WO2022112069A1 - Device for measuring the quality of a photovoltaic component and associated method - Google Patents

Device for measuring the quality of a photovoltaic component and associated method Download PDF

Info

Publication number
WO2022112069A1
WO2022112069A1 PCT/EP2021/081932 EP2021081932W WO2022112069A1 WO 2022112069 A1 WO2022112069 A1 WO 2022112069A1 EP 2021081932 W EP2021081932 W EP 2021081932W WO 2022112069 A1 WO2022112069 A1 WO 2022112069A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
photovoltaic component
zone
modulation element
measuring
Prior art date
Application number
PCT/EP2021/081932
Other languages
French (fr)
Inventor
Damien BARAKEL
Original Assignee
Université D'aix-Marseille
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Université D'aix-Marseille, Centre National De La Recherche Scientifique filed Critical Université D'aix-Marseille
Publication of WO2022112069A1 publication Critical patent/WO2022112069A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • TITLE Device for measuring the quality of a photovoltaic component, associated process.
  • the field of the invention is that of diagnostic devices making it possible to assess the quality of photovoltaic components, such as photovoltaic cells or panels for example.
  • the invention lies more particularly in the field of quality measurement devices based on a technique of characterization by induced currents.
  • the LBIC technique - from the English "Light Beam Induced Current", "current induced by light beam” in French - is a characterization technique known and used in the field of photovoltaics, in order to evaluate the quality of components such as a photovoltaic cell or panel for example.
  • This technique makes it possible in particular to highlight and locate any defects in the photovoltaic component tested (manufacturing defects, impacts, aging, etc.), which are often the cause of degradation in the performance of the component.
  • the general principle of the LBIC characterization technique is based on the photovoltaic effect of certain semiconductor materials used in these components, which results in the appearance of a current at the terminals of the photovoltaic component exposed to light.
  • this technique consists in locally illuminating, by means of a modulated light beam, an area of the photovoltaic component to be tested, then in isolating and measuring the current induced in response to this localized light excitation. By scanning the surface of the photovoltaic component in this way, a complete map of these induced photocurrents is drawn up, which can be assimilated, under certain conditions, to an image of the quality of this component.
  • Figure la illustrates, schematically and partially, a device for measuring the quality of a photovoltaic component based on the LBIC technique (also called more simply "LBIC device” in the rest of the document), as existing in the prior art.
  • a device comprises a unit 11 for generating a modulated light beam 12 used to illuminate a very localized zone Z of the photovoltaic component CP′ to be tested, which is moreover immersed in darkness, as well as a unit for measuring the intensity of the current induced by the photovoltaic effect in response to this light excitation.
  • the generation unit 11 comprises a polychromatic light source 111 (possibly associated with a monochromator) or monochromatic (eg a laser).
  • the generation unit 11 also comprises a modulation element 112, also called an optical chopper, used to periodically interrupt the light beam produced by the light source 111. As illustrated in FIG. a pierced disc rotating in the light beam at a controlled speed. In this way, the light beam 12 is modulated (ie "cut") at a well-defined frequency, which makes it possible, by implementing synchronous detection techniques commonly used in the field of signal processing, to isolate level of the measurement unit 14 the current actually induced by the modulated light beam 12.
  • a modulation element 112 also called an optical chopper
  • the input of the measurement unit 14 therefore corresponds to a juxtaposition of several currents, not only that induced by the modulated light beam 12 but also other currents induced by parasitic light sources other than the light source 111.
  • the synchronous detection technique then consists, at the level of the measurement unit 14, to filter and ignore all the currents of frequencies different from the modulation frequency of the modulated light beam 12, defined thanks to the modulation element 112. These parasitic currents your are thus discarded, and only the current induced by the light beam emitted by the generation unit 111 is measured at the level of the measurement unit 14.
  • the generation unit 11 of the modulated light beam also generally comprises various other elements, not shown in FIG. a very small surface of the photovoltaic component CP' to be tested.
  • the photovoltaic component CP′ is also mounted on a precision table, the movement of which in a plane perpendicular to the modulated beam 12 can be controlled very finely. In this way, it is possible to scan, by means of the modulated beam 12, the entire surface of the photovoltaic component CP′ to be tested, and thus to obtain, by consolidating all the associated measurements carried out by the measurement unit 14, a complete map of the intensity of the photocurrents induced in this component (the width of the modulated beam defining, to a certain extent, the resolution of the image obtained).
  • Figure lb shows an example of mapping (in a partial view and not to scale) obtained through the use of such an existing LBIC device to test a crystalline silicon photovoltaic cell under polychromatic light, with a resolution of 50 pm.
  • mapping in a partial view and not to scale
  • Such a map can be likened to an image of the quality of the photovoltaic component, the areas associated with abnormally low current intensities or abnormally high being more particularly likely to present defects.
  • the present technique makes it possible to partly solve the problems posed by the prior art.
  • the present technique in fact relates to a device for measuring the quality of a photovoltaic component, said device comprising: a modulation element for modulating, at a predetermined frequency, light incident on at least part of said component photovoltaic, called tested area; a unit for measuring the intensity of the current induced in said photovoltaic component by said modulated incident light, said intensity being representative of the quality of the zone tested.
  • said modulation element takes the form of a plate adapted to be placed directly or mounted flush on said photovoltaic component, said plate comprising at least one modulation zone configured to alternate periodically, at said predetermined frequency, between two states: an exposure state in which the modulation zone allows the passage of light through said plate, at the level of said modulation zone; a closed state in which the modulation zone blocks the passage of light through said plate, at the level of said modulation zone.
  • said modulation zone extends substantially over the entire surface of said plate, and said modulation zone is formed by superimposing two grids, a fixed grid and a mobile grid, each of the two grids comprising a succession of optically transparent portions and of opaque portions, said mobile grid being configured so as to be mobile between at least a first position, corresponding to said exposure state, in which the optically transparent portions of the two grids overlap at least partially, and at least a second position, corresponding to said closed state in which the opaque portions of any one of the two grids completely block the optically transparent portions of the other of the two grids.
  • said plate has dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel.
  • said plate takes the form of a matrix of independently controllable liquid crystal shutters, said matrix comprising at least one liquid crystal shutter, each liquid crystal shutter of said matrix being a shutter with two states, a state in which the shutter allows light to pass and a state in which the shutter blocks light, and in that said modulation zone is formed by a set of shutters with adjacent liquid crystals of said matrix, said assembly comprising at least one liquid crystal shutter.
  • said array of liquid crystal shutters comprises a single liquid crystal shutter extending over substantially the entire surface of said plate and defining said modulation zone.
  • said plate has dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel.
  • said matrix of liquid crystal shutters comprises a plurality of liquid crystal shutters, and said plate is of dimensions substantially equivalent to the standard dimensions of a photovoltaic panel.
  • said modulation element further comprises means for optical filtering of said incident light, as a function of the wavelength.
  • the proposed technique also relates to a method for measuring the quality of a photovoltaic component by means of a measuring device as previously described, said photovoltaic component being illuminated only by natural sunlight.
  • Said method comprises at least one iteration of the following steps: a step of positioning the modulation element of said measuring device directly in contact with an area comprising at least one area to be tested of said photovoltaic component; a step of activating the alternation, at a predetermined frequency, of the modulation zone of said modulation element, between its exposure state and its shutter state. a step of measuring, by the measuring unit of said measuring device, the intensity of the current induced in the photovoltaic component by the natural light modulated by said modulation zone.
  • said method further comprises, prior to said activation step, when said modulation element of said measuring device takes the form of a matrix comprising a plurality of liquid crystal shutters, a step of selecting a set of adjacent liquid crystal shutters of said array, including at least one liquid crystal shutter, defining said modulation area.
  • FIG la already described in relation to the prior art, schematically and partially presents an existing measuring device based on the LBIC characterization technique, in use for the evaluation of the quality of a component photovoltaic ;
  • FIG lb already described in relation to the prior art, presents an example of mapping of the intensity of the currents induced in a photovoltaic component, as obtained after scanning the surface of a photovoltaic component by an LBIC device such as that shown in Figure la;
  • FIG 2 schematically and partially presents a device for measuring the quality of a photovoltaic component, in a particular embodiment of the proposed technique
  • FIG 3a schematically illustrates a possible implementation of a modulation element of a device according to the proposed technique, formed by superimposing two complementary grids, in a particular embodiment
  • FIG 3b presents an example of two grids (in (a) and (b)) adapted for the implementation of a modulation element, as well as the modulation element obtained by superimposing these two grids, in a closed state (in (c)) and in an exposed state (in (d)), in a particular embodiment of the proposed technique;
  • FIG 3c presents another example of grids suitable for the implementation of a modulation element, in a particular embodiment
  • FIG 4a shows a modulation element with dimensions smaller than the standard dimensions of a photovoltaic cell, in a particular embodiment of the proposed technique
  • FIG 4b shows a modulation element with dimensions greater than the standard dimensions of a photovoltaic cell, in a particular embodiment of the proposed technique
  • FIG 5 schematically and partially presents a device for measuring the quality of a photovoltaic component, in another particular embodiment of the proposed technique
  • FIG 6 schematically illustrates another possible implementation of a modulation element of a device according to the proposed technique, formed of a single liquid crystal shutter, in a particular embodiment
  • FIG 7 schematically and partially presents a device for measuring the quality of a photovoltaic component, in yet another particular embodiment of the proposed technique, in which the modulation element is formed of a matrix comprising a plurality of liquid crystal shutters;
  • FIG 8 schematically and partially presents a device for measuring the quality of a photovoltaic component, in another particular embodiment of the proposed technique, in which the modulation element is formed of a matrix comprising a plurality liquid crystal shutters, and has the standard dimensions of a photovoltaic panel;
  • FIG 9 schematically and partially shows the measuring device of figure 8, in use to assess the quality of a photovoltaic panel comprising cells in the form of strips, in a particular embodiment of the technique proposed;
  • FIG 10 illustrates the main steps of a method for measuring the quality of a photovoltaic component, in a particular embodiment of the proposed technique.
  • the present technique relates to a device for measuring a photovoltaic component which is based on the LBIC characterization technique previously presented in relation to the prior art. As described below in relation to various embodiments, the proposed measuring device nevertheless has particular characteristics allowing it to overcome many constraints of existing conventional LBIC devices.
  • a measuring device is illustrated in relation to FIG. 2 in an example of use for measuring the quality of a photovoltaic component CP, in a particular embodiment.
  • the photovoltaic component CP is typically a photovoltaic panel grouping together a plurality of photovoltaic cells (C1, C2, C3, ..., Cn) interconnected in series and/or in parallel.
  • the measuring device comprises a modulation element 23 for the modulation, at a predetermined frequency, of light incident on at least part of the photovoltaic component tested CP, as well as a measurement unit 24 of the intensity of the current induced in the photovoltaic component CP by said modulated incident light (this intensity being representative of the quality of the zone tested, i.e. of the zone of the photovoltaic component which receives the modulated light ).
  • the predetermined modulation frequency is typically of the order of a few hundred hertz (it is generally less than 1000 Hz), its value being able to be adapted according to the photovoltaic component tested.
  • the measuring device differs, however, from those of the prior art in that the modulation element 23 takes the form of a plate adapted to be placed directly (or at the very least mounted flush) on the surface to be tested of the photovoltaic component, said plate comprising at least one ZM modulation zone configured to periodically alternate, at said predetermined frequency, between two states: an exposure state in wherein the ZM modulation zone allows light to pass through said plate at said modulation zone; a closed state in which the ZM modulation zone blocks the passage of light through said plate at the level of said modulation zone.
  • the term "plate” means a part (possibly formed by assembling several parts) substantially flat (or at the very least flat over a major part of its surface), the thickness of which is small in comparison with its other dimensions.
  • the modulation element 23 can be described as a “flat” element.
  • a plate is, for example, of rectangular parallelepipedic shape, with a low thickness with respect to its length and its width. Other shapes of plates can however be envisaged, for example a circular plate.
  • the modulation element is flat and thin (possibly with other characteristics such as low weight for example) contributes to making this element suitable for being placed directly in contact with the surface of the photovoltaic component: d on the one hand, its flat surface makes it possible to maximize the coverage of the area to be tested of the photovoltaic component (the latter also having a generally flat surface), and on the other hand, its small thickness makes it possible to minimize the influence of the modulation element on the light incident on the photovoltaic component, when the modulation element is in its exposure state.
  • a modulation element intended and adapted to be placed directly on the photovoltaic component offers the main advantage, with respect to the devices existing measuring devices as presented in relation to the prior art, to make it possible to assess the quality of the photovoltaic component to be tested without it being necessary to place it in a dark room, and without it being necessary to resort to to a dedicated unit for generating a light beam (such as the dedicated generation unit 11 already described in relation to FIG. 1a, for example). More particularly, as illustrated in FIG.
  • a major advantage of the proposed technique resides in the possibility of directly using natural light 22 (ie sunlight 21) as a light source, rather than artificial light generated by means of of complex, bulky equipment, difficult to transport and expensive such as that necessary and integrated into existing conventional LBIC devices.
  • the measuring device according to the proposed technique therefore does not include a dedicated light source, which would be an integral part thereof. This has many advantages, especially when the photovoltaic component to be tested is large (for example a photovoltaic panel whose dimensions sometimes exceed one meter in width and two meters in length), and potentially already installed and in the operating phase. .
  • the measurement device thus makes it possible in particular to carry out quality measurements "in-situ", that is to say at the very place where the photovoltaic component is installed and operational, generally outdoors. It is no longer necessary to disassemble the photovoltaic component and transport it to a dark room housing dedicated fixed equipment to test it.
  • This overcomes the many constraints and many risks associated with the use of existing LBIC devices already described in relation to the prior art (costs and risks associated with dismantling, transport and reassembly of the photovoltaic component, significant downtime of the photovoltaic component, involving a prolonged shutdown of the production of electrical energy, risk of damage to the photovoltaic component during the numerous handling operations required, etc.).
  • the device according to the technique proposed is moreover not only transportable, but it is also much less expensive than a device of the prior art.
  • the role and operation of the measuring unit 24 are not fundamentally different from those of the measuring unit 14 as described in relation to the figure illustrating a prior art LBIC device.
  • This measurement unit 24 is also intended, by implementing synchronous detection techniques, to isolate and measure the current induced in the photovoltaic component by the light modulated by the modulation element 23 of the LBIC device.
  • the measurement unit 24 and the processing it performs are at most the subject of adaptations to take into account the fact that the luminous power of the sun is greater than the power of the artificial light sources usually used in prior art devices. Also, the measurement unit 24 is not described in more detail in this document.
  • the modulation element 23 is formed by superimposing two grids each comprising a succession of optically transparent portions and opaque portions.
  • the ZM modulation zone then extends substantially over the entire surface of the modulation element 23 (ie of the plate).
  • one of these grids is fixed (if we consider a frame of reference linked to the modulation element), and the other is mobile in translation or in rotation above (or below) the fixed grid, the two grids being moreover very close, even in contact with one another.
  • the optically transparent portions and the opaque portions are also positioned, shaped and dimensioned within each of the two grids so that there is at least one position of the grid mobile, called exposure position, in which the optically transparent portions of the two grids overlap at least partially, and at least one position of the mobile grid, known as the shutter position, in which the opaque portions of any of the two grids completely block all the optically transparent portions of the other of the two grids (in other words, in the closed position, the opaque portions of the mobile grid are superimposed on the optically transparent portions of the fixed grid and vice versa).
  • exposure position in which the optically transparent portions of the two grids overlap at least partially
  • the shutter position at least one position of the mobile grid, known as the shutter position, in which the opaque portions of any of the two grids completely block all the optically transparent portions of the other of the two grids (in other words, in the closed position, the opaque portions of the mobile grid are superimposed on the optically transparent portions of the fixed grid and vice versa).
  • the exposure position corresponds to an exposure state in which the two grids are respectively positioned opposite each other so as to let the light pass
  • the position of shuttering corresponds to a shuttered state in which the two grids are positioned respectively one vis-à-vis the other so as to block the passage of light.
  • a controlled oscillation of the movable gate at a predetermined frequency then allows the transition from the exposure state to the shutter state and vice versa, and therefore the modulation of the light which passes through the modulation zone. (which covers the entire modulation element, in the particular embodiment considered).
  • FIG. 3a schematically presents, in a perspective view, such an arrangement, in which the modulation element 23 is formed by superimposing a first grid 31, fixed, and a second grid 32, mobile in translation above above the first grid 31.
  • the two grids 31 and 32 are shown relatively spaced apart in Figure 3a (and in all the figures relating to this implementation of the modulation element in general), but it it is understood that the two grids are actually sufficiently close, even in contact, so as to jointly form an opaque modulation element when the grid He mobile 32 is in its closed position.
  • FIG. 3b shows, in a top view and in a particular embodiment, an example of two complementary grids 3 and 32' (sub-figures (a) and (b)) adapted for the implementation of an element modulation according to this implementation of the proposed technique, as well as the modulation element 23 obtained by superimposing these two grids, in a shutter state (sub-figure (c)) and in an exposure state (sub- figure (d)).
  • the grids 3 and 32' have the same dimensions and are formed by a succession of opaque bands (bands shown shaded in the sub-figures (a) and (b)) and optically transparent bands ( bands shown white in sub-figures (a) and (b)) of the same width.
  • the opaque bands are for example formed from an opaque material, and the optically transparent bands from a transparent material or even by simple absence of material between the opaque bands.
  • the modulation element 23 obtained by superposition of the two grids 3 and 32' is completely opaque when the grids 3 and 32' are perfectly superimposed (sub-figure (c)), and it leaves pass the light when the grids 3 and 32' are superimposed over their major part, but with one of the grids shifted by the width of a strip with respect to the other grid (sub-figure (d)) .
  • the modulation element 23 also comprises means (not shown) for moving in translation one of the two grids (for example the grid 32') vis-à-vis the other grid (for example the grid 3) .
  • These displacement means controlled by a control unit of the measuring device, make it possible to implement a controlled oscillation of the mobile grid 32' (typically an oscillation of low amplitude, of the width of a strip) at a predetermined frequency - causing the modulation element 23 to alternate between its exposed state and its shuttered state - which has the effect of modulating the light received (typically sunlight) at the level of the zone to be tested from the photovoltaic component, on which the modulation element 23 is placed directly.
  • a controlled oscillation of the mobile grid 32' typically an oscillation of low amplitude, of the width of a strip
  • the two grids can also for example be circular, with a mobile grid in rotation above (or below) the fixed grid.
  • the modulation element 23 - that is to say the plate formed by superimposing the two grids - has dimensions (length and width) substantially equivalent to the standard dimensions of a photovoltaic panel photovoltaic cell.
  • the modulation element is for example square, and of dimensions 125 mm by 125 mm, 156 mm by 156 mm, 156.75 mm by 156.75 mm, or even 158.75 mm by 158.75 mm, which correspond to standard dimensions for a photovoltaic cell. These examples are however not limiting, and the modulation element can take other shapes (rectangular, circular, etc.) and have other dimensions, depending on the type of standard photovoltaic cell targeted. In this way, the measurement device according to the proposed technique makes it possible to evaluate the quality of each cell of a photovoltaic panel, one after the other, by moving the modulation element 23 from cell to cell on the panel.
  • the example of a plate with the standard dimensions of a photovoltaic cell of a photovoltaic panel is however non-limiting, and other plate sizes can be envisaged, as illustrated in relation to FIGS. 4a and 4b for example.
  • the choice of the size of the plate used can in particular be likened to the choice of a resolution for measuring the quality of the photovoltaic component.
  • a complete mapping of the intensity of the photocurrents induced in the photovoltaic component, at the resolution of the half-cell can be obtained by carrying out, by means of a plate the size of a half- cell, enough successive measurements to test the entire surface of the photovoltaic component.
  • each liquid crystal shutter in the array is a shutter that can assume either of two states, depending on the voltage to which it is subjected: a state in which the shutter has some degree of transparency and lets light through, and a state in which the shutter is opaque and does not let light through.
  • the transition from one state to another is achieved by modifying the voltage applied to the terminals of the shutter, which has the effect of modifying the orientation of the molecules of the liquid crystals of the shutter.
  • the shutter allows a maximum of light to pass when a zero voltage is applied to its terminals, and the shutter is opaque when a voltage greater than a certain threshold is applied to its terminals.
  • each liquid crystal shutter of the matrix is independently controllable.
  • the matrix of liquid crystal shutters comprises a single shutter OB, which defines a modulation zone ZM extending over the entire surface of the modulation element 23.
  • the application of a voltage in a predetermined frequency square to the terminals of this shutter OB causes the alternation of the modulation element 23 between its shutter state (subfigure (a)) and its exposure state (subfigure (b)).
  • This has the effect of modulating the light received (typically sunlight) at the level of the area to be tested of the photovoltaic component, on which the modulation element 23 is placed directly.
  • the modulation element 23 - that is to say the plate comprising the shutter OB - is of dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel.
  • the modulation element is for example square, and of dimensions 125 mm by 125 mm, 156 mm by 156 mm, 156.75 mm by 156.75 mm, or even 158.75 mm by 158.75 mm, which correspond to standard dimensions for a photovoltaic cell.
  • the modulation element can take other shapes (rectangular, circular, etc.) and have other dimensions, depending on the type of standard photovoltaic cell targeted.
  • the matrix of liquid crystal shutters comprises a plurality of liquid crystal shutters, as illustrated for example in relation to FIG. in a particular embodiment of the proposed technique.
  • the modulation element 23, of dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel, is formed by a matrix of four liquid crystal shutters 01, 02, 03 and 04 of same dimensions, divided into two rows of two shutters.
  • Such an arrangement based on a plurality of independently controllable shutters is interesting in that it allows, from a single and same panel, to perform measurements at different resolutions.
  • the modulation element 23 represented in FIG. 7 thus makes it possible to carry out measurements at the resolution of the cell, of the half-cell, or even of the quarter of a photovoltaic cell.
  • the shutter 01 it suffices, by means of the control means of the measurement device, to define the shutter 01 as modulation zone (the shutter 01 then alternates between its state exposure and its shutter state at a predetermined frequency) and to freeze the other shutters 02, 03 and 04 in the same constant state, for example in their exposure state.
  • the measurement unit 24 it is possible, without move the slab, to test another quarter of the cell on which the modulation element 23 is placed (for example, this time selecting shutter 02 as modulation zone, and freezing the state of shutters 01, 03 and 04). It is also possible to define a group of (usually adjacent) shutters as a modulation zone: all shutters in the modulation zone are then driven to alternate synchronously and coherently between their exposure state and their dim state. shutter, at the predetermined frequency. For example, by selecting the group of shutters 01 and 03 as modulation zone and by freezing the state of shutters 02 and 04, a measurement is carried out at the resolution of the half-cell.
  • the modulation element 23 can be physically moved to another cell to be tested of the photovoltaic component CP.
  • the same tile can therefore be used to draw up complete maps of the intensity of the photocurrents induced in the photovoltaic component at different levels of resolution.
  • the size of the slab is not limited to that of a cell, and other sizes of slabs can be envisaged.
  • the matrix comprising a plurality of liquid crystal shutters is of dimensions substantially equivalent to the standard dimensions of a photovoltaic panel (for greater readability of these figures, the modulation element 23 is presented in a configuration where it is not yet placed on the photovoltaic panel).
  • Such an embodiment has the advantage of making it possible to measure the quality of an entire photovoltaic panel at different resolutions, without it being necessary to physically move the modulation element 23, once the latter is placed on the panel.
  • the shutters that are not part of the modulation zone are all frozen in the same constant state, for example, their exposure state (as shown in the example of FIG. 8), or their shutter state (as shown in the example of FIG. 9, such a configuration being particularly interesting in that it makes it possible to limit stray light).
  • an intermediate size of panel - between a standard size of photovoltaic cell and a standard size of photovoltaic panel - constitutes a good compromise between transportability of the modulation element and flexibility in terms of resolution.
  • the modulation element 23 also comprises optical filtering means making it possible to filtering, according to its wavelength, the part of the light radiation (eg sunlight) which reaches the tested zone of the photovoltaic component, after having crossed the modulation zone of the modulation element.
  • these filtering means make it possible to select the wavelength or wavelengths of the modulated light incident on the zone tested.
  • the proposed technique also makes it possible to characterize the photovoltaic component tested in its thickness, the level of depth tested depending on the selected wavelength.
  • the filtering means can take the form of one or more colored supports, optionally interchangeable or combinable, arranged above and/or below the superimposed grids or the matrix of liquid crystal shutters (depending on the implementation of the considered modulation element). Alternatively or additionally, they can also take the form of a dye directly diffused into the optically transparent portions of the grids (when these are made of an optically transparent material) or in the liquid crystals of the shutters (depending on the implementation of the modulation element considered).
  • the proposed technique also relates to a method for measuring the quality of a photovoltaic component by means of a measuring device as previously described. More particularly, according to the proposed method, the photovoltaic component is tested "in situ" (i.e. directly on the place where it is installed and under operating conditions) and it is illuminated only with natural sunlight. The photovoltaic component is typically a photovoltaic panel.
  • the proposed method described in relation to FIG.
  • the method also comprises, prior to said activation step 103, when the modulation element of the measuring device takes the form of a matrix comprising a plurality of crystal shutters liquid crystals, a step 102 of selecting a set of adjacent liquid crystal shutters of said matrix (comprising at least one liquid crystal shutter) defining said modulation zone.

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

The proposed method relates to a device for measuring the quality of a photovoltaic component (CP), the device comprising: a modulation element (23) for modulating, at a predetermined frequency, incident light on at least one portion of the photovoltaic component, the portion being referred to as the tested zone; and a unit (24) for measuring the strength of the current induced in the photovoltaic component by means of the modulated incident light, the intensity being representative of the quality of the tested zone. According to the proposed method, the modulation element is in the form of a plate suitable for being directly placed or flush mounted on the photovoltaic component (CP). The plate comprises at least one modulation zone configured to periodically alternate, at the predetermined frequency, between two states: an exposure state wherein the modulation zone enables the light to pass through the plate in the modulation zone; and a closed state wherein the modulation zone prevents the light from passing through the plate in the modulation zone.

Description

DESCRIPTION DESCRIPTION
TITRE : Dispositif de mesure de la qualité d'un composant photovoltaïque, procédé associé. TITLE: Device for measuring the quality of a photovoltaic component, associated process.
Domaine technique Technical area
Le domaine de l'invention est celui des dispositifs de diagnostic permettant d'évaluer la qualité de composants photovoltaïques, tels que des cellules ou des panneaux photovoltaïques par exemple. L'invention se situe plus particulièrement dans le domaine des dispositifs de mesure de qualité reposant sur une technique de caractérisation par courants induits. The field of the invention is that of diagnostic devices making it possible to assess the quality of photovoltaic components, such as photovoltaic cells or panels for example. The invention lies more particularly in the field of quality measurement devices based on a technique of characterization by induced currents.
Art antérieur Prior art
La technique LBIC - de l'anglais « Light Beam Induced Current », « courant induit par faisceau lumineux » en français - est une technique de caractérisation connue et utilisée dans le domaine du photovoltaïque, afin d'évaluer la qualité de composants tels qu'une cellule ou un panneau photovoltaïque par exemple. Cette technique permet notamment de mettre en évidence et localiser d'éventuels défauts dans le composant photovoltaïque testé (défauts de fabrication, impacts, vieillissement, etc.), qui sont souvent la cause de dégradations de performances du composant. Le principe général de la technique de caractérisation LBIC repose sur l'effet photovoltaïque de certains matériaux semi-conducteurs utilisés dans ces composants, qui se traduit par l'apparition d'un courant aux bornes du composant photovoltaïque exposé à la lumière. Plus particulièrement, cette technique consiste à éclairer localement, au moyen d'un faisceau lumineux modulé, une zone du composant photovoltaïque à tester, puis à isoler et mesurer le courant induit en réponse à cette excitation lumineuse localisée. En balayant ainsi la surface du composant photovoltaïque, une cartographie complète de ces photocourants induits est dressée, qui peut être assimilée, sous certaines conditions, à une image de la qualité de ce composant. The LBIC technique - from the English "Light Beam Induced Current", "current induced by light beam" in French - is a characterization technique known and used in the field of photovoltaics, in order to evaluate the quality of components such as a photovoltaic cell or panel for example. This technique makes it possible in particular to highlight and locate any defects in the photovoltaic component tested (manufacturing defects, impacts, aging, etc.), which are often the cause of degradation in the performance of the component. The general principle of the LBIC characterization technique is based on the photovoltaic effect of certain semiconductor materials used in these components, which results in the appearance of a current at the terminals of the photovoltaic component exposed to light. More particularly, this technique consists in locally illuminating, by means of a modulated light beam, an area of the photovoltaic component to be tested, then in isolating and measuring the current induced in response to this localized light excitation. By scanning the surface of the photovoltaic component in this way, a complete map of these induced photocurrents is drawn up, which can be assimilated, under certain conditions, to an image of the quality of this component.
La figure la illustre, de manière schématique et partielle, un dispositif de mesure de la qualité d'un composant photovoltaïque reposant sur la technique LBIC (également appelé plus simplement « dispositif LBIC » dans la suite du document), tel qu'existant dans l'art antérieur. Un tel dispositif comprend une unité de génération 11 d'un faisceau lumineux modulé 12 utilisé pour éclairer une zone Z très localisée du composant photovoltaïque CP' à tester, par ailleurs plongé dans l'obscurité, ainsi qu'une unité de mesure 14 de l'intensité du courant induit par l'effet photovoltaïque en réponse à cette excitation lumineuse. L'unité de génération 11 comprend une source lumineuse 111 polychromatique (éventuellement associée à un monochromateur) ou monochromatique (e.g. un laser). L'unité de génération 11 comprend également un élément de modulation 112, également appelé hacheur optique, utilisé pour interrompre périodiquement le faisceau lumineux produit par la source lumineuse 111. Comme illustré sur la figure la, cet élément de modulation prend par exemple la forme d'un disque percé tournant dans le faisceau lumineux à une vitesse contrôlée. De cette manière, le faisceau lumineux 12 est modulé (i.e. « coupé ») à une fréquence bien définie, ce qui permet, par la mise en oeuvre de techniques de détection synchrone couramment utilisées dans le domaine du traitement du signal, d'isoler au niveau de l'unité de mesure 14 le courant réellement induit par le faisceau lumineux modulé 12. Les tests n'étant en effet pas effectués dans un noir absolu (très difficile à atteindre en pratique), l'entrée de l'unité de mesure 14 correspond par conséquent à une juxtaposition de plusieurs courants, non seulement celui induit par le faisceau lumineux modulé 12 mais également d'autres courants induits par des sources lumineuses parasites autre que la source lumineuse 111. La technique de détection synchrone consiste alors, au niveau de l'unité de mesure 14, à filtrer et ignorer tous les courants de fréquences différentes de la fréquence de modulation du faisceau lumineux modulé 12, définie grâce à l'élément de modulation 112. Ces courants parasites sont ainsi écartés, et seul le courant induit par le faisceau lumineux émis par l'unité de génération 111 est mesuré au niveau de l'unité de mesure 14. Figure la illustrates, schematically and partially, a device for measuring the quality of a photovoltaic component based on the LBIC technique (also called more simply "LBIC device" in the rest of the document), as existing in the prior art. Such a device comprises a unit 11 for generating a modulated light beam 12 used to illuminate a very localized zone Z of the photovoltaic component CP′ to be tested, which is moreover immersed in darkness, as well as a unit for measuring the intensity of the current induced by the photovoltaic effect in response to this light excitation. The generation unit 11 comprises a polychromatic light source 111 (possibly associated with a monochromator) or monochromatic (eg a laser). The generation unit 11 also comprises a modulation element 112, also called an optical chopper, used to periodically interrupt the light beam produced by the light source 111. As illustrated in FIG. a pierced disc rotating in the light beam at a controlled speed. In this way, the light beam 12 is modulated (ie "cut") at a well-defined frequency, which makes it possible, by implementing synchronous detection techniques commonly used in the field of signal processing, to isolate level of the measurement unit 14 the current actually induced by the modulated light beam 12. Since the tests are in fact not carried out in absolute darkness (very difficult to achieve in practice), the input of the measurement unit 14 therefore corresponds to a juxtaposition of several currents, not only that induced by the modulated light beam 12 but also other currents induced by parasitic light sources other than the light source 111. The synchronous detection technique then consists, at the level of the measurement unit 14, to filter and ignore all the currents of frequencies different from the modulation frequency of the modulated light beam 12, defined thanks to the modulation element 112. These parasitic currents your are thus discarded, and only the current induced by the light beam emitted by the generation unit 111 is measured at the level of the measurement unit 14.
L'unité de génération 11 du faisceau lumineux modulé comprend également généralement divers autres éléments, non représentés sur la figure la, tels que par exemple un diaphragme ou un système de lentilles convergentes permettant de focaliser le faisceau généré de manière à n'éclairer qu'une surface très petite du composant photovoltaïque CP' à tester. Le composant photovoltaïque CP' est par ailleurs monté sur une table de précision dont le déplacement dans un plan perpendiculaire au faisceau modulé 12 peut être contrôlé très finement. De cette manière, il est possible de balayer au moyen du faisceau modulé 12 l'ensemble de la surface du composant photovoltaïque CP' à tester, et d'obtenir ainsi, en consolidant l'ensemble des mesures associées réalisées par l'unité de mesure 14, une cartographie complète de l'intensité des photocourants induits dans ce composant (la largeur du faisceau modulé définissant, dans une certaine mesure, la résolution de l'image obtenue). La figure lb montre un exemple de cartographie (dans une vue partielle et non à l'échelle) obtenue grâce à l'utilisation d'un tel dispositif LBIC existant pour tester une cellule photovoltaïque au silicium cristallin sous lumière polychromatique, avec une résolution de 50 pm. Une telle cartographie peut être assimilée à une image de la qualité du composant photovoltaïque, les zones associées à des intensités de courant anormalement basses ou anormalement élevées étant plus particulièrement susceptibles de présenter des défauts. The generation unit 11 of the modulated light beam also generally comprises various other elements, not shown in FIG. a very small surface of the photovoltaic component CP' to be tested. The photovoltaic component CP′ is also mounted on a precision table, the movement of which in a plane perpendicular to the modulated beam 12 can be controlled very finely. In this way, it is possible to scan, by means of the modulated beam 12, the entire surface of the photovoltaic component CP′ to be tested, and thus to obtain, by consolidating all the associated measurements carried out by the measurement unit 14, a complete map of the intensity of the photocurrents induced in this component (the width of the modulated beam defining, to a certain extent, the resolution of the image obtained). Figure lb shows an example of mapping (in a partial view and not to scale) obtained through the use of such an existing LBIC device to test a crystalline silicon photovoltaic cell under polychromatic light, with a resolution of 50 pm. Such a map can be likened to an image of the quality of the photovoltaic component, the areas associated with abnormally low current intensities or abnormally high being more particularly likely to present defects.
La plupart des dispositifs de mesure LBIC existants sont cependant des équipements très encombrants et non transportables. La complexité des moyens mis en oeuvre pour générer un faisceau lumineux aux caractéristiques (longueur d'onde, puissance, section, etc.) maîtrisées et constantes tout au long des mesures, gage de leur qualité, font que l'unité de génération du faisceau lumineux est un élément particulièrement sophistiqué et volumineux de ces dispositifs conventionnels. Par ailleurs, afin d'éviter autant que possible les lumières parasites, les mesures doivent être effectuées dans l'obscurité. Ces contraintes qui portent à la fois sur le dispositif de mesure en tant que tel et sur les conditions de réalisation des mesures font que l'évaluation de la qualité d'un composant photovoltaïque par une technique de caractérisation LBIC ne peut généralement pas être effectuée in-situ : le composant photovoltaïque à tester doit être démonté et transporté jusqu'à un site dédié (e.g. un laboratoire) qui héberge le dispositif LBIC, ce qui n'est pas sans poser certaines problèmes, notamment lorsqu'il s'agit de tester des surfaces importantes tels que des panneaux photovoltaïques potentiellement de grande taille (coûts et risques associés au démontage, transport et remontage du composant photovoltaïque, durée d'indisponibilité importante du composant photovoltaïque, impliquant un arrêt prolongé de la production d'énergie électrique, risques d'endommagement du composant photovoltaïque lors des nombreuses opérations de manutention nécessaires, etc.). Most of the existing LBIC measurement devices are however very bulky and non-transportable equipment. The complexity of the means implemented to generate a light beam with characteristics (wavelength, power, section, etc.) controlled and constant throughout the measurements, a guarantee of their quality, mean that the beam generation unit luminous is a particularly sophisticated and voluminous element of these conventional devices. Furthermore, in order to avoid stray light as much as possible, the measurements must be carried out in the dark. These constraints, which relate both to the measurement device as such and to the conditions for carrying out the measurements, mean that the evaluation of the quality of a photovoltaic component by an LBIC characterization technique cannot generally be carried out in -situ: the photovoltaic component to be tested must be dismantled and transported to a dedicated site (e.g. a laboratory) which hosts the LBIC device, which is not without posing certain problems, in particular when it comes to testing large surfaces such as potentially large photovoltaic panels (costs and risks associated with dismantling, transporting and reassembling the photovoltaic component, long unavailability of the photovoltaic component, involving a prolonged stoppage of the production of electrical energy, risks of damage to the photovoltaic component during the many necessary handling operations, etc.).
Il existe donc un besoin pour un dispositif de mesure de la qualité d'un composant photovoltaïque qui ne présente pas au moins certains de ces inconvénients de l'art antérieur. There is therefore a need for a device for measuring the quality of a photovoltaic component which does not have at least some of these disadvantages of the prior art.
Résumé de l'invention Summary of the invention
La présente technique permet de résoudre en partie les problèmes posés par l'art antérieur. La présente technique se rapporte en effet à un dispositif de mesure de la qualité d'un composant photovoltaïque, ledit dispositif comprenant : un élément de modulation pour la modulation, à une fréquence prédéterminée, d'une lumière incidente sur au moins une partie dudit composant photovoltaïque, dite zone testée ; une unité de mesure de l'intensité du courant induit dans ledit composant photovoltaïque par ladite lumière incidente modulée, ladite intensité étant représentative de la qualité de la zone testée. Selon la technique proposée, ledit élément de modulation prend la forme d'une plaque adaptée pour être posée directement ou montée affleurante sur ledit composant photovoltaïque, ladite plaque comprenant au moins une zone de modulation configurée pour alterner périodiquement, à ladite fréquence prédéterminée, entre deux états : un état d'exposition dans lequel la zone de modulation permet le passage de la lumière à travers ladite plaque, au niveau de ladite zone de modulation ; un état d'obturation dans lequel la zone de modulation bloque le passage de la lumière à travers ladite plaque, au niveau de ladite zone de modulation. The present technique makes it possible to partly solve the problems posed by the prior art. The present technique in fact relates to a device for measuring the quality of a photovoltaic component, said device comprising: a modulation element for modulating, at a predetermined frequency, light incident on at least part of said component photovoltaic, called tested area; a unit for measuring the intensity of the current induced in said photovoltaic component by said modulated incident light, said intensity being representative of the quality of the zone tested. According to the proposed technique, said modulation element takes the form of a plate adapted to be placed directly or mounted flush on said photovoltaic component, said plate comprising at least one modulation zone configured to alternate periodically, at said predetermined frequency, between two states: an exposure state in which the modulation zone allows the passage of light through said plate, at the level of said modulation zone; a closed state in which the modulation zone blocks the passage of light through said plate, at the level of said modulation zone.
Dans un premier mode de réalisation particulier de la technique proposée, ladite zone de modulation s'étend sensiblement sur toute la surface de ladite plaque, et ladite zone de modulation est formée par superposition de deux grilles, une grille fixe et une grille mobile, chacune des deux grilles comprenant une succession de portions optiquement transparentes et de portions opaques, ladite grille mobile étant configurée de manière à être mobile entre au moins une première position, correspondant audit état d'exposition, dans laquelle les portions optiquement transparentes des deux grilles se superposent au moins partiellement, et au moins une deuxième position, correspondant audit état d'obturation dans laquelle les portions opaques de l'une quelconque des deux grilles obturent complètement les portions optiquement transparentes de l'autre des deux grilles. In a first particular embodiment of the proposed technique, said modulation zone extends substantially over the entire surface of said plate, and said modulation zone is formed by superimposing two grids, a fixed grid and a mobile grid, each of the two grids comprising a succession of optically transparent portions and of opaque portions, said mobile grid being configured so as to be mobile between at least a first position, corresponding to said exposure state, in which the optically transparent portions of the two grids overlap at least partially, and at least a second position, corresponding to said closed state in which the opaque portions of any one of the two grids completely block the optically transparent portions of the other of the two grids.
Selon une caractéristique particulière de ce premier mode de réalisation, ladite plaque est de dimensions sensiblement équivalentes aux dimensions standards d'une cellule photovoltaïque de panneau photovoltaïque. According to a particular characteristic of this first embodiment, said plate has dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel.
Dans un deuxième mode de réalisation particulier de la technique proposée, ladite plaque prend la forme d'une matrice d'obturateurs à cristaux liquides contrôlables indépendamment les uns des autres, ladite matrice comprenant au moins un obturateur à cristaux liquides, chaque obturateur à cristaux liquides de ladite matrice étant un obturateur à deux états, un état dans lequel l'obturateur laisse passer la lumière et un état dans lequel l'obturateur bloque la lumière, et en ce que ladite zone de modulation est formée par un ensemble d'obturateurs à cristaux liquides adjacents de ladite matrice, ledit ensemble comprenant au moins un obturateur à cristaux liquides. In a second particular embodiment of the proposed technique, said plate takes the form of a matrix of independently controllable liquid crystal shutters, said matrix comprising at least one liquid crystal shutter, each liquid crystal shutter of said matrix being a shutter with two states, a state in which the shutter allows light to pass and a state in which the shutter blocks light, and in that said modulation zone is formed by a set of shutters with adjacent liquid crystals of said matrix, said assembly comprising at least one liquid crystal shutter.
Selon une caractéristique particulière de ce deuxième mode de réalisation ladite matrice d'obturateurs à cristaux liquides comprend un seul obturateur à cristaux liquides s'étendant sur sensiblement toute la surface de ladite plaque et définissant ladite zone de modulation. According to a particular characteristic of this second embodiment, said array of liquid crystal shutters comprises a single liquid crystal shutter extending over substantially the entire surface of said plate and defining said modulation zone.
Selon une caractéristique particulière de ce deuxième mode de réalisation, ladite plaque est de dimensions sensiblement équivalentes aux dimensions standards d'une cellule photovoltaïque de panneau photovoltaïque. According to a particular characteristic of this second embodiment, said plate has dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel.
Selon une autre caractéristique particulière de ce deuxième mode de réalisation, ladite matrice d'obturateurs à cristaux liquides comprend une pluralité d'obturateurs à cristaux liquides, et ladite plaque est de dimensions sensiblement équivalentes aux dimensions standards d'un panneau photovoltaïque. According to another particular characteristic of this second embodiment, said matrix of liquid crystal shutters comprises a plurality of liquid crystal shutters, and said plate is of dimensions substantially equivalent to the standard dimensions of a photovoltaic panel.
Dans un mode de réalisation particulier, ledit élément de modulation comprend en outre des moyens de filtrage optique de ladite lumière incidente, en fonction de la longueur d'onde. In a particular embodiment, said modulation element further comprises means for optical filtering of said incident light, as a function of the wavelength.
Selon un autre aspect, la technique proposée se rapporte également à procédé de mesure de la qualité d'un composant photovoltaïque au moyen d'un dispositif de mesure tel que précédemment décrit, ledit composant photovoltaïque étant éclairé uniquement à la lumière naturelle du soleil. Ledit procédé comprend au moins une itération des étapes suivantes : une étape de positionnement de l'élément de modulation dudit dispositif de mesure directement au contact d'une zone comprenant au moins une zone à tester dudit composant photovoltaïque ; une étape d'activation de l'alternance, à une fréquence prédéterminée, de la zone de modulation dudit élément de modulation, entre son état d'exposition et son état d'obturation. une étape de mesure, par l'unité de mesure dudit dispositif de mesure, de l'intensité du courant induit dans le composant photovoltaïque par la lumière naturelle modulée par ladite zone de modulation. According to another aspect, the proposed technique also relates to a method for measuring the quality of a photovoltaic component by means of a measuring device as previously described, said photovoltaic component being illuminated only by natural sunlight. Said method comprises at least one iteration of the following steps: a step of positioning the modulation element of said measuring device directly in contact with an area comprising at least one area to be tested of said photovoltaic component; a step of activating the alternation, at a predetermined frequency, of the modulation zone of said modulation element, between its exposure state and its shutter state. a step of measuring, by the measuring unit of said measuring device, the intensity of the current induced in the photovoltaic component by the natural light modulated by said modulation zone.
Dans un mode de réalisation particulier, ledit procédé comprend en outre, préalablement à ladite étape d'activation, lorsque ledit élément de modulation dudit dispositif de mesure prend la forme d'une matrice comprenant une pluralité d'obturateurs à cristaux liquides, une étape de sélection d'un ensemble d'obturateurs à cristaux liquides adjacents de ladite matrice, comprenant au moins un obturateur à cristaux liquides, définissant ladite zone de modulation. In a particular embodiment, said method further comprises, prior to said activation step, when said modulation element of said measuring device takes the form of a matrix comprising a plurality of liquid crystal shutters, a step of selecting a set of adjacent liquid crystal shutters of said array, including at least one liquid crystal shutter, defining said modulation area.
Les différents modes de réalisation mentionnés ci-dessus sont combinables entre eux pour la mise en oeuvre de l'invention. The various embodiments mentioned above can be combined with each other for the implementation of the invention.
Figures tricks
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation préférentiel de l'invention, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés parmi lesquels : Other characteristics and advantages of the invention will appear more clearly on reading the following description of a preferred embodiment of the invention, given by way of a simple illustrative and non-limiting example, and the appended drawings, among which:
[Fig la], déjà décrite en relation avec l'art antérieur, présente de manière schématique et partielle un dispositif de mesure existant reposant sur la technique de caractérisation LBIC, en cours d'utilisation pour l'évaluation de la qualité d'un composant photovoltaïque ; [Fig lb], déjà décrite en relation avec l'art antérieur, présente un exemple de cartographie de l'intensité des courants induits dans un composant photovoltaïque, telle qu'obtenue après balayage de la surface d'un composant photovoltaïque par un dispositif LBIC tel que celui représenté sur la figure la ; [Fig la], already described in relation to the prior art, schematically and partially presents an existing measuring device based on the LBIC characterization technique, in use for the evaluation of the quality of a component photovoltaic ; [Fig lb], already described in relation to the prior art, presents an example of mapping of the intensity of the currents induced in a photovoltaic component, as obtained after scanning the surface of a photovoltaic component by an LBIC device such as that shown in Figure la;
[Fig 2] présente de manière schématique et partielle un dispositif de mesure de la qualité d'un composant photovoltaïque, dans un mode de réalisation particulier de la technique proposée ;[Fig 2] schematically and partially presents a device for measuring the quality of a photovoltaic component, in a particular embodiment of the proposed technique;
[Fig 3a] illustre de manière schématique une implémentation possible d'un élément de modulation d'un dispositif selon la technique proposée, formé par superposition de deux grilles complémentaires, dans un mode de réalisation particulier ; [Fig 3a] schematically illustrates a possible implementation of a modulation element of a device according to the proposed technique, formed by superimposing two complementary grids, in a particular embodiment;
[Fig 3b] présente un exemple de deux grilles (en (a) et (b)) adaptées pour la mise en oeuvre d'un élément de modulation, ainsi que l'élément de modulation obtenu par superposition de ces deux grilles, dans un état d'obturation (en (c)) et dans un état d'exposition (en (d)), dans un mode de réalisation particulier de la technique proposée ; [Fig 3b] presents an example of two grids (in (a) and (b)) adapted for the implementation of a modulation element, as well as the modulation element obtained by superimposing these two grids, in a closed state (in (c)) and in an exposed state (in (d)), in a particular embodiment of the proposed technique;
[Fig 3c] présente un autre exemple de grilles adaptées pour la mise en oeuvre d'un élément de modulation, dans un mode de réalisation particulier ; [Fig 3c] presents another example of grids suitable for the implementation of a modulation element, in a particular embodiment;
[Fig 4a] montre un élément de modulation de dimensions inférieures aux dimensions standards d'une cellule photovoltaïque, dans un mode de réalisation particulier de la technique proposée ; [Fig 4b] montre un élément de modulation de dimensions supérieures aux dimensions standards d'une cellule photovoltaïque, dans un mode de réalisation particulier de la technique proposée ; [Fig 5] présente de manière schématique et partielle un dispositif de mesure de la qualité d'un composant photovoltaïque, dans un autre mode de réalisation particulier de la technique proposée ; [Fig 4a] shows a modulation element with dimensions smaller than the standard dimensions of a photovoltaic cell, in a particular embodiment of the proposed technique; [Fig 4b] shows a modulation element with dimensions greater than the standard dimensions of a photovoltaic cell, in a particular embodiment of the proposed technique; [Fig 5] schematically and partially presents a device for measuring the quality of a photovoltaic component, in another particular embodiment of the proposed technique;
[Fig 6] illustre de manière schématique une autre implémentation possible d'un élément de modulation d'un dispositif selon la technique proposée, formé d'un unique obturateur à cristaux liquides, dans un mode de réalisation particulier ; [Fig 6] schematically illustrates another possible implementation of a modulation element of a device according to the proposed technique, formed of a single liquid crystal shutter, in a particular embodiment;
[Fig 7] présente de manière schématique et partielle un dispositif de mesure de la qualité d'un composant photovoltaïque, dans encore un autre mode de réalisation particulier de la technique proposée, dans lequel l'élément de modulation est formé d'une matrice comprenant une pluralité d'obturateurs à cristaux liquides ; [Fig 7] schematically and partially presents a device for measuring the quality of a photovoltaic component, in yet another particular embodiment of the proposed technique, in which the modulation element is formed of a matrix comprising a plurality of liquid crystal shutters;
[Fig 8] présente de manière schématique et partielle un dispositif de mesure de la qualité d'un composant photovoltaïque, dans un autre mode de réalisation particulier de la technique proposée, dans lequel l'élément de modulation est formé d'une matrice comprenant une pluralité d'obturateurs à cristaux liquides, et a les dimensions standard d'un panneau photovoltaïque ;[Fig 8] schematically and partially presents a device for measuring the quality of a photovoltaic component, in another particular embodiment of the proposed technique, in which the modulation element is formed of a matrix comprising a plurality liquid crystal shutters, and has the standard dimensions of a photovoltaic panel;
[Fig 9] présente de manière schématique et partielle le dispositif de mesure de la figure 8, en cours d'utilisation pour évaluer la qualité d'un panneau photovoltaïque comprenant des cellules en forme de bandes, dans un mode de réalisation particulier de la technique proposée ; [Fig 9] schematically and partially shows the measuring device of figure 8, in use to assess the quality of a photovoltaic panel comprising cells in the form of strips, in a particular embodiment of the technique proposed;
[Fig 10] illustre les principales étapes d'un procédé de mesure de la qualité d'un composant photovoltaïque, dans un mode de réalisation particulier de la technique proposée. [Fig 10] illustrates the main steps of a method for measuring the quality of a photovoltaic component, in a particular embodiment of the proposed technique.
Description détaillée de l'invention Detailed description of the invention
La présente technique se rapporte à un dispositif de mesure d'un composant photovoltaïque qui repose sur la technique de caractérisation LBIC précédemment présentée en relation avec l'art antérieur. Comme cela est décrit par la suite en relation avec divers modes de réalisation, le dispositif de mesure proposé présente cependant des caractéristiques particulières lui permettant de s'affranchir de nombreuses contraintes des dispositifs LBIC conventionnels existants. The present technique relates to a device for measuring a photovoltaic component which is based on the LBIC characterization technique previously presented in relation to the prior art. As described below in relation to various embodiments, the proposed measuring device nevertheless has particular characteristics allowing it to overcome many constraints of existing conventional LBIC devices.
Dans toute la description et dans les figures, les éléments de même nature sont identifiés par une même référence. Throughout the description and in the figures, elements of the same type are identified by the same reference.
Un dispositif de mesure selon la technique proposée est illustré en relation avec la figure 2. dans un exemple d'utilisation pour la mesure de la qualité d'un composant photovoltaïque CP, dans un mode de réalisation particulier. Le composant photovoltaïque CP est typiquement un panneau photovoltaïque regroupant une pluralité de cellules photovoltaïques (Cl, C2, C3, ..., Cn) reliées entre elles en série et/ou en parallèle. A measuring device according to the proposed technique is illustrated in relation to FIG. 2 in an example of use for measuring the quality of a photovoltaic component CP, in a particular embodiment. The photovoltaic component CP is typically a photovoltaic panel grouping together a plurality of photovoltaic cells (C1, C2, C3, ..., Cn) interconnected in series and/or in parallel.
Comme les dispositifs LBIC classiques de l'art antérieur, le dispositif de mesure selon la technique proposée comprend un élément de modulation 23 pour la modulation, à une fréquence prédéterminée, d'une lumière incidente sur au moins une partie du composant photovoltaïque testé CP, ainsi qu'une unité de mesure 24 de l'intensité du courant induit dans le composant photovoltaïque CP par ladite lumière incidente modulée (cette intensité étant représentative de la qualité de la zone testée, i.e. de la zone du composant photovoltaïque qui reçoit la lumière modulée). La fréquence de modulation prédéterminée est typiquement de l'ordre de quelques centaines de hertz (elle est inférieure à 1000 Hz en général), sa valeur pouvant être adaptée en fonction du composant photovoltaïque testé. Like the conventional LBIC devices of the prior art, the measuring device according to the technique proposed comprises a modulation element 23 for the modulation, at a predetermined frequency, of light incident on at least part of the photovoltaic component tested CP, as well as a measurement unit 24 of the intensity of the current induced in the photovoltaic component CP by said modulated incident light (this intensity being representative of the quality of the zone tested, i.e. of the zone of the photovoltaic component which receives the modulated light ). The predetermined modulation frequency is typically of the order of a few hundred hertz (it is generally less than 1000 Hz), its value being able to be adapted according to the photovoltaic component tested.
Le dispositif de mesure selon la technique proposée se distingue cependant de ceux de l'art antérieur en ce que l'élément de modulation 23 prend la forme d'une plaque adaptée pour être posée directement (ou à tout le moins montée affleurante) sur la surface à tester du composant photovoltaïque, ladite plaque comprenant au moins une zone de modulation ZM configurée pour alterner périodiquement, à ladite fréquence prédéterminée, entre deux états : un état d'exposition dans lequel la zone de modulation ZM permet le passage de la lumière à travers ladite plaque, au niveau de ladite zone de modulation ; un état d'obturation dans lequel la zone de modulation ZM bloque le passage de la lumière à travers ladite plaque au niveau de ladite zone de modulation. The measuring device according to the proposed technique differs, however, from those of the prior art in that the modulation element 23 takes the form of a plate adapted to be placed directly (or at the very least mounted flush) on the surface to be tested of the photovoltaic component, said plate comprising at least one ZM modulation zone configured to periodically alternate, at said predetermined frequency, between two states: an exposure state in wherein the ZM modulation zone allows light to pass through said plate at said modulation zone; a closed state in which the ZM modulation zone blocks the passage of light through said plate at the level of said modulation zone.
Dans le contexte de la technique proposée, on entend par « plaque » une pièce (éventuellement formée par assemblage de plusieurs pièces) sensiblement plane (ou à tout le moins plane sur une majeure partie de sa surface), dont l'épaisseur est faible en comparaison avec ses autres dimensions. À ce titre, l'élément de modulation 23 peut être qualifié d'élément « plat ». Typiquement, à titre d'exemple non limitatif, une plaque est par exemple de forme parallélépipédique rectangle, avec une épaisseur faible vis-à-vis de sa longueur et de sa largeur. D'autres formes de plaques peuvent cependant être envisagées, par exemple une plaque circulaire. Le fait que l'élément de modulation soit plat et de faible épaisseur (éventuellement avec d'autres caractéristiques telles qu'un poids faible par exemple) contribue à rendre cet élément adapté pour être posé directement au contact de la surface du composant photovoltaïque : d'une part sa surface plane permet de maximiser le recouvrement de la zone à tester du composant photovoltaïque (ce dernier étant de surface généralement plane également), et d'autre part sa faible épaisseur permet de minimiser l'influence de l'élément de modulation sur la lumière incidente sur le composant photovoltaïque, lorsque l'élément de modulation est dans son état d'exposition. In the context of the proposed technique, the term "plate" means a part (possibly formed by assembling several parts) substantially flat (or at the very least flat over a major part of its surface), the thickness of which is small in comparison with its other dimensions. As such, the modulation element 23 can be described as a “flat” element. Typically, by way of non-limiting example, a plate is, for example, of rectangular parallelepipedic shape, with a low thickness with respect to its length and its width. Other shapes of plates can however be envisaged, for example a circular plate. The fact that the modulation element is flat and thin (possibly with other characteristics such as low weight for example) contributes to making this element suitable for being placed directly in contact with the surface of the photovoltaic component: d on the one hand, its flat surface makes it possible to maximize the coverage of the area to be tested of the photovoltaic component (the latter also having a generally flat surface), and on the other hand, its small thickness makes it possible to minimize the influence of the modulation element on the light incident on the photovoltaic component, when the modulation element is in its exposure state.
L'utilisation d'un élément de modulation destiné et adapté pour être posé directement sur le composant photovoltaïque (i.e. directement à son contact, ou à tout le moins quasiment à son contact) offre l'avantage principal, vis-à-vis des dispositif de mesure existants tels que présentés en relation avec l'art antérieur, de permettre d'évaluer la qualité du composant photovoltaïque à tester sans qu'il soit nécessaire de le placer en chambre obscure, et sans qu'il soit nécessaire d'avoir recours à une unité dédiée de génération d'un faisceau lumineux (telle que l'unité de génération dédiée 11 déjà décrite en relation avec la figure la, par exemple). Plus particulièrement, comme illustré sur la figure 2, un intérêt majeur de la technique proposée réside dans la possibilité d'utiliser directement la lumière naturelle 22 (i.e. la lumière du soleil 21) comme source lumineuse, plutôt qu'une lumière artificielle générée au moyen d'un équipement complexe, volumineux, difficilement transportable et coûteux tel que celui nécessaire et intégré aux dispositifs LBIC conventionnels existants. Contrairement à ces dispositifs de l'art antérieur, le dispositif de mesure selon la technique proposée ne comprend donc pas de source lumineuse dédiée, qui en ferait partie intégrante. Ceci présente de nombreux avantages, notamment quand le composant photovoltaïque à tester est de grande taille (par exemple un panneau photovoltaïque dont les dimensions excèdent parfois le mètre de largeur et les deux mètres de longueur), et potentiellement déjà installé et en phase d'exploitation. Le dispositif de mesure selon la technique proposée permet ainsi notamment de réaliser les mesures de qualité « in-situ », c'est-à-dire sur le lieu même où le composant photovoltaïque est installé et opérationnel, généralement en extérieur. Il n'est plus nécessaire de démonter le composant photovoltaïque et de le transporter dans une chambre noire hébergeant un équipement fixe dédié pour le tester. On s'affranchit ainsi des nombreuses contraintes et des nombreux risques liés à l'utilisation des dispositifs LBIC existants déjà décrit en relation avec l'art antérieur (coûts et risques associés au démontage, transport et remontage du composant photovoltaïque, durée d'indisponibilité importante du composant photovoltaïque, impliquant un arrêt prolongé de la production d'énergie électrique, risques d'endommagement du composant photovoltaïque lors des nombreuses opérations de manutention nécessaires, etc.). Le dispositif selon la technique proposée est par ailleurs non seulement transportable, mais il est également beaucoup moins onéreux qu'un dispositif de l'art antérieur. The use of a modulation element intended and adapted to be placed directly on the photovoltaic component (ie directly in contact with it, or at the very least almost in contact with it) offers the main advantage, with respect to the devices existing measuring devices as presented in relation to the prior art, to make it possible to assess the quality of the photovoltaic component to be tested without it being necessary to place it in a dark room, and without it being necessary to resort to to a dedicated unit for generating a light beam (such as the dedicated generation unit 11 already described in relation to FIG. 1a, for example). More particularly, as illustrated in FIG. 2, a major advantage of the proposed technique resides in the possibility of directly using natural light 22 (ie sunlight 21) as a light source, rather than artificial light generated by means of of complex, bulky equipment, difficult to transport and expensive such as that necessary and integrated into existing conventional LBIC devices. Unlike these devices of the prior art, the measuring device according to the proposed technique therefore does not include a dedicated light source, which would be an integral part thereof. This has many advantages, especially when the photovoltaic component to be tested is large (for example a photovoltaic panel whose dimensions sometimes exceed one meter in width and two meters in length), and potentially already installed and in the operating phase. . The measurement device according to the proposed technique thus makes it possible in particular to carry out quality measurements "in-situ", that is to say at the very place where the photovoltaic component is installed and operational, generally outdoors. It is no longer necessary to disassemble the photovoltaic component and transport it to a dark room housing dedicated fixed equipment to test it. This overcomes the many constraints and many risks associated with the use of existing LBIC devices already described in relation to the prior art (costs and risks associated with dismantling, transport and reassembly of the photovoltaic component, significant downtime of the photovoltaic component, involving a prolonged shutdown of the production of electrical energy, risk of damage to the photovoltaic component during the numerous handling operations required, etc.). The device according to the technique proposed is moreover not only transportable, but it is also much less expensive than a device of the prior art.
Il convient de noter que, dans le cadre de la technique proposée, le rôle et le fonctionnement de l'unité de mesure 24 ne sont pas fondamentalement différents de ceux de l'unité de mesure 14 telle que décrite en relation avec la figure la illustrant un dispositif LBIC de l'art antérieur. Cette unité de mesure 24 est également destinée, par la mise en oeuvre de techniques de détection synchrone, à isoler et à mesurer le courant induit dans le composant photovoltaïque par la lumière modulée par l'élément de modulation 23 du dispositif LBIC. L'unité de mesure 24 et les traitements qu'elle effectue font tout au plus l'objet d'adaptations pour prendre en compte le fait que la puissance lumineuse du soleil est plus importante que la puissance des sources de lumière artificielle habituellement utilisées dans les dispositifs de l'art antérieur. Aussi, l'unité de mesure 24 n'est pas décrite plus en détail dans le présent document. It should be noted that, within the framework of the proposed technique, the role and operation of the measuring unit 24 are not fundamentally different from those of the measuring unit 14 as described in relation to the figure illustrating a prior art LBIC device. This measurement unit 24 is also intended, by implementing synchronous detection techniques, to isolate and measure the current induced in the photovoltaic component by the light modulated by the modulation element 23 of the LBIC device. The measurement unit 24 and the processing it performs are at most the subject of adaptations to take into account the fact that the luminous power of the sun is greater than the power of the artificial light sources usually used in prior art devices. Also, the measurement unit 24 is not described in more detail in this document.
On présente maintenant différentes implémentations possibles pour la mise en oeuvre de l'élément de modulation 23, dans différents modes de réalisation particuliers de la technique proposée. Selon une première implémentation, dans des modes de réalisation particuliers illustrés en relation avec les figures 3a, 3b et 3c, l'élément de modulation 23 est formé par superposition de deux grilles comprenant chacune une succession de portions optiquement transparentes et de portions opaques. La zone de modulation ZM s'étend alors sensiblement sur toute la surface de l'élément de modulation 23 (i.e. de la plaque). Selon la technique proposée, l'une de ces grilles est fixe (si on considère un référentiel lié à l'élément de modulation), et l'autre est mobile en translation ou en rotation au-dessus (ou au-dessous) de la grille fixe, les deux grilles étant par ailleurs très proches, voire au contact l'une de l'autre. Les portions optiquement transparentes (correspondants par exemple à de simples orifices dans la grille) et les portions opaques sont en outre positionnées, conformées et dimensionnées au sein de chacune des deux grilles de manière à ce qu'il existe au moins une position de la grille mobile, dite position d'exposition, dans laquelle les portions optiquement transparentes des deux grilles se superposent au moins partiellement, et au moins une position de la grille mobile, dite position d'obturation, dans laquelle les portions opaques de l'une quelconque des deux grilles obturent complètement toutes les portions optiquement transparentes de l'autre des deux grilles (en d'autres termes, en position d'obturation, les portions opaques de la grille mobile se superposent aux portions optiquement transparentes de la grille fixe et inversement). De cette manière, la position d'exposition correspond à un état d'exposition dans lequel les deux grilles sont positionnées respectivement l'une vis-à-vis de l'autre de manière à laisser passer la lumière, tandis que la position d'obturation correspond à un état d'obturation dans lequel les deux grilles sont positionnées respectivement l'une vis-à-vis de l'autre de manière à bloquer le passage de la lumière. Selon une caractéristique particulière, une oscillation contrôlée de la grille mobile à une fréquence prédéterminée permet alors le passage de l'état d'exposition à l'état d'obturation et inversement, et donc la modulation de la lumière qui traverse la zone de modulation (qui recouvre tout l'élément de modulation, dans le mode de réalisation particulier considéré). We now present different possible implementations for the implementation of the modulation element 23, in different particular embodiments of the proposed technique. According to a first implementation, in particular embodiments illustrated in relation to FIGS. 3a, 3b and 3c, the modulation element 23 is formed by superimposing two grids each comprising a succession of optically transparent portions and opaque portions. The ZM modulation zone then extends substantially over the entire surface of the modulation element 23 (ie of the plate). According to the proposed technique, one of these grids is fixed (if we consider a frame of reference linked to the modulation element), and the other is mobile in translation or in rotation above (or below) the fixed grid, the two grids being moreover very close, even in contact with one another. The optically transparent portions (corresponding for example to simple orifices in the grid) and the opaque portions are also positioned, shaped and dimensioned within each of the two grids so that there is at least one position of the grid mobile, called exposure position, in which the optically transparent portions of the two grids overlap at least partially, and at least one position of the mobile grid, known as the shutter position, in which the opaque portions of any of the two grids completely block all the optically transparent portions of the other of the two grids (in other words, in the closed position, the opaque portions of the mobile grid are superimposed on the optically transparent portions of the fixed grid and vice versa). In this way, the exposure position corresponds to an exposure state in which the two grids are respectively positioned opposite each other so as to let the light pass, while the position of shuttering corresponds to a shuttered state in which the two grids are positioned respectively one vis-à-vis the other so as to block the passage of light. According to a particular characteristic, a controlled oscillation of the movable gate at a predetermined frequency then allows the transition from the exposure state to the shutter state and vice versa, and therefore the modulation of the light which passes through the modulation zone. (which covers the entire modulation element, in the particular embodiment considered).
La figure 3a présente schématiquement, dans une vue en perspective, un tel agencement, dans lequel l'élément de modulation 23 est formé par superposition d'une première grille 31, fixe, et d'une deuxième grille 32, mobile en translation au-dessus de la première grille 31. Pour faciliter la compréhension, les deux grilles 31 et 32 sont présentées relativement espacées sur la figure 3a (et dans l'ensemble des figures relatives à cette implémentation de l'élément de modulation en général), mais il est entendu que les deux grilles sont en réalité suffisamment proches, voire en contact, de manière à former conjointement un élément de modulation opaque quand la grille Il mobile 32 est dans sa position d'obturation. FIG. 3a schematically presents, in a perspective view, such an arrangement, in which the modulation element 23 is formed by superimposing a first grid 31, fixed, and a second grid 32, mobile in translation above above the first grid 31. To facilitate understanding, the two grids 31 and 32 are shown relatively spaced apart in Figure 3a (and in all the figures relating to this implementation of the modulation element in general), but it it is understood that the two grids are actually sufficiently close, even in contact, so as to jointly form an opaque modulation element when the grid He mobile 32 is in its closed position.
La figure 3b montre, dans une vue de dessus et dans un mode de réalisation particulier, un exemple de deux grilles complémentaires 3 et 32' (sous-figures (a) et (b)) adaptées pour la mise en oeuvre d'un élément de modulation selon cette implémentation de la technique proposée, ainsi que l'élément de modulation 23 obtenu par superposition de ces deux grilles, dans un état d'obturation (sous-figure (c)) et dans un état d'exposition (sous-figure (d)). Dans cet exemple illustratif et non limitatif, les grilles 3 et 32' sont de mêmes dimensions et sont formées par une succession de bandes opaques (bandes représentées grisées sur les sous-figures (a) et (b)) et de bandes optiquement transparentes (bandes représentées blanches sur les sous-figures (a) et (b)) de même largeur. Les bandes opaques sont par exemple formées à partir d'un matériau opaque, et les bandes optiquement transparentes à partir d'un matériau transparent ou encore par simple absence de matière entre les bandes opaques. Dans l'exemple représenté en figure 3b, l'élément de modulation 23 obtenu par superposition des deux grilles 3 et 32' est complètement opaque lorsque les grilles 3 et 32' sont parfaitement superposées (sous-figure (c)), et il laisse passer la lumière lorsque les grilles 3 et 32' sont superposées sur leur majeure partie, mais avec l'une des grilles décalée de la largeur d'une bande vis-à-vis de l'autre grille (sous-figure (d)). FIG. 3b shows, in a top view and in a particular embodiment, an example of two complementary grids 3 and 32' (sub-figures (a) and (b)) adapted for the implementation of an element modulation according to this implementation of the proposed technique, as well as the modulation element 23 obtained by superimposing these two grids, in a shutter state (sub-figure (c)) and in an exposure state (sub- figure (d)). In this illustrative and non-limiting example, the grids 3 and 32' have the same dimensions and are formed by a succession of opaque bands (bands shown shaded in the sub-figures (a) and (b)) and optically transparent bands ( bands shown white in sub-figures (a) and (b)) of the same width. The opaque bands are for example formed from an opaque material, and the optically transparent bands from a transparent material or even by simple absence of material between the opaque bands. In the example represented in FIG. 3b, the modulation element 23 obtained by superposition of the two grids 3 and 32' is completely opaque when the grids 3 and 32' are perfectly superimposed (sub-figure (c)), and it leaves pass the light when the grids 3 and 32' are superimposed over their major part, but with one of the grids shifted by the width of a strip with respect to the other grid (sub-figure (d)) .
L'élément de modulation 23 comprend également des moyens (non représentés) de déplacement en translation de l'une des deux grilles (par exemple la grille 32') vis-à-vis de l'autre grille (par exemple la grille 3 ). Ces moyens de déplacement, contrôlés par une unité de pilotage du dispositif de mesure, permettent de mettre en oeuvre une oscillation contrôlée de la grille mobile 32' (typiquement une oscillation de faible amplitude, de la largeur d'une bande) à une fréquence prédéterminée - provoquant l'alternance de l'élément de modulation 23 entre son état d'exposition et son état d'obturation - ce qui a pour effet de moduler la lumière reçue (typiquement la lumière du soleil) au niveau de la zone à tester du composant photovoltaïque, sur laquelle l'élément de modulation 23 est directement posé. The modulation element 23 also comprises means (not shown) for moving in translation one of the two grids (for example the grid 32') vis-à-vis the other grid (for example the grid 3) . These displacement means, controlled by a control unit of the measuring device, make it possible to implement a controlled oscillation of the mobile grid 32' (typically an oscillation of low amplitude, of the width of a strip) at a predetermined frequency - causing the modulation element 23 to alternate between its exposed state and its shuttered state - which has the effect of modulating the light received (typically sunlight) at the level of the zone to be tested from the photovoltaic component, on which the modulation element 23 is placed directly.
Bien entendu, d'autres types de grilles sont envisageables, notamment en ce qui concerne la forme des portions optiquement transparentes et des portions opaques, comme illustré par exemple en relation avec la figure 3c qui présente un autre exemple de deux grilles complémentaires 31" et 32" également adaptées pour la mise en oeuvre d'un élément de modulation selon la technique proposée. Dans un autre mode de réalisation particulier, les deux grilles peuvent également par exemple être circulaires, avec une grille mobile en rotation au-dessus (ou au-dessous) de la grille fixe. Selon une caractéristique particulière, comme illustré par exemple sur la figure 2, l'élément de modulation 23 - c'est-à-dire la plaque formée par superposition des deux grilles - est de dimensions (longueur et largeur) sensiblement équivalentes aux dimensions standards d'une cellule photovoltaïque de panneau photovoltaïque. L'élément de modulation est par exemple carré, et de dimensions 125 mm par 125 mm, 156 mm par 156 mm, 156,75 mm par 156,75 mm, ou encore 158,75 mm par 158,75 mm, qui correspondent à des dimensions standard pour une cellule photovoltaïque. Ces exemples ne sont toutefois pas limitatifs, et l'élément de modulation peut prendre d'autres formes (rectangulaire, circulaire, etc.) et avoir d'autres dimensions, selon le type de cellule photovoltaïque standard ciblé. De cette manière, le dispositif de mesure selon la technique proposée permet d'évaluer la qualité de chaque cellule d'un panneau photovoltaïque, l'une après l'autre, en déplaçant l'élément de modulation 23 de cellule en cellule sur le panneau et en effectuant à chaque fois, au moyen de l'unité de mesure 24, une mesure de l'intensité du courant induit au niveau de la cellule testée par la lumière du soleil modulée. Il est ainsi possible de détecter rapidement une cellule défectueuse ou de qualité moindre sur un panneau photovoltaïque. En consolidant ces mesures, il est également possible de dresser une cartographie complète de l'intensité des photocourants induits dans le composant photovoltaïque. Une telle cartographie associe à chaque zone testée (e.g. à chaque cellule) la valeur de l'intensité du courant induit associé mesuré par l'unité de mesure 24. Cette cartographie peut notamment prendre la forme d'une image dans laquelle une couleur donnée ou un niveau de gris donné correspond à une valeur ou un intervalle de valeurs d'intensité mesurée (de manière similaire à la cartographie déjà présentée en relation avec la figure lb de l'art antérieur). L'exemple d'une plaque aux dimensions standards d'une cellule photovoltaïque de panneau photovoltaïque est cependant non limitatif, et d'autre tailles de plaque peuvent être envisagées, comme illustré en relation avec les figures 4a et 4b par exemple. Le choix de la taille de la plaque utilisée peut notamment être assimilé au choix d'une résolution pour la mesure de la qualité du composant photovoltaïque. Ainsi, à titre illustratif, une cartographie complète de l'intensité des photocourants induits dans le composant photovoltaïque, à la résolution de la demi-cellule, peut être obtenue en effectuant, au moyen d'une plaque de la taille d'une demi-cellule, suffisamment de mesures successives pour tester toute la surface du composant photovoltaïque. En disposant de plusieurs plaques de tailles différentes, il est notamment par exemple possible d'effectuer une première analyse rapide de la qualité d'un composant photovoltaïque dans son ensemble avec une faible résolution (en utilisant l'élément de modulation de plus grande taille, par exemple l'élément de modulation 23" de la figure 4b, pour dresser une première cartographie « grosse maille » - i.e. à faible résolution - du composant photovoltaïque dans son ensemble) afin d'identifier rapidement une zone potentiellement de moindre qualité, puis d'analyser plus finement (avec une plus haute résolution) la zone problématique précédemment identifiée (en utilisant des éléments de modulation de plus petite taille, par exemple l'élément de modulation 23 de la figure 2, puis l'élément de modulation 23' de la figure 4a, afin de réaliser des cartographies de plus en plus fines - i.e. à résolutions de plus en plus élevées - des zones problématiques ciblées). Of course, other types of grids can be envisaged, in particular as regards the shape of the optically transparent portions and the opaque portions, as illustrated for example in relation to FIG. 3c which presents another example of two complementary grids 31" and 32" also suitable for the implementation of a modulation element according to the proposed technique. In another particular embodiment, the two grids can also for example be circular, with a mobile grid in rotation above (or below) the fixed grid. According to a particular characteristic, as illustrated for example in FIG. 2, the modulation element 23 - that is to say the plate formed by superimposing the two grids - has dimensions (length and width) substantially equivalent to the standard dimensions of a photovoltaic panel photovoltaic cell. The modulation element is for example square, and of dimensions 125 mm by 125 mm, 156 mm by 156 mm, 156.75 mm by 156.75 mm, or even 158.75 mm by 158.75 mm, which correspond to standard dimensions for a photovoltaic cell. These examples are however not limiting, and the modulation element can take other shapes (rectangular, circular, etc.) and have other dimensions, depending on the type of standard photovoltaic cell targeted. In this way, the measurement device according to the proposed technique makes it possible to evaluate the quality of each cell of a photovoltaic panel, one after the other, by moving the modulation element 23 from cell to cell on the panel. and by carrying out each time, by means of the measuring unit 24, a measurement of the intensity of the current induced at the level of the cell tested by the modulated sunlight. It is thus possible to quickly detect a defective cell or one of lesser quality on a photovoltaic panel. By consolidating these measurements, it is also possible to draw up a complete map of the intensity of the photocurrents induced in the photovoltaic component. Such a map associates with each zone tested (eg with each cell) the value of the intensity of the associated induced current measured by the measurement unit 24. This map can in particular take the form of an image in which a given color or a given level of gray corresponds to a value or an interval of measured intensity values (in a manner similar to the cartography already presented in relation to FIG. 1b of the prior art). The example of a plate with the standard dimensions of a photovoltaic cell of a photovoltaic panel is however non-limiting, and other plate sizes can be envisaged, as illustrated in relation to FIGS. 4a and 4b for example. The choice of the size of the plate used can in particular be likened to the choice of a resolution for measuring the quality of the photovoltaic component. Thus, by way of illustration, a complete mapping of the intensity of the photocurrents induced in the photovoltaic component, at the resolution of the half-cell, can be obtained by carrying out, by means of a plate the size of a half- cell, enough successive measurements to test the entire surface of the photovoltaic component. By having several plates of different sizes, it is in particular possible, for example, to carry out a first rapid analysis of the quality of a photovoltaic component as a whole with low resolution (by using the larger modulation element, for example the modulation element 23" of FIG. 4b, for draw up an initial "coarse mesh" map - ie at low resolution - of the photovoltaic component as a whole) in order to quickly identify an area potentially of lower quality, then to analyze more finely (with a higher resolution) the previously problematic area identified (by using smaller-sized modulation elements, for example the modulation element 23 of FIG. 2, then the modulation element 23' of FIG. 4a, in order to produce increasingly fine maps - ie at higher and higher resolutions - targeted problem areas).
On illustre maintenant, dans des modes de réalisation particuliers illustrés en relation avec les figures 5 à 9, une deuxième implémentation possible de l'élément de modulation 23 (i.e. la plaque), qui prend alors la forme d'une matrice d'obturateurs à cristaux liquides (comprenant au moins un obturateur à cristaux liquides). Dans ce cas, la plaque peut également être qualifiée de « dalle ». Chaque obturateur à cristaux liquides de la matrice est un obturateur qui peut prendre l'un ou l'autre de deux états, en fonction de la tension à laquelle il est soumis : un état dans lequel l'obturateur a un certain degré de transparence et laisse passer la lumière, et un état dans lequel l'obturateur est opaque et ne laisse pas passer la lumière. Le passage d'un état à l'autre est réalisé par modification de la tension appliquée aux bornes de l'obturateur, qui a pour effet de modifier l'orientation des molécules des cristaux liquides de l'obturateur. Par exemple, l'obturateur laisse passer un maximum de lumière lorsqu'une tension nulle est appliquée à ses bornes, et l'obturateur est opaque lorsqu'une tension supérieure à un certain seuil est appliquée à ses bornes. Par ailleurs, selon la technique proposée, chaque obturateur à cristaux liquides de la matrice est contrôlable de manière indépendante. We now illustrate, in particular embodiments illustrated in relation to FIGS. 5 to 9, a second possible implementation of the modulation element 23 (i.e. the plate), which then takes the form of a matrix of shutters with liquid crystals (including at least one liquid crystal shutter). In this case, the plate can also be described as a "slab". Each liquid crystal shutter in the array is a shutter that can assume either of two states, depending on the voltage to which it is subjected: a state in which the shutter has some degree of transparency and lets light through, and a state in which the shutter is opaque and does not let light through. The transition from one state to another is achieved by modifying the voltage applied to the terminals of the shutter, which has the effect of modifying the orientation of the molecules of the liquid crystals of the shutter. For example, the shutter allows a maximum of light to pass when a zero voltage is applied to its terminals, and the shutter is opaque when a voltage greater than a certain threshold is applied to its terminals. Furthermore, according to the proposed technique, each liquid crystal shutter of the matrix is independently controllable.
Dans un mode de réalisation particulier illustré en relation avec la figure 5. la matrice d'obturateurs à cristaux liquides comprend un seul obturateur OB, qui définit une zone de modulation ZM s'étendant sur toute la surface de l'élément de modulation 23. Comme représenté en figure 6. l'application d'une tension en créneau de fréquence prédéterminée aux bornes de cet obturateur OB (via une unité de pilotage du dispositif de mesure par exemple) provoque l'alternance de l'élément de modulation 23 entre son état d'obturation (sous-figure (a)) et son état d'exposition (sous-figure (b)). Ceci a pour effet de moduler la lumière reçue (typiquement la lumière du soleil) au niveau de la zone à tester du composant photovoltaïque, sur laquelle l'élément de modulation 23 est directement posé. In a particular embodiment illustrated in relation to FIG. 5, the matrix of liquid crystal shutters comprises a single shutter OB, which defines a modulation zone ZM extending over the entire surface of the modulation element 23. As represented in FIG. 6, the application of a voltage in a predetermined frequency square to the terminals of this shutter OB (via a control unit of the measuring device for example) causes the alternation of the modulation element 23 between its shutter state (subfigure (a)) and its exposure state (subfigure (b)). This has the effect of modulating the light received (typically sunlight) at the level of the area to be tested of the photovoltaic component, on which the modulation element 23 is placed directly.
Selon une caractéristique particulière de ce mode de réalisation, et comme illustré par exemple sur la figure 5, l'élément de modulation 23 - c'est-à-dire la plaque comprenant l'obturateur OB - est de dimensions sensiblement équivalentes aux dimensions standards d'une cellule photovoltaïque de panneau photovoltaïque. L'élément de modulation est par exemple carré, et de dimensions 125 mm par 125 mm, 156 mm par 156 mm, 156,75 mm par 156,75 mm, ou encore 158,75 mm par 158,75 mm, qui correspondent à des dimensions standard pour une cellule photovoltaïque. Ces exemples ne sont toutefois pas limitatifs, et l'élément de modulation peut prendre d'autres formes (rectangulaire, circulaire, etc.) et avoir d'autres dimensions, selon le type de cellule photovoltaïque standard ciblé. D'autre tailles de dalles, qui ne correspondent pas à des dimensions standards de cellule photovoltaïque peuvent évidemment être envisagées. On retrouve alors les avantages déjà décrits en relation avec la première implémentation, sous forme de grilles superposées, de l'élément de modulation 23, et notamment la possibilité de pouvoir effectuer des mesures de la qualité du composant photovoltaïque à différentes résolutions (en fonction de la taille de la dalle choisie), et de dresser des cartographies associées de l'intensité des photocourants induits dans ce composant. According to a particular characteristic of this embodiment, and as illustrated for example in FIG. 5, the modulation element 23 - that is to say the plate comprising the shutter OB - is of dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel. The modulation element is for example square, and of dimensions 125 mm by 125 mm, 156 mm by 156 mm, 156.75 mm by 156.75 mm, or even 158.75 mm by 158.75 mm, which correspond to standard dimensions for a photovoltaic cell. These examples are however not limiting, and the modulation element can take other shapes (rectangular, circular, etc.) and have other dimensions, depending on the type of standard photovoltaic cell targeted. Other slab sizes, which do not correspond to standard photovoltaic cell dimensions, can obviously be envisaged. We then find the advantages already described in relation to the first implementation, in the form of superimposed grids, of the modulation element 23, and in particular the possibility of being able to carry out measurements of the quality of the photovoltaic component at different resolutions (according to the size of the slab chosen), and to draw up associated maps of the intensity of the photocurrents induced in this component.
Avec des dalles à un seul obturateur à cristaux liquides, le changement de résolution implique de disposer de plusieurs dalles de tailles différentes. Il est toutefois possible de s'affranchir au moins partiellement de cette contrainte en utilisant un élément de modulation dans lequel la matrice d'obturateurs à cristaux liquides comprend une pluralité d'obturateurs à cristaux liquides, comme illustré par exemple en relation avec la figure 7 dans un mode de réalisation particulier de la technique proposée. Dans cet exemple illustratif et non limitatif, l'élément de modulation 23, de dimensions sensiblement équivalentes aux dimensions standards d'une cellule photovoltaïque de panneau photovoltaïque, est formé par une matrice de quatre obturateurs à cristaux liquides 01, 02, 03 et 04 de mêmes dimensions, répartis en deux rangées de deux obturateurs. Un tel agencement reposant sur une pluralité d'obturateurs contrôlables de manière indépendante les uns des autres est intéressant en ce qu'il permet, à partir d'une seule et même dalle, d'effectuer des mesures à différentes résolutions. L'élément de modulation 23 représenté en figure 7 permet ainsi d'effectuer des mesures à la résolution de la cellule, de la demi-cellule, ou encore du quart de cellule photovoltaïque. Par exemple, pour effectuer une mesure avec une résolution au quart de cellule, il suffit, par le biais des moyens de pilotage du dispositif de mesure, de définir l'obturateur 01 comme zone de modulation (l'obturateur 01 alterne alors entre son état d'exposition et son état d'obturation à une fréquence prédéterminée) et de figer les autres obturateurs 02, 03 et 04 dans un même état constant, par exemple dans leur état d'exposition. Une fois la mesure de courant induit effectuée dans cette configuration par l'unité de mesure 24, il est possible, sans déplacer la dalle, de tester un autre quart de la cellule sur laquelle l'élément de modulation 23 est posé (par exemple, en sélectionnant cette fois l'obturateur 02 comme zone de modulation, et en figeant l'état des obturateurs 01, 03 et 04). Il est également possible de définir un groupe d'obturateurs (généralement adjacents) en tant que zone de modulation : tous les obturateurs de la zone de modulation sont alors pilotés pour alterner de manière synchrone et cohérente entre leur état d'exposition et leur état d'obturation, à la fréquence prédéterminée. Par exemple, en sélectionnant le groupe d'obturateurs 01 et 03 comme zone de modulation et en figeant l'état des obturateurs 02 et 04, on effectue une mesure à la résolution de la demi-cellule. En sélectionnant tous les obturateurs (i.e. 01, 02, 03 et 04) en tant que zone de modulation, on retrouve des conditions de mesures similaires à celles déjà décrites en relation avec la figure 5, avec des mesures à la résolution de la cellule. Une fois les mesures souhaitées effectuées sur une cellule, l'élément de modulation 23 peut être physiquement déplacé sur une autre cellule à tester du composant photovoltaïque CP. Dans ce mode de réalisation, une même dalle peut donc être utilisée pour dresser des cartographies complètes de l'intensité des photocourants induits dans le composant photovoltaïque à différents niveaux de résolution. With panels with a single liquid crystal shutter, changing the resolution means having several panels of different sizes. It is however possible to overcome this constraint at least partially by using a modulation element in which the matrix of liquid crystal shutters comprises a plurality of liquid crystal shutters, as illustrated for example in relation to FIG. in a particular embodiment of the proposed technique. In this illustrative and non-limiting example, the modulation element 23, of dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel, is formed by a matrix of four liquid crystal shutters 01, 02, 03 and 04 of same dimensions, divided into two rows of two shutters. Such an arrangement based on a plurality of independently controllable shutters is interesting in that it allows, from a single and same panel, to perform measurements at different resolutions. The modulation element 23 represented in FIG. 7 thus makes it possible to carry out measurements at the resolution of the cell, of the half-cell, or even of the quarter of a photovoltaic cell. For example, to perform a measurement with a quarter-cell resolution, it suffices, by means of the control means of the measurement device, to define the shutter 01 as modulation zone (the shutter 01 then alternates between its state exposure and its shutter state at a predetermined frequency) and to freeze the other shutters 02, 03 and 04 in the same constant state, for example in their exposure state. Once the induced current measurement has been performed in this configuration by the measurement unit 24, it is possible, without move the slab, to test another quarter of the cell on which the modulation element 23 is placed (for example, this time selecting shutter 02 as modulation zone, and freezing the state of shutters 01, 03 and 04). It is also possible to define a group of (usually adjacent) shutters as a modulation zone: all shutters in the modulation zone are then driven to alternate synchronously and coherently between their exposure state and their dim state. shutter, at the predetermined frequency. For example, by selecting the group of shutters 01 and 03 as modulation zone and by freezing the state of shutters 02 and 04, a measurement is carried out at the resolution of the half-cell. By selecting all the shutters (ie 01, 02, 03 and 04) as modulation zone, we find measurement conditions similar to those already described in relation to FIG. 5, with measurements at the resolution of the cell. Once the desired measurements have been taken on a cell, the modulation element 23 can be physically moved to another cell to be tested of the photovoltaic component CP. In this embodiment, the same tile can therefore be used to draw up complete maps of the intensity of the photocurrents induced in the photovoltaic component at different levels of resolution.
Bien entendu, là encore, la taille de la dalle n'est pas limitée à celle d'une cellule, et d'autre tailles de dalles peuvent être envisagées. Dans un mode de réalisation particulier de la technique proposée, illustré en relation avec les figures 8 et 9. la matrice comprenant une pluralité d'obturateurs à cristaux liquides est de dimensions sensiblement équivalentes aux dimensions standards d'un panneau photovoltaïque (pour plus de lisibilité de ces figures, l'élément de modulation 23 est présenté dans une configuration où il n'est pas encore posé sur le panneau photovoltaïque). Un tel mode de réalisation présente l'intérêt de permettre de mesurer la qualité de l'intégralité d'un panneau photovoltaïque à différentes résolutions, sans qu'il soit nécessaire de déplacer physiquement l'élément de modulation 23, une fois ce dernier posé sur le panneau. La sélection de la zone de modulation ZM et son déplacement après chaque mesure sont en effet gérés de manière purement logicielle, via l'unité de pilotage du dispositif de mesure. Une telle solution offre ainsi une grande flexibilité d'utilisation. Comme montré sur les figures 8 et 9, elle permet par exemple d'adapter facilement la forme de la zone de modulation ZM à celle des cellules photovoltaïques du panneau photovoltaïque testé (les cellules Cl, C2, ..., Cn de forme carrée de la figure 8, ou les cellules Cl', C2', ..., Cm' en forme de bande de la figure 9), pour la mise en oeuvre de mesures à la résolution de la taille d'une cellule. Le temps de la mesure, les obturateurs ne faisant pas partie de la zone de modulation sont tous figés dans un même état constant, par exemple leur état d'exposition (comme montré sur l'exemple de la figure 8), ou leur état d'obturation (comme montré sur l'exemple de la figure 9, une telle configuration étant particulièrement intéressante en ce qu'elle permet de limiter les lumières parasites). Of course, here again, the size of the slab is not limited to that of a cell, and other sizes of slabs can be envisaged. In a particular embodiment of the proposed technique, illustrated in relation to FIGS. 8 and 9, the matrix comprising a plurality of liquid crystal shutters is of dimensions substantially equivalent to the standard dimensions of a photovoltaic panel (for greater readability of these figures, the modulation element 23 is presented in a configuration where it is not yet placed on the photovoltaic panel). Such an embodiment has the advantage of making it possible to measure the quality of an entire photovoltaic panel at different resolutions, without it being necessary to physically move the modulation element 23, once the latter is placed on the panel. The selection of the ZM modulation zone and its displacement after each measurement are in fact managed in a purely software manner, via the control unit of the measurement device. Such a solution thus offers great flexibility of use. As shown in FIGS. 8 and 9, it makes it possible, for example, to easily adapt the shape of the modulation zone ZM to that of the photovoltaic cells of the photovoltaic panel tested (cells Cl, C2, ..., Cn of square shape of 8, or the cells C1′, C2′, ..., Cm′ in the form of a strip of FIG. 9), for the implementation of measurements at the resolution of the size of a cell. During the measurement, the shutters that are not part of the modulation zone are all frozen in the same constant state, for example, their exposure state (as shown in the example of FIG. 8), or their shutter state (as shown in the example of FIG. 9, such a configuration being particularly interesting in that it makes it possible to limit stray light).
Dans un mode de réalisation particulier de l'implémentation de l'élément de modulation sous forme de matrice d'obturateurs à cristaux liquides, une taille intermédiaire de dalle - entre une taille standard de cellule photovoltaïque et une taille standard de panneau photovoltaïque - constitue un bon compromis entre transportabilité de l'élément de modulation et flexibilité en termes de résolution. In a particular embodiment of the implementation of the modulation element in the form of a matrix of liquid crystal shutters, an intermediate size of panel - between a standard size of photovoltaic cell and a standard size of photovoltaic panel - constitutes a good compromise between transportability of the modulation element and flexibility in terms of resolution.
Il convient par ailleurs de noter que les exemples précédents - décrivant la possibilité d'effectuer des mesures et d'obtenir des cartographies à une résolution de la taille de la cellule, de la demi-cellule, ou du quart de cellule notamment - sont donnés à titre purement illustratif et non limitatif. Plus particulièrement, il va de soi que la technique proposée permet avantageusement la réalisation de mesures à des résolutions bien plus élevées, par exemple de l'ordre de quelques micromètres lorsque l'élément de modulation prend la forme d'une matrice d'obturateurs à cristaux liquides avec des obturateurs dans cet ordre de dimensions. Il est ainsi possible de dresser des cartographies haute résolution révélant des informations précieuses sur les défauts électriquement actifs du composant photovoltaïque testé. It should also be noted that the previous examples - describing the possibility of carrying out measurements and obtaining maps at a resolution of the size of the cell, the half-cell, or the quarter-cell in particular - are given for purely illustrative and non-limiting purposes. More particularly, it goes without saying that the proposed technique advantageously allows measurements to be carried out at much higher resolutions, for example of the order of a few micrometers when the modulation element takes the form of a matrix of shutters at liquid crystals with shutters in this order of dimensions. It is thus possible to draw up high-resolution maps revealing valuable information on the electrically active defects of the photovoltaic component under test.
Dans un mode de réalisation particulier combinable avec l'une ou l'autre des deux implémentations principales précédemment décrites (grilles superposées ou matrice d'obturateurs à cristaux liquides), l'élément de modulation 23 comprend en outre des moyens de filtrage optique permettant de filtrer, en fonction de sa longueur d'onde, la partie du rayonnement lumineux (e.g. de la lumière du soleil) qui atteint la zone testée du composant photovoltaïque, après avoir traversé la zone de modulation de l'élément de modulation. En d'autres termes, ces moyens de de filtrage permettent de sélectionner la ou les longueurs d'onde de la lumière modulée incidente sur la zone testée. De cette manière, la technique proposée permet également de caractériser le composant photovoltaïque testé dans son épaisseur, le niveau de profondeur testé dépendant de la longueur d'onde sélectionnée. Les moyens de filtrages peuvent prendre la forme d'un ou plusieurs supports colorés, éventuellement interchangeables ou combinables, disposés au-dessus et/ou au-dessous des grilles superposées ou de la matrice d'obturateurs à cristaux liquides (selon l'implémentation de l'élément de modulation considérée). De manière alternative ou complémentaire, ils peuvent également prendre la forme d'un colorant directement diffusé dans les portions optiquement transparentes des grilles (lorsque celles-ci sont faites d'un matériau optiquement transparent) ou dans les cristaux liquides des obturateurs (selon l'implémentation de l'élément de modulation considérée). In a particular embodiment which can be combined with one or the other of the two main implementations previously described (superimposed grids or matrix of liquid crystal shutters), the modulation element 23 also comprises optical filtering means making it possible to filtering, according to its wavelength, the part of the light radiation (eg sunlight) which reaches the tested zone of the photovoltaic component, after having crossed the modulation zone of the modulation element. In other words, these filtering means make it possible to select the wavelength or wavelengths of the modulated light incident on the zone tested. In this way, the proposed technique also makes it possible to characterize the photovoltaic component tested in its thickness, the level of depth tested depending on the selected wavelength. The filtering means can take the form of one or more colored supports, optionally interchangeable or combinable, arranged above and/or below the superimposed grids or the matrix of liquid crystal shutters (depending on the implementation of the considered modulation element). Alternatively or additionally, they can also take the form of a dye directly diffused into the optically transparent portions of the grids (when these are made of an optically transparent material) or in the liquid crystals of the shutters (depending on the implementation of the modulation element considered).
Selon un autre aspect, la technique proposée se rapporte également à un procédé de mesure de la qualité d'un composant photovoltaïque au moyen d'un dispositif de mesure tel que précédemment décrit. Plus particulièrement, selon le procédé proposé, le composant photovoltaïque est testé « in situ » (i.e. directement sur le lieu où il est installé et en conditions d'exploitation) et il est éclairé uniquement à la lumière naturelle du soleil. Le composant photovoltaïque est typiquement un panneau photovoltaïque. Le procédé proposé, décrit en relation avec la figure 10 dans un mode de réalisation particulier, comprend au moins une itération des étapes suivantes : une étape de positionnement 101 de l'élément de modulation du dispositif de mesure directement au contact d'une zone comprenant au moins une zone à tester dudit composant photovoltaïque ; une étape d'activation 103 de l'alternance, à une fréquence prédéterminée, de la zone de modulation de l'élément de modulation, entre son état d'exposition et son état d'obturation. une étape de mesure 104, par l'unité de mesure dudit dispositif de mesure (préalablement connectée au composant photovoltaïque à tester), de l'intensité du courant induit dans le composant photovoltaïque par la lumière naturelle du soleil modulée par la zone de modulation. According to another aspect, the proposed technique also relates to a method for measuring the quality of a photovoltaic component by means of a measuring device as previously described. More particularly, according to the proposed method, the photovoltaic component is tested "in situ" (i.e. directly on the place where it is installed and under operating conditions) and it is illuminated only with natural sunlight. The photovoltaic component is typically a photovoltaic panel. The proposed method, described in relation to FIG. 10 in a particular embodiment, comprises at least one iteration of the following steps: a step of positioning 101 of the modulation element of the measuring device directly in contact with a zone comprising at least one zone to be tested of said photovoltaic component; a step 103 of activating the alternation, at a predetermined frequency, of the modulation zone of the modulation element, between its exposed state and its shuttered state. a measurement step 104, by the measurement unit of said measurement device (connected beforehand to the photovoltaic component to be tested), of the intensity of the current induced in the photovoltaic component by natural sunlight modulated by the modulation zone.
Dans un mode de réalisation particulier, de manière optionnelle, le procédé comprend également, préalablement à ladite étape d'activation 103, lorsque l'élément de modulation du dispositif de mesure prend la forme d'une matrice comprenant une pluralité d'obturateurs à cristaux liquides, une étape de sélection 102 d'un ensemble d'obturateurs à cristaux liquides adjacents de ladite matrice (comprenant au moins un obturateur à cristaux liquides) définissant ladite zone de modulation. In a particular embodiment, optionally, the method also comprises, prior to said activation step 103, when the modulation element of the measuring device takes the form of a matrix comprising a plurality of crystal shutters liquid crystals, a step 102 of selecting a set of adjacent liquid crystal shutters of said matrix (comprising at least one liquid crystal shutter) defining said modulation zone.

Claims

REVENDICATIONS
1. Dispositif de mesure de la qualité d'un composant photovoltaïque (CP), ledit dispositif comprenant : un élément de modulation (23) pour la modulation, à une fréquence prédéterminée, d'une lumière incidente sur au moins une partie dudit composant photovoltaïque, dite zone testée ; une unité de mesure (24) de l'intensité du courant induit dans ledit composant photovoltaïque par ladite lumière incidente modulée, ladite intensité étant représentative de la qualité de la zone testée ; ledit dispositif de mesure étant caractérisé en ce que ledit élément de modulation prend la forme d'une plaque adaptée pour être posée directement ou montée affleurante sur ledit composant photovoltaïque (CP), ladite plaque comprenant au moins une zone de modulation configurée pour alterner périodiquement, à ladite fréquence prédéterminée, entre deux états : un état d'exposition dans lequel la zone de modulation permet le passage de la lumière à travers ladite plaque, au niveau de ladite zone de modulation ; un état d'obturation dans lequel la zone de modulation bloque le passage de la lumière à travers ladite plaque, au niveau de ladite zone de modulation ; ladite zone de modulation s'étendant sensiblement sur toute la surface de ladite plaque, ladite zone de modulation étant formée par superposition de deux grilles, une grille fixe (31) et une grille mobile (32), chacune des deux grilles comprenant une succession de portions optiquement transparentes et de portions opaques, ladite grille mobile étant configurée de manière à être mobile entre au moins une première position, correspondant audit état d'exposition, dans laquelle les portions optiquement transparentes des deux grilles se superposent au moins partiellement, et au moins une deuxième position, correspondant audit état d'obturation dans laquelle les portions opaques de l'une quelconque des deux grilles obturent complètement les portions optiquement transparentes de l'autre des deux grilles. 1. Device for measuring the quality of a photovoltaic component (CP), said device comprising: a modulation element (23) for modulating, at a predetermined frequency, light incident on at least part of said photovoltaic component , known as the tested zone; a unit (24) for measuring the intensity of the current induced in said photovoltaic component by said modulated incident light, said intensity being representative of the quality of the zone tested; said measuring device being characterized in that said modulation element takes the form of a plate adapted to be placed directly or mounted flush on said photovoltaic component (CP), said plate comprising at least one modulation zone configured to alternate periodically, at said predetermined frequency, between two states: an exposure state in which the modulation zone allows the passage of light through said plate, at the level of said modulation zone; a closed state in which the modulation zone blocks the passage of light through said plate, at the level of said modulation zone; said modulation zone extending substantially over the entire surface of said plate, said modulation zone being formed by superimposing two grids, a fixed grid (31) and a mobile grid (32), each of the two grids comprising a succession of optically transparent portions and opaque portions, said movable grid being configured so as to be movable between at least a first position, corresponding to said exposure state, in which the optically transparent portions of the two grids overlap at least partially, and at least a second position, corresponding to said closed state in which the opaque portions of any one of the two grids completely block the optically transparent portions of the other of the two grids.
2. Dispositif de mesure selon la revendication 1, caractérisé en ce que ladite plaque est de dimensions sensiblement équivalentes aux dimensions standards d'une cellule photovoltaïque de panneau photovoltaïque. 2. Measuring device according to claim 1, characterized in that said plate has dimensions substantially equivalent to the standard dimensions of a photovoltaic cell of a photovoltaic panel.
3. Dispositif de mesure selon l'une quelconque des revendications 1 à 2, caractérisé en ce que ledit élément de modulation comprend en outre des moyens de filtrage optique de ladite lumière incidente, en fonction de la longueur d'onde. 3. Measuring device according to any one of claims 1 to 2, characterized in that said modulation element further comprises means for optical filtering of said incident light, as a function of the wavelength.
4. Procédé de mesure de la qualité d'un composant photovoltaïque au moyen d'un dispositif de mesure selon l'une quelconque des revendications 1 à 3, ledit composant photovoltaïque étant éclairé uniquement à la lumière naturelle du soleil, ledit procédé comprenant au moins une itération des étapes suivantes : une étape de positionnement de l'élément de modulation dudit dispositif de mesure directement au contact d'une zone comprenant au moins une zone à tester dudit composant photovoltaïque ; une étape d'activation de l'alternance, à une fréquence prédéterminée, de la zone de modulation dudit élément de modulation, entre son état d'exposition et son état d'obturation. une étape de mesure, par l'unité de mesure dudit dispositif de mesure, de l'intensité du courant induit dans le composant photovoltaïque par la lumière naturelle modulée par ladite zone de modulation. 4. Method for measuring the quality of a photovoltaic component by means of a measuring device according to any one of claims 1 to 3, said photovoltaic component being illuminated only by natural sunlight, said method comprising at least an iteration of the following steps: a step of positioning the modulation element of said measuring device directly in contact with an area comprising at least one area to be tested of said photovoltaic component; a step of activating the alternation, at a predetermined frequency, of the modulation zone of said modulation element, between its exposure state and its shutter state. a step of measuring, by the measuring unit of said measuring device, the intensity of the current induced in the photovoltaic component by the natural light modulated by said modulation zone.
PCT/EP2021/081932 2020-11-24 2021-11-17 Device for measuring the quality of a photovoltaic component and associated method WO2022112069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2012089 2020-11-24
FR2012089A FR3116678B1 (en) 2020-11-24 2020-11-24 Device for measuring the quality of a photovoltaic component, associated method.

Publications (1)

Publication Number Publication Date
WO2022112069A1 true WO2022112069A1 (en) 2022-06-02

Family

ID=74183415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/081932 WO2022112069A1 (en) 2020-11-24 2021-11-17 Device for measuring the quality of a photovoltaic component and associated method

Country Status (2)

Country Link
FR (1) FR3116678B1 (en)
WO (1) WO2022112069A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049450B1 (en) * 2010-04-14 2011-07-15 한국표준과학연구원 Optical apparatus and correction method of the same
WO2017042248A1 (en) * 2015-09-08 2017-03-16 Danmarks Tekniske Universitet Method and apparatus for characterization of a solar cell
US20170163213A1 (en) * 2014-06-30 2017-06-08 Brookhaven Science Associates, Llc Method and Device to Measure Electric Parameters Over Delimited Areas of a Photovoltaic Module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049450B1 (en) * 2010-04-14 2011-07-15 한국표준과학연구원 Optical apparatus and correction method of the same
US20170163213A1 (en) * 2014-06-30 2017-06-08 Brookhaven Science Associates, Llc Method and Device to Measure Electric Parameters Over Delimited Areas of a Photovoltaic Module
WO2017042248A1 (en) * 2015-09-08 2017-03-16 Danmarks Tekniske Universitet Method and apparatus for characterization of a solar cell

Also Published As

Publication number Publication date
FR3116678A1 (en) 2022-05-27
FR3116678B1 (en) 2022-11-18

Similar Documents

Publication Publication Date Title
EP3213093B1 (en) System and method for analysis of a microwave frequency signal by imaging
CA2569985C (en) Method and installation for acousto-optic imaging
EP0129508B1 (en) Examining and testing method of an electric device of the integrated or printed circuit type
FR2937732A1 (en) DEVICE AND METHOD FOR SPECTROSCOPIC POLARIMETRIC MEASUREMENTS IN THE VISIBLE AND NEAR INFRARED DOMAIN
EP1974194B1 (en) Achromatic and compact optical interferometer of the trilateral shift type
EP2795390A1 (en) Quantitative nonlinear optical microscopy using a shaped beam
EP3599717B1 (en) Optical characterisation of a coefficient of bi-faciality of a bifacial solar module
EP2649431B1 (en) System and method of multitechnique imaging for the chemical, biological or biochemical analysis of a sample
WO2022112069A1 (en) Device for measuring the quality of a photovoltaic component and associated method
EP3599718A1 (en) Optical characterisation of electronic transport properties of a bifacial photovoltaic module
FR2942036A1 (en) AUTOCORRELATOR DEVICE WITH BIPRISM FOR THE TEMPORAL MEASUREMENT OF ULTRA - BRAKE LIGHT PULSES.
WO2004023116A1 (en) Terahertz spectroscopy
CA2746533A1 (en) Optical absorption probe provided with emission source monitoring
FR2859024A1 (en) Apparatus for non-invasively detecting and measuring electrical field or potential in e.g. opto-electronic components, employs confocal microscope to map phase differences
EP3767282A1 (en) Device and method for in-situ measuring the lifetime of minority carriers in a semiconductor material
FR2859020A1 (en) Non-invasive interferometric detection and measurement of optoelectronic properties employs scanner sweeping inspection and reference zones at specified frequencies
EP3100034B1 (en) Method and device for acquiring and processing diffraction diagrams from a piece of equipment which uses a focused-particle beam, and an analytical imaging system including said device
FR2912230A1 (en) ELECTRO-OPTICAL SHUT-OFF DEVICE FOR ANTI-GLOWING SYSTEM BASED ON AT LEAST ONE PHOTOSENSITIVE LAYER
CH420661A (en) Spectrometric apparatus
CH420660A (en) High luminosity spectrometry device with high resolving power
EP4340217A1 (en) Device for simulating shading on a photovoltaic panel
CA3202785A1 (en) Device and method for measuring irradiance
EP3423882A1 (en) Quantitative non-linear optical microscope
FR2894332A1 (en) SPECTROPHOTOMETER WITH LARGE INPUT SLOT
WO2003050487A2 (en) Optical system for spectral analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21815965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21815965

Country of ref document: EP

Kind code of ref document: A1