three regions on the third surface, and the fourth.
  • the fourth surface of the three surfaces facing the second surface is divided into three equal parts in the circumferential direction of the shank, the most of the three regions of the fourth surface is the reference point. It is mounted in any one of the distant areas.
  • the vertical strain sensor is mounted in the vicinity of the boundary portion closest to the reference point or the boundary portion farthest from the reference point in the boundary portion of the surface of the shank, in a direction parallel to the axis.
  • the vertical strain caused by the load can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and the sensor.
  • the surface including the surrounding four surfaces, which is the closest to the reference point of the cutting edge among the four surfaces, is the first surface, and the surface of the four surfaces closest to the reference point is the first surface.
  • the surface facing the first surface of the four surfaces is designated as the third surface
  • the surface facing the second surface of the four surfaces is designated as the fourth surface.
  • One of the first surface and the third surface is the bottom surface of the shank, and in the step of mounting the sensor, the shank height of the shank is W, which is parallel to the bottom surface of the shank.
  • the distance between the center of the shank and the reference point of the cutting edge at the mounting position of the first vertical strain sensor in the direction orthogonal to the axis of the shank is defined as the distance dx, and is orthogonal to the bottom surface of the shank.
  • the first vertical strain sensor is mounted on the first surface or the first surface so as to satisfy the equation (7). It is mounted on the third surface. 10dx ⁇ dy + W / 6 ... (7)
  • the vertical strain sensor is mounted on the surface closest to the reference point or the surface facing the reference point in the shank of a cutting tool having a distance dx smaller than the distance dy, such as a sword bite.
  • the vertical strain caused by the load in the direction parallel to the axis can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and the sensor.
  • the surface including the surrounding four surfaces, which is the closest to the reference point of the cutting edge among the four surfaces, is the first surface, and the surface of the four surfaces closest to the reference point is the first surface.
  • the surface facing the first surface of the four surfaces is designated as the third surface
  • the surface facing the second surface of the four surfaces is designated as the fourth surface.
  • the shank height of the shank is W, which is parallel to the bottom surface of the shank.
  • the distance between the center of the shank and the reference point of the cutting edge at the mounting position of the first vertical strain sensor in the direction orthogonal to the axis of the shank is defined as the distance dx, and is orthogonal to the bottom surface of the shank.
  • the first vertical strain sensor is mounted on the first surface or the first surface so as to satisfy the equation (8). It is mounted on the third surface. 10dy ⁇ dx + W / 6 ... (8)
  • the vertical strain sensor is mounted on the surface closest to the reference point or the surface facing the reference point in the shank of the cutting tool whose distance dy is small with respect to the distance dx, in the direction parallel to the axis.
  • the vertical strain generated by the load can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • FIG. 1 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure.
  • the cutting system 301 includes a cutting tool 101 for turning and a processing device 201.
  • the cutting tool 101 is used, for example, for turning an object to be cut made of metal or the like.
  • the cutting tool 101 includes a shank 10 and one or more strain sensors 20.
  • the strain sensor 20 is mounted on the surface of the shank 10.
  • the strain sensor 20 is attached to the surface of the shank 10 via an adhesive or adhesive.
  • the strain sensor 20 may be fixed by being embedded in a resin material or the like while being attached to the shank 10.
  • the processing device 201 detects an abnormality related to the cutting tool 101 based on the measurement result of the strain sensor 20 during cutting.
  • the shape of the shank 10 is, for example, a regular quadrangular prism shape. More specifically, the shank 10 has a width b and a height when the length of the width direction WD in the cross section of the shank 10 is the width b and the length of the height direction HD in the cross section of the shank 10 is the height h.
  • the height direction HD is a direction parallel to the direction of the main movement in the plane perpendicular to the longitudinal direction of the shank 10 in the tool system reference method
  • the width direction WD is the main movement in the plane. The direction is perpendicular to the direction of.
  • the shank 10 may be a square shank having a height h larger than a width b and a quadrangular cross-sectional shape. Further, the shank 10 may be a round shank in which the width b and the height h are equal and the cross-sectional shape is not a regular quadrangle. Further, the shank 10 may be a round shank having a width b larger than a height h and a cross-sectional shape that is not a regular quadrangle.
  • the shape and dimensions of the square shank are specified by JIS (Japanese Industrial Standards) B 4126 (established on November 21, 2016) and ISO (International Organization for Standardization) 5610 (established on August 21, 2014).
  • the shape and dimensions of the round shank are specified by JIS B 4129 (established January 20, 2020) and ISO 5609 (established December 13, 2012).
  • the maximum length of the HD in the height direction of the shank 10 at the mounting position of the strain sensor 20 is defined as the height hsen
  • the maximum length of the WD in the width direction of the shank 10 at the mounting position of the strain sensor 20 is defined as the width bsen.
  • the height hsen is also referred to as a shank height W.
  • the number of flats that is, flat surfaces on the outer peripheral surface of the shank 10 which is a round shank may be zero, one, two, three, or four. That is, the cross-sectional shape symbols of the shank 10, which is a round shank, defined in JIS B 4129-1 are "10", “11", “12", “13”, “14”, “21”, “22”. , "31", “32", “33”, “34", and "41".
  • the width direction WD of the shank 10 whose cross-sectional shape symbol is "13", "14", or "22” is a direction parallel to the direction of the diameter ⁇ d.
  • the length of the WD in the width direction in the cross section of the shank 10 whose cross-sectional shape symbol is “13", “14”, or “22” is equal to the diameter ⁇ d of the shank 10.
  • the height direction HD of the shank 10 whose cross-sectional shape symbol is “11”, “12” or “21” is a direction parallel to the direction of the diameter ⁇ d. That is, the length of the HD in the height direction in the cross section of the shank 10 whose cross-sectional shape symbol is "11”, "12", or “21” is equal to the diameter ⁇ d of the shank 10.
  • the shank 10 can be attached with a cutting edge. More specifically, the shank 10 can be fitted with a chip 1 having a cutting edge at the first end in the direction of the virtual shaft 17. That is, the cutting tool 101 is a cutting tool with a replaceable cutting edge, that is, a throw-away tool.
  • the chip 1 has a polygonal shape such as a triangle, a square, a rhombus, and a pentagon when viewed from above.
  • the chip 1 has a through hole formed in the center of the upper surface and is fixed to the shank 10 by the fixing members 3A and 3B.
  • the shank 10 may have a cutting edge instead of being able to attach the cutting edge.
  • the shank 10 has a cutting edge at the first end in the direction of the axis 17. That is, the cutting tool 101 may be a tool other than the throw-away tool, such as a peeling tool or a brazing tool.
  • the shaft 17 is a neutral shaft that does not expand or contract when the shank 10 is bent.
  • the axis 17, which is the neutral axis, coincides with the center of gravity in the cross section of the shank 10 when the shank 10 is made of a single material.
  • Chip 1 has a reference point 1K.
  • the reference point 1K is, for example, the tip portion of the chip 1. More specifically, the reference point 1K in the chip 1 having a cutting angle of 90 ° or less is an intersection of the assumed working surface, the cutting edge surface, and the rake surface. Further, the reference point 1K in the chip 1 having a cutting angle larger than 90 ° is an intersection of the assumed work surface, the surface perpendicular to the assumed work surface and in contact with the corner radius of the chip 1, and the rake surface.
  • the reference point 1K with respect to the shape symbol D of the cutting edge with the circular tip is perpendicular to the assumed work surface passing through the central axis of the chip 1 and the assumed work surface. It is the intersection of the surface in contact with the blade and the rake surface.
  • the reference point 1K for the shape symbol S of the cutting edge with the circular tip that is, the “square” is the assumed work surface passing through the central axis of the chip 1 and the surface perpendicular to the assumed work surface and in contact with the cutting edge. And the intersection with the rake face.
  • the reference point 1K is defined by JIS B 4126-1.
  • FIG. 2 is a diagram showing a state in which the cutting tool according to the first embodiment of the present disclosure is attached to the machine tool.
  • the cutting tool 101 is sandwiched and fixed from above and below by the blade bases 50A and 50B in a machine tool such as a lathe. More specifically, the cutting tool 101 is placed on the turret 50A, and is sandwiched and fixed from above by the turret 50B. The cutting tool 101 performs cutting while being fixed by the tool rests 50A and 50B.
  • FIG. 3 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • the shank 10 includes four surfaces surrounding a virtual axis 17. More specifically, the shank 10 is adjacent to the bottom surface S1 which is a surface mounted on the tool post 50A, the top surface S2 which is a surface facing the bottom surface S1, and the top surface S2 when viewed from the chip 1 side in the clockwise direction.
  • a side surface S3 which is a surface to be used and a side surface S4 which is a surface facing the side surface S3 are included.
  • the direction parallel to the bottom surface S1 and orthogonal to the axis 17 is the X direction
  • the direction orthogonal to the bottom surface S1 is the Y direction
  • the direction parallel to the axis 17 is the Z direction.
  • the X direction is a direction parallel to the above-mentioned width direction WD, and is an example of the first direction.
  • the Y direction is a direction parallel to the above-mentioned height direction HD, and is an example of the second direction.
  • the Z direction is an example of the third direction.
  • the virtual line VL3 passing through the boundary portion of the side surface S3 and the virtual line VL4 passing through the boundary portion of the shaft 17, the upper surface S2 and the side surface S3, and the boundary portion of the bottom surface S1 and the side surface S4 are shown by broken lines.
  • the region on the side surface S4 side of the axis 17 and the region between the virtual line VL1 and the virtual line VL3 is referred to as the first quadrant Q1.
  • the region on the upper surface S2 side of the axis 17 and the region between the virtual line VL3 and the virtual line VL2 is referred to as the second quadrant Q2, and is the region on the upper surface S2 side of the axis 17.
  • the region between the virtual line VL2 and the virtual line VL4 is referred to as the third quadrant Q3, and the region on the side surface S3 side of the axis 17 and the region between the virtual line VL4 and the virtual line VL1 is the fourth. It is referred to as quadrant Q4 and is a region on the side surface S3 side of the axis 17, and a region between the virtual line VL1 and the virtual line VL3 is referred to as a fifth quadrant Q5 and is a region on the bottom surface S1 side of the axis 17.
  • the region between the virtual line VL3 and the virtual line VL2 is referred to as the sixth quadrant Q6, and the region on the bottom surface S1 side of the axis 17 and the region between the virtual line VL2 and the virtual line VL4 is referred to as the seventh quadrant. It is referred to as Q7, and the region on the side surface S4 side of the axis 17 and between the virtual line VL4 and the virtual line VL1 is referred to as the eighth quadrant Q8.
  • the reference point 1K exists at an arbitrary position.
  • the position of the reference point 1K in the XY plane is the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, the fourth quadrant Q4, the fifth quadrant Q5, the sixth quadrant Q6, the seventh quadrant Q7, and the eighth quadrant. It may be in any region of Q8.
  • the position of the reference point 1K on the XY plane may be any of the positions PK1 to PK8 shown in FIG.
  • the position of the reference point 1K on the XY plane may be the position PK9 near the boundary between the second quadrant Q2 and the third quadrant Q3, or the position near the boundary between the sixth quadrant Q6 and the seventh quadrant Q7.
  • the strain sensor 20 measures the strain of the shank 10 during cutting, and transmits, for example, an analog signal at a level corresponding to the strain to a wireless communication device (not shown) via a signal line (not shown).
  • the wireless communication device includes, for example, a communication circuit such as a communication IC (Integrated Circuit).
  • the strain sensor 20 and the wireless communication device receive power from a battery (not shown) via a power line (not shown).
  • the wireless communication device AD Analog Digital
  • the wireless communication device assigns a time stamp indicating the sampling timing to the generated sensor measurement value s, and stores the sensor measurement value s to which the time stamp is attached in a storage unit (not shown).
  • the wireless communication device acquires one or more sensor measurement values s from the storage unit, for example, at a predetermined cycle, and generates and generates a radio signal including the acquired sensor measurement values s.
  • the radio signal is transmitted to the processing device 201.
  • FIG. 4 is a diagram showing a configuration of a processing device in the cutting system according to the first embodiment of the present disclosure.
  • the processing device 201 includes a wireless communication unit 110, a processing unit 120, and a storage unit 130.
  • the wireless communication unit 110 is realized by a communication circuit such as a communication IC.
  • the processing unit 120 is realized by a processor such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor), for example.
  • the storage unit 130 is, for example, a non-volatile memory.
  • the wireless communication unit 110 wirelessly communicates with the wireless communication device in the cutting tool 101.
  • the wireless communication device and the wireless communication unit 110 are, for example, compliant with ZigBee (registered trademark) compliant with IEEE 802.15.4, Bluetooth® compliant with IEEE 802.15.1, and IEEE 802.15.3a.
  • Wireless communication is performed using a communication protocol such as UWB (Ultra Wide Band).
  • UWB Ultra Wide Band
  • a communication protocol other than the above may be used between the wireless communication device and the wireless communication unit 110.
  • the wireless communication unit 110 acquires the sensor measurement value s from the wireless signal received from the wireless communication device in the cutting tool 101, and stores the acquired sensor measurement value s in the storage unit 130.
  • the processing unit 120 detects an abnormality related to the cutting tool 101 by analyzing the sensor measurement value s stored in the storage unit 130 by the wireless communication unit 110.
  • FIG. 5 is a diagram showing an example of the configuration of a cutting tool according to the first embodiment of the present disclosure.
  • the chip 1 according to the first embodiment has a reference point 1K1 which is a reference point 1K.
  • the position of the reference point 1K1 is an example of the position PK1 shown in FIG.
  • the cutting tool 101 includes strain sensors 20A, 20B, 20C as strain sensors 20.
  • the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10.
  • the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
  • At least two of the strain sensors 20 are shear strain sensors capable of measuring the shear strain of the shank 10. Further, for example, at least one of the strain sensors 20 is a vertical strain sensor capable of measuring the vertical strain of the shank 10. As described above, due to the configuration in which at least one of the strain sensors 20 is a vertical strain sensor, it is possible to measure the vertical strain generated by the load in the Z direction, which is difficult to measure with the shear strain sensor. can. As an example, the strain sensors 20A and 20B are shear strain sensors. Further, as an example, the strain sensor 20C is a vertical strain sensor.
  • the strain sensor 20A measures the shear strain ⁇ yz of the shank 10 at the mounting position of the strain sensor 20A. More specifically, the strain sensor 20A is, for example, parallel to the measurement axis a1 which is parallel to the side surface S4 of the shank 10 and has an angle of 45 ° with the axis 17, and is parallel to the side surface S4 of the shank 10. And has a measurement axis a2 orthogonal to the measurement axis a1.
  • the strain sensor 20A measures the strain sa1 in the direction of the measurement axis a1 and the strain sa2 in the direction of the measurement axis a2, and the analog signal Asa1 at the level corresponding to the strain sa1 and the analog signal Asa2 at the level corresponding to the strain sa2. Is output to the above-mentioned wireless communication device as an analog signal ASyz corresponding to the shear strain ⁇ yz.
  • the strain sensor 20A may be configured to output the analog signal Asa1 and the analog signal Asa2 to the wireless communication device, respectively, instead of the analog signal ASyz.
  • the strain sensor 20B measures the shear strain ⁇ xz of the shank 10 at the mounting position of the strain sensor 20B. More specifically, the strain sensor 20B is, for example, parallel to the measurement axis b1 which is parallel to the upper surface S2 of the shank 10 and has an angle of 45 ° with the shaft 17, and is parallel to the upper surface S2 of the shank 10. And has a measurement axis b2 orthogonal to the measurement axis b1.
  • the strain sensor 20B measures the strain sb1 in the direction of the measurement axis b1 and the strain sb2 in the direction of the measurement axis b2, and has an analog signal ASb1 at a level corresponding to the strain sb1 and an analog signal ASb2 at a level corresponding to the strain sb2. Is output to the above-mentioned wireless communication device as an analog signal ASxz corresponding to the shear strain ⁇ xz.
  • the strain sensor 20B may be configured to output the analog signal ASb1 and the analog signal ASb2 to the wireless communication device, respectively, instead of the analog signal ASxz.
  • the strain sensor 20C measures the vertical strain ⁇ zz of the shank 10 at the mounting position of the strain sensor 20C. More specifically, the strain sensor 20C has, for example, a measurement axis c1 parallel to the axis 17. The strain sensor 20C measures the strain sc1 in the direction of the measurement axis c1 and outputs an analog signal ASc1 at a level corresponding to the strain sc1 to the above-mentioned wireless communication device as an analog signal ASzz corresponding to the vertical strain ⁇ zzz.
  • the load in the X direction applied to the shank 10 is also referred to as a load Fx
  • the load in the Y direction applied to the shank 10 is also referred to as a load Fy
  • the load in the Z direction applied to the shank 10 is also referred to as a load Fz.
  • the load Fx is an example of the first load
  • the load Fy is an example of the second load
  • the load Fz is an example of the third load.
  • one of the strain sensors 20A and 20B has the maximum sensitivity to the load Fx among the loads Fx, Fy and Fz
  • the other of the strain sensors 20A and 20B has the maximum sensitivity among the loads Fx, Fy and Fz. It has the maximum sensitivity to the load Fy.
  • the strain sensor 20C has the maximum sensitivity to the load Fz among the loads Fx, Fy, and Fz. With such a configuration, it is possible to calculate the component force in the Z direction out of the three component forces of the cutting resistance based on the measurement result of the strain sensor 20C at the time of cutting.
  • the strain sensor 20A has the maximum sensitivity to the load Fy. More specifically, the magnitude of the analog signal ASyz output from the strain sensor 20A when a load Fy of a certain magnitude is applied to the shank 10 is when a load Fx having the same magnitude as the load Fy is applied to the shank 10. The magnitude of the analog signal ASyz output from the strain sensor 20A and the magnitude of the analog signal ASyz output from the strain sensor 20A when a load Fz having the same magnitude as the load Fy is applied to the shank 10.
  • the strain sensor 20B has the maximum sensitivity to the load Fx. More specifically, the magnitude of the analog signal ASxz output from the strain sensor 20B when a load Fx of a certain magnitude is applied to the shank 10 is when a load Fy having the same magnitude as the load Fx is applied to the shank 10. The magnitude of the analog signal ASxz output from the strain sensor 20B and the magnitude of the analog signal ASxz output from the strain sensor 20B when a load Fz having the same magnitude as the load Fx is applied to the shank 10.
  • the strain sensor 20C has the maximum sensitivity to the load Fz. More specifically, the magnitude of the analog signal ASzz output from the strain sensor 20C when a load Fz of a certain magnitude is applied to the shank 10 is when a load Fx having the same magnitude as the load Fz is applied to the shank 10. The magnitude of the analog signal ASzz output from the strain sensor 20C and the magnitude of the analog signal ASzz output from the strain sensor 20C when a load Fy having the same magnitude as the load Fz is applied to the shank 10.
  • FIG. 6 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG.
  • the position of the chip 1 and the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section seen by the VI-VI line are indicated by broken lines and black circles, respectively.
  • the shank height of the shank 10 in the VI-VI line arrow cross section is defined as Wa.
  • Wa is equal to the shank height W described above.
  • Wa is also assumed to be equal to the shank height W.
  • the distance between the center of the shank 10 at the mounting position of the strain sensor 20A in the X direction and the reference point 1K of the cutting edge in the chip 1 is defined as the distance dxa. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20A in the Y direction and the reference point 1K is defined as the distance dya.
  • the mounting position of the strain sensor 20 means, for example, the center of the contact surface of the strain sensor 20 with the shank 10.
  • the larger one of the distance dxa and the distance dya is defined as maxdxya, and the smaller one is defined as mindxya.
  • the distance dxa and the distance dya are equal values, the distance dxa and the distance dya are set to maxdxya.
  • the distance dxa and the distance dya are different values from each other, and the distance dxa is larger than the distance dya. Therefore, the distance dxa is set to maxdxya, and the distance dya is set to mindxya.
  • the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20A.
  • the shear strain generated by the above can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the sensor distance Da satisfies the following equation (10). Da ⁇ 0.74W + 2.09mindxya ... (10)
  • the shear caused by the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20A.
  • the strain can be measured with even higher sensitivity.
  • FIG. 7 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • the position of the chip 1 and the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the VII-VII line arrow cross section are shown by broken lines and black circles, respectively.
  • the shank height of the shank 10 in the VII-VII line arrow cross section is defined as Wb.
  • Wb is equal to the shank height W described above.
  • Wb is assumed to be equal to the shank height W.
  • the distance between the center of the shank 10 at the mounting position of the strain sensor 20B in the X direction and the reference point 1K is defined as the distance dxb.
  • the distance between the center of the shank 10 at the mounting position of the strain sensor 20A in the Y direction and the reference point 1K is defined as the distance dyb.
  • the larger one of the distance dxb and the distance dyb is defined as maxdxyb, and the smaller one is defined as mindxyb.
  • the distance dxb and the distance dyb are equal values, the distance dxb and the distance dyb are set to maxdxyb.
  • the distance dxb and the distance dyb are different values from each other, and the distance dxb is larger than the distance dyb. Therefore, the distance dxb is set to maxdxyb, and the distance dyb is set to mindxyb.
  • the sensor distance Db has the following equation (11). Fulfill. Db ⁇ 0.74W + 2.09mindxyb ... (11)
  • the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20B.
  • the shear strain generated by the above can be measured with higher sensitivity.
  • the strain sensor 20A is mounted in the middle region of the three regions when the mounting surface of the strain sensor 20A among the four surfaces of the shank 10 is divided into three equal regions arranged in the circumferential direction of the shank 10. Will be done.
  • FIG. 8 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section of the VIII-VIII line arrow is indicated by a black circle.
  • FIG. 8 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • FIG. 8 shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • the strain sensor 20A is mounted on the side surface S4, which is the surface closest to the reference point 1K1 among the four surfaces of the shank 10.
  • the strain sensor 20A is mounted on the side surface S4, when the side surface S4 is divided into three equal regions S4Aa, S4Ab, and S4Ac arranged in the circumferential direction of the shank 10, the strain sensor 20A is located in the middle region S4Ab of the regions S4Aa, S4Ab, and S4Ac. It will be installed.
  • the side surface S4 is an example of the first surface.
  • the surface closest to the reference point 1K1 among the four surfaces of the shank 10 is the surface having the shortest distance from the straight line passing through the reference point 1K1 and parallel to the axis 17.
  • the strain sensor 20A may be mounted on a surface other than the surface closest to the reference point 1K1.
  • the strain sensor 20A may be mounted on the upper surface S2.
  • the strain sensor 20A is mounted on the region S2Ab.
  • the strain sensor 20A may be mounted on the bottom surface S1.
  • the strain sensor 20A is mounted in the region S1Ab.
  • the strain sensor 20A may be mounted on the side surface S3. In this case, the strain sensor 20A is mounted in the region S3Ab.
  • the strain sensor 20A which is a shear strain sensor
  • the strain sensor 20A is mounted in the middle region of the three equally divided regions on the mounting surface, the shear generated when the load Fx or the load Fy is applied.
  • the strain can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor. Further, by mounting the strain sensor 20A on the side surface S4 which is the surface closest to the reference point 1K1 among the four surfaces of the shank 10, the shear strain of the shank 10 can be measured with even higher sensitivity.
  • FIG. 9 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG.
  • the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the IX-IX line arrow cross section is indicated by a black circle.
  • FIG. 9 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • the strain sensor 20A divides the side surface S4 into five regions S4Ad, S4Ae, S4Af, S4Ag, S4Ah arranged in the circumferential direction of the shank 10 into five equal regions S4Ad, S4Ae. , S4Af, S4Ag, S4Ah, which is mounted in the middle region S4Af.
  • the strain sensor 20A may be mounted on the region S2Af on the upper surface S2, the region S1Af on the bottom surface S1, or the region S3Af on the side surface S3.
  • the shear strain of the shank 10 can be measured with even higher sensitivity by mounting the strain sensor 20A in the middle region of the five equally divided regions on the mounting surface.
  • strain sensor 20B divides the adjacent surface of the four surfaces of the shank 10 adjacent to the mounting surface of the strain sensor 20A into three regions arranged in the circumferential direction of the shank 10, the three regions are divided into three equal regions. It will be installed in the middle area of our house.
  • FIG. 10 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view taken along the line XX in FIG.
  • the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section seen by the XX line is indicated by a black circle.
  • FIG. 10 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • FIG. 10 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view taken along the line XX in FIG.
  • the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section seen by the XX line is indicated by
  • the strain sensor 20B is mounted on the upper surface S2, which is the second closest surface to the reference point 1K1 among the four surfaces of the shank 10.
  • the strain sensors 20A and 20B can be used to measure the shear strain on each of the two surfaces of the shank 10 with even higher sensitivity.
  • the strain sensor 20B is mounted on the upper surface S2, when the upper surface S2 is divided into three equal regions S2Ba, S2Bb, and S2Bc arranged in the circumferential direction of the shank 10, the strain sensor 20B is located in the middle region S2Bb of the regions S2Ba, S2Bb, and S2Bc. It will be installed. In the example shown in FIG.
  • the upper surface S2 is an example of the second surface.
  • the surface second closest to the reference point 1K1 among the four surfaces of the shank 10 passes through the reference point 1K1 and is parallel to the axis 17 among the three surfaces excluding the surface closest to the reference point 1K1.
  • the strain sensor 20B may be mounted on a surface other than the surface second closest to the reference point 1K1.
  • the strain sensor 20B may be mounted on the bottom surface S1.
  • the strain sensor 20B is mounted in the region S1Bb.
  • the strain sensor 20B may be mounted on the side surface S4 when the strain sensor 20A is mounted on the bottom surface S1 or the top surface S2.
  • the strain sensor 20B is mounted on the region S4Bb.
  • the strain sensor 20B may be mounted on the side surface S3 when the strain sensor 20A is mounted on the bottom surface S1 or the top surface S2. In this case, the strain sensor 20B is mounted on the region S3Bb.
  • the load Fx or the load Fy is applied by the configuration in which the strain sensor 20B, which is a shear strain sensor, is mounted in the middle region of the three equally divided regions on the mounting surface of the strain sensor 20B.
  • the accompanying shear strain can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor. Further, since the strain sensor 20B is mounted on the surface adjacent to the mounting surface of the strain sensor 20A, the shear strain on each of the two surfaces of the shank 10 can be measured with higher sensitivity.
  • FIG. 11 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG.
  • the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section of the XI-XI line arrow is indicated by a black circle.
  • FIG. 11 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • FIG. 11 shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • the strain sensor 20B when the upper surface S2 is divided into five regions S2Bd, S2Be, S2Bf, S2Bg, and S2Bh arranged in the circumferential direction of the shank 10, the five regions S2Bd, S2Be, It is mounted in the middle region S2Bf of S2Bf, S2Bg, and S2Bh.
  • the strain sensor 20B may be mounted on the region S1Bf on the bottom surface S1, the region S4Bf on the side surface S4, or the region S3Bf on the side surface S3.
  • the shear strain of the shank 10 can be measured with even higher sensitivity by mounting the strain sensor 20B in the middle region of the five equally divided regions on the mounting surface. Further, since the strain sensor 20B is mounted on the surface adjacent to the mounting surface of the strain sensor 20A, the shear strain on each of the two surfaces of the shank 10 can be measured with higher sensitivity.
  • FIG. 12 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 12 is a cross-sectional view taken along the line XII-XII in FIG.
  • the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the XII-XII line arrow cross section is indicated by a black circle.
  • FIG. 12 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • FIG. 12 shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • the strain sensor 20C has a region closest to the reference point 1K1 on the surface closest to the reference point 1K1 among the four surfaces of the shank 10, and a reference point 1K1 on the surface second closest to the reference point 1K1. At least one of four regions: the region closest to, the region farthest from the reference point 1K1 on the facing surface of the closest surface, and the region farthest from the reference point 1K1 on the facing surface of the second closest surface. Mounted in the area. More specifically, the strain sensor 20C is mounted in at least one region of the region S4Ca, the region S2Ca, the region S3Cc, and the region S1Cc.
  • the region S4Ca is the region closest to the reference point 1K1 among the regions S4Ca, S4Cb, and S4Cc in which the side surface S4 is divided into three equal parts along the circumferential direction of the shank 10.
  • the region S2Ca is a region closest to the reference point 1K1 among the regions S2Ca, S2Cb, and S2Cc in which the upper surface S2 is divided into three equal parts along the circumferential direction of the shank 10.
  • the region S3Cc is the region farthest from the reference point 1K1 among the regions S3Ca, S3Cb, and S3Cc in which the side surface S3 is divided into three equal parts along the circumferential direction of the shank 10.
  • the region S1Cc is the region farthest from the reference point 1K1 among the regions S1Ca, S1Cb, and S1Cc obtained by dividing the bottom surface S1 into three equal parts along the circumferential direction of the shank 10.
  • the side surface S4 is an example of the first surface
  • the upper surface S2 is an example of the second surface
  • the side surface S3 is an example of the third surface
  • the bottom surface S1 is an example of the fourth surface. ..
  • the strain sensor 20C which is a vertical strain sensor, is mounted in the vicinity of the boundary portion closest to the reference point 1K1 or in the vicinity of the boundary portion farthest from the reference point 1K1 in the boundary portion of the surface of the shank 10.
  • the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • FIG. 13 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view taken along the line XIII-XIII in FIG.
  • the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the XIII-XIII line arrow cross section is indicated by a black circle.
  • FIG. 13 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11.
  • the strain sensor 20C is mounted in at least one of the above four regions.
  • the strain sensor 20C is mounted in at least one region of the region S4Cd, the region S2Cd, the region S3Ch, and the region S1Ch.
  • the region S4Cd is the region closest to the reference point 1K1 among the regions S4Cd, S4Ce, S4Cf, S4Cg, and S4Ch obtained by dividing the side surface S4 into five equal parts along the circumferential direction of the shank 10.
  • the region S2Cd is a region closest to the reference point 1K1 among the regions S2Cd, S2Ce, S2Cf, S2Cg, and S2Ch obtained by dividing the upper surface S2 into five equal parts along the circumferential direction of the shank 10.
  • region S3Ch is the region farthest from the reference point 1K1 among the regions S3Cd, S3Ce, S3Cf, S3Cg, and S3Ch in which the side surface S3 is divided into five equal parts along the circumferential direction of the shank 10.
  • region S1Ch is the region farthest from the reference point 1K1 of the regions S1Cd, S1Ce, S1Cf, S1Cg, and S1Ch obtained by dividing the bottom surface S1 into five equal parts along the circumferential direction of the shank 10.
  • the strain sensor 20C is mounted at a position extremely close to the boundary portion closest to the reference point 1K1 or at a position extremely close to the boundary portion farthest from the reference point 1K1, the vertical strain in the shank 10 is more sensitive. Can be measured with.
  • the cutting tool 101 of the present embodiment it is possible to calculate the three-component force of the cutting resistance based on the measurement results of the three strain sensors 20A, 20B, and 20C at the time of cutting.
  • FIG. 14 is a diagram showing an example of the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure.
  • the chip 1 according to the modification 1 has a reference point 1K2 which is a reference point 1K. It is assumed that the position of the reference point 1K2 in the XY plane is within the region of the second quadrant Q2 shown in FIG.
  • the position of the reference point 1K2 is an example of the position PK2 shown in FIG.
  • the cutting tool 101A includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
  • FIG. 15 is a cross-sectional view showing the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure.
  • FIG. 15 is a cross-sectional view taken along the line XV-XV in FIG.
  • the position of the chip 1 and the position of the reference point 1K2 when the reference point 1K2 is translated along the Z direction to the XV-XV line arrow cross section are shown by broken lines and black circles, respectively.
  • the distance dxyb is defined as maxdxyb and the distance dxb is defined as mindxyb.
  • the sensor distance Db satisfies the following equation (12). Db ⁇ 0.74W + 2.09maxdxyb ... (12)
  • the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20B.
  • the shear strain generated by the above can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the sensor distance Db satisfies the above equation (11). Due to the configuration in which the sensor distance Db satisfies the equation (11) in addition to the equation (12), the shear caused by the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the shear strain sensor. The strain can be measured with even higher sensitivity.
  • FIG. 16 is a cross-sectional view showing the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view taken along the line XVI-XVI in FIG.
  • the position of the chip 1 and the position of the reference point 1K2 when the reference point 1K2 is translated along the Z direction to the XVI-XVI line arrow cross section are shown by broken lines and black circles, respectively.
  • the distance dya is defined as maxdxya and the distance dxa is defined as mindxya.
  • the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20A.
  • the shear strain generated by the above can be measured with higher sensitivity.
  • the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101 according to the first embodiment.
  • the strain sensor 20B is mounted in the region S2Bb, which is the middle region of the upper surface S2, which is the surface closest to the reference point 1K2 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101 according to the first embodiment.
  • the strain sensor 20A is mounted in a region S4Ab which is a middle region on the side surface S4 which is adjacent to the upper surface S2 and is the second closest surface to the reference point 1K2 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20C in the circumferential direction is the same as the mounting position of the strain sensor 20C in the circumferential direction in the cutting tool 101 according to the first embodiment.
  • the strain sensor 20C is mounted on the region S4Ca on the side surface S4, which is the surface second closest to the reference point 1K2 of the four surfaces of the shank 10.
  • FIG. 17 is a diagram showing an example of the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure.
  • the strain sensors 20A and 20C mounted on the side surface S3 of the shank 10 are shown by broken lines.
  • the chip 1 according to the second modification has a reference point 1K3 which is a reference point 1K. It is assumed that the position of the reference point 1K3 in the XY plane is within the region of the fourth quadrant Q4 shown in FIG.
  • the position of the reference point 1K3 is an example of the position PK4 shown in FIG.
  • the cutting tool 101B includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10.
  • the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
  • FIG. 18 is a cross-sectional view showing the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure.
  • FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII in FIG.
  • the position of the reference point 1K3 when the reference point 1K3 is translated along the Z direction to the cross section seen by the XVIII-XVIII line arrow is indicated by a black circle.
  • the relationship between the distance dxa, the distance dya, maxdxya, mindxya, and the sensor distance Da is the same as that of the first embodiment described above. That is, with reference to FIG.
  • the distance dxa is set to maxdxya and the distance dyb is set to mindxya.
  • the sensor distance Da satisfies the above equation (9). Further, for example, the sensor distance Da satisfies the above equation (10).
  • FIG. 19 is a cross-sectional view showing the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure.
  • FIG. 19 is a cross-sectional view taken along the line XIX-XIX in FIG.
  • the position of the reference point 1K3 when the reference point 1K3 is translated along the Z direction to the cross section seen by the XIX-XIX line arrow is indicated by a black circle.
  • the relationship between the distance dxb, the distance dyb, the maxdxyb, the mindxyb, and the sensor distance Db is the same as in the first embodiment described above. That is, with reference to FIG.
  • the distance dxb is defined as maxdxyb and the distance dyb is defined as mindxyb.
  • the sensor distance Db satisfies the above equation (11).
  • the strain sensor 20A is mounted on the side surface S3, which is the surface closest to the reference point 1K3 among the four surfaces of the shank 10.
  • FIG. 8 when the strain sensor 20A regards FIG. 8 as a cross-sectional view (cross-sectional view taken along the line XVIII-XVIII in FIG. 17) at the mounting position of the strain sensor 20A of the cutting tool 101B according to the modification 2. It is mounted in the area S3Ab shown in FIG.
  • the strain sensor 20A may be mounted in the region S1Ab, the region S2Ab, and the region S4Ab shown in FIG.
  • the strain sensor 20A when the strain sensor 20A is regarded as a cross-sectional view (cross-sectional view taken along the line XVIII-XVIII in FIG. 17) at the mounting position of the strain sensor 20A of the cutting tool 101B according to the modification 2. , It is mounted on the region S3Af on the side surface S3 shown in FIG.
  • the strain sensor 20A may be mounted in the region S1Af, the region S2Af, and the region S4Af shown in FIG.
  • the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101 according to the first embodiment.
  • the strain sensor 20B is mounted in the region S2Bb on the top surface S2, which is adjacent to the side surface S3 and is the second closest surface to the reference point 1K3 among the four surfaces of the shank 10.
  • the strain sensor 20C is the region closest to the reference point 1K3 on the surface closest to the reference point 1K3 among the four surfaces of the shank 10, and is closest to the reference point 1K3 on the surface second closest to the reference point 1K3. Mounted in at least one of four regions: a near region, a region farthest from the reference point 1K3 on the facing surface of the closest surface, and a region farthest from the reference point 1K3 on the facing surface of the second closest surface. Will be done. More specifically, when the strain sensor 20C regards FIG. 12 as a cross-sectional view (AA-AA line cross-sectional view in FIG.
  • the strain sensor 20C is shown in the case where FIG. 13 is regarded as a cross-sectional view (AA-AA line arrow cross-sectional view in FIG. 17) at the mounting position of the strain sensor 20C of the cutting tool 101B according to the modification 2. It is mounted in at least one of the regions S3Cd, S1Cd, S2Ch, and S4Ch shown in 13, for example, the region S3Cd.
  • FIG. 20 is a diagram showing an example of the configuration of a cutting tool according to the third modification of the first embodiment of the present disclosure.
  • the strain sensors 20A and 20C mounted on the side surface S3 of the shank 10 are shown by broken lines.
  • the chip 1 according to the modification 3 has a reference point 1K4 which is a reference point 1K. It is assumed that the position of the reference point 1K4 in the XY plane is within the region of the third quadrant Q3 shown in FIG.
  • the position of the reference point 1K4 is an example of the position PK3 shown in FIG.
  • the cutting tool 101C includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10.
  • the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
  • FIG. 21 is a cross-sectional view showing the configuration of the cutting tool according to the third modification of the first embodiment of the present disclosure.
  • FIG. 21 is a cross-sectional view taken along the line XXI-XXI in FIG. 20.
  • the position of the reference point 1K4 when the reference point 1K4 is translated along the Z direction to the cross section seen by the XXI-XXI line arrow is indicated by a black circle.
  • the relationship between the distance dxb, the distance dyb, the maxdxyb, the mindxyb, and the sensor distance Db is the same as that of the above-mentioned modification 1. That is, with reference to FIG.
  • the distance dxyb is defined as maxdxyb and the distance dxb is defined as mindxyb.
  • the sensor distance Db satisfies the above equation (12). Further, for example, the sensor distance Db satisfies the above equation (11).
  • FIG. 22 is a cross-sectional view showing the configuration of the cutting tool according to the third modification of the first embodiment of the present disclosure.
  • FIG. 22 is a cross-sectional view taken along the line XXII-XXII in FIG.
  • the position of the reference point 1K4 when the reference point 1K4 is translated along the Z direction to the cross section of the XXII-XXII line arrow is indicated by a black circle.
  • the relationship between the distance dxa, the distance dya, maxdxya, mindxya, and the sensor distance Da is the same as that of the above-mentioned modification 1. That is, with reference to FIG.
  • the distance dya is set to maxdxya and the distance dxa is set to mindxya.
  • the sensor distance Da satisfies the above equation (10).
  • the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101 according to the first embodiment.
  • the strain sensor 20B is mounted in the region S2Bb, which is the middle region of the upper surface S2, which is the surface closest to the reference point 1K4 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101B according to the modification 2.
  • the strain sensor 20A is mounted in the region S3Ab, which is the middle region of the side surface S3, which is adjacent to the top surface S2 and is the second closest surface to the reference point 1K4 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20C in the circumferential direction is the same as the mounting position of the strain sensor 20C in the circumferential direction in the cutting tool 101B according to the modification 2.
  • the strain sensor 20C is mounted on the region S3Ca on the side surface S3, which is the surface second closest to the reference point 1K4 of the four surfaces of the shank 10.
  • FIG. 23 is a diagram showing an example of the configuration of the cutting tool according to the modified example 4 of the first embodiment of the present disclosure.
  • the chip 1 according to the modification 4 has a reference point 1K5 which is a reference point 1K. It is assumed that the position of the reference point 1K5 in the XY plane is within the region of the eighth quadrant Q8 shown in FIG. The position of the reference point 1K5 is an example of the position PK8 shown in FIG.
  • the cutting tool 101D includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the bottom surface S1 of the shank 10.
  • the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101 according to the first embodiment.
  • the strain sensor 20A is mounted in the region S4Ab, which is the middle region on the side surface S4, which is the surface closest to the reference point 1K5 among the four surfaces of the shank 10.
  • the strain sensor 20B is mounted on the bottom surface S1 which is adjacent to the side surface S4 and is the second closest surface to the reference point 1K5 among the four surfaces of the shank 10.
  • FIG. 10 a cross-sectional view (a cross-sectional view taken along the line BB-BB in FIG. 23) at the mounting position of the strain sensor 20B of the cutting tool 101D according to the modification 4
  • the strain sensor 20B is regarded as a cross-sectional view. It is mounted in the area S1Bb shown in FIG.
  • the strain sensor 20B may be mounted in the region S2Bb, the region S3Bb, and the region S4Bb shown in FIG.
  • the strain sensor 20B is in the case where FIG. 11 is regarded as a cross-sectional view (cross-sectional view taken along the line BB-BB in FIG. 23) at the mounting position of the strain sensor 20B of the cutting tool 101D according to the modified example 4. , It is mounted on the region S1Bf on the bottom surface S1 shown in FIG.
  • the strain sensor 20B may be mounted in the region S2Bf, the region S3Bf, and the region S4Bf shown in FIG.
  • the strain sensor 20C is the region closest to the reference point 1K5 on the surface closest to the reference point 1K5 among the four surfaces of the shank 10, and is closest to the reference point 1K5 on the surface second closest to the reference point 1K5. Mounted in at least one of four regions: a near region, a region farthest from the reference point 1K5 on the facing surface of the closest surface, and a region farthest from the reference point 1K5 on the facing surface of the second closest surface. Will be done. More specifically, when the strain sensor 20C regards FIG. 12 as a cross-sectional view (CC-CC line cross-sectional view in FIG.
  • the strain sensor 20C is shown in the case where FIG. 13 is regarded as a cross-sectional view (CC-CC line cross-sectional view in FIG. 23) at the mounting position of the strain sensor 20C of the cutting tool 101D according to the modified example 4. It is mounted in at least one of the regions S3Cd, S1Cd, S2Ch, and S4Ch shown in 13, for example, the region S4Ch.
  • FIG. 24 is a diagram showing an example of the configuration of the cutting tool according to the modification 5 of the first embodiment of the present disclosure.
  • the chip 1 according to the modification 5 has a reference point 1K6 which is a reference point 1K. It is assumed that the position of the reference point 1K6 in the XY plane is within the region of the seventh quadrant Q7 shown in FIG. The position of the reference point 1K6 is an example of the position PK7 shown in FIG.
  • the cutting tool 101E includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the bottom surface S1 of the shank 10.
  • the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101D according to the modification 4.
  • the strain sensor 20B is mounted in the region S1Bb, which is the middle region of the bottom surface S1, which is the surface closest to the reference point 1K6 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101 according to the first embodiment.
  • the strain sensor 20A is mounted in a region S4Ab which is a middle region on the side surface S4 which is adjacent to the bottom surface S1 and is the second closest surface to the reference point 1K6 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20C in the circumferential direction is the same as the mounting position of the strain sensor 20C in the circumferential direction in the cutting tool 101D according to the modification 4.
  • the strain sensor 20C is mounted in the region S4Cc on the side surface S4, which is the surface second closest to the reference point 1K6 of the four surfaces of the shank 10.
  • FIG. 25 is a diagram showing an example of the configuration of the cutting tool according to the modification 6 of the first embodiment of the present disclosure.
  • the strain sensors 20A and 20C mounted on the side surface S3 of the shank 10 are shown by broken lines.
  • the chip 1 according to the modification 6 has a reference point 1K7 which is a reference point 1K. It is assumed that the position of the reference point 1K7 in the XY plane is within the region of the fifth quadrant Q5 shown in FIG. The position of the reference point 1K7 is an example of the position PK5 shown in FIG.
  • the cutting tool 101F includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10.
  • the strain sensor 20B is mounted on the bottom surface S1 of the shank 10.
  • the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101B according to the modification 2.
  • the strain sensor 20A is mounted in the region S3Ab, which is the middle region on the side surface S3, which is the surface closest to the reference point 1K7 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101D according to the modification 4.
  • the strain sensor 20B is mounted in a region S1Bb which is a middle region on the bottom surface S1 which is adjacent to the side surface S3 and is the second closest surface to the reference point 1K7 among the four surfaces of the shank 10.
  • the strain sensor 20C is the region closest to the reference point 1K7 on the surface closest to the reference point 1K7 among the four surfaces of the shank 10, and the reference point 1K7 on the surface second closest to the reference point 1K7. Mounted in at least one of four regions: a near region, a region farthest from the reference point 1K7 on the facing surface of the closest surface, and a region farthest from the reference point 1K7 on the facing surface of the second closest surface. Will be done. More specifically, when the strain sensor 20C regards FIG. 12 as a cross-sectional view (a cross-sectional view taken along the line DD-DD in FIG.
  • the strain sensor 20C is a diagram when FIG. 13 is regarded as a cross-sectional view (a cross-sectional view taken along the line DD-DD in FIG. 25) at the mounting position of the strain sensor 20C of the cutting tool 101F according to the modification 6. It is mounted in at least one of the regions S3Ch, S1Ch, S2Cd, and S4Cd shown in 13, for example, the region S3Ch.
  • FIG. 26 is a diagram showing an example of the configuration of the cutting tool according to the modification 7 of the first embodiment of the present disclosure.
  • the strain sensors 20A and 20C mounted on the side surface S3 of the shank 10 are shown by broken lines.
  • the chip 1 according to the modification 7 has a reference point 1K8 which is a reference point 1K. It is assumed that the position of the reference point 1K8 in the XY plane is within the region of the sixth quadrant Q6 shown in FIG. The position of the reference point 1K8 is an example of the position PK6 shown in FIG.
  • the cutting tool 101G includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10.
  • the strain sensor 20B is mounted on the bottom surface S1 of the shank 10.
  • the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101D according to the modification 4.
  • the strain sensor 20B is mounted in the region S1Bb, which is the middle region of the bottom surface S1, which is the surface closest to the reference point 1K8 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101B according to the modification 2.
  • the strain sensor 20A is mounted in a region S3Ab which is a middle region on the side surface S3 which is adjacent to the bottom surface S1 and is the second closest surface to the reference point 1K8 among the four surfaces of the shank 10.
  • the mounting position of the strain sensor 20C in the circumferential direction is the same as the mounting position of the strain sensor 20C in the circumferential direction in the cutting tool 101F according to the modification 6.
  • the strain sensor 20C is mounted in the region S3Cc on the side surface S3, which is the surface second closest to the reference point 1K8 of the four surfaces of the shank 10.
  • FIG. 27 is a diagram showing an example of the configuration of the cutting tool according to the modification 8 of the first embodiment of the present disclosure.
  • the chip 1 according to the modification 8 has a reference point 1K9 which is a reference point 1K. It is assumed that the position of the reference point 1K9 in the XY plane is on the boundary line between the second quadrant Q2 and the third quadrant Q3 shown in FIG.
  • the position of the reference point 1K9 is an example of the position PK9 shown in FIG.
  • the cutting tool 101H includes strain sensors 20A, 20B, 20C.
  • the strain sensor 20A is mounted on the side surface S4 of the shank 10.
  • the strain sensors 20B and 20C are mounted on the upper surface S2 of the shank 10.
  • FIGS. 28 to 30 are cross-sectional views showing the configuration of the cutting tool according to the modified example 8 of the first embodiment of the present disclosure.
  • FIG. 28 is a cross-sectional view taken along the line XXVIII-XXVIII in FIG. 27.
  • the position of the reference point 1K9 when the reference point 1K9 is translated along the Z direction to the cross section seen by the line arrow of XXVIII-XXVIII is indicated by a black circle.
  • the reference point 1Ka is translated along the Z direction to the cross section along the line XXVIII-XXVIII.
  • the position of the reference point 1Ka at the time is indicated by a black circle.
  • the position of the reference point 1Ka on the XY plane is a position shifted from the position of the reference point 1K9 toward the side surface S4 along the X direction, and is a position in the second quadrant Q2 shown in FIG.
  • FIG. 29 is a cross-sectional view taken along the line XXIX-XXIX in FIG. 27.
  • the position of the reference point 1K9 when the reference point 1K9 is translated along the Z direction to the cross section of the XXIX-XXIX line arrow is indicated by a black circle.
  • the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section of the XXIX-XXIX line arrow is indicated by a black circle.
  • FIG. 30 is a cross-sectional view taken along the line XXX-XXX in FIG. 27.
  • the position of the reference point 1K9 when the reference point 1K9 is translated along the Z direction to the cross section seen by the XXX-XXX line is indicated by a black circle.
  • the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section seen by the XXX-XXX line is indicated by a black circle.
  • the surface closest to the reference point 1K9 among the four surfaces of the shank 10 is the upper surface S2.
  • the upper surface S2 is an example of the first surface
  • the side surface S4 is an example of the second surface
  • the bottom surface S1 is an example of the third surface
  • the side surface S3 is an example.
  • Wc the shank height of the shank 10 in the cross section seen by the XXX-XXX line arrow.
  • Wc is equal to the shank height W described above.
  • the distance between the center of the shank 10 and the reference point at the mounting position of the strain sensor 20C in the X direction is defined as the distance dxc.
  • the distance between the center of the shank 10 at the mounting position of the strain sensor 20C in the Y direction and the reference point is defined as the distance dyc.
  • the mounting positions of the strain sensors 20B, 20A, and 20C are the same as the mounting positions described in the modified example 1 or the modified example 3. This is the position of the reference point 1K9 when the reference point 1K9 is translated to the XXVIII-XXVIII line arrow cross section along the Z direction, and the reference point 1K9 is translated to the XXIX-XXIX line arrow cross section along the Z direction.
  • the position of the reference point 1K9 at the time and the position of the reference point 1K9 when translated in parallel to the cross section of the XXX-XXX line along the Z direction are on the boundary line between the second quadrant Q2 and the third quadrant Q3. Because.
  • the mounting positions of the strain sensors 20B, 20A, and 20C are the same as the mounting positions described in the first modification. This is the position of the reference point 1Ka when the reference point 1Ka is translated to the XXVIII-XXVIII line arrow cross section along the Z direction, and the reference point 1Ka is translated to the XXIX-XXIX line arrow cross section along the Z direction. This is because the position of the reference point 1Ka at the time and the position of the reference point 1Ka when translated into the cross section seen by the XXX-XXX line along the Z direction are within the second quadrant Q2.
  • the mounting position of the strain sensors 20A, 20B, 20C may be the same as when the chip 1 has the reference point 1K9.
  • the mounting position of the strain sensor 20B may be the same as when the chip 1 has the reference point 1K9 when the position of the reference point 1Ka satisfies a predetermined condition.
  • the predetermined condition is that the following equation (13) is satisfied. 10dxb ⁇ dib + W / 6 ... (13)
  • the mounting position of the strain sensor 20B may be the same as the mounting position described in the modified example 1 or the modified example 3. good.
  • the mounting position of the strain sensor 20A may be the same as when the chip 1 has the reference point 1K9 when the position of the reference point 1Ka satisfies a predetermined condition.
  • the predetermined condition is that the following equation (15) is satisfied. 10dxa ⁇ dya + W / 6 ...
  • the mounting position of the strain sensor 20A may be the same as the mounting position described in the modified example 1 or the modified example 3. good.
  • the strain sensor 20C is mounted at an arbitrary position on the upper surface S2 or the bottom surface S1 of the four surfaces of the shank 10 when the position of the reference point 1Ka satisfies a predetermined condition.
  • the predetermined condition is that the following equation (17) is satisfied. 10dxc ⁇ dyc + W / 6 ... (17)
  • the strain sensor 20C is mounted at an arbitrary position on the upper surface S2 or the bottom surface S1.
  • the strain sensor 20C which is a vertical strain sensor, faces the surface closest to the reference point 1Ka in the shank 10 of the cutting tool 101H whose distance dx is small with respect to the distance dy, such as a sword bite, or faces the surface. Due to the configuration mounted on the surface, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • FIG. 31 is a diagram showing an example of the configuration of the cutting tool according to the modified example 9 of the first embodiment of the present disclosure.
  • the chip 1 according to the modification 9 has a reference point 1K10 which is a reference point 1K. It is assumed that the position of the reference point 1K10 in the XY plane is on the boundary line between the 7th quadrant Q7 and the 6th quadrant Q6 shown in FIG.
  • the position of the reference point 1K10 in the modification 9 is an example of the position PK10 shown in FIG.
  • the cutting tool 101I includes strain sensors 20A, 20B, 20C.
  • the strain sensor 20A is mounted on the side surface S4 of the shank 10.
  • the strain sensors 20B and 20C are mounted on the bottom surface S1 of the shank 10.
  • FIG. 32 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 9 of the first embodiment of the present disclosure.
  • FIG. 32 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 31.
  • the position of the reference point 1K10 when the reference point 1K10 is translated along the Z direction to the cross section seen by the line arrow of XXXII-XXXII is shown by a black circle.
  • the reference point 1Ka is translated along the Z direction to the cross section seen by the line arrow of XXXII-XXII.
  • the position of the reference point 1Ka at the time is indicated by a black circle.
  • the position of the reference point 1Ka on the XY plane is a position shifted from the position of the reference point 1K10 toward the side surface S4 along the X direction, and is a position in the seventh quadrant Q7 shown in FIG.
  • the surface closest to the reference point 1K10 among the four surfaces of the shank 10 is the bottom surface S1.
  • the bottom surface S1 is an example of the first surface
  • the side surface S4 is an example of the second surface
  • the top surface S2 is an example of the third surface
  • the side surface S3 is the first surface. 4 This is an example of the surface.
  • the mounting position of the strain sensor 20B is the same as the mounting position described in the modified example 5 or the modified example 7. This is because the position of the reference point 1K10 when the reference point 1K10 is translated along the Z direction to the cross section seen by the XXXII-XXXII line is on the boundary line between the 6th quadrant Q6 and the 7th quadrant Q7. be. The same applies to the mounting positions of the strain sensors 20A and 20C.
  • the mounting position of the strain sensor 20B is the same as the mounting position described in the modified example 5. This is because the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section seen by the line arrow of XXXII-XXXII is in the seventh quadrant Q7. The same applies to the mounting positions of the strain sensors 20A and 20C.
  • the mounting positions of the strain sensors 20A, 20B, and 20C may be the same as when the chip 1 has the reference point 1K10 when the above equations (13), (15), and (17) are satisfied. More specifically, the mounting positions of the strain sensors 20A and 20B may be the same as the mounting positions described in the modified example 5 or the modified example 7 when the above equations (13) and (15) are satisfied. Further, the strain sensor 20C is mounted at an arbitrary position on the bottom surface S1 or the top surface S2 when the above equation (17) is satisfied.
  • the strain sensor 20C which is a vertical strain sensor, faces the surface closest to the reference point 1Ka in the shank 10 of the cutting tool 101I whose distance dx is small with respect to the distance dy, such as a sword bite, or faces the surface. Due to the configuration mounted on the surface, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • FIG. 33 is a diagram showing an example of the configuration of the cutting tool according to the modification 10 of the first embodiment of the present disclosure.
  • the chip 1 according to the modification 10 has a reference point 1K11 which is a reference point 1K. It is assumed that the position of the reference point 1K11 in the XY plane is on the boundary line between the first quadrant Q1 and the eighth quadrant Q8 shown in FIG.
  • the position of the reference point 1K11 in the modification 8 is an example of the position PK11 shown in FIG.
  • the cutting tool 101J includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
  • FIG. 34 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 10 of the first embodiment of the present disclosure.
  • FIG. 34 is a cross-sectional view taken along the line XXXIV-XXXIV in FIG. 33.
  • the position of the reference point 1K11 when the reference point 1K11 is translated along the Z direction to the cross section of the XXXIV-XXXIV line is indicated by a black circle.
  • the reference point 1Ka is translated along the Z direction to the cross section of the XXXIV-XXXIV line.
  • the position of the reference point 1Ka at the time is indicated by a black circle.
  • the position of the reference point 1Ka on the XY plane is a position shifted from the position of the reference point 1K11 toward the upper surface S2 along the Y direction, and is a position in the first quadrant Q1 shown in FIG.
  • the surface closest to the reference point 1K11 is the side surface S4.
  • the side surface S4 is an example of the first surface
  • the upper surface S2 is an example of the second surface
  • the side surface S3 is an example of the third surface
  • the bottom surface S1 is the first surface. 4 This is an example of the surface.
  • the mounting position of the strain sensor 20A is the same as the mounting position described in the first embodiment or the fourth modification. This is because the position of the reference point 1K11 when the reference point 1K11 is translated along the Z direction to the cross section of the XXXIV-XXXIV line is on the boundary line between the first quadrant Q1 and the eighth quadrant Q8. be. The same applies to the mounting positions of the strain sensors 20B and 20C.
  • the mounting position of the strain sensor 20A is the same as the mounting position described in the first embodiment. This is because the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section seen by the XXXIV-XXXIV line is within the first quadrant Q1. The same applies to the mounting positions of the strain sensors 20B and 20C.
  • the mounting position of the strain sensors 20A, 20B, 20C may be the same as when the chip 1 has the reference point 1K11.
  • the mounting position of the strain sensor 20A may be the same as when the chip 1 has the reference point 1K11 when the position of the reference point 1Ka satisfies a predetermined condition.
  • the mounting position of the strain sensor 20A is the same as the mounting position described in the first embodiment or the modified example 4. There may be.
  • the mounting position of the strain sensor 20B may be the same as when the chip 1 has the reference point 1K11 when the position of the reference point 1Ka satisfies a predetermined condition.
  • the predetermined condition is that the following equation (21) is satisfied. 10dyb ⁇ dxb + W / 6 ... (21) More specifically, the position of the reference point 1Ka on the XY plane is a straight line extending from the center of the shank 10 toward the side surface S3 along the X direction from W / 6, that is, a point 17K separated by Wb / 6, and the following equation.
  • the strain sensor 20C is mounted at an arbitrary position on the side surface S4 or the side surface S3 of the four surfaces of the shank 10 when the position of the reference point 1Ka satisfies a predetermined condition.
  • the predetermined condition is that the following equation (23) is satisfied. 10dyc ⁇ dxc + W / 6 ... (23) More specifically, the position of the reference point 1Ka on the XY plane is a straight line extending from the center of the shank 10 toward the side surface S3 along the X direction from W / 6, that is, a point 17K separated by Wc / 6, and the following equation.
  • the strain sensor 20C which is a vertical strain sensor, is mounted on the surface closest to the reference point 1Ka or the surface facing the reference point 1Ka in the shank 10 of the cutting tool 101J having a distance dy smaller than the distance dx. Therefore, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • FIG. 35 is a diagram showing an example of the configuration of the cutting tool according to the modification 11 of the first embodiment of the present disclosure.
  • the chip 1 according to the modification 11 has a reference point 1K12 which is a reference point 1K. It is assumed that the position of the reference point 1K12 in the XY plane is on the boundary line between the fourth quadrant Q4 and the fifth quadrant Q5 shown in FIG.
  • the position of the reference point 1K12 in the modification 11 is an example of the position PK12 shown in FIG.
  • the cutting tool 101K includes strain sensors 20A, 20B, 20C.
  • the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
  • FIG. 36 is a cross-sectional view showing the configuration of the cutting tool according to the modification 11 of the first embodiment of the present disclosure.
  • FIG. 36 is a cross-sectional view taken along the line XXXVI-XXXVI in FIG. 35.
  • FIG. 58 the position of the reference point 1K12 when the reference point 1K12 is translated along the Z direction to the cross section of the XXXVI-XXXVI line arrow is indicated by a black circle.
  • the reference point 1Ka is translated along the Z direction to the cross section seen by the line arrow of XXXVI-XXXVI.
  • the position of the reference point 1Ka at the time is indicated by a black circle.
  • the position of the reference point 1Ka on the XY plane is a position shifted from the position of the reference point 1K12 toward the upper surface S2 along the Y direction, and is a position in the fourth quadrant Q4 shown in FIG.
  • the surface closest to the reference point 1K12 is the side surface S3.
  • the side surface S3 is an example of the first surface
  • the upper surface S2 is an example of the second surface
  • the side surface S4 is an example of the third surface
  • the bottom surface S1 is the first surface. 4 This is an example of the surface.
  • the mounting position of the strain sensor 20A is the same as the mounting position described in the modified example 2 or the modified example 6. This is because the position of the reference point 1K12 when the reference point 1K12 is translated along the Z direction to the cross section of the XXXVI-XXXVI line is on the boundary line between the 4th quadrant Q4 and the 5th quadrant Q5. be. The same applies to the mounting positions of the strain sensors 20B and 20C.
  • the mounting position of the strain sensor 20A is the same as the mounting position described in the second modification. This is because the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section of the XXXVI-XXXVI line arrow is within the fourth quadrant Q4. The same applies to the mounting positions of the strain sensors 20B and 20C.
  • the mounting positions of the strain sensors 20A, 20B, and 20C may be the same as when the chip 1 has the reference point 1K12 when the above equations (19), (21), and (23) are satisfied. More specifically, the mounting positions of the strain sensors 20A and 20B may be the same as the mounting positions described in the modified example 2 or the modified example 6 when the above equations (19) and (21) are satisfied. Further, the strain sensor 20C is mounted at an arbitrary position on the side surface S3 or the side surface S4 when the above equation (23) is satisfied.
  • the strain sensor 20C which is a vertical strain sensor, is mounted on the surface closest to the reference point 1K or the surface facing the reference point 1K in the shank 10 of the cutting tool 101Ka whose distance dy is smaller than the distance dx. Therefore, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
  • the strain sensor 20A is an example of the first shear strain sensor
  • the strain sensor 20B is the second shear strain sensor
  • the strain sensor 20C is an example of a first vertical strain sensor.
  • the strain sensor 20A is an example of the second shear strain sensor
  • the strain sensor 20B is an example of the first shear strain sensor.
  • the strain sensor 20C is an example of the first vertical strain sensor.
  • the positions of the reference points 1K1 to 1K12 shown in FIGS. 8 to 13 are examples.
  • the strain sensors 20A, 20B, 20C are as long as the position of the reference point 1K is within the corresponding quadrant. , It is mounted in the above-mentioned mounting position.
  • the inventor of the present application simulates the stress distribution in the shank 10 when cutting resistance is applied to the cutting edge, and based on the simulation result, a strain sensor for measuring the strain generated in the shank 10 during cutting with higher sensitivity. Twenty preferred mounting positions were verified.
  • the inventor of the present application calculated vertical strain and shear strain at a plurality of target positions on the surface of the shank 10 based on the simulation result of the stress distribution in the shank 10.
  • the inventor of the present application acquires a stress tensor at a plurality of target positions from the simulation result of the stress distribution in the shank 10, and calculates the strain tensor using the acquired stress tensor and the stress-strain conversion formula.
  • the calculation results of vertical strain and shear strain at each target position were taken out from the strain tensor.
  • FIG. 37 is a diagram showing a configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 38 is a cross-sectional view showing the configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 38 is a cross-sectional view taken along the line XXXVIII-XXXVIII in FIG. 37.
  • the position of the reference point 1K when the reference point 1K is translated along the Z direction to the cross section seen along the line XXXVIII-XXXVIII is indicated by a black circle.
  • the inventor of the present application has 20 positions on the surface of the outer diameter bite 101DB having a shank height W of 25 mm, which is a distance Ds away from the reference point 1K in the Z direction.
  • Vertical strain and shear strain at the target position Ps were calculated respectively. More specifically, the inventor of the present application has five target positions Ps on the bottom surface S1, five target position Ps on the top surface S2, five target position Ps on the side surface S3, and five target positions on the side surface S4.
  • the vertical strain and the shear strain at the target position Ps of the above were calculated respectively.
  • the target position Ps is the midpoint of each region when each surface of the shank 10 is equally divided into five regions. That is, for example, the distances between the five target positions Ps on the bottom surface S1 and the end portions of the bottom surface S1 are 2.5 mm, 7.5 mm, 12.5 mm, 17.5 mm, and 22.5 mm, respectively.
  • FIGS. 39 to 41 are diagrams showing calculation results of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 39 shows the vertical strain at each target position Ps at a distance Ds of 20 mm.
  • FIG. 40 shows the vertical strain at each target position Ps where the distance Ds is 40 mm.
  • FIG. 41 shows the vertical strain at each target position Ps at a distance Ds of 60 mm.
  • the round plot shows the vertical strain snx generated at the target position Ps when the load Fx is applied to the outer diameter bite 101DB
  • the triangular plot shows the load Fy applied to the outer diameter bite 101DB.
  • the vertical strain sny generated at the target position Ps is shown, and the square plot shows the vertical strain snz generated at the target position Ps when the load Fz is applied to the outer diameter bite 101DB. Further, in FIGS. 39 to 41, the vertical axis shows the vertical strain [ ⁇ ], and the horizontal axis is the distance of the target position Ps along the circumferential direction starting from the boundary position between the upper surface S2 and the side surface S4. [Mm] is shown.
  • FIGS. 42 to 44 are diagrams showing the calculation results of shear strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 42 shows the shear strain at each target position Ps at a distance Ds of 20 mm.
  • FIG. 43 shows the shear strain at each target position Ps at a distance Ds of 40 mm.
  • FIG. 44 shows the shear strain at each target position Ps at a distance Ds of 60 mm.
  • the round plot shows the shear strain ssx generated at the target position Ps when the load Fx is applied to the outer diameter bite 101DB
  • the triangular plot shows the shear strain ssx generated at the target position Ps
  • the triangular plot shows the load Fy applied to the outer diameter bite 101DB.
  • the shear strain ssy generated at the target position Ps is shown
  • the square plot shows the shear strain ssz generated at the target position Ps when the load Fz is applied to the outer diameter bite 101DB.
  • the vertical axis shows the shear strain [ ⁇ ]
  • the horizontal axis is the distance of the target position Ps along the circumferential direction starting from the boundary position between the upper surface S2 and the side surface S4. [Mm] is shown.
  • the absolute value of the vertical strain snx is the maximum value on the side surface S3 and the side surface S4. Further, the absolute value of the vertical strain sny becomes the maximum value on the bottom surface S1 and the top surface S2. Further, the absolute value of the vertical strain sny becomes a maximum value in the vicinity of the boundary portion between the upper surface S2 and the side surface S4 and in the vicinity of the boundary portion between the bottom surface S1 and the side surface S3, and in the vicinity of the boundary portion between the upper surface S2 and the side surface S4. It becomes the maximum value. Further, the absolute values of the vertical strain snx and sny increase as the distance Ds increases, while the absolute values of the vertical strain snz are constant regardless of the distance Ds.
  • the shear strain ssz at each target position Ps is always zero regardless of the distance Ds. Further, the absolute values of the shear strains ssx and ssy at each target position Ps are constant regardless of the distance Ds. Further, the absolute value of the shear strain ssx becomes a maximum value in the central portion in the circumferential direction of the four surfaces and a maximum value in the central portion in the circumferential direction of the upper surface S2. Further, the absolute value of the shear strain ssy becomes a maximum value in the central portion in the circumferential direction of the four surfaces, and becomes a maximum value in the central portion in the circumferential direction of the side surface S4.
  • FIG. 45 is a diagram showing a configuration of a sword bite which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 46 is a cross-sectional view showing the configuration of a sword bite, which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 46 is a cross-sectional view taken along the line XLVI-XLVI in FIG. 45. In FIG. 46, the position of the reference point 1K when the reference point 1K is translated along the Z direction to the cross section of the XLVI-XLVI line is indicated by a black circle.
  • the distance dx between the center of the shank 10 and the reference point 1K in the X direction is zero.
  • the distance dy between the center of the shank 10 and the reference point 1K in the Y direction is equal to each other.
  • the inventor of the present application presents 20 objects at positions on the surface of the sword bite 101SB having a shank height W of 25 mm, at a distance Ds from the reference point 1K in the Z direction.
  • Vertical strain and shear strain at position Ps were calculated respectively. More specifically, the inventor of the present application has five target positions Ps on the bottom surface S1, five target position Ps on the top surface S2, five target position Ps on the side surface S3, and five target positions on the side surface S4. The vertical strain and the shear strain at the target position Ps of the above were calculated respectively.
  • FIG. 47 is a diagram showing a calculation result of vertical strain in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 47 shows the vertical strain at each target position Ps at a distance Ds of 40 mm.
  • the round plot shows the vertical strain snx that occurs at the target position Ps as the load Fx is applied to the sword bite 101SB
  • the triangular plot shows the target as the load Fy is applied to the sword bite 101SB.
  • the vertical strain sny generated at the position Ps is shown
  • the square plot shows the vertical strain snz generated at the target position Ps as the load Fz is applied to the sword bite 101SB.
  • the vertical axis represents the vertical strain [ ⁇ ]
  • the horizontal axis is the distance [mm] of the target positions Ps along the circumferential direction starting from the boundary position between the upper surface S2 and the side surface S4. Is shown.
  • FIG. 48 is a diagram showing a calculation result of shear strain in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • FIG. 48 shows the shear strain at each target position Ps at a distance Ds of 40 mm.
  • the round plot shows the shear strain ssx generated at the target position Ps when the load Fx is applied to the sword bite 101SB
  • the triangular plot shows the target when the load Fy is applied to the sword bite 101SB.
  • the shear strain ssy generated at the position Ps is shown
  • the square plot shows the shear strain ssz generated at the target position Ps as the load Fz is applied to the sword bite 101SB.
  • the vertical axis represents the shear strain [ ⁇ ]
  • the horizontal axis is the distance [mm] of the target positions Ps along the circumferential direction starting from the boundary position between the upper surface S2 and the side surface S4. Is shown.
  • the absolute value of the vertical strain snx is the maximum value on the side surface S3 and the side surface S4. Further, the absolute value of the vertical strain sny becomes the maximum value on the bottom surface S1 and the top surface S2. Further, the absolute value of the vertical strain snz becomes a maximum value on the bottom surface S1 and the top surface S2, and becomes a maximum value on the top surface S2.
  • the shear strain ssz at each target position Ps is zero. Further, the absolute value of the shear strain ssx becomes a maximum value in the central portion in the circumferential direction of the upper surface S2 and the side surfaces S3 and S4, and becomes a maximum value in the central portion in the circumferential direction of the upper surface S2. Further, the absolute value of the shear strain ssy becomes the maximum value in the central portion in the circumferential direction of the side surfaces S3 and S4.
  • FIG. 49 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure.
  • the round plot shows the maximum vertical strain Msnx, which is the maximum absolute value of the vertical strain snx generated at 20 target positions Ps due to the load Fx being applied to the outer diameter bite 101DB, and is triangular.
  • the plot shows the maximum shear strain Mssx, which is the maximum absolute value of the shear strain ssx generated at 20 target positions Ps when the load Fx is applied to the outer diameter bite 101DB.
  • the horizontal axis indicates the distance Ds [mm]
  • the vertical axis indicates the absolute value [ ⁇ ] of the strain.
  • the maximum vertical strain Msnx is proportional to the distance Ds, while the maximum shear strain Mssx is constant regardless of the distance Ds.
  • the distance Ds when the maximum vertical strain Msnx and the maximum shear strain Mssx become equal is also referred to as an equal strain distance Leqx.
  • the maximum vertical strain Msnx is larger than the maximum shear strain Mssx.
  • the strain sensor 20 when the strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqx, the vertical strain sensor is mounted. Compared with the case where a shear strain sensor is mounted, the strain generated by the application of the load Fx can be measured with higher sensitivity. On the other hand, at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqx, the maximum shear strain Mssx is larger than the maximum vertical strain Msnx.
  • the shear strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqx. Therefore, when the strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqx, the shear strain sensor is mounted. Compared with the case where the vertical strain sensor is mounted, the strain generated by the application of the load Fx can be measured with higher sensitivity.
  • FIG. 50 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure.
  • the round plot shows the maximum vertical strain Msny, which is the maximum value of the absolute value of the vertical strain sny generated at the target positions Ps at 20 points due to the load Fy being applied to the outer diameter bite 101DB, and is triangular.
  • the plot shows the maximum shear strain Mssy, which is the maximum value of the absolute value of the shear strain ssy generated at 20 target positions Ps when the load Fy is applied to the outer diameter bite 101DB.
  • the horizontal axis represents the distance Ds [mm]
  • the vertical axis represents the absolute value [ ⁇ ] of the strain.
  • the maximum vertical strain Msny is proportional to the distance Ds, while the maximum shear strain Mssy is constant regardless of the distance Ds.
  • the distance Ds when the maximum vertical strain Msny and the maximum shear strain Mssy become equal is also referred to as an equal strain distance Leqy.
  • the maximum vertical strain Msny is larger than the maximum shear strain Mssy.
  • the strain sensor 20 when the strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqy, the vertical strain sensor is mounted. Compared with the case where the shear strain sensor is mounted, the strain generated by the application of the load Fy can be measured with higher sensitivity. On the other hand, at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqy, the maximum shear strain Mssy is larger than the maximum vertical strain Msnx.
  • the shear strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqy. Therefore, when the strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqy, the shear strain sensor is mounted. Compared with the case where the vertical strain sensor is mounted, the strain generated by the application of the load Fy can be measured with higher sensitivity.
  • the inventors of the present application calculated the equal strain distances Leqx and Leqy using the simulation results for the sword bite 101SB having a shank height W of 25 mm. Further, the inventors of the present application have an outer diameter bite 101DB and a sword bite 101SB having a shank height W of 8 mm, an outer diameter bite 101DB and a sword bite 101SB having a shank height W of 16 mm, and a shank height W of 40 mm.
  • the outer diameter bite 101DB having a shank height W of 8 mm has a distance dx of 6 mm and a distance dy of 4 mm.
  • the outer diameter bite 101DB having a shank height W of 16 mm has a distance dx of 12 mm and a distance dy of 8 mm.
  • the outer diameter bite 101DB having a shank height W of 25 mm has a distance dx of 19.5 mm and a distance dy of 12.5 mm.
  • the outer diameter bite 101DB having a shank height W of 40 mm has a distance dx of 30 mm and a distance dy of 20 mm.
  • the outer diameter bite 101DB having a shank height W of 50 mm has a distance dx of 38 mm and a distance dy of 25 mm.
  • the distances dx and dy in the outer diameter tool 101DB are values conforming to ISO.
  • the sword bite 101SB having a shank height W of 8 mm has a distance dx of 0 mm and a distance dy of 4 mm.
  • the sword bite 101SB having a shank height W of 16 mm has a distance dx of 0 mm and a distance dy of 8 mm.
  • the sword bite 101SB having a shank height W of 25 mm has a distance dx of 0 mm and a distance dy of 12.5 mm.
  • the sword bite 101SB having a shank height W of 40 mm has a distance dx of 0 mm and a distance dy of 20 mm.
  • the sword bite 101SB having a shank height W of 50 mm has a distance dx of 0 mm and a distance dy of 25 mm.
  • the distances dx and dy in the sword bite 101SB are ISO-compliant values.
  • FIG. 51 is a diagram showing the relationship between the shank height and the equal strain distance in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • the round plot shows the equal strain distance Leqx in the outer diameter bite 101DB
  • the triangular plot shows the equal strain distance Leqy in the outer diameter bite 101DB.
  • the horizontal axis indicates the shank height W [mm]
  • the vertical axis indicates the equal strain distance [mm].
  • FIG. 52 is a diagram showing the relationship between the shank height and the equal strain distance in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure.
  • the round plot shows the equal strain distance Leqx at the sword bite 101SB
  • the triangular plot shows the equal strain distance Leqy at the sword bite 101SB.
  • the horizontal axis indicates the shank height W [mm]
  • the vertical axis indicates the equal strain distance [mm].
  • the equal strain distances Leqx and Leqy are proportional to the shank height W. Further, the equal strain distance Leqy in the outer diameter bite 101DB and the equal strain distance Leqy in the sword bite 101SB are different from each other. On the other hand, in the outer diameter bite 101DB and the sword bite 101SB having the same shank height W, the equal strain distances Leqx are equal to each other. This is due to the position of the reference point 1K in the outer diameter bite 101DB and the position of the reference point 1K in the sword bite 101SB.
  • the distance dx is zero in the sword bite 101SB, even when a load Fy is applied to the shank 10, a moment, that is, torque is not generated around the shaft 17, while the outer diameter bite is used. Since the distance dx is not zero in 101DB, torque is generated by applying the load Fy to the shank 10. Therefore, the shear strain ssy and the maximum shear strain Mssy generated by applying the load Fy to the shank 10 of the outer diameter bite 101SB are due to the influence of the torque, and the load Fy is applied to the shank 10 of the sword bite 101SB. Greater than the resulting shear strain ssy and maximum shear strain Mssy.
  • the equal strain distance Leqy in the outer diameter bite 101DB of a certain shank height W has the same shank height W. It is larger than the equal strain distance Sheqy in the sword bite 101SB.
  • the distance dy is equal to each other in the outer diameter bite 101DB and the sword bite 101SB, the influence of the torque generated by applying the load Fx to the shank 10 is equal, and the shear strain generated by the load Fx is applied.
  • the ssx and the maximum shear strain Mssx are equal to each other. Therefore, in the outer diameter bite 101DB and the sword bite 101SB in which the shank heights W are equal to each other, the equal strain distances Leqx are equal to each other.
  • Leqx 0.74W + 2.09dy ... (26)
  • the shear strain sensor is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqy represented by the above equation (25).
  • the strain generated by the application of the load Fy can be measured with higher sensitivity than in the case where the vertical strain sensor is mounted.
  • a vertical strain sensor is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqy represented by the above equation (25).
  • the strain generated by the application of the load Fy can be measured with higher sensitivity than when the shear strain sensor is mounted.
  • a shear strain sensor is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqx represented by the above equation (26).
  • the strain generated by the application of the load Fx can be measured with higher sensitivity than when the vertical strain sensor is mounted.
  • a vertical strain sensor is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqx represented by the above equation (26). As a result, the strain generated by the application of the load Fx can be measured with higher sensitivity than when the shear strain sensor is mounted.
  • the vertical strain sensor having the maximum sensitivity to the load Fx, the load Fy On the other hand, a shear strain sensor having the maximum sensitivity and a vertical strain sensor having the maximum sensitivity to the load Fz are mounted. Alternatively, a shear strain sensor having the maximum sensitivity to the load Fx and a shear strain sensor having the maximum sensitivity to the load Fy at a position where the distance from the reference point 1K in the Z direction is (0.74 W + 2.09 dy) or less. , And a vertical strain sensor with maximum sensitivity to load Fz.
  • the shank 10 is a regular square pillar and the distance dy is larger than the distance dx, the distance from the reference point 1K in the Z direction is (0.74 W + 2.09 dy) or more at a position with respect to the load Fx. It is equipped with a vertical strain sensor having the maximum sensitivity, a vertical strain sensor having the maximum sensitivity to the load Fy, and a vertical strain sensor having the maximum sensitivity to the load Fz.
  • the shear strain sensor having the maximum sensitivity to the load Fx, the load Fy On the other hand, a vertical strain sensor having the maximum sensitivity and a vertical strain sensor having the maximum sensitivity to the load Fz are mounted.
  • a vertical strain sensor with maximum sensitivity to load Fz At a position where the distance from the reference point 1K in the Z direction is larger than (0.74W + 2.09dx) and less than (0.74W + 2.09dy)
  • the shank 10 is a round shank having the same width b and height h
  • the shank 10 is a square shank having a height h larger than the width b, or a round shank having a width b larger than the height h
  • the strain sensor 20B which is a shear strain sensor having the maximum sensitivity to the load Fx among the loads Fx, Fy, and Fz, is mounted on the shank 10, the sensor distance Db of the strain sensor 20B is expressed by the following equation (28). ) Is preferably satisfied. Db ⁇ 0.74W + 2.09dyb ... (28)
  • the sensor distance D of the shear strain sensor is expressed by the following equation (29). It is preferable to meet. D ⁇ 0.74W + 2.09maxdxy ... (29)
  • the sensor distance D of the two shear strain sensors is as follows. It is preferable to satisfy the formula (30). D ⁇ 0.74W + 2.09mindxy ... (30)
  • dx is the distance between the center of the shank 10 and the reference point 1K at the mounting position of the shear strain sensor in the X direction.
  • dy is the distance between the center of the shank 10 and the reference point 1K at the mounting position of the shear strain sensor in the Y direction.
  • maxdxy is the larger of dx and dy when dx and dy are different values from each other. When dx and dy are equal values, dx and dy are set to maxdxy. mindxy is the smaller of dx and dy.
  • the absolute value of the shear strain ssy in the outer diameter bite 101DB becomes a maximum value in the central portion in the circumferential direction of the four surfaces, and in the central portion in the circumferential direction of the side surface S4. It becomes the maximum value.
  • the reason why the absolute value of the shear strain ssy in the outer diameter bite 101DB is the maximum value on the side surface S4 is that in the outer diameter bite 101DB shown in FIG. Because they act in the same direction.
  • the absolute value of the shear strain ssy in the sword bite 101SB becomes the maximum value in the central portion in the circumferential direction of the side surfaces S3 and S4.
  • the reason why the absolute value of the shear strain ssy in the sword bite 101SB is the maximum value in the side surfaces S3 and S4 is that in the sword bite 101SB shown in FIG. This is because shear acts in the same direction.
  • the absolute value of the shear strain ssx in the outer diameter bite 101DB becomes a maximum value in the central portion in the circumferential direction of the four surfaces, and is the center in the circumferential direction of the upper surface S2. It becomes the maximum value in the part.
  • the reason why the absolute value of the shear strain ssx in the outer diameter bite 101DB becomes the maximum value in the upper surface S2 is that in the outer diameter bite 101DB shown in FIG. Because they act in the same direction.
  • the absolute value of the shear strain ssx in the sword bite 101SB becomes a maximum value in the central portion in the circumferential direction of the four surfaces, and is a maximum value in the central portion in the circumferential direction of the upper surface S2. It becomes.
  • the reason why the absolute value of the shear strain ssx in the sword bite 101SB is the maximum value in the upper surface S2 is that in the sword bite 101SB shown in FIG. 46, the simple shear due to the load Fx and the torsional shear due to the load Fx are the same on the upper surface S2. Because it acts in the direction.
  • the strain sensor 20A which is a shear strain sensor having the maximum sensitivity to the load Fy
  • a general cutting tool 101 such as an outer diameter tool 101DB and a sword tool 101SB
  • the shank 10 It is preferable to mount it on the central portion of the mounting surface among the four surfaces.
  • the strain sensor 20B which is a shear strain sensor having the maximum sensitivity to the load Fx
  • a general cutting tool 101 such as an outer diameter tool 101DB and a sword tool 101SB
  • 4 of the shank 10 It is preferable to mount it on the central portion of the mounting surface of the two surfaces.
  • the strain sensors 20A and 20B are mounted in the middle region of the three regions. Is preferable.
  • one of the strain sensors 20A and 20B is placed at the reference point 1K on the surface of the shank 10. It is mounted on the first surface, which is the closest surface, and the other of the strain sensors 20A and 20B is an adjacent surface adjacent to the first surface, which is the second closest surface to the reference point 1K among the surfaces of the shank 10. It is preferable to mount it on the second surface.
  • the absolute value of the vertical strain snx in the outer diameter bite 101DB is the maximum value in the side surface S3 and the side surface S4. Further, as described with reference to FIG. 47, the absolute value of the vertical strain snx in the sword bite 101SB becomes the maximum value in the side surface S3 and the side surface S4. From the above, when the vertical strain sensor having the maximum sensitivity to the load Fy is mounted on the shank 10 in a general cutting tool 101 such as the outer diameter tool 101DB and the sword tool 101SB, among the four surfaces of the shank 10. It is preferable to mount it on the side surface S3 or the side surface S4.
  • the absolute value of the vertical strain sny in the outer diameter bite 101DB is the maximum value in the bottom surface S1 and the top surface S2. Further, as described with reference to FIG. 47, the absolute value of the vertical strain sny in the sword bite 101SB becomes the maximum value in the bottom surface S1 and the top surface S2. From the above, when the vertical strain sensor having the maximum sensitivity to the load Fx is mounted on the shank 10 in a general cutting tool 101 such as the outer diameter tool 101DB and the sword tool 101SB, among the four surfaces of the shank 10. It is preferable to mount it on the bottom surface S1 and the top surface S2.
  • the absolute value of the vertical strain snz in the outer diameter bite 101DB is the vicinity of the boundary portion between the upper surface S2 and the side surface S4 and the vicinity of the boundary portion between the bottom surface S1 and the side surface S3. It becomes the maximum value in the vicinity of the boundary portion between the upper surface S2 and the side surface S4, and becomes the maximum value.
  • the reason why the absolute value of the vertical strain snz in the vicinity of the boundary portion between the upper surface S2 and the side surface S4 is larger than the absolute value of the vertical strain snz in the vicinity of the boundary portion between the bottom surface S1 and the side surface S3 is shown in FIG. 38.
  • the absolute value of the vertical strain snz in the vicinity of the boundary portion closer to the reference point 1K of the two boundary portions is far from the reference point 1K of the two boundary portions. It is about 1.3 times the absolute value of the vertical strain snz in the vicinity of the boundary portion.
  • the strain sensor 20C which is a vertical strain sensor having the maximum sensitivity to the load Fz
  • a general cutting tool 101 such as an outer diameter tool 101DB
  • the four boundary portions in the shank 10 Of these it is preferable to mount the device in the vicinity of the boundary portion closest to the reference point 1K or in the vicinity of the boundary portion farthest from the reference point 1K.
  • the strain sensor 20C is divided into three equal parts of the second surface of the four surfaces, which is the second closest to the reference point 1K, into three regions arranged in the circumferential direction of the shank 10.
  • the region of the two surfaces closest to the reference point 1K, and the third surface of the four surfaces facing the first surface are divided into three equal regions arranged in the circumferential direction of the shank 10. 3
  • the absolute value of the vertical strain snz in the sword bite 101SB has a maximum value on the bottom surface S1 and the top surface S2, and a maximum value on the top surface S2.
  • the reason why the absolute value of the vertical strain snz in the sword bite 101SB becomes the maximum value in the upper surface S2 and the bottom surface S1 is orthogonal to the virtual line connecting the reference point 1K and the axis 17 due to the load Fz. This is because the shank 10 bends with the virtual line as a boundary, that is, a crease.
  • the reason why the absolute value of the vertical strain snz on the upper surface S2 is larger than the absolute value of the vertical strain snz on the bottom surface S1 is that in the sword bite 101SB shown in FIG. 46, the reference point 1K of the bottom surface S1 and the top surface S2 causes. This is because the bending moment due to the load Fz and the simple compression due to the load Fz act in the same direction on the upper surface S2 which is the closer surface.
  • the strain sensor 20C which is a vertical strain sensor having the maximum sensitivity to the load Fz
  • a general cutting tool 101 such as a sword bite 101SB
  • the strain sensor 20C can be mounted on the bottom surface S1 or the top surface S2.
  • the strain sensor 20C can be mounted on the bottom surface S1 or the top surface S2. preferable.
  • the strain sensor 20C mounts on the side surface S3 or the side surface S4.
  • the absolute value of the vertical strain snz is constant on the bottom surface S1 and constant on the top surface S2.
  • the absolute value of the vertical strain snz is not constant on the bottom surface S1 but constant on the top surface S2. do not have.
  • the cutting tool 101 in which the difference between the maximum value and the minimum value of the absolute value of the vertical strain snz on the bottom surface S1 and the top surface S2 is 10% or less of the maximum value is the same as that of the sword bite 101SB having a distance dx of zero. It is preferable to mount the strain sensor 20C at the mounting position. More specifically, in the cross section of the shank 10 shown in FIG. 46, the position of the reference point 1K when the reference point 1K is translated to the cross section along the Z direction is along the Y direction from the center of the shank 10.
  • the point 17K is a load point when the simple compression by the load Fz and the bending moment due to the load Fz cancel each other out on the upper surface S2 which is the surface closest to the reference point 1K.
  • the straight lines L1a and L1b are load points when the difference between the maximum value and the minimum value of the absolute value of the vertical strain snz on the bottom surface S1 and the top surface S2 is 10% of the maximum value.
  • the strain sensor 20C mounts the strain sensor 20C. Specifically, for example, when the strain sensor 20C is mounted at a position where the distances dxc and dyc satisfy the above equation (17), it is preferable to mount the strain sensor 20C on the bottom surface S1 or the top surface S2.
  • the strain sensor 20C when the strain sensor 20C is mounted at a position where the distances dxc and dyc satisfy the above equation (23), it is preferable to mount the strain sensor 20C on the side surface S3 or the side surface S4.
  • FIG. 53 is a flowchart defining an example of a mounting method when mounting a strain sensor on a cutting tool according to the first embodiment of the present disclosure.
  • the user of the cutting tool 101 prepares the shank 10 and the strain sensors 20A, 20B, 20C (step S102).
  • the user mounts the strain sensors 20A, 20B, 20C on the surface of the shank 10. More specifically, the strain sensors 20A, 20B, and 20C are mounted at the mounting positions shown in the first embodiment and the modified examples 1 to 11 described above (step S104).
  • the cutting tool 101 is configured to include strain sensors 20A, 20B, 20C, but is not limited thereto.
  • the cutting tool 101 may be configured to include one, two, or four or more strain sensors 20. More specifically, the cutting tool 101 is configured to include at least one strain sensor 20, and the measurement result of the strain of the shank 10 by the strain sensor 20 is used for detecting an abnormality that may occur in the cutting tool 101, for example, during cutting. be able to. For example, when it is known in advance that the load Fy is likely to change when an abnormality occurs in the cutting tool 101, the cutting tool 101 is configured to include the strain sensor 20A, based on the measurement result by the strain sensor 20A. Abnormalities can be detected more accurately.
  • the cutting tool 101 includes a strain sensor 20A having the maximum sensitivity to the load Fy, a strain sensor 20B having the maximum sensitivity to the load Fx, and a load Fz. It is said that the configuration is provided with the strain sensor 20C having the maximum sensitivity with respect to the above, but the configuration is not limited to this.
  • the cutting tool 101 may be configured to include the strain sensor 20 having the maximum sensitivity to the load Fx or the load Fz instead of the strain sensor 20A. Further, the cutting tool 101 may be configured to include the strain sensor 20 having the maximum sensitivity to the load Fy or the load Fz instead of the strain sensor 20B. Further, the cutting tool 101 may be configured to include the strain sensor 20 having the maximum sensitivity to the load Fx or the load Fy instead of the strain sensor 20C.
  • the present embodiment relates to a cutting tool 102 provided with a strain sensor 20D instead of the strain sensor 20B as compared with the cutting tool 101 according to the first embodiment. Except for the contents described below, it is the same as the cutting tool 101 according to the first embodiment.
  • the position of the reference point 1K on the XY plane is within the region of the first quadrant Q1 shown in FIG.
  • the position of the reference point 1K in the second embodiment is an example of the position PK1 shown in FIG.
  • FIG. 54 is a diagram showing an example of the configuration of the cutting tool according to the second embodiment of the present disclosure.
  • the cutting tool 102 includes strain sensors 20A, 20C, 20D as strain sensors 20.
  • the strain sensors 20A, 20C, 20D are mounted on the side surface S4 of the shank 10.
  • the mounting positions of the strain sensors 20A and 20C are the same as those in the first embodiment.
  • the strain sensor 20D is a vertical strain sensor capable of measuring the vertical strain of the shank 10.
  • the strain sensor 20D is an example of a second vertical strain sensor.
  • the strain sensor 20D measures the vertical strain ⁇ zz of the shank 10 at the mounting position of the strain sensor 20D. More specifically, the strain sensor 20D has, for example, a measurement axis d1 parallel to the axis 17.
  • the strain sensor 20D measures the strain sd1 in the direction of the measurement axis d1 and outputs an analog signal ASd1 at a level corresponding to the strain sd1 to the above-mentioned wireless communication device as an analog signal ASzz corresponding to the vertical strain ⁇ zzz.
  • the strain sensor 20D has the maximum sensitivity to the load Fx among the loads Fx, Fy, and Fz.
  • FIG. 55 is a cross-sectional view showing the configuration of the cutting tool according to the second embodiment of the present disclosure.
  • FIG. 55 is a cross-sectional view taken along the line LV-LV in FIG. 54.
  • the position of the reference point 1K when the reference point 1K is translated along the Z direction to the cross section of the LV-LV line arrow is indicated by a black circle.
  • the shank height of the shank 10 at the mounting position of the strain sensor 20D is defined as Wd.
  • the distance between the center of the shank 10 at the mounting position of the strain sensor 20D in the X direction and the reference point 1K of the cutting edge in the chip 1 is defined as the distance dxd. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20D in the Y direction and the reference point 1K is defined as the distance dyd.
  • the larger one of the distance dxd and the distance dyd is defined as maxdxyd, and the smaller one is defined as mindxyd.
  • the distance dxd and the distance dyd are set to maxdxyd.
  • the distance dxd and the distance dyd are different values from each other, and the distance dxd is larger than the distance dyd. Therefore, the distance dxd is set to maxdxyd, and the distance dyd is set to mindxyd.
  • the sensor distance Dd satisfies the following equation (33). 0.74Wd + 2.09mindxyd ⁇ Dd ⁇ 0.74Wd + 2.09maxdxyd ... (33)
  • the strain sensor 20D can be used to measure the strain generated by the load Fx with higher sensitivity.
  • the strain sensor 20D is mounted at an arbitrary position on the side surface S4 adjacent to the bottom surface S1 of the four surfaces of the shank 10.
  • the strain sensor 20D may be mounted at an arbitrary position on the side surface S3.
  • the side surface S3 is an example of the first side surface
  • the side surface S4 is an example of the second side surface.
  • the three-component force of the cutting resistance can be calculated based on the measurement results of the three strain sensors 20A, 20C, and 20D at the time of cutting.
  • the mounting method when mounting the strain sensor 20 on the cutting tool 102 is as follows. That is, first, the user of the cutting tool 102 prepares the shank 10 and the strain sensors 20A, 20C, 20D. Next, the user mounts the strain sensors 20A, 20C, 20D on the surface of the shank 10. More specifically, the strain sensors 20A, 20C, 20D are mounted at the above-mentioned mounting positions.
  • the position of the reference point 1K on the XY plane may be in a region other than the first quadrant Q1 shown in FIG.
  • the strain sensors 20A and 20C are mounted at the mounting positions described in the modified examples 1 to 11 of the first embodiment.
  • the strain sensor 20D is mounted at an arbitrary position on the side surface S4 or an arbitrary position on the side surface S3 regardless of the position of the reference point 1K.
  • the present embodiment relates to a cutting tool 102A provided with a strain sensor 20E instead of the strain sensor 20A as compared with the cutting tool 101 according to the first embodiment. Except for the contents described below, it is the same as the cutting tool 101 according to the first embodiment.
  • the position of the reference point 1K on the XY plane is within the region of the second quadrant Q2 shown in FIG.
  • the position of the reference point 1K in the third embodiment is an example of the position PK2 shown in FIG.
  • FIG. 56 is a diagram showing an example of the configuration of the cutting tool according to the third embodiment of the present disclosure.
  • the cutting tool 102A includes strain sensors 20B, 20C, 20E as strain sensors 20.
  • the strain sensors 20B and 20E are mounted on the upper surface S2 of the shank 10.
  • the strain sensor 20C is mounted on the side surface S4 of the shank 10.
  • the mounting positions of the strain sensors 20B and 20C are the same as those of the first modification of the first embodiment.
  • the strain sensor 20E is a vertical strain sensor capable of measuring the vertical strain of the shank 10.
  • the strain sensor 20E is an example of a third vertical strain sensor.
  • the strain sensor 20E measures the vertical strain ⁇ zz of the shank 10 at the mounting position of the strain sensor 20E. More specifically, the strain sensor 20E has, for example, a measurement axis e1 parallel to the axis 17.
  • the strain sensor 20E measures the strain se1 in the direction of the measurement axis e1 and outputs an analog signal ASe1 at a level corresponding to the strain se1 to the above-mentioned wireless communication device as an analog signal ASzz corresponding to the vertical strain ⁇ zzz.
  • the strain sensor 20E has the maximum sensitivity to the load Fy among the loads Fx, Fy, and Fz.
  • FIG. 57 is a cross-sectional view showing the configuration of the cutting tool according to the third embodiment of the present disclosure.
  • FIG. 57 is a cross-sectional view taken along the line LVII-LVII in FIG. 56.
  • the position of the reference point 1K when the reference point 1K is translated along the Z direction to the cross section of the LVII-LVII line arrow is indicated by a black circle.
  • the shank height of the shank 10 at the mounting position of the strain sensor 20E is defined as We.
  • the distance between the center of the shank 10 at the mounting position of the strain sensor 20E in the X direction and the reference point 1K of the cutting edge in the chip 1 is defined as the distance dxe. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20E in the Y direction and the reference point 1K is defined as the distance dye.
  • the larger one of the distance dexe and the distance dye is defined as maxdxye, and the smaller one is defined as mindxye.
  • the distance dexe and the distance dye are set to maxdxye.
  • the distance dxe and the distance dye are different values from each other, and the distance dexe is larger than the distance dye. Therefore, the distance dxe is set to maxdxye, and the distance dye is set to mindxye.
  • the sensor distance De satisfies the following equation (34). 0.74We + 2.09mindxye ⁇ De ⁇ 0.74We + 2.09maxdxye ... (34)
  • the strain sensor 20E can be used to measure the strain generated by the load Fy with higher sensitivity.
  • the strain sensor 20E is mounted at an arbitrary position on the upper surface S2 of the four surfaces of the shank 10.
  • the strain sensor 20E may be mounted at an arbitrary position on the bottom surface S1.
  • the three-component force of the cutting resistance can be calculated based on the measurement results of the three strain sensors 20B, 20C, and 20E at the time of cutting.
  • the mounting method when mounting the strain sensor 20 on the cutting tool 102A is as follows. That is, first, the user of the cutting tool 102A prepares the shank 10 and the strain sensors 20B, 20C, 20E. Next, the user mounts the strain sensors 20B, 20C, 20E on the surface of the shank 10. More specifically, the strain sensors 20B, 20C, 20E are mounted at the above-mentioned mounting positions.
  • the position of the reference point 1K on the XY plane may be in a region other than the second quadrant Q2 shown in FIG.
  • the strain sensors 20B and 20C will be described in the first embodiment and the modifications 2 to 11 of the first embodiment when the position of the reference point 1K on the XY plane is in a region other than the second quadrant Q2. It is mounted in the mounting position.
  • the strain sensor 20E is mounted at an arbitrary position on the upper surface S2 or an arbitrary position on the bottom surface S1 regardless of the position of the reference point 1K.
  • the present embodiment relates to a cutting tool 102B having a strain sensor 20E instead of the strain sensor 20A and a strain sensor 20D instead of the strain sensor 20B, as compared with the cutting tool 101 according to the first embodiment. Except for the contents described below, it is the same as the cutting tool 101 according to the first embodiment.
  • the position of the reference point 1K on the XY plane is within the region of the first quadrant Q1 shown in FIG.
  • the position of the reference point 1K in the fourth embodiment is an example of the position PK1 shown in FIG.
  • FIG. 58 is a diagram showing an example of the configuration of the cutting tool according to the fourth embodiment of the present disclosure.
  • the cutting tool 102B includes strain sensors 20C, 20D, 20E as strain sensors 20.
  • the strain sensor 20E is mounted on the upper surface S2 of the shank 10.
  • the strain sensors 20C and 20D are mounted on the side surface S4 of the shank 10.
  • the mounting position of the strain sensor 20C is the same as that of the first embodiment.
  • the mounting position of the strain sensor 20D in the circumferential direction is the same as the mounting position described in the second embodiment.
  • the mounting position of the strain sensor 20E in the circumferential direction is the same as the mounting position described in the third embodiment.
  • the three-component force of the cutting resistance can be calculated based on the measurement results of the three strain sensors 20C, 20D, and 20E at the time of cutting.
  • the mounting method when mounting the strain sensor 20 on the cutting tool 102B is as follows. That is, first, the user of the cutting tool 102B prepares the shank 10 and the strain sensors 20C, 20D, 20E. Next, the user mounts the strain sensors 20C, 20D, 20E on the surface of the shank 10. More specifically, the strain sensors 20C, 20D, 20E are mounted at the above-mentioned mounting positions.
  • the position of the reference point 1K on the XY plane may be in a region other than the first quadrant Q1 shown in FIG.
  • the strain sensor 20C is mounted at the mounting position described in the modified examples 1 to 11 of the first embodiment.
  • FIGS. 59 and 60 are views showing another example of the mounting position of the strain sensor in the cutting tool according to the first to fourth embodiments of the present disclosure.
  • FIG. 59 shows a cross section of the shank 10, which is a square shank, in a direction perpendicular to the longitudinal direction.
  • FIG. 60 shows a cross section of the shank 10, which is a round shank, in a direction perpendicular to the longitudinal direction.
  • the shank 10 has a recess 22A with an engraving depth of hd in the height direction HD.
  • the strain sensor 20 is attached to the surface of the shank 10 inside the recess 22A.
  • the height hsen of the shank 10 shown in FIGS. 59 and 60 shall be defined as follows. That is, when the height hsen assuming that the shank 10 is not provided with the recess 22A is hx, when hd / hx is less than 0.2, hx is the height hsen and hd / hx is 0. If it is 2 or more, (hx-hd) is defined as the height hsen. Further, for example, the strain sensor 20 may be attached to the surface of the shank 10 inside the recess in which the engraving depth in the width direction WD of the shank 10 is bd.
  • the width bsen of the shank 10 is defined as follows, similarly to the height hsen. That is, when the width bsen assuming that the shank 10 is not provided with the recess is bx, when bd / bx is less than 0.2, bx is the width bsen and bd / bx is 0.2 or more. If, (bx-bd) is the width bsen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

This cutting tool is provided with a shank that has a cutting edge or to which a cutting edge can be mounted and a sensor that is installed on the surface of the shank, wherein: the sensor is a shear strain sensor that can measure the shear strain in the shank; and a sensor distance D of the shear strain sensor fulfils Expression (1) when the shank height is referred to as W, the distance between the shank center at the installed position and the reference point of the cutting edge in a first direction, which is a direction parallel to the bottom surface of the shank and perpendicular to the shank axis, is referred to as distance dx, the distance between the shank center at the installed position and the reference point in a second direction, which is a direction perpendicular to the bottom surface of the shank, is referred to as distance dy, the distance between the installed position and the reference point in a third direction, which is a direction parallel to the axis, is referred to as sensor distance D, and the larger distance among the distance dx and the distance dy, if the distance dx and the distance dy are mutually different, is referred to as maxdxy, or the distance dx and the distance dy, if the distance dx equals the distance dy, are referred to as maxdxy. Expression (1): D < 0.74W+2.09maxdxy

Description

切削工具、切削システムおよび搭載方法Cutting tools, cutting systems and mounting methods
 本開示は、切削工具、切削システムおよび搭載方法に関する。 This disclosure relates to cutting tools, cutting systems and mounting methods.
 特許文献1(特開2019-209420号公報)には、以下のような切削加工システムが開示されている。すなわち、切削加工システムは、工具固定部に固定され所定長さで延出する切削工具の端部に設けられた刃先を回転する被削物に接触させて切削加工を行う加工装置本体と、測定データ取得装置と、情報処理装置と、を備える切削加工システムであって、切削加工時の切削抵抗により前記切削工具に生じる歪を計測する複数の歪センサが、前記切削工具の長手方向に沿って並べて設けられ、前記測定データ取得装置は、歪センサの夫々の出力信号に基づくデータであるセンサデータを取得し、前記情報処理装置は、前記複数の歪センサの夫々の前記センサデータを受信し、前記複数の歪センサの夫々の前記センサデータに基づき前記切削工具の撓みを求め、前記撓みに基づき前記切削加工における加工誤差を求める。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2019-209420) discloses the following cutting processing system. That is, the cutting system is a processing device main body that performs cutting by contacting the cutting edge provided at the end of the cutting tool that is fixed to the tool fixing portion and extends at a predetermined length with the rotating work piece. A cutting system including a data acquisition device and an information processing device, in which a plurality of strain sensors that measure strain generated in the cutting tool due to cutting resistance during cutting are provided along the longitudinal direction of the cutting tool. The measurement data acquisition device is provided side by side, and the measurement data acquisition device acquires sensor data which is data based on each output signal of the strain sensor, and the information processing device receives the sensor data of each of the plurality of strain sensors. The deflection of the cutting tool is obtained based on the sensor data of each of the plurality of strain sensors, and the machining error in the cutting process is obtained based on the deflection.
特開2019-209420号公報Japanese Unexamined Patent Publication No. 2019-209420 特開2012-91277号公報Japanese Unexamined Patent Publication No. 2012-91277 欧州特許出願公開第3292930号明細書European Patent Application Publication No. 3292930
 本開示の切削工具は、旋削加工用の切削工具であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記シャンクの表面に搭載されたセンサとを備え、前記センサは、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサであり、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向である第1方向における、前記搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向である第2方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとし、前記軸と平行な方向である第3方向における、前記搭載位置と前記基準点との間の距離をセンサ距離Dとし、前記距離dxおよび前記距離dyが互いに異なる値である場合に前記距離dxおよび前記距離dyのうちの大きい方をmaxdxyとし、前記距離dxおよび前記距離dyが等しい値である場合に前記距離dxおよび前記距離dyをmaxdxyとしたとき、前記せん断ひずみセンサの前記センサ距離Dは、式(A)を満たす。
 D<0.74W+2.09maxdxy ・・・ (A)
The cutting tool of the present disclosure is a cutting tool for turning, and includes a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank. A shear strain sensor capable of measuring the shear strain of the shank, in a first direction in which the shank height of the shank is W, parallel to the bottom surface of the shank, and orthogonal to the axis of the shank. The distance between the center of the shank and the reference point of the cutting edge at the mounting position is defined as the distance dx, and the center of the shank at the mounting position and the shank in the second direction orthogonal to the bottom surface of the shank. The distance to the reference point is defined as the distance dy, the distance between the mounting position and the reference point in the third direction parallel to the axis is defined as the sensor distance D, and the distance dx and the distance dy are defined. When the values are different from each other, the larger of the distance dx and the distance dy is set to maxdxy, and when the distance dx and the distance dy are equal values, the distance dx and the distance dy are set to maxdxy. , The sensor distance D of the shear strain sensor satisfies the formula (A).
D <0.74W + 2.09maxdxy ... (A)
 本開示の切削工具は、旋削加工用の切削工具であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記シャンクの表面に搭載されたセンサとを備え、前記センサは、前記シャンクのせん断ひずみを測定可能な第1のせん断ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記第1のせん断ひずみセンサは、前記4つの表面のうちの少なくともいずれか1つである搭載面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載される。 The cutting tool of the present disclosure is a cutting tool for turning, and includes a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank. A first shear strain sensor capable of measuring the shear strain of the shank, the shank comprising four surfaces surrounding an axis, the first shear strain sensor being at least one of the four surfaces. When one mounting surface is divided into three equal regions arranged in the circumferential direction of the shank, the mounting surface is mounted in the middle of the three regions.
 本開示の切削工具は、旋削加工用の切削工具であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記シャンクの表面に搭載されたセンサとを備え、前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記第1の垂直ひずみセンサは、前記4つの表面のうちの前記切刃の基準点に最も近い第1表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第1表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記基準点に2番目に近い第2表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第2表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記第1表面と対向する第3表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第3表面における前記3つの領域のうちの前記基準点に最も遠い前記領域、および、前記4つの表面のうちの前記第2表面と対向する第4表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第4表面における前記3つの領域のうちの前記基準点に最も遠い前記領域のうちのいずれか1つに搭載される。 The cutting tool of the present disclosure is a cutting tool for turning, and includes a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank. A first vertical strain sensor capable of measuring the vertical strain of the shank, the shank comprising four surfaces surrounding an axis, the first vertical strain sensor being the cutting edge of the four surfaces. When the first surface closest to the reference point is divided into three regions arranged in the circumferential direction of the shank, the region closest to the reference point among the three regions on the first surface, the fourth. When the second surface of the two surfaces, which is the second closest to the reference point, is divided into three equal parts in the circumferential direction of the shank, the reference point of the three regions on the second surface is used. When the nearest third surface of the four surfaces facing the first surface is divided into three equal regions arranged in the circumferential direction of the shank, the three regions on the third surface are divided into three equal parts. When the region farthest from the reference point and the fourth surface of the four surfaces facing the second surface are divided into three equal regions arranged in the circumferential direction of the shank, the first It is mounted on any one of the three regions on the surface, which is the furthest from the reference point.
図1は、本開示の第1の実施の形態に係る切削システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure. 図2は、本開示の第1の実施の形態に係る切削工具を工作機械に取り付けた状態を示す図である。FIG. 2 is a diagram showing a state in which a cutting tool according to the first embodiment of the present disclosure is attached to a machine tool. 図3は、本開示の第1の実施の形態に係る切削工具の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure. 図4は、本開示の第1の実施の形態に係る切削システムにおける処理装置の構成を示す図である。FIG. 4 is a diagram showing a configuration of a processing device in the cutting system according to the first embodiment of the present disclosure. 図5は、本開示の第1の実施の形態に係る切削工具の構成の一例を示す図である。FIG. 5 is a diagram showing an example of the configuration of a cutting tool according to the first embodiment of the present disclosure. 図6は、本開示の第1の実施の形態に係る切削工具の構成を示す断面図である。FIG. 6 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure. 図7は、本開示の第1の実施の形態に係る切削工具の構成を示す断面図である。FIG. 7 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure. 図8は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。FIG. 8 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. 図9は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。FIG. 9 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. 図10は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。FIG. 10 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. 図11は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。FIG. 11 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. 図12は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。FIG. 12 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. 図13は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。FIG. 13 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. 図14は、本開示の第1の実施の形態の変形例1に係る切削工具の構成の一例を示す図である。FIG. 14 is a diagram showing an example of the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure. 図15は、本開示の第1の実施の形態の変形例1に係る切削工具の構成を示す断面図である。FIG. 15 is a cross-sectional view showing the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure. 図16は、本開示の第1の実施の形態の変形例1に係る切削工具の構成を示す断面図である。FIG. 16 is a cross-sectional view showing the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure. 図17は、本開示の第1の実施の形態の変形例2に係る切削工具の構成の一例を示す図である。FIG. 17 is a diagram showing an example of the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure. 図18は、本開示の第1の実施の形態の変形例2に係る切削工具の構成を示す断面図である。FIG. 18 is a cross-sectional view showing the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure. 図19は、本開示の第1の実施の形態の変形例2に係る切削工具の構成を示す断面図である。FIG. 19 is a cross-sectional view showing the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure. 図20は、本開示の第1の実施の形態の変形例3に係る切削工具の構成の一例を示す図である。FIG. 20 is a diagram showing an example of the configuration of a cutting tool according to the third modification of the first embodiment of the present disclosure. 図21は、本開示の第1の実施の形態の変形例3に係る切削工具の構成を示す断面図である。FIG. 21 is a cross-sectional view showing the configuration of the cutting tool according to the third modification of the first embodiment of the present disclosure. 図22は、本開示の第1の実施の形態の変形例3に係る切削工具の構成を示す断面図である。FIG. 22 is a cross-sectional view showing the configuration of the cutting tool according to the third modification of the first embodiment of the present disclosure. 図23は、本開示の第1の実施の形態の変形例4に係る切削工具の構成の一例を示す図である。FIG. 23 is a diagram showing an example of the configuration of the cutting tool according to the modified example 4 of the first embodiment of the present disclosure. 図24は、本開示の第1の実施の形態の変形例5に係る切削工具の構成の一例を示す図である。FIG. 24 is a diagram showing an example of the configuration of the cutting tool according to the modification 5 of the first embodiment of the present disclosure. 図25は、本開示の第1の実施の形態の変形例6に係る切削工具の構成の一例を示す図である。FIG. 25 is a diagram showing an example of the configuration of the cutting tool according to the modification 6 of the first embodiment of the present disclosure. 図26は、本開示の第1の実施の形態の変形例7に係る切削工具の構成の一例を示す図である。FIG. 26 is a diagram showing an example of the configuration of the cutting tool according to the modification 7 of the first embodiment of the present disclosure. 図27は、本開示の第1の実施の形態の変形例8に係る切削工具の構成の一例を示す図である。FIG. 27 is a diagram showing an example of the configuration of the cutting tool according to the modification 8 of the first embodiment of the present disclosure. 図28は、本開示の第1の実施の形態の変形例8に係る切削工具の構成を示す断面図である。FIG. 28 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 8 of the first embodiment of the present disclosure. 図29は、本開示の第1の実施の形態の変形例8に係る切削工具の構成を示す断面図である。FIG. 29 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 8 of the first embodiment of the present disclosure. 図30は、本開示の第1の実施の形態の変形例8に係る切削工具の構成を示す断面図である。FIG. 30 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 8 of the first embodiment of the present disclosure. 図31は、本開示の第1の実施の形態の変形例9に係る切削工具の構成の一例を示す図である。FIG. 31 is a diagram showing an example of the configuration of the cutting tool according to the modified example 9 of the first embodiment of the present disclosure. 図32は、本開示の第1の実施の形態の変形例9に係る切削工具の構成を示す断面図である。FIG. 32 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 9 of the first embodiment of the present disclosure. 図33は、本開示の第1の実施の形態の変形例10に係る切削工具の構成の一例を示す図である。FIG. 33 is a diagram showing an example of the configuration of the cutting tool according to the modification 10 of the first embodiment of the present disclosure. 図34は、本開示の第1の実施の形態の変形例10に係る切削工具の構成を示す断面図である。FIG. 34 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 10 of the first embodiment of the present disclosure. 図35は、本開示の第1の実施の形態の変形例11に係る切削工具の構成の一例を示す図である。FIG. 35 is a diagram showing an example of the configuration of the cutting tool according to the modification 11 of the first embodiment of the present disclosure. 図36は、本開示の第1の実施の形態の変形例11に係る切削工具の構成を示す断面図である。FIG. 36 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 11 of the first embodiment of the present disclosure. 図37は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトの構成を示す図である。FIG. 37 is a diagram showing a configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure. 図38は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトの構成を示す断面図である。FIG. 38 is a cross-sectional view showing the configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure. 図39は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおける垂直ひずみの計算結果を示す図である。FIG. 39 is a diagram showing a calculation result of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図40は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおける垂直ひずみの計算結果を示す図である。FIG. 40 is a diagram showing a calculation result of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図41は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおける垂直ひずみの計算結果を示す図である。FIG. 41 is a diagram showing a calculation result of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図42は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおけるせん断ひずみの計算結果を示す図である。FIG. 42 is a diagram showing a calculation result of a shear strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図43は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおけるせん断ひずみの計算結果を示す図である。FIG. 43 is a diagram showing a calculation result of a shear strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図44は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおけるせん断ひずみの計算結果を示す図である。FIG. 44 is a diagram showing a calculation result of a shear strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図45は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトの構成を示す図である。FIG. 45 is a diagram showing a configuration of a sword bite which is an example of a cutting tool according to the first embodiment of the present disclosure. 図46は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトの構成を示す断面図である。FIG. 46 is a cross-sectional view showing the configuration of a sword bite, which is an example of a cutting tool according to the first embodiment of the present disclosure. 図47は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトにおける垂直ひずみの計算結果を示す図である。FIG. 47 is a diagram showing a calculation result of vertical strain in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図48は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトにおけるせん断ひずみの計算結果を示す図である。FIG. 48 is a diagram showing a calculation result of shear strain in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図49は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおける基準点からの距離と垂直ひずみおよびせん断ひずみとの関係を示す図である。FIG. 49 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure. 図50は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおける基準点からの距離と垂直ひずみおよびせん断ひずみとの関係を示す図である。FIG. 50 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure. 図51は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおけるシャンク高さと等ひずみ距離との関係を示す図である。FIG. 51 is a diagram showing the relationship between the shank height and the equal strain distance in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図52は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトにおけるシャンク高さと等ひずみ距離との関係を示す図である。FIG. 52 is a diagram showing the relationship between the shank height and the equal strain distance in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure. 図53は、本開示の第1の実施の形態に係る切削工具にひずみセンサを搭載する際の搭載方法の一例を定めたフローチャートである。FIG. 53 is a flowchart defining an example of a mounting method when mounting a strain sensor on a cutting tool according to the first embodiment of the present disclosure. 図54は、本開示の第2の実施の形態に係る切削工具の構成の一例を示す図である。FIG. 54 is a diagram showing an example of the configuration of the cutting tool according to the second embodiment of the present disclosure. 図55は、本開示の第2の実施の形態に係る切削工具の構成を示す断面図である。FIG. 55 is a cross-sectional view showing the configuration of the cutting tool according to the second embodiment of the present disclosure. 図56は、本開示の第3の実施の形態に係る切削工具の構成の一例を示す図である。FIG. 56 is a diagram showing an example of the configuration of the cutting tool according to the third embodiment of the present disclosure. 図57は、本開示の第3の実施の形態に係る切削工具の構成を示す断面図である。FIG. 57 is a cross-sectional view showing the configuration of the cutting tool according to the third embodiment of the present disclosure. 図58は、本開示の第4の実施の形態に係る切削工具の構成の一例を示す図である。FIG. 58 is a diagram showing an example of the configuration of the cutting tool according to the fourth embodiment of the present disclosure. 図59は、本開示の第1~第4の実施の形態に係る切削工具におけるひずみセンサの搭載位置の他の例を示す図である。FIG. 59 is a diagram showing another example of the mounting position of the strain sensor in the cutting tool according to the first to fourth embodiments of the present disclosure. 図60は、本開示の第1~第4の実施の形態に係る切削工具におけるひずみセンサの搭載位置の他の例を示す図である。FIG. 60 is a diagram showing another example of the mounting position of the strain sensor in the cutting tool according to the first to fourth embodiments of the present disclosure.
 従来、切削工具にひずみセンサを取り付け、ひずみセンサによる切削加工時の切削工具のひずみの計測結果に基づいて、切削抵抗を算出したり、切削工具における切刃の異常を検知したりする技術が提案されている。 Conventionally, a technology has been proposed in which a strain sensor is attached to a cutting tool, the cutting resistance is calculated based on the measurement result of the strain of the cutting tool during cutting by the strain sensor, and the abnormality of the cutting edge in the cutting tool is detected. Has been done.
 [本開示が解決しようとする課題]
 上述した特許文献1~3に記載の技術を超えて、ひずみセンサを用いてシャンクのひずみをより高感度で測定することが可能な技術が望まれる。
[Problems to be solved by this disclosure]
Beyond the techniques described in Patent Documents 1 to 3 described above, a technique capable of measuring shank strain with higher sensitivity using a strain sensor is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、ひずみセンサを用いてシャンクのひずみをより高感度で測定することが可能な切削工具、切削システムおよび搭載方法を提供することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is to provide a cutting tool, a cutting system and a mounting method capable of measuring the strain of a shank with higher sensitivity by using a strain sensor. It is to be.
 [本開示の効果]
 本開示によれば、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。
[Effect of this disclosure]
According to the present disclosure, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 [本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
 (1)本開示の実施の形態に係る切削工具は、旋削加工用の切削工具であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記シャンクの表面に搭載されたセンサとを備え、前記センサは、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサであり、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向である第1方向における、前記搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向である第2方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとし、前記軸と平行な方向である第3方向における、前記搭載位置と前記基準点との間の距離をセンサ距離Dとし、前記距離dxおよび前記距離dyが互いに異なる値である場合に前記距離dxおよび前記距離dyのうちの大きい方をmaxdxyとし、前記距離dxおよび前記距離dyが等しい値である場合に前記距離dxおよび前記距離dyをmaxdxyとしたとき、
 前記せん断ひずみセンサの前記センサ距離Dは、式(1)を満たす。
 D<0.74W+2.09maxdxy ・・・ (1)
(1) The cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank. The sensor is a shear strain sensor capable of measuring the shear strain of the shank, the shank height of the shank is W, parallel to the bottom surface of the shank, and orthogonal to the axis of the shank. The distance dx is the distance between the center of the shank at the mounting position and the reference point of the cutting edge in the first direction, which is the direction, and the mounting in the second direction perpendicular to the bottom surface of the shank. The distance between the center of the shank and the reference point at the position is defined as the distance dy, and the distance between the mounting position and the reference point in the third direction parallel to the axis is defined as the sensor distance D. When the distance dx and the distance dy are different values, the larger of the distance dx and the distance dy is set as maxdxy, and when the distance dx and the distance dy are equal values, the distance dx and When the distance dy is maxdxy,
The sensor distance D of the shear strain sensor satisfies the equation (1).
D <0.74W + 2.09maxdxy ... (1)
 このように、せん断ひずみセンサのセンサ距離Dが上記式(1)を満たす構成により、せん断ひずみセンサの代わりにシャンクの垂直ひずみを測定可能な垂直ひずみセンサを用いる構成と比べて、第1方向または第2方向の負荷に伴って生じるせん断ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 As described above, the configuration in which the sensor distance D of the shear strain sensor satisfies the above equation (1) is different from the configuration in which the vertical strain sensor capable of measuring the vertical strain of the shank is used instead of the shear strain sensor, in the first direction or. The shear strain generated by the load in the second direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (2)好ましくは、前記距離dxおよび前記距離dyのうち小さい方をmindxyとしたとき、前記せん断ひずみセンサの前記センサ距離Dは、式(2)を満たす。
 D<0.74W+2.09mindxy ・・・ (2)
(2) Preferably, when the smaller of the distance dx and the distance dy is mindxy, the sensor distance D of the shear strain sensor satisfies the equation (2).
D <0.74W + 2.09mindxy ... (2)
 このような構成により、せん断ひずみセンサの代わりに垂直ひずみセンサを用いる構成と比べて、第1方向の負荷または第2方向の負荷に伴って生じるせん断ひずみをより一層高感度で測定することができる。 With such a configuration, the shear strain generated by the load in the first direction or the load in the second direction can be measured with higher sensitivity as compared with the configuration in which the vertical strain sensor is used instead of the shear strain sensor. ..
 (3)より好ましくは、前記切削工具は、複数の前記センサを備え、前記複数のセンサのうちの少なくともいずれか2つは前記せん断ひずみセンサであり、2つの前記せん断ひずみセンサの各前記センサ距離Dは、前記式(2)を満たす。 (3) More preferably, the cutting tool includes a plurality of the sensors, at least two of the plurality of sensors are the shear strain sensors, and each sensor distance of the two shear strain sensors. D satisfies the above formula (2).
 このような構成により、たとえば、シャンクの複数の表面におけるせん断ひずみを高感度で測定することができる。 With such a configuration, for example, shear strain on a plurality of surfaces of a shank can be measured with high sensitivity.
 (4)より好ましくは、前記2つのせん断ひずみセンサの一方は、前記第1方向の負荷である第1負荷、前記第2方向の負荷である第2負荷、および前記第3方向の負荷である第3負荷のうち、前記第2負荷に対して最大の感度を有し、前記2つのせん断ひずみセンサの他方は、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有する。 (4) More preferably, one of the two shear strain sensors is a first load which is a load in the first direction, a second load which is a load in the second direction, and a load in the third direction. Of the third load, it has the highest sensitivity to the second load, and the other of the two shear strain sensors is the first of the first load, the second load and the third load. Has maximum sensitivity to loads.
 このような構成により、切削加工時における2つのせん断ひずみセンサの測定結果に基づいて、切削抵抗の3分力のうちの2つを算出することができる。 With such a configuration, it is possible to calculate two of the three components of cutting resistance based on the measurement results of the two shear strain sensors during cutting.
 (5)好ましくは、前記切削工具は、複数の前記センサを備え、前記複数のセンサのうちの少なくともいずれか1つは、前記シャンクの垂直ひずみを測定可能な垂直ひずみセンサである。 (5) Preferably, the cutting tool includes a plurality of the sensors, and at least one of the plurality of sensors is a vertical strain sensor capable of measuring the vertical strain of the shank.
 このような構成により、せん断ひずみセンサでは測定することが困難である、軸方向の負荷に伴って生じる垂直ひずみを測定することができる。 With such a configuration, it is possible to measure the vertical strain generated by the load in the axial direction, which is difficult to measure with the shear strain sensor.
 (6)より好ましくは、前記垂直ひずみセンサは、前記第1方向の負荷である第1負荷、前記第2方向の負荷である第2負荷、および前記第3方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有する。 (6) More preferably, the vertical strain sensor has a first load which is a load in the first direction, a second load which is a load in the second direction, and a third load which is a load in the third direction. Among them, it has the maximum sensitivity to the third load.
 このような構成により、切削加工時における垂直ひずみの測定結果に基づいて、切削抵抗の3分力のうちの軸方向の分力を算出することができる。 With such a configuration, it is possible to calculate the axial component of the three component forces of the cutting resistance based on the measurement result of the vertical strain during cutting.
 (7)好ましくは、前記距離dxおよび前記距離dyのうち小さい方をmindxyとしたとき、前記垂直ひずみセンサの前記センサ距離Dは、式(3)を満たし、
 0.74W+2.09mindxy<D<0.74W+2.09maxdxy ・・・ (3)
 前記垂直ひずみセンサは、前記距離dxが前記距離dyより大きい場合、前記第1方向の負荷である第1負荷、前記第2方向の負荷である第2負荷、および前記第3方向の負荷である第3負荷のうち、前記第1負荷に対して最大の感度を有し、前記垂直ひずみセンサは、前記距離dyが前記距離dxより大きい場合、前記第1負荷、前記第2負荷、および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する。
(7) Preferably, when the smaller of the distance dx and the distance dy is mindxy, the sensor distance D of the vertical strain sensor satisfies the equation (3).
0.74W + 2.09mindxy <D <0.74W + 2.09maxdxy ... (3)
When the distance dx is larger than the distance dy, the vertical strain sensor is a first load which is a load in the first direction, a second load which is a load in the second direction, and a load in the third direction. Among the third loads, the vertical strain sensor has the maximum sensitivity to the first load, and when the distance dy is larger than the distance dx, the first load, the second load, and the second load. Of the three loads, it has the highest sensitivity to the second load.
 このような構成により、垂直ひずみセンサを用いて、第1負荷または第2負荷に伴って生じるひずみをより高感度で測定することができる。 With such a configuration, the strain generated by the first load or the second load can be measured with higher sensitivity by using the vertical strain sensor.
 (8)本開示の実施の形態に係る切削工具は、旋削加工用の切削工具であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記シャンクの表面に搭載されたセンサとを備え、前記センサは、前記シャンクのせん断ひずみを測定可能な第1のせん断ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記第1のせん断ひずみセンサは、前記4つの表面のうちの少なくともいずれか1つである搭載面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載される。 (8) The cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank. The sensor is a first shear strain sensor capable of measuring the shear strain of the shank, the shank includes four surfaces surrounding an axis, and the first shear strain sensor is the fourth. When the mounting surface, which is at least one of the three surfaces, is divided into three equal regions arranged in the circumferential direction of the shank, the mounting surface is mounted in the middle of the three regions.
 このように、せん断ひずみセンサを、搭載面における3等分された3つの領域のうちの真ん中の領域に搭載する構成により、第1方向または第2方向の負荷に伴って生じるせん断ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, by mounting the shear strain sensor in the middle region of the three equally divided regions on the mounting surface, the shear strain generated by the load in the first direction or the second direction is higher. It can be measured by sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (9)好ましくは、前記第1のせん断ひずみセンサは、前記搭載面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記5つの領域のうちの真ん中の前記領域に搭載される。 (9) Preferably, the first shear strain sensor is mounted in the middle of the five regions when the mounting surface is divided into five equal regions arranged in the circumferential direction of the shank. Ru.
 このような構成により、シャンクのせん断ひずみをより一層高感度で測定することができる。 With such a configuration, the shear strain of the shank can be measured with even higher sensitivity.
 (10)好ましくは、前記第1のせん断ひずみセンサは、前記4つの表面のうちの前記切刃の基準点に最も近い前記表面に搭載される。 (10) Preferably, the first shear strain sensor is mounted on the surface of the four surfaces closest to the reference point of the cutting edge.
 このような構成により、シャンクのせん断ひずみをより一層高感度で測定することができる。 With such a configuration, the shear strain of the shank can be measured with even higher sensitivity.
 (11)好ましくは、前記切削工具は、さらに、前記センサとして、前記シャンクのせん断ひずみを測定可能な第2のせん断ひずみセンサを備え、前記第2のせん断ひずみセンサは、前記4つの表面うちの前記搭載面に隣接する隣接面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載される。 (11) Preferably, the cutting tool further includes, as the sensor, a second shear strain sensor capable of measuring the shear strain of the shank, and the second shear strain sensor is among the four surfaces. When the adjacent surface adjacent to the mounting surface is divided into three equal regions arranged in the circumferential direction of the shank, the surface is mounted in the middle of the three regions.
 このような構成により、シャンクの2つの表面の各々におけるせん断ひずみをより高感度で測定することができる。 With such a configuration, the shear strain on each of the two surfaces of the shank can be measured with higher sensitivity.
 (12)好ましくは、前記第2のせん断ひずみセンサは、前記隣接面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記5つの領域のうちの真ん中の前記領域に搭載される。 (12) Preferably, the second shear strain sensor is mounted in the middle of the five regions when the adjacent surface is divided into five equal regions arranged in the circumferential direction of the shank. Ru.
 このような構成により、シャンクの2つの表面の各々におけるせん断ひずみをより一層高感度で測定することができる。 With such a configuration, the shear strain on each of the two surfaces of the shank can be measured with even higher sensitivity.
 (13)好ましくは、前記第2のせん断ひずみセンサは、前記4つの表面のうちの前記切刃の基準点に2番目に近い前記表面に搭載される。 (13) Preferably, the second shear strain sensor is mounted on the surface of the four surfaces that is second closest to the reference point of the cutting edge.
 このような構成により、シャンクの2つの表面の各々におけるせん断ひずみをより一層高感度で測定することができる。 With such a configuration, the shear strain on each of the two surfaces of the shank can be measured with even higher sensitivity.
 (14)好ましくは、前記第1のせん断ひずみセンサおよび前記第2のせん断ひずみセンサの一方は、前記シャンクの底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第1負荷に対して最大の感度を有し、前記第1のせん断ひずみセンサおよび前記第2のせん断ひずみセンサの他方は、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する。 (14) Preferably, one of the first shear strain sensor and the second shear strain sensor is a first load that is parallel to the bottom surface of the shank and is a load in a direction orthogonal to the axis. Of the second load, which is a load orthogonal to the bottom surface, and the third load, which is a load parallel to the axis, the first load has the highest sensitivity to the first load, and the first shear strain. The other of the sensor and the second shear strain sensor has the highest sensitivity to the second load of the first load, the second load and the third load.
 このような構成により、切削加工時における2つのせん断ひずみセンサの測定結果に基づいて、切削抵抗の3分力のうちの2つを算出することができる。 With such a configuration, it is possible to calculate two of the three components of cutting resistance based on the measurement results of the two shear strain sensors during cutting.
 (15)本開示の実施の形態に係る切削工具は、旋削加工用の切削工具であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記シャンクの表面に搭載されたセンサとを備え、前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記第1の垂直ひずみセンサは、前記4つの表面のうちの前記切刃の基準点に最も近い第1表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第1表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記基準点に2番目に近い第2表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第2表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記第1表面と対向する第3表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第3表面における前記3つの領域のうちの前記基準点に最も遠い前記領域、および、前記4つの表面のうちの前記第2表面と対向する第4表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第4表面における前記3つの領域のうちの前記基準点に最も遠い前記領域のうちのいずれか1つに搭載される。 (15) The cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank. The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, the shank includes four surfaces surrounding an axis, and the first vertical strain sensor is the fourth. When the first surface of the three surfaces closest to the reference point of the cutting edge is divided into three equal parts in the circumferential direction of the shank, the reference point of the three regions on the first surface is divided into three equal parts. When the second surface of the four surfaces closest to the reference point is divided into three regions arranged in the circumferential direction of the shank, the three regions on the second surface are divided into three equal parts. When the region closest to the reference point among the regions and the third surface of the four surfaces facing the first surface are divided into three equal regions arranged in the circumferential direction of the shank, the first The region of the three surfaces farthest from the reference point, and the fourth surface of the four surfaces facing the second surface are arranged in the three regions of the shank in the circumferential direction. When divided into three equal parts, it is mounted on any one of the three regions on the fourth surface, which is the furthest from the reference point.
 このように、垂直ひずみセンサを、シャンクにおける表面の境界部分のうちの、基準点に最も近い境界部分の近傍、または基準点に最も遠い境界部分の近傍に搭載する構成により、軸と平行な方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the vertical strain sensor is mounted in the vicinity of the boundary portion closest to the reference point or the boundary portion farthest from the reference point in the boundary portion of the surface of the shank, so that the direction is parallel to the axis. The vertical strain caused by the load can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (16)好ましくは、前記第1の垂直ひずみセンサは、前記第1表面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記第1表面における前記5つの領域のうちの前記基準点に最も近い前記領域、前記第2表面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記第2表面における前記5つの領域のうちの前記基準点に最も近い前記領域、前記第3表面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記第3表面における前記5つの領域のうちの前記基準点に最も遠い前記領域、および、前記第4表面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記第4表面における前記5つの領域のうちの前記基準点に最も遠い前記領域のうちのいずれか1つに搭載される。 (16) Preferably, when the first vertical strain sensor divides the first surface into five equal regions arranged in the circumferential direction of the shank, the first of the five regions on the first surface is said. The region closest to the reference point, the region closest to the reference point among the five regions on the second surface when the second surface is divided into five regions arranged in the circumferential direction of the shank. , The region farthest from the reference point among the five regions on the third surface when the third surface is divided into five regions arranged in the circumferential direction of the shank, and the fourth surface. Is mounted in any one of the five regions on the fourth surface, which is the furthest from the reference point, when the shank is divided into five regions arranged in the circumferential direction.
 このような構成により、シャンクにおける垂直ひずみをより一層高感度で測定することができる。 With such a configuration, the vertical strain in the shank can be measured with even higher sensitivity.
 (17)本開示の実施の形態に係る切削工具は、旋削加工用の切削工具であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記シャンクの表面に搭載されたセンサとを備え、前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記4つの表面のうちの前記切刃の基準点に最も近い前記表面を第1表面とし、前記4つの表面のうちの前記基準点に2番目に近い前記表面を第2表面とし、前記4つの表面のうちの前記第1表面と対向する前記表面を第3表面とし、前記4つの表面のうちの前記第2表面と対向する前記表面を第4表面としたとき、前記第1表面および前記第3表面のいずれか一方は、前記シャンクの底面であり、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向における、前記第1の垂直ひずみセンサの搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記底面に直交する方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとしたとき、式(4)を満たし、
 10dx≦dy+W/6 ・・・ (4)
 前記第1の垂直ひずみセンサは、前記第1表面または前記第3表面に搭載される。
(17) The cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank. The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, wherein the shank comprises four surfaces surrounding an axis and of the cutting edge of the four surfaces. The surface closest to the reference point is the first surface, the surface second closest to the reference point among the four surfaces is the second surface, and the surface faces the first surface of the four surfaces. When the surface is the third surface and the surface of the four surfaces facing the second surface is the fourth surface, either the first surface or the third surface is of the shank. The bottom surface, where the shank height of the shank is W, parallel to the bottom surface of the shank, and with the center of the shank at the mounting position of the first vertical strain sensor in a direction orthogonal to the axis of the shank. When the distance between the cutting edge and the reference point is defined as the distance dx, and the distance between the center of the shank and the reference point at the mounting position in the direction perpendicular to the bottom surface is defined as the distance dy, the equation ( 4) is satisfied,
10dx≤dy + W / 6 ... (4)
The first vertical strain sensor is mounted on the first surface or the third surface.
 このように、垂直ひずみセンサを、たとえば剣バイトのように距離dxが距離dyに対して小さい切削工具のシャンクにおける、基準点に最も近い表面、または当該表面に対向する表面に搭載する構成により、軸と平行な方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the vertical strain sensor is mounted on the surface closest to the reference point or the surface facing the reference point in the shank of the cutting tool whose distance dx is small with respect to the distance dy, such as a sword bite. The vertical strain caused by the load in the direction parallel to the axis can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (18)本開示の実施の形態に係る切削工具は、旋削加工用の切削工具であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記シャンクの表面に搭載されたセンサとを備え、前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記4つの表面のうちの前記切刃の基準点に最も近い前記表面を第1表面とし、前記4つの表面のうちの前記基準点に2番目に近い前記表面を第2表面とし、前記4つの表面のうちの前記第1表面と対向する前記表面を第3表面とし、前記4つの表面のうちの前記第2表面と対向する前記表面を第4表面としたとき、前記第2表面および前記第4表面のいずれか一方は、前記シャンクの底面であり、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向における、前記第1の垂直ひずみセンサの搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記底面に直交する方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとしたとき、式(5)を満たし、
 10dy≦dx+W/6 ・・・ (5)
 前記第1の垂直ひずみセンサは、前記第1表面または前記第3表面に搭載される。
(18) The cutting tool according to the embodiment of the present disclosure is a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and a sensor mounted on the surface of the shank. The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, wherein the shank comprises four surfaces surrounding an axis and of the cutting edge of the four surfaces. The surface closest to the reference point is the first surface, the surface second closest to the reference point among the four surfaces is the second surface, and the surface faces the first surface of the four surfaces. When the surface is the third surface and the surface of the four surfaces facing the second surface is the fourth surface, either the second surface or the fourth surface is of the shank. The bottom surface, where the shank height of the shank is W, parallel to the bottom surface of the shank, and with the center of the shank at the mounting position of the first vertical strain sensor in a direction orthogonal to the axis of the shank. When the distance between the cutting edge and the reference point is defined as the distance dx, and the distance between the center of the shank and the reference point at the mounting position in the direction perpendicular to the bottom surface is defined as the distance dy, the equation ( 5) is satisfied,
10dy ≤ dx + W / 6 ... (5)
The first vertical strain sensor is mounted on the first surface or the third surface.
 このように、垂直ひずみセンサを、距離dyが距離dxに対して小さい切削工具のシャンクにおける、基準点に最も近い表面、または当該表面に対向する表面に搭載する構成により、軸と平行な方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the vertical strain sensor is mounted on the surface closest to the reference point or the surface facing the reference point in the shank of the cutting tool in which the distance dy is smaller than the distance dx, so that the vertical strain sensor is mounted in the direction parallel to the axis. The vertical strain generated by the load can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (19)好ましくは、前記切削工具は、さらに、前記センサとして、前記シャンクのせん断ひずみを測定可能な、第1のせん断ひずみセンサおよび第2のせん断ひずみセンサを備え、前記第1のせん断ひずみセンサは、前記第1表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載され、前記第2のせん断ひずみセンサは、前記第2表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載され、前記第1の垂直ひずみセンサは、前記シャンクの底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有し、前記第1のせん断ひずみセンサおよび前記第2のせん断ひずみセンサの一方は、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有し、前記第1のせん断ひずみセンサおよび前記第2のせん断ひずみセンサの他方は、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する。 (19) Preferably, the cutting tool further includes, as the sensor, a first shear strain sensor and a second shear strain sensor capable of measuring the shear strain of the shank, and the first shear strain sensor. Is mounted in the middle of the three regions when the first surface is divided into three equal regions arranged in the circumferential direction of the shank, and the second shear strain sensor is the second shear strain sensor. When the two surfaces are divided into three regions arranged in the circumferential direction of the shank, the two surfaces are mounted on the region in the middle of the three regions, and the first vertical strain sensor is parallel to the bottom surface of the shank. Of the first load, which is a load in the direction orthogonal to the axis, the second load is a load in the direction orthogonal to the bottom surface, and the third load is a load in the direction parallel to the axis. It has the maximum sensitivity to the third load, and one of the first shear strain sensor and the second shear strain sensor is the first load, the second load, and the third load. It has the maximum sensitivity to the first load, and the other of the first shear strain sensor and the second shear strain sensor is the first load, the second load, and the third load. It has the maximum sensitivity to the second load.
 このような構成により、切削加工時における3つのひずみセンサの測定結果に基づいて、切削抵抗の3分力を算出することができる。 With such a configuration, it is possible to calculate the three component forces of the cutting resistance based on the measurement results of the three strain sensors during cutting.
 (20)好ましくは、前記切削工具は、さらに、前記センサとして、前記シャンクの垂直ひずみを測定可能な第3の垂直ひずみセンサと、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサとを備え、前記第3の垂直ひずみセンサは、前記4つの表面のうちの前記シャンクの底面、または前記4つの表面のうちの前記底面と対向する前記表面である上面に搭載され、前記せん断ひずみセンサは、前記底面および前記上面のうち前記基準点に最も近い表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載され、前記第1の垂直ひずみセンサは、前記底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有し、前記第3の垂直ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有し、前記せん断ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有する。 (20) Preferably, the cutting tool further includes, as the sensor, a third vertical strain sensor capable of measuring the vertical strain of the shank and a shear strain sensor capable of measuring the shear strain of the shank. The third vertical strain sensor is mounted on the bottom surface of the shank of the four surfaces or the surface surface of the four surfaces facing the bottom surface, and the shear strain sensor is the shear strain sensor. When the surface of the bottom surface and the top surface closest to the reference point is divided into three equal regions arranged in the circumferential direction of the shank, the surface is mounted on the region in the middle of the three regions, and the first surface is mounted on the region. The vertical strain sensor has a first load that is parallel to the bottom surface and is a load in a direction orthogonal to the axis, a second load that is a load in a direction orthogonal to the bottom surface, and a load in a direction parallel to the axis. Of the third load, the third vertical strain sensor has the maximum sensitivity to the third load, and the third vertical strain sensor is the third of the first load, the second load, and the third load. It has the maximum sensitivity to two loads, and the shear strain sensor has the maximum sensitivity to the first load among the first load, the second load and the third load.
 このような構成により、切削加工時における3つのひずみセンサの測定結果に基づいて、切削抵抗の3分力を算出することができる。 With such a configuration, it is possible to calculate the three component forces of the cutting resistance based on the measurement results of the three strain sensors during cutting.
 (21)好ましくは、前記切削工具は、さらに、前記センサとして、前記シャンクの垂直ひずみを測定可能な第2の垂直ひずみセンサと、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサとを備え、前記第2の垂直ひずみセンサは、前記4つの表面のうちの前記シャンクの底面に隣接する第1側面、または前記4つの表面のうちの前記第1側面と対向する第2側面に搭載され、前記せん断ひずみセンサは、前記第1側面および前記第2側面のうち前記基準点に最も近い表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載され、前記第1の垂直ひずみセンサは、前記底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有し、前記第2の垂直ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有し、前記せん断ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する。 (21) Preferably, the cutting tool further includes, as the sensor, a second vertical strain sensor capable of measuring the vertical strain of the shank and a shear strain sensor capable of measuring the shear strain of the shank. The second vertical strain sensor is mounted on the first side surface of the four surfaces adjacent to the bottom surface of the shank, or on the second side surface of the four surfaces facing the first side surface. When the shear strain sensor divides the surface of the first side surface and the second side surface closest to the reference point into three regions arranged in the circumferential direction of the shank, the shear strain sensor is located in the middle of the three regions. The first vertical strain sensor mounted on the region has a first load that is parallel to the bottom surface and is a load in a direction orthogonal to the axis, and a second load that is a load in a direction orthogonal to the bottom surface. , And the third load, which is a load in the direction parallel to the axis, has the maximum sensitivity to the third load, and the second vertical strain sensor is the first load and the second load. And the shear strain sensor has the maximum sensitivity to the first load among the third loads, and the shear strain sensor is attached to the second load among the first load, the second load and the third load. On the other hand, it has the maximum sensitivity.
 このような構成により、切削加工時における3つのひずみセンサの測定結果に基づいて、切削抵抗の3分力を算出することができる。 With such a configuration, it is possible to calculate the three component forces of the cutting resistance based on the measurement results of the three strain sensors during cutting.
 (22)好ましくは、前記切削工具は、さらに、前記センサとして、前記シャンクの垂直ひずみを測定可能な、第2の垂直ひずみセンサおよび第3の垂直ひずみセンサを備え、前記第2の垂直ひずみセンサは、前記4つの表面のうちの前記シャンクの底面に隣接する第1側面、または前記4つの表面のうちの前記第1側面と対向する第2側面に搭載され、前記第3の垂直ひずみセンサは、前記4つの表面のうちの前記シャンクの底面、または前記4つの表面のうちの前記底面と対向する前記表面である上面に搭載され、前記第1の垂直ひずみセンサは、前記底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有し、前記第2の垂直ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有し、前記第3の垂直ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する。 (22) Preferably, the cutting tool further comprises, as the sensor, a second vertical strain sensor and a third vertical strain sensor capable of measuring the vertical strain of the shank, the second vertical strain sensor. Is mounted on the first side surface of the four surfaces adjacent to the bottom surface of the shank, or on the second side surface of the four surfaces facing the first side surface, and the third vertical strain sensor is , The first vertical strain sensor mounted on the bottom surface of the shank of the four surfaces or the surface of the four surfaces facing the bottom surface, the first vertical strain sensor being parallel to the bottom surface. The third of the first load, which is a load perpendicular to the axis, the second load, which is a load perpendicular to the bottom surface, and the third load, which is a load parallel to the axis. The second vertical strain sensor has the maximum sensitivity to the load, and the second vertical strain sensor has the maximum sensitivity to the first load among the first load, the second load, and the third load. The third vertical strain sensor has the maximum sensitivity to the second load among the first load, the second load and the third load.
 このような構成により、切削加工時における3つのひずみセンサの測定結果に基づいて、切削抵抗の3分力を算出することができる。 With such a configuration, it is possible to calculate the three component forces of the cutting resistance based on the measurement results of the three strain sensors during cutting.
 (23)好ましくは、前記シャンクの幅と前記シャンクのシャンク高さが等しい。 (23) Preferably, the width of the shank and the shank height of the shank are equal.
 このような構成により、ひずみセンサを用いて、旋削加工において広く用いられている正四角柱形状の角シャンクのひずみをより高感度で測定することができる。 With such a configuration, it is possible to measure the strain of a regular square prism-shaped square shank widely used in turning with higher sensitivity by using a strain sensor.
 (24)本開示の実施の形態に係る切削システムは、前記切削工具と、処理装置とを備え、前記処理装置は、切削加工時の前記センサの計測結果に基づいて、前記切削工具に関する異常を検知する。 (24) The cutting system according to the embodiment of the present disclosure includes the cutting tool and a processing device, and the processing device causes an abnormality related to the cutting tool based on the measurement result of the sensor at the time of cutting. Detect.
 このような構成により、切削工具に関する異常をより正確に検知することができる。 With such a configuration, it is possible to detect abnormalities related to cutting tools more accurately.
 (25)本開示の実施の形態に係る搭載方法は、旋削加工用の切削工具にセンサを搭載する搭載方法であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、前記シャンクの表面に前記センサを搭載するステップとを含み、前記センサは、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサであり、前記センサを搭載するステップにおいては、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向である第1方向における、前記搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向である第2方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとし、前記軸と平行な方向である第3方向における、前記搭載位置と前記基準点との間の距離をセンサ距離Dとし、前記距離dxおよび前記距離dyが互いに異なる値である場合に前記距離dxおよび前記距離dyのうちの大きい方をmaxdxyとし、前記距離dxおよび前記距離dyが等しい値である場合に前記距離dxおよび前記距離dyをmaxdxyとしたとき、前記せん断ひずみセンサの前記センサ距離Dが式(6)を満たすように前記シャンクの表面に前記せん断ひずみセンサを搭載する。
 D<0.74W+2.09maxdxy ・・・ (6)
(25) The mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and the sensor. The sensor is a shear strain sensor capable of measuring the shear strain of the shank, and the step of mounting the sensor includes a step of preparing the shank and a step of mounting the sensor on the surface of the shank. The shank height of the shank is W, and the center of the shank and the reference point of the cutting edge at the mounting position in the first direction parallel to the bottom surface of the shank and perpendicular to the axis of the shank. The distance between the shank and the reference point is defined as the distance dx, and the distance between the center of the shank and the reference point at the mounting position in the second direction orthogonal to the bottom surface of the shank is defined as the distance dy. The distance between the mounting position and the reference point in the third direction, which is a parallel direction, is defined as the sensor distance D, and when the distance dx and the distance dy are different values, the distance dx and the distance dy are used. When the larger one is maxdxy and the distance dx and the distance dy are equal and the distance dx and the distance dy are maxdxy, the sensor distance D of the shear strain sensor is given by the equation (6). The shear strain sensor is mounted on the surface of the shank so as to satisfy the above conditions.
D <0.74W + 2.09maxdxy ... (6)
 このように、せん断ひずみセンサのセンサ距離Dが上記式(6)を満たす方法により、せん断ひずみセンサの代わりにシャンクの垂直ひずみを測定可能な垂直ひずみセンサを用いる構成と比べて、第1方向または第2方向の負荷に伴って生じるせん断ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 As described above, by the method in which the sensor distance D of the shear strain sensor satisfies the above equation (6), as compared with the configuration in which the vertical strain sensor capable of measuring the vertical strain of the shank is used instead of the shear strain sensor, the first direction or The shear strain generated by the load in the second direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (26)本開示の実施の形態に係る搭載方法は、旋削加工用の切削工具にセンサを搭載する搭載方法であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、前記シャンクの表面に前記センサを搭載するステップとを含み、前記センサは、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記センサを搭載するステップにおいては、前記せん断ひずみセンサを、前記シャンクの前記4つの表面のうちの少なくともいずれか1つである搭載面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載する。 (26) The mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and the sensor. The sensor is a shear strain sensor capable of measuring the shear strain of the shank, and the shank includes four steps surrounding the axis. In the step of mounting the sensor, including the surface, the shear strain sensor is placed in three regions where the mounting surface, which is at least one of the four surfaces of the shank, is aligned in the circumferential direction of the shank. When it is divided into three equal parts, it is mounted on the area in the middle of the three areas.
 このように、せん断ひずみセンサを、搭載面における3等分された3つの領域のうちの真ん中の領域に搭載する方法により、第1方向または第2方向の負荷に伴って生じるせん断ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, by mounting the shear strain sensor in the middle region of the three equally divided regions on the mounting surface, the shear strain generated by the load in the first direction or the second direction is higher. It can be measured by sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (27)本開示の実施の形態に係る搭載方法は、旋削加工用の切削工具にセンサを搭載する搭載方法であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、前記シャンクの表面に前記センサを搭載するステップとを含み、前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記センサを搭載するステップにおいては、前記第1の垂直ひずみセンサを、前記4つの表面のうちの前記切刃の基準点に最も近い第1表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第1表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記基準点に2番目に近い第2表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第2表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記第1表面と対向する第3表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第3表面における前記3つの領域のうちの前記基準点に最も遠い前記領域、および、前記4つの表面のうちの前記第2表面と対向する第4表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第4表面における前記3つの領域のうちの前記基準点に最も遠い前記領域のうちのいずれか1つに搭載する。 (27) The mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be mounted, and the sensor. A step of preparing the shank and a step of mounting the sensor on the surface of the shank, wherein the sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, and the shank has an axis. In the step of mounting the sensor, the first surface of the four surfaces, which includes the surrounding four surfaces and is closest to the reference point of the cutting edge, is the circumferential direction of the shank. When divided into three equal parts, the region closest to the reference point among the three regions on the first surface, and the second region closest to the reference point among the four surfaces. When the surface is divided into three equal parts in the circumferential direction of the shank, the region closest to the reference point among the three regions on the second surface, and the first of the four surfaces. When the third surface facing the surface is divided into three equal parts in the circumferential direction of the shank, the region farthest from the reference point among the three regions on the third surface, and the fourth. When the fourth surface of the three surfaces facing the second surface is divided into three equal parts in the circumferential direction of the shank, the most of the three regions of the fourth surface is the reference point. It is mounted in any one of the distant areas.
 このように、垂直ひずみセンサを、シャンクにおける表面の境界部分のうちの、基準点に最も近い境界部分の近傍、または基準点に最も遠い境界部分の近傍に搭載する方法により、軸と平行な方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the vertical strain sensor is mounted in the vicinity of the boundary portion closest to the reference point or the boundary portion farthest from the reference point in the boundary portion of the surface of the shank, in a direction parallel to the axis. The vertical strain caused by the load can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (28)本開示の実施の形態に係る搭載方法は、旋削加工用の切削工具にセンサを搭載する搭載方法であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、前記シャンクの表面に前記センサを搭載するステップとを含み、前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記4つの表面のうちの前記切刃の基準点に最も近い前記表面を第1表面とし、前記4つの表面のうちの前記基準点に2番目に近い前記表面を第2表面とし、前記4つの表面のうちの前記第1表面と対向する前記表面を第3表面とし、前記4つの表面のうちの前記第2表面と対向する前記表面を第4表面としたとき、前記第1表面および前記第3表面のいずれか一方は、前記シャンクの底面であり、前記センサを搭載するステップにおいては、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向における、前記第1の垂直ひずみセンサの搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとしたとき、前記第1の垂直ひずみセンサを、式(7)を満たすように前記第1表面または前記第3表面に搭載する。
 10dx≦dy+W/6 ・・・ (7)
(28) The mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and the sensor. A step of preparing the shank and a step of mounting the sensor on the surface of the shank, wherein the sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, and the shank has an axis. The surface including the surrounding four surfaces, which is the closest to the reference point of the cutting edge among the four surfaces, is the first surface, and the surface of the four surfaces closest to the reference point is the first surface. When the two surfaces are defined, the surface facing the first surface of the four surfaces is designated as the third surface, and the surface facing the second surface of the four surfaces is designated as the fourth surface. One of the first surface and the third surface is the bottom surface of the shank, and in the step of mounting the sensor, the shank height of the shank is W, which is parallel to the bottom surface of the shank. Moreover, the distance between the center of the shank and the reference point of the cutting edge at the mounting position of the first vertical strain sensor in the direction orthogonal to the axis of the shank is defined as the distance dx, and is orthogonal to the bottom surface of the shank. When the distance between the center of the shank and the reference point in the mounting position in the direction is a distance dy, the first vertical strain sensor is mounted on the first surface or the first surface so as to satisfy the equation (7). It is mounted on the third surface.
10dx≤dy + W / 6 ... (7)
 このように、垂直ひずみセンサを、たとえば剣バイトのように距離dxが距離dyに対して小さい切削工具のシャンクにおける、基準点に最も近い表面、または当該表面に対向する表面に搭載する方法により、軸と平行な方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the vertical strain sensor is mounted on the surface closest to the reference point or the surface facing the reference point in the shank of a cutting tool having a distance dx smaller than the distance dy, such as a sword bite. The vertical strain caused by the load in the direction parallel to the axis can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 (29)本開示の実施の形態に係る搭載方法は、旋削加工用の切削工具にセンサを搭載する搭載方法であって、切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、前記シャンクの表面に前記センサを搭載するステップとを含み、前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、前記シャンクは、軸を囲む4つの表面を含み、前記4つの表面のうちの前記切刃の基準点に最も近い前記表面を第1表面とし、前記4つの表面のうちの前記基準点に2番目に近い前記表面を第2表面とし、前記4つの表面のうちの前記第1表面と対向する前記表面を第3表面とし、前記4つの表面のうちの前記第2表面と対向する前記表面を第4表面としたとき、前記第2表面および前記第4表面のいずれか一方は、前記シャンクの底面であり、前記センサを搭載するステップにおいては、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向における、前記第1の垂直ひずみセンサの搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとしたとき、前記第1の垂直ひずみセンサを、式(8)を満たすように前記第1表面または前記第3表面に搭載する。
 10dy≦dx+W/6 ・・・ (8)
(29) The mounting method according to the embodiment of the present disclosure is a mounting method in which a sensor is mounted on a cutting tool for turning, and has a shank having a cutting edge or to which a cutting edge can be attached, and the sensor. A step of preparing the shank and a step of mounting the sensor on the surface of the shank, wherein the sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank, and the shank has an axis. The surface including the surrounding four surfaces, which is the closest to the reference point of the cutting edge among the four surfaces, is the first surface, and the surface of the four surfaces closest to the reference point is the first surface. When the two surfaces are defined, the surface facing the first surface of the four surfaces is designated as the third surface, and the surface facing the second surface of the four surfaces is designated as the fourth surface. Either the second surface or the fourth surface is the bottom surface of the shank, and in the step of mounting the sensor, the shank height of the shank is W, which is parallel to the bottom surface of the shank. Moreover, the distance between the center of the shank and the reference point of the cutting edge at the mounting position of the first vertical strain sensor in the direction orthogonal to the axis of the shank is defined as the distance dx, and is orthogonal to the bottom surface of the shank. When the distance between the center of the shank and the reference point in the mounting position in the direction is a distance dy, the first vertical strain sensor is mounted on the first surface or the first surface so as to satisfy the equation (8). It is mounted on the third surface.
10dy ≤ dx + W / 6 ... (8)
 このように、垂直ひずみセンサを、距離dyが距離dxに対して小さい切削工具のシャンクにおける、基準点に最も近い表面、または当該表面に対向する表面に搭載する方法により、軸と平行な方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the vertical strain sensor is mounted on the surface closest to the reference point or the surface facing the reference point in the shank of the cutting tool whose distance dy is small with respect to the distance dx, in the direction parallel to the axis. The vertical strain generated by the load can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 以下、本開示の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated. In addition, at least a part of the embodiments described below may be arbitrarily combined.
 <第1の実施の形態>
 [切削システム]
 図1は、本開示の第1の実施の形態に係る切削システムの構成を示す図である。図1を参照して、切削システム301は、旋削加工用の切削工具101と、処理装置201とを備える。切削工具101は、たとえば、金属等からなる切削対象物の旋削加工に用いられる。切削工具101は、シャンク10と、1または複数のひずみセンサ20とを備える。ひずみセンサ20は、シャンク10の表面に搭載される。たとえば、ひずみセンサ20は、接着剤または粘着剤を介してシャンク10の表面に取り付けられる。たとえば、ひずみセンサ20は、シャンク10に取り付けられた状態で樹脂材料等に埋め込まれることにより固定されてもよい。処理装置201は、切削加工時のひずみセンサ20の計測結果に基づいて、切削工具101に関する異常を検知する。
<First Embodiment>
[Cutting system]
FIG. 1 is a diagram showing a configuration of a cutting system according to the first embodiment of the present disclosure. With reference to FIG. 1, the cutting system 301 includes a cutting tool 101 for turning and a processing device 201. The cutting tool 101 is used, for example, for turning an object to be cut made of metal or the like. The cutting tool 101 includes a shank 10 and one or more strain sensors 20. The strain sensor 20 is mounted on the surface of the shank 10. For example, the strain sensor 20 is attached to the surface of the shank 10 via an adhesive or adhesive. For example, the strain sensor 20 may be fixed by being embedded in a resin material or the like while being attached to the shank 10. The processing device 201 detects an abnormality related to the cutting tool 101 based on the measurement result of the strain sensor 20 during cutting.
 [切削工具]
 シャンク10の形状は、たとえば正四角柱形状である。より詳細には、シャンク10は、シャンク10の断面における幅方向WDの長さを幅bとし、シャンク10の断面における高さ方向HDの長さを高さhとしたとき、幅bと高さhとが等しく、かつ断面形状が正四角形の角シャンクである。ここで、高さ方向HDとは、工具系基準方式において、シャンク10の長手方向に垂直な平面内において主運動の方向と平行な方向であり、幅方向WDとは、当該平面内において主運動の方向に垂直な方向である。なお、シャンク10は、高さhが幅bよりも大きく、かつ断面形状が四角形である角シャンクであってもよい。また、シャンク10は、幅bと高さhとが等しく、かつ断面形状が正四角形ではない丸シャンクであってもよい。また、シャンク10は、幅bが高さhよりも大きく、かつ断面形状が正四角形ではない丸シャンクであってもよい。角シャンクの形状および寸法は、JIS(Japanese Industrial Standards) B 4126(2016年11月21日制定)、およびISO(International Organization for Standardization) 5610(2014年8月21日制定)により規定されている。丸シャンクの形状および寸法は、JIS B 4129(2020年1月20日制定)、およびISO 5609(2012年12月13日制定)により規定されている。以下、ひずみセンサ20の搭載位置におけるシャンク10の高さ方向HDの最大長さを高さhsenとし、ひずみセンサ20の搭載位置におけるシャンク10の幅方向WDの最大長さを幅bsenとする。また、高さhsenをシャンク高さWとも称する。
[Cutting tools]
The shape of the shank 10 is, for example, a regular quadrangular prism shape. More specifically, the shank 10 has a width b and a height when the length of the width direction WD in the cross section of the shank 10 is the width b and the length of the height direction HD in the cross section of the shank 10 is the height h. A square shank having the same height as h and having a regular quadrangular cross-sectional shape. Here, the height direction HD is a direction parallel to the direction of the main movement in the plane perpendicular to the longitudinal direction of the shank 10 in the tool system reference method, and the width direction WD is the main movement in the plane. The direction is perpendicular to the direction of. The shank 10 may be a square shank having a height h larger than a width b and a quadrangular cross-sectional shape. Further, the shank 10 may be a round shank in which the width b and the height h are equal and the cross-sectional shape is not a regular quadrangle. Further, the shank 10 may be a round shank having a width b larger than a height h and a cross-sectional shape that is not a regular quadrangle. The shape and dimensions of the square shank are specified by JIS (Japanese Industrial Standards) B 4126 (established on November 21, 2016) and ISO (International Organization for Standardization) 5610 (established on August 21, 2014). The shape and dimensions of the round shank are specified by JIS B 4129 (established January 20, 2020) and ISO 5609 (established December 13, 2012). Hereinafter, the maximum length of the HD in the height direction of the shank 10 at the mounting position of the strain sensor 20 is defined as the height hsen, and the maximum length of the WD in the width direction of the shank 10 at the mounting position of the strain sensor 20 is defined as the width bsen. The height hsen is also referred to as a shank height W.
 丸シャンクであるシャンク10の外周面におけるフラットすなわち平面の数は、ゼロ、1つ、2つ、3つおよび4つのいずれであってもよい。すなわち、丸シャンクであるシャンク10の、JIS B 4129-1において定義される断面形状記号は、「10」、「11」、「12」、「13」、「14」、「21」、「22」、「31」、「32」、「33」、「34」、および「41」のいずれであってもよい。当該断面形状記号が「13」、「14」または「22」であるシャンク10の幅方向WDは、直径φdの方向と平行な方向である。すなわち、当該断面形状記号が「13」、「14」または「22」であるシャンク10の断面における幅方向WDの長さは、シャンク10の直径φdと等しい。また、当該断面形状記号が「11」、「12」または「21」であるシャンク10の高さ方向HDは、直径φdの方向と平行な方向である。すなわち、当該断面形状記号が「11」、「12」または「21」であるシャンク10の断面における高さ方向HDの長さは、シャンク10の直径φdと等しい。 The number of flats, that is, flat surfaces on the outer peripheral surface of the shank 10 which is a round shank may be zero, one, two, three, or four. That is, the cross-sectional shape symbols of the shank 10, which is a round shank, defined in JIS B 4129-1 are "10", "11", "12", "13", "14", "21", "22". , "31", "32", "33", "34", and "41". The width direction WD of the shank 10 whose cross-sectional shape symbol is "13", "14", or "22" is a direction parallel to the direction of the diameter φd. That is, the length of the WD in the width direction in the cross section of the shank 10 whose cross-sectional shape symbol is "13", "14", or "22" is equal to the diameter φd of the shank 10. Further, the height direction HD of the shank 10 whose cross-sectional shape symbol is “11”, “12” or “21” is a direction parallel to the direction of the diameter φd. That is, the length of the HD in the height direction in the cross section of the shank 10 whose cross-sectional shape symbol is "11", "12", or "21" is equal to the diameter φd of the shank 10.
 たとえば、シャンク10は、切刃を取り付け可能である。より詳細には、シャンク10は、仮想的な軸17の方向における第1端に切刃を有するチップ1を取り付け可能である。すなわち、切削工具101は、刃先交換式のバイトすなわちスローアウェイバイトである。チップ1は、たとえば、上面視で三角形、正方形、ひし形、および五角形等の多角形状である。チップ1は、たとえば、上面の中央において貫通孔が形成され、固定用部材3A,3Bによりシャンク10に固定される。なお、シャンク10は、切刃を取り付け可能である代わりに切刃を有する構成であってもよい。より詳細には、シャンク10は、軸17の方向における第1端に切刃を有する。すなわち、切削工具101は、たとえばむくバイトまたはろう付けバイト等の、スローアウェイバイト以外のバイトであってもよい。ここで、軸17は、シャンク10を曲げた時に伸びも縮みもしない中立軸である。中立軸である軸17は、シャンク10が単一材料により形成されている場合、シャンク10の断面における重心と一致する。 For example, the shank 10 can be attached with a cutting edge. More specifically, the shank 10 can be fitted with a chip 1 having a cutting edge at the first end in the direction of the virtual shaft 17. That is, the cutting tool 101 is a cutting tool with a replaceable cutting edge, that is, a throw-away tool. The chip 1 has a polygonal shape such as a triangle, a square, a rhombus, and a pentagon when viewed from above. For example, the chip 1 has a through hole formed in the center of the upper surface and is fixed to the shank 10 by the fixing members 3A and 3B. The shank 10 may have a cutting edge instead of being able to attach the cutting edge. More specifically, the shank 10 has a cutting edge at the first end in the direction of the axis 17. That is, the cutting tool 101 may be a tool other than the throw-away tool, such as a peeling tool or a brazing tool. Here, the shaft 17 is a neutral shaft that does not expand or contract when the shank 10 is bent. The axis 17, which is the neutral axis, coincides with the center of gravity in the cross section of the shank 10 when the shank 10 is made of a single material.
 チップ1は、基準点1Kを有する。基準点1Kは、たとえばチップ1の先端部分である。より詳細には、切込み角が90°以下のチップ1における基準点1Kは、想定作業面と、切れ刃面と、すくい面との交点である。また、切込み角が90°より大きいチップ1における基準点1Kは、想定作業面と、想定作業面に垂直でありチップ1のコーナ半径に接する面と、すくい面との交点である。また、円形チップが付いた切刃の形状記号Dすなわち「ひし形頂角55°」に対しての基準点1Kは、チップ1の中心軸を通る想定作業面と、想定作業面に垂直であり切れ刃に接する面と、すくい面との交点である。また、円形チップが付いた切刃の形状記号Sすなわち「正方形」に対しての基準点1Kは、チップ1の中心軸を通る想定作業面と、想定作業面に垂直であり切れ刃に接する面と、すくい面との交点である。なお、切刃の形状記号Sの場合、直交する二つの主送り方向によって、想定作業面が2面存在するので、基準点1Kも2つ存在する。たとえば、基準点1Kは、JIS B 4126-1により定義されている。 Chip 1 has a reference point 1K. The reference point 1K is, for example, the tip portion of the chip 1. More specifically, the reference point 1K in the chip 1 having a cutting angle of 90 ° or less is an intersection of the assumed working surface, the cutting edge surface, and the rake surface. Further, the reference point 1K in the chip 1 having a cutting angle larger than 90 ° is an intersection of the assumed work surface, the surface perpendicular to the assumed work surface and in contact with the corner radius of the chip 1, and the rake surface. Further, the reference point 1K with respect to the shape symbol D of the cutting edge with the circular tip, that is, the “diamond apex angle 55 °”, is perpendicular to the assumed work surface passing through the central axis of the chip 1 and the assumed work surface. It is the intersection of the surface in contact with the blade and the rake surface. Further, the reference point 1K for the shape symbol S of the cutting edge with the circular tip, that is, the “square” is the assumed work surface passing through the central axis of the chip 1 and the surface perpendicular to the assumed work surface and in contact with the cutting edge. And the intersection with the rake face. In the case of the shape symbol S of the cutting edge, since there are two assumed work surfaces depending on the two orthogonal main feed directions, there are also two reference points 1K. For example, the reference point 1K is defined by JIS B 4126-1.
 図2は、本開示の第1の実施の形態に係る切削工具を工作機械に取り付けた状態を示す図である。図2を参照して、切削工具101は、旋盤等の工作機械における刃物台50A,50Bにより上下から挟まれて固定される。より詳細には、切削工具101は、刃物台50Aの上に載置され、刃物台50Bにより上から挟まれて固定される。切削工具101は、刃物台50A,50Bにより固定された状態で切削加工を行う。 FIG. 2 is a diagram showing a state in which the cutting tool according to the first embodiment of the present disclosure is attached to the machine tool. With reference to FIG. 2, the cutting tool 101 is sandwiched and fixed from above and below by the blade bases 50A and 50B in a machine tool such as a lathe. More specifically, the cutting tool 101 is placed on the turret 50A, and is sandwiched and fixed from above by the turret 50B. The cutting tool 101 performs cutting while being fixed by the tool rests 50A and 50B.
 図3は、本開示の第1の実施の形態に係る切削工具の構成を示す断面図である。図3は、図2におけるIII-III線矢視断面図である。図3を参照して、シャンク10は、仮想的な軸17を囲む4つの表面を含む。より詳細には、シャンク10は、刃物台50Aに載置される面である底面S1と、底面S1と対向する面である上面S2と、チップ1側から見て上面S2と時計回り方向に隣接する面である側面S3と、側面S3と対向する面である側面S4とを含む。以下では、説明のため、底面S1と平行であり、かつ軸17に直交する方向をX方向とし、底面S1に直交する方向をY方向とし、軸17と平行な方向をZ方向とする。X方向は、上述の幅方向WDと平行な方向であり、第1方向の一例である。Y方向は、上述の高さ方向HDと平行な方向であり、第2方向の一例である。Z方向は、第3方向の一例である。図3では、軸17を通り、かつX方向と平行な仮想線VL1と、軸17を通り、かつY方向と平行な仮想線VL2と、軸17、上面S2および側面S4の境界部ならびに底面S1および側面S3の境界部を通る仮想線VL3と、軸17、上面S2および側面S3の境界部ならびに底面S1および側面S4の境界部を通る仮想線VL4とを破線で示している。 FIG. 3 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure. FIG. 3 is a cross-sectional view taken along the line III-III in FIG. With reference to FIG. 3, the shank 10 includes four surfaces surrounding a virtual axis 17. More specifically, the shank 10 is adjacent to the bottom surface S1 which is a surface mounted on the tool post 50A, the top surface S2 which is a surface facing the bottom surface S1, and the top surface S2 when viewed from the chip 1 side in the clockwise direction. A side surface S3 which is a surface to be used and a side surface S4 which is a surface facing the side surface S3 are included. In the following, for the sake of explanation, the direction parallel to the bottom surface S1 and orthogonal to the axis 17 is the X direction, the direction orthogonal to the bottom surface S1 is the Y direction, and the direction parallel to the axis 17 is the Z direction. The X direction is a direction parallel to the above-mentioned width direction WD, and is an example of the first direction. The Y direction is a direction parallel to the above-mentioned height direction HD, and is an example of the second direction. The Z direction is an example of the third direction. In FIG. 3, the virtual line VL1 passing through the axis 17 and parallel to the X direction, the virtual line VL2 passing through the axis 17 and parallel to the Y direction, the boundary portion between the shaft 17, the upper surface S2 and the side surface S4, and the bottom surface S1. The virtual line VL3 passing through the boundary portion of the side surface S3 and the virtual line VL4 passing through the boundary portion of the shaft 17, the upper surface S2 and the side surface S3, and the boundary portion of the bottom surface S1 and the side surface S4 are shown by broken lines.
 以下では、説明のため、X方向とY方向とを含むXY平面において、軸17よりも側面S4側の領域であって、仮想線VL1と仮想線VL3との間の領域を第1象限Q1と称する。また、XY平面において、軸17よりも上面S2側の領域であって、仮想線VL3と仮想線VL2との間の領域を第2象限Q2と称し、軸17よりも上面S2側の領域であって、仮想線VL2と仮想線VL4との間の領域を第3象限Q3と称し、軸17よりも側面S3側の領域であって、仮想線VL4と仮想線VL1との間の領域を第4象限Q4と称し、軸17よりも側面S3側の領域であって、仮想線VL1と仮想線VL3との間の領域を第5象限Q5と称し、軸17よりも底面S1側の領域であって、仮想線VL3と仮想線VL2との間の領域を第6象限Q6と称し、軸17よりも底面S1側の領域であって、仮想線VL2と仮想線VL4との間の領域を第7象限Q7と称し、軸17よりも側面S4側の領域であって、仮想線VL4と仮想線VL1との間の領域を第8象限Q8と称する。 In the following, for the sake of explanation, in the XY plane including the X direction and the Y direction, the region on the side surface S4 side of the axis 17 and the region between the virtual line VL1 and the virtual line VL3 is referred to as the first quadrant Q1. Refer to. Further, in the XY plane, the region on the upper surface S2 side of the axis 17 and the region between the virtual line VL3 and the virtual line VL2 is referred to as the second quadrant Q2, and is the region on the upper surface S2 side of the axis 17. The region between the virtual line VL2 and the virtual line VL4 is referred to as the third quadrant Q3, and the region on the side surface S3 side of the axis 17 and the region between the virtual line VL4 and the virtual line VL1 is the fourth. It is referred to as quadrant Q4 and is a region on the side surface S3 side of the axis 17, and a region between the virtual line VL1 and the virtual line VL3 is referred to as a fifth quadrant Q5 and is a region on the bottom surface S1 side of the axis 17. The region between the virtual line VL3 and the virtual line VL2 is referred to as the sixth quadrant Q6, and the region on the bottom surface S1 side of the axis 17 and the region between the virtual line VL2 and the virtual line VL4 is referred to as the seventh quadrant. It is referred to as Q7, and the region on the side surface S4 side of the axis 17 and between the virtual line VL4 and the virtual line VL1 is referred to as the eighth quadrant Q8.
 切削工具101において、基準点1Kは任意の位置に存在する。たとえば、XY平面における基準点1Kの位置は、第1象限Q1、第2象限Q2、第3象限Q3、第4象限Q4、第5象限Q5、第6象限Q6、第7象限Q7および第8象限Q8のうちのいずれの領域内であってもよい。具体的には、XY平面における基準点1Kの位置は、図3に示す位置PK1~PK8のいずれであってもよい。また、XY平面における基準点1Kの位置は、第2象限Q2と第3象限Q3との境界付近の位置PK9であってもよいし、第6象限Q6と第7象限Q7との境界付近の位置PK10であってもよいし、第8象限Q8と第1象限Q1との境界付近の位置PK11であってもよいし、第4象限Q4と第5象限Q5との境界付近の位置PK12であってもよい。 In the cutting tool 101, the reference point 1K exists at an arbitrary position. For example, the position of the reference point 1K in the XY plane is the first quadrant Q1, the second quadrant Q2, the third quadrant Q3, the fourth quadrant Q4, the fifth quadrant Q5, the sixth quadrant Q6, the seventh quadrant Q7, and the eighth quadrant. It may be in any region of Q8. Specifically, the position of the reference point 1K on the XY plane may be any of the positions PK1 to PK8 shown in FIG. Further, the position of the reference point 1K on the XY plane may be the position PK9 near the boundary between the second quadrant Q2 and the third quadrant Q3, or the position near the boundary between the sixth quadrant Q6 and the seventh quadrant Q7. It may be PK10, the position PK11 near the boundary between the 8th quadrant Q8 and the 1st quadrant Q1, or the position PK12 near the boundary between the 4th quadrant Q4 and the 5th quadrant Q5. May be good.
 再び図2を参照して、ひずみセンサ20は、切削加工時のシャンク10のひずみを測定し、たとえば当該ひずみに応じたレベルのアナログ信号を図示しない信号線経由で図示しない無線通信装置へ送信する。無線通信装置は、たとえば通信用IC(Integrated Circuit)等の通信回路を含む。ひずみセンサ20および無線通信装置は、図示しない電力線を介して、図示しない電池から電力の供給を受ける。無線通信装置は、ひずみセンサ20から受信したアナログ信号を所定のサンプリング周期でAD(Analog Digital)変換し、変換後のデジタル値であるセンサ計測値を生成する。より詳細には、無線通信装置は、ひずみセンサ20から受けるアナログ信号をAD変換することによりセンサ計測値sを生成する。無線通信装置は、生成したセンサ計測値sにサンプリングタイミングを示すタイムスタンプを付与し、タイムスタンプが付与されたセンサ計測値sを図示しない記憶部に保存する。再び図1を参照して、無線通信装置は、たとえば所定周期で、当該記憶部から1または複数のセンサ計測値sを取得し、取得したセンサ計測値sを含む無線信号を生成し、生成した無線信号を処理装置201へ送信する。 With reference to FIG. 2 again, the strain sensor 20 measures the strain of the shank 10 during cutting, and transmits, for example, an analog signal at a level corresponding to the strain to a wireless communication device (not shown) via a signal line (not shown). .. The wireless communication device includes, for example, a communication circuit such as a communication IC (Integrated Circuit). The strain sensor 20 and the wireless communication device receive power from a battery (not shown) via a power line (not shown). The wireless communication device AD (Analog Digital) converts the analog signal received from the strain sensor 20 at a predetermined sampling cycle, and generates a sensor measurement value which is a converted digital value. More specifically, the wireless communication device generates the sensor measurement value s by AD-converting the analog signal received from the strain sensor 20. The wireless communication device assigns a time stamp indicating the sampling timing to the generated sensor measurement value s, and stores the sensor measurement value s to which the time stamp is attached in a storage unit (not shown). With reference to FIG. 1 again, the wireless communication device acquires one or more sensor measurement values s from the storage unit, for example, at a predetermined cycle, and generates and generates a radio signal including the acquired sensor measurement values s. The radio signal is transmitted to the processing device 201.
 [処理装置]
 図4は、本開示の第1の実施の形態に係る切削システムにおける処理装置の構成を示す図である。図4を参照して、処理装置201は、無線通信部110と、処理部120と、記憶部130とを備える。無線通信部110は、たとえば通信用IC等の通信回路により実現される。処理部120は、たとえば、CPU(Central Processing Unit)およびDSP(Digital Signal Processor)等のプロセッサによって実現される。記憶部130は、たとえば不揮発性メモリである。無線通信部110は、切削工具101における無線通信装置と無線による通信を行う。当該無線通信装置および無線通信部110は、たとえば、IEEE 802.15.4に準拠したZigBee(登録商標)、IEEE 802.15.1に準拠したBluetooth(登録商標)およびIEEE802.15.3aに準拠したUWB(Ultra Wide Band)等の通信プロトコルを用いた無線による通信を行う。なお、当該無線通信装置と無線通信部110との間において、上記以外の通信プロトコルが用いられてもよい。無線通信部110は、切削工具101における無線通信装置から受信した無線信号からセンサ計測値sを取得し、取得したセンサ計測値sを記憶部130に保存する。処理部120は、無線通信部110により記憶部130に保存されたセンサ計測値sを解析することにより、切削工具101に関する異常を検知する。
[Processing device]
FIG. 4 is a diagram showing a configuration of a processing device in the cutting system according to the first embodiment of the present disclosure. With reference to FIG. 4, the processing device 201 includes a wireless communication unit 110, a processing unit 120, and a storage unit 130. The wireless communication unit 110 is realized by a communication circuit such as a communication IC. The processing unit 120 is realized by a processor such as a CPU (Central Processing Unit) and a DSP (Digital Signal Processor), for example. The storage unit 130 is, for example, a non-volatile memory. The wireless communication unit 110 wirelessly communicates with the wireless communication device in the cutting tool 101. The wireless communication device and the wireless communication unit 110 are, for example, compliant with ZigBee (registered trademark) compliant with IEEE 802.15.4, Bluetooth® compliant with IEEE 802.15.1, and IEEE 802.15.3a. Wireless communication is performed using a communication protocol such as UWB (Ultra Wide Band). A communication protocol other than the above may be used between the wireless communication device and the wireless communication unit 110. The wireless communication unit 110 acquires the sensor measurement value s from the wireless signal received from the wireless communication device in the cutting tool 101, and stores the acquired sensor measurement value s in the storage unit 130. The processing unit 120 detects an abnormality related to the cutting tool 101 by analyzing the sensor measurement value s stored in the storage unit 130 by the wireless communication unit 110.
 [ひずみセンサ]
 図5は、本開示の第1の実施の形態に係る切削工具の構成の一例を示す図である。第1の実施の形態に係るチップ1は、基準点1Kである基準点1K1を有する。基準点1K1の位置は、図3に示す位置PK1の一例である。図5を参照して、切削工具101は、ひずみセンサ20として、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S4に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の上面S2に搭載される。
[Strain sensor]
FIG. 5 is a diagram showing an example of the configuration of a cutting tool according to the first embodiment of the present disclosure. The chip 1 according to the first embodiment has a reference point 1K1 which is a reference point 1K. The position of the reference point 1K1 is an example of the position PK1 shown in FIG. With reference to FIG. 5, the cutting tool 101 includes strain sensors 20A, 20B, 20C as strain sensors 20. For example, the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
 たとえば、ひずみセンサ20のうちの少なくともいずれか2つは、シャンク10のせん断ひずみを測定可能なせん断ひずみセンサである。また、たとえば、ひずみセンサ20のうちの少なくともいずれか1つは、シャンク10の垂直ひずみを測定可能な垂直ひずみセンサである。このように、ひずみセンサ20のうちの少なくともいずれか1つが垂直ひずみセンサである構成により、せん断ひずみセンサでは測定することが困難である、Z方向の負荷に伴って生じる垂直ひずみを測定することができる。一例として、ひずみセンサ20A,20Bは、せん断ひずみセンサである。また、一例として、ひずみセンサ20Cは、垂直ひずみセンサである。 For example, at least two of the strain sensors 20 are shear strain sensors capable of measuring the shear strain of the shank 10. Further, for example, at least one of the strain sensors 20 is a vertical strain sensor capable of measuring the vertical strain of the shank 10. As described above, due to the configuration in which at least one of the strain sensors 20 is a vertical strain sensor, it is possible to measure the vertical strain generated by the load in the Z direction, which is difficult to measure with the shear strain sensor. can. As an example, the strain sensors 20A and 20B are shear strain sensors. Further, as an example, the strain sensor 20C is a vertical strain sensor.
 ひずみセンサ20Aは、ひずみセンサ20Aの搭載位置におけるシャンク10のせん断ひずみεyzを測定する。より詳細には、ひずみセンサ20Aは、たとえば、シャンク10の側面S4と平行であり、かつ軸17との間のなす角度が45°である測定軸a1と、シャンク10の側面S4と平行であり、かつ測定軸a1に直交する測定軸a2とを有する。ひずみセンサ20Aは、測定軸a1の方向におけるひずみsa1と、測定軸a2の方向におけるひずみsa2とを測定し、ひずみsa1に応じたレベルのアナログ信号ASa1とひずみsa2に応じたレベルのアナログ信号ASa2との差分を、せん断ひずみεyzに対応するアナログ信号ASyzとして上述した無線通信装置へ出力する。なお、ひずみセンサ20Aは、アナログ信号ASyzの代わりに、アナログ信号ASa1およびアナログ信号ASa2を当該無線通信装置へそれぞれ出力する構成であってもよい。 The strain sensor 20A measures the shear strain εyz of the shank 10 at the mounting position of the strain sensor 20A. More specifically, the strain sensor 20A is, for example, parallel to the measurement axis a1 which is parallel to the side surface S4 of the shank 10 and has an angle of 45 ° with the axis 17, and is parallel to the side surface S4 of the shank 10. And has a measurement axis a2 orthogonal to the measurement axis a1. The strain sensor 20A measures the strain sa1 in the direction of the measurement axis a1 and the strain sa2 in the direction of the measurement axis a2, and the analog signal Asa1 at the level corresponding to the strain sa1 and the analog signal Asa2 at the level corresponding to the strain sa2. Is output to the above-mentioned wireless communication device as an analog signal ASyz corresponding to the shear strain εyz. The strain sensor 20A may be configured to output the analog signal Asa1 and the analog signal Asa2 to the wireless communication device, respectively, instead of the analog signal ASyz.
 ひずみセンサ20Bは、ひずみセンサ20Bの搭載位置におけるシャンク10のせん断ひずみεxzを測定する。より詳細には、ひずみセンサ20Bは、たとえば、シャンク10の上面S2と平行であり、かつ軸17との間のなす角度が45°である測定軸b1と、シャンク10の上面S2と平行であり、かつ測定軸b1に直交する測定軸b2とを有する。ひずみセンサ20Bは、測定軸b1の方向におけるひずみsb1と、測定軸b2の方向におけるひずみsb2とを測定し、ひずみsb1に応じたレベルのアナログ信号ASb1とひずみsb2に応じたレベルのアナログ信号ASb2との差分を、せん断ひずみεxzに対応するアナログ信号ASxzとして上述した無線通信装置へ出力する。なお、ひずみセンサ20Bは、アナログ信号ASxzの代わりに、アナログ信号ASb1およびアナログ信号ASb2を当該無線通信装置へそれぞれ出力する構成であってもよい。 The strain sensor 20B measures the shear strain εxz of the shank 10 at the mounting position of the strain sensor 20B. More specifically, the strain sensor 20B is, for example, parallel to the measurement axis b1 which is parallel to the upper surface S2 of the shank 10 and has an angle of 45 ° with the shaft 17, and is parallel to the upper surface S2 of the shank 10. And has a measurement axis b2 orthogonal to the measurement axis b1. The strain sensor 20B measures the strain sb1 in the direction of the measurement axis b1 and the strain sb2 in the direction of the measurement axis b2, and has an analog signal ASb1 at a level corresponding to the strain sb1 and an analog signal ASb2 at a level corresponding to the strain sb2. Is output to the above-mentioned wireless communication device as an analog signal ASxz corresponding to the shear strain εxz. The strain sensor 20B may be configured to output the analog signal ASb1 and the analog signal ASb2 to the wireless communication device, respectively, instead of the analog signal ASxz.
 ひずみセンサ20Cは、ひずみセンサ20Cの搭載位置におけるシャンク10の垂直ひずみεzzを測定する。より詳細には、ひずみセンサ20Cは、たとえば、軸17と平行な測定軸c1を有する。ひずみセンサ20Cは、測定軸c1の方向におけるひずみsc1を測定し、ひずみsc1に応じたレベルのアナログ信号ASc1を垂直ひずみεzzに対応するアナログ信号ASzzとして上述した無線通信装置へ出力する。 The strain sensor 20C measures the vertical strain εzz of the shank 10 at the mounting position of the strain sensor 20C. More specifically, the strain sensor 20C has, for example, a measurement axis c1 parallel to the axis 17. The strain sensor 20C measures the strain sc1 in the direction of the measurement axis c1 and outputs an analog signal ASc1 at a level corresponding to the strain sc1 to the above-mentioned wireless communication device as an analog signal ASzz corresponding to the vertical strain εzzz.
 以下では、シャンク10に加わるX方向の負荷を荷重Fxとも称し、シャンク10に加わるY方向の負荷を荷重Fyとも称し、シャンク10に加わるZ方向の負荷を荷重Fzとも称する。荷重Fxは、第1負荷の一例であり、荷重Fyは、第2負荷の一例であり、荷重Fzは、第3負荷の一例である。 Hereinafter, the load in the X direction applied to the shank 10 is also referred to as a load Fx, the load in the Y direction applied to the shank 10 is also referred to as a load Fy, and the load in the Z direction applied to the shank 10 is also referred to as a load Fz. The load Fx is an example of the first load, the load Fy is an example of the second load, and the load Fz is an example of the third load.
 たとえば、ひずみセンサ20A,20Bの一方は、荷重Fx,Fy,Fzのうち、荷重Fxに対して最大の感度を有し、ひずみセンサ20A,20Bの他方は、荷重Fx,Fy,Fzのうち、荷重Fyに対して最大の感度を有する。このような構成により、切削加工時におけるひずみセンサ20A,20Bの測定結果に基づいて、切削抵抗の3分力のうちの2つを算出することができる。また、たとえば、ひずみセンサ20Cは、荷重Fx,Fy,Fzのうち、荷重Fzに対して最大の感度を有する。このような構成により、切削加工時におけるひずみセンサ20Cの測定結果に基づいて、切削抵抗の3分力のうちのZ方向の分力を算出することができる。 For example, one of the strain sensors 20A and 20B has the maximum sensitivity to the load Fx among the loads Fx, Fy and Fz, and the other of the strain sensors 20A and 20B has the maximum sensitivity among the loads Fx, Fy and Fz. It has the maximum sensitivity to the load Fy. With such a configuration, it is possible to calculate two of the three component forces of the cutting resistance based on the measurement results of the strain sensors 20A and 20B at the time of cutting. Further, for example, the strain sensor 20C has the maximum sensitivity to the load Fz among the loads Fx, Fy, and Fz. With such a configuration, it is possible to calculate the component force in the Z direction out of the three component forces of the cutting resistance based on the measurement result of the strain sensor 20C at the time of cutting.
 一例として、ひずみセンサ20Aは、荷重Fyに対して最大の感度を有する。より詳細には、ある大きさの荷重Fyをシャンク10に加えたときにひずみセンサ20Aから出力されるアナログ信号ASyzの大きさは、荷重Fyと同じ大きさの荷重Fxをシャンク10に加えたときにひずみセンサ20Aから出力されるアナログ信号ASyzの大きさ、および荷重Fyと同じ大きさの荷重Fzをシャンク10に加えたときにひずみセンサ20Aから出力されるアナログ信号ASyzの大きさよりも大きい。 As an example, the strain sensor 20A has the maximum sensitivity to the load Fy. More specifically, the magnitude of the analog signal ASyz output from the strain sensor 20A when a load Fy of a certain magnitude is applied to the shank 10 is when a load Fx having the same magnitude as the load Fy is applied to the shank 10. The magnitude of the analog signal ASyz output from the strain sensor 20A and the magnitude of the analog signal ASyz output from the strain sensor 20A when a load Fz having the same magnitude as the load Fy is applied to the shank 10.
 また、一例として、ひずみセンサ20Bは、荷重Fxに対して最大の感度を有する。より詳細には、ある大きさの荷重Fxをシャンク10に加えたときにひずみセンサ20Bから出力されるアナログ信号ASxzの大きさは、荷重Fxと同じ大きさの荷重Fyをシャンク10に加えたときにひずみセンサ20Bから出力されるアナログ信号ASxzの大きさ、および荷重Fxと同じ大きさの荷重Fzをシャンク10に加えたときにひずみセンサ20Bから出力されるアナログ信号ASxzの大きさよりも大きい。 Further, as an example, the strain sensor 20B has the maximum sensitivity to the load Fx. More specifically, the magnitude of the analog signal ASxz output from the strain sensor 20B when a load Fx of a certain magnitude is applied to the shank 10 is when a load Fy having the same magnitude as the load Fx is applied to the shank 10. The magnitude of the analog signal ASxz output from the strain sensor 20B and the magnitude of the analog signal ASxz output from the strain sensor 20B when a load Fz having the same magnitude as the load Fx is applied to the shank 10.
 また、上述したように、ひずみセンサ20Cは、荷重Fzに対して最大の感度を有する。より詳細には、ある大きさの荷重Fzをシャンク10に加えたときにひずみセンサ20Cから出力されるアナログ信号ASzzの大きさは、荷重Fzと同じ大きさの荷重Fxをシャンク10に加えたときにひずみセンサ20Cから出力されるアナログ信号ASzzの大きさ、および荷重Fzと同じ大きさの荷重Fyをシャンク10に加えたときにひずみセンサ20Cから出力されるアナログ信号ASzzの大きさよりも大きい。 Further, as described above, the strain sensor 20C has the maximum sensitivity to the load Fz. More specifically, the magnitude of the analog signal ASzz output from the strain sensor 20C when a load Fz of a certain magnitude is applied to the shank 10 is when a load Fx having the same magnitude as the load Fz is applied to the shank 10. The magnitude of the analog signal ASzz output from the strain sensor 20C and the magnitude of the analog signal ASzz output from the strain sensor 20C when a load Fy having the same magnitude as the load Fz is applied to the shank 10.
 したがって、大きさおよび方向が既知の荷重をシャンク10に加えたときにひずみセンサ20から出力されるアナログ信号を確認することにより、当該ひずみセンサ20がいずれの荷重に対して最大の感度を有するかを確認することができる。また、ひずみセンサ20が取り付けられた位置における荷重と垂直ひずみおよびせん断ひずみとの関係をシミュレーションし、既知の荷重をシャンク10に加えたときにひずみセンサ20から出力されるアナログ信号とシミュレーション結果とに基づいて、当該ひずみセンサ20が垂直ひずみセンサおよびせん断ひずみセンサのいずれであるかを確認することができる。 Therefore, by checking the analog signal output from the strain sensor 20 when a load of known magnitude and direction is applied to the shank 10, which load the strain sensor 20 has the maximum sensitivity to. Can be confirmed. Further, the relationship between the load at the position where the strain sensor 20 is attached and the vertical strain and the shear strain is simulated, and the analog signal output from the strain sensor 20 and the simulation result when a known load is applied to the shank 10 are used. Based on this, it is possible to confirm whether the strain sensor 20 is a vertical strain sensor or a shear strain sensor.
 (軸方向におけるひずみセンサ20Aの搭載位置)
 図6は、本開示の第1の実施の形態に係る切削工具の構成を示す断面図である。図6は、図5におけるVI-VI線矢視断面図である。図6では、基準点1K1をZ方向に沿ってVI-VI線矢視断面へ平行移動させたときのチップ1の位置および基準点1K1の位置を破線および黒丸でそれぞれ示している。図6を参照して、VI-VI線矢視断面におけるシャンク10のシャンク高さをWaとする。たとえば、Waは、上述のシャンク高さWと等しい。以下、後述の変形例においても同様に、Waはシャンク高さWと等しいものとする。また、X方向における、ひずみセンサ20Aの搭載位置におけるシャンク10の中心と、チップ1における切刃の基準点1Kとの間の距離を距離dxaとする。また、Y方向における、ひずみセンサ20Aの搭載位置におけるシャンク10の中心と、基準点1Kとの間の距離を距離dyaとする。なお、ひずみセンサ20の搭載位置とは、たとえば、ひずみセンサ20におけるシャンク10との接触面の中心を意味するものとする。
(Mounting position of strain sensor 20A in the axial direction)
FIG. 6 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure. FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. In FIG. 6, the position of the chip 1 and the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section seen by the VI-VI line are indicated by broken lines and black circles, respectively. With reference to FIG. 6, the shank height of the shank 10 in the VI-VI line arrow cross section is defined as Wa. For example, Wa is equal to the shank height W described above. Hereinafter, in the modification described later, Wa is also assumed to be equal to the shank height W. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20A in the X direction and the reference point 1K of the cutting edge in the chip 1 is defined as the distance dxa. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20A in the Y direction and the reference point 1K is defined as the distance dya. The mounting position of the strain sensor 20 means, for example, the center of the contact surface of the strain sensor 20 with the shank 10.
 また、距離dxaおよび距離dyaが互いに異なる値である場合、距離dxaおよび距離dyaのうちの大きい方をmaxdxyaとし、小さい方をmindxyaとする。なお、距離dxaおよび距離dyaが等しい値である場合、距離dxaおよび距離dyaをmaxdxyaとする。図6に示す例では、距離dxaおよび距離dyaが互いに異なる値であり、かつ距離dxaは距離dyaよりも大きい。したがって、距離dxaをmaxdxyaとし、距離dyaをmindxyaとする。再び図5を参照して、このとき、Z方向における、ひずみセンサ20Aの搭載位置と基準点1Kとの間の距離をセンサ距離Daとすると、センサ距離Daは、下記式(9)を満たす。
 Da<0.74W+2.09maxdxya ・・・ (9)
When the distance dxa and the distance dya are different values from each other, the larger one of the distance dxa and the distance dya is defined as maxdxya, and the smaller one is defined as mindxya. When the distance dxa and the distance dya are equal values, the distance dxa and the distance dya are set to maxdxya. In the example shown in FIG. 6, the distance dxa and the distance dya are different values from each other, and the distance dxa is larger than the distance dya. Therefore, the distance dxa is set to maxdxya, and the distance dya is set to mindxya. With reference to FIG. 5 again, at this time, assuming that the distance between the mounting position of the strain sensor 20A and the reference point 1K in the Z direction is the sensor distance Da, the sensor distance Da satisfies the following equation (9).
Da <0.74W + 2.09maxdxya ... (9)
 このように、せん断ひずみセンサであるひずみセンサ20Aのセンサ距離Daが式(9)を満たす構成により、ひずみセンサ20Aの代わりに垂直ひずみセンサを用いる構成と比べて、荷重Fxまたは荷重Fyが加わることに伴って生じるせん断ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 As described above, due to the configuration in which the sensor distance Da of the strain sensor 20A, which is the shear strain sensor, satisfies the equation (9), the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20A. The shear strain generated by the above can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 好ましくは、センサ距離Daは、下記式(10)を満たす。
 Da<0.74W+2.09mindxya ・・・ (10)
Preferably, the sensor distance Da satisfies the following equation (10).
Da <0.74W + 2.09mindxya ... (10)
 センサ距離Daが式(9)に加えてさらに式(10)を満たす構成により、ひずみセンサ20Aの代わりに垂直ひずみセンサを用いる構成と比べて、荷重Fxまたは荷重Fyが加わることに伴って生じるせん断ひずみをより一層高感度で測定することができる。 Due to the configuration in which the sensor distance Da satisfies the equation (10) in addition to the equation (9), the shear caused by the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20A. The strain can be measured with even higher sensitivity.
 (軸方向におけるひずみセンサ20Bの搭載位置)
 図7は、本開示の第1の実施の形態に係る切削工具の構成を示す断面図である。図7は、図5におけるVII-VII線矢視断面図である。図7では、基準点1K1をZ方向に沿ってVII-VII線矢視断面へ平行移動させたときのチップ1の位置および基準点1K1の位置を破線および黒丸でそれぞれ示している。図7を参照して、VII-VII線矢視断面におけるシャンク10のシャンク高さをWbとする。たとえば、Wbは、上述のシャンク高さWと等しい。以下、後述の変形例においても同様に、Wbはシャンク高さWと等しいものとする。また、X方向における、ひずみセンサ20Bの搭載位置におけるシャンク10の中心と、基準点1Kとの間の距離を距離dxbとする。また、Y方向における、ひずみセンサ20Aの搭載位置におけるシャンク10の中心と、基準点1Kとの間の距離を距離dybとする。
(Mounting position of strain sensor 20B in the axial direction)
FIG. 7 is a cross-sectional view showing the configuration of a cutting tool according to the first embodiment of the present disclosure. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. In FIG. 7, the position of the chip 1 and the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the VII-VII line arrow cross section are shown by broken lines and black circles, respectively. With reference to FIG. 7, the shank height of the shank 10 in the VII-VII line arrow cross section is defined as Wb. For example, Wb is equal to the shank height W described above. Hereinafter, similarly, in the modification described later, Wb is assumed to be equal to the shank height W. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20B in the X direction and the reference point 1K is defined as the distance dxb. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20A in the Y direction and the reference point 1K is defined as the distance dyb.
 また、距離dxbおよび距離dybが互いに異なる値である場合、距離dxbおよび距離dybのうちの大きい方をmaxdxybとし、小さい方をmindxybとする。なお、距離dxbおよび距離dybが等しい値である場合、距離dxbおよび距離dybをmaxdxybとする。図7に示す例では、距離dxbおよび距離dybが互いに異なる値であり、かつ距離dxbは距離dybよりも大きい。したがって、距離dxbをmaxdxybとし、距離dybをmindxybとする。再び図5を参照して、このとき、たとえば、Z方向における、ひずみセンサ20Bの搭載位置と基準点1Kとの間の距離をセンサ距離Dbとすると、センサ距離Dbは、下記式(11)を満たす。
 Db<0.74W+2.09mindxyb ・・・ (11)
When the distance dxb and the distance dyb have different values, the larger one of the distance dxb and the distance dyb is defined as maxdxyb, and the smaller one is defined as mindxyb. When the distance dxb and the distance dyb are equal values, the distance dxb and the distance dyb are set to maxdxyb. In the example shown in FIG. 7, the distance dxb and the distance dyb are different values from each other, and the distance dxb is larger than the distance dyb. Therefore, the distance dxb is set to maxdxyb, and the distance dyb is set to mindxyb. With reference to FIG. 5 again, at this time, for example, assuming that the distance between the mounting position of the strain sensor 20B and the reference point 1K in the Z direction is the sensor distance Db, the sensor distance Db has the following equation (11). Fulfill.
Db <0.74W + 2.09mindxyb ... (11)
 このように、せん断ひずみセンサであるひずみセンサ20Bのセンサ距離Dbが式(11)を満たす構成により、ひずみセンサ20Bの代わりに垂直ひずみセンサを用いる構成と比べて、荷重Fxまたは荷重Fyが加わることに伴って生じるせん断ひずみをより高感度で測定することができる。 As described above, due to the configuration in which the sensor distance Db of the strain sensor 20B, which is a shear strain sensor, satisfies the equation (11), the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20B. The shear strain generated by the above can be measured with higher sensitivity.
 (周方向におけるひずみセンサ20Aの搭載位置)
 ひずみセンサ20Aは、シャンク10の4つの表面のうちのひずみセンサ20Aの搭載面をシャンク10の周方向に並ぶ3つの領域に3等分したときに当該3つの領域のうちの真ん中の領域に搭載される。
(Mounting position of strain sensor 20A in the circumferential direction)
The strain sensor 20A is mounted in the middle region of the three regions when the mounting surface of the strain sensor 20A among the four surfaces of the shank 10 is divided into three equal regions arranged in the circumferential direction of the shank 10. Will be done.
 図8は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。図8は、図5におけるVIII-VIII線矢視断面図である。図8では、基準点1K1をZ方向に沿ってVIII-VIII線矢視断面へ平行移動させたときの基準点1K1の位置を黒丸で示している。図8には、後述する変形例1~11における基準点1K2~1K12も表示しているが、チップ1が基準点1K2~1K12を有する場合については変形例1~11にて説明する。図8を参照して、好ましくは、ひずみセンサ20Aは、シャンク10の4つの表面のうちの基準点1K1に最も近い表面である側面S4に搭載される。ひずみセンサ20Aは、側面S4に搭載される場合、側面S4をシャンク10の周方向に並ぶ領域S4Aa,S4Ab,S4Acに3等分したときに領域S4Aa,S4Ab,S4Acのうちの真ん中の領域S4Abに搭載される。図8に示す例において、側面S4は、第1表面の一例である。ここで、シャンク10の4つの表面のうちの基準点1K1に最も近い表面とは、基準点1K1を通り軸17に平行な直線との間の距離が最も小さい表面である。 FIG. 8 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG. In FIG. 8, the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section of the VIII-VIII line arrow is indicated by a black circle. FIG. 8 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11. With reference to FIG. 8, preferably, the strain sensor 20A is mounted on the side surface S4, which is the surface closest to the reference point 1K1 among the four surfaces of the shank 10. When the strain sensor 20A is mounted on the side surface S4, when the side surface S4 is divided into three equal regions S4Aa, S4Ab, and S4Ac arranged in the circumferential direction of the shank 10, the strain sensor 20A is located in the middle region S4Ab of the regions S4Aa, S4Ab, and S4Ac. It will be installed. In the example shown in FIG. 8, the side surface S4 is an example of the first surface. Here, the surface closest to the reference point 1K1 among the four surfaces of the shank 10 is the surface having the shortest distance from the straight line passing through the reference point 1K1 and parallel to the axis 17.
 なお、ひずみセンサ20Aは、基準点1K1に最も近い表面以外の面に搭載されてもよい。たとえば、ひずみセンサ20Aは、上面S2に搭載されてもよい。この場合、ひずみセンサ20Aは、領域S2Abに搭載される。また、たとえば、ひずみセンサ20Aは、底面S1に搭載されてもよい。この場合、ひずみセンサ20Aは、領域S1Abに搭載される。また、たとえば、ひずみセンサ20Aは、側面S3に搭載されてもよい。この場合、ひずみセンサ20Aは、領域S3Abに搭載される。 The strain sensor 20A may be mounted on a surface other than the surface closest to the reference point 1K1. For example, the strain sensor 20A may be mounted on the upper surface S2. In this case, the strain sensor 20A is mounted on the region S2Ab. Further, for example, the strain sensor 20A may be mounted on the bottom surface S1. In this case, the strain sensor 20A is mounted in the region S1Ab. Further, for example, the strain sensor 20A may be mounted on the side surface S3. In this case, the strain sensor 20A is mounted in the region S3Ab.
 このように、せん断ひずみセンサであるひずみセンサ20Aを、搭載面における3等分された3つの領域のうちの真ん中の領域に搭載する構成により、荷重Fxまたは荷重Fyが加わることに伴って生じるせん断ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。また、ひずみセンサ20Aがシャンク10の4つの表面のうちの基準点1K1に最も近い表面である側面S4に搭載される構成により、シャンク10のせん断ひずみをより一層高感度で測定することができる。 As described above, due to the configuration in which the strain sensor 20A, which is a shear strain sensor, is mounted in the middle region of the three equally divided regions on the mounting surface, the shear generated when the load Fx or the load Fy is applied. The strain can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor. Further, by mounting the strain sensor 20A on the side surface S4 which is the surface closest to the reference point 1K1 among the four surfaces of the shank 10, the shear strain of the shank 10 can be measured with even higher sensitivity.
 図9は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。図9は、図5におけるIX-IX線矢視断面図である。図9では、基準点1K1をZ方向に沿ってIX-IX線矢視断面へ平行移動させたときの基準点1K1の位置を黒丸で示している。図9には、後述する変形例1~11における基準点1K2~1K12も表示しているが、チップ1が基準点1K2~1K12を有する場合については変形例1~11にて説明する。図9を参照して、好ましくは、ひずみセンサ20Aは、側面S4をシャンク10の周方向に並ぶ5つの領域S4Ad,S4Ae,S4Af,S4Ag,S4Ahに5等分したときに5つの領域S4Ad,S4Ae,S4Af,S4Ag,S4Ahのうちの真ん中の領域S4Afに搭載される。なお、たとえば、ひずみセンサ20Aは、上面S2における領域S2Af、底面S1における領域S1Af、または側面S3における領域S3Afに搭載されてもよい。 FIG. 9 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. In FIG. 9, the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the IX-IX line arrow cross section is indicated by a black circle. FIG. 9 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11. With reference to FIG. 9, preferably, the strain sensor 20A divides the side surface S4 into five regions S4Ad, S4Ae, S4Af, S4Ag, S4Ah arranged in the circumferential direction of the shank 10 into five equal regions S4Ad, S4Ae. , S4Af, S4Ag, S4Ah, which is mounted in the middle region S4Af. For example, the strain sensor 20A may be mounted on the region S2Af on the upper surface S2, the region S1Af on the bottom surface S1, or the region S3Af on the side surface S3.
 このように、ひずみセンサ20Aを搭載面における5等分された5つの領域のうちの真ん中の領域に搭載する構成により、シャンク10のせん断ひずみをより一層高感度で測定することができる。 As described above, the shear strain of the shank 10 can be measured with even higher sensitivity by mounting the strain sensor 20A in the middle region of the five equally divided regions on the mounting surface.
 (周方向におけるひずみセンサ20Bの搭載位置)
 たとえば、ひずみセンサ20Bは、シャンク10の4つの表面のうちのひずみセンサ20Aの搭載面に隣接する隣接面をシャンク10の周方向に並ぶ3つの領域に3等分したときに当該3つの領域のうちの真ん中の領域に搭載される。
(Mounting position of strain sensor 20B in the circumferential direction)
For example, when the strain sensor 20B divides the adjacent surface of the four surfaces of the shank 10 adjacent to the mounting surface of the strain sensor 20A into three regions arranged in the circumferential direction of the shank 10, the three regions are divided into three equal regions. It will be installed in the middle area of our house.
 図10は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。図10は、図5におけるX-X線矢視断面図である。図10では、基準点1K1をZ方向に沿ってX-X線矢視断面へ平行移動させたときの基準点1K1の位置を黒丸で示している。図10には、後述する変形例1~11における基準点1K2~1K12も表示しているが、チップ1が基準点1K2~1K12を有する場合については変形例1~11にて説明する。図10を参照して、好ましくは、ひずみセンサ20Bは、シャンク10の4つの表面のうちの基準点1K1に2番目に近い表面である上面S2に搭載される。このような構成により、ひずみセンサ20A,20Bを用いて、シャンク10の2つの表面の各々におけるせん断ひずみをより一層高感度で測定することができる。ひずみセンサ20Bは、上面S2に搭載される場合、上面S2をシャンク10の周方向に並ぶ領域S2Ba,S2Bb,S2Bcに3等分したときに領域S2Ba,S2Bb,S2Bcのうちの真ん中の領域S2Bbに搭載される。図10に示す例において、上面S2は、第2表面の一例である。ここで、シャンク10の4つの表面のうちの基準点1K1に2番目に近い表面とは、基準点1K1に最も近い表面を除く3つの表面のうちの、基準点1K1を通り軸17に平行な直線との間の距離が最も小さい表面である。 FIG. 10 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. FIG. 10 is a cross-sectional view taken along the line XX in FIG. In FIG. 10, the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section seen by the XX line is indicated by a black circle. FIG. 10 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11. With reference to FIG. 10, preferably, the strain sensor 20B is mounted on the upper surface S2, which is the second closest surface to the reference point 1K1 among the four surfaces of the shank 10. With such a configuration, the strain sensors 20A and 20B can be used to measure the shear strain on each of the two surfaces of the shank 10 with even higher sensitivity. When the strain sensor 20B is mounted on the upper surface S2, when the upper surface S2 is divided into three equal regions S2Ba, S2Bb, and S2Bc arranged in the circumferential direction of the shank 10, the strain sensor 20B is located in the middle region S2Bb of the regions S2Ba, S2Bb, and S2Bc. It will be installed. In the example shown in FIG. 10, the upper surface S2 is an example of the second surface. Here, the surface second closest to the reference point 1K1 among the four surfaces of the shank 10 passes through the reference point 1K1 and is parallel to the axis 17 among the three surfaces excluding the surface closest to the reference point 1K1. The surface with the shortest distance from the straight line.
 なお、ひずみセンサ20Bは、基準点1K1に2番目に近い表面以外の面に搭載されてもよい。たとえば、ひずみセンサ20Bは、底面S1に搭載されてもよい。この場合、ひずみセンサ20Bは、領域S1Bbに搭載される。また、たとえば、ひずみセンサ20Bは、ひずみセンサ20Aが底面S1または上面S2に搭載される場合、側面S4に搭載されてもよい。この場合、ひずみセンサ20Bは、領域S4Bbに搭載される。また、たとえば、ひずみセンサ20Bは、ひずみセンサ20Aが底面S1または上面S2に搭載される場合、側面S3に搭載されてもよい。この場合、ひずみセンサ20Bは、領域S3Bbに搭載される。 The strain sensor 20B may be mounted on a surface other than the surface second closest to the reference point 1K1. For example, the strain sensor 20B may be mounted on the bottom surface S1. In this case, the strain sensor 20B is mounted in the region S1Bb. Further, for example, the strain sensor 20B may be mounted on the side surface S4 when the strain sensor 20A is mounted on the bottom surface S1 or the top surface S2. In this case, the strain sensor 20B is mounted on the region S4Bb. Further, for example, the strain sensor 20B may be mounted on the side surface S3 when the strain sensor 20A is mounted on the bottom surface S1 or the top surface S2. In this case, the strain sensor 20B is mounted on the region S3Bb.
 このように、せん断ひずみセンサであるひずみセンサ20Bを、ひずみセンサ20Bの搭載面における3等分された3つの領域のうちの真ん中の領域に搭載する構成により、荷重Fxまたは荷重Fyが加わることに伴って生じるせん断ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。また、ひずみセンサ20Bが、ひずみセンサ20Aの搭載面に隣接する面に搭載される構成により、シャンク10の2つの表面の各々におけるせん断ひずみをより高感度で測定することができる。 In this way, the load Fx or the load Fy is applied by the configuration in which the strain sensor 20B, which is a shear strain sensor, is mounted in the middle region of the three equally divided regions on the mounting surface of the strain sensor 20B. The accompanying shear strain can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor. Further, since the strain sensor 20B is mounted on the surface adjacent to the mounting surface of the strain sensor 20A, the shear strain on each of the two surfaces of the shank 10 can be measured with higher sensitivity.
 図11は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。図11は、図5におけるXI-XI線矢視断面図である。図11では、基準点1K1をZ方向に沿ってXI-XI線矢視断面へ平行移動させたときの基準点1K1の位置を黒丸で示している。図11には、後述する変形例1~11における基準点1K2~1K12も表示しているが、チップ1が基準点1K2~1K12を有する場合については変形例1~11にて説明する。図11を参照して、たとえば、ひずみセンサ20Bは、上面S2をシャンク10の周方向に並ぶ5つの領域S2Bd,S2Be,S2Bf,S2Bg,S2Bhに5等分したときに5つの領域S2Bd,S2Be,S2Bf,S2Bg,S2Bhのうちの真ん中の領域S2Bfに搭載される。なお、たとえば、ひずみセンサ20Bは、底面S1における領域S1Bf、側面S4における領域S4Bf、または側面S3における領域S3Bfに搭載されてもよい。 FIG. 11 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. In FIG. 11, the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the cross section of the XI-XI line arrow is indicated by a black circle. FIG. 11 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11. With reference to FIG. 11, for example, in the strain sensor 20B, when the upper surface S2 is divided into five regions S2Bd, S2Be, S2Bf, S2Bg, and S2Bh arranged in the circumferential direction of the shank 10, the five regions S2Bd, S2Be, It is mounted in the middle region S2Bf of S2Bf, S2Bg, and S2Bh. For example, the strain sensor 20B may be mounted on the region S1Bf on the bottom surface S1, the region S4Bf on the side surface S4, or the region S3Bf on the side surface S3.
 このように、ひずみセンサ20Bを搭載面における5等分された5つの領域のうちの真ん中の領域に搭載する構成により、シャンク10のせん断ひずみをより一層高感度で測定することができる。また、ひずみセンサ20Bが、ひずみセンサ20Aの搭載面に隣接する面に搭載される構成により、シャンク10の2つの表面の各々におけるせん断ひずみをより一層高感度で測定することができる。 As described above, the shear strain of the shank 10 can be measured with even higher sensitivity by mounting the strain sensor 20B in the middle region of the five equally divided regions on the mounting surface. Further, since the strain sensor 20B is mounted on the surface adjacent to the mounting surface of the strain sensor 20A, the shear strain on each of the two surfaces of the shank 10 can be measured with higher sensitivity.
 (周方向におけるひずみセンサ20Cの搭載位置) (Mounting position of strain sensor 20C in the circumferential direction)
 図12は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。図12は、図5におけるXII-XII線矢視断面図である。図12では、基準点1K1をZ方向に沿ってXII-XII線矢視断面へ平行移動させたときの基準点1K1の位置を黒丸で示している。図12には、後述する変形例1~11における基準点1K2~1K12も表示しているが、チップ1が基準点1K2~1K12を有する場合については変形例1~11にて説明する。図12を参照して、ひずみセンサ20Cは、シャンク10の4つの表面のうちの基準点1K1に最も近い表面における基準点1K1に最も近い領域、基準点1K1に2番目に近い表面における基準点1K1に最も近い領域、当該最も近い表面の対向面における基準点1K1から最も遠い領域、および当該2番目に近い表面の対向面における基準点1K1から最も遠い領域、の4つの領域のうちの少なくとも1つの領域に搭載される。より詳細には、ひずみセンサ20Cは、領域S4Ca、領域S2Ca、領域S3Cc、領域S1Ccのうちの少なくとも1つの領域に搭載される。ここで、領域S4Caは、側面S4をシャンク10の周方向に沿って3等分した領域S4Ca,S4Cb,S4Ccのうちの基準点1K1に最も近い領域である。また、領域S2Caは、上面S2をシャンク10の周方向に沿って3等分した領域S2Ca,S2Cb,S2Ccのうちの基準点1K1に最も近い領域である。また、領域S3Ccは、側面S3をシャンク10の周方向に沿って3等分した領域S3Ca,S3Cb,S3Ccのうちの基準点1K1から最も遠い領域である。さらに、領域S1Ccは、底面S1をシャンク10の周方向に沿って3等分した領域S1Ca,S1Cb,S1Ccのうちの基準点1K1から最も遠い領域である。図12に示す例において、側面S4は第1表面の一例であり、上面S2は第2表面の一例であり、側面S3は第3表面の一例であり、底面S1は第4表面の一例である。 FIG. 12 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. FIG. 12 is a cross-sectional view taken along the line XII-XII in FIG. In FIG. 12, the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the XII-XII line arrow cross section is indicated by a black circle. FIG. 12 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11. With reference to FIG. 12, the strain sensor 20C has a region closest to the reference point 1K1 on the surface closest to the reference point 1K1 among the four surfaces of the shank 10, and a reference point 1K1 on the surface second closest to the reference point 1K1. At least one of four regions: the region closest to, the region farthest from the reference point 1K1 on the facing surface of the closest surface, and the region farthest from the reference point 1K1 on the facing surface of the second closest surface. Mounted in the area. More specifically, the strain sensor 20C is mounted in at least one region of the region S4Ca, the region S2Ca, the region S3Cc, and the region S1Cc. Here, the region S4Ca is the region closest to the reference point 1K1 among the regions S4Ca, S4Cb, and S4Cc in which the side surface S4 is divided into three equal parts along the circumferential direction of the shank 10. Further, the region S2Ca is a region closest to the reference point 1K1 among the regions S2Ca, S2Cb, and S2Cc in which the upper surface S2 is divided into three equal parts along the circumferential direction of the shank 10. Further, the region S3Cc is the region farthest from the reference point 1K1 among the regions S3Ca, S3Cb, and S3Cc in which the side surface S3 is divided into three equal parts along the circumferential direction of the shank 10. Further, the region S1Cc is the region farthest from the reference point 1K1 among the regions S1Ca, S1Cb, and S1Cc obtained by dividing the bottom surface S1 into three equal parts along the circumferential direction of the shank 10. In the example shown in FIG. 12, the side surface S4 is an example of the first surface, the upper surface S2 is an example of the second surface, the side surface S3 is an example of the third surface, and the bottom surface S1 is an example of the fourth surface. ..
 このように、垂直ひずみセンサであるひずみセンサ20Cを、シャンク10における表面の境界部分のうちの、基準点1K1に最も近い境界部分の近傍、または基準点1K1に最も遠い境界部分の近傍に搭載する構成により、Z方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the strain sensor 20C, which is a vertical strain sensor, is mounted in the vicinity of the boundary portion closest to the reference point 1K1 or in the vicinity of the boundary portion farthest from the reference point 1K1 in the boundary portion of the surface of the shank 10. Depending on the configuration, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 図13は、本開示の第1の実施の形態に係る切削工具におけるひずみセンサの搭載位置の一例を示す図である。図13は、図5におけるXIII-XIII線矢視断面図である。図13では、基準点1K1をZ方向に沿ってXIII-XIII線矢視断面へ平行移動させたときの基準点1K1の位置を黒丸で示している。図13には、後述する変形例1~11における基準点1K2~1K12も表示しているが、チップ1が基準点1K2~1K12を有する場合については変形例1~11にて説明する。図13を参照して、ひずみセンサ20Cは、上述の4つの領域のうちの少なくともいずれか1つの領域に搭載される。より詳細には、ひずみセンサ20Cは、領域S4Cd、領域S2Cd、領域S3Ch、領域S1Chのうちの少なくとも1つの領域に搭載される。ここで、領域S4Cdは、側面S4をシャンク10の周方向に沿って5等分した領域S4Cd,S4Ce,S4Cf,S4Cg,S4Chのうちの基準点1K1に最も近い領域である。また、領域S2Cdは、上面S2をシャンク10の周方向に沿って5等分した領域S2Cd,S2Ce,S2Cf,S2Cg,S2Chのうちの基準点1K1に最も近い領域である。また、領域S3Chは、側面S3をシャンク10の周方向に沿って5等分した領域S3Cd,S3Ce,S3Cf,S3Cg,S3Chのうちの基準点1K1から最も遠い領域である。さらに、領域S1Chは、底面S1をシャンク10の周方向に沿って5等分した領域S1Cd,S1Ce,S1Cf,S1Cg,S1Chのうちの基準点1K1から最も遠い領域である。 FIG. 13 is a diagram showing an example of a mounting position of a strain sensor in a cutting tool according to the first embodiment of the present disclosure. FIG. 13 is a cross-sectional view taken along the line XIII-XIII in FIG. In FIG. 13, the position of the reference point 1K1 when the reference point 1K1 is translated along the Z direction to the XIII-XIII line arrow cross section is indicated by a black circle. FIG. 13 also shows the reference points 1K2 to 1K12 in the modified examples 1 to 11 described later, but the case where the chip 1 has the reference points 1K2 to 1K12 will be described in the modified examples 1 to 11. With reference to FIG. 13, the strain sensor 20C is mounted in at least one of the above four regions. More specifically, the strain sensor 20C is mounted in at least one region of the region S4Cd, the region S2Cd, the region S3Ch, and the region S1Ch. Here, the region S4Cd is the region closest to the reference point 1K1 among the regions S4Cd, S4Ce, S4Cf, S4Cg, and S4Ch obtained by dividing the side surface S4 into five equal parts along the circumferential direction of the shank 10. Further, the region S2Cd is a region closest to the reference point 1K1 among the regions S2Cd, S2Ce, S2Cf, S2Cg, and S2Ch obtained by dividing the upper surface S2 into five equal parts along the circumferential direction of the shank 10. Further, the region S3Ch is the region farthest from the reference point 1K1 among the regions S3Cd, S3Ce, S3Cf, S3Cg, and S3Ch in which the side surface S3 is divided into five equal parts along the circumferential direction of the shank 10. Further, the region S1Ch is the region farthest from the reference point 1K1 of the regions S1Cd, S1Ce, S1Cf, S1Cg, and S1Ch obtained by dividing the bottom surface S1 into five equal parts along the circumferential direction of the shank 10.
 このように、ひずみセンサ20Cを基準点1K1に最も近い境界部分に極めて近い位置、または基準点1K1に最も遠い境界部分に極めて近い位置に搭載する構成により、シャンク10における垂直ひずみをより一層高感度で測定することができる。 In this way, by mounting the strain sensor 20C at a position extremely close to the boundary portion closest to the reference point 1K1 or at a position extremely close to the boundary portion farthest from the reference point 1K1, the vertical strain in the shank 10 is more sensitive. Can be measured with.
 本実施の形態の切削工具101によれば、切削加工時における3つのひずみセンサ20A,20B,20Cの測定結果に基づいて、切削抵抗の3分力を算出することができる。 According to the cutting tool 101 of the present embodiment, it is possible to calculate the three-component force of the cutting resistance based on the measurement results of the three strain sensors 20A, 20B, and 20C at the time of cutting.
 [変形例1]
 図14は、本開示の第1の実施の形態の変形例1に係る切削工具の構成の一例を示す図である。変形例1に係るチップ1は、基準点1Kである基準点1K2を有する。基準点1K2のXY平面における位置は、図3に示す第2象限Q2の領域内であるものとする。基準点1K2の位置は、図3に示す位置PK2の一例である。図14を参照して、切削工具101Aは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S4に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の上面S2に搭載される。
[Modification 1]
FIG. 14 is a diagram showing an example of the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure. The chip 1 according to the modification 1 has a reference point 1K2 which is a reference point 1K. It is assumed that the position of the reference point 1K2 in the XY plane is within the region of the second quadrant Q2 shown in FIG. The position of the reference point 1K2 is an example of the position PK2 shown in FIG. With reference to FIG. 14, the cutting tool 101A includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
 (軸方向におけるひずみセンサ20Bの搭載位置)
 図15は、本開示の第1の実施の形態の変形例1に係る切削工具の構成を示す断面図である。図15は、図14におけるXV-XV線矢視断面図である。図15では、基準点1K2をZ方向に沿ってXV-XV線矢視断面へ平行移動させたときのチップ1の位置および基準点1K2の位置を破線および黒丸でそれぞれ示している。図15を参照して、距離dxbおよび距離dybが互いに異なる値であり、かつ距離dybは距離dxbよりも大きいので、距離dybをmaxdxybとし、距離dxbをmindxybとする。再び図14を参照して、このとき、センサ距離Dbは、下記式(12)を満たす。
 Db<0.74W+2.09maxdxyb ・・・ (12)
(Mounting position of strain sensor 20B in the axial direction)
FIG. 15 is a cross-sectional view showing the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure. FIG. 15 is a cross-sectional view taken along the line XV-XV in FIG. In FIG. 15, the position of the chip 1 and the position of the reference point 1K2 when the reference point 1K2 is translated along the Z direction to the XV-XV line arrow cross section are shown by broken lines and black circles, respectively. With reference to FIG. 15, since the distance dxb and the distance dyb have different values and the distance dyb is larger than the distance dxb, the distance dxyb is defined as maxdxyb and the distance dxb is defined as mindxyb. With reference to FIG. 14 again, at this time, the sensor distance Db satisfies the following equation (12).
Db <0.74W + 2.09maxdxyb ... (12)
 このように、せん断ひずみセンサであるひずみセンサ20Bのセンサ距離Dbが式(12)を満たす構成により、ひずみセンサ20Bの代わりに垂直ひずみセンサを用いる構成と比べて、荷重Fxまたは荷重Fyが加わることに伴って生じるせん断ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 As described above, due to the configuration in which the sensor distance Db of the strain sensor 20B, which is a shear strain sensor, satisfies the equation (12), the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20B. The shear strain generated by the above can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 好ましくは、センサ距離Dbは、上述の式(11)を満たす。センサ距離Dbが式(12)に加えてさらに式(11)を満たす構成により、せん断ひずみセンサの代わりに垂直ひずみセンサを用いる構成と比べて、荷重Fxまたは荷重Fyが加わることに伴って生じるせん断ひずみをより一層高感度で測定することができる。 Preferably, the sensor distance Db satisfies the above equation (11). Due to the configuration in which the sensor distance Db satisfies the equation (11) in addition to the equation (12), the shear caused by the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the shear strain sensor. The strain can be measured with even higher sensitivity.
 (軸方向におけるひずみセンサ20Aの搭載位置)
 図16は、本開示の第1の実施の形態の変形例1に係る切削工具の構成を示す断面図である。図16は、図14におけるXVI-XVI線矢視断面図である。図16では、基準点1K2をZ方向に沿ってXVI-XVI線矢視断面へ平行移動させたときのチップ1の位置および基準点1K2の位置を破線および黒丸でそれぞれ示している。図16を参照して、距離dxaおよび距離dyaが互いに異なる値であり、かつ距離dyaは距離dxaよりも大きいので、距離dyaをmaxdxyaとし、距離dxaをmindxyaとする。再び図14を参照して、このとき、たとえば、センサ距離Daは、上述の式(10)を満たす。
(Mounting position of strain sensor 20A in the axial direction)
FIG. 16 is a cross-sectional view showing the configuration of the cutting tool according to the first modification of the first embodiment of the present disclosure. FIG. 16 is a cross-sectional view taken along the line XVI-XVI in FIG. In FIG. 16, the position of the chip 1 and the position of the reference point 1K2 when the reference point 1K2 is translated along the Z direction to the XVI-XVI line arrow cross section are shown by broken lines and black circles, respectively. With reference to FIG. 16, since the distance dxa and the distance dya are different values from each other and the distance dya is larger than the distance dxa, the distance dya is defined as maxdxya and the distance dxa is defined as mindxya. With reference to FIG. 14 again, at this time, for example, the sensor distance Da satisfies the above equation (10).
 このように、せん断ひずみセンサであるひずみセンサ20Aのセンサ距離Daが式(10)を満たす構成により、ひずみセンサ20Aの代わりに垂直ひずみセンサを用いる構成と比べて、荷重Fxまたは荷重Fyが加わることに伴って生じるせん断ひずみをより高感度で測定することができる。 As described above, due to the configuration in which the sensor distance Da of the strain sensor 20A, which is the shear strain sensor, satisfies the equation (10), the load Fx or the load Fy is applied as compared with the configuration in which the vertical strain sensor is used instead of the strain sensor 20A. The shear strain generated by the above can be measured with higher sensitivity.
 (周方向におけるひずみセンサ20Bの搭載位置)
 変形例1に係る切削工具101Aにおいて、周方向におけるひずみセンサ20Bの搭載位置は、第1の実施の形態に係る切削工具101における、周方向におけるひずみセンサ20Bの搭載位置と同じである。たとえば、ひずみセンサ20Bは、シャンク10の4つの表面のうちの基準点1K2に最も近い表面である上面S2における真ん中の領域である領域S2Bbに搭載される。
(Mounting position of strain sensor 20B in the circumferential direction)
In the cutting tool 101A according to the first modification, the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101 according to the first embodiment. For example, the strain sensor 20B is mounted in the region S2Bb, which is the middle region of the upper surface S2, which is the surface closest to the reference point 1K2 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Aの搭載位置)
 変形例1に係る切削工具101Aにおいて、周方向におけるひずみセンサ20Aの搭載位置は、第1の実施の形態に係る切削工具101における、周方向におけるひずみセンサ20Aの搭載位置と同じである。たとえば、ひずみセンサ20Aは、上面S2に隣接し、かつシャンク10の4つの表面のうちの基準点1K2に2番目に近い表面である側面S4における真ん中の領域である領域S4Abに搭載される。
(Mounting position of strain sensor 20A in the circumferential direction)
In the cutting tool 101A according to the first modification, the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101 according to the first embodiment. For example, the strain sensor 20A is mounted in a region S4Ab which is a middle region on the side surface S4 which is adjacent to the upper surface S2 and is the second closest surface to the reference point 1K2 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Cの搭載位置)
 変形例1に係る切削工具101Aにおいて、周方向におけるひずみセンサ20Cの搭載位置は、第1の実施の形態に係る切削工具101における、周方向におけるひずみセンサ20Cの搭載位置と同じである。たとえば、ひずみセンサ20Cは、シャンク10の4つの表面のうちの基準点1K2に2番目に近い表面である側面S4における領域S4Caに搭載される。
(Mounting position of strain sensor 20C in the circumferential direction)
In the cutting tool 101A according to the first modification, the mounting position of the strain sensor 20C in the circumferential direction is the same as the mounting position of the strain sensor 20C in the circumferential direction in the cutting tool 101 according to the first embodiment. For example, the strain sensor 20C is mounted on the region S4Ca on the side surface S4, which is the surface second closest to the reference point 1K2 of the four surfaces of the shank 10.
 [変形例2]
 図17は、本開示の第1の実施の形態の変形例2に係る切削工具の構成の一例を示す図である。図17では、シャンク10の側面S3に搭載されるひずみセンサ20A,20Cを破線で示している。変形例2に係るチップ1は、基準点1Kである基準点1K3を有する。基準点1K3のXY平面における位置は、図3に示す第4象限Q4の領域内であるものとする。基準点1K3の位置は、図3に示す位置PK4の一例である。図17を参照して、切削工具101Bは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S3に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の上面S2に搭載される。
[Modification 2]
FIG. 17 is a diagram showing an example of the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure. In FIG. 17, the strain sensors 20A and 20C mounted on the side surface S3 of the shank 10 are shown by broken lines. The chip 1 according to the second modification has a reference point 1K3 which is a reference point 1K. It is assumed that the position of the reference point 1K3 in the XY plane is within the region of the fourth quadrant Q4 shown in FIG. The position of the reference point 1K3 is an example of the position PK4 shown in FIG. With reference to FIG. 17, the cutting tool 101B includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
 (軸方向におけるひずみセンサ20Aの搭載位置)
 図18は、本開示の第1の実施の形態の変形例2に係る切削工具の構成を示す断面図である。図18は、図17におけるXVIII-XVIII線矢視断面図である。図18では、基準点1K3をZ方向に沿ってXVIII-XVIII線矢視断面へ平行移動させたときの基準点1K3の位置を黒丸で示している。ここで、距離dxa、距離dya、maxdxya、mindxya、およびセンサ距離Daの関係は、上述の第1の実施の形態と同様である。すなわち、図18を参照して、距離dxaおよび距離dyaが互いに異なる値であり、かつ距離dxaは距離dyaよりも大きいので、距離dxaをmaxdxyaとし、距離dybをmindxyaとする。このとき、再び図17を参照して、たとえば、センサ距離Daは、上述の式(9)を満たす。また、たとえば、センサ距離Daは、上述の式(10)を満たす。
(Mounting position of strain sensor 20A in the axial direction)
FIG. 18 is a cross-sectional view showing the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure. FIG. 18 is a cross-sectional view taken along the line XVIII-XVIII in FIG. In FIG. 18, the position of the reference point 1K3 when the reference point 1K3 is translated along the Z direction to the cross section seen by the XVIII-XVIII line arrow is indicated by a black circle. Here, the relationship between the distance dxa, the distance dya, maxdxya, mindxya, and the sensor distance Da is the same as that of the first embodiment described above. That is, with reference to FIG. 18, since the distance dxa and the distance dya are different values from each other and the distance dxa is larger than the distance dya, the distance dxa is set to maxdxya and the distance dyb is set to mindxya. At this time, referring to FIG. 17 again, for example, the sensor distance Da satisfies the above equation (9). Further, for example, the sensor distance Da satisfies the above equation (10).
 (軸方向におけるひずみセンサ20Bの搭載位置)
 図19は、本開示の第1の実施の形態の変形例2に係る切削工具の構成を示す断面図である。図19は、図17におけるXIX-XIX線矢視断面図である。図19では、基準点1K3をZ方向に沿ってXIX-XIX線矢視断面へ平行移動させたときの基準点1K3の位置を黒丸で示している。ここで、距離dxb、距離dyb、maxdxyb、mindxyb、およびセンサ距離Dbの関係は、上述の第1の実施の形態と同様である。すなわち、図19を参照して、距離dxbおよび距離dybが互いに異なる値であり、かつ距離dxbは距離dybよりも大きいので、距離dxbをmaxdxybとし、距離dybをmindxybとする。このとき、再び図17を参照して、たとえば、センサ距離Dbは、上述の式(11)を満たす。
(Mounting position of strain sensor 20B in the axial direction)
FIG. 19 is a cross-sectional view showing the configuration of the cutting tool according to the second modification of the first embodiment of the present disclosure. FIG. 19 is a cross-sectional view taken along the line XIX-XIX in FIG. In FIG. 19, the position of the reference point 1K3 when the reference point 1K3 is translated along the Z direction to the cross section seen by the XIX-XIX line arrow is indicated by a black circle. Here, the relationship between the distance dxb, the distance dyb, the maxdxyb, the mindxyb, and the sensor distance Db is the same as in the first embodiment described above. That is, with reference to FIG. 19, since the distance dxb and the distance dyb have different values and the distance dxb is larger than the distance dyb, the distance dxb is defined as maxdxyb and the distance dyb is defined as mindxyb. At this time, referring to FIG. 17 again, for example, the sensor distance Db satisfies the above equation (11).
 (周方向におけるひずみセンサ20Aの搭載位置)
 好ましくは、ひずみセンサ20Aは、シャンク10の4つの表面のうちの基準点1K3に最も近い表面である側面S3に搭載される。この場合、ひずみセンサ20Aは、図8を変形例2に係る切削工具101Bのひずみセンサ20Aの搭載位置における断面図(図17におけるXVIII-XVIII線矢視断面図)であるとみなした場合において、図8に示す領域S3Abに搭載される。なお、ひずみセンサ20Aは、図8に示す領域S1Ab,領域S2Ab,領域S4Abに搭載されてもよい。
(Mounting position of strain sensor 20A in the circumferential direction)
Preferably, the strain sensor 20A is mounted on the side surface S3, which is the surface closest to the reference point 1K3 among the four surfaces of the shank 10. In this case, when the strain sensor 20A regards FIG. 8 as a cross-sectional view (cross-sectional view taken along the line XVIII-XVIII in FIG. 17) at the mounting position of the strain sensor 20A of the cutting tool 101B according to the modification 2. It is mounted in the area S3Ab shown in FIG. The strain sensor 20A may be mounted in the region S1Ab, the region S2Ab, and the region S4Ab shown in FIG.
 より好ましくは、ひずみセンサ20Aは、図9を変形例2に係る切削工具101Bのひずみセンサ20Aの搭載位置における断面図(図17におけるXVIII-XVIII線矢視断面図)であるとみなした場合において、図9に示す、側面S3における領域S3Afに搭載される。なお、ひずみセンサ20Aは、図9に示す領域S1Af,領域S2Af,領域S4Afに搭載されてもよい。 More preferably, when the strain sensor 20A is regarded as a cross-sectional view (cross-sectional view taken along the line XVIII-XVIII in FIG. 17) at the mounting position of the strain sensor 20A of the cutting tool 101B according to the modification 2. , It is mounted on the region S3Af on the side surface S3 shown in FIG. The strain sensor 20A may be mounted in the region S1Af, the region S2Af, and the region S4Af shown in FIG.
 (周方向におけるひずみセンサ20Bの搭載位置)
 変形例2に係る切削工具101Bにおいて、周方向におけるひずみセンサ20Bの搭載位置は、第1の実施の形態に係る切削工具101における、周方向におけるひずみセンサ20Bの搭載位置と同じである。たとえば、ひずみセンサ20Bは、側面S3に隣接し、かつシャンク10の4つの表面のうちの基準点1K3に2番目に近い表面である上面S2における領域S2Bbに搭載される。
(Mounting position of strain sensor 20B in the circumferential direction)
In the cutting tool 101B according to the second modification, the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101 according to the first embodiment. For example, the strain sensor 20B is mounted in the region S2Bb on the top surface S2, which is adjacent to the side surface S3 and is the second closest surface to the reference point 1K3 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Cの搭載位置)
 ひずみセンサ20Cは、上述と同様に、シャンク10の4つの表面のうちの基準点1K3に最も近い表面における基準点1K3に最も近い領域、基準点1K3に2番目に近い表面における基準点1K3に最も近い領域、当該最も近い表面の対向面における基準点1K3から最も遠い領域、および当該2番目に近い表面の対向面における基準点1K3から最も遠い領域、の4つの領域のうちの少なくとも1つに搭載される。より詳細には、ひずみセンサ20Cは、図12を変形例2に係る切削工具101Bのひずみセンサ20Cの搭載位置における断面図(図17におけるAA-AA線矢視断面図)であるとみなした場合において、図12に示す領域S3Ca,S1Ca,S2Cc,S4Ccのうちの少なくとも1つ、たとえば、領域S3Caに搭載される。また、ひずみセンサ20Cは、図13を変形例2に係る切削工具101Bのひずみセンサ20Cの搭載位置における断面図(図17におけるAA-AA線矢視断面図)であるとみなした場合において、図13に示す領域S3Cd,S1Cd,S2Ch,S4Chのうちの少なくとも1つ、たとえば、領域S3Cdに搭載される。
(Mounting position of strain sensor 20C in the circumferential direction)
Similar to the above, the strain sensor 20C is the region closest to the reference point 1K3 on the surface closest to the reference point 1K3 among the four surfaces of the shank 10, and is closest to the reference point 1K3 on the surface second closest to the reference point 1K3. Mounted in at least one of four regions: a near region, a region farthest from the reference point 1K3 on the facing surface of the closest surface, and a region farthest from the reference point 1K3 on the facing surface of the second closest surface. Will be done. More specifically, when the strain sensor 20C regards FIG. 12 as a cross-sectional view (AA-AA line cross-sectional view in FIG. 17) at the mounting position of the strain sensor 20C of the cutting tool 101B according to the modification 2. In, at least one of the regions S3Ca, S1Ca, S2Cc, and S4Cc shown in FIG. 12, for example, is mounted on the region S3Ca. Further, the strain sensor 20C is shown in the case where FIG. 13 is regarded as a cross-sectional view (AA-AA line arrow cross-sectional view in FIG. 17) at the mounting position of the strain sensor 20C of the cutting tool 101B according to the modification 2. It is mounted in at least one of the regions S3Cd, S1Cd, S2Ch, and S4Ch shown in 13, for example, the region S3Cd.
 [変形例3]
 図20は、本開示の第1の実施の形態の変形例3に係る切削工具の構成の一例を示す図である。図20では、シャンク10の側面S3に搭載されるひずみセンサ20A,20Cを破線で示している。変形例3に係るチップ1は、基準点1Kである基準点1K4を有する。基準点1K4のXY平面における位置は、図3に示す第3象限Q3の領域内であるものとする。基準点1K4の位置は、図3に示す位置PK3の一例である。図20を参照して、切削工具101Cは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S3に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の上面S2に搭載される。
[Modification 3]
FIG. 20 is a diagram showing an example of the configuration of a cutting tool according to the third modification of the first embodiment of the present disclosure. In FIG. 20, the strain sensors 20A and 20C mounted on the side surface S3 of the shank 10 are shown by broken lines. The chip 1 according to the modification 3 has a reference point 1K4 which is a reference point 1K. It is assumed that the position of the reference point 1K4 in the XY plane is within the region of the third quadrant Q3 shown in FIG. The position of the reference point 1K4 is an example of the position PK3 shown in FIG. With reference to FIG. 20, the cutting tool 101C includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
 (軸方向におけるひずみセンサ20Bの搭載位置)
 図21は、本開示の第1の実施の形態の変形例3に係る切削工具の構成を示す断面図である。図21は、図20におけるXXI-XXI線矢視断面図である。図21では、基準点1K4をZ方向に沿ってXXI-XXI線矢視断面へ平行移動させたときの基準点1K4の位置を黒丸で示している。ここで、距離dxb、距離dyb、maxdxyb、mindxyb、およびセンサ距離Dbの関係は、上述の変形例1と同様である。すなわち、図21を参照して、距離dxbおよび距離dybが互いに異なる値であり、かつ距離dybは距離dxbよりも大きいので、距離dybをmaxdxybとし、距離dxbをmindxybとする。このとき、再び図20を参照して、たとえば、センサ距離Dbは、上述の式(12)を満たす。また、たとえば、センサ距離Dbは、上述の式(11)を満たす。
(Mounting position of strain sensor 20B in the axial direction)
FIG. 21 is a cross-sectional view showing the configuration of the cutting tool according to the third modification of the first embodiment of the present disclosure. FIG. 21 is a cross-sectional view taken along the line XXI-XXI in FIG. 20. In FIG. 21, the position of the reference point 1K4 when the reference point 1K4 is translated along the Z direction to the cross section seen by the XXI-XXI line arrow is indicated by a black circle. Here, the relationship between the distance dxb, the distance dyb, the maxdxyb, the mindxyb, and the sensor distance Db is the same as that of the above-mentioned modification 1. That is, with reference to FIG. 21, since the distance dxb and the distance dyb have different values and the distance dyb is larger than the distance dxb, the distance dxyb is defined as maxdxyb and the distance dxb is defined as mindxyb. At this time, referring to FIG. 20 again, for example, the sensor distance Db satisfies the above equation (12). Further, for example, the sensor distance Db satisfies the above equation (11).
 (軸方向におけるひずみセンサ20Aの搭載位置)
 図22は、本開示の第1の実施の形態の変形例3に係る切削工具の構成を示す断面図である。図22は、図20におけるXXII-XXII線矢視断面図である。図22では、基準点1K4をZ方向に沿ってXXII-XXII線矢視断面へ平行移動させたときの基準点1K4の位置を黒丸で示している。ここで、距離dxa、距離dya、maxdxya、mindxya、およびセンサ距離Daの関係は、上述の変形例1と同様である。すなわち、図22を参照して、距離dxaおよび距離dyaが互いに異なる値であり、かつ距離dyaは距離dxaよりも大きいので、距離dyaをmaxdxyaとし、距離dxaをmindxyaとする。このとき、再び図20を参照して、たとえば、センサ距離Daは、上述の式(10)を満たす。
(Mounting position of strain sensor 20A in the axial direction)
FIG. 22 is a cross-sectional view showing the configuration of the cutting tool according to the third modification of the first embodiment of the present disclosure. FIG. 22 is a cross-sectional view taken along the line XXII-XXII in FIG. In FIG. 22, the position of the reference point 1K4 when the reference point 1K4 is translated along the Z direction to the cross section of the XXII-XXII line arrow is indicated by a black circle. Here, the relationship between the distance dxa, the distance dya, maxdxya, mindxya, and the sensor distance Da is the same as that of the above-mentioned modification 1. That is, with reference to FIG. 22, since the distance dxa and the distance dya are different values from each other and the distance dya is larger than the distance dxa, the distance dya is set to maxdxya and the distance dxa is set to mindxya. At this time, referring to FIG. 20 again, for example, the sensor distance Da satisfies the above equation (10).
 (周方向におけるひずみセンサ20Bの搭載位置)
 変形例3に係る切削工具101Cにおいて、周方向におけるひずみセンサ20Bの搭載位置は、第1の実施の形態に係る切削工具101における、周方向におけるひずみセンサ20Bの搭載位置と同じである。たとえば、ひずみセンサ20Bは、シャンク10の4つの表面のうちの基準点1K4に最も近い表面である上面S2における真ん中の領域である領域S2Bbに搭載される。
(Mounting position of strain sensor 20B in the circumferential direction)
In the cutting tool 101C according to the third modification, the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101 according to the first embodiment. For example, the strain sensor 20B is mounted in the region S2Bb, which is the middle region of the upper surface S2, which is the surface closest to the reference point 1K4 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Aの搭載位置)
 変形例3に係る切削工具101Cにおいて、周方向におけるひずみセンサ20Aの搭載位置は、変形例2に係る切削工具101Bにおける、周方向におけるひずみセンサ20Aの搭載位置と同じである。たとえば、ひずみセンサ20Aは、上面S2に隣接し、かつシャンク10の4つの表面のうちの基準点1K4に2番目に近い表面である側面S3における真ん中の領域である領域S3Abに搭載される。
(Mounting position of strain sensor 20A in the circumferential direction)
In the cutting tool 101C according to the modification 3, the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101B according to the modification 2. For example, the strain sensor 20A is mounted in the region S3Ab, which is the middle region of the side surface S3, which is adjacent to the top surface S2 and is the second closest surface to the reference point 1K4 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Cの搭載位置)
 変形例3に係る切削工具101Cにおいて、周方向におけるひずみセンサ20Cの搭載位置は、変形例2に係る切削工具101Bにおける、周方向におけるひずみセンサ20Cの搭載位置と同じである。たとえば、ひずみセンサ20Cは、シャンク10の4つの表面のうちの基準点1K4に2番目に近い表面である側面S3における領域S3Caに搭載される。
(Mounting position of strain sensor 20C in the circumferential direction)
In the cutting tool 101C according to the modification 3, the mounting position of the strain sensor 20C in the circumferential direction is the same as the mounting position of the strain sensor 20C in the circumferential direction in the cutting tool 101B according to the modification 2. For example, the strain sensor 20C is mounted on the region S3Ca on the side surface S3, which is the surface second closest to the reference point 1K4 of the four surfaces of the shank 10.
 [変形例4]
 図23は、本開示の第1の実施の形態の変形例4に係る切削工具の構成の一例を示す図である。変形例4に係るチップ1は、基準点1Kである基準点1K5を有する。基準点1K5のXY平面における位置は、図3に示す第8象限Q8の領域内であるものとする。基準点1K5の位置は、図3に示す位置PK8の一例である。図23を参照して、切削工具101Dは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S4に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の底面S1に搭載される。
[Modification 4]
FIG. 23 is a diagram showing an example of the configuration of the cutting tool according to the modified example 4 of the first embodiment of the present disclosure. The chip 1 according to the modification 4 has a reference point 1K5 which is a reference point 1K. It is assumed that the position of the reference point 1K5 in the XY plane is within the region of the eighth quadrant Q8 shown in FIG. The position of the reference point 1K5 is an example of the position PK8 shown in FIG. With reference to FIG. 23, the cutting tool 101D includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the bottom surface S1 of the shank 10.
 (軸方向におけるひずみセンサ20Aの搭載位置)
 距離dxa、距離dya、maxdxya、mindxya、およびセンサ距離Daの関係は、上述の第1の実施の形態と同様である。よって、たとえば、センサ距離Daは、上述の式(9)を満たす。また、たとえば、センサ距離Daは、上述の式(10)を満たす。
(Mounting position of strain sensor 20A in the axial direction)
The relationship between the distance dxa, the distance dya, maxdxya, mindxya, and the sensor distance Da is the same as in the first embodiment described above. Therefore, for example, the sensor distance Da satisfies the above equation (9). Further, for example, the sensor distance Da satisfies the above equation (10).
 (軸方向におけるひずみセンサ20Bの搭載位置)
 距離dxb、距離dyb、maxdxyb、mindxyb、およびセンサDbの関係は、上述の第1の実施の形態と同様である。よって、たとえば、センサ距離Dbは、上述の式(11)を満たす。
(Mounting position of strain sensor 20B in the axial direction)
The relationship between the distance dxb, the distance dyb, maxdxyb, mindxyb, and the sensor Db is the same as in the first embodiment described above. Therefore, for example, the sensor distance Db satisfies the above equation (11).
 (周方向におけるひずみセンサ20Aの搭載位置)
 変形例4に係る切削工具101Dにおいて、周方向におけるひずみセンサ20Aの搭載位置は、第1の実施の形態に係る切削工具101における、周方向におけるひずみセンサ20Aの搭載位置と同じである。たとえば、ひずみセンサ20Aは、シャンク10の4つの表面のうちの基準点1K5に最も近い表面である側面S4における真ん中の領域である領域S4Abに搭載される。
(Mounting position of strain sensor 20A in the circumferential direction)
In the cutting tool 101D according to the modification 4, the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101 according to the first embodiment. For example, the strain sensor 20A is mounted in the region S4Ab, which is the middle region on the side surface S4, which is the surface closest to the reference point 1K5 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Bの搭載位置)
 好ましくは、ひずみセンサ20Bは、側面S4に隣接し、かつシャンク10の4つの表面のうちの基準点1K5に2番目に近い表面である底面S1に搭載される。この場合、ひずみセンサ20Bは、図10を変形例4に係る切削工具101Dのひずみセンサ20Bの搭載位置における断面図(図23におけるBB-BB線矢視断面図)であるとみなした場合において、図10に示す領域S1Bbに搭載される。なお、ひずみセンサ20Bは、図10に示す領域S2Bb,領域S3Bb,領域S4Bbに搭載されてもよい。
(Mounting position of strain sensor 20B in the circumferential direction)
Preferably, the strain sensor 20B is mounted on the bottom surface S1 which is adjacent to the side surface S4 and is the second closest surface to the reference point 1K5 among the four surfaces of the shank 10. In this case, when the strain sensor 20B regards FIG. 10 as a cross-sectional view (a cross-sectional view taken along the line BB-BB in FIG. 23) at the mounting position of the strain sensor 20B of the cutting tool 101D according to the modification 4, when the strain sensor 20B is regarded as a cross-sectional view. It is mounted in the area S1Bb shown in FIG. The strain sensor 20B may be mounted in the region S2Bb, the region S3Bb, and the region S4Bb shown in FIG.
 より好ましくは、ひずみセンサ20Bは、図11を変形例4に係る切削工具101Dのひずみセンサ20Bの搭載位置における断面図(図23におけるBB-BB線矢視断面図)であるとみなした場合において、図11に示す、底面S1における領域S1Bfに搭載される。なお、ひずみセンサ20Bは、図11に示す領域S2Bf,領域S3Bf,領域S4Bfに搭載されてもよい。 More preferably, the strain sensor 20B is in the case where FIG. 11 is regarded as a cross-sectional view (cross-sectional view taken along the line BB-BB in FIG. 23) at the mounting position of the strain sensor 20B of the cutting tool 101D according to the modified example 4. , It is mounted on the region S1Bf on the bottom surface S1 shown in FIG. The strain sensor 20B may be mounted in the region S2Bf, the region S3Bf, and the region S4Bf shown in FIG.
 (周方向におけるひずみセンサ20Cの搭載位置)
 ひずみセンサ20Cは、上述と同様に、シャンク10の4つの表面のうちの基準点1K5に最も近い表面における基準点1K5に最も近い領域、基準点1K5に2番目に近い表面における基準点1K5に最も近い領域、当該最も近い表面の対向面における基準点1K5から最も遠い領域、および当該2番目に近い表面の対向面における基準点1K5から最も遠い領域、の4つの領域のうちの少なくとも1つに搭載される。より詳細には、ひずみセンサ20Cは、図12を変形例4に係る切削工具101Dのひずみセンサ20Cの搭載位置における断面図(図23におけるCC-CC線矢視断面図)であるとみなした場合において、図12に示す領域S3Ca,S1Ca,S2Cc,S4Ccのうちの少なくとも1つ、たとえば、領域S4Ccに搭載される。また、ひずみセンサ20Cは、図13を変形例4に係る切削工具101Dのひずみセンサ20Cの搭載位置における断面図(図23におけるCC-CC線矢視断面図)であるとみなした場合において、図13に示す領域S3Cd,S1Cd,S2Ch,S4Chのうちの少なくとも1つ、たとえば、領域S4Chに搭載される。
(Mounting position of strain sensor 20C in the circumferential direction)
Similar to the above, the strain sensor 20C is the region closest to the reference point 1K5 on the surface closest to the reference point 1K5 among the four surfaces of the shank 10, and is closest to the reference point 1K5 on the surface second closest to the reference point 1K5. Mounted in at least one of four regions: a near region, a region farthest from the reference point 1K5 on the facing surface of the closest surface, and a region farthest from the reference point 1K5 on the facing surface of the second closest surface. Will be done. More specifically, when the strain sensor 20C regards FIG. 12 as a cross-sectional view (CC-CC line cross-sectional view in FIG. 23) at the mounting position of the strain sensor 20C of the cutting tool 101D according to the modification 4. In, at least one of the regions S3Ca, S1Ca, S2Cc, and S4Cc shown in FIG. 12, for example, the region S4Cc. Further, the strain sensor 20C is shown in the case where FIG. 13 is regarded as a cross-sectional view (CC-CC line cross-sectional view in FIG. 23) at the mounting position of the strain sensor 20C of the cutting tool 101D according to the modified example 4. It is mounted in at least one of the regions S3Cd, S1Cd, S2Ch, and S4Ch shown in 13, for example, the region S4Ch.
 [変形例5]
 図24は、本開示の第1の実施の形態の変形例5に係る切削工具の構成の一例を示す図である。変形例5に係るチップ1は、基準点1Kである基準点1K6を有する。基準点1K6のXY平面における位置は、図3に示す第7象限Q7の領域内であるものとする。基準点1K6の位置は、図3に示す位置PK7の一例である。図24を参照して、切削工具101Eは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S4に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の底面S1に搭載される。
[Modification 5]
FIG. 24 is a diagram showing an example of the configuration of the cutting tool according to the modification 5 of the first embodiment of the present disclosure. The chip 1 according to the modification 5 has a reference point 1K6 which is a reference point 1K. It is assumed that the position of the reference point 1K6 in the XY plane is within the region of the seventh quadrant Q7 shown in FIG. The position of the reference point 1K6 is an example of the position PK7 shown in FIG. With reference to FIG. 24, the cutting tool 101E includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the bottom surface S1 of the shank 10.
 (軸方向におけるひずみセンサ20Bの搭載位置)
 距離dxb、距離dyb、maxdxyb、mindxyb、およびセンサ距離Dbの関係は、上述の変形例1と同様である。よって、たとえば、センサ距離Dbは、上述の式(12)を満たす。また、たとえば、センサ距離Dbは、上述の式(11)を満たす。
(Mounting position of strain sensor 20B in the axial direction)
The relationship between the distance dxb, the distance dyb, maxdxyb, mindxyb, and the sensor distance Db is the same as that of the above-mentioned modification 1. Therefore, for example, the sensor distance Db satisfies the above equation (12). Further, for example, the sensor distance Db satisfies the above equation (11).
 (軸方向におけるひずみセンサ20Aの搭載位置)
 距離dxa、距離dya、maxdxya、mindxya、およびセンサ距離Daの関係は、上述の変形例1と同様である。よって、たとえば、センサ距離Daは、上述の式(10)を満たす。
(Mounting position of strain sensor 20A in the axial direction)
The relationship between the distance dxa, the distance dya, maxdxya, mindxya, and the sensor distance Da is the same as that of the above-mentioned modification 1. Therefore, for example, the sensor distance Da satisfies the above equation (10).
 (周方向におけるひずみセンサ20Bの搭載位置)
 変形例5に係る切削工具101Eにおいて、周方向におけるひずみセンサ20Bの搭載位置は、変形例4に係る切削工具101Dにおける、周方向におけるひずみセンサ20Bの搭載位置と同じである。たとえば、ひずみセンサ20Bは、シャンク10の4つの表面のうちの基準点1K6に最も近い表面である底面S1における真ん中の領域である領域S1Bbに搭載される。
(Mounting position of strain sensor 20B in the circumferential direction)
In the cutting tool 101E according to the modification 5, the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101D according to the modification 4. For example, the strain sensor 20B is mounted in the region S1Bb, which is the middle region of the bottom surface S1, which is the surface closest to the reference point 1K6 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Aの搭載位置)
 変形例5に係る切削工具101Eにおいて、周方向におけるひずみセンサ20Aの搭載位置は、第1の実施の形態に係る切削工具101における、周方向におけるひずみセンサ20Aの搭載位置と同じである。たとえば、ひずみセンサ20Aは、底面S1に隣接し、かつシャンク10の4つの表面のうちの基準点1K6に2番目に近い表面である側面S4における真ん中の領域である領域S4Abに搭載される。
(Mounting position of strain sensor 20A in the circumferential direction)
In the cutting tool 101E according to the modification 5, the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101 according to the first embodiment. For example, the strain sensor 20A is mounted in a region S4Ab which is a middle region on the side surface S4 which is adjacent to the bottom surface S1 and is the second closest surface to the reference point 1K6 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Cの搭載位置)
 変形例5に係る切削工具101Eにおいて、周方向におけるひずみセンサ20Cの搭載位置は、変形例4に係る切削工具101Dにおける、周方向におけるひずみセンサ20Cの搭載位置と同じである。たとえば、ひずみセンサ20Cは、シャンク10の4つの表面のうちの基準点1K6に2番目に近い表面である側面S4における領域S4Ccに搭載される。
(Mounting position of strain sensor 20C in the circumferential direction)
In the cutting tool 101E according to the modification 5, the mounting position of the strain sensor 20C in the circumferential direction is the same as the mounting position of the strain sensor 20C in the circumferential direction in the cutting tool 101D according to the modification 4. For example, the strain sensor 20C is mounted in the region S4Cc on the side surface S4, which is the surface second closest to the reference point 1K6 of the four surfaces of the shank 10.
 [変形例6]
 図25は、本開示の第1の実施の形態の変形例6に係る切削工具の構成の一例を示す図である。図25では、シャンク10の側面S3に搭載されるひずみセンサ20A,20Cを破線で示している。変形例6に係るチップ1は、基準点1Kである基準点1K7を有する。基準点1K7のXY平面における位置は、図3に示す第5象限Q5の領域内であるものとする。基準点1K7の位置は、図3に示す位置PK5の一例である。図25を参照して、切削工具101Fは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S3に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の底面S1に搭載される。
[Modification 6]
FIG. 25 is a diagram showing an example of the configuration of the cutting tool according to the modification 6 of the first embodiment of the present disclosure. In FIG. 25, the strain sensors 20A and 20C mounted on the side surface S3 of the shank 10 are shown by broken lines. The chip 1 according to the modification 6 has a reference point 1K7 which is a reference point 1K. It is assumed that the position of the reference point 1K7 in the XY plane is within the region of the fifth quadrant Q5 shown in FIG. The position of the reference point 1K7 is an example of the position PK5 shown in FIG. With reference to FIG. 25, the cutting tool 101F includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10. Further, for example, the strain sensor 20B is mounted on the bottom surface S1 of the shank 10.
 (軸方向におけるひずみセンサ20Aの搭載位置)
 距離dxa、距離dya、maxdxya、mindxya、およびセンサ距離Daの関係は、上述の第1の実施の形態と同様である。よって、たとえば、センサ距離Daは、上述の式(9)を満たす。また、たとえば、センサ距離Daは、上述の式(10)を満たす。
(Mounting position of strain sensor 20A in the axial direction)
The relationship between the distance dxa, the distance dya, maxdxya, mindxya, and the sensor distance Da is the same as in the first embodiment described above. Therefore, for example, the sensor distance Da satisfies the above equation (9). Further, for example, the sensor distance Da satisfies the above equation (10).
 (軸方向におけるひずみセンサ20Bの搭載位置)
 距離dxb、距離dyb、maxdxyb、mindxyb、およびセンサ距離Dbの関係は、上述の第1の実施の形態と同様である。よって、たとえば、センサ距離Dbは、上述の式(11)を満たす。
(Mounting position of strain sensor 20B in the axial direction)
The relationship between the distance dxb, the distance dyb, the maxdxyb, the mindxyb, and the sensor distance Db is the same as in the first embodiment described above. Therefore, for example, the sensor distance Db satisfies the above equation (11).
 (周方向におけるひずみセンサ20Aの搭載位置)
 変形例6に係る切削工具101Fにおいて、周方向におけるひずみセンサ20Aの搭載位置は、変形例2に係る切削工具101Bにおける、周方向におけるひずみセンサ20Aの搭載位置と同じである。たとえば、ひずみセンサ20Aは、シャンク10の4つの表面のうちの基準点1K7に最も近い表面である側面S3における真ん中の領域である領域S3Abに搭載される。
(Mounting position of strain sensor 20A in the circumferential direction)
In the cutting tool 101F according to the modification 6, the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101B according to the modification 2. For example, the strain sensor 20A is mounted in the region S3Ab, which is the middle region on the side surface S3, which is the surface closest to the reference point 1K7 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Bの搭載位置)
 変形例6に係る切削工具101Fにおいて、周方向におけるひずみセンサ20Bの搭載位置は、変形例4に係る切削工具101Dにおける、周方向におけるひずみセンサ20Bの搭載位置と同じである。たとえば、ひずみセンサ20Bは、側面S3に隣接し、かつシャンク10の4つの表面のうちの基準点1K7に2番目に近い表面である底面S1における真ん中の領域である領域S1Bbに搭載される。
(Mounting position of strain sensor 20B in the circumferential direction)
In the cutting tool 101F according to the modification 6, the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101D according to the modification 4. For example, the strain sensor 20B is mounted in a region S1Bb which is a middle region on the bottom surface S1 which is adjacent to the side surface S3 and is the second closest surface to the reference point 1K7 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Cの搭載位置)
 ひずみセンサ20Cは、上述と同様に、シャンク10の4つの表面のうちの基準点1K7に最も近い表面における基準点1K7に最も近い領域、基準点1K7に2番目に近い表面における基準点1K7に最も近い領域、当該最も近い表面の対向面における基準点1K7から最も遠い領域、および当該2番目に近い表面の対向面における基準点1K7から最も遠い領域、の4つの領域のうちの少なくとも1つに搭載される。より詳細には、ひずみセンサ20Cは、図12を変形例6に係る切削工具101Fのひずみセンサ20Cの搭載位置における断面図(図25におけるDD-DD線矢視断面図)であるとみなした場合において、図12に示す領域S3Cc,S1Cc,S2Ca,S4Caのうちの少なくとも1つ、たとえば、領域S3Ccに搭載される。また、ひずみセンサ20Cは、図13を変形例6に係る切削工具101Fのひずみセンサ20Cの搭載位置における断面図(図25におけるDD-DD線矢視断面図)であるとみなした場合において、図13に示す領域S3Ch,S1Ch,S2Cd,S4Cdのうちの少なくとも1つ、たとえば、領域S3Chに搭載される。
(Mounting position of strain sensor 20C in the circumferential direction)
Similar to the above, the strain sensor 20C is the region closest to the reference point 1K7 on the surface closest to the reference point 1K7 among the four surfaces of the shank 10, and the reference point 1K7 on the surface second closest to the reference point 1K7. Mounted in at least one of four regions: a near region, a region farthest from the reference point 1K7 on the facing surface of the closest surface, and a region farthest from the reference point 1K7 on the facing surface of the second closest surface. Will be done. More specifically, when the strain sensor 20C regards FIG. 12 as a cross-sectional view (a cross-sectional view taken along the line DD-DD in FIG. 25) at the mounting position of the strain sensor 20C of the cutting tool 101F according to the modification 6. In, at least one of the regions S3Cc, S1Cc, S2Ca, and S4Ca shown in FIG. 12, for example, the region S3Cc. Further, the strain sensor 20C is a diagram when FIG. 13 is regarded as a cross-sectional view (a cross-sectional view taken along the line DD-DD in FIG. 25) at the mounting position of the strain sensor 20C of the cutting tool 101F according to the modification 6. It is mounted in at least one of the regions S3Ch, S1Ch, S2Cd, and S4Cd shown in 13, for example, the region S3Ch.
 [変形例7]
 図26は、本開示の第1の実施の形態の変形例7に係る切削工具の構成の一例を示す図である。図26では、シャンク10の側面S3に搭載されるひずみセンサ20A,20Cを破線で示している。変形例7に係るチップ1は、基準点1Kである基準点1K8を有する。基準点1K8のXY平面における位置は、図3に示す第6象限Q6の領域内であるものとする。基準点1K8の位置は、図3に示す位置PK6の一例である。図26を参照して、切削工具101Gは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S3に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の底面S1に搭載される。
[Modification 7]
FIG. 26 is a diagram showing an example of the configuration of the cutting tool according to the modification 7 of the first embodiment of the present disclosure. In FIG. 26, the strain sensors 20A and 20C mounted on the side surface S3 of the shank 10 are shown by broken lines. The chip 1 according to the modification 7 has a reference point 1K8 which is a reference point 1K. It is assumed that the position of the reference point 1K8 in the XY plane is within the region of the sixth quadrant Q6 shown in FIG. The position of the reference point 1K8 is an example of the position PK6 shown in FIG. With reference to FIG. 26, the cutting tool 101G includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10. Further, for example, the strain sensor 20B is mounted on the bottom surface S1 of the shank 10.
 (軸方向におけるひずみセンサ20Bの搭載位置)
 距離dxb、距離dyb、maxdxyb、mindxyb、およびセンサ距離Dbの関係は、上述の変形例1と同様である。よって、たとえば、センサ距離Dbは、上述の式(12)を満たす。また、たとえば、センサ距離Dbは、上述の式(11)を満たす。
(Mounting position of strain sensor 20B in the axial direction)
The relationship between the distance dxb, the distance dyb, maxdxyb, mindxyb, and the sensor distance Db is the same as that of the above-mentioned modification 1. Therefore, for example, the sensor distance Db satisfies the above equation (12). Further, for example, the sensor distance Db satisfies the above equation (11).
 (軸方向におけるひずみセンサ20Aの搭載位置)
 距離dxa、距離dya、maxdxya、mindxya、およびセンサ距離Daの関係は、上述の変形例1と同様である。よって、たとえば、センサ距離Daは、上述の式(10)を満たす。
(Mounting position of strain sensor 20A in the axial direction)
The relationship between the distance dxa, the distance dya, maxdxya, mindxya, and the sensor distance Da is the same as that of the above-mentioned modification 1. Therefore, for example, the sensor distance Da satisfies the above equation (10).
 (周方向におけるひずみセンサ20Bの搭載位置)
 変形例7に係る切削工具101Gにおいて、周方向におけるひずみセンサ20Bの搭載位置は、変形例4に係る切削工具101Dにおける、周方向におけるひずみセンサ20Bの搭載位置と同じである。たとえば、ひずみセンサ20Bは、シャンク10の4つの表面のうちの基準点1K8に最も近い表面である底面S1における真ん中の領域である領域S1Bbに搭載される。
(Mounting position of strain sensor 20B in the circumferential direction)
In the cutting tool 101G according to the modification 7, the mounting position of the strain sensor 20B in the circumferential direction is the same as the mounting position of the strain sensor 20B in the circumferential direction in the cutting tool 101D according to the modification 4. For example, the strain sensor 20B is mounted in the region S1Bb, which is the middle region of the bottom surface S1, which is the surface closest to the reference point 1K8 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Aの搭載位置)
 変形例7に係る切削工具101Gにおいて、周方向におけるひずみセンサ20Aの搭載位置は、変形例2に係る切削工具101Bにおける、周方向におけるひずみセンサ20Aの搭載位置と同じである。たとえば、ひずみセンサ20Aは、底面S1に隣接し、かつシャンク10の4つの表面のうちの基準点1K8に2番目に近い表面である側面S3における真ん中の領域である領域S3Abに搭載される。
(Mounting position of strain sensor 20A in the circumferential direction)
In the cutting tool 101G according to the modification 7, the mounting position of the strain sensor 20A in the circumferential direction is the same as the mounting position of the strain sensor 20A in the circumferential direction in the cutting tool 101B according to the modification 2. For example, the strain sensor 20A is mounted in a region S3Ab which is a middle region on the side surface S3 which is adjacent to the bottom surface S1 and is the second closest surface to the reference point 1K8 among the four surfaces of the shank 10.
 (周方向におけるひずみセンサ20Cの搭載位置)
 変形例7に係る切削工具101Gにおいて、周方向におけるひずみセンサ20Cの搭載位置は、変形例6に係る切削工具101Fにおける、周方向におけるひずみセンサ20Cの搭載位置と同じである。たとえば、ひずみセンサ20Cは、シャンク10の4つの表面のうちの基準点1K8に2番目に近い表面である側面S3における領域S3Ccに搭載される。
(Mounting position of strain sensor 20C in the circumferential direction)
In the cutting tool 101G according to the modification 7, the mounting position of the strain sensor 20C in the circumferential direction is the same as the mounting position of the strain sensor 20C in the circumferential direction in the cutting tool 101F according to the modification 6. For example, the strain sensor 20C is mounted in the region S3Cc on the side surface S3, which is the surface second closest to the reference point 1K8 of the four surfaces of the shank 10.
 [変形例8]
 図27は、本開示の第1の実施の形態の変形例8に係る切削工具の構成の一例を示す図である。変形例8に係るチップ1は、基準点1Kである基準点1K9を有する。基準点1K9のXY平面における位置は、図3に示す第2象限Q2と第3象限Q3との境界線上にあるものとする。基準点1K9の位置は、図3に示す位置PK9の一例である。図27を参照して、切削工具101Hは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20Aは、シャンク10の側面S4に搭載される。また、たとえば、ひずみセンサ20B,20Cは、シャンク10の上面S2に搭載される。
[Modification 8]
FIG. 27 is a diagram showing an example of the configuration of the cutting tool according to the modification 8 of the first embodiment of the present disclosure. The chip 1 according to the modification 8 has a reference point 1K9 which is a reference point 1K. It is assumed that the position of the reference point 1K9 in the XY plane is on the boundary line between the second quadrant Q2 and the third quadrant Q3 shown in FIG. The position of the reference point 1K9 is an example of the position PK9 shown in FIG. With reference to FIG. 27, the cutting tool 101H includes strain sensors 20A, 20B, 20C. For example, the strain sensor 20A is mounted on the side surface S4 of the shank 10. Further, for example, the strain sensors 20B and 20C are mounted on the upper surface S2 of the shank 10.
 図28~30は、本開示の第1の実施の形態の変形例8に係る切削工具の構成を示す断面図である。図28は、図27におけるXXVIII-XXVIII線矢視断面図である。図28では、基準点1K9をZ方向に沿ってXXVIII-XXVIII線矢視断面へ平行移動させたときの基準点1K9の位置を黒丸で示している。図28では、変形例8の他の例として、チップ1が基準点1K9の代わりに基準点1Kaを有する場合において、基準点1KaをZ方向に沿ってXXVIII-XXVIII線矢視断面へ平行移動させたときの基準点1Kaの位置を黒丸で示している。XY平面における基準点1Kaの位置は、基準点1K9の位置からX方向に沿って側面S4側にずれた位置であり、図3に示す第2象限Q2内の位置である。 FIGS. 28 to 30 are cross-sectional views showing the configuration of the cutting tool according to the modified example 8 of the first embodiment of the present disclosure. FIG. 28 is a cross-sectional view taken along the line XXVIII-XXVIII in FIG. 27. In FIG. 28, the position of the reference point 1K9 when the reference point 1K9 is translated along the Z direction to the cross section seen by the line arrow of XXVIII-XXVIII is indicated by a black circle. In FIG. 28, as another example of the modification 8, when the chip 1 has the reference point 1Ka instead of the reference point 1K9, the reference point 1Ka is translated along the Z direction to the cross section along the line XXVIII-XXVIII. The position of the reference point 1Ka at the time is indicated by a black circle. The position of the reference point 1Ka on the XY plane is a position shifted from the position of the reference point 1K9 toward the side surface S4 along the X direction, and is a position in the second quadrant Q2 shown in FIG.
 図29は、図27におけるXXIX-XXIX線矢視断面図である。図29では、基準点1K9をZ方向に沿ってXXIX-XXIX線矢視断面へ平行移動させたときの基準点1K9の位置を黒丸で示している。また、図29では、図28と同様に、基準点1KaをZ方向に沿ってXXIX-XXIX線矢視断面へ平行移動させたときの基準点1Kaの位置を黒丸で示している。 FIG. 29 is a cross-sectional view taken along the line XXIX-XXIX in FIG. 27. In FIG. 29, the position of the reference point 1K9 when the reference point 1K9 is translated along the Z direction to the cross section of the XXIX-XXIX line arrow is indicated by a black circle. Further, in FIG. 29, similarly to FIG. 28, the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section of the XXIX-XXIX line arrow is indicated by a black circle.
 図30は、図27におけるXXX-XXX線矢視断面図である。図30では、基準点1K9をZ方向に沿ってXXX-XXX線矢視断面へ平行移動させたときの基準点1K9の位置を黒丸で示している。また、図30では、図28と同様に、基準点1KaをZ方向に沿ってXXX-XXX線矢視断面へ平行移動させたときの基準点1Kaの位置を黒丸で示している。 FIG. 30 is a cross-sectional view taken along the line XXX-XXX in FIG. 27. In FIG. 30, the position of the reference point 1K9 when the reference point 1K9 is translated along the Z direction to the cross section seen by the XXX-XXX line is indicated by a black circle. Further, in FIG. 30, similarly to FIG. 28, the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section seen by the XXX-XXX line is indicated by a black circle.
 図28~30を参照して、シャンク10の4つの表面のうちの基準点1K9に最も近い表面は、上面S2である。また、図28~30に示す例において、上面S2は、第1表面の一例であり、側面S4は、第2表面の一例であり、底面S1は、第3表面の一例であり、側面S3は、第4表面の一例である。ここで、XXX-XXX線矢視断面におけるシャンク10のシャンク高さをWcとする。たとえば、Wcは、上述のシャンク高さWと等しい。また、X方向における、ひずみセンサ20Cの搭載位置におけるシャンク10の中心と、基準点との間の距離を距離dxcとする。また、Y方向における、ひずみセンサ20Cの搭載位置におけるシャンク10の中心と、基準点との間の距離を距離dycとする。 With reference to FIGS. 28 to 30, the surface closest to the reference point 1K9 among the four surfaces of the shank 10 is the upper surface S2. Further, in the examples shown in FIGS. 28 to 30, the upper surface S2 is an example of the first surface, the side surface S4 is an example of the second surface, the bottom surface S1 is an example of the third surface, and the side surface S3 is an example. , Is an example of the fourth surface. Here, the shank height of the shank 10 in the cross section seen by the XXX-XXX line arrow is defined as Wc. For example, Wc is equal to the shank height W described above. Further, the distance between the center of the shank 10 and the reference point at the mounting position of the strain sensor 20C in the X direction is defined as the distance dxc. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20C in the Y direction and the reference point is defined as the distance dyc.
 <チップが基準点1K9を有する場合>
 図28~30を参照して、ひずみセンサ20B,20A,20Cの搭載位置は、変形例1または変形例3で説明した搭載位置と同じである。これは、基準点1K9を、Z方向に沿ってXXVIII-XXVIII線矢視断面へ平行移動させたときの基準点1K9の位置、Z方向に沿ってXXIX-XXIX線矢視断面へ平行移動させたときの基準点1K9の位置、およびZ方向に沿ってXXX-XXX線矢視断面へ平行移動させたときの基準点1K9の位置が、第2象限Q2と第3象限Q3との境界線上にあるからである。
<When the chip has a reference point 1K9>
With reference to FIGS. 28 to 30, the mounting positions of the strain sensors 20B, 20A, and 20C are the same as the mounting positions described in the modified example 1 or the modified example 3. This is the position of the reference point 1K9 when the reference point 1K9 is translated to the XXVIII-XXVIII line arrow cross section along the Z direction, and the reference point 1K9 is translated to the XXIX-XXIX line arrow cross section along the Z direction. The position of the reference point 1K9 at the time and the position of the reference point 1K9 when translated in parallel to the cross section of the XXX-XXX line along the Z direction are on the boundary line between the second quadrant Q2 and the third quadrant Q3. Because.
 <チップが基準点1Kaを有する場合>
 ひずみセンサ20B,20A,20Cの搭載位置は、変形例1で説明した搭載位置と同じである。これは、基準点1Kaを、Z方向に沿ってXXVIII-XXVIII線矢視断面へ平行移動させたときの基準点1Kaの位置、Z方向に沿ってXXIX-XXIX線矢視断面へ平行移動させたときの基準点1Kaの位置、およびZ方向に沿ってXXX-XXX線矢視断面へ平行移動させたときの基準点1Kaの位置が、第2象限Q2内にあるからである。
<When the chip has a reference point of 1 Ka>
The mounting positions of the strain sensors 20B, 20A, and 20C are the same as the mounting positions described in the first modification. This is the position of the reference point 1Ka when the reference point 1Ka is translated to the XXVIII-XXVIII line arrow cross section along the Z direction, and the reference point 1Ka is translated to the XXIX-XXIX line arrow cross section along the Z direction. This is because the position of the reference point 1Ka at the time and the position of the reference point 1Ka when translated into the cross section seen by the XXXX-XXX line along the Z direction are within the second quadrant Q2.
 しかしながら、基準点1Kaの位置が所定の条件を満たす場合は、ひずみセンサ20A,20B,20Cの搭載位置は、チップ1が基準点1K9を有する場合と同じにしてもよい。 However, if the position of the reference point 1Ka satisfies a predetermined condition, the mounting position of the strain sensors 20A, 20B, 20C may be the same as when the chip 1 has the reference point 1K9.
 すなわち、ひずみセンサ20Bの搭載位置は、基準点1Kaの位置が所定の条件を満たす場合、チップ1が基準点1K9を有する場合と同様であってもよい。その所定の条件とは、下記式(13)を満たすことである。
 10dxb≦dyb+W/6 ・・・ (13)
 より詳細には、図28に示す直線L1ba,L1bbは、シャンク10の中心からY方向に沿って底面S1側へ、W/6すなわちWb/6離れた点17Kから伸びる直線であって、下記式(14)を満たす直線である。
 10dxb=dyb+W/6 ・・・ (14)
 そして、XY平面における基準点1Kaの位置が直線L1baと直線L1bbとの間に位置する場合、ひずみセンサ20Bの搭載位置は、変形例1または変形例3で説明した搭載位置と同じであってもよい。
That is, the mounting position of the strain sensor 20B may be the same as when the chip 1 has the reference point 1K9 when the position of the reference point 1Ka satisfies a predetermined condition. The predetermined condition is that the following equation (13) is satisfied.
10dxb ≤ dib + W / 6 ... (13)
More specifically, the straight lines L1ba and L1bb shown in FIG. 28 are straight lines extending from the center of the shank 10 toward the bottom surface S1 along the Y direction from W / 6, that is, a point 17K separated from Wb / 6, and have the following equation. It is a straight line satisfying (14).
10dxb = dyb + W / 6 ... (14)
When the position of the reference point 1Ka on the XY plane is located between the straight line L1ba and the straight line L1bb, the mounting position of the strain sensor 20B may be the same as the mounting position described in the modified example 1 or the modified example 3. good.
 また、ひずみセンサ20Aの搭載位置は、基準点1Kaの位置が所定の条件を満たす場合、チップ1が基準点1K9を有する場合と同様であってもよい。その所定の条件とは、下記式(15)を満たすことである。
 10dxa≦dya+W/6 ・・・ (15)
 より詳細には、図29に示す直線L1aa,L1abは、シャンク10の中心からY方向に沿って底面S1側へ、W/6すなわちWa/6離れた点17Kから伸びる直線であって、下記式(16)を満たす直線である。
 10dxa=dya+W/6 ・・・ (16)
 そして、XY平面における基準点1Kaの位置が直線L1aaと直線L1abとの間に位置する場合、ひずみセンサ20Aの搭載位置は、変形例1または変形例3で説明した搭載位置と同じであってもよい。
Further, the mounting position of the strain sensor 20A may be the same as when the chip 1 has the reference point 1K9 when the position of the reference point 1Ka satisfies a predetermined condition. The predetermined condition is that the following equation (15) is satisfied.
10dxa ≤ dya + W / 6 ... (15)
More specifically, the straight lines L1aa and L1ab shown in FIG. 29 are straight lines extending from the center of the shank 10 toward the bottom surface S1 along the Y direction from W / 6, that is, a point 17K separated from Wa / 6, and have the following formula. It is a straight line satisfying (16).
10dxa = dya + W / 6 ... (16)
When the position of the reference point 1Ka on the XY plane is located between the straight line L1aa and the straight line L1ab, the mounting position of the strain sensor 20A may be the same as the mounting position described in the modified example 1 or the modified example 3. good.
 また、ひずみセンサ20Cは、基準点1Kaの位置が所定の条件を満たす場合、シャンク10の4つの表面のうちの上面S2または底面S1における任意の位置に搭載される。その所定の条件とは、下記式(17)を満たすことである。
 10dxc≦dyc+W/6 ・・・ (17)
 より詳細には、図30に示す直線L1ca,L1cbは、シャンク10の中心からY方向に沿って底面S1側へ、W/6すなわちWc/6離れた点17Kから伸びる直線であって、下記式(18)を満たす直線である。
 10dxc=dyc+W/6 ・・・ (18)
 そして、XY平面における基準点1Kaの位置が直線L1caと直線L1bcとの間に位置する場合、ひずみセンサ20Cは、上面S2または底面S1における任意の位置に搭載される。
Further, the strain sensor 20C is mounted at an arbitrary position on the upper surface S2 or the bottom surface S1 of the four surfaces of the shank 10 when the position of the reference point 1Ka satisfies a predetermined condition. The predetermined condition is that the following equation (17) is satisfied.
10dxc≤dyc + W / 6 ... (17)
More specifically, the straight lines L1ca and L1cc shown in FIG. 30 are straight lines extending from the center of the shank 10 toward the bottom surface S1 along the Y direction from W / 6, that is, a point 17K separated from Wc / 6, and have the following formula. It is a straight line satisfying (18).
10dxc = dyc + W / 6 ... (18)
When the position of the reference point 1Ka on the XY plane is located between the straight line L1ca and the straight line L1bc, the strain sensor 20C is mounted at an arbitrary position on the upper surface S2 or the bottom surface S1.
 このように、垂直ひずみセンサであるひずみセンサ20Cを、たとえば剣バイトのように距離dxが距離dyに対して小さい切削工具101Hのシャンク10における、基準点1Kaに最も近い表面、または当該表面に対向する表面に搭載する構成により、Z方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the strain sensor 20C, which is a vertical strain sensor, faces the surface closest to the reference point 1Ka in the shank 10 of the cutting tool 101H whose distance dx is small with respect to the distance dy, such as a sword bite, or faces the surface. Due to the configuration mounted on the surface, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 [変形例9]
 図31は、本開示の第1の実施の形態の変形例9に係る切削工具の構成の一例を示す図である。変形例9に係るチップ1は、基準点1Kである基準点1K10を有する。基準点1K10のXY平面における位置は、図3に示す第7象限Q7と第6象限Q6との境界線上にあるものとする。変形例9における基準点1K10の位置は、図3に示す位置PK10の一例である。図31を参照して、切削工具101Iは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20Aは、シャンク10の側面S4に搭載される。また、たとえば、ひずみセンサ20B,20Cは、シャンク10の底面S1に搭載される。
[Modification 9]
FIG. 31 is a diagram showing an example of the configuration of the cutting tool according to the modified example 9 of the first embodiment of the present disclosure. The chip 1 according to the modification 9 has a reference point 1K10 which is a reference point 1K. It is assumed that the position of the reference point 1K10 in the XY plane is on the boundary line between the 7th quadrant Q7 and the 6th quadrant Q6 shown in FIG. The position of the reference point 1K10 in the modification 9 is an example of the position PK10 shown in FIG. With reference to FIG. 31, the cutting tool 101I includes strain sensors 20A, 20B, 20C. For example, the strain sensor 20A is mounted on the side surface S4 of the shank 10. Further, for example, the strain sensors 20B and 20C are mounted on the bottom surface S1 of the shank 10.
 図32は、本開示の第1の実施の形態の変形例9に係る切削工具の構成を示す断面図である。図32は、図31におけるXXXII-XXXII線矢視断面図である。図32では、基準点1K10をZ方向に沿ってXXXII-XXXII線矢視断面へ平行移動させたときの基準点1K10の位置を黒丸で示している。図32では、変形例9の他の例として、チップ1が基準点1K10の代わりに基準点1Kaを有する場合において、基準点1KaをZ方向に沿ってXXXII-XXXII線矢視断面へ平行移動させたときの基準点1Kaの位置を黒丸で示している。XY平面における基準点1Kaの位置は、基準点1K10の位置からX方向に沿って側面S4側にずれた位置であり、図3に示す第7象限Q7内の位置である。 FIG. 32 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 9 of the first embodiment of the present disclosure. FIG. 32 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 31. In FIG. 32, the position of the reference point 1K10 when the reference point 1K10 is translated along the Z direction to the cross section seen by the line arrow of XXXII-XXXII is shown by a black circle. In FIG. 32, as another example of the modification 9, when the chip 1 has the reference point 1Ka instead of the reference point 1K10, the reference point 1Ka is translated along the Z direction to the cross section seen by the line arrow of XXXII-XXXII. The position of the reference point 1Ka at the time is indicated by a black circle. The position of the reference point 1Ka on the XY plane is a position shifted from the position of the reference point 1K10 toward the side surface S4 along the X direction, and is a position in the seventh quadrant Q7 shown in FIG.
 図32を参照して、シャンク10の4つの表面のうちの基準点1K10に最も近い表面は、底面S1である。また、図32に示す例において、底面S1は、第1表面の一例であり、側面S4は、第2表面の一例であり、上面S2は、第3表面の一例であり、側面S3は、第4表面の一例である。 With reference to FIG. 32, the surface closest to the reference point 1K10 among the four surfaces of the shank 10 is the bottom surface S1. Further, in the example shown in FIG. 32, the bottom surface S1 is an example of the first surface, the side surface S4 is an example of the second surface, the top surface S2 is an example of the third surface, and the side surface S3 is the first surface. 4 This is an example of the surface.
 <チップが基準点1K10を有する場合>
 ひずみセンサ20Bの搭載位置は、変形例5または変形例7で説明した搭載位置と同じである。これは、基準点1K10をZ方向に沿ってXXXII-XXXII線矢視断面へ平行移動させたときの基準点1K10の位置が、第6象限Q6と第7象限Q7との境界線上にあるからである。ひずみセンサ20A,20Cの搭載位置についても同様である。
<When the chip has a reference point 1K10>
The mounting position of the strain sensor 20B is the same as the mounting position described in the modified example 5 or the modified example 7. This is because the position of the reference point 1K10 when the reference point 1K10 is translated along the Z direction to the cross section seen by the XXXII-XXXII line is on the boundary line between the 6th quadrant Q6 and the 7th quadrant Q7. be. The same applies to the mounting positions of the strain sensors 20A and 20C.
 <チップが基準点1Kaを有する場合>
 ひずみセンサ20Bの搭載位置は、変形例5で説明した搭載位置と同じである。これは、基準点1KaをZ方向に沿ってXXXII-XXXII線矢視断面へ平行移動させたときの基準点1Kaの位置が、第7象限Q7内にあるからである。ひずみセンサ20A,20Cの搭載位置についても同様である。
<When the chip has a reference point of 1 Ka>
The mounting position of the strain sensor 20B is the same as the mounting position described in the modified example 5. This is because the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section seen by the line arrow of XXXII-XXXII is in the seventh quadrant Q7. The same applies to the mounting positions of the strain sensors 20A and 20C.
 しかしながら、ひずみセンサ20A,20B,20Cの搭載位置は、上述の式(13),(15),(17)を満たす場合、チップ1が基準点1K10を有する場合と同じにしてもよい。より詳細には、ひずみセンサ20A,20Bの搭載位置は、上述の式(13),(15)を満たす場合、変形例5または変形例7で説明した搭載位置と同じであってもよい。また、ひずみセンサ20Cは、上述の式(17)を満たす場合、底面S1または上面S2における任意の位置に搭載される。 However, the mounting positions of the strain sensors 20A, 20B, and 20C may be the same as when the chip 1 has the reference point 1K10 when the above equations (13), (15), and (17) are satisfied. More specifically, the mounting positions of the strain sensors 20A and 20B may be the same as the mounting positions described in the modified example 5 or the modified example 7 when the above equations (13) and (15) are satisfied. Further, the strain sensor 20C is mounted at an arbitrary position on the bottom surface S1 or the top surface S2 when the above equation (17) is satisfied.
 このように、垂直ひずみセンサであるひずみセンサ20Cを、たとえば剣バイトのように距離dxが距離dyに対して小さい切削工具101Iのシャンク10における、基準点1Kaに最も近い表面、または当該表面に対向する表面に搭載する構成により、Z方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 In this way, the strain sensor 20C, which is a vertical strain sensor, faces the surface closest to the reference point 1Ka in the shank 10 of the cutting tool 101I whose distance dx is small with respect to the distance dy, such as a sword bite, or faces the surface. Due to the configuration mounted on the surface, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 [変形例10]
 図33は、本開示の第1の実施の形態の変形例10に係る切削工具の構成の一例を示す図である。変形例10に係るチップ1は、基準点1Kである基準点1K11を有する。基準点1K11のXY平面における位置は、図3に示す第1象限Q1と第8象限Q8との境界線上にあるものとする。変形例8における基準点1K11の位置は、図3に示す位置PK11の一例である。図33を参照して、切削工具101Jは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S4に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の上面S2に搭載される。
[Modification 10]
FIG. 33 is a diagram showing an example of the configuration of the cutting tool according to the modification 10 of the first embodiment of the present disclosure. The chip 1 according to the modification 10 has a reference point 1K11 which is a reference point 1K. It is assumed that the position of the reference point 1K11 in the XY plane is on the boundary line between the first quadrant Q1 and the eighth quadrant Q8 shown in FIG. The position of the reference point 1K11 in the modification 8 is an example of the position PK11 shown in FIG. With reference to FIG. 33, the cutting tool 101J includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S4 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
 図34は、本開示の第1の実施の形態の変形例10に係る切削工具の構成を示す断面図である。図34は、図33におけるXXXIV-XXXIV線矢視断面図である。図34では、基準点1K11をZ方向に沿ってXXXIV-XXXIV線矢視断面へ平行移動させたときの基準点1K11の位置を黒丸で示している。図34では、変形例10の他の例として、チップ1が基準点1K11の代わりに基準点1Kaを有する場合において、基準点1KaをZ方向に沿ってXXXIV-XXXIV線矢視断面へ平行移動させたときの基準点1Kaの位置を黒丸で示している。XY平面における基準点1Kaの位置は、基準点1K11の位置からY方向に沿って上面S2側にずれた位置であり、図3に示す第1象限Q1内の位置である。 FIG. 34 is a cross-sectional view showing the configuration of the cutting tool according to the modified example 10 of the first embodiment of the present disclosure. FIG. 34 is a cross-sectional view taken along the line XXXIV-XXXIV in FIG. 33. In FIG. 34, the position of the reference point 1K11 when the reference point 1K11 is translated along the Z direction to the cross section of the XXXIV-XXXIV line is indicated by a black circle. In FIG. 34, as another example of the modification 10, when the chip 1 has the reference point 1Ka instead of the reference point 1K11, the reference point 1Ka is translated along the Z direction to the cross section of the XXXIV-XXXIV line. The position of the reference point 1Ka at the time is indicated by a black circle. The position of the reference point 1Ka on the XY plane is a position shifted from the position of the reference point 1K11 toward the upper surface S2 along the Y direction, and is a position in the first quadrant Q1 shown in FIG.
 図34を参照して、シャンク10の4つの表面のうちの基準点1K11に最も近い表面は、側面S4である。また、図34に示す例において、側面S4は、第1表面の一例であり、上面S2は、第2表面の一例であり、側面S3は、第3表面の一例であり、底面S1は、第4表面の一例である。 With reference to FIG. 34, of the four surfaces of the shank 10, the surface closest to the reference point 1K11 is the side surface S4. Further, in the example shown in FIG. 34, the side surface S4 is an example of the first surface, the upper surface S2 is an example of the second surface, the side surface S3 is an example of the third surface, and the bottom surface S1 is the first surface. 4 This is an example of the surface.
 <チップが基準点1K11を有する場合>
 ひずみセンサ20Aの搭載位置は、第1の実施の形態または変形例4で説明した搭載位置と同じである。これは、基準点1K11をZ方向に沿ってXXXIV-XXXIV線矢視断面へ平行移動させたときの基準点1K11の位置が、第1象限Q1と第8象限Q8との境界線上にあるからである。ひずみセンサ20B,20Cの搭載位置についても同様である。
<When the chip has a reference point 1K11>
The mounting position of the strain sensor 20A is the same as the mounting position described in the first embodiment or the fourth modification. This is because the position of the reference point 1K11 when the reference point 1K11 is translated along the Z direction to the cross section of the XXXIV-XXXIV line is on the boundary line between the first quadrant Q1 and the eighth quadrant Q8. be. The same applies to the mounting positions of the strain sensors 20B and 20C.
 <チップが基準点1Kaを有する場合>
 ひずみセンサ20Aの搭載位置は、第1の実施の形態で説明した搭載位置と同じである。これは、基準点1KaをZ方向に沿ってXXXIV-XXXIV線矢視断面へ平行移動させたときの基準点1Kaの位置が、第1象限Q1内にあるからである。ひずみセンサ20B,20Cの搭載位置についても同様である。
<When the chip has a reference point of 1 Ka>
The mounting position of the strain sensor 20A is the same as the mounting position described in the first embodiment. This is because the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section seen by the XXXIV-XXXIV line is within the first quadrant Q1. The same applies to the mounting positions of the strain sensors 20B and 20C.
 しかしながら、基準点1Kaの位置が所定の条件を満たす場合は、ひずみセンサ20A,20B,20Cの搭載位置は、チップ1が基準点1K11を有する場合と同じにしてもよい。 However, if the position of the reference point 1Ka satisfies a predetermined condition, the mounting position of the strain sensors 20A, 20B, 20C may be the same as when the chip 1 has the reference point 1K11.
 すなわち、ひずみセンサ20Aの搭載位置は、基準点1Kaの位置が所定の条件を満たす場合、チップ1が基準点1K11を有する場合と同様であってもよい。その所定の条件とは、下記式(19)を満たすことである。
 10dya≦dxa+W/6 ・・・ (19)
 より詳細には、図34に示す直線L3aa,L3abは、シャンク10の中心からX方向に沿って側面S3側へ、W/6すなわちWa/6離れた点17Kから伸びる直線であって、下記式(20)を満たす直線である。
 10dya=dxa+W/6 ・・・ (20)
 そして、XY平面における基準点1Kaの位置が直線L3aaと直線L3abとの間に位置する場合、ひずみセンサ20Aの搭載位置は、第1の実施の形態または変形例4で説明した搭載位置と同じであってもよい。
That is, the mounting position of the strain sensor 20A may be the same as when the chip 1 has the reference point 1K11 when the position of the reference point 1Ka satisfies a predetermined condition. The predetermined condition is that the following equation (19) is satisfied.
10dya≤dxa + W / 6 ... (19)
More specifically, the straight lines L3aa and L3ab shown in FIG. 34 are straight lines extending from the center of the shank 10 toward the side surface S3 along the X direction from W / 6, that is, a point 17K separated from Wa / 6, and the following formula is used. It is a straight line satisfying (20).
10dya = dxa + W / 6 ... (20)
When the position of the reference point 1Ka on the XY plane is located between the straight line L3aa and the straight line L3ab, the mounting position of the strain sensor 20A is the same as the mounting position described in the first embodiment or the modified example 4. There may be.
 また、ひずみセンサ20Bの搭載位置は、基準点1Kaの位置が所定の条件を満たす場合、チップ1が基準点1K11を有する場合と同様であってもよい。その所定の条件とは、下記式(21)を満たすことである。
 10dyb≦dxb+W/6 ・・・ (21)
 より詳細には、XY平面における基準点1Kaの位置が、シャンク10の中心からX方向に沿って側面S3側へ、W/6すなわちWb/6離れた点17Kから伸びる直線であって、下記式(22)を満たす2つの直線の間に位置する場合、ひずみセンサ20Bの搭載位置は、第1の実施の形態または変形例4で説明した搭載位置と同じであってもよい。
 10dyb=dxb+W/6 ・・・ (22)
Further, the mounting position of the strain sensor 20B may be the same as when the chip 1 has the reference point 1K11 when the position of the reference point 1Ka satisfies a predetermined condition. The predetermined condition is that the following equation (21) is satisfied.
10dyb ≤ dxb + W / 6 ... (21)
More specifically, the position of the reference point 1Ka on the XY plane is a straight line extending from the center of the shank 10 toward the side surface S3 along the X direction from W / 6, that is, a point 17K separated by Wb / 6, and the following equation. When it is located between two straight lines satisfying (22), the mounting position of the strain sensor 20B may be the same as the mounting position described in the first embodiment or the modified example 4.
10dyb = dxb + W / 6 ... (22)
 また、ひずみセンサ20Cは、基準点1Kaの位置が所定の条件を満たす場合、シャンク10の4つの表面のうちの側面S4または側面S3における任意の位置に搭載される。その所定の条件とは、下記式(23)を満たすことである。
 10dyc≦dxc+W/6 ・・・ (23)
 より詳細には、XY平面における基準点1Kaの位置が、シャンク10の中心からX方向に沿って側面S3側へ、W/6すなわちWc/6離れた点17Kから伸びる直線であって、下記式(24)を満たす2つの直線の間に位置する場合、ひずみセンサ20Cは、側面S4または側面S3における任意の位置に搭載される。
 10dyc=dxc+W/6 ・・・ (24)
Further, the strain sensor 20C is mounted at an arbitrary position on the side surface S4 or the side surface S3 of the four surfaces of the shank 10 when the position of the reference point 1Ka satisfies a predetermined condition. The predetermined condition is that the following equation (23) is satisfied.
10dyc≤dxc + W / 6 ... (23)
More specifically, the position of the reference point 1Ka on the XY plane is a straight line extending from the center of the shank 10 toward the side surface S3 along the X direction from W / 6, that is, a point 17K separated by Wc / 6, and the following equation. When located between two straight lines satisfying (24), the strain sensor 20C is mounted at an arbitrary position on the side surface S4 or the side surface S3.
10dyc = dxc + W / 6 ... (24)
 このように、垂直ひずみセンサであるひずみセンサ20Cを、距離dyが距離dxに対して小さい切削工具101Jのシャンク10における、基準点1Kaに最も近い表面、または当該表面に対向する表面に搭載する構成により、Z方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 As described above, the strain sensor 20C, which is a vertical strain sensor, is mounted on the surface closest to the reference point 1Ka or the surface facing the reference point 1Ka in the shank 10 of the cutting tool 101J having a distance dy smaller than the distance dx. Therefore, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 [変形例11]
 図35は、本開示の第1の実施の形態の変形例11に係る切削工具の構成の一例を示す図である。変形例11に係るチップ1は、基準点1Kである基準点1K12を有する。基準点1K12のXY平面における位置は、図3に示す第4象限Q4と第5象限Q5との境界線上にあるものとする。変形例11における基準点1K12の位置は、図3に示す位置PK12の一例である。図35を参照して、切削工具101Kは、ひずみセンサ20A,20B,20Cを備える。たとえば、ひずみセンサ20A,20Cは、シャンク10の側面S3に搭載される。また、たとえば、ひずみセンサ20Bは、シャンク10の上面S2に搭載される。
[Modification 11]
FIG. 35 is a diagram showing an example of the configuration of the cutting tool according to the modification 11 of the first embodiment of the present disclosure. The chip 1 according to the modification 11 has a reference point 1K12 which is a reference point 1K. It is assumed that the position of the reference point 1K12 in the XY plane is on the boundary line between the fourth quadrant Q4 and the fifth quadrant Q5 shown in FIG. The position of the reference point 1K12 in the modification 11 is an example of the position PK12 shown in FIG. With reference to FIG. 35, the cutting tool 101K includes strain sensors 20A, 20B, 20C. For example, the strain sensors 20A and 20C are mounted on the side surface S3 of the shank 10. Further, for example, the strain sensor 20B is mounted on the upper surface S2 of the shank 10.
 図36は、本開示の第1の実施の形態の変形例11に係る切削工具の構成を示す断面図である。図36は、図35におけるXXXVI-XXXVI線矢視断面図である。図58では、基準点1K12をZ方向に沿ってXXXVI-XXXVI線矢視断面へ平行移動させたときの基準点1K12の位置を黒丸で示している。図36では、変形例11の他の例として、チップ1が基準点1K12の代わりに基準点1Kaを有する場合において、基準点1KaをZ方向に沿ってXXXVI-XXXVI線矢視断面へ平行移動させたときの基準点1Kaの位置を黒丸で示している。XY平面における基準点1Kaの位置は、基準点1K12の位置からY方向に沿って上面S2側にずれた位置であり、図3に示す第4象限Q4内の位置である。 FIG. 36 is a cross-sectional view showing the configuration of the cutting tool according to the modification 11 of the first embodiment of the present disclosure. FIG. 36 is a cross-sectional view taken along the line XXXVI-XXXVI in FIG. 35. In FIG. 58, the position of the reference point 1K12 when the reference point 1K12 is translated along the Z direction to the cross section of the XXXVI-XXXVI line arrow is indicated by a black circle. In FIG. 36, as another example of the modification 11, when the chip 1 has the reference point 1Ka instead of the reference point 1K12, the reference point 1Ka is translated along the Z direction to the cross section seen by the line arrow of XXXVI-XXXVI. The position of the reference point 1Ka at the time is indicated by a black circle. The position of the reference point 1Ka on the XY plane is a position shifted from the position of the reference point 1K12 toward the upper surface S2 along the Y direction, and is a position in the fourth quadrant Q4 shown in FIG.
 図36を参照して、シャンク10の4つの表面のうちの基準点1K12に最も近い表面は、側面S3である。また、図36に示す例において、側面S3は、第1表面の一例であり、上面S2は、第2表面の一例であり、側面S4は、第3表面の一例であり、底面S1は、第4表面の一例である。 With reference to FIG. 36, of the four surfaces of the shank 10, the surface closest to the reference point 1K12 is the side surface S3. Further, in the example shown in FIG. 36, the side surface S3 is an example of the first surface, the upper surface S2 is an example of the second surface, the side surface S4 is an example of the third surface, and the bottom surface S1 is the first surface. 4 This is an example of the surface.
 <チップが基準点1K12を有する場合>
 ひずみセンサ20Aの搭載位置は、変形例2または変形例6で説明した搭載位置と同じである。これは、基準点1K12をZ方向に沿ってXXXVI-XXXVI線矢視断面へ平行移動させたときの基準点1K12の位置が、第4象限Q4と第5象限Q5との境界線上にあるからである。ひずみセンサ20B,20Cの搭載位置についても同様である。
<When the chip has a reference point 1K12>
The mounting position of the strain sensor 20A is the same as the mounting position described in the modified example 2 or the modified example 6. This is because the position of the reference point 1K12 when the reference point 1K12 is translated along the Z direction to the cross section of the XXXVI-XXXVI line is on the boundary line between the 4th quadrant Q4 and the 5th quadrant Q5. be. The same applies to the mounting positions of the strain sensors 20B and 20C.
 <チップが基準点1Kaを有する場合>
 ひずみセンサ20Aの搭載位置は、変形例2で説明した搭載位置と同じである。これは、基準点1KaをZ方向に沿ってXXXVI-XXXVI線矢視断面へ平行移動させたときの基準点1Kaの位置が、第4象限Q4内にあるからである。ひずみセンサ20B,20Cの搭載位置についても同様である。
<When the chip has a reference point of 1 Ka>
The mounting position of the strain sensor 20A is the same as the mounting position described in the second modification. This is because the position of the reference point 1Ka when the reference point 1Ka is translated along the Z direction to the cross section of the XXXVI-XXXVI line arrow is within the fourth quadrant Q4. The same applies to the mounting positions of the strain sensors 20B and 20C.
 しかしながら、ひずみセンサ20A,20B,20Cの搭載位置は、上述の式(19),(21),(23)を満たす場合、チップ1が基準点1K12を有する場合と同じにしてもよい。より詳細には、ひずみセンサ20A,20Bの搭載位置は、上述の式(19),(21)を満たす場合、変形例2または変形例6で説明した搭載位置と同じであってもよい。また、ひずみセンサ20Cは、上述の式(23)を満たす場合、側面S3または側面S4における任意の位置に搭載される。 However, the mounting positions of the strain sensors 20A, 20B, and 20C may be the same as when the chip 1 has the reference point 1K12 when the above equations (19), (21), and (23) are satisfied. More specifically, the mounting positions of the strain sensors 20A and 20B may be the same as the mounting positions described in the modified example 2 or the modified example 6 when the above equations (19) and (21) are satisfied. Further, the strain sensor 20C is mounted at an arbitrary position on the side surface S3 or the side surface S4 when the above equation (23) is satisfied.
 このように、垂直ひずみセンサであるひずみセンサ20Cを、距離dyが距離dxに対して小さい切削工具101Kaのシャンク10における、基準点1Kに最も近い表面、または当該表面に対向する表面に搭載する構成により、Z方向の負荷に伴って生じる垂直ひずみをより高感度で測定することができる。したがって、ひずみセンサを用いてシャンクのひずみをより高感度で測定することができる。 As described above, the strain sensor 20C, which is a vertical strain sensor, is mounted on the surface closest to the reference point 1K or the surface facing the reference point 1K in the shank 10 of the cutting tool 101Ka whose distance dy is smaller than the distance dx. Therefore, the vertical strain generated by the load in the Z direction can be measured with higher sensitivity. Therefore, the strain of the shank can be measured with higher sensitivity by using the strain sensor.
 上述した第1の実施の形態および変形例2,4,6,10,11において、ひずみセンサ20Aは、第1のせん断ひずみセンサの一例であり、ひずみセンサ20Bは、第2のせん断ひずみセンサの一例であり、ひずみセンサ20Cは、第1の垂直ひずみセンサの一例である。また、上述した変形例1,3,5,7,8,9において、ひずみセンサ20Aは、第2のせん断ひずみセンサの一例であり、ひずみセンサ20Bは、第1のせん断ひずみセンサの一例であり、ひずみセンサ20Cは、第1の垂直ひずみセンサの一例である。 In the first embodiment and modifications 2, 4, 6, 10, 11 described above, the strain sensor 20A is an example of the first shear strain sensor, and the strain sensor 20B is the second shear strain sensor. As an example, the strain sensor 20C is an example of a first vertical strain sensor. Further, in the above-mentioned modified examples 1, 3, 5, 7, 8 and 9, the strain sensor 20A is an example of the second shear strain sensor, and the strain sensor 20B is an example of the first shear strain sensor. , The strain sensor 20C is an example of the first vertical strain sensor.
 なお、図8~図13に示す基準点1K1~1K12の位置は一例である。切削工具101,101A,101B,101C,101D,101E,101F,101G,101H,101I,101J,101Kにおいて、基準点1Kの位置が対応する象限内にある限りにおいて、ひずみセンサ20A,20B,20Cは、上述した搭載位置に搭載される。 The positions of the reference points 1K1 to 1K12 shown in FIGS. 8 to 13 are examples. In the cutting tools 101, 101A, 101B, 101C, 101D, 101E, 101F, 101G, 101H, 101I, 101J, 101K, the strain sensors 20A, 20B, 20C are as long as the position of the reference point 1K is within the corresponding quadrant. , It is mounted in the above-mentioned mounting position.
 [ひずみセンサの搭載位置についての検証]
 本願発明者は、切刃に切削抵抗が加わったときのシャンク10における応力分布をシミュレーションし、シミュレーション結果に基づいて、切削加工時にシャンク10において生じるひずみをより高感度で計測するための、ひずみセンサ20の好ましい搭載位置を検証した。まず、本願発明者は、シャンク10における応力分布のシミュレーション結果に基づいて、シャンク10の表面上の複数の対象位置における垂直ひずみおよびせん断ひずみを計算した。具体的には、本願発明者は、シャンク10における応力分布のシミュレーション結果から複数の対象位置における応力テンソルを取得し、取得した応力テンソルと、応力-ひずみ変換式とを用いてひずみテンソルを計算し、当該ひずみテンソルから各対象位置における垂直ひずみおよびせん断ひずみの計算結果を取り出した。
[Verification of mounting position of strain sensor]
The inventor of the present application simulates the stress distribution in the shank 10 when cutting resistance is applied to the cutting edge, and based on the simulation result, a strain sensor for measuring the strain generated in the shank 10 during cutting with higher sensitivity. Twenty preferred mounting positions were verified. First, the inventor of the present application calculated vertical strain and shear strain at a plurality of target positions on the surface of the shank 10 based on the simulation result of the stress distribution in the shank 10. Specifically, the inventor of the present application acquires a stress tensor at a plurality of target positions from the simulation result of the stress distribution in the shank 10, and calculates the strain tensor using the acquired stress tensor and the stress-strain conversion formula. , The calculation results of vertical strain and shear strain at each target position were taken out from the strain tensor.
 (外径バイトを用いたシミュレーション結果)
 図37は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトの構成を示す図である。図38は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトの構成を示す断面図である。図38は、図37におけるXXXVIII-XXXVIII線矢視断面図である。図38では、基準点1KをZ方向に沿ってXXXVIII-XXXVIII線矢視断面へ平行移動させたときの基準点1Kの位置を黒丸で示している。
(Simulation result using outer diameter bite)
FIG. 37 is a diagram showing a configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure. FIG. 38 is a cross-sectional view showing the configuration of an outer diameter bite which is an example of a cutting tool according to the first embodiment of the present disclosure. FIG. 38 is a cross-sectional view taken along the line XXXVIII-XXXVIII in FIG. 37. In FIG. 38, the position of the reference point 1K when the reference point 1K is translated along the Z direction to the cross section seen along the line XXXVIII-XXXVIII is indicated by a black circle.
 図37および図38を参照して、本願発明者は、シャンク高さWが25mmである外径バイト101DBの表面上の位置であって、Z方向において基準点1Kから距離Ds離れた20箇所の対象位置Psにおける垂直ひずみおよびせん断ひずみをそれぞれ計算した。より詳細には、本願発明者は、底面S1上の5箇所の対象位置Ps、上面S2上の5箇所の対象位置Ps、側面S3上の5箇所の対象位置Ps、および側面S4上の5箇所の対象位置Psにおける垂直ひずみおよびせん断ひずみをそれぞれ計算した。対象位置Psは、シャンク10の各面を5つの領域に等分したときの各領域の中点である。すなわち、たとえば底面S1における5つの対象位置Psと、底面S1の端部との間の距離は、それぞれ、2.5mm、7.5mm、12.5mm、17.5mmおよび22.5mmである。 With reference to FIGS. 37 and 38, the inventor of the present application has 20 positions on the surface of the outer diameter bite 101DB having a shank height W of 25 mm, which is a distance Ds away from the reference point 1K in the Z direction. Vertical strain and shear strain at the target position Ps were calculated respectively. More specifically, the inventor of the present application has five target positions Ps on the bottom surface S1, five target position Ps on the top surface S2, five target position Ps on the side surface S3, and five target positions on the side surface S4. The vertical strain and the shear strain at the target position Ps of the above were calculated respectively. The target position Ps is the midpoint of each region when each surface of the shank 10 is equally divided into five regions. That is, for example, the distances between the five target positions Ps on the bottom surface S1 and the end portions of the bottom surface S1 are 2.5 mm, 7.5 mm, 12.5 mm, 17.5 mm, and 22.5 mm, respectively.
 図39~図41は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおける垂直ひずみの計算結果を示す図である。図39は、距離Dsが20mmである各対象位置Psにおける垂直ひずみを示している。図40は、距離Dsが40mmである各対象位置Psにおける垂直ひずみを示している。図41は、距離Dsが60mmである各対象位置Psにおける垂直ひずみを示している。図39~図41において、丸プロットは、外径バイト101DBに荷重Fxが加わることに伴って対象位置Psにおいて生じる垂直ひずみsnxを示しており、三角プロットは、外径バイト101DBに荷重Fyが加わることに伴って対象位置Psにおいて生じる垂直ひずみsnyを示しており、四角プロットは、外径バイト101DBに荷重Fzが加わることに伴って対象位置Psにおいて生じる垂直ひずみsnzを示している。また、図39~図41において、縦軸は垂直ひずみ[με]を示しており、横軸は、上面S2と側面S4との境界位置を始点とする、周方向に沿った対象位置Psの距離[mm]を示している。 FIGS. 39 to 41 are diagrams showing calculation results of vertical strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. FIG. 39 shows the vertical strain at each target position Ps at a distance Ds of 20 mm. FIG. 40 shows the vertical strain at each target position Ps where the distance Ds is 40 mm. FIG. 41 shows the vertical strain at each target position Ps at a distance Ds of 60 mm. In FIGS. 39 to 41, the round plot shows the vertical strain snx generated at the target position Ps when the load Fx is applied to the outer diameter bite 101DB, and the triangular plot shows the load Fy applied to the outer diameter bite 101DB. The vertical strain sny generated at the target position Ps is shown, and the square plot shows the vertical strain snz generated at the target position Ps when the load Fz is applied to the outer diameter bite 101DB. Further, in FIGS. 39 to 41, the vertical axis shows the vertical strain [με], and the horizontal axis is the distance of the target position Ps along the circumferential direction starting from the boundary position between the upper surface S2 and the side surface S4. [Mm] is shown.
 図42~図44は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおけるせん断ひずみの計算結果を示す図である。図42は、距離Dsが20mmである各対象位置Psにおけるせん断ひずみを示している。図43は、距離Dsが40mmである各対象位置Psにおけるせん断ひずみを示している。図44は、距離Dsが60mmである各対象位置Psにおけるせん断ひずみを示している。図42~図44において、丸プロットは、外径バイト101DBに荷重Fxが加わることに伴って対象位置Psにおいて生じるせん断ひずみssxを示しており、三角プロットは、外径バイト101DBに荷重Fyが加わることに伴って対象位置Psにおいて生じるせん断ひずみssyを示しており、四角プロットは、外径バイト101DBに荷重Fzが加わることに伴って対象位置Psにおいて生じるせん断ひずみsszを示している。また、図42~図44において、縦軸はせん断ひずみ[με]を示しており、横軸は、上面S2と側面S4との境界位置を始点とする、周方向に沿った対象位置Psの距離[mm]を示している。 42 to 44 are diagrams showing the calculation results of shear strain in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. FIG. 42 shows the shear strain at each target position Ps at a distance Ds of 20 mm. FIG. 43 shows the shear strain at each target position Ps at a distance Ds of 40 mm. FIG. 44 shows the shear strain at each target position Ps at a distance Ds of 60 mm. In FIGS. 42 to 44, the round plot shows the shear strain ssx generated at the target position Ps when the load Fx is applied to the outer diameter bite 101DB, and the triangular plot shows the shear strain ssx generated at the target position Ps, and the triangular plot shows the load Fy applied to the outer diameter bite 101DB. The shear strain ssy generated at the target position Ps is shown, and the square plot shows the shear strain ssz generated at the target position Ps when the load Fz is applied to the outer diameter bite 101DB. Further, in FIGS. 42 to 44, the vertical axis shows the shear strain [με], and the horizontal axis is the distance of the target position Ps along the circumferential direction starting from the boundary position between the upper surface S2 and the side surface S4. [Mm] is shown.
 図39~図41を参照して、垂直ひずみsnxの絶対値は、側面S3および側面S4において最大値となる。また、垂直ひずみsnyの絶対値は、底面S1および上面S2において最大値となる。また、垂直ひずみsnyの絶対値は、上面S2と側面S4との境界部分の近傍および底面S1と側面S3との境界部分の近傍において極大値となり、上面S2と側面S4との境界部分の近傍において最大値となる。また、垂直ひずみsnx,snyの絶対値は、距離Dsが長くなるほど大きくなる一方で、垂直ひずみsnzの絶対値は、距離Dsに関わらず一定である。 With reference to FIGS. 39 to 41, the absolute value of the vertical strain snx is the maximum value on the side surface S3 and the side surface S4. Further, the absolute value of the vertical strain sny becomes the maximum value on the bottom surface S1 and the top surface S2. Further, the absolute value of the vertical strain sny becomes a maximum value in the vicinity of the boundary portion between the upper surface S2 and the side surface S4 and in the vicinity of the boundary portion between the bottom surface S1 and the side surface S3, and in the vicinity of the boundary portion between the upper surface S2 and the side surface S4. It becomes the maximum value. Further, the absolute values of the vertical strain snx and sny increase as the distance Ds increases, while the absolute values of the vertical strain snz are constant regardless of the distance Ds.
 図42~図44を参照して、各対象位置Psにおけるせん断ひずみsszは、距離Dsに関わらず常にゼロである。また、各対象位置Psにおけるせん断ひずみssx,ssyの絶対値は、距離Dsに関わらず一定である。また、せん断ひずみssxの絶対値は、4つの表面の周方向における中央部分において極大値となり、上面S2の周方向における中央部分において最大値となる。また、せん断ひずみssyの絶対値は、4つの表面の周方向における中央部分において極大値となり、側面S4の周方向における中央部分において最大値となる。 With reference to FIGS. 42 to 44, the shear strain ssz at each target position Ps is always zero regardless of the distance Ds. Further, the absolute values of the shear strains ssx and ssy at each target position Ps are constant regardless of the distance Ds. Further, the absolute value of the shear strain ssx becomes a maximum value in the central portion in the circumferential direction of the four surfaces and a maximum value in the central portion in the circumferential direction of the upper surface S2. Further, the absolute value of the shear strain ssy becomes a maximum value in the central portion in the circumferential direction of the four surfaces, and becomes a maximum value in the central portion in the circumferential direction of the side surface S4.
 (剣バイトを用いたシミュレーション結果)
 図45は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトの構成を示す図である。図46は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトの構成を示す断面図である。図46は、図45におけるXLVI-XLVI線矢視断面図である。図46では、基準点1KをZ方向に沿ってXLVI-XLVI線矢視断面へ平行移動させたときの基準点1Kの位置を黒丸で示している。
(Simulation result using sword bite)
FIG. 45 is a diagram showing a configuration of a sword bite which is an example of a cutting tool according to the first embodiment of the present disclosure. FIG. 46 is a cross-sectional view showing the configuration of a sword bite, which is an example of a cutting tool according to the first embodiment of the present disclosure. FIG. 46 is a cross-sectional view taken along the line XLVI-XLVI in FIG. 45. In FIG. 46, the position of the reference point 1K when the reference point 1K is translated along the Z direction to the cross section of the XLVI-XLVI line is indicated by a black circle.
 図46を参照して、剣バイト101SBでは、基準点1Kが軸17の直上にあるので、X方向におけるシャンク10の中心と基準点1Kとの間の距離dxがゼロである。また、図38および図46を参照して、外径バイト101DBおよび剣バイト101SBでは、Y方向におけるシャンク10の中心と基準点1Kとの間の距離dyが互いに等しい。 With reference to FIG. 46, in the sword bite 101SB, since the reference point 1K is directly above the axis 17, the distance dx between the center of the shank 10 and the reference point 1K in the X direction is zero. Further, referring to FIGS. 38 and 46, in the outer diameter bite 101DB and the sword bite 101SB, the distance dy between the center of the shank 10 and the reference point 1K in the Y direction is equal to each other.
 図45および図46を参照して、本願発明者は、シャンク高さWが25mmである剣バイト101SBの表面上の位置であって、Z方向において基準点1Kから距離Ds離れた20箇所の対象位置Psにおける垂直ひずみおよびせん断ひずみをそれぞれ計算した。より詳細には、本願発明者は、底面S1上の5箇所の対象位置Ps、上面S2上の5箇所の対象位置Ps、側面S3上の5箇所の対象位置Ps、および側面S4上の5箇所の対象位置Psにおける垂直ひずみおよびせん断ひずみをそれぞれ計算した。 With reference to FIGS. 45 and 46, the inventor of the present application presents 20 objects at positions on the surface of the sword bite 101SB having a shank height W of 25 mm, at a distance Ds from the reference point 1K in the Z direction. Vertical strain and shear strain at position Ps were calculated respectively. More specifically, the inventor of the present application has five target positions Ps on the bottom surface S1, five target position Ps on the top surface S2, five target position Ps on the side surface S3, and five target positions on the side surface S4. The vertical strain and the shear strain at the target position Ps of the above were calculated respectively.
 図47は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトにおける垂直ひずみの計算結果を示す図である。図47は、距離Dsが40mmである各対象位置Psにおける垂直ひずみを示している。図47において、丸プロットは、剣バイト101SBに荷重Fxが加わることに伴って対象位置Psにおいて生じる垂直ひずみsnxを示しており、三角プロットは、剣バイト101SBに荷重Fyが加わることに伴って対象位置Psにおいて生じる垂直ひずみsnyを示しており、四角プロットは、剣バイト101SBに荷重Fzが加わることに伴って対象位置Psにおいて生じる垂直ひずみsnzを示している。また、図47において、縦軸は垂直ひずみ[με]を示しており、横軸は、上面S2と側面S4との境界位置を始点とする、周方向に沿った対象位置Psの距離[mm]を示している。 FIG. 47 is a diagram showing a calculation result of vertical strain in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure. FIG. 47 shows the vertical strain at each target position Ps at a distance Ds of 40 mm. In FIG. 47, the round plot shows the vertical strain snx that occurs at the target position Ps as the load Fx is applied to the sword bite 101SB, and the triangular plot shows the target as the load Fy is applied to the sword bite 101SB. The vertical strain sny generated at the position Ps is shown, and the square plot shows the vertical strain snz generated at the target position Ps as the load Fz is applied to the sword bite 101SB. Further, in FIG. 47, the vertical axis represents the vertical strain [με], and the horizontal axis is the distance [mm] of the target positions Ps along the circumferential direction starting from the boundary position between the upper surface S2 and the side surface S4. Is shown.
 図48は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトにおけるせん断ひずみの計算結果を示す図である。図48は、距離Dsが40mmである各対象位置Psにおけるせん断ひずみを示している。図48において、丸プロットは、剣バイト101SBに荷重Fxが加わることに伴って対象位置Psにおいて生じるせん断ひずみssxを示しており、三角プロットは、剣バイト101SBに荷重Fyが加わることに伴って対象位置Psにおいて生じるせん断ひずみssyを示しており、四角プロットは、剣バイト101SBに荷重Fzが加わることに伴って対象位置Psにおいて生じるせん断ひずみsszを示している。また、図48において、縦軸はせん断ひずみ[με]を示しており、横軸は、上面S2と側面S4との境界位置を始点とする、周方向に沿った対象位置Psの距離[mm]を示している。 FIG. 48 is a diagram showing a calculation result of shear strain in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure. FIG. 48 shows the shear strain at each target position Ps at a distance Ds of 40 mm. In FIG. 48, the round plot shows the shear strain ssx generated at the target position Ps when the load Fx is applied to the sword bite 101SB, and the triangular plot shows the target when the load Fy is applied to the sword bite 101SB. The shear strain ssy generated at the position Ps is shown, and the square plot shows the shear strain ssz generated at the target position Ps as the load Fz is applied to the sword bite 101SB. Further, in FIG. 48, the vertical axis represents the shear strain [με], and the horizontal axis is the distance [mm] of the target positions Ps along the circumferential direction starting from the boundary position between the upper surface S2 and the side surface S4. Is shown.
 図47を参照して、垂直ひずみsnxの絶対値は、側面S3および側面S4において最大値となる。また、垂直ひずみsnyの絶対値は、底面S1および上面S2において最大値となる。また、垂直ひずみsnzの絶対値は、底面S1および上面S2において極大値となり、上面S2において最大値となる。 With reference to FIG. 47, the absolute value of the vertical strain snx is the maximum value on the side surface S3 and the side surface S4. Further, the absolute value of the vertical strain sny becomes the maximum value on the bottom surface S1 and the top surface S2. Further, the absolute value of the vertical strain snz becomes a maximum value on the bottom surface S1 and the top surface S2, and becomes a maximum value on the top surface S2.
 図48を参照して、各対象位置Psにおけるせん断ひずみsszは、ゼロである。また、せん断ひずみssxの絶対値は、上面S2および側面S3,S4の周方向における中央部分において極大値となり、上面S2の周方向における中央部分において最大値となる。また、せん断ひずみssyの絶対値は、側面S3,S4の周方向における中央部分において最大値となる。 With reference to FIG. 48, the shear strain ssz at each target position Ps is zero. Further, the absolute value of the shear strain ssx becomes a maximum value in the central portion in the circumferential direction of the upper surface S2 and the side surfaces S3 and S4, and becomes a maximum value in the central portion in the circumferential direction of the upper surface S2. Further, the absolute value of the shear strain ssy becomes the maximum value in the central portion in the circumferential direction of the side surfaces S3 and S4.
 (垂直ひずみおよびせん断ひずみの大小比較)
 図49は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおける基準点からの距離と垂直ひずみおよびせん断ひずみとの関係を示す図である。図49において、丸プロットは、外径バイト101DBに荷重Fxが加わることに伴って20箇所の対象位置Psにおいて生じる垂直ひずみsnxの絶対値の最大値である最大垂直ひずみMsnxを示しており、三角プロットは、外径バイト101DBに荷重Fxが加わることに伴って20箇所の対象位置Psにおいて生じるせん断ひずみssxの絶対値の最大値である最大せん断ひずみMssxを示している。また、図49において、横軸は距離Ds[mm]を示しており、縦軸はひずみの絶対値[με]を示している。
(Comparison of vertical strain and shear strain)
FIG. 49 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure. In FIG. 49, the round plot shows the maximum vertical strain Msnx, which is the maximum absolute value of the vertical strain snx generated at 20 target positions Ps due to the load Fx being applied to the outer diameter bite 101DB, and is triangular. The plot shows the maximum shear strain Mssx, which is the maximum absolute value of the shear strain ssx generated at 20 target positions Ps when the load Fx is applied to the outer diameter bite 101DB. Further, in FIG. 49, the horizontal axis indicates the distance Ds [mm], and the vertical axis indicates the absolute value [με] of the strain.
 図49を参照して、最大垂直ひずみMsnxは距離Dsに比例する一方で、最大せん断ひずみMssxは距離Dsに関わらず一定である。以下、最大垂直ひずみMsnxと最大せん断ひずみMssxとが等しくなるときの距離Dsを等ひずみ距離Leqxとも称する。シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が等ひずみ距離Leqxより大きい位置では、最大せん断ひずみMssxよりも最大垂直ひずみMsnxの方が大きい。したがって、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が等ひずみ距離Leqxより大きい位置にひずみセンサ20を搭載する場合、垂直ひずみセンサを搭載することにより、せん断ひずみセンサを搭載する場合と比べて、荷重Fxが加わることに伴って生じるひずみをより高感度で測定することができる。一方、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が等ひずみ距離Leqxより小さい位置では、最大垂直ひずみMsnxよりも最大せん断ひずみMssxの方が大きい。したがって、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が等ひずみ距離Leqxより小さい位置にひずみセンサ20を搭載する場合、せん断ひずみセンサを搭載することにより、垂直ひずみセンサを搭載する場合と比べて、荷重Fxが加わることに伴って生じるひずみをより高感度で測定することができる。 With reference to FIG. 49, the maximum vertical strain Msnx is proportional to the distance Ds, while the maximum shear strain Mssx is constant regardless of the distance Ds. Hereinafter, the distance Ds when the maximum vertical strain Msnx and the maximum shear strain Mssx become equal is also referred to as an equal strain distance Leqx. At a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqx, the maximum vertical strain Msnx is larger than the maximum shear strain Mssx. Therefore, when the strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqx, the vertical strain sensor is mounted. Compared with the case where a shear strain sensor is mounted, the strain generated by the application of the load Fx can be measured with higher sensitivity. On the other hand, at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqx, the maximum shear strain Mssx is larger than the maximum vertical strain Msnx. Therefore, when the strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqx, the shear strain sensor is mounted. Compared with the case where the vertical strain sensor is mounted, the strain generated by the application of the load Fx can be measured with higher sensitivity.
 図50は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおける基準点からの距離と垂直ひずみおよびせん断ひずみとの関係を示す図である。図50において、丸プロットは、外径バイト101DBに荷重Fyが加わることに伴って20箇所の対象位置Psにおいて生じる垂直ひずみsnyの絶対値の最大値である最大垂直ひずみMsnyを示しており、三角プロットは、外径バイト101DBに荷重Fyが加わることに伴って20箇所の対象位置Psにおいて生じるせん断ひずみssyの絶対値の最大値である最大せん断ひずみMssyを示している。また、図50において、横軸は距離Ds[mm]を示しており、縦軸はひずみの絶対値[με]を示している。 FIG. 50 is a diagram showing the relationship between the distance from the reference point and the vertical strain and the shear strain in the outer diameter tool which is an example of the cutting tool according to the first embodiment of the present disclosure. In FIG. 50, the round plot shows the maximum vertical strain Msny, which is the maximum value of the absolute value of the vertical strain sny generated at the target positions Ps at 20 points due to the load Fy being applied to the outer diameter bite 101DB, and is triangular. The plot shows the maximum shear strain Mssy, which is the maximum value of the absolute value of the shear strain ssy generated at 20 target positions Ps when the load Fy is applied to the outer diameter bite 101DB. Further, in FIG. 50, the horizontal axis represents the distance Ds [mm], and the vertical axis represents the absolute value [με] of the strain.
 図50を参照して、最大垂直ひずみMsnyは距離Dsに比例する一方で、最大せん断ひずみMssyは距離Dsに関わらず一定である。以下、最大垂直ひずみMsnyと最大せん断ひずみMssyとが等しくなるときの距離Dsを等ひずみ距離Leqyとも称する。シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が等ひずみ距離Leqyより大きい位置では、最大せん断ひずみMssyよりも最大垂直ひずみMsnyの方が大きい。したがって、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が等ひずみ距離Leqyより大きい位置にひずみセンサ20を搭載する場合、垂直ひずみセンサを搭載することにより、せん断ひずみセンサを搭載する場合と比べて、荷重Fyが加わることに伴って生じるひずみをより高感度で測定することができる。一方、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が等ひずみ距離Leqyより小さい位置では、最大垂直ひずみMsnxよりも最大せん断ひずみMssyの方が大きい。したがって、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が等ひずみ距離Leqyより小さい位置にひずみセンサ20を搭載する場合、せん断ひずみセンサを搭載することにより、垂直ひずみセンサを搭載する場合と比べて、荷重Fyが加わることに伴って生じるひずみをより高感度で測定することができる。 With reference to FIG. 50, the maximum vertical strain Msny is proportional to the distance Ds, while the maximum shear strain Mssy is constant regardless of the distance Ds. Hereinafter, the distance Ds when the maximum vertical strain Msny and the maximum shear strain Mssy become equal is also referred to as an equal strain distance Leqy. At a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqy, the maximum vertical strain Msny is larger than the maximum shear strain Mssy. Therefore, when the strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqy, the vertical strain sensor is mounted. Compared with the case where the shear strain sensor is mounted, the strain generated by the application of the load Fy can be measured with higher sensitivity. On the other hand, at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqy, the maximum shear strain Mssy is larger than the maximum vertical strain Msnx. Therefore, when the strain sensor 20 is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqy, the shear strain sensor is mounted. Compared with the case where the vertical strain sensor is mounted, the strain generated by the application of the load Fy can be measured with higher sensitivity.
 (ひずみセンサの選択基準に関する検証)
 本願発明者らは、同様に、シャンク高さWが25mmである剣バイト101SBに関するシミュレーション結果を用いて、等ひずみ距離Leqx,Leqyを算出した。また、本願発明者らは、シャンク高さWが8mmである外径バイト101DBおよび剣バイト101SB、シャンク高さWが16mmである外径バイト101DBおよび剣バイト101SB、シャンク高さWが40mmである外径バイト101DBおよび剣バイト101SB、ならびにシャンク高さWが50mmである外径バイト101DBおよび剣バイト101SBについての応力分布のシミュレーション結果を用いて、同様に、等ひずみ距離Leqx,Leqyを算出した。
(Verification of selection criteria for strain sensor)
Similarly, the inventors of the present application calculated the equal strain distances Leqx and Leqy using the simulation results for the sword bite 101SB having a shank height W of 25 mm. Further, the inventors of the present application have an outer diameter bite 101DB and a sword bite 101SB having a shank height W of 8 mm, an outer diameter bite 101DB and a sword bite 101SB having a shank height W of 16 mm, and a shank height W of 40 mm. Using the simulation results of the stress distribution for the outer diameter bite 101DB and the sword bite 101SB, and the outer diameter bite 101DB and the sword bite 101SB having a shank height W of 50 mm, the equal strain distances Leqx and Leqy were similarly calculated.
 ここで、シャンク高さWが8mmである外径バイト101DBは、距離dxが6mmであり、距離dyが4mmである。シャンク高さWが16mmである外径バイト101DBは、距離dxが12mmであり、距離dyが8mmである。シャンク高さWが25mmである外径バイト101DBは、距離dxが19.5mmであり、距離dyが12.5mmである。シャンク高さWが40mmである外径バイト101DBは、距離dxが30mmであり、距離dyが20mmである。シャンク高さWが50mmである外径バイト101DBは、距離dxが38mmであり、距離dyが25mmである。外径バイト101DBにおける上記距離dx,dyは、ISOに準拠した値である。また、シャンク高さWが8mmである剣バイト101SBは、距離dxが0mmであり、距離dyが4mmである。シャンク高さWが16mmである剣バイト101SBは、距離dxが0mmであり、距離dyが8mmである。シャンク高さWが25mmである剣バイト101SBは、距離dxが0mmであり、距離dyが12.5mmである。シャンク高さWが40mmである剣バイト101SBは、距離dxが0mmであり、距離dyが20mmである。シャンク高さWが50mmである剣バイト101SBは、距離dxが0mmであり、距離dyが25mmである。剣バイト101SBにおける上記距離dx,dyは、ISOに準拠した値である。 Here, the outer diameter bite 101DB having a shank height W of 8 mm has a distance dx of 6 mm and a distance dy of 4 mm. The outer diameter bite 101DB having a shank height W of 16 mm has a distance dx of 12 mm and a distance dy of 8 mm. The outer diameter bite 101DB having a shank height W of 25 mm has a distance dx of 19.5 mm and a distance dy of 12.5 mm. The outer diameter bite 101DB having a shank height W of 40 mm has a distance dx of 30 mm and a distance dy of 20 mm. The outer diameter bite 101DB having a shank height W of 50 mm has a distance dx of 38 mm and a distance dy of 25 mm. The distances dx and dy in the outer diameter tool 101DB are values conforming to ISO. Further, the sword bite 101SB having a shank height W of 8 mm has a distance dx of 0 mm and a distance dy of 4 mm. The sword bite 101SB having a shank height W of 16 mm has a distance dx of 0 mm and a distance dy of 8 mm. The sword bite 101SB having a shank height W of 25 mm has a distance dx of 0 mm and a distance dy of 12.5 mm. The sword bite 101SB having a shank height W of 40 mm has a distance dx of 0 mm and a distance dy of 20 mm. The sword bite 101SB having a shank height W of 50 mm has a distance dx of 0 mm and a distance dy of 25 mm. The distances dx and dy in the sword bite 101SB are ISO-compliant values.
 図51は、本開示の第1の実施の形態に係る切削工具の一例である外径バイトにおけるシャンク高さと等ひずみ距離との関係を示す図である。図51において、丸プロットは、外径バイト101DBにおける等ひずみ距離Leqxを示しており、三角プロットは、外径バイト101DBにおける等ひずみ距離Leqyを示している。また、図51において、横軸はシャンク高さW[mm]を示し、縦軸は等ひずみ距離[mm]を示している。 FIG. 51 is a diagram showing the relationship between the shank height and the equal strain distance in an outer diameter tool which is an example of a cutting tool according to the first embodiment of the present disclosure. In FIG. 51, the round plot shows the equal strain distance Leqx in the outer diameter bite 101DB, and the triangular plot shows the equal strain distance Leqy in the outer diameter bite 101DB. Further, in FIG. 51, the horizontal axis indicates the shank height W [mm], and the vertical axis indicates the equal strain distance [mm].
 図52は、本開示の第1の実施の形態に係る切削工具の一例である剣バイトにおけるシャンク高さと等ひずみ距離との関係を示す図である。図52において、丸プロットは、剣バイト101SBにおける等ひずみ距離Leqxを示し、三角プロットは、剣バイト101SBにおける等ひずみ距離Leqyを示している。また、図52において、横軸はシャンク高さW[mm]を示し、縦軸は等ひずみ距離[mm]を示している。 FIG. 52 is a diagram showing the relationship between the shank height and the equal strain distance in a sword tool which is an example of a cutting tool according to the first embodiment of the present disclosure. In FIG. 52, the round plot shows the equal strain distance Leqx at the sword bite 101SB, and the triangular plot shows the equal strain distance Leqy at the sword bite 101SB. Further, in FIG. 52, the horizontal axis indicates the shank height W [mm], and the vertical axis indicates the equal strain distance [mm].
 図51および図52を参照して、外径バイト101DBおよび剣バイト101SBにおいて、等ひずみ距離Leqx,Leqyはシャンク高さWに比例する。また、外径バイト101DBにおける等ひずみ距離Leqyと、剣バイト101SBにおける等ひずみ距離Leqyとは、互いに異なる。一方、シャンク高さWが互いに等しい外径バイト101DBおよび剣バイト101SBにおいて、等ひずみ距離Leqxは互いに等しい。これは、外径バイト101DBにおける基準点1Kの位置および剣バイト101SBにおける基準点1Kの位置に起因する。 With reference to FIGS. 51 and 52, in the outer diameter bite 101DB and the sword bite 101SB, the equal strain distances Leqx and Leqy are proportional to the shank height W. Further, the equal strain distance Leqy in the outer diameter bite 101DB and the equal strain distance Leqy in the sword bite 101SB are different from each other. On the other hand, in the outer diameter bite 101DB and the sword bite 101SB having the same shank height W, the equal strain distances Leqx are equal to each other. This is due to the position of the reference point 1K in the outer diameter bite 101DB and the position of the reference point 1K in the sword bite 101SB.
 より詳細には、上述したように剣バイト101SBでは距離dxがゼロであるので、シャンク10に荷重Fyが加わった場合であっても軸17周りのモーメントすなわちトルクが発生しない一方で、外径バイト101DBでは距離dxがゼロではないので、シャンク10に荷重Fyが加わることによりトルクが発生する。したがって、外径バイト101SBのシャンク10に荷重Fyが加わることに伴って生じるせん断ひずみssyおよび最大せん断ひずみMssyは、当該トルクの影響により、剣バイト101SBのシャンク10に荷重Fyが加わることに伴って生じるせん断ひずみssyおよび最大せん断ひずみMssyよりも大きい。そして、外径バイト101SBにおける最大せん断ひずみMssyが、剣バイト101SBにおける最大せん断ひずみMssyよりも大きいことから、あるシャンク高さWの外径バイト101DBにおける等ひずみ距離Leqyは、同じシャンク高さWの剣バイト101SBにおける等ひずみ距離Leqyよりも大きい。一方、上述したように外径バイト101DBおよび剣バイト101SBでは距離dyが互いに等しいので、シャンク10に荷重Fxが加わることにより発生するトルクの影響が等しく、荷重Fxが加わることに伴って生じるせん断ひずみssxおよび最大せん断ひずみMssxが互いに等しい。したがって、シャンク高さWが互いに等しい外径バイト101DBおよび剣バイト101SBにおいて、等ひずみ距離Leqxは互いに等しい。 More specifically, as described above, since the distance dx is zero in the sword bite 101SB, even when a load Fy is applied to the shank 10, a moment, that is, torque is not generated around the shaft 17, while the outer diameter bite is used. Since the distance dx is not zero in 101DB, torque is generated by applying the load Fy to the shank 10. Therefore, the shear strain ssy and the maximum shear strain Mssy generated by applying the load Fy to the shank 10 of the outer diameter bite 101SB are due to the influence of the torque, and the load Fy is applied to the shank 10 of the sword bite 101SB. Greater than the resulting shear strain ssy and maximum shear strain Mssy. Since the maximum shear strain Mssy in the outer diameter bite 101SB is larger than the maximum shear strain Mssy in the sword bite 101SB, the equal strain distance Leqy in the outer diameter bite 101DB of a certain shank height W has the same shank height W. It is larger than the equal strain distance Sheqy in the sword bite 101SB. On the other hand, as described above, since the distance dy is equal to each other in the outer diameter bite 101DB and the sword bite 101SB, the influence of the torque generated by applying the load Fx to the shank 10 is equal, and the shear strain generated by the load Fx is applied. The ssx and the maximum shear strain Mssx are equal to each other. Therefore, in the outer diameter bite 101DB and the sword bite 101SB in which the shank heights W are equal to each other, the equal strain distances Leqx are equal to each other.
 ここで、外径バイト101DBにおけるシャンク高さWと等ひずみ距離Leqyとの関係および距離dx、ならびに剣バイト101DBにおけるシャンク高さWと等ひずみ距離Leqyとの関係および距離dxに基づいて、等ひずみ距離Leqyは、下記式(25)により表される。
 Leqy=0.74W+2.09dx ・・・(25)
Here, based on the relationship between the shank height W and the equal strain distance Leqy in the outer diameter bite 101DB and the distance dx, and the relationship between the shank height W and the equal strain distance Leqy in the sword bite 101DB and the equal strain distance dx. The distance Leqy is expressed by the following equation (25).
Leqy = 0.74W + 2.09dx ... (25)
 また、基準点1Kの位置が、図38および図46に示す基準点1Kの位置から軸17を中心として反時計回りに90°回転させた位置である場合についても同様に考えると、等ひずみ距離Leqxは、下記式(26)により表される。
 Leqx=0.74W+2.09dy ・・・(26)
Further, considering the case where the position of the reference point 1K is a position rotated 90 ° counterclockwise about the axis 17 from the position of the reference point 1K shown in FIGS. 38 and 46, the equal strain distance is also considered. Leqx is represented by the following equation (26).
Leqx = 0.74W + 2.09dy ... (26)
 すなわち、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が上記式(25)により表される等ひずみ距離Leqyより小さい位置では、せん断ひずみセンサを搭載することにより、垂直ひずみセンサを搭載する場合と比べて、荷重Fyが加わることに伴って生じるひずみをより高感度で測定することができる。一方、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が上記式(25)により表される等ひずみ距離Leqyより大きい位置では、垂直ひずみセンサを搭載することにより、せん断ひずみセンサを搭載する場合と比べて、荷重Fyが加わることに伴って生じるひずみをより高感度で測定することができる。また、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が上記式(26)により表される等ひずみ距離Leqxより小さい位置では、せん断ひずみセンサを搭載することにより、垂直ひずみセンサを搭載する場合と比べて、荷重Fxが加わることに伴って生じるひずみをより高感度で測定することができる。一方、シャンク10の表面上の位置であって、Z方向における基準点1Kとの間の距離が上記式(26)により表される等ひずみ距離Leqxより大きい位置では、垂直ひずみセンサを搭載することにより、せん断ひずみセンサを搭載する場合と比べて、荷重Fxが加わることに伴って生じるひずみをより高感度で測定することができる。 That is, the shear strain sensor is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqy represented by the above equation (25). As a result, the strain generated by the application of the load Fy can be measured with higher sensitivity than in the case where the vertical strain sensor is mounted. On the other hand, a vertical strain sensor is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqy represented by the above equation (25). As a result, the strain generated by the application of the load Fy can be measured with higher sensitivity than when the shear strain sensor is mounted. Further, a shear strain sensor is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is smaller than the equal strain distance Leqx represented by the above equation (26). As a result, the strain generated by the application of the load Fx can be measured with higher sensitivity than when the vertical strain sensor is mounted. On the other hand, a vertical strain sensor is mounted at a position on the surface of the shank 10 where the distance from the reference point 1K in the Z direction is larger than the equal strain distance Leqx represented by the above equation (26). As a result, the strain generated by the application of the load Fx can be measured with higher sensitivity than when the shear strain sensor is mounted.
 また、図42~図44および図48を参照して説明したように、各対象位置Psにおけるせん断ひずみsszは、距離Dsに関わらず常にゼロであることから、荷重Fzが加わることに伴って生じるひずみをせん断ひずみセンサを用いて測定することは困難である。 Further, as described with reference to FIGS. 42 to 44 and 48, since the shear strain ssz at each target position Ps is always zero regardless of the distance Ds, it occurs with the application of the load Fz. It is difficult to measure strain using a shear strain sensor.
 以上より、3つのひずみセンサを用いて、荷重Fxが加わることに伴って生じるひずみ、荷重Fyが加わることに伴って生じるひずみ、および荷重Fzが加わることに伴って生じるひずみを測定する場合、3つのひずみセンサの種別を以下の通り選択することが好ましい。すなわち、シャンク10が正四角柱であり、距離dyよりも距離dxの方が大きい場合、Z方向における基準点1Kからの距離が(0.74W+2.09dx)以上である位置に、荷重Fxに対して最大感度を有する垂直ひずみセンサ、荷重Fyに対して最大感度を有する垂直ひずみセンサ、および荷重Fzに対して最大感度を有する垂直ひずみセンサを搭載する。あるいは、Z方向における基準点1Kからの距離が(0.74W+2.09dy)より大きく(0.74W+2.09dx)未満である位置に、荷重Fxに対して最大感度を有する垂直ひずみセンサ、荷重Fyに対して最大感度を有するせん断ひずみセンサ、および荷重Fzに対して最大感度を有する垂直ひずみセンサを搭載する。あるいは、Z方向における基準点1Kからの距離が(0.74W+2.09dy)以下である位置に、荷重Fxに対して最大感度を有するせん断ひずみセンサ、荷重Fyに対して最大感度を有するせん断ひずみセンサ、および荷重Fzに対して最大感度を有する垂直ひずみセンサを搭載する。 From the above, when measuring the strain caused by the application of the load Fx, the strain caused by the application of the load Fy, and the strain caused by the application of the load Fz using three strain sensors, 3 It is preferable to select one type of strain sensor as follows. That is, when the shank 10 is a regular square pillar and the distance dx is larger than the distance dy, the distance from the reference point 1K in the Z direction is (0.74 W + 2.09 dx) or more with respect to the load Fx. It is equipped with a vertical strain sensor having the maximum sensitivity, a vertical strain sensor having the maximum sensitivity to the load Fy, and a vertical strain sensor having the maximum sensitivity to the load Fz. Alternatively, at a position where the distance from the reference point 1K in the Z direction is larger than (0.74W + 2.09dy) and less than (0.74W + 2.09dx), the vertical strain sensor having the maximum sensitivity to the load Fx, the load Fy On the other hand, a shear strain sensor having the maximum sensitivity and a vertical strain sensor having the maximum sensitivity to the load Fz are mounted. Alternatively, a shear strain sensor having the maximum sensitivity to the load Fx and a shear strain sensor having the maximum sensitivity to the load Fy at a position where the distance from the reference point 1K in the Z direction is (0.74 W + 2.09 dy) or less. , And a vertical strain sensor with maximum sensitivity to load Fz.
 また、シャンク10が正四角柱であり、距離dxよりも距離dyの方が大きい場合、Z方向における基準点1Kからの距離が(0.74W+2.09dy)以上である位置に、荷重Fxに対して最大感度を有する垂直ひずみセンサ、荷重Fyに対して最大感度を有する垂直ひずみセンサ、および荷重Fzに対して最大感度を有する垂直ひずみセンサを搭載する。あるいは、Z方向における基準点1Kからの距離が(0.74W+2.09dx)より大きく(0.74W+2.09dy)未満である位置に、荷重Fxに対して最大感度を有するせん断ひずみセンサ、荷重Fyに対して最大感度を有する垂直ひずみセンサ、および荷重Fzに対して最大感度を有する垂直ひずみセンサを搭載する。あるいは、Z方向における基準点1Kからの距離が(0.74W+2.09dx)以下である位置に、荷重Fxに対して最大感度を有するせん断ひずみセンサ、荷重Fyに対して最大感度を有するせん断ひずみセンサ、および荷重Fzに対して最大感度を有する垂直ひずみセンサを搭載する。 Further, when the shank 10 is a regular square pillar and the distance dy is larger than the distance dx, the distance from the reference point 1K in the Z direction is (0.74 W + 2.09 dy) or more at a position with respect to the load Fx. It is equipped with a vertical strain sensor having the maximum sensitivity, a vertical strain sensor having the maximum sensitivity to the load Fy, and a vertical strain sensor having the maximum sensitivity to the load Fz. Alternatively, at a position where the distance from the reference point 1K in the Z direction is larger than (0.74W + 2.09dx) and less than (0.74W + 2.09dy), the shear strain sensor having the maximum sensitivity to the load Fx, the load Fy On the other hand, a vertical strain sensor having the maximum sensitivity and a vertical strain sensor having the maximum sensitivity to the load Fz are mounted. Alternatively, a shear strain sensor having the maximum sensitivity to the load Fx and a shear strain sensor having the maximum sensitivity to the load Fy at a position where the distance from the reference point 1K in the Z direction is (0.74 W + 2.09 dx) or less. , And a vertical strain sensor with maximum sensitivity to load Fz.
 なお、シャンク10が、幅bと高さhとが等しい丸シャンクである場合、3つのひずみセンサの搭載位置ごとの種別を、シャンク10が正四角柱である場合と同様に選択することが好ましい。また、シャンク10が、高さhが幅bよりも大きい角シャンクである場合、または幅bが高さhよりも大きい丸シャンクである場合、シャンク10に荷重Fyが加わったときに発生するモーメントに対して重要な要素である高さhをシャンク高さWに当てはめて、ひずみセンサの選択基準をシャンク10が正四角柱である場合と同様に扱うことができるので、3つのひずみセンサの搭載位置ごとの種別を、シャンク10が正四角柱である場合と同様に選択することが好ましい。 When the shank 10 is a round shank having the same width b and height h, it is preferable to select the type for each mounting position of the three strain sensors in the same manner as when the shank 10 is a regular quadrangular prism. Further, when the shank 10 is a square shank having a height h larger than the width b, or a round shank having a width b larger than the height h, the moment generated when the load Fy is applied to the shank 10. Since the height h, which is an important factor for the above, can be applied to the shank height W, and the selection criteria of the strain sensor can be treated in the same manner as when the shank 10 is a regular quadrangular prism, the mounting positions of the three strain sensors can be handled. It is preferable to select each type in the same manner as when the shank 10 is a regular quadrangular prism.
 (軸方向におけるせん断ひずみセンサの搭載位置)
 以上より、荷重Fx,Fy,Fzのうちの荷重Fyに対して最大の感度を有するせん断ひずみセンサであるひずみセンサ20Aをシャンク10に搭載する場合、ひずみセンサ20Aのセンサ距離Daは、下記式(27)を満たすことが好ましい。
 Da<0.74W+2.09dxa ・・・ (27)
(Mounting position of shear strain sensor in the axial direction)
From the above, when the strain sensor 20A, which is a shear strain sensor having the maximum sensitivity to the load Fy among the loads Fx, Fy, and Fz, is mounted on the shank 10, the sensor distance Da of the strain sensor 20A is expressed by the following equation ( It is preferable to satisfy 27).
Da <0.74W + 2.09dxa ... (27)
 また、荷重Fx,Fy,Fzのうちの荷重Fxに対して最大の感度を有するせん断ひずみセンサであるひずみセンサ20Bをシャンク10に搭載する場合、ひずみセンサ20Bのセンサ距離Dbは、下記式(28)を満たすことが好ましい。
 Db<0.74W+2.09dyb ・・・ (28)
When the strain sensor 20B, which is a shear strain sensor having the maximum sensitivity to the load Fx among the loads Fx, Fy, and Fz, is mounted on the shank 10, the sensor distance Db of the strain sensor 20B is expressed by the following equation (28). ) Is preferably satisfied.
Db <0.74W + 2.09dyb ... (28)
 すなわち、荷重Fx,Fy,Fzのうちの荷重Fxまたは荷重Fyに対して最大の感度を有するせん断ひずみセンサをシャンク10に搭載する場合、せん断ひずみセンサのセンサ距離Dは、下記式(29)を満たすことが好ましい。
 D<0.74W+2.09maxdxy ・・・ (29)
That is, when the shear strain sensor having the maximum sensitivity to the load Fx or the load Fy among the loads Fx, Fy, and Fz is mounted on the shank 10, the sensor distance D of the shear strain sensor is expressed by the following equation (29). It is preferable to meet.
D <0.74W + 2.09maxdxy ... (29)
 また、荷重Fx,Fy,Fzのうちの荷重Fxまたは荷重Fyに対して最大の感度を有する他のせん断ひずみセンサをシャンク10にさらに搭載する場合、2つのせん断ひずみセンサのセンサ距離Dは、下記式(30)を満たすことが好ましい。
 D<0.74W+2.09mindxy ・・・ (30)
Further, when another shear strain sensor having the maximum sensitivity to the load Fx or the load Fy among the loads Fx, Fy, and Fz is further mounted on the shank 10, the sensor distance D of the two shear strain sensors is as follows. It is preferable to satisfy the formula (30).
D <0.74W + 2.09mindxy ... (30)
 ここで、dxは、X方向における、せん断ひずみセンサの搭載位置におけるシャンク10の中心と基準点1Kとの間の距離である。dyは、Y方向における、せん断ひずみセンサの搭載位置におけるシャンク10の中心と基準点1Kとの間の距離である。maxdxyは、dxおよびdyが互いに異なる値である場合、dxおよびdyのうちの大きい方である。なお、dxおよびdyが等しい値である場合、dxおよびdyをmaxdxyとする。mindxyは、dxおよびdyのうちの小さい方である。 Here, dx is the distance between the center of the shank 10 and the reference point 1K at the mounting position of the shear strain sensor in the X direction. dy is the distance between the center of the shank 10 and the reference point 1K at the mounting position of the shear strain sensor in the Y direction. maxdxy is the larger of dx and dy when dx and dy are different values from each other. When dx and dy are equal values, dx and dy are set to maxdxy. mindxy is the smaller of dx and dy.
 (周方向におけるせん断ひずみセンサの搭載位置)
 (せん断ひずみssx,ssy測定用)
 図42~図44を参照して説明したように、外径バイト101DBにおけるせん断ひずみssyの絶対値は、4つの表面の周方向における中央部分において極大値となり、側面S4の周方向における中央部分において最大値となる。外径バイト101DBにおけるせん断ひずみssyの絶対値が側面S4において最大値となる理由は、図38に示す外径バイト101DBでは、側面S4において、荷重Fyによる単純せん断と、荷重Fyによるねじりのせん断とが同方向に作用するからである。
(Mounting position of shear strain sensor in the circumferential direction)
(For shear strain ssx, ssy measurement)
As described with reference to FIGS. 42 to 44, the absolute value of the shear strain ssy in the outer diameter bite 101DB becomes a maximum value in the central portion in the circumferential direction of the four surfaces, and in the central portion in the circumferential direction of the side surface S4. It becomes the maximum value. The reason why the absolute value of the shear strain ssy in the outer diameter bite 101DB is the maximum value on the side surface S4 is that in the outer diameter bite 101DB shown in FIG. Because they act in the same direction.
 また、図48を参照して説明したように、剣バイト101SBにおけるせん断ひずみssyの絶対値は、側面S3,S4の周方向における中央部分において最大値となる。剣バイト101SBにおけるせん断ひずみssyの絶対値が側面S3,S4において最大値となる理由は、図46に示す剣バイト101SBでは、側面S3,S4において、荷重Fyによる単純せん断と、荷重Fyによるねじりのせん断とが同方向に作用するからである。 Further, as described with reference to FIG. 48, the absolute value of the shear strain ssy in the sword bite 101SB becomes the maximum value in the central portion in the circumferential direction of the side surfaces S3 and S4. The reason why the absolute value of the shear strain ssy in the sword bite 101SB is the maximum value in the side surfaces S3 and S4 is that in the sword bite 101SB shown in FIG. This is because shear acts in the same direction.
 また、図42~図44を参照して説明したように、外径バイト101DBにおけるせん断ひずみssxの絶対値は、4つの表面の周方向における中央部分において極大値となり、上面S2の周方向における中央部分において最大値となる。外径バイト101DBにおけるせん断ひずみssxの絶対値が上面S2において最大値となる理由は、図38に示す外径バイト101DBでは、上面S2において、荷重Fxによる単純せん断と、荷重Fxによるねじりのせん断とが同方向に作用するからである。 Further, as described with reference to FIGS. 42 to 44, the absolute value of the shear strain ssx in the outer diameter bite 101DB becomes a maximum value in the central portion in the circumferential direction of the four surfaces, and is the center in the circumferential direction of the upper surface S2. It becomes the maximum value in the part. The reason why the absolute value of the shear strain ssx in the outer diameter bite 101DB becomes the maximum value in the upper surface S2 is that in the outer diameter bite 101DB shown in FIG. Because they act in the same direction.
 また、図48を参照して説明したように、剣バイト101SBにおけるせん断ひずみssxの絶対値は、4つの表面の周方向における中央部分において極大値となり、上面S2の周方向における中央部分において最大値となる。剣バイト101SBにおけるせん断ひずみssxの絶対値が上面S2において最大値となる理由は、図46に示す剣バイト101SBでは、上面S2において、荷重Fxによる単純せん断と、荷重Fxによるねじりのせん断とが同方向に作用するからである。 Further, as described with reference to FIG. 48, the absolute value of the shear strain ssx in the sword bite 101SB becomes a maximum value in the central portion in the circumferential direction of the four surfaces, and is a maximum value in the central portion in the circumferential direction of the upper surface S2. It becomes. The reason why the absolute value of the shear strain ssx in the sword bite 101SB is the maximum value in the upper surface S2 is that in the sword bite 101SB shown in FIG. 46, the simple shear due to the load Fx and the torsional shear due to the load Fx are the same on the upper surface S2. Because it acts in the direction.
 以上より、外径バイト101DBおよび剣バイト101SB等の一般的な切削工具101におけるシャンク10に、荷重Fyに対して最大の感度を有するせん断ひずみセンサであるひずみセンサ20Aを搭載する場合、シャンク10の4つの表面のうちの搭載面における中央部分に搭載することが好ましい。また、外径バイト101DBおよび剣バイト101SB等の一般的な切削工具101におけるシャンク10に、荷重Fxに対して最大の感度を有するせん断ひずみセンサであるひずみセンサ20Bを搭載する場合、シャンク10の4つの表面のうちの搭載面における中央部分に搭載することが好ましい。具体的には、たとえば、ひずみセンサ20A,20Bを、各々の搭載面をシャンク10の周方向に並ぶ3つの領域に3等分したときに当該3つの領域のうちの真ん中の領域に搭載することが好ましい。また、ひずみセンサ20A,20Bを、単純せん断と、ねじりのせん断とが同方向に作用する面に搭載するために、ひずみセンサ20A,20Bの一方を、シャンク10の表面のうちの基準点1Kに最も近い表面である第1表面に搭載し、ひずみセンサ20A,20Bの他方を、当該第1表面に隣接する隣接面であって、シャンク10の表面のうちの基準点1Kに2番目に近い表面である第2表面に搭載することが好ましい。具体的には、たとえば、ひずみセンサ20Aを側面S4に搭載し、ひずみセンサ20Bを上面S2に搭載することが好ましい。 From the above, when the strain sensor 20A, which is a shear strain sensor having the maximum sensitivity to the load Fy, is mounted on the shank 10 in a general cutting tool 101 such as an outer diameter tool 101DB and a sword tool 101SB, the shank 10 It is preferable to mount it on the central portion of the mounting surface among the four surfaces. Further, when the strain sensor 20B, which is a shear strain sensor having the maximum sensitivity to the load Fx, is mounted on the shank 10 in a general cutting tool 101 such as an outer diameter tool 101DB and a sword tool 101SB, 4 of the shank 10. It is preferable to mount it on the central portion of the mounting surface of the two surfaces. Specifically, for example, when the strain sensors 20A and 20B are divided into three equal regions in which the mounting surfaces are arranged in the circumferential direction of the shank 10, the strain sensors 20A and 20B are mounted in the middle region of the three regions. Is preferable. Further, in order to mount the strain sensors 20A and 20B on the surface on which the simple shear and the torsional shear act in the same direction, one of the strain sensors 20A and 20B is placed at the reference point 1K on the surface of the shank 10. It is mounted on the first surface, which is the closest surface, and the other of the strain sensors 20A and 20B is an adjacent surface adjacent to the first surface, which is the second closest surface to the reference point 1K among the surfaces of the shank 10. It is preferable to mount it on the second surface. Specifically, for example, it is preferable to mount the strain sensor 20A on the side surface S4 and mount the strain sensor 20B on the upper surface S2.
 (周方向における垂直ひずみセンサの搭載位置)
 (垂直ひずみsny測定用)
 図39~図41を参照して説明したように、外径バイト101DBにおける垂直ひずみsnxの絶対値は、側面S3および側面S4において最大値となる。また、図47を参照して説明したように、剣バイト101SBにおける垂直ひずみsnxの絶対値は、側面S3および側面S4において最大値となる。以上より、外径バイト101DBおよび剣バイト101SB等の一般的な切削工具101におけるシャンク10に、荷重Fyに対して最大の感度を有する垂直ひずみセンサを搭載する場合、シャンク10の4つの表面のうちの側面S3または側面S4に搭載することが好ましい。
(Mounting position of vertical strain sensor in the circumferential direction)
(For vertical strain sny measurement)
As described with reference to FIGS. 39 to 41, the absolute value of the vertical strain snx in the outer diameter bite 101DB is the maximum value in the side surface S3 and the side surface S4. Further, as described with reference to FIG. 47, the absolute value of the vertical strain snx in the sword bite 101SB becomes the maximum value in the side surface S3 and the side surface S4. From the above, when the vertical strain sensor having the maximum sensitivity to the load Fy is mounted on the shank 10 in a general cutting tool 101 such as the outer diameter tool 101DB and the sword tool 101SB, among the four surfaces of the shank 10. It is preferable to mount it on the side surface S3 or the side surface S4.
 (垂直ひずみsnx測定用)
 図39~図41を参照して説明したように、外径バイト101DBにおける垂直ひずみsnyの絶対値は、底面S1および上面S2において最大値となる。また、図47を参照して説明したように、剣バイト101SBにおける垂直ひずみsnyの絶対値は、底面S1および上面S2において最大値となる。以上より、外径バイト101DBおよび剣バイト101SB等の一般的な切削工具101におけるシャンク10に、荷重Fxに対して最大の感度を有する垂直ひずみセンサを搭載する場合、シャンク10の4つの表面のうちの底面S1および上面S2に搭載することが好ましい。
(For vertical strain snx measurement)
As described with reference to FIGS. 39 to 41, the absolute value of the vertical strain sny in the outer diameter bite 101DB is the maximum value in the bottom surface S1 and the top surface S2. Further, as described with reference to FIG. 47, the absolute value of the vertical strain sny in the sword bite 101SB becomes the maximum value in the bottom surface S1 and the top surface S2. From the above, when the vertical strain sensor having the maximum sensitivity to the load Fx is mounted on the shank 10 in a general cutting tool 101 such as the outer diameter tool 101DB and the sword tool 101SB, among the four surfaces of the shank 10. It is preferable to mount it on the bottom surface S1 and the top surface S2.
 (垂直ひずみsnz測定用-1)
 図39~図41を参照して説明したように、外径バイト101DBにおける垂直ひずみsnzの絶対値は、上面S2と側面S4との境界部分の近傍および底面S1と側面S3との境界部分の近傍において極大値となり、上面S2と側面S4との境界部分の近傍において最大値となる。再び図38を参照して、外径バイト101DBにおける垂直ひずみsnzの絶対値が上面S2と側面S4との境界部分の近傍および底面S1と側面S3との境界部分の近傍において極大値となる理由は、荷重Fzによって、基準点1Kと軸17とを結ぶ仮想線に直交する仮想線を境目すなわち折り目として、シャンク10が曲がるからである。また、上面S2と側面S4との境界部分の近傍における垂直ひずみsnzの絶対値が、底面S1と側面S3との境界部分の近傍における垂直ひずみsnzの絶対値よりも大きくなる理由は、図38に示す外径バイト101DBでは、2つの当該境界部分のうちの基準点1Kに近い方の境界部分の近傍において、荷重Fzによる曲げモーメントと荷重Fzによる単純圧縮とが同方向に作用するからである。本願発明者による検証によれば、当該2つの境界部分のうちの基準点1Kに近い方の境界部分の近傍における垂直ひずみsnzの絶対値は、当該2つの境界部分のうちの基準点1Kに遠い方の境界部分の近傍における垂直ひずみsnzの絶対値の1.3倍程度である。
(For vertical strain snz measurement-1)
As described with reference to FIGS. 39 to 41, the absolute value of the vertical strain snz in the outer diameter bite 101DB is the vicinity of the boundary portion between the upper surface S2 and the side surface S4 and the vicinity of the boundary portion between the bottom surface S1 and the side surface S3. It becomes the maximum value in the vicinity of the boundary portion between the upper surface S2 and the side surface S4, and becomes the maximum value. With reference to FIG. 38 again, the reason why the absolute value of the vertical strain snz in the outer diameter bite 101DB becomes a maximum value in the vicinity of the boundary portion between the upper surface S2 and the side surface S4 and in the vicinity of the boundary portion between the bottom surface S1 and the side surface S3 is This is because the shank 10 bends due to the load Fz, with the virtual line orthogonal to the virtual line connecting the reference point 1K and the axis 17 as a boundary, that is, a crease. Further, the reason why the absolute value of the vertical strain snz in the vicinity of the boundary portion between the upper surface S2 and the side surface S4 is larger than the absolute value of the vertical strain snz in the vicinity of the boundary portion between the bottom surface S1 and the side surface S3 is shown in FIG. 38. This is because, in the outer diameter bite 101DB shown, the bending moment due to the load Fz and the simple compression due to the load Fz act in the same direction in the vicinity of the boundary portion of the two boundary portions closer to the reference point 1K. According to the verification by the inventor of the present application, the absolute value of the vertical strain snz in the vicinity of the boundary portion closer to the reference point 1K of the two boundary portions is far from the reference point 1K of the two boundary portions. It is about 1.3 times the absolute value of the vertical strain snz in the vicinity of the boundary portion.
 以上より、外径バイト101DB等の一般的な切削工具101におけるシャンク10に、荷重Fzに対して最大の感度を有する垂直ひずみセンサであるひずみセンサ20Cを搭載する場合、シャンク10における4つの境界部分のうちの、基準点1Kに最も近い境界部分の近傍、または基準点1Kに最も遠い境界部分の近傍に搭載することが好ましい。具体的には、たとえば、ひずみセンサ20Cを、当該4つの表面のうちの基準点1Kに2番目に近い第2表面をシャンク10の周方向に並ぶ3つの領域に3等分したときに当該第2表面における当該3つの領域のうちの基準点1Kに最も近い領域、当該4つの表面のうちの当該第1表面と対向する第3表面をシャンク10の周方向に並ぶ3つの領域に3等分したときに当該第3表面における当該3つの領域のうちの基準点1Kに最も遠い領域、および、当該4つの表面のうちの第2表面と対向する第4表面をシャンク10の周方向に並ぶ3つの領域に3等分したときに当該第4表面における当該3つの領域のうちの基準点1Kに最も遠い領域のうちのいずれかに搭載することが好ましい。 From the above, when the strain sensor 20C, which is a vertical strain sensor having the maximum sensitivity to the load Fz, is mounted on the shank 10 in a general cutting tool 101 such as an outer diameter tool 101DB, the four boundary portions in the shank 10 Of these, it is preferable to mount the device in the vicinity of the boundary portion closest to the reference point 1K or in the vicinity of the boundary portion farthest from the reference point 1K. Specifically, for example, when the strain sensor 20C is divided into three equal parts of the second surface of the four surfaces, which is the second closest to the reference point 1K, into three regions arranged in the circumferential direction of the shank 10. The region of the two surfaces closest to the reference point 1K, and the third surface of the four surfaces facing the first surface are divided into three equal regions arranged in the circumferential direction of the shank 10. 3 When it is divided into three equal parts, it is preferable to mount it on one of the regions farthest from the reference point 1K among the three regions on the fourth surface.
 (垂直ひずみsnz測定用-2)
 図47を参照して説明したように、剣バイト101SBにおける垂直ひずみsnzの絶対値は、底面S1および上面S2において極大値となり、上面S2において最大値となる。再び図46を参照して、剣バイト101SBにおける垂直ひずみsnzの絶対値が上面S2および底面S1において極大値となる理由は、荷重Fzによって、基準点1Kと軸17とを結ぶ仮想線に直交する仮想線を境目すなわち折り目として、シャンク10が曲がるからである。また、上面S2における垂直ひずみsnzの絶対値が、底面S1における垂直ひずみsnzの絶対値よりも大きくなる理由は、図46に示す剣バイト101SBでは、底面S1および上面S2のうちの基準点1Kにより近い方の面である上面S2において、荷重Fzによる曲げモーメントと荷重Fzによる単純圧縮とが同方向に作用するからである。
(For vertical strain snz measurement-2)
As described with reference to FIG. 47, the absolute value of the vertical strain snz in the sword bite 101SB has a maximum value on the bottom surface S1 and the top surface S2, and a maximum value on the top surface S2. With reference to FIG. 46 again, the reason why the absolute value of the vertical strain snz in the sword bite 101SB becomes the maximum value in the upper surface S2 and the bottom surface S1 is orthogonal to the virtual line connecting the reference point 1K and the axis 17 due to the load Fz. This is because the shank 10 bends with the virtual line as a boundary, that is, a crease. Further, the reason why the absolute value of the vertical strain snz on the upper surface S2 is larger than the absolute value of the vertical strain snz on the bottom surface S1 is that in the sword bite 101SB shown in FIG. 46, the reference point 1K of the bottom surface S1 and the top surface S2 causes. This is because the bending moment due to the load Fz and the simple compression due to the load Fz act in the same direction on the upper surface S2 which is the closer surface.
 以上より、剣バイト101SB等の一般的な切削工具101におけるシャンク10に、荷重Fzに対して最大の感度を有する垂直ひずみセンサであるひずみセンサ20Cを搭載する場合、シャンク10の4つの表面のうちの、基準点1Kに最も近い表面、または当該表面に対向する表面に搭載することが好ましい。具体的には、たとえば、距離dxがゼロである剣バイト101SBにおいて、基準点1Kに最も近い表面が底面S1または上面S2である場合、ひずみセンサ20Cを、底面S1または上面S2に搭載することが好ましい。また、たとえば、距離dyがゼロである剣バイト101SBにおいて、基準点1Kに最も近い表面が側面S3または側面S4である場合、ひずみセンサ20Cを、側面S3または側面S4に搭載することが好ましい。 From the above, when the strain sensor 20C, which is a vertical strain sensor having the maximum sensitivity to the load Fz, is mounted on the shank 10 in a general cutting tool 101 such as a sword bite 101SB, among the four surfaces of the shank 10. It is preferable to mount the surface on the surface closest to the reference point 1K or the surface facing the surface. Specifically, for example, in the sword bite 101SB having a distance dx of zero, when the surface closest to the reference point 1K is the bottom surface S1 or the top surface S2, the strain sensor 20C can be mounted on the bottom surface S1 or the top surface S2. preferable. Further, for example, in the sword bite 101SB having a distance dy of zero, when the surface closest to the reference point 1K is the side surface S3 or the side surface S4, it is preferable to mount the strain sensor 20C on the side surface S3 or the side surface S4.
 再び図46を参照して、距離dxがゼロである剣バイト101SBでは、垂直ひずみsnzの絶対値は、底面S1において一定であり、上面S2において一定となる。一方、基準点1Kが軸17の直上からX方向にずれた位置にあり、距離dxがゼロでない切削工具101において、垂直ひずみsnzの絶対値は、底面S1において一定ではなく、上面S2において一定ではない。ただし、底面S1および上面S2における垂直ひずみsnzの絶対値の最大値と最小値との差が、最大値の10%以下である切削工具101は、距離dxがゼロである剣バイト101SBと同様の搭載位置にひずみセンサ20Cを搭載することが好ましい。より詳細には、図46に示すシャンク10の断面において、基準点1KをZ方向に沿って当該断面へ平行移動させたときの基準点1Kの位置が、シャンク10の中心からY方向に沿って底面S1側へW/6離れた点17Kから伸びる直線であって、下記式(31)を満たす直線L1aと、下記式(31)を満たす直線L1bとの間に位置する場合、距離dxがゼロである剣バイト101SBと同様に、ひずみセンサ20Cを搭載することが好ましい。
 10dx=dy+W/6 ・・・ (31)
With reference to FIG. 46 again, in the sword bite 101SB where the distance dx is zero, the absolute value of the vertical strain snz is constant on the bottom surface S1 and constant on the top surface S2. On the other hand, in the cutting tool 101 in which the reference point 1K is displaced in the X direction from directly above the shaft 17 and the distance dx is not zero, the absolute value of the vertical strain snz is not constant on the bottom surface S1 but constant on the top surface S2. do not have. However, the cutting tool 101 in which the difference between the maximum value and the minimum value of the absolute value of the vertical strain snz on the bottom surface S1 and the top surface S2 is 10% or less of the maximum value is the same as that of the sword bite 101SB having a distance dx of zero. It is preferable to mount the strain sensor 20C at the mounting position. More specifically, in the cross section of the shank 10 shown in FIG. 46, the position of the reference point 1K when the reference point 1K is translated to the cross section along the Z direction is along the Y direction from the center of the shank 10. If the straight line extends from the point 17K W / 6 away from the bottom surface S1 and is located between the straight line L1a satisfying the following equation (31) and the straight line L1b satisfying the following equation (31), the distance dx is zero. It is preferable to mount the strain sensor 20C in the same manner as the sword bite 101SB.
10dx = dy + W / 6 ... (31)
 ここで、点17Kは、基準点1Kに最も近い表面である上面S2において、荷重Fzによる単純圧縮と、荷重Fzによる曲げモーメントとが相殺するときの荷重点である。また、直線L1a,L1bは、底面S1および上面S2における垂直ひずみsnzの絶対値の最大値と最小値との差が、最大値の10%となるときの荷重点である。 Here, the point 17K is a load point when the simple compression by the load Fz and the bending moment due to the load Fz cancel each other out on the upper surface S2 which is the surface closest to the reference point 1K. Further, the straight lines L1a and L1b are load points when the difference between the maximum value and the minimum value of the absolute value of the vertical strain snz on the bottom surface S1 and the top surface S2 is 10% of the maximum value.
 また、基準点1Kに最も近い表面が底面S1である場合、シャンク10の断面において、基準点1KをZ方向に沿って当該断面へ平行移動させたときの基準点1Kの位置が、シャンク10の中心からY方向に沿って上面S2側へW/6離れた点17Kから伸びる直線であって、上記式(31)を満たす2つの直線の間に位置する場合、距離dxがゼロである剣バイト101SBと同様に、ひずみセンサ20Cを搭載することが好ましい。具体的には、たとえば、ひずみセンサ20Cを、距離dxc,dycが上述の式(17)を満たす位置に搭載する場合、底面S1または上面S2に搭載することが好ましい。 When the surface closest to the reference point 1K is the bottom surface S1, the position of the reference point 1K when the reference point 1K is translated to the cross section along the Z direction in the cross section of the shank 10 is the shank 10. A sword bite whose distance dx is zero when it is a straight line extending from a point 17K W / 6 away from the center toward the upper surface S2 along the Y direction and is located between two straight lines satisfying the above equation (31). Like the 101SB, it is preferable to mount the strain sensor 20C. Specifically, for example, when the strain sensor 20C is mounted at a position where the distances dxc and dyc satisfy the above equation (17), it is preferable to mount the strain sensor 20C on the bottom surface S1 or the top surface S2.
 また、基準点1Kに最も近い表面が側面S3または側面S4である場合、シャンク10の断面において、基準点1KをZ方向に沿って当該断面へ平行移動させたときの基準点1Kの位置が、シャンク10の中心からY方向に沿って当該最も近い表面に対向する表面側へW/6離れた点17Kから伸びる直線であって、下記式(32)を満たす2つの直線の間に位置する場合、距離dyがゼロである剣バイト101SBと同様に、ひずみセンサ20Cを搭載することが好ましい。
 10dy=dx+W/6 ・・・ (32)
When the surface closest to the reference point 1K is the side surface S3 or the side surface S4, the position of the reference point 1K when the reference point 1K is translated into the cross section along the Z direction in the cross section of the shank 10. A straight line extending from the center of the shank 10 along the Y direction toward the surface facing the nearest surface from a point 17K W / 6 away, and located between two straight lines satisfying the following equation (32). It is preferable to mount the strain sensor 20C as in the sword bite 101SB having a distance dy of zero.
10dy = dx + W / 6 ... (32)
 具体的には、たとえば、ひずみセンサ20Cを、距離dxc,dycが上述の式(23)を満たす位置に搭載する場合、側面S3または側面S4に搭載することが好ましい。 Specifically, for example, when the strain sensor 20C is mounted at a position where the distances dxc and dyc satisfy the above equation (23), it is preferable to mount the strain sensor 20C on the side surface S3 or the side surface S4.
 [動作の流れ]
 図53は、本開示の第1の実施の形態に係る切削工具にひずみセンサを搭載する際の搭載方法の一例を定めたフローチャートである。図53を参照して、まず、切削工具101のユーザは、シャンク10と、ひずみセンサ20A,20B,20Cとを準備する(ステップS102)。次に、ユーザは、シャンク10の表面にひずみセンサ20A,20B,20Cを搭載する。より詳細には、ひずみセンサ20A,20B,20Cを、上述した第1の実施の形態および変形例1~11に示す搭載位置に搭載する(ステップS104)。
[Operation flow]
FIG. 53 is a flowchart defining an example of a mounting method when mounting a strain sensor on a cutting tool according to the first embodiment of the present disclosure. With reference to FIG. 53, first, the user of the cutting tool 101 prepares the shank 10 and the strain sensors 20A, 20B, 20C (step S102). Next, the user mounts the strain sensors 20A, 20B, 20C on the surface of the shank 10. More specifically, the strain sensors 20A, 20B, and 20C are mounted at the mounting positions shown in the first embodiment and the modified examples 1 to 11 described above (step S104).
 なお、本開示の第1の実施の形態に係る切削工具101は、ひずみセンサ20A,20B,20Cを備える構成であるとしたが、これに限定するものではない。切削工具101は、1つ、2つまたは4つ以上のひずみセンサ20を備える構成であってもよい。より詳細には、切削工具101が少なくとも1つのひずみセンサ20を備える構成により、当該ひずみセンサ20によるシャンク10のひずみの測定結果を、たとえば切削加工時に切削工具101において発生し得る異常の検知に用いることができる。たとえば、切削工具101において異常が発生したときに荷重Fyに変化が生じ易いことが予め分かっている場合、切削工具101がひずみセンサ20Aを備える構成により、ひずみセンサ20Aによる測定結果に基づいて、当該異常をより正確に検知することができる。 The cutting tool 101 according to the first embodiment of the present disclosure is configured to include strain sensors 20A, 20B, 20C, but is not limited thereto. The cutting tool 101 may be configured to include one, two, or four or more strain sensors 20. More specifically, the cutting tool 101 is configured to include at least one strain sensor 20, and the measurement result of the strain of the shank 10 by the strain sensor 20 is used for detecting an abnormality that may occur in the cutting tool 101, for example, during cutting. be able to. For example, when it is known in advance that the load Fy is likely to change when an abnormality occurs in the cutting tool 101, the cutting tool 101 is configured to include the strain sensor 20A, based on the measurement result by the strain sensor 20A. Abnormalities can be detected more accurately.
 また、本開示の第1の実施の形態に係る切削工具101は、荷重Fyに対して最大の感度を有するひずみセンサ20Aと、荷重Fxに対して最大の感度を有するひずみセンサ20Bと、荷重Fzに対して最大の感度を有するひずみセンサ20Cとを備える構成であるとしたが、これに限定するものではない。切削工具101は、ひずみセンサ20Aの代わりに、荷重Fxまたは荷重Fzに対して最大の感度を有するひずみセンサ20を備える構成であってもよい。また、切削工具101は、ひずみセンサ20Bの代わりに、荷重Fyまたは荷重Fzに対して最大の感度を有するひずみセンサ20を備える構成であってもよい。また、切削工具101は、ひずみセンサ20Cの代わりに、荷重Fxまたは荷重Fyに対して最大の感度を有するひずみセンサ20を備える構成であってもよい。 Further, the cutting tool 101 according to the first embodiment of the present disclosure includes a strain sensor 20A having the maximum sensitivity to the load Fy, a strain sensor 20B having the maximum sensitivity to the load Fx, and a load Fz. It is said that the configuration is provided with the strain sensor 20C having the maximum sensitivity with respect to the above, but the configuration is not limited to this. The cutting tool 101 may be configured to include the strain sensor 20 having the maximum sensitivity to the load Fx or the load Fz instead of the strain sensor 20A. Further, the cutting tool 101 may be configured to include the strain sensor 20 having the maximum sensitivity to the load Fy or the load Fz instead of the strain sensor 20B. Further, the cutting tool 101 may be configured to include the strain sensor 20 having the maximum sensitivity to the load Fx or the load Fy instead of the strain sensor 20C.
 次に、本開示の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Next, other embodiments of the present disclosure will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 <第2の実施の形態>
 本実施の形態は、第1の実施の形態に係る切削工具101と比べて、ひずみセンサ20Bの代わりにひずみセンサ20Dを備える切削工具102に関する。以下で説明する内容以外は第1の実施の形態に係る切削工具101と同様である。第2の実施の形態では、XY平面における基準点1Kの位置は、図3に示す第1象限Q1の領域内であるものとする。第2の実施の形態における基準点1Kの位置は、図3に示す位置PK1の一例である。
<Second embodiment>
The present embodiment relates to a cutting tool 102 provided with a strain sensor 20D instead of the strain sensor 20B as compared with the cutting tool 101 according to the first embodiment. Except for the contents described below, it is the same as the cutting tool 101 according to the first embodiment. In the second embodiment, it is assumed that the position of the reference point 1K on the XY plane is within the region of the first quadrant Q1 shown in FIG. The position of the reference point 1K in the second embodiment is an example of the position PK1 shown in FIG.
 図54は、本開示の第2の実施の形態に係る切削工具の構成の一例を示す図である。図54を参照して、切削工具102は、ひずみセンサ20として、ひずみセンサ20A,20C,20Dを備える。たとえば、ひずみセンサ20A,20C,20Dは、シャンク10の側面S4に搭載される。ひずみセンサ20A,20Cの搭載位置は、第1の実施の形態と同じである。 FIG. 54 is a diagram showing an example of the configuration of the cutting tool according to the second embodiment of the present disclosure. With reference to FIG. 54, the cutting tool 102 includes strain sensors 20A, 20C, 20D as strain sensors 20. For example, the strain sensors 20A, 20C, 20D are mounted on the side surface S4 of the shank 10. The mounting positions of the strain sensors 20A and 20C are the same as those in the first embodiment.
 たとえば、ひずみセンサ20Dは、シャンク10の垂直ひずみを測定可能な垂直ひずみセンサである。ひずみセンサ20Dは、第2の垂直ひずみセンサの一例である。ひずみセンサ20Dは、ひずみセンサ20Dの搭載位置におけるシャンク10の垂直ひずみεzzを測定する。より詳細には、ひずみセンサ20Dは、たとえば、軸17と平行な測定軸d1を有する。ひずみセンサ20Dは、測定軸d1の方向におけるひずみsd1を測定し、ひずみsd1に応じたレベルのアナログ信号ASd1を垂直ひずみεzzに対応するアナログ信号ASzzとして上述した無線通信装置へ出力する。たとえば、ひずみセンサ20Dは、荷重Fx,Fy,Fzのうち、荷重Fxに対して最大の感度を有する。 For example, the strain sensor 20D is a vertical strain sensor capable of measuring the vertical strain of the shank 10. The strain sensor 20D is an example of a second vertical strain sensor. The strain sensor 20D measures the vertical strain εzz of the shank 10 at the mounting position of the strain sensor 20D. More specifically, the strain sensor 20D has, for example, a measurement axis d1 parallel to the axis 17. The strain sensor 20D measures the strain sd1 in the direction of the measurement axis d1 and outputs an analog signal ASd1 at a level corresponding to the strain sd1 to the above-mentioned wireless communication device as an analog signal ASzz corresponding to the vertical strain εzzz. For example, the strain sensor 20D has the maximum sensitivity to the load Fx among the loads Fx, Fy, and Fz.
 (軸方向におけるひずみセンサ20Dの搭載位置)
 図55は、本開示の第2の実施の形態に係る切削工具の構成を示す断面図である。図55は、図54におけるLV-LV線矢視断面図である。図55では、基準点1KをZ方向に沿ってLV-LV線矢視断面へ平行移動させたときの基準点1Kの位置を黒丸で示している。図55を参照して、ひずみセンサ20Dの搭載位置におけるシャンク10のシャンク高さをWdとする。また、X方向における、ひずみセンサ20Dの搭載位置におけるシャンク10の中心と、チップ1における切刃の基準点1Kとの間の距離を距離dxdとする。また、Y方向における、ひずみセンサ20Dの搭載位置におけるシャンク10の中心と、基準点1Kとの間の距離を距離dydとする。
(Mounting position of strain sensor 20D in the axial direction)
FIG. 55 is a cross-sectional view showing the configuration of the cutting tool according to the second embodiment of the present disclosure. FIG. 55 is a cross-sectional view taken along the line LV-LV in FIG. 54. In FIG. 55, the position of the reference point 1K when the reference point 1K is translated along the Z direction to the cross section of the LV-LV line arrow is indicated by a black circle. With reference to FIG. 55, the shank height of the shank 10 at the mounting position of the strain sensor 20D is defined as Wd. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20D in the X direction and the reference point 1K of the cutting edge in the chip 1 is defined as the distance dxd. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20D in the Y direction and the reference point 1K is defined as the distance dyd.
 また、距離dxdおよび距離dydが互いに異なる値である場合、距離dxdおよび距離dydのうちの大きい方をmaxdxydとし、小さい方をmindxydとする。なお、距離dxdおよび距離dydが等しい値である場合、距離dxdおよび距離dydをmaxdxydとする。図55に示す例では、距離dxdおよび距離dydが互いに異なる値であり、かつ距離dxdは距離dydよりも大きい。したがって、距離dxdをmaxdxydとし、距離dydをmindxydとする。再び図54を参照して、このとき、Z方向における、ひずみセンサ20Dの搭載位置と基準点1Kとの間の距離をセンサ距離Ddとすると、センサ距離Ddは、下記式(33)を満たす。
 0.74Wd+2.09mindxyd<Dd<0.74Wd+2.09maxdxyd ・・・ (33)
When the distance dxd and the distance dyd are different values from each other, the larger one of the distance dxd and the distance dyd is defined as maxdxyd, and the smaller one is defined as mindxyd. When the distance dxd and the distance dyd are equal values, the distance dxd and the distance dyd are set to maxdxyd. In the example shown in FIG. 55, the distance dxd and the distance dyd are different values from each other, and the distance dxd is larger than the distance dyd. Therefore, the distance dxd is set to maxdxyd, and the distance dyd is set to mindxyd. With reference to FIG. 54 again, at this time, assuming that the distance between the mounting position of the strain sensor 20D and the reference point 1K in the Z direction is the sensor distance Dd, the sensor distance Dd satisfies the following equation (33).
0.74Wd + 2.09mindxyd <Dd <0.74Wd + 2.09maxdxyd ... (33)
 このような構成により、ひずみセンサ20Dを用いて、荷重Fxに伴って生じるひずみをより高感度で測定することができる。 With such a configuration, the strain sensor 20D can be used to measure the strain generated by the load Fx with higher sensitivity.
 (周方向におけるひずみセンサ20Dの搭載位置)
 ひずみセンサ20Dは、シャンク10の4つの表面のうちの底面S1に隣接する側面S4における任意の位置に搭載される。なお、ひずみセンサ20Dは、側面S3における任意の位置に搭載されてもよい。側面S3は、第1側面の一例であり、側面S4は、第2側面の一例である。本実施の形態の切削工具102によれば、切削加工時における3つのひずみセンサ20A,20C,20Dの測定結果に基づいて、切削抵抗の3分力を算出することができる。
(Mounting position of strain sensor 20D in the circumferential direction)
The strain sensor 20D is mounted at an arbitrary position on the side surface S4 adjacent to the bottom surface S1 of the four surfaces of the shank 10. The strain sensor 20D may be mounted at an arbitrary position on the side surface S3. The side surface S3 is an example of the first side surface, and the side surface S4 is an example of the second side surface. According to the cutting tool 102 of the present embodiment, the three-component force of the cutting resistance can be calculated based on the measurement results of the three strain sensors 20A, 20C, and 20D at the time of cutting.
 切削工具102にひずみセンサ20を搭載する際の搭載方法は、以下の通りである。すなわち、まず、切削工具102のユーザは、シャンク10と、ひずみセンサ20A,20C,20Dとを準備する。次に、ユーザは、シャンク10の表面にひずみセンサ20A,20C,20Dを搭載する。より詳細には、ひずみセンサ20A,20C,20Dを、上述した搭載位置に搭載する。 The mounting method when mounting the strain sensor 20 on the cutting tool 102 is as follows. That is, first, the user of the cutting tool 102 prepares the shank 10 and the strain sensors 20A, 20C, 20D. Next, the user mounts the strain sensors 20A, 20C, 20D on the surface of the shank 10. More specifically, the strain sensors 20A, 20C, 20D are mounted at the above-mentioned mounting positions.
 [変形例]
 なお、切削工具102において、XY平面における基準点1Kの位置は、図3に示す第1象限Q1以外の領域内であってもよい。ひずみセンサ20A,20Cは、XY平面における基準点1Kの位置が第1象限Q1以外の領域内である場合、第1の実施の形態の変形例1~11で説明した搭載位置に搭載される。ひずみセンサ20Dは、基準点1Kの位置に関わらず、上述したように、側面S4における任意の位置または側面S3における任意の位置に搭載される。
[Modification example]
In the cutting tool 102, the position of the reference point 1K on the XY plane may be in a region other than the first quadrant Q1 shown in FIG. When the position of the reference point 1K on the XY plane is in a region other than the first quadrant Q1, the strain sensors 20A and 20C are mounted at the mounting positions described in the modified examples 1 to 11 of the first embodiment. As described above, the strain sensor 20D is mounted at an arbitrary position on the side surface S4 or an arbitrary position on the side surface S3 regardless of the position of the reference point 1K.
 <第3の実施の形態>
 本実施の形態は、第1の実施の形態に係る切削工具101と比べて、ひずみセンサ20Aの代わりにひずみセンサ20Eを備える切削工具102Aに関する。以下で説明する内容以外は第1の実施の形態に係る切削工具101と同様である。第3の実施の形態では、XY平面における基準点1Kの位置は、図3に示す第2象限Q2の領域内であるものとする。第3の実施の形態における基準点1Kの位置は、図3に示す位置PK2の一例である。
<Third embodiment>
The present embodiment relates to a cutting tool 102A provided with a strain sensor 20E instead of the strain sensor 20A as compared with the cutting tool 101 according to the first embodiment. Except for the contents described below, it is the same as the cutting tool 101 according to the first embodiment. In the third embodiment, it is assumed that the position of the reference point 1K on the XY plane is within the region of the second quadrant Q2 shown in FIG. The position of the reference point 1K in the third embodiment is an example of the position PK2 shown in FIG.
 図56は、本開示の第3の実施の形態に係る切削工具の構成の一例を示す図である。図56を参照して、切削工具102Aは、ひずみセンサ20として、ひずみセンサ20B,20C,20Eを備える。たとえば、ひずみセンサ20B,20Eは、シャンク10の上面S2に搭載される。また、たとえば、ひずみセンサ20Cは、シャンク10の側面S4に搭載される。ひずみセンサ20B,20Cの搭載位置は、第1の実施の形態の変形例1と同じである。 FIG. 56 is a diagram showing an example of the configuration of the cutting tool according to the third embodiment of the present disclosure. With reference to FIG. 56, the cutting tool 102A includes strain sensors 20B, 20C, 20E as strain sensors 20. For example, the strain sensors 20B and 20E are mounted on the upper surface S2 of the shank 10. Further, for example, the strain sensor 20C is mounted on the side surface S4 of the shank 10. The mounting positions of the strain sensors 20B and 20C are the same as those of the first modification of the first embodiment.
 たとえば、ひずみセンサ20Eは、シャンク10の垂直ひずみを測定可能な垂直ひずみセンサである。ひずみセンサ20Eは、第3の垂直ひずみセンサの一例である。ひずみセンサ20Eは、ひずみセンサ20Eの搭載位置におけるシャンク10の垂直ひずみεzzを測定する。より詳細には、ひずみセンサ20Eは、たとえば、軸17と平行な測定軸e1を有する。ひずみセンサ20Eは、測定軸e1の方向におけるひずみse1を測定し、ひずみse1に応じたレベルのアナログ信号ASe1を垂直ひずみεzzに対応するアナログ信号ASzzとして上述した無線通信装置へ出力する。たとえば、ひずみセンサ20Eは、荷重Fx,Fy,Fzのうち、荷重Fyに対して最大の感度を有する。 For example, the strain sensor 20E is a vertical strain sensor capable of measuring the vertical strain of the shank 10. The strain sensor 20E is an example of a third vertical strain sensor. The strain sensor 20E measures the vertical strain εzz of the shank 10 at the mounting position of the strain sensor 20E. More specifically, the strain sensor 20E has, for example, a measurement axis e1 parallel to the axis 17. The strain sensor 20E measures the strain se1 in the direction of the measurement axis e1 and outputs an analog signal ASe1 at a level corresponding to the strain se1 to the above-mentioned wireless communication device as an analog signal ASzz corresponding to the vertical strain εzzz. For example, the strain sensor 20E has the maximum sensitivity to the load Fy among the loads Fx, Fy, and Fz.
 (軸方向におけるひずみセンサ20Eの搭載位置)
 図57は、本開示の第3の実施の形態に係る切削工具の構成を示す断面図である。図57は、図56におけるLVII-LVII線矢視断面図である。図57では、基準点1KをZ方向に沿ってLVII-LVII線矢視断面へ平行移動させたときの基準点1Kの位置を黒丸で示している。図57を参照して、ひずみセンサ20Eの搭載位置におけるシャンク10のシャンク高さをWeとする。また、X方向における、ひずみセンサ20Eの搭載位置におけるシャンク10の中心と、チップ1における切刃の基準点1Kとの間の距離を距離dxeとする。また、Y方向における、ひずみセンサ20Eの搭載位置におけるシャンク10の中心と、基準点1Kとの間の距離を距離dyeとする。
(Mounting position of strain sensor 20E in the axial direction)
FIG. 57 is a cross-sectional view showing the configuration of the cutting tool according to the third embodiment of the present disclosure. FIG. 57 is a cross-sectional view taken along the line LVII-LVII in FIG. 56. In FIG. 57, the position of the reference point 1K when the reference point 1K is translated along the Z direction to the cross section of the LVII-LVII line arrow is indicated by a black circle. With reference to FIG. 57, the shank height of the shank 10 at the mounting position of the strain sensor 20E is defined as We. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20E in the X direction and the reference point 1K of the cutting edge in the chip 1 is defined as the distance dxe. Further, the distance between the center of the shank 10 at the mounting position of the strain sensor 20E in the Y direction and the reference point 1K is defined as the distance dye.
 また、距離dxeおよび距離dyeが互いに異なる値である場合、距離dxeおよび距離dyeのうちの大きい方をmaxdxyeとし、小さい方をmindxyeとする。なお、距離dxeおよび距離dyeが等しい値である場合、距離dxeおよび距離dyeをmaxdxyeとする。図57に示す例では、距離dxeおよび距離dyeが互いに異なる値であり、かつ距離dxeは距離dyeよりも大きい。したがって、距離dxeをmaxdxyeとし、距離dyeをmindxyeとする。再び図56を参照して、このとき、Z方向における、ひずみセンサ20Eの搭載位置と基準点1Kとの間の距離をセンサ距離Deとすると、センサ距離Deは、下記式(34)を満たす。
 0.74We+2.09mindxye<De<0.74We+2.09maxdxye ・・・ (34)
When the distance dxe and the distance dye have different values, the larger one of the distance dexe and the distance dye is defined as maxdxye, and the smaller one is defined as mindxye. When the distance dxe and the distance dye are equal values, the distance dexe and the distance dye are set to maxdxye. In the example shown in FIG. 57, the distance dxe and the distance dye are different values from each other, and the distance dexe is larger than the distance dye. Therefore, the distance dxe is set to maxdxye, and the distance dye is set to mindxye. With reference to FIG. 56 again, at this time, assuming that the distance between the mounting position of the strain sensor 20E and the reference point 1K in the Z direction is the sensor distance De, the sensor distance De satisfies the following equation (34).
0.74We + 2.09mindxye <De <0.74We + 2.09maxdxye ... (34)
 このような構成により、ひずみセンサ20Eを用いて、荷重Fyに伴って生じるひずみをより高感度で測定することができる。 With such a configuration, the strain sensor 20E can be used to measure the strain generated by the load Fy with higher sensitivity.
 (周方向におけるひずみセンサ20Eの搭載位置)
 ひずみセンサ20Eは、シャンク10の4つの表面のうちの上面S2における任意の位置に搭載される。なお、ひずみセンサ20Eは、底面S1における任意の位置に搭載されてもよい。本実施の形態の切削工具102Aによれば、切削加工時における3つのひずみセンサ20B,20C,20Eの測定結果に基づいて、切削抵抗の3分力を算出することができる。
(Mounting position of strain sensor 20E in the circumferential direction)
The strain sensor 20E is mounted at an arbitrary position on the upper surface S2 of the four surfaces of the shank 10. The strain sensor 20E may be mounted at an arbitrary position on the bottom surface S1. According to the cutting tool 102A of the present embodiment, the three-component force of the cutting resistance can be calculated based on the measurement results of the three strain sensors 20B, 20C, and 20E at the time of cutting.
 切削工具102Aにひずみセンサ20を搭載する際の搭載方法は、以下の通りである。すなわち、まず、切削工具102Aのユーザは、シャンク10と、ひずみセンサ20B,20C,20Eとを準備する。次に、ユーザは、シャンク10の表面にひずみセンサ20B,20C,20Eを搭載する。より詳細には、ひずみセンサ20B,20C,20Eを、上述した搭載位置に搭載する。 The mounting method when mounting the strain sensor 20 on the cutting tool 102A is as follows. That is, first, the user of the cutting tool 102A prepares the shank 10 and the strain sensors 20B, 20C, 20E. Next, the user mounts the strain sensors 20B, 20C, 20E on the surface of the shank 10. More specifically, the strain sensors 20B, 20C, 20E are mounted at the above-mentioned mounting positions.
 [変形例]
 なお、切削工具102Aにおいて、XY平面における基準点1Kの位置は、図3に示す第2象限Q2以外の領域内であってもよい。ひずみセンサ20B,20Cは、XY平面における基準点1Kの位置が第2象限Q2以外の領域内である場合、第1の実施の形態、および第1の実施の形態の変形例2~11で説明した搭載位置に搭載される。ひずみセンサ20Eは、基準点1Kの位置に関わらず、上述したように、上面S2における任意の位置または底面S1における任意の位置に搭載される。
[Modification example]
In the cutting tool 102A, the position of the reference point 1K on the XY plane may be in a region other than the second quadrant Q2 shown in FIG. The strain sensors 20B and 20C will be described in the first embodiment and the modifications 2 to 11 of the first embodiment when the position of the reference point 1K on the XY plane is in a region other than the second quadrant Q2. It is mounted in the mounting position. As described above, the strain sensor 20E is mounted at an arbitrary position on the upper surface S2 or an arbitrary position on the bottom surface S1 regardless of the position of the reference point 1K.
 <第4の実施の形態>
 本実施の形態は、第1の実施の形態に係る切削工具101と比べて、ひずみセンサ20Aの代わりにひずみセンサ20Eを備え、かつひずみセンサ20Bの代わりにひずみセンサ20Dを備える切削工具102Bに関する。以下で説明する内容以外は第1の実施の形態に係る切削工具101と同様である。第4の実施の形態では、XY平面における基準点1Kの位置は、図3に示す第1象限Q1の領域内であるものとする。第4の実施の形態における基準点1Kの位置は、図3に示す位置PK1の一例である。
<Fourth Embodiment>
The present embodiment relates to a cutting tool 102B having a strain sensor 20E instead of the strain sensor 20A and a strain sensor 20D instead of the strain sensor 20B, as compared with the cutting tool 101 according to the first embodiment. Except for the contents described below, it is the same as the cutting tool 101 according to the first embodiment. In the fourth embodiment, it is assumed that the position of the reference point 1K on the XY plane is within the region of the first quadrant Q1 shown in FIG. The position of the reference point 1K in the fourth embodiment is an example of the position PK1 shown in FIG.
 図58は、本開示の第4の実施の形態に係る切削工具の構成の一例を示す図である。図58を参照して、切削工具102Bは、ひずみセンサ20として、ひずみセンサ20C,20D,20Eを備える。たとえば、ひずみセンサ20Eは、シャンク10の上面S2に搭載される。また、たとえば、ひずみセンサ20C,20Dは、シャンク10の側面S4に搭載される。ひずみセンサ20Cの搭載位置は、第1の実施の形態と同じである。 FIG. 58 is a diagram showing an example of the configuration of the cutting tool according to the fourth embodiment of the present disclosure. With reference to FIG. 58, the cutting tool 102B includes strain sensors 20C, 20D, 20E as strain sensors 20. For example, the strain sensor 20E is mounted on the upper surface S2 of the shank 10. Further, for example, the strain sensors 20C and 20D are mounted on the side surface S4 of the shank 10. The mounting position of the strain sensor 20C is the same as that of the first embodiment.
 (ひずみセンサ20D,20Eの搭載位置)
 Z方向におけるセンサ距離Ddは、下記式(35)を満たす。また、Z方向におけるセンサ距離Deは、下記式(36)を満たす。
 0.74Wd+2.09maxdxyd<Dd ・・・ (35)
 0.74We+2.09maxdxye<De ・・・ (36)
(Mounting position of strain sensors 20D and 20E)
The sensor distance Dd in the Z direction satisfies the following equation (35). Further, the sensor distance De in the Z direction satisfies the following equation (36).
0.74Wd + 2.09maxdxyd <Dd ... (35)
0.74We + 2.09maxdxye <De ... (36)
 周方向におけるひずみセンサ20Dの搭載位置は、第2の実施の形態で説明した搭載位置と同じである。周方向におけるひずみセンサ20Eの搭載位置は、第3の実施の形態で説明した搭載位置と同じである。本実施の形態の切削工具102Bによれば、切削加工時における3つのひずみセンサ20C,20D,20Eの測定結果に基づいて、切削抵抗の3分力を算出することができる。 The mounting position of the strain sensor 20D in the circumferential direction is the same as the mounting position described in the second embodiment. The mounting position of the strain sensor 20E in the circumferential direction is the same as the mounting position described in the third embodiment. According to the cutting tool 102B of the present embodiment, the three-component force of the cutting resistance can be calculated based on the measurement results of the three strain sensors 20C, 20D, and 20E at the time of cutting.
 切削工具102Bにひずみセンサ20を搭載する際の搭載方法は、以下の通りである。すなわち、まず、切削工具102Bのユーザは、シャンク10と、ひずみセンサ20C,20D,20Eとを準備する。次に、ユーザは、シャンク10の表面にひずみセンサ20C,20D,20Eを搭載する。より詳細には、ひずみセンサ20C,20D,20Eを、上述した搭載位置に搭載する。 The mounting method when mounting the strain sensor 20 on the cutting tool 102B is as follows. That is, first, the user of the cutting tool 102B prepares the shank 10 and the strain sensors 20C, 20D, 20E. Next, the user mounts the strain sensors 20C, 20D, 20E on the surface of the shank 10. More specifically, the strain sensors 20C, 20D, 20E are mounted at the above-mentioned mounting positions.
 [変形例]
 なお、切削工具102Bにおいて、XY平面における基準点1Kの位置は、図3に示す第1象限Q1以外の領域内であってもよい。ひずみセンサ20Cは、XY平面における基準点1Kの位置が第1象限Q1以外の領域内である場合、第1の実施の形態の変形例1~11で説明した搭載位置に搭載される。
[Modification example]
In the cutting tool 102B, the position of the reference point 1K on the XY plane may be in a region other than the first quadrant Q1 shown in FIG. When the position of the reference point 1K on the XY plane is in a region other than the first quadrant Q1, the strain sensor 20C is mounted at the mounting position described in the modified examples 1 to 11 of the first embodiment.
 [ひずみセンサの取り付け位置の変形例]
 図59および図60は、本開示の第1~第4の実施の形態に係る切削工具におけるひずみセンサの搭載位置の他の例を示す図である。図59は、角シャンクであるシャンク10の長手方向に垂直な方向における断面を示している。図60は、丸シャンクであるシャンク10の長手方向に垂直な方向における断面を示している。図59および図60を参照して、たとえば、シャンク10は、高さ方向HDにおける彫り込み深さがhdである凹部22Aを有する。ひずみセンサ20は、当該凹部22Aの内部におけるシャンク10の表面に取り付けられる。この場合、図59および図60に示すシャンク10の高さhsenは以下の通り定義するものとする。すなわち、シャンク10に凹部22Aが設けられていないと仮定した場合の高さhsenをhxとしたとき、hd/hxが0.2未満である場合、hxを高さhsenとし、hd/hxが0.2以上である場合、(hx-hd)を高さhsenとする。また、たとえば、ひずみセンサ20は、シャンク10の幅方向WDにおける彫り込み深さがbdである凹部の内部における、シャンク10の表面に取り付けられてもよい。この場合、シャンク10の幅bsenは、高さhsenと同様に、以下の通り定義するものとする。すなわち、シャンク10に凹部が設けられていないと仮定した場合の幅bsenをbxとしたとき、bd/bxが0.2未満である場合、bxを幅bsenとし、bd/bxが0.2以上である場合、(bx-bd)を幅bsenとする。
[Example of modification of the mounting position of the strain sensor]
59 and 60 are views showing another example of the mounting position of the strain sensor in the cutting tool according to the first to fourth embodiments of the present disclosure. FIG. 59 shows a cross section of the shank 10, which is a square shank, in a direction perpendicular to the longitudinal direction. FIG. 60 shows a cross section of the shank 10, which is a round shank, in a direction perpendicular to the longitudinal direction. With reference to FIGS. 59 and 60, for example, the shank 10 has a recess 22A with an engraving depth of hd in the height direction HD. The strain sensor 20 is attached to the surface of the shank 10 inside the recess 22A. In this case, the height hsen of the shank 10 shown in FIGS. 59 and 60 shall be defined as follows. That is, when the height hsen assuming that the shank 10 is not provided with the recess 22A is hx, when hd / hx is less than 0.2, hx is the height hsen and hd / hx is 0. If it is 2 or more, (hx-hd) is defined as the height hsen. Further, for example, the strain sensor 20 may be attached to the surface of the shank 10 inside the recess in which the engraving depth in the width direction WD of the shank 10 is bd. In this case, the width bsen of the shank 10 is defined as follows, similarly to the height hsen. That is, when the width bsen assuming that the shank 10 is not provided with the recess is bx, when bd / bx is less than 0.2, bx is the width bsen and bd / bx is 0.2 or more. If, (bx-bd) is the width bsen.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the above embodiment is exemplary in all respects and is not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1             チップ
 1K            基準点
 10            シャンク
 17            軸
 20            ひずみセンサ
 22A           凹部
 3A,3B         固定用部材
 50A,50B       刃物台
 101,101A~101K 切削工具
 102,102A,102B 切削工具
 101DB         外径バイト
 101SB         剣バイト
 110           無線通信部
 120           処理部
 130           記憶部
 201           処理装置
 301           切削システム
 S1            底面
 S2            上面
 S3            側面
 S4            側面
1 Chip 1K Reference point 10 Shank 17 Axis 20 Strain sensor 22A Recess 3A, 3B Fixing member 50A, 50B Cutting tool stand 101, 101A to 101K Cutting tool 102, 102A, 102B Cutting tool 101DB Outer diameter tool 101SB Sword tool 110 Wireless communication part 120 Processing unit 130 Storage unit 201 Processing device 301 Cutting system S1 Bottom surface S2 Top surface S3 Side surface S4 Side surface

Claims (29)

  1.  旋削加工用の切削工具であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、
     前記シャンクの表面に搭載されたセンサとを備え、
     前記センサは、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサであり、
     前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向である第1方向における、前記搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向である第2方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとし、前記軸と平行な方向である第3方向における、前記搭載位置と前記基準点との間の距離をセンサ距離Dとし、前記距離dxおよび前記距離dyが互いに異なる値である場合に前記距離dxおよび前記距離dyのうちの大きい方をmaxdxyとし、前記距離dxおよび前記距離dyが等しい値である場合に前記距離dxおよび前記距離dyをmaxdxyとしたとき、
     前記せん断ひずみセンサの前記センサ距離Dは、式(1)を満たす、
     D<0.74W+2.09maxdxy ・・・ (1)
    切削工具。
    A cutting tool for turning
    With a shank that has or can be fitted with a cutting edge,
    With a sensor mounted on the surface of the shank,
    The sensor is a shear strain sensor capable of measuring the shear strain of the shank.
    The shank height of the shank is W, and the center of the shank and the reference point of the cutting edge at the mounting position in the first direction parallel to the bottom surface of the shank and perpendicular to the axis of the shank. The distance between the shank and the reference point is defined as the distance dx, and the distance between the center of the shank and the reference point at the mounting position in the second direction orthogonal to the bottom surface of the shank is defined as the distance dy. The distance between the mounting position and the reference point in the third direction, which is a parallel direction, is defined as the sensor distance D, and when the distance dx and the distance dy are different values, the distance dx and the distance dy are used. When the larger one is maxdxy and the distance dx and the distance dy are equal to each other and the distance dx and the distance dy are maxdxy.
    The sensor distance D of the shear strain sensor satisfies the equation (1).
    D <0.74W + 2.09maxdxy ... (1)
    Cutting tools.
  2.  前記距離dxおよび前記距離dyのうち小さい方をmindxyとしたとき、
     前記せん断ひずみセンサの前記センサ距離Dは、式(2)を満たす、
     D<0.74W+2.09mindxy ・・・ (2)
    請求項1に記載の切削工具。
    When the smaller of the distance dx and the distance dy is mindxy,
    The sensor distance D of the shear strain sensor satisfies the equation (2).
    D <0.74W + 2.09mindxy ... (2)
    The cutting tool according to claim 1.
  3.  前記切削工具は、複数の前記センサを備え、
     前記複数のセンサのうちの少なくともいずれか2つは前記せん断ひずみセンサであり、
     2つの前記せん断ひずみセンサの各前記センサ距離Dは、前記式(2)を満たす、請求項2に記載の切削工具。
    The cutting tool comprises a plurality of the sensors.
    At least two of the plurality of sensors are the shear strain sensors.
    The cutting tool according to claim 2, wherein the sensor distance D of each of the two shear strain sensors satisfies the formula (2).
  4.  前記2つのせん断ひずみセンサの一方は、前記第1方向の負荷である第1負荷、前記第2方向の負荷である第2負荷、および前記第3方向の負荷である第3負荷のうち、前記第2負荷に対して最大の感度を有し、
     前記2つのせん断ひずみセンサの他方は、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有する、請求項3に記載の切削工具。
    One of the two shear strain sensors is the first load, which is the load in the first direction, the second load, which is the load in the second direction, and the third load, which is the load in the third direction. Has maximum sensitivity to the second load and has maximum sensitivity
    The cutting tool according to claim 3, wherein the other of the two shear strain sensors has the maximum sensitivity to the first load among the first load, the second load and the third load.
  5.  前記切削工具は、複数の前記センサを備え、
     前記複数のセンサのうちの少なくともいずれか1つは、前記シャンクの垂直ひずみを測定可能な垂直ひずみセンサである、請求項1から請求項4のいずれか1項に記載の切削工具。
    The cutting tool comprises a plurality of the sensors.
    The cutting tool according to any one of claims 1 to 4, wherein at least one of the plurality of sensors is a vertical strain sensor capable of measuring the vertical strain of the shank.
  6.  前記垂直ひずみセンサは、前記第1方向の負荷である第1負荷、前記第2方向の負荷である第2負荷、および前記第3方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有する、請求項5に記載の切削工具。 The vertical strain sensor is used as the third load among the first load which is the load in the first direction, the second load which is the load in the second direction, and the third load which is the load in the third direction. The cutting tool according to claim 5, which has the maximum sensitivity.
  7.  前記距離dxおよび前記距離dyのうち小さい方をmindxyとしたとき、
     前記垂直ひずみセンサの前記センサ距離Dは、式(3)を満たし、
     0.74W+2.09mindxy<D<0.74W+2.09maxdxy ・・・ (3)
     前記垂直ひずみセンサは、前記距離dxが前記距離dyより大きい場合、前記第1方向の負荷である第1負荷、前記第2方向の負荷である第2負荷、および前記第3方向の負荷である第3負荷のうち、前記第1負荷に対して最大の感度を有し、
     前記垂直ひずみセンサは、前記距離dyが前記距離dxより大きい場合、前記第1負荷、前記第2負荷、および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する、請求項5に記載の切削工具。
    When the smaller of the distance dx and the distance dy is mindxy,
    The sensor distance D of the vertical strain sensor satisfies the equation (3).
    0.74W + 2.09mindxy <D <0.74W + 2.09maxdxy ... (3)
    When the distance dx is larger than the distance dy, the vertical strain sensor is a first load which is a load in the first direction, a second load which is a load in the second direction, and a load in the third direction. Among the third loads, it has the maximum sensitivity to the first load and has the highest sensitivity.
    The vertical strain sensor has the highest sensitivity to the second load among the first load, the second load, and the third load when the distance dy is larger than the distance dx. The cutting tool according to 5.
  8.  旋削加工用の切削工具であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、
     前記シャンクの表面に搭載されたセンサとを備え、
     前記センサは、前記シャンクのせん断ひずみを測定可能な第1のせん断ひずみセンサであり、
     前記シャンクは、軸を囲む4つの表面を含み、
     前記第1のせん断ひずみセンサは、前記4つの表面のうちの少なくともいずれか1つである搭載面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載される、切削工具。
    A cutting tool for turning
    With a shank that has or can be fitted with a cutting edge,
    With a sensor mounted on the surface of the shank,
    The sensor is a first shear strain sensor capable of measuring the shear strain of the shank.
    The shank contains four surfaces surrounding the axis and comprises four surfaces.
    The first shear strain sensor is included in the three regions when the mounting surface, which is at least one of the four surfaces, is divided into three regions arranged in the circumferential direction of the shank. A cutting tool mounted in the above area in the middle.
  9.  前記第1のせん断ひずみセンサは、前記搭載面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記5つの領域のうちの真ん中の前記領域に搭載される、請求項8に記載の切削工具。 According to claim 8, the first shear strain sensor is mounted in the middle of the five regions when the mounting surface is divided into five regions arranged in the circumferential direction of the shank. The cutting tool described.
  10.  前記第1のせん断ひずみセンサは、前記4つの表面のうちの前記切刃の基準点に最も近い前記表面に搭載される、請求項8または請求項9に記載の切削工具。 The cutting tool according to claim 8 or 9, wherein the first shear strain sensor is mounted on the surface of the four surfaces closest to the reference point of the cutting edge.
  11.  前記切削工具は、さらに、
     前記センサとして、前記シャンクのせん断ひずみを測定可能な第2のせん断ひずみセンサを備え、
     前記第2のせん断ひずみセンサは、前記4つの表面うちの前記搭載面に隣接する隣接面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載される、請求項8から請求項10のいずれか1項に記載の切削工具。
    The cutting tool further
    As the sensor, a second shear strain sensor capable of measuring the shear strain of the shank is provided.
    The second shear strain sensor is located in the middle of the three regions when the adjacent surface of the four surfaces adjacent to the mounting surface is divided into three equal regions arranged in the circumferential direction of the shank. The cutting tool according to any one of claims 8 to 10, which is mounted in the area.
  12.  前記第2のせん断ひずみセンサは、前記隣接面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記5つの領域のうちの真ん中の前記領域に搭載される、請求項11に記載の切削工具。 The second shear strain sensor is mounted on the region in the middle of the five regions when the adjacent surface is divided into five regions arranged in the circumferential direction of the shank. The cutting tool described.
  13.  前記第2のせん断ひずみセンサは、前記4つの表面のうちの前記切刃の基準点に2番目に近い前記表面に搭載される、請求項11または請求項12に記載の切削工具。 The cutting tool according to claim 11 or 12, wherein the second shear strain sensor is mounted on the surface of the four surfaces that is second closest to the reference point of the cutting edge.
  14.  前記第1のせん断ひずみセンサおよび前記第2のせん断ひずみセンサの一方は、前記シャンクの底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第1負荷に対して最大の感度を有し、
     前記第1のせん断ひずみセンサおよび前記第2のせん断ひずみセンサの他方は、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する、請求項11から請求項13のいずれか1項に記載の切削工具。
    One of the first shear strain sensor and the second shear strain sensor is a first load which is parallel to the bottom surface of the shank and is a load in a direction orthogonal to the axis, and a load in a direction orthogonal to the bottom surface. It has the maximum sensitivity to the first load among the second load which is a load and the third load which is a load in the direction parallel to the axis.
    The other of the first shear strain sensor and the second shear strain sensor has the highest sensitivity to the second load among the first load, the second load and the third load. The cutting tool according to any one of items 11 to 13.
  15.  旋削加工用の切削工具であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、
     前記シャンクの表面に搭載されたセンサとを備え、
     前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、
     前記シャンクは、軸を囲む4つの表面を含み、
     前記第1の垂直ひずみセンサは、前記4つの表面のうちの前記切刃の基準点に最も近い第1表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第1表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記基準点に2番目に近い第2表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第2表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記第1表面と対向する第3表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第3表面における前記3つの領域のうちの前記基準点に最も遠い前記領域、および、前記4つの表面のうちの前記第2表面と対向する第4表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第4表面における前記3つの領域のうちの前記基準点に最も遠い前記領域のうちのいずれか1つに搭載される、切削工具。
    A cutting tool for turning
    With a shank that has or can be fitted with a cutting edge,
    With a sensor mounted on the surface of the shank,
    The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank.
    The shank contains four surfaces surrounding the axis and comprises four surfaces.
    The first vertical strain sensor divides the first surface of the four surfaces closest to the reference point of the cutting edge into three regions arranged in the circumferential direction of the shank into three equal parts. The region closest to the reference point among the three regions in the above, and the second surface of the four surfaces closest to the reference point are divided into three equal regions arranged in the circumferential direction of the shank. 3 When divided into three equal parts, the region farthest from the reference point among the three regions on the third surface and the fourth surface of the four surfaces facing the second surface are formed. Cutting that is mounted on any one of the regions farthest from the reference point among the three regions on the fourth surface when divided into three regions arranged in the circumferential direction of the shank. tool.
  16.  前記第1の垂直ひずみセンサは、前記第1表面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記第1表面における前記5つの領域のうちの前記基準点に最も近い前記領域、前記第2表面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記第2表面における前記5つの領域のうちの前記基準点に最も近い前記領域、前記第3表面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記第3表面における前記5つの領域のうちの前記基準点に最も遠い前記領域、および、前記第4表面を前記シャンクの周方向に並ぶ5つの領域に5等分したときに前記第4表面における前記5つの領域のうちの前記基準点に最も遠い前記領域のうちのいずれか1つに搭載される、請求項15に記載の切削工具。 The first vertical strain sensor is the closest to the reference point among the five regions on the first surface when the first surface is divided into five equal regions arranged in the circumferential direction of the shank. The region, the region closest to the reference point among the five regions on the second surface when the second surface is divided into five regions arranged in the circumferential direction of the shank, the third surface. When the shank is divided into five regions arranged in the circumferential direction, the region farthest from the reference point among the five regions on the third surface, and the fourth surface in the circumferential direction of the shank. 15. The 15. 10. Cutting tools.
  17.  旋削加工用の切削工具であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、
     前記シャンクの表面に搭載されたセンサとを備え、
     前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、
     前記シャンクは、軸を囲む4つの表面を含み、
     前記4つの表面のうちの前記切刃の基準点に最も近い前記表面を第1表面とし、前記4つの表面のうちの前記基準点に2番目に近い前記表面を第2表面とし、前記4つの表面のうちの前記第1表面と対向する前記表面を第3表面とし、前記4つの表面のうちの前記第2表面と対向する前記表面を第4表面としたとき、前記第1表面および前記第3表面のいずれか一方は、前記シャンクの底面であり、
     前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向における、前記第1の垂直ひずみセンサの搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記底面に直交する方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとしたとき、式(4)を満たし、
     10dx≦dy+W/6 ・・・ (4)
     前記第1の垂直ひずみセンサは、前記第1表面または前記第3表面に搭載される、切削工具。
    A cutting tool for turning
    With a shank that has or can be fitted with a cutting edge,
    With a sensor mounted on the surface of the shank,
    The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank.
    The shank contains four surfaces surrounding the axis and comprises four surfaces.
    The surface of the four surfaces closest to the reference point of the cutting edge is designated as the first surface, and the surface of the four surfaces closest to the reference point is designated as the second surface. When the surface of the surface facing the first surface is used as the third surface and the surface of the four surfaces facing the second surface is used as the fourth surface, the first surface and the first surface are used. One of the three surfaces is the bottom surface of the shank.
    The shank height of the shank is W, and the center of the shank and the cutting edge at the mounting position of the first vertical strain sensor in a direction parallel to the bottom surface of the shank and orthogonal to the axis of the shank. Equation (4) is satisfied when the distance between the reference point and the reference point is defined as the distance dx and the distance between the center of the shank and the reference point at the mounting position in the direction perpendicular to the bottom surface is defined as the distance dy. ,
    10dx≤dy + W / 6 ... (4)
    The first vertical strain sensor is a cutting tool mounted on the first surface or the third surface.
  18.  旋削加工用の切削工具であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、
     前記シャンクの表面に搭載されたセンサとを備え、
     前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、
     前記シャンクは、軸を囲む4つの表面を含み、
     前記4つの表面のうちの前記切刃の基準点に最も近い前記表面を第1表面とし、前記4つの表面のうちの前記基準点に2番目に近い前記表面を第2表面とし、前記4つの表面のうちの前記第1表面と対向する前記表面を第3表面とし、前記4つの表面のうちの前記第2表面と対向する前記表面を第4表面としたとき、前記第2表面および前記第4表面のいずれか一方は、前記シャンクの底面であり、
     前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向における、前記第1の垂直ひずみセンサの搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記底面に直交する方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとしたとき、式(5)を満たし、
     10dy≦dx+W/6 ・・・ (5)
     前記第1の垂直ひずみセンサは、前記第1表面または前記第3表面に搭載される、切削工具。
    A cutting tool for turning
    With a shank that has or can be fitted with a cutting edge,
    With a sensor mounted on the surface of the shank,
    The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank.
    The shank contains four surfaces surrounding the axis and comprises four surfaces.
    The surface of the four surfaces closest to the reference point of the cutting edge is designated as the first surface, and the surface of the four surfaces closest to the reference point is designated as the second surface. When the surface of the surface facing the first surface is used as the third surface and the surface of the four surfaces facing the second surface is used as the fourth surface, the second surface and the first surface are used. One of the four surfaces is the bottom surface of the shank.
    The shank height of the shank is W, and the center of the shank and the cutting edge at the mounting position of the first vertical strain sensor in a direction parallel to the bottom surface of the shank and orthogonal to the axis of the shank. Equation (5) is satisfied when the distance between the reference point and the reference point is defined as the distance dx and the distance between the center of the shank and the reference point at the mounting position in the direction perpendicular to the bottom surface is defined as the distance dy. ,
    10dy ≤ dx + W / 6 ... (5)
    The first vertical strain sensor is a cutting tool mounted on the first surface or the third surface.
  19.  前記切削工具は、さらに、
     前記センサとして、前記シャンクのせん断ひずみを測定可能な、第1のせん断ひずみセンサおよび第2のせん断ひずみセンサを備え、
     前記第1のせん断ひずみセンサは、前記第1表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載され、
     前記第2のせん断ひずみセンサは、前記第2表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載され、
     前記第1の垂直ひずみセンサは、前記シャンクの底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有し、
     前記第1のせん断ひずみセンサおよび前記第2のせん断ひずみセンサの一方は、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有し、
     前記第1のせん断ひずみセンサおよび前記第2のせん断ひずみセンサの他方は、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する、請求項15から請求項18のいずれか1項に記載の切削工具。
    The cutting tool further
    The sensor includes a first shear strain sensor and a second shear strain sensor capable of measuring the shear strain of the shank.
    The first shear strain sensor is mounted in the middle of the three regions when the first surface is divided into three equal regions arranged in the circumferential direction of the shank.
    The second shear strain sensor is mounted in the middle of the three regions when the second surface is divided into three equal regions arranged in the circumferential direction of the shank.
    The first vertical strain sensor has a first load that is parallel to the bottom surface of the shank and is a load in a direction orthogonal to the axis, a second load that is a load in a direction orthogonal to the bottom surface, and the axis. Of the third load, which is a load in the direction parallel to the above, it has the maximum sensitivity to the third load.
    One of the first shear strain sensor and the second shear strain sensor has the maximum sensitivity to the first load among the first load, the second load and the third load.
    The other of the first shear strain sensor and the second shear strain sensor has the highest sensitivity to the second load among the first load, the second load and the third load. The cutting tool according to any one of items 15 to 18.
  20.  前記切削工具は、さらに、
     前記センサとして、前記シャンクの垂直ひずみを測定可能な第3の垂直ひずみセンサと、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサとを備え、
     前記第3の垂直ひずみセンサは、前記4つの表面のうちの前記シャンクの底面、または前記4つの表面のうちの前記底面と対向する前記表面である上面に搭載され、
     前記せん断ひずみセンサは、前記底面および前記上面のうち前記基準点に最も近い表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載され、
     前記第1の垂直ひずみセンサは、前記底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有し、
     前記第3の垂直ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有し、
     前記せん断ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有する、請求項15から請求項18のいずれか1項に記載の切削工具。
    The cutting tool further
    As the sensor, a third vertical strain sensor capable of measuring the vertical strain of the shank and a shear strain sensor capable of measuring the shear strain of the shank are provided.
    The third vertical strain sensor is mounted on the bottom surface of the shank of the four surfaces or the top surface of the four surfaces facing the bottom surface.
    When the surface of the bottom surface and the top surface closest to the reference point is divided into three equal parts in the circumferential direction of the shank, the shear strain sensor is located in the middle of the three regions. Installed,
    The first vertical strain sensor has a first load that is parallel to the bottom surface and is a load in a direction orthogonal to the axis, a second load that is a load in a direction orthogonal to the bottom surface, and parallel to the axis. Of the third load, which is a load in the above direction, it has the maximum sensitivity to the third load.
    The third vertical strain sensor has the maximum sensitivity to the second load among the first load, the second load and the third load.
    The method according to any one of claims 15 to 18, wherein the shear strain sensor has the maximum sensitivity to the first load among the first load, the second load, and the third load. Cutting tool.
  21.  前記切削工具は、さらに、
     前記センサとして、前記シャンクの垂直ひずみを測定可能な第2の垂直ひずみセンサと、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサとを備え、
     前記第2の垂直ひずみセンサは、前記4つの表面のうちの前記シャンクの底面に隣接する第1側面、または前記4つの表面のうちの前記第1側面と対向する第2側面に搭載され、
     前記せん断ひずみセンサは、前記第1側面および前記第2側面のうち前記基準点に最も近い表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載され、
     前記第1の垂直ひずみセンサは、前記底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有し、
     前記第2の垂直ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有し、
     前記せん断ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する、請求項15から請求項18のいずれか1項に記載の切削工具。
    The cutting tool further
    The sensor includes a second vertical strain sensor capable of measuring the vertical strain of the shank and a shear strain sensor capable of measuring the shear strain of the shank.
    The second vertical strain sensor is mounted on the first side surface of the four surfaces adjacent to the bottom surface of the shank, or on the second side surface of the four surfaces facing the first side surface.
    When the shear strain sensor divides the surface of the first side surface and the second side surface closest to the reference point into three regions arranged in the circumferential direction of the shank, the shear strain sensor is in the middle of the three regions. Mounted in the area of
    The first vertical strain sensor has a first load that is parallel to the bottom surface and is a load in a direction orthogonal to the axis, a second load that is a load in a direction orthogonal to the bottom surface, and parallel to the axis. Of the third load, which is a load in the above direction, it has the maximum sensitivity to the third load.
    The second vertical strain sensor has the maximum sensitivity to the first load among the first load, the second load and the third load.
    The method according to any one of claims 15 to 18, wherein the shear strain sensor has the maximum sensitivity to the second load among the first load, the second load, and the third load. Cutting tool.
  22.  前記切削工具は、さらに、
     前記センサとして、前記シャンクの垂直ひずみを測定可能な、第2の垂直ひずみセンサおよび第3の垂直ひずみセンサを備え、
     前記第2の垂直ひずみセンサは、前記4つの表面のうちの前記シャンクの底面に隣接する第1側面、または前記4つの表面のうちの前記第1側面と対向する第2側面に搭載され、
     前記第3の垂直ひずみセンサは、前記4つの表面のうちの前記シャンクの底面、または前記4つの表面のうちの前記底面と対向する前記表面である上面に搭載され、
     前記第1の垂直ひずみセンサは、前記底面と平行であり、かつ前記軸に直交する方向の負荷である第1負荷、前記底面に直交する方向の負荷である第2負荷、および前記軸と平行な方向の負荷である第3負荷のうち、前記第3負荷に対して最大の感度を有し、
     前記第2の垂直ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第1負荷に対して最大の感度を有し、
     前記第3の垂直ひずみセンサは、前記第1負荷、前記第2負荷および前記第3負荷のうち、前記第2負荷に対して最大の感度を有する、請求項15から請求項18のいずれか1項に記載の切削工具。
    The cutting tool further
    The sensor includes a second vertical strain sensor and a third vertical strain sensor capable of measuring the vertical strain of the shank.
    The second vertical strain sensor is mounted on the first side surface of the four surfaces adjacent to the bottom surface of the shank, or on the second side surface of the four surfaces facing the first side surface.
    The third vertical strain sensor is mounted on the bottom surface of the shank of the four surfaces or the top surface of the four surfaces facing the bottom surface.
    The first vertical strain sensor has a first load that is parallel to the bottom surface and is a load in a direction orthogonal to the axis, a second load that is a load in a direction orthogonal to the bottom surface, and parallel to the axis. Of the third load, which is a load in the above direction, it has the maximum sensitivity to the third load.
    The second vertical strain sensor has the maximum sensitivity to the first load among the first load, the second load and the third load.
    The third vertical strain sensor is any one of claims 15 to 18, which has the maximum sensitivity to the second load among the first load, the second load, and the third load. Cutting tools described in the section.
  23.  前記シャンクの幅と前記シャンクのシャンク高さが等しい、請求項1から請求項22のいずれか1項に記載の切削工具。 The cutting tool according to any one of claims 1 to 22, wherein the width of the shank and the shank height of the shank are equal to each other.
  24.  請求項1から請求項23のいずれか1項に記載の切削工具と、
     処理装置とを備え、
     前記処理装置は、切削加工時の前記センサの計測結果に基づいて、前記切削工具に関する異常を検知する、切削システム。
    The cutting tool according to any one of claims 1 to 23, and the cutting tool.
    Equipped with a processing device
    The processing device is a cutting system that detects an abnormality related to the cutting tool based on the measurement result of the sensor at the time of cutting.
  25.  旋削加工用の切削工具にセンサを搭載する搭載方法であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、
     前記シャンクの表面に前記センサを搭載するステップとを含み、
     前記センサは、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサであり、
     前記センサを搭載するステップにおいては、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向である第1方向における、前記搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向である第2方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとし、前記軸と平行な方向である第3方向における、前記搭載位置と前記基準点との間の距離をセンサ距離Dとし、前記距離dxおよび前記距離dyが互いに異なる値である場合に前記距離dxおよび前記距離dyのうちの大きい方をmaxdxyとし、前記距離dxおよび前記距離dyが等しい値である場合に前記距離dxおよび前記距離dyをmaxdxyとしたとき、前記せん断ひずみセンサの前記センサ距離Dが式(6)を満たすように前記シャンクの表面に前記せん断ひずみセンサを搭載する、
     D<0.74W+2.09maxdxy ・・・ (6)
    搭載方法。
    It is a mounting method in which a sensor is mounted on a cutting tool for turning.
    A step of preparing a shank having or attaching a cutting edge and the sensor.
    Including a step of mounting the sensor on the surface of the shank.
    The sensor is a shear strain sensor capable of measuring the shear strain of the shank.
    In the step of mounting the sensor, the shank height of the shank is W, and the shank at the mounting position in the first direction parallel to the bottom surface of the shank and perpendicular to the axis of the shank. The distance between the center of the shank and the reference point of the cutting edge is defined as the distance dx, and the distance between the center of the shank at the mounting position and the reference point in the second direction perpendicular to the bottom surface of the shank. The distance is defined as the distance dy, the distance between the mounting position and the reference point in the third direction parallel to the axis is defined as the sensor distance D, and the distance dx and the distance dy are different values from each other. In this case, the larger of the distance dx and the distance dy is set to maxdxy, and when the distance dx and the distance dy are equal values and the distance dx and the distance dy are set to maxdxy, the shear strain sensor of the shear strain sensor. The shear strain sensor is mounted on the surface of the shank so that the sensor distance D satisfies the equation (6).
    D <0.74W + 2.09maxdxy ... (6)
    Mounting method.
  26.  旋削加工用の切削工具にセンサを搭載する搭載方法であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、
     前記シャンクの表面に前記センサを搭載するステップとを含み、
     前記センサは、前記シャンクのせん断ひずみを測定可能なせん断ひずみセンサであり、
     前記シャンクは、軸を囲む4つの表面を含み、
     前記センサを搭載するステップにおいては、前記せん断ひずみセンサを、前記シャンクの前記4つの表面のうちの少なくともいずれか1つである搭載面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記3つの領域のうちの真ん中の前記領域に搭載する、搭載方法。
    It is a mounting method in which a sensor is mounted on a cutting tool for turning.
    A step of preparing a shank having or attaching a cutting edge and the sensor.
    Including a step of mounting the sensor on the surface of the shank.
    The sensor is a shear strain sensor capable of measuring the shear strain of the shank.
    The shank contains four surfaces surrounding the axis and comprises four surfaces.
    In the step of mounting the sensor, the shear strain sensor is divided into three equal parts of the mounting surface, which is at least one of the four surfaces of the shank, into three regions arranged in the circumferential direction of the shank. A mounting method that is sometimes mounted in the middle of the three regions.
  27.  旋削加工用の切削工具にセンサを搭載する搭載方法であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、
     前記シャンクの表面に前記センサを搭載するステップとを含み、
     前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、
     前記シャンクは、軸を囲む4つの表面を含み、
     前記センサを搭載するステップにおいては、前記第1の垂直ひずみセンサを、前記4つの表面のうちの前記切刃の基準点に最も近い第1表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第1表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記基準点に2番目に近い第2表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第2表面における前記3つの領域のうちの前記基準点に最も近い前記領域、前記4つの表面のうちの前記第1表面と対向する第3表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第3表面における前記3つの領域のうちの前記基準点に最も遠い前記領域、および、前記4つの表面のうちの前記第2表面と対向する第4表面を前記シャンクの周方向に並ぶ3つの領域に3等分したときに前記第4表面における前記3つの領域のうちの前記基準点に最も遠い前記領域のうちのいずれか1つに搭載する、搭載方法。
    It is a mounting method in which a sensor is mounted on a cutting tool for turning.
    A step of preparing a shank having or attaching a cutting edge and the sensor.
    Including a step of mounting the sensor on the surface of the shank.
    The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank.
    The shank contains four surfaces surrounding the axis and comprises four surfaces.
    In the step of mounting the sensor, the first vertical strain sensor is placed in three regions of the four surfaces in which the first surface closest to the reference point of the cutting edge is aligned in the circumferential direction of the shank. When equally divided, the region closest to the reference point among the three regions on the first surface, and the second surface of the four surfaces closest to the reference point in the circumferential direction of the shank. When divided into three equal parts, the region closest to the reference point among the three regions on the second surface, and the third surface facing the first surface among the four surfaces. Is divided into three regions arranged in the circumferential direction of the shank, the region farthest from the reference point among the three regions on the third surface, and the first of the four surfaces. When the fourth surface facing the two surfaces is divided into three equal parts in the circumferential direction of the shank, any of the three regions on the fourth surface that is farthest from the reference point. The mounting method to mount on one.
  28.  旋削加工用の切削工具にセンサを搭載する搭載方法であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、
     前記シャンクの表面に前記センサを搭載するステップとを含み、
     前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、
     前記シャンクは、軸を囲む4つの表面を含み、
     前記4つの表面のうちの前記切刃の基準点に最も近い前記表面を第1表面とし、前記4つの表面のうちの前記基準点に2番目に近い前記表面を第2表面とし、前記4つの表面のうちの前記第1表面と対向する前記表面を第3表面とし、前記4つの表面のうちの前記第2表面と対向する前記表面を第4表面としたとき、前記第1表面および前記第3表面のいずれか一方は、前記シャンクの底面であり、
     前記センサを搭載するステップにおいては、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向における、前記第1の垂直ひずみセンサの搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとしたとき、前記第1の垂直ひずみセンサを、式(7)を満たすように前記第1表面または前記第3表面に搭載する、
     10dx≦dy+W/6 ・・・ (7)
    搭載方法。
    It is a mounting method in which a sensor is mounted on a cutting tool for turning.
    A step of preparing a shank having or attaching a cutting edge and the sensor.
    Including a step of mounting the sensor on the surface of the shank.
    The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank.
    The shank contains four surfaces surrounding the axis and comprises four surfaces.
    The surface of the four surfaces closest to the reference point of the cutting edge is designated as the first surface, and the surface of the four surfaces closest to the reference point is designated as the second surface. When the surface of the surface facing the first surface is used as the third surface and the surface of the four surfaces facing the second surface is used as the fourth surface, the first surface and the first surface are used. One of the three surfaces is the bottom surface of the shank.
    In the step of mounting the sensor, the shank height of the shank is W, and the first vertical strain sensor is mounted at a direction parallel to the bottom surface of the shank and orthogonal to the axis of the shank. The distance between the center of the shank and the reference point of the cutting edge is defined as the distance dx, and the distance between the center of the shank and the reference point at the mounting position in the direction perpendicular to the bottom surface of the shank is the distance. When dy is set, the first vertical strain sensor is mounted on the first surface or the third surface so as to satisfy the equation (7).
    10dx≤dy + W / 6 ... (7)
    Mounting method.
  29.  旋削加工用の切削工具にセンサを搭載する搭載方法であって、
     切刃を有するか、または切刃を取り付け可能なシャンクと、前記センサとを準備するステップと、
     前記シャンクの表面に前記センサを搭載するステップとを含み、
     前記センサは、前記シャンクの垂直ひずみを測定可能な第1の垂直ひずみセンサであり、
     前記シャンクは、軸を囲む4つの表面を含み、
     前記4つの表面のうちの前記切刃の基準点に最も近い前記表面を第1表面とし、前記4つの表面のうちの前記基準点に2番目に近い前記表面を第2表面とし、前記4つの表面のうちの前記第1表面と対向する前記表面を第3表面とし、前記4つの表面のうちの前記第2表面と対向する前記表面を第4表面としたとき、前記第2表面および前記第4表面のいずれか一方は、前記シャンクの底面であり、
     前記センサを搭載するステップにおいては、前記シャンクのシャンク高さをWとし、前記シャンクの底面と平行であり、かつ前記シャンクの軸に直交する方向における、前記第1の垂直ひずみセンサの搭載位置における前記シャンクの中心と前記切刃の基準点との間の距離を距離dxとし、前記シャンクの底面に直交する方向における、前記搭載位置における前記シャンクの中心と前記基準点との間の距離を距離dyとしたとき、前記第1の垂直ひずみセンサを、式(8)を満たすように前記第1表面または前記第3表面に搭載する、
     10dy≦dx+W/6 ・・・ (8)
    搭載方法。
     
     
     
     
     
    It is a mounting method in which a sensor is mounted on a cutting tool for turning.
    A step of preparing a shank having or attaching a cutting edge and the sensor.
    Including a step of mounting the sensor on the surface of the shank.
    The sensor is a first vertical strain sensor capable of measuring the vertical strain of the shank.
    The shank contains four surfaces surrounding the axis and comprises four surfaces.
    The surface of the four surfaces closest to the reference point of the cutting edge is designated as the first surface, and the surface of the four surfaces closest to the reference point is designated as the second surface. When the surface of the surface facing the first surface is used as the third surface and the surface of the four surfaces facing the second surface is used as the fourth surface, the second surface and the first surface are used. One of the four surfaces is the bottom surface of the shank.
    In the step of mounting the sensor, the shank height of the shank is W, and the first vertical strain sensor is mounted at a direction parallel to the bottom surface of the shank and orthogonal to the axis of the shank. The distance between the center of the shank and the reference point of the cutting edge is defined as the distance dx, and the distance between the center of the shank and the reference point at the mounting position in the direction perpendicular to the bottom surface of the shank is the distance. When dy is set, the first vertical strain sensor is mounted on the first surface or the third surface so as to satisfy the equation (8).
    10dy ≤ dx + W / 6 ... (8)
    Mounting method.




PCT/JP2020/044421 2020-11-30 2020-11-30 Cutting tool, cutting system, and installing method WO2022113319A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022506246A JP7168124B2 (en) 2020-11-30 2020-11-30 Cutting tools and cutting systems
PCT/JP2020/044421 WO2022113319A1 (en) 2020-11-30 2020-11-30 Cutting tool, cutting system, and installing method
PCT/JP2021/041545 WO2022113750A1 (en) 2020-11-30 2021-11-11 Cutting tool and cutting system
JP2022525263A JP7294536B2 (en) 2020-11-30 2021-11-11 Cutting tools and cutting systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044421 WO2022113319A1 (en) 2020-11-30 2020-11-30 Cutting tool, cutting system, and installing method

Publications (1)

Publication Number Publication Date
WO2022113319A1 true WO2022113319A1 (en) 2022-06-02

Family

ID=81755468

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/044421 WO2022113319A1 (en) 2020-11-30 2020-11-30 Cutting tool, cutting system, and installing method
PCT/JP2021/041545 WO2022113750A1 (en) 2020-11-30 2021-11-11 Cutting tool and cutting system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041545 WO2022113750A1 (en) 2020-11-30 2021-11-11 Cutting tool and cutting system

Country Status (2)

Country Link
JP (2) JP7168124B2 (en)
WO (2) WO2022113319A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147070B1 (en) * 1970-12-30 1976-12-13
JP2000162056A (en) * 1998-11-24 2000-06-16 Ritsumeikan Semiconductor strain gage and measuring method for strain by using it
EP2051041A2 (en) * 2007-10-16 2009-04-22 Centre Technique de l'Industrie du Decolletage Instrumented plate-holder for a machine-tool and associated tool-holder
US20160045994A1 (en) * 2013-03-25 2016-02-18 Centre Technique De L'industrie Du Decolletage Insert Holder For A Machine Tool
JP2019534795A (en) * 2016-09-09 2019-12-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ Estimating cutting edge deflection
JP2019209420A (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Cutting system, and information processor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147070B1 (en) * 1970-12-30 1976-12-13
JP2000162056A (en) * 1998-11-24 2000-06-16 Ritsumeikan Semiconductor strain gage and measuring method for strain by using it
EP2051041A2 (en) * 2007-10-16 2009-04-22 Centre Technique de l'Industrie du Decolletage Instrumented plate-holder for a machine-tool and associated tool-holder
US20160045994A1 (en) * 2013-03-25 2016-02-18 Centre Technique De L'industrie Du Decolletage Insert Holder For A Machine Tool
JP2019534795A (en) * 2016-09-09 2019-12-05 サンドビック インテレクチュアル プロパティー アクティエボラーグ Estimating cutting edge deflection
JP2019209420A (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Cutting system, and information processor

Also Published As

Publication number Publication date
WO2022113750A1 (en) 2022-06-02
JPWO2022113319A1 (en) 2022-06-02
JP7168124B2 (en) 2022-11-09
JP7294536B2 (en) 2023-06-20
JPWO2022113750A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
US9751180B2 (en) Insert holder for a machine tool
KR20180099799A (en) Force / torque sensors with instrumentation on less than 4 beam surfaces
JP5248221B2 (en) Force sensor and assembly method thereof
US20200309617A1 (en) Force sensor
JP7184698B2 (en) force sensor
US9791332B2 (en) Rod-shaped force transducer with improved deformation behavior
RU2019110261A (en) EVALUATION OF CUT EDGE DEFLECTION
US8904884B2 (en) Torque sensor
JP2016070673A (en) Force sensor
US20150187961A1 (en) Piezoresistive sensor
JP2007163405A (en) Multiaxial force load cell
WO2022113319A1 (en) Cutting tool, cutting system, and installing method
EP3553484A1 (en) Torque sensor
US10067009B2 (en) Rod-shaped force transducer with simplified adjustment
Denkena et al. Production monitoring based on sensing clamping elements
Denkena et al. Sensory workpieces for process monitoring–an approach
US20220316968A1 (en) Multi-degree of freedom force and torque sensor and robot
JP5765648B1 (en) Force sensor
CN102778310A (en) Force transducer capable of calibrating multiple angles
JP5719521B2 (en) 3-axis force sensor
KR101759102B1 (en) Improving performance wheel dynamometer on rotation
CN211121084U (en) Double-groove cover plate type optical fiber strain sensor packaging structure
US20050236559A1 (en) Fiber grating strain sensors for civil structures
Berger et al. Improved six-degree-of-freedom single-chip force/moment transducer for instrumented teeth
CN109631745A (en) A kind of high-precision strain transducer and its method for increasing sensitivity and range

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022506246

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963583

Country of ref document: EP

Kind code of ref document: A1