WO2022111686A1 - 生物特征参数的测量方法和装置 - Google Patents

生物特征参数的测量方法和装置 Download PDF

Info

Publication number
WO2022111686A1
WO2022111686A1 PCT/CN2021/133980 CN2021133980W WO2022111686A1 WO 2022111686 A1 WO2022111686 A1 WO 2022111686A1 CN 2021133980 W CN2021133980 W CN 2021133980W WO 2022111686 A1 WO2022111686 A1 WO 2022111686A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
current
emitting unit
preset value
photoelectric conversion
Prior art date
Application number
PCT/CN2021/133980
Other languages
English (en)
French (fr)
Inventor
袁豪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022111686A1 publication Critical patent/WO2022111686A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00

Definitions

  • the present application relates to the technical field of terminals, and in particular, to a method and device for measuring biological characteristic parameters.
  • a photoplethysmography (PPG) sensor can be installed in wearable devices such as smart watches to monitor the user's heart rate in real time.
  • the PPG sensor can control the light emitting diode (LED) module to emit light, and then receive the light signal reflected by the skin through the photodiode (PD), and convert the received light signal into an electrical signal, Thereby measuring the human heart rate.
  • LED light emitting diode
  • the present application provides a method and device for measuring biometric parameters, which can improve the measurement accuracy of biometric parameters.
  • the present application provides a method for measuring a biometric parameter.
  • the measuring method is applied to an electronic device.
  • the electronic device includes a light-emitting module and a photoelectric conversion module, and the light-emitting module includes at least two light-emitting units.
  • the at least two light-emitting units are alternately lit in different periods; the method includes: determining a target current on the first light-emitting unit currently lit in the current cycle in the light-emitting module; judging the target current on the first light-emitting unit Whether it is greater than the first preset value; if the target current on the first light-emitting unit is greater than the first preset value, obtain the shunt coefficient corresponding to the first light-emitting unit and the shunt coefficient corresponding to the second light-emitting unit; according to the first The shunt coefficient corresponding to the light emitting unit and the shunt coefficient corresponding to the second light emitting unit, in the current cycle, distribute current to the first light emitting unit and the second light emitting unit in the light emitting module respectively, so as to adjust the current on the first light emitting unit.
  • the first light-emitting unit and the second light-emitting unit emit light according to the assigned current to measure the biometric parameter of the target object, wherein the difference between the current received by the photoelectric conversion module and the second preset value is The absolute value is less than the third preset value, and the currents distributed to the first light-emitting unit and the second light-emitting unit are both less than or equal to the first preset value.
  • the partial voltage on the light-emitting module is small, thereby ensuring that the pin pin of the PPG sensor is guaranteed.
  • the voltage value above meets the preset voltage value, thereby providing a stable reference voltage for the ADC in the PPG sensor, and improving the accuracy of the measurement result of the biometric parameter.
  • the current can be shunted to the second light-emitting unit, so that the intensity of the light emitted by the light-emitting module does not decrease, so that the photoelectric
  • the current value received by the conversion module is greater than the second preset value, which ensures that the photoelectric conversion module can analyze the signal normally, thereby further ensuring the accuracy of the measurement result of the biometric parameter.
  • the first preset value is a maximum current value that can ensure the normal operation of the PPG sensor in the electronic device; the second preset value and the third preset value are used to ensure that the photoelectric The conversion module can perform signal analysis normally.
  • the first preset value is the maximum current value that can ensure the normal operation of the PPG sensor in the electronic device. By setting the value, it can ensure that the voltage value on the pin pin of the PPG sensor meets the preset voltage value, thereby providing a stable reference voltage for the ADC in the PPG sensor, and improving the accuracy of the measurement result of the biometric parameter.
  • the second preset value and the third preset value are used to ensure that the photoelectric conversion module can perform signal analysis normally, and the absolute value of the difference between the current value received by the photoelectric conversion module and the second preset value is limited to be smaller than the first The three preset values can ensure that the photoelectric conversion module can normally perform signal analysis, thereby further ensuring the accuracy of the measurement results of the biometric parameters.
  • determining the target current on the first light-emitting unit currently lit in the current cycle in the light-emitting module includes: acquiring the current currently received by the photoelectric conversion module; according to the photoelectric conversion module The current received currently determines the target current of the first light-emitting unit.
  • determining the target current of the first light-emitting unit according to the current currently received by the photoelectric conversion module includes: judging whether the adjustment times of the target current of the first light-emitting unit is greater than the fourth preset value. set value; if the adjustment times of the target current of the first light-emitting unit is not greater than the fourth preset value, then determine the absolute value of the difference between the current received by the photoelectric conversion module and the second preset value Whether the value is less than the third preset value; if not less than the third preset value, the target current of the first light-emitting unit is determined according to the current currently received by the photoelectric conversion module and the second preset value.
  • the current received by the photoelectric conversion module is used to determine the target current of the first light-emitting unit, thereby The phenomenon that the control module continuously adjusts the target current of the first light-emitting unit can be prevented.
  • determining the target current of the first light-emitting unit according to the current currently received by the photoelectric conversion module includes: judging whether the current currently received by the photoelectric conversion module is less than the second preset value ; If it is less than the second preset value, then according to the current current of the first light-emitting unit in the current cycle and the fifth preset value, determine the target current of the first light-emitting unit, wherein, the fifth preset value is the The maximum current value that the photoplethysmography PPG sensor in the electronic device can withstand; if it is greater than the second preset value, then according to the current current of the first light-emitting unit in the current cycle and the sixth preset value, determine the first The target current of the light-emitting unit, wherein the sixth preset value is the minimum current value that ensures that the PPG sensor can collect signals.
  • the target current of the first light-emitting unit can be adjusted in real time, so that the measurement result of the biometric parameter can be improved.
  • determining the target current of the first light-emitting unit according to the current current of the first light-emitting unit and the fifth preset value in the current cycle includes: combining the current current of the first light-emitting unit and the fifth preset value. The average value of the fifth preset value is determined as the target current of the first light-emitting unit.
  • the method of determining the target current of the first light-emitting unit is based on the average value of the current current of the first light-emitting unit and the fifth preset value, so that the determination method is relatively simple.
  • determining the target current of the first light-emitting unit according to the current current of the first light-emitting unit and the sixth preset value in the current cycle includes: combining the current current of the first light-emitting unit and the sixth preset value. The average value of the sixth preset value is determined as the target current of the first light-emitting unit.
  • the method of determining the target current of the first light-emitting unit is based on the average value of the current current of the first light-emitting unit and the sixth preset value, so that the determination method is relatively simple.
  • the method further includes: if the adjustment times of the target current on the first light-emitting unit is greater than the fourth preset value, or the current received by the photoelectric conversion module is the same as the second current When the absolute value of the difference between the preset values is less than the third preset value, it is determined whether the current currently received by the photoelectric conversion module meets the requirements of the analog-to-digital converter ADC of the photoplethysmography PPG sensor in the electronic device.
  • the ideal accuracy interval if the accuracy ideal interval of the ADC of the PPG sensor is not satisfied, adjust the current current of the first light-emitting unit according to a preset method, and determine the adjusted current as the target current of the first light-emitting unit ; If the accuracy ideal interval of the ADC of the PPG sensor is satisfied, the current current of the first light-emitting unit is determined as the target current of the first light-emitting unit.
  • the control module determines that the current value currently received by the photoelectric conversion module is not within the ideal range of ADC accuracy, the current value of the first light-emitting unit needs to be adjusted, thereby improving the accuracy of data processing.
  • the first light emitting unit and the second light emitting unit in the light emitting module are respectively illuminated in the current cycle.
  • the unit allocating current includes: allocating a current a*m to the first light-emitting unit, and allocating a current b*(n-m) to the second light-emitting unit, where a is the shunt coefficient corresponding to the first light-emitting unit, and b is the first light-emitting unit.
  • the first light-emitting unit and the second light-emitting unit emit light together, and the current value received by the photoelectric conversion module 103 is the same as that of the second predetermined light-emitting unit.
  • the absolute value of the difference between the set values is smaller than the third preset value. Therefore, the accuracy of the signal analysis by the photoelectric conversion module can be ensured, and the accuracy of the biometric parameter measurement can be improved.
  • a and b are both 1, wherein the distance between the first light-emitting unit and the photoelectric conversion module is the same as the distance between the second light-emitting unit and the photoelectric conversion module.
  • the shunt coefficients corresponding to the first light-emitting unit and the second light-emitting unit are both 1, which can ensure that The current value received by the photoelectric conversion module improves the accuracy of the measurement result.
  • a is 1 and b is k, wherein the distance between the first light-emitting unit and the photoelectric conversion module is smaller than the distance between the second light-emitting unit and the photoelectric conversion module, and k is greater than 1 the integer.
  • the shunt coefficient corresponding to the first light-emitting unit is 1, and the second light-emitting unit
  • the corresponding shunt coefficient is k.
  • the method further includes: if the target current on the first light-emitting unit is not greater than the first preset value, the first light-emitting unit emits light based on the target current to measure the target object biometric parameters.
  • the control module determines that the target current of the first light-emitting unit is less than the first preset value, it means that the voltage value of the first light-emitting unit is relatively small, and at this time, the voltage value of the pin pin of the PPG sensor is relatively large. , the normal operation of the PPG sensor can be ensured, therefore, the target current of the first light-emitting unit does not need to be shunted, so that the accuracy of the measurement of the biometric parameter can be ensured.
  • the present application provides a device, the device includes a light-emitting module and a photoelectric conversion module, the light-emitting module includes at least two light-emitting units, and the at least two light-emitting units light up alternately in different periods; the The device further includes: a control module; the control module is used to determine the target current on the first light-emitting unit currently lit in the current cycle in the light-emitting module; the control module is also used to determine the target on the first light-emitting unit Whether the current is greater than the first preset value; the control module is further configured to obtain the shunt coefficient corresponding to the first lighting unit and the corresponding current of the second lighting unit when the target current on the first lighting unit is greater than the first preset value and the control module is further configured to, in the current cycle, be the first light-emitting unit and the The second light-emitting unit distributes current to adjust the target current on the first light-emitting unit, so that the first light-emitting unit
  • the first preset value is a maximum current value that can ensure the normal operation of the PPG sensor in the device; the second preset value and the third preset value are used to ensure the photoelectric conversion
  • the module can perform signal analysis normally.
  • control module is specifically configured to: acquire the current currently received by the photoelectric conversion module; and determine the target current of the first light-emitting unit according to the current currently received by the photoelectric conversion module.
  • control module is specifically configured to: determine whether the adjustment times of the target current of the first light-emitting unit is greater than a fourth preset value; if the adjustment of the target current of the first light-emitting unit If the number of times is not greater than the fourth preset value, then determine whether the absolute value of the difference between the current received by the photoelectric conversion module and the second preset value is less than the third preset value; Three preset values, the target current of the first light-emitting unit is determined according to the current currently received by the photoelectric conversion module and the second preset value.
  • control module is specifically configured to: determine whether the current received by the photoelectric conversion module is less than the second preset value; if it is less than the second preset value, according to the current cycle
  • the current current of the first light-emitting unit and a fifth preset value determine the target current of the first light-emitting unit, wherein the fifth preset value is the maximum current value that the photoplethysmography PPG sensor in the device can withstand; If it is greater than the second preset value, the target current of the first lighting unit is determined according to the current current of the first lighting unit in the current cycle and a sixth preset value, wherein the sixth preset value is guaranteed
  • the PPG sensor can collect the minimum current value of the signal.
  • control module is specifically configured to: determine an average value of the current current of the first lighting unit and the fifth preset value as the target current of the first lighting unit.
  • control module is specifically configured to: determine an average value of the current current of the first lighting unit and the sixth preset value as the target current of the first lighting unit.
  • control module is further configured to: if the adjustment times of the target current on the first light-emitting unit is greater than the fourth preset value, or the current received by the photoelectric conversion module When the absolute value of the difference with the second preset value is less than the third preset value, then determine whether the current received by the photoelectric conversion module satisfies the analog-to-digital conversion of the photoplethysmography PPG sensor in the device. If the accuracy of the ADC of the PPG sensor does not meet the ideal range of accuracy, the current current of the first light-emitting unit is adjusted according to a preset method, and the adjusted current is determined as the first light-emitting unit. If the accuracy ideal range of the ADC of the PPG sensor is satisfied, the current current of the first light-emitting unit is determined as the target current of the first light-emitting unit.
  • control module is specifically configured to: allocate a current a*m to the first light-emitting unit, and allocate a current b*(n-m) to the second light-emitting unit, where a is the first light-emitting unit
  • a and b are both 1, wherein the distance between the first light-emitting unit and the photoelectric conversion module is the same as the distance between the second light-emitting unit and the photoelectric conversion module.
  • a is 1 and b is k, wherein the distance between the first light-emitting unit and the photoelectric conversion module is smaller than the distance between the second light-emitting unit and the photoelectric conversion module, and k is greater than An integer of 1.
  • control module is further configured to: when the target current on the first light-emitting unit is not greater than the first preset value, the first light-emitting unit emits light based on the target current to measure Biometric parameters of this target object.
  • the present application provides an electronic device, comprising: an LED module, a photodiode, a memory, and a processor, wherein the LED module includes at least two light-emitting units, and the at least two light-emitting units alternate at different periods On; the memory is used for storing program instructions; the processor is used for calling the program instructions in the memory to execute the method described in the first aspect or any one of the possible implementation manners.
  • the present application provides a chip, comprising at least one processor and a communication interface, the communication interface and the at least one processor are interconnected through a line, and the at least one processor is used to run a computer program or instruction to execute the first The method described in the aspect or any one of the possible implementations thereof.
  • the present application provides a computer-readable medium, where the computer-readable medium stores a program code for computer execution, the program code including a computer-readable medium for executing the first aspect or any one of the possible implementations. method instruction.
  • the method and device for measuring biometric parameters determine the target current on the first light-emitting unit that is currently lit in the current cycle in the light-emitting module, and determine whether the target current on the first light-emitting unit is greater than The first preset value, if it is determined that the target current on the first light-emitting unit is greater than the first preset value, the control module can obtain the shunt coefficient corresponding to the first light-emitting unit and the shunt coefficient corresponding to the second light-emitting unit, and according to The shunt coefficient corresponding to the first light emitting unit and the shunt coefficient corresponding to the second light emitting unit respectively distribute current to the first light emitting unit and the second light emitting unit in the light emitting module in the current cycle, so as to adjust the current on the first light emitting unit.
  • the target current so that the first light-emitting unit and the second light-emitting unit emit light according to the assigned current, so as to measure the biometric parameter of the target object.
  • the absolute value of the difference between the current value received by the photoelectric conversion module and the second preset value is less than the third preset value, and the current values distributed on the first light-emitting unit and the second light-emitting unit are both less than or equal to the first preset value. set value.
  • the voltage divider on the light-emitting module is small, thereby ensuring that the voltage value on the pin pin of the PPG sensor satisfies the
  • the preset voltage value provides a stable reference voltage for the ADC in the PPG sensor and improves the accuracy of the measurement result of the biometric parameter.
  • the current can be shunted to the second light-emitting unit, so that the intensity of the light emitted by the light-emitting module does not decrease, so that the photoelectric
  • the absolute value of the difference between the current value received by the conversion module 103 and the second preset value is smaller than the third preset value, which ensures that the photoelectric conversion module can analyze the signal normally, thereby further ensuring the measurement result of the biometric parameter. accuracy.
  • FIG. 1 is an application scenario diagram of a method for measuring a biometric parameter provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the principle of measuring a biometric parameter provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of the wearable device 11
  • FIG. 4 is a schematic flowchart of a method for measuring a biometric parameter according to an embodiment of the present application
  • FIG. 5 is another schematic flowchart of a method for measuring a biometric parameter provided by an embodiment of the present application.
  • Fig. 6 is the schematic diagram of determining the diversion coefficient
  • FIG. 7 is a schematic diagram of a distance between a light-emitting unit and a photoelectric conversion module
  • FIG. 9 is a schematic structural diagram of a device for measuring biometric parameters provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • “at least one” refers to one or more, and “a plurality” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is an application scenario diagram of a method for measuring biometric parameters provided by an embodiment of the present application.
  • the embodiment of the present application can be applied to a target object 12 wearing a wearable device 11 to measure its own biometric parameters.
  • the biometric parameters may include heart rate, blood oxygen saturation, or blood pressure, etc.
  • the biometric parameter is the heart rate as an example for description.
  • the biometric parameter is other parameters, it can be measured by the PPG sensor controlling the LED module to emit light of different colors. For example, when the PPG sensor When the LED module is controlled to emit red light, the blood oxygen saturation of the target object 12 can be measured.
  • the biometric parameter is other parameters, the measurement principle is similar to that when the biometric parameter is the heart rate, and details are not described in this embodiment of the present application.
  • the above-mentioned wearable device 11 can also be referred to as a wearable smart device, which is a general term for intelligently designing daily wearable devices using wearable technology and developing wearable devices, such as glasses, gloves, watches, clothing and shoes. Wait.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • the wearable device 11 is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the above-mentioned wearable device 11 may also be a sports wristband, an infrared ear heart rate sensor, a heart rate monitoring chest strap, and other devices.
  • the above-mentioned target object 12 may be a user.
  • FIG. 2 is a schematic diagram of the principle of biometric parameter measurement provided by an embodiment of the present application.
  • the target object 12 can measure its own heart rate by wearing the wearable device 11 .
  • the wearable device 11 includes an LED module 101 , a PPG sensor 102 , a photoelectric conversion module 103 and a control module 104 .
  • the LED module 101 includes at least two light-emitting units
  • the photoelectric conversion module 103 can be, for example, a PD
  • the control module 104 can be, for example, a central processing unit (Central Processing Unit, CPU) or a Microcontroller Unit (Microcontroller Unit, MCU).
  • CPU Central Processing Unit
  • MCU Microcontroller Unit
  • the PPG sensor 102 will control the light-emitting unit in the LED module 101 to emit light. Since the wearable device 11 is worn on the skin surface of the target object 12 , after the emitted light irradiates the skin of the target object 12 , part of Light is absorbed by heme in the blood, and light that is not absorbed is reflected.
  • the photoelectric conversion module 103 converts the received optical signal into an electrical signal by receiving the optical signal reflected back through the skin, and sends the electrical signal to the control module 104. After the control module 104 processes the electrical signal, it can be The heart rate of the target subject 12 is obtained.
  • FIG. 3 is a schematic structural diagram of the wearable device 11.
  • the LED module 101 includes at least two light-emitting units.
  • the light-emitting units 1011, 1012, 1013 and 1014 are respectively connected to the pin pins of the PPG sensor, wherein the light-emitting units may be LEDs.
  • the PPG sensor 102 controls the light-emitting unit 1011 and the light-emitting unit 1013 to emit red light, and controls the light-emitting unit 1012 and the light-emitting unit 1014 to emit green light.
  • the lighting unit 1011 , the lighting unit 1012 , the lighting unit 1013 and the lighting unit 1014 may turn on by polling.
  • the wearable device 11 can be used to measure the blood oxygen saturation of the target object 12 , and when the light-emitting unit 1012 and the light-emitting unit 1014 are on, the wearable device 11 can be used to measure the target object 12 heart rate.
  • the PPG sensor 102 includes a data buffer and an analog-to-digital converter (Analog-to-digital converter, ADC), wherein the ADC is connected to the photoelectric conversion module 103 .
  • ADC analog-to-digital converter
  • the PPG sensor 102 controls the light-emitting unit 1011, the light-emitting unit 1012, the light-emitting unit 1013, and the light-emitting unit 1014 to turn on by polling, and the light irradiates the skin and is reflected by the skin, the photoelectric conversion module 103 will receive the reflected light signal, and convert optical signals into electrical signals.
  • the photoelectric conversion module 103 sends the electrical signal to the ADC in the PPG sensor 102, and the ADC converts the electrical signal into a digital signal and sends it to the data buffer.
  • the digital signals corresponding to the light-emitting unit 1011, the light-emitting unit 1012, the light-emitting unit 1013 and the light-emitting unit 1014 will be stored in the data buffer.
  • the PPG sensor 102 sends the digital signal stored in the data buffer to the control module 104 through a serial peripheral interface (Serial Peripheral Interface, SPI).
  • the control module 104 can obtain parameters such as the heart rate or blood oxygen saturation of the target object 12 by processing the received digital signal.
  • the light-emitting unit 1011, the light-emitting unit 1012, the light-emitting unit 1013 and the light-emitting unit 1014 are lit by polling, usually only one light-emitting unit is lit at each moment. In the following, the light-emitting unit 1011 is lit as an example for description. When other light-emitting units are lit, it is similar to when the light-emitting unit 1011 is lit, and details are not repeated here. As shown in FIG.
  • the light-emitting unit 1011 is not an ideal device, as the current on the light-emitting unit 1011 increases, the resistance value of the light-emitting unit 1011 will exceed the ideal resistance value, so the voltage value will increase sharply, resulting in light emission
  • the actual voltage division value on the unit 1011 is much larger than the turn-on voltage value of the light-emitting unit 1011 . Since the power supply of the LED module 101 is 5V, when the voltage value on the light emitting unit 1011 is relatively large, the voltage value on the pin pin of the PPG sensor 102 is relatively small. Those skilled in the art can understand that the PPG sensor 102 can work normally only when the voltage on the pin pin of the PPG sensor 102 must meet the preset voltage value.
  • the PPG sensor 102 When the voltage value on the pin pin of the PPG sensor 102 does not reach the above-mentioned preset voltage value, the PPG sensor 102 will work abnormally, and the reference voltage of the ADC in the PPG sensor 102 will be unstable, resulting in the ADC-converted digital The result of the signal is inaccurate, so that the accuracy of the measurement result analyzed by the control module 104 is not high.
  • an embodiment is to reduce the voltage divider on the light-emitting unit by limiting the current value flowing through the light-emitting unit included in the LED module 101 to ensure that the voltage on the pin pin of the PPG sensor 102 satisfies the
  • the preset threshold value ensures that the ADC has a stable reference voltage to improve the measurement accuracy of biometric parameters.
  • the skin of some users has a high degree of light absorption.
  • the light intensity of the light emitted by the light-emitting unit is low.
  • the electrical signal obtained after conversion by the photoelectric conversion module 103 is also small. If the value of the electrical signal is smaller than that of the photoelectric conversion module 103, the signal analysis can be performed normally. , it will lead to inaccurate measurement results of biometric parameters.
  • an embodiment of the present application provides a method for measuring biometric parameters.
  • the control module 104 determines the target current on the first light-emitting unit that is currently lit in the current cycle in the light-emitting module, and determines Whether the target current on the first light-emitting unit is greater than the first preset value, if it is determined that the target current on the first light-emitting unit is greater than the first preset value, the control module 104 can obtain the shunt coefficient corresponding to the first light-emitting unit and The shunt coefficient corresponding to the second light emitting unit, and according to the shunt coefficient corresponding to the first light emitting unit and the shunt coefficient corresponding to the second light emitting unit, in the current cycle, the first light emitting unit and the second light emitting unit in the light emitting module are respectively Distributing the current to adjust the target current on the first light-emitting unit, so that the first light-emitting unit and the second light-emitting unit emit light
  • the absolute value of the difference between the current value received by the photoelectric conversion module 103 and the second preset value is smaller than the third preset value, wherein the current values distributed on the first light-emitting unit and the second light-emitting unit are both less than or equal to The first preset value. Since the currents distributed to the first light-emitting unit and the second light-emitting unit are both less than or equal to the first preset value, the voltage divider on the light-emitting module 101 is relatively small, so that the voltage on the pin pin of the PPG sensor 102 can be guaranteed The value satisfies the preset voltage value, thereby providing a stable reference voltage for the ADC in the PPG sensor 102 and improving the accuracy of the measurement result of the biometric parameter.
  • the current can be shunted to the second light-emitting unit, so that the intensity of the light emitted by the light-emitting module does not decrease, so that the photoelectric
  • the current value received by the conversion module 103 is greater than the second preset value, which ensures that the photoelectric conversion module 103 can normally analyze the signal, thereby further ensuring the accuracy of the measurement result of the biometric parameter.
  • FIG. 4 is a schematic flowchart of a method for measuring a biometric parameter provided by an embodiment of the present application. It should be noted that, although in the embodiment of the present application, the steps of the method are presented in a specific order, they may be in different The order of the steps is changed in some embodiments, and in some embodiments, one or more steps shown in the sequence shown in this specification can be performed concurrently. As shown in Figure 4, the method includes:
  • Step 401 the control module 104 determines the target current of the first light-emitting unit in the light-emitting module 101 .
  • the light-emitting module 101 includes at least two light-emitting units, and the at least two light-emitting units are connected in parallel.
  • the light-emitting units may be LEDs.
  • the control module 104 controls these light-emitting units to turn on by polling through the PPG sensor 102 .
  • the first light-emitting unit is the light-emitting unit that is currently lit in the current cycle. Wherein, the smaller the current value of the first light-emitting unit, the smaller the intensity of the light emitted by the first light-emitting unit.
  • the control module 104 can adjust the current of the first light-emitting unit in the light-emitting module 101 in real time according to the current received by the photoelectric conversion module 103 .
  • control module 104 determines the target current value of the first light-emitting unit in the light-emitting module 101 will be described in detail through the embodiment shown in FIG. 5 .
  • FIG. 5 is another schematic flowchart of a method for measuring a biometric parameter provided by an embodiment of the present application. As shown in FIG. 5 , the method includes:
  • Step 4011 the control module 104 receives the current currently received by the photoelectric conversion module 103 sent by the PPG sensor 102 .
  • the control module 104 can adjust the current of the first light-emitting unit in the light-emitting module 101 in real time according to the current currently received by the photoelectric conversion module 103 .
  • the current signal is sent to the ADC of the PPG sensor 102 to convert the analog current signal into a digital current signal and store it in the data buffer.
  • the PPG sensor 102 sends the current signal in the data buffer to the control module 104 through the SPI bus, so that the control module 104 can obtain the current currently received by the photoelectric conversion module 103 .
  • Step 4012 The control module 104 determines whether the adjustment times of the target current on the first light-emitting unit is greater than a fourth preset value.
  • step 4018 If yes, go to step 4018; otherwise, go to step 4013.
  • Step 4013 is performed only when it is determined that the control module 104 adjusts the target current on the first light-emitting unit or the number of times of shunting is not greater than the fourth preset value.
  • the fourth preset value may be set according to actual conditions or experience, for example, may be 3 or 4, etc.
  • the specific value of the fourth preset value is not limited in this embodiment of the present application.
  • Step 4013 The control module 104 determines whether the absolute value of the difference between the current currently received by the photoelectric conversion module 103 and the second preset value is smaller than the third preset value.
  • step 4018 If yes, go to step 4018; otherwise, go to step 4014.
  • the second preset value and the third preset value are used to ensure that the photoelectric conversion module 103 can perform signal analysis normally.
  • the result obtained when the photoelectric conversion module 103 analyzes the signal is relatively accurate. Therefore, if the control module 104 determines that the current value received by the photoelectric conversion module 103 is relatively accurate.
  • the absolute value of the difference between the current value and the second preset value is not less than the third preset value, that is, when the difference between the current value currently received by the photoelectric conversion module 103 and the second preset value is relatively large , indicating that the current value currently received by the photoelectric conversion module 103 may be too large or too small. In this case, the current on the first light-emitting unit needs to be adjusted.
  • step 4018 when the current value currently received by the photoelectric conversion module 103 is within the range of [90, 110], step 4018 will be executed, otherwise, step 4018 will be executed. Step 4014 is performed.
  • Step 4014 The control module 104 determines whether the current currently received by the photoelectric conversion module 103 is greater than the second preset value.
  • step 4016 If yes, go to step 4016; otherwise, go to step 4015.
  • Step 4015 The control module 104 determines the target current value according to the fifth preset value and the current current of the first light-emitting unit.
  • the fifth preset value is the maximum current value that the PPG sensor can withstand, and the fifth preset value is determined by the chip characteristics of the PPG sensor.
  • the current current value of the first light-emitting unit can be controlled by the control module 104 in real time, the current current value of the first light-emitting unit can be understood as the current of the first light-emitting unit determined by the control module 104 last time value.
  • the control module 104 determines that the current received by the photoelectric conversion module 103 is less than the second preset value, it means that the current value of the photoelectric conversion module 103 is small. At this time, in order to ensure that the photoelectric conversion module 103 can correctly analyze the signal , the current value of the first light-emitting unit needs to be increased to increase the light intensity of the first light-emitting unit, thereby achieving the purpose of increasing the current value of the photoelectric conversion module 103 .
  • the average value of the fifth preset value and the current current value of the first light-emitting unit in the current period may be determined as the target current value.
  • the target current value may also be determined according to the preset weight value, according to the fifth preset value and the current current value of the first light emitting unit in the current cycle.
  • the target current value can also be determined in other ways, such as randomly selecting a value between the fifth preset value and the current current value of the first light-emitting unit in the current cycle as the target current value, etc., as long as the determined value
  • the target current value may be greater than the current current value of the first light-emitting unit in the current cycle and less than the fifth preset value.
  • Step 4016 The control module 104 determines the target current value according to the sixth preset value and the current current on the first light-emitting unit.
  • the sixth preset value is the minimum current value that ensures that the PPG sensor can collect the signal, and the sixth preset value is determined by the chip characteristics of the PPG sensor.
  • control module 104 determines that the current value currently received by the photoelectric conversion module 103 is greater than the second preset value, it means that the current value of the photoelectric conversion module 103 is relatively large.
  • it is necessary to reduce the current value of the first light-emitting unit to reduce the light intensity of the first light-emitting unit, thereby achieving the purpose of reducing the current value of the photoelectric conversion module 103 .
  • an average value of the sixth preset value and the current current value of the first light-emitting unit in the current period may be determined as the target current value.
  • the target current value may also be determined according to the preset weight value, according to the sixth preset value and the current current value of the first light-emitting unit in the current cycle.
  • the target current value can also be determined in other ways, such as randomly selecting a value between the sixth preset value and the current current value of the first light-emitting unit in the current cycle as the target current value, etc., as long as the determined value
  • the target current value may be less than the current current value of the first light-emitting unit in the current cycle and greater than the sixth preset value.
  • Step 4017 The control module 104 determines the target current value as the target current of the first lighting unit.
  • control module 104 may adjust or update the current value of the first light-emitting unit to the target current value.
  • Step 4018 The control module 104 determines whether the current value currently received by the photoelectric conversion module 103 meets the ADC accuracy ideal range.
  • step 4020 If yes, go to step 4020; otherwise, go to step 4019.
  • the ideal range of ADC accuracy can also be understood as, when the current value is within this range, the accuracy of the result processed by the ADC is relatively high. If the current value currently received by the photoelectric conversion module 103 is within this interval, the current value of the first light-emitting unit will not be adjusted any more.
  • the control module 104 determines that the current value currently received by the photoelectric conversion module 103 is not within the ideal range of ADC accuracy, the current value of the first light-emitting unit needs to be adjusted.
  • control module 104 judges whether the current value currently received by the photoelectric conversion module 103 meets the ADC accuracy ideal range, or it can also be used for the control module 104 to judge whether the current value currently received by the photoelectric conversion module 103 is within the ADC saturation range, If it is within the saturation range of the ADC, the accuracy of the result processed by the ADC is low, and step 4019 will be executed at this time. If it is not within the saturation range of the ADC, the accuracy of the result processed by the ADC is relatively high. will execute step 4020.
  • Step 4019 The control module 104 adjusts the current current of the first light-emitting unit in a preset manner, and determines the adjusted current as the target current of the first light-emitting unit.
  • the control module 104 determines that the current value currently received by the photoelectric conversion module 103 is not within the ADC accuracy ideal range, or the control module 104 determines that the current value currently received by the photoelectric conversion module 103 is at the saturation level of the ADC within the range, the control module 104 needs to adjust the current current value of the first light-emitting unit.
  • it can be adjusted in a step-by-step manner, for example, according to a preset current value, each time after the current value of the first light-emitting unit is adjusted to the preset current value, the step 4011 will be executed to obtain the current received by the photoelectric conversion module 103.
  • the current value currently received by the photoelectric conversion module 103 is still not within the ADC accuracy ideal range, or within the ADC saturation range, it will continue to adjust according to the preset current value until the photoelectric conversion module 103 The current received current value is in the ideal range of ADC accuracy, or is not in the saturation range of ADC.
  • the photoelectric conversion module 103 can improve the analysis of the signal. to improve the accuracy of biometric parameter measurement.
  • Step 4020 The control module 104 determines the current current of the first lighting unit as the target current of the first lighting unit.
  • the current value currently received by the photoelectric conversion module 103 meets the ADC accuracy ideal range, it means that the accuracy of the result processed by the ADC is relatively high, and at this time, the current current of the first light-emitting unit can be determined as the first light-emitting unit target current.
  • Step 402 The control module 104 determines whether the target current of the first light-emitting unit is greater than a first preset value.
  • step 403 If the target current of the first light-emitting unit is greater than the first preset value, step 403 is performed; otherwise, step 406 is performed.
  • the first preset value is the maximum current value that can ensure the normal operation of the PPG sensor, and the first preset value may be, for example, 100 mA.
  • control module 104 will control the shunt of the target current on the first light-emitting unit, so as to shunt the target current value of the first light-emitting unit to other light-emitting units , thereby reducing the voltage value of the light-emitting module 101 , thereby ensuring the voltage value on the pin pin of the PPG sensor.
  • Step 403 the control module 104 acquires the shunt coefficient corresponding to the first light emitting unit and the shunt coefficient corresponding to the second light emitting unit.
  • the shunt coefficient is used to adjust the current values on the first light-emitting unit and the second light-emitting unit.
  • the first light emitting unit and the second light emitting unit in the current cycle can be respectively Distribute the current and control the current value received by the photoelectric conversion module 103 when the first light-emitting unit and the second light-emitting unit are lit at the same time, and the current received by the photoelectric conversion module 103 when only the first light-emitting unit is lit according to the target current value the same value.
  • the shunt coefficient can be obtained by collecting multiple sets of current values of the two light-emitting units and fitting the multiple sets of current values.
  • the collection of three sets of data is taken as an example for description. Specifically, at the first moment, the current value Data1-1 on the first light-emitting unit may be collected, the current value Data2-1 on the second light-emitting unit may be collected, and at the second moment, the current value on the first light-emitting unit may be collected value Data1-2, the current value Data2-2 on the second light-emitting unit can be collected, and at the third moment, the current value Data1-3 on the first light-emitting unit can be collected, and the current value Data2-3 on the second light-emitting unit can be collected 3.
  • K' is obtained by calculation, wherein the value of i can be 1, 2, or 3.
  • K' can be substituted into the preset shunt algorithm, and a linear regression optimization method is used to obtain an optimized shunt coefficient.
  • the shunt coefficient is determined by fitting, so that the determined shunt coefficient is more accurate.
  • the shunt coefficient may also be obtained by collecting a set of current values of the two light-emitting units, and analyzing the set of current values to obtain the shunt coefficient corresponding to each light-emitting unit.
  • FIG. 6 is a schematic diagram of determining the shunt coefficient.
  • the two light-emitting units are LED1 and LED2 respectively, wherein the distance between LED1 and PD is distance 1, the distance between LED2 and PD is distance 2, and Distance 1 is greater than distance 2. Since the distances between LED1 and LED2 and PD are different, when the currents on LED1 and LED2 are the same, the current value received by PD is different.
  • the working current of LED1 is 100mA
  • the light emitted by LED1 irradiates the skin
  • part of the light is reflected to the PD through the skin.
  • the PD converts the optical signal into an electrical signal
  • the current received by the PD is 10mA
  • the working current of LED2 when it is 100mA, after the light emitted by LED2 is irradiated to the skin, a part of the light is reflected to the PD through the skin.
  • the PD converts the optical signal into an electrical signal
  • the current received by the PD is 5mA.
  • the shunt coefficient corresponding to LED1 can be 1, and the shunt coefficient corresponding to LED2 can be 2, that is, when the operating current of LED2 is 2*100mA, the current received by the PD is 10mA. At this time, the PD receives The current value of LED1 is the same as the current value received when LED1 operates at 100mA.
  • the current value of the group is analyzed to determine the shunt coefficient corresponding to each light-emitting unit, which makes the method of determining the shunt coefficient simpler.
  • control module 104 may pre-store the corresponding relationship between each light-emitting unit and its corresponding shunt coefficient, and the control module 104 can determine the corresponding relationship of each light-emitting unit by querying the corresponding relationship.
  • Corresponding shunt coefficient may be stored in a table or a list. Of course, the corresponding relationship may also be stored in other ways. The specific storage method of the corresponding relationship is not limited in this embodiment of the present application.
  • the shunt coefficient corresponding to each light-emitting unit can be determined through the pre-stored correspondence between the light-emitting unit and the shunt coefficient, so that the method of determining the shunt coefficient is simple and efficient.
  • the shunt coefficients corresponding to the first light-emitting unit and the second light-emitting unit are both 1.
  • the shunt coefficient corresponding to the first light emitting unit may be 1, the shunt coefficient corresponding to the second light emitting unit may be k1, and k1 is greater than 1, or the shunt coefficient corresponding to the first light emitting unit may be k2, and the second light emitting unit may be k2.
  • the corresponding shunt coefficient may be 1, and k2 is less than 1.
  • Step 404 The control module 104 allocates current to the first light-emitting unit and the second light-emitting unit in the light-emitting module 101 respectively in the current cycle according to the shunt coefficient corresponding to the first light-emitting unit and the second light-emitting unit, so as to Adjust the target current on the first light-emitting unit, so that the first light-emitting unit and the second light-emitting unit emit light according to the assigned current to measure the biometric parameter of the target object, wherein the current value received by the photoelectric conversion module 103 is the same as the current value received by the photoelectric conversion module 103.
  • the absolute value of the difference between the second preset values is smaller than the third preset value, wherein the current values distributed to the first light emitting unit and the second light emitting unit are both less than or equal to the first preset value.
  • the second preset value is a current value at which the photoelectric conversion module 103 can normally perform signal analysis.
  • the first light-emitting unit and the second light-emitting unit are turned on by polling. Therefore, at the current moment, only the first light-emitting unit should be turned on according to the target current.
  • the target current is greater than the first preset value, the target current needs to be shunted to other light emitting units, for example, a part of the current value may be shunted to the second light emitting unit. Exemplarily, as shown in FIG.
  • the second light-emitting unit can be 1013, or, if the first light-emitting unit is 1013, the second light-emitting unit may be 1011, or, if the first light-emitting unit is 1012, the second light-emitting unit may be 1014, or if the first light-emitting unit is At 1014, the second light emitting unit may be 1012.
  • the control module 104 After determining the shunt coefficient corresponding to the first light emitting unit and the shunt coefficient corresponding to the second light emitting unit, the control module 104 allocates current values to the first light emitting unit and the second light emitting unit according to the shunt coefficient.
  • the first light-emitting unit and the second light-emitting unit will emit light based on the assigned current, and the photoelectric conversion module can receive the light signal reflected by the skin, convert the light signal into an electrical signal, and send the electrical signal to the control module 104 to control the
  • the module 104 can obtain the biometric parameters of the target object by processing the electrical signal.
  • the shunt coefficients corresponding to the first light-emitting unit and the second light-emitting unit are both 1 , assuming that the target current of the first light-emitting unit is n and the first preset value is m, the control module will alternately allocate currents of m and n-m to the first light-emitting unit and the second light-emitting unit.
  • FIG. 7 is a schematic diagram of the distance between the light-emitting unit and the photoelectric conversion module.
  • it includes light-emitting units LED1 and LED2, wherein LED1 and LED2 are connected to the photoelectric conversion module PD. the same distance.
  • the shunt coefficients corresponding to the light-emitting units LED1 and LED2 are both 1.
  • the control module 104 distributes the current, it is assumed that at the first moment, the control module 104 determines that the target current of the light-emitting unit LED1 is n, and the current n is greater than the first preset value m. At this time, the current can be distributed to the light-emitting unit LED1. m, assigns a current n-m to the light-emitting unit LED2.
  • the control module 104 can allocate the current n-m to the light-emitting unit LED1, and allocate the current m to the light-emitting unit LED2, and at the third moment, the control module 104 can allocate the current n-m to the light-emitting unit LED1.
  • the current m, the current n-m is allocated to the light-emitting unit LED2, and so on.
  • the shunt coefficient corresponding to the first light emitting unit may be 1, and the shunt coefficient corresponding to the second light emitting unit may be k1.
  • the control module 104 will allocate the current m to the first lighting unit and the current k1*(n ⁇ m) to the second lighting unit.
  • the current m may be allocated to the first light-emitting unit, and the current k1*(n-m) may be allocated to the second light-emitting unit, and at the second moment, it is The first light-emitting unit distributes the current k2*(n-m), the second light-emitting unit distributes the current m, at the third moment, the current m is distributed to the first light-emitting unit, the current k1*(n-m) is distributed to the second light-emitting unit, etc. .
  • FIG. 8 is another schematic diagram of the distance between the light-emitting unit and the photoelectric conversion module.
  • FIG. 8 for a certain wearable device, it includes light-emitting units LED3 and LED4, wherein LED3 and LED4 are connected to the photoelectric conversion module.
  • the distances between the PDs are different, and the distance between the LED3 and the photoelectric conversion module PD is smaller than the distance between the LED4 and the photoelectric conversion module PD.
  • the control module 104 distributes the current, it is assumed that at the first moment, the control module 104 determines that the current of the light-emitting unit LED3 is n, and the current n is greater than the first preset value m. At this time, the current m can be allocated to the light-emitting unit LED3. , the current k1*(n-m) is allocated to the light-emitting unit LED4.
  • control module 104 may also allocate current k2*(n-m) to the light-emitting unit LED3 at the second moment, and allocate the current m to the light-emitting unit LED4, and at the third moment, the control module 104
  • the current m is assigned to the light-emitting unit LED3, the current k1*(n-m) is assigned to the light-emitting unit LED4, and so on.
  • the first light-emitting unit and the second light-emitting unit emit light together, and the current value received by the photoelectric conversion module 103 is between the second preset value
  • the absolute value of the difference is less than the third preset value. Therefore, the accuracy of the signal analysis by the photoelectric conversion module can be ensured, and the accuracy of the biometric parameter measurement can be improved.
  • the control module 104 performs shunt processing on the target current on the first light-emitting unit, the current values distributed on the first light-emitting unit and the second light-emitting unit are both less than or equal to the first preset value. In this way, the LED module The voltage value on 101 will be reduced, so that the voltage value on the pin of the PPG sensor can be guaranteed, and the PPG sensor can work normally.
  • the shunt coefficient determined according to the above method can not only ensure that the current value of each light-emitting unit is less than the first preset value, but also can make the measurement of biometric parameters when the two light-emitting units light up at the same time.
  • the accuracy can approach the accuracy of the biometric parameters measured when a single light-emitting unit is lit.
  • Table 1 shows the accuracy of biometric parameters measured when a single light-emitting unit is lit and the accuracy of biometric parameters measured when two light-emitting units are simultaneously lit under different scenarios.
  • the accuracy of the biometric parameters measured can approach the accuracy of the biometric parameters measured when a single light-emitting unit is lit.
  • Step 405 the control module 104 controls the first light-emitting unit to emit light based on the target current, so as to measure the biometric parameter of the target object.
  • the control module 104 determines that the target current of the first light-emitting unit is less than the first preset value, it means that the voltage value of the first light-emitting unit is small, and at this time, the voltage value of the pin pin of the PPG sensor 102 If the value is larger, the normal operation of the PPG sensor can be ensured. Therefore, it is not necessary to shunt the target current of the first light-emitting unit.
  • the control module 104 will control the first light-emitting unit to continue to emit light according to the target current, so that the photoelectric conversion module can receive the light signal reflected by the skin, convert the light signal into an electrical signal, and send the electrical signal to the control module 104,
  • the control module 104 can obtain the biometric parameters of the target object by processing the electrical signal.
  • the control module determines the target current on the first light-emitting unit currently lit in the current cycle in the light-emitting module, and determines the target on the first light-emitting unit Whether the current is greater than the first preset value, if it is determined that the target current on the first lighting unit is greater than the first preset value, the control module can obtain the shunt coefficient corresponding to the first lighting unit and the shunt coefficient corresponding to the second lighting unit , and according to the shunt coefficient corresponding to the first light emitting unit and the shunt coefficient corresponding to the second light emitting unit, distribute currents to the first light emitting unit and the second light emitting unit in the light emitting module respectively in the current cycle, so as to adjust the first light emitting unit and the second light emitting unit.
  • the target current on the light-emitting unit causes the first light-emitting unit and the second light-emitting unit to emit light according to the assigned current, so as to measure the biometric parameter of the target object.
  • the absolute value of the difference between the current value received by the photoelectric conversion module and the second preset value is less than the third preset value, and the current values distributed on the first light-emitting unit and the second light-emitting unit are both less than or equal to the first preset value. set value.
  • the voltage divider on the light-emitting module is small, thereby ensuring that the voltage value on the pin pin of the PPG sensor satisfies the
  • the preset voltage value provides a stable reference voltage for the ADC in the PPG sensor and improves the accuracy of the measurement result of the biometric parameter.
  • the current can be shunted to the second light-emitting unit, so that the intensity of the light emitted by the light-emitting module does not decrease, so that the photoelectric
  • the absolute value of the difference between the current value received by the conversion module 103 and the second preset value is smaller than the third preset value, which ensures that the photoelectric conversion module can analyze the signal normally, thereby further ensuring the measurement result of the biometric parameter. accuracy.
  • FIG. 9 is a schematic structural diagram of a biometric parameter measurement device provided by an embodiment of the present application.
  • the apparatus shown in FIG. 9 can be used to execute the method described in any one of the foregoing embodiments.
  • the device 900 of this embodiment may include: a light-emitting module 901, a photoelectric conversion module 902 and a control module 903, wherein the light-emitting module 901 includes at least two light-emitting units 9011, the at least two light-emitting units 9011 turns on in different cycles.
  • the control module 903 is used to determine the target current on the first light-emitting unit currently lit in the current cycle in the light-emitting module 901;
  • the control module 903 is further configured to determine whether the target current on the first light-emitting unit is greater than a first preset value
  • the control module 903 is further configured to acquire the shunt coefficient corresponding to the first light emitting unit and the shunt coefficient corresponding to the second light emitting unit when the target current on the first light emitting unit is greater than the first preset value;
  • the control module 903 is further configured to, according to the shunt coefficient corresponding to the first light emitting unit and the shunt coefficient corresponding to the second light emitting unit, respectively, in the current cycle for the first light emitting unit and the second light emitting unit in the light emitting module
  • the unit distributes current to adjust the target current on the first light-emitting unit, so that the first light-emitting unit and the second light-emitting unit emit light according to the distributed current to measure the biometric parameter of the target object, wherein the photoelectric conversion module receives
  • the absolute value of the difference between the obtained current and the second preset value is smaller than the third preset value, and the currents distributed to the first light-emitting unit and the second light-emitting unit are both less than or equal to the first preset value.
  • the first preset value is a maximum current value that can ensure the normal operation of the PPG sensor in the device; the second preset value and the third preset value are used to ensure the photoelectric conversion.
  • the module can perform signal analysis normally.
  • control module 903 is specifically used for:
  • the target current of the first light-emitting unit is determined according to the current currently received by the photoelectric conversion module.
  • control module 903 is specifically used for:
  • the target current of the first light-emitting unit is determined according to the current currently received by the photoelectric conversion module and the second preset value.
  • control module 903 is specifically used for:
  • the target current of the first lighting unit is determined according to the current current of the first lighting unit in the current cycle and a fifth preset value, wherein the fifth preset value is The value is the maximum current value that the photoplethysmography PPG sensor in the device can withstand;
  • the target current of the first lighting unit is determined according to the current current of the first lighting unit in the current cycle and the sixth preset value, wherein the sixth preset value is the target current of the first lighting unit.
  • the set value is the minimum current value that ensures that the PPG sensor can collect signals.
  • control module 903 is specifically used for:
  • the average value of the current current of the first light-emitting unit and the fifth preset value is determined as the target current of the first light-emitting unit.
  • control module 903 is specifically used for:
  • the average value of the current current of the first light-emitting unit and the sixth preset value is determined as the target current of the first light-emitting unit.
  • control module 903 is further configured to:
  • the number of times of adjustment to the target current on the first light-emitting unit is greater than the fourth preset value, or the absolute value of the difference between the current currently received by the photoelectric conversion module and the second preset value When the value is less than the third preset value, then determine whether the current received by the photoelectric conversion module meets the accuracy ideal range of the analog-to-digital converter ADC of the photoplethysmography PPG sensor in the device;
  • the current current of the first light-emitting unit is determined as the target current of the first light-emitting unit.
  • control module 903 is specifically used for:
  • the a and the b are both 1, wherein the distance between the first light-emitting unit and the photoelectric conversion module is the same as the distance between the second light-emitting unit and the photoelectric conversion module.
  • the a is 1, and the b is k, wherein the distance between the first light-emitting unit and the photoelectric conversion module is smaller than the distance between the second light-emitting unit and the photoelectric conversion module, so The k is an integer greater than 1.
  • control module 903 is also used for:
  • the first light-emitting unit When the target current on the first light-emitting unit is not greater than the first preset value, the first light-emitting unit emits light based on the target current to measure the biometric parameter of the target object.
  • biometric parameter measurement device shown in the embodiment of the present application can implement the technical solution of the biometric parameter measurement method shown in any of the above embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • each module of the above apparatus is only a division of logical functions, and in actual implementation, all or part of it may be integrated into a physical entity, or it may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in hardware.
  • the control module can be a separately established processing element, or can be integrated into a certain chip of the biometric parameter measurement device, and can also be stored in the memory of the biometric parameter measurement device in the form of a program, The functions of the control module are called and executed by a certain processing element of the biometric parameter measurement device.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more digital singnal processors , DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA) and so on.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate array
  • the control module may be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC). .
  • SOC system-on-a-chip
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 1000 includes: an LED module 1001 , a PD 1002 , a PPG sensor 1005 , a processor 1003 and a memory 1004 .
  • the LED module includes at least two light-emitting units, and the at least two light-emitting units light up alternately in different periods;
  • the memory 1004 is used to store programs for implementing the above method embodiments, or each module of the embodiment shown in FIG.
  • part or all of the above modules can also be implemented by being embedded in a certain chip of the electronic device in the form of an integrated circuit. And they can be implemented individually or integrated together. That is, the above units can be configured as one or more integrated circuits that implement the above methods, such as: one or more specific integrated circuits (application specific integrated circuits, ASIC), or, one or more microprocessors (digital singnal processor). , DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA) and so on.
  • ASIC application specific integrated circuits
  • microprocessors digital singnal processor
  • FPGA field programmable gate array
  • An embodiment of the present application further provides a chip, the chip includes at least one processor and a communication interface, the communication interface and the at least one processor are interconnected through a line, and the at least one processor is used for running a computer program or instruction to
  • the implementation principle and beneficial effects of the method for measuring a biometric parameter shown in any of the above embodiments are similar to those of the method for measuring a biometric parameter, which will not be repeated here.
  • An embodiment of the present application further provides a computer-readable storage medium, where an instruction is stored in the computer-readable storage medium, and when the instruction is executed on an electronic device, the electronic device is made to execute any of the above-mentioned embodiments.
  • the implementation principle and beneficial effects of the biometric parameter measurement method shown in the above are similar to those of the biometric parameter measurement method, and will not be repeated here.
  • Embodiments of the present application further provide a computer program product, which, when the computer program product runs on an electronic device, enables the electronic device to execute the method for measuring a biometric parameter shown in any of the foregoing embodiments, and its implementation principle is And the beneficial effects are similar to the realization principles and beneficial effects of the method for measuring biological characteristic parameters, which will not be repeated here.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种生物特征参数的测量方法,包括:确定发光模组中在当前周期内当前点亮的第一发光单元上的目标电流;在判断出该目标电流大于第一预设值时,分别获取第一发光单元和第二发光单元对应的分流系数,并根据第一发光单元和第二发光单元对应的分流系数,在当前周期内分别为第一发光单元和第二发光单元分配电流,以调整第一发光单元上的目标电流,使得第一发光单元和第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数。其中,光电转换模块(103)接收到的电流与第二预设值的差值的绝对值小于第三预设值,第一发光单元和第二发光单元上分配的电流小于或等于第一预设值。这种生物特征参数的测量方法和装置可以提高生物特征参数的测量结果的精确度。

Description

生物特征参数的测量方法和装置
本申请要求于2020年11月30日提交中国专利局、申请号为202011376977.5、申请名称为“生物特征参数的测量方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种生物特征参数的测量方法和装置。
背景技术
当今人们越来越重视自身及家人的健康情况,其中,心率监测在其中也显得尤为重要。目前,可以通过在智能腕表等可穿戴设备中设置光电容积描记(photo plethysmo graphy,PPG)传感器,以实时监测用户的心率。其中,PPG传感器可以控制发光二极管(light emitting diode,LED)模组发光,再通过光电二极管(photo diode,PD)接收经皮肤反射回来的光信号,并将接收到的光信号转换为电信号,从而测量人体的心率。
然而,上述的心率测量方式,心率的测量精度不高,测量结果不准确。
发明内容
本申请提供了一种生物特征参数的测量方法和装置,可以提高生物特征参数的测量精度。
第一方面,本申请提供了一种生物特征参数的测量方法,该测量方法应用于电子设备,该电子设备中包括发光模组和光电转换模块,该发光模组中包括至少两个发光单元,该至少两个发光单元在不同周期轮流点亮;该方法包括:确定该发光模组中在当前周期内当前点亮的第一发光单元上的目标电流;判断该第一发光单元上的目标电流是否大于第一预设值;若该第一发光单元上的目标电流大于第一预设值,则获取该第一发光单元对应的分流系数和第二发光单元对应的分流系数;根据该第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为该发光模组中的该第一发光单元和第二发光单元分配电流,以调整该第一发光单元上的目标电流,使得该第一发光单元和该第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数,其中,该光电转换模块接收到的电流与第二预设值的差值的绝对值小于第三预设值,该第一发光单元和该第二发光单元上分配的电流均小于或等于该第一预设值。
本实现方式中,由于第一发光单元和第二发光单元上分配的电流均小于或等于第一预设值,因此发光模组上的分压较小,由此可以保证PPG传感器的pin引脚上的电压值满足预设的电压值,从而为PPG传感器中ADC提供稳定的参考电压,提高生物特征参数的测量结果的精确度。另外,由于在第一发光单元上的目标电流大于第一预设值时,可以将电流分流到第二发光单元上,这样,发光模组中发出的光的强度并没有降低,从而可以使得光电转换模块接收到的电流值大于第二预设值,保证了光电转换模块可以正常进行信号的 分析,由此可以进一步保证生物特征参数的测量结果的准确性。
在一种可能的实现方式中,该第一预设值为能够保证该电子设备中的PPG传感器正常工作的最大电流值;该第二预设值和该第三预设值用于保证该光电转换模块能够正常进行信号分析。
在本方案中,第一预设值为能够保证该电子设备中的PPG传感器正常工作的最大电流值,通过限定第一发光单元和第二发光单元上分配的电流均小于或等于该第一预设值,由此可以保证PPG传感器的pin引脚上的电压值满足预设的电压值,从而为PPG传感器中ADC提供稳定的参考电压,提高生物特征参数的测量结果的精确度。另外,第二预设值和第三预设值用于保证该光电转换模块能够正常进行信号分析,通过限定光电转换模块接收到的电流值与第二预设值的差值的绝对值小于第三预设值,可以保证光电转换模块可以正常进行信号的分析,由此可以进一步保证生物特征参数的测量结果的准确性。
在一种可能的实现方式中,确定该发光模组中在当前周期内当前点亮的第一发光单元上的目标电流,包括:获取该光电转换模块当前接收到的电流;根据该光电转换模块当前接收到的电流,确定该第一发光单元的目标电流。
在本方案中,通过接收光电转换模块当前接收到的电流值,并根据该电流值调整第一发光单元的目标电流,由此可以提高光电转换模块对信号进行分析的准确性,从而提高生物特征参数测量的精确度。
在一种可能的实现方式中,根据该光电转换模块当前接收到的电流,确定该第一发光单元的目标电流,包括:判断对该第一发光单元的目标电流的调整次数是否大于第四预设值;若对该第一发光单元的目标电流的调整次数不大于该第四预设值,则判断该光电转换模块当前接收到的电流与该第二预设值之间的差值的绝对值是否小于该第三预设值;若不小于该第三预设值,则根据该光电转换模块当前接收到的电流与该第二预设值,确定该第一发光单元的目标电流。
在本方案中,在对该第一发光单元的目标电流的调整次数不大于第四预设值时,再通过光电转换模块当前接收到的电流,确定该第一发光单元的目标电流,由此可以防止控制模块不断对第一发光单元的目标电流进行调整的现象。
在一种可能的实现方式中,根据该光电转换模块当前接收到的电流,确定该第一发光单元的目标电流,包括:判断该光电转换模块当前接收到的电流是否小于该第二预设值;若小于该第二预设值,则根据当前周期内该第一发光单元的当前电流和第五预设值,确定该第一发光单元的目标电流,其中,该第五预设值为该电子设备中的光电容积描记PPG传感器能够承受的最大电流值;若大于该第二预设值,则根据在当前周期内该第一发光单元的当前电流和第六预设值,确定该第一发光单元的目标电流,其中,该第六预设值为保证该PPG传感器能够采集到信号的最小电流值。
在本方案中,根据光电转换模块当前接收到的电流,可以实时调整第一发光单元的目标电流,从而可以提高生物特征参数的测量结果。
在一种可能的实现方式中,根据当前周期内该第一发光单元的当前电流和第五预设值,确定该第一发光单元的目标电流,包括:将该第一发光单元的当前电流和该第五预设值的平均值,确定为该第一发光单元的目标电流。
在本方案中,根据第一发光单元的当前电流和该第五预设值的平均值,确定第一发 光单元的目标电流的方式,使得确定方式较为简单。
在一种可能的实现方式中,根据当前周期内该第一发光单元的当前电流和第六预设值,确定该第一发光单元的目标电流,包括:将该第一发光单元的当前电流和该第六预设值的平均值,确定为该第一发光单元的目标电流。
在本方案中,根据第一发光单元的当前电流和该第六预设值的平均值,确定第一发光单元的目标电流的方式,使得确定方式较为简单。
在一种可能的实现方式中,该方法还包括:若对该第一发光单元上的目标电流的调整次数大于该第四预设值,或者该光电转换模块当前接收到的电流与该第二预设值之间的差值的绝对值小于该第三预设值时,则判断该光电转换模块当前接收到的电流是否满足该电子设备中的光电容积描记PPG传感器的模数转换器ADC的准确度理想区间;若不满足该PPG传感器的ADC的准确度理想区间,则按照预设方式调整该第一发光单元的当前电流,并将调整后的电流确定为该第一发光单元的目标电流;若满足该PPG传感器的ADC的准确度理想区间,则将该第一发光单元的当前电流确定为该第一发光单元的目标电流。
在本方案中,若电流值未处于ADC的准确度理想区间时,经过ADC处理后的结果准确度相对较低。因此,当控制模块判断出光电转换模块当前接收到的电流值未处于ADC准确度理想区间内时,将需要对第一发光单元的电流值进行调整,由此可以提高数据处理的准确性。
在一种可能的实现方式中,根据该第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为该发光模组中的该第一发光单元和第二发光单元分配电流,包括:为该第一发光单元分配电流a*m,为该第二发光单元分配电流b*(n-m),其中,a为该第一发光单元对应的分流系数,b为该第二发光单元对应的分流系数,n为该第一发光单元上的目标电流,m为该第一预设值。
在本方案中,按照确定出的分流系数为第一发光单元和第二发光单元分配电流之后,第一发光单元和第二发光单元共同发光,光电转换模块103接收到的电流值与第二预设值之间的差值的绝对值小于第三预设值。因此,可以保证光电转换模块对信号进行分析的准确性,提高生物特征参数测量的精确度。
在一种可能的实现方式中,a和b均为1,其中,该第一发光单元和该光电转换模块的距离,与该第二发光单元和该光电转换模块的距离相同。
在本方案中,对于某个电子设备,若第一发光单元和第二发光单元与光电转换模块的距离相等,第一发光单元和第二发光单元对应的分流系数均为1,由此可以保证光电转换模块所接收到的电流值,提高测量结果的精度。
在一种可能的实现方式中,a为1,b为k,其中,该第一发光单元和该光电转换模块的距离,小于该第二发光单元和该光电转换模块的距离,k为大于1的整数。
在本方案中,对于某个电子设备,若第一发光单元和光电转换模块的距离,小于第二发光单元和光电转换模块的距离,第一发光单元对应的分流系数为1,第二发光单元对应的分流系数为k,这种方式,不但可以保证每个发光单元上的电流值均小于第一预设值,而且可以使两个发光单元同时点亮时,生物特征参数的测量精度可以逼近单个发光单元点亮时测量的生物特征参数的精度。
在一种可能的实现方式中,该方法还包括:若该第一发光单元上的目标电流不大于该第一预设值,则该第一发光单元基于该目标电流发光,以测量该目标对象的生物特征参数。
在本方案中,若控制模块判断出第一发光单元的目标电流小于第一预设值,则说明第一发光单元的电压值较小,此时,PPG传感器的pin引脚的电压值较大,可以保证PPG传感器的正常工作,因此,不需要对第一发光单元的目标电流进行分流,从而可以保证生物特征参数测量的精度。
第二方面,本申请提供了一种装置,该装置中包括发光模组和光电转换模块,该发光模组中包括至少两个发光单元,该至少两个发光单元在不同周期轮流点亮;该装置还包括:控制模块;控制模块用于确定该发光模组中在当前周期内当前点亮的第一发光单元上的目标电流;该控制模块,还用于判断该第一发光单元上的目标电流是否大于第一预设值;该控制模块,还用于在该第一发光单元上的目标电流大于第一预设值时,获取该第一发光单元对应的分流系数和第二发光单元对应的分流系数;所述控制模块,还用于根据该第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为该发光模组中的该第一发光单元和第二发光单元分配电流,以调整该第一发光单元上的目标电流,使得该第一发光单元和该第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数,其中,该光电转换模块接收到的电流与第二预设值的差值的绝对值小于第三预设值,该第一发光单元和该第二发光单元上分配的电流均小于或等于该第一预设值。
在一种可能的实现方式中,该第一预设值为能够保证该装置中的PPG传感器正常工作的最大电流值;该第二预设值和该第三预设值用于保证该光电转换模块能够正常进行信号分析。
在一种可能的实现方式中,该控制模块,具体用于:获取该光电转换模块当前接收到的电流;根据该光电转换模块当前接收到的电流,确定该第一发光单元的目标电流。
在一种可能的实现方式中,该控制模块,具体用于:判断对该第一发光单元的目标电流的调整次数是否大于第四预设值;若对该第一发光单元的目标电流的调整次数不大于该第四预设值,则判断该光电转换模块当前接收到的电流与该第二预设值之间的差值的绝对值是否小于该第三预设值;若不小于该第三预设值,则根据该光电转换模块当前接收到的电流与该第二预设值,确定该第一发光单元的目标电流。
在一种可能的实现方式中,该控制模块,具体用于:判断该光电转换模块当前接收到的电流是否小于该第二预设值;若小于该第二预设值,则根据当前周期内该第一发光单元的当前电流和第五预设值,确定该第一发光单元的目标电流,其中,该第五预设值为该装置中的光电容积描记PPG传感器能够承受的最大电流值;若大于该第二预设值,则根据在当前周期内该第一发光单元的当前电流和第六预设值,确定该第一发光单元的目标电流,其中,该第六预设值为保证该PPG传感器能够采集到信号的最小电流值。
在一种可能的实现方式中,所述控制模块,具体用于:将该第一发光单元的当前电流和该第五预设值的平均值,确定为该第一发光单元的目标电流。
在一种可能的实现方式中,所述控制模块,具体用于:将该第一发光单元的当前电流和该第六预设值的平均值,确定为该第一发光单元的目标电流。
在一种可能的实现方式中,所述控制模块,还用于:若对该第一发光单元上的目标 电流的调整次数大于该第四预设值,或者该光电转换模块当前接收到的电流与该第二预设值之间的差值的绝对值小于该第三预设值时,则判断该光电转换模块当前接收到的电流是否满足该装置中的光电容积描记PPG传感器的模数转换器ADC的准确度理想区间;若不满足该PPG传感器的ADC的准确度理想区间,则按照预设方式调整该第一发光单元的当前电流,并将调整后的电流确定为该第一发光单元的目标电流;若满足该PPG传感器的ADC的准确度理想区间,则将该第一发光单元的当前电流确定为该第一发光单元的目标电流。
在一种可能的实现方式中,该控制模块,具体用于:为该第一发光单元分配电流a*m,为该第二发光单元分配电流b*(n-m),其中,a为该第一发光单元对应的分流系数,b为该第二发光单元对应的分流系数,n为该第一发光单元的目标电流,m为该第一预设值。
在一种可能的实现方式中,a和b均为1,其中,该第一发光单元和该光电转换模块的距离,与该第二发光单元和该光电转换模块的距离相同。
在一种可能的实现方式中,a为1,b为k,其中,该第一发光单元和该光电转换模块的距离,小于该第二发光单元和该光电转换模块的距离,该k为大于1的整数。
在一种可能的实现方式中,该控制模块,还用于:在该第一发光单元上的目标电流不大于该第一预设值时,该第一发光单元基于该目标电流发光,以测量该目标对象的生物特征参数。
第三方面,本申请提供一种电子设备,包括:LED模组、光电二极管、存储器和处理器,其中,该LED模组中包括至少两个发光单元,至少两个发光单元在不同周期轮流点亮;该存储器用于存储程序指令;该处理器用于调用该存储器中的程序指令执行如第一方面或其中任意一种可能的实现方式所述的方法。
第四方面,本申请提供一种芯片,包括至少一个处理器和通信接口,该通信接口和该至少一个处理器通过线路互联,该至少一个处理器用于运行计算机程序或指令,以执行如第一方面或其中任意一种可能的实现方式所述的方法。
第五方面,本申请提供一种计算机可读介质,该计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行如第一方面或其中任意一种可能的实现方式所述的方法的指令。
本申请实施例提供的生物特征参数的测量方法和装置,通过确定发光模组中在当前周期内当前点亮的第一发光单元上的目标电流,并判断第一发光单元上的目标电流是否大于第一预设值,若确定出该第一发光单元上的目标电流大于第一预设值,则控制模块可以获取第一发光单元对应的分流系数和第二发光单元对应的分流系数,并根据该第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为发光模组中的第一发光单元和第二发光单元分配电流,以调整该第一发光单元上的目标电流,使得该第一发光单元和该第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数。其中,光电转换模块接收到的电流值与第二预设值的差值的绝对值小于第三预设值,第一发光单元和第二发光单元上分配的电流值均小于或等于第一预设值。由于第一发光单元和第二发光单元上分配的电流均小于或等于第一预设值,因此发光模组上的分压较小,由此可以保证PPG传感器的pin引脚上的电压值满足预设的电压值,从而为PPG传感器中ADC提供稳定的参考电压,提高生物特征参数的测量结果的精确度。另外,由于在第一发光单 元上的目标电流大于第一预设值时,可以将电流分流到第二发光单元上,这样,发光模组中发出的光的强度并没有降低,从而可以使得光电转换模块103接收到的电流值与第二预设值的差值的绝对值小于第三预设值,保证了光电转换模块可以正常进行信号的分析,由此可以进一步保证生物特征参数的测量结果的准确性。
附图说明
图1为本申请实施例提供的生物特征参数的测量方法的应用场景图;
图2为本申请实施例提供的生物特征参数测量的原理示意图;
图3为可穿戴设备11的结构示意图;
图4为本申请实施例提供的一种生物特征参数的测量方法的一流程示意图;
图5为本申请实施例提供的一种生物特征参数的测量方法的另一流程示意图;
图6为确定分流系数的示意图;
图7为发光单元和光电转换模块的一距离示意图;
图8为发光单元和光电转换模块的另一距离示意图;
图9为本申请一个实施例提供的生物特征参数的测量装置的结构示意图;
图10为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
本申请说明书和权利要求书及附图说明中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”一般表示前后关联对象是一种“或”的关系。
下面将结合附图对本申请实施例的实施方式进行详细描述。
图1为本申请实施例提供的生物特征参数的测量方法的应用场景图,如图1所示,本申请实施例可以应用于目标对象12通过佩戴可穿戴设备11,以测量自身的生物特征参数的场景中,其中,生物特征参数可以包括心率、血氧饱和度或血压等。本申请实施例中均以生物特征参数为心率为例进行说明,对于生物特征参数为其他参数时,可以是PPG传感器控制LED模组发出不同颜色的光线从而进行测量得到的,例如,当PPG传感器控制LED模组发出红色的光线时,可以测量目标对象12的血氧饱和度。当生物特征参数为其他参数时,其测量原理与生物特征参数为心率时类似,本申请实施例中不再赘述。
示例性的,上述可穿戴设备11也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋 等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备11不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。另外,上述的可穿戴设备11还可以是运动腕带、红外线耳部心率感应器和心率监测胸带等设备。
示例性的,上述目标对象12可以为用户。
图2为本申请实施例提供的生物特征参数测量的原理示意图,如图2所示,目标对象12可以通过佩戴可穿戴设备11测量自身的心率。其中,可穿戴设备11中包括有LED模组101、PPG传感器102、光电转换模块103和控制模块104。其中,LED模组101中包括至少两个发光单元,光电转换模块103例如可以为PD,控制模块104例如可以为中央处理器(Central Processing Unit,CPU)或者微控制单元(Microcontroller Unit,MCU)。
在进行心率测量时,PPG传感器102会控制LED模组101中的发光单元发光,由于可穿戴设备11佩戴在目标对象12的皮肤表面,因此,发出的光照射到目标对象12的皮肤之后,一部分光会被血液中的血红素所吸收,而没有被吸收的光则会发生反射。光电转换模块103通过接收经皮肤反射回来的光信号,会将接收到的光信号转换为电信号,并将该电信号发送给控制模块104,控制模块104对该电信号进行处理之后,即可得到目标对象12的心率。
图3为可穿戴设备11的结构示意图,如图3所示,LED模组101中包括有至少两个发光单元,本申请实施例中以包括四个发光单元为例进行说明,其中,四个发光单元1011、1012、1013和1014分别与PPG传感器的pin引脚连接,其中,发光单元可以为LED。另外,PPG传感器102控制发光单元1011和发光单元1013发出红光,控制发光单元1012和发光单元1014发出绿光。应理解,发光单元1011、发光单元1012、发光单元1013和发光单元1014可以轮询点亮。当发光单元1011和发光单元1013点亮时,可以采用可穿戴设备11测量目标对象12的血氧饱和度,当发光单元1012和发光单元1014点亮时,可以采用可穿戴设备11测量目标对象12的心率。
PPG传感器102中包括有数据缓冲区和模拟数字转换器(Analog-to-digital converter,ADC),其中,ADC和光电转换模块103连接。当PPG传感器102控制发光单元1011、发光单元1012、发光单元1013和发光单元1014轮询点亮,且光照射到皮肤,并经过皮肤的反射后,光电转换模块103会接收到反射的光信号,并将光信号转换为电信号。光电转换模块103将电信号发送给PPG传感器102中的ADC,ADC将电信号转换为数字信号并发送到数据缓冲区。当发光单元1011、发光单元1012、发光单元1013和发光单元1014均点亮一次之后,数据缓冲区中将存储有发光单元1011、发光单元1012、发光单元1013和发光单元1014分别对应的数字信号。PPG传感器102将数据缓冲区中存储的数字信号通过串行外设接口(Serial Peripheral Interface,SPI)发送到控制模块104。控制模块104通过对接收到的数字信号进行处理,从而可以得到目标对象12的心率或者血氧饱和度等参数。
一种实施方式是,由于发光单元1011、发光单元1012、发光单元1013和发光单 元1014是轮询点亮,因此,在每一时刻,通常只有一个发光单元是点亮的。下面,以点亮的是发光单元1011为例进行说明,在其他发光单元被点亮时,与发光单元1011被点亮时类似,此处不再赘述。如图3所示,由于发光单元1011不是理想器件,因此,随着发光单元1011上的电流增大,发光单元1011的阻值会超过理想阻值,因此电压值会急剧增大,从而导致发光单元1011上的实际分压值会远大于发光单元1011的导通电压值。由于LED模组101的供电电源为5V,因此,在发光单元1011上的电压值较大时,会导致PPG传感器102的pin引脚上的电压值较小。本领域技术人员可以理解,由于PPG传感器102的pin引脚上的电压必须满足预设的电压值时,PPG传感器102才能正常工作。当PPG传感器102的pin引脚上的电压值未达到上述预设的电压值时,会导致PPG传感器102的工作异常,进而导致PPG传感器102中ADC的参考电压不稳定,造成ADC转换后的数字信号的结果不准确,导致控制模块104分析出来的测量结果精确度不高。
对于这一问题,一种实施方式是,通过限制LED模组101中包括的发光单元上流过的电流值,来降低发光单元上的分压,以保证PPG传感器102的pin引脚上的电压满足预设阈值,从而保证ADC具有稳定的参考电压,以提高生物特征参数的测量精度。
但是上述方式中,由于不同用户血管外部身体组织状况不同,一些用户的皮肤对光的吸收度很高,在限制了发光单元的电流值后,发光单元发出的光的光强度较低,再经过这些用户的皮肤吸收后,反射到光电转换模块103的光较少,这样,光电转换模块103转换后得到的电信号也较小,若该电信号的值小于光电转换模块103能够正常进行信号分析的数值时,就会导致生物特征参数的测量结果不准确。
为了解决上述问题,本申请实施例提供一种生物特征参数的测量方法,该方法中控制模块104通过确定发光模组中在当前周期内当前点亮的第一发光单元上的目标电流,并判断第一发光单元上的目标电流是否大于第一预设值,若确定出该第一发光单元上的目标电流大于第一预设值,则控制模块104可以获取第一发光单元对应的分流系数和第二发光单元对应的分流系数,并根据该第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为发光模组中的第一发光单元和第二发光单元分配电流,以调整该第一发光单元上的目标电流,使得该第一发光单元和该第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数。其中,光电转换模块103接收到的电流值与第二预设值的差值的绝对值小于第三预设值,其中,第一发光单元和第二发光单元上分配的电流值均小于或等于第一预设值。由于第一发光单元和第二发光单元上分配的电流均小于或等于第一预设值,因此发光模组101上的分压较小,由此可以保证PPG传感器102的pin引脚上的电压值满足预设的电压值,从而为PPG传感器102中ADC提供稳定的参考电压,提高生物特征参数的测量结果的精确度。另外,由于在第一发光单元上的目标电流大于第一预设值时,可以将电流分流到第二发光单元上,这样,发光模组中发出的光的强度并没有降低,从而可以使得光电转换模块103接收到的电流值大于第二预设值,保证了光电转换模块103可以正常进行信号的分析,由此可以进一步保证生物特征参数的测量结果的准确性。
下面,通过详细的实施例对本申请提供的生物特征参数的测量方法的技术方案进行详细地描述。可以理解的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概 念或过程可能在某些实施例不再赘述。
图4为本申请实施例提供的一种生物特征参数的测量方法的一流程示意图,需要说明的是,虽然在本申请的实施例中,以特定顺序呈现了方法的各个步骤,但是可以在不同的实施例中改变步骤的顺序,并且在一些实施例中,可以同时执行在本说明书中按顺序示出的一个或多个步骤。如图4所示,该方法包括:
步骤401:控制模块104确定发光模组101内第一发光单元的目标电流。
在本步骤中,发光模组101中包括有至少两个发光单元,且至少两个发光单元是并联连接的,该发光单元例如可以为LED。控制模块104通过PPG传感器102控制这些发光单元轮询点亮。其中,第一发光单元为在当前周期内当前被点亮的发光单元。其中,第一发光单元的电流值越小,第一发光单元发出的光的强度越小。
应理解,当发光模组101内第一发光单元的电流值较小时,此时第一发光单元发出的光的强度较小,因此,光电转换模块103接收到的光信号就越小。因此,为了保证光电转换模块103接收到的电流值的大小,控制模块104可以根据光电转换模块103上接收到的电流,实时调整发光模组101内第一发光单元的电流。
下面,通过图5所示的实施例,对控制模块104如何确定发光模组101内第一发光单元的目标电流值的过程进行详细说明。
具体的,图5为本申请实施例提供的一种生物特征参数的测量方法的另一流程示意图,如图5所示,该方法包括:
步骤4011、控制模块104接收PPG传感器102发送的光电转换模块103当前接收到的电流。
在本步骤中,为了保证光电转换模块103所接收到的电流的大小,控制模块104可以根据光电转换模块103当前接收到的电流,实时调整发光模组101内第一发光单元的电流。光电转换模块103在将接收到的光信号转换为电流信号之后,会将该电流信号发送到PPG传感器102的ADC,以将模拟电流信号转换为数字电流信号并保存在数据缓冲区中。PPG传感器102通过SPI总线,将数据缓冲区中的电流信号发送到控制模块104,这样,控制模块104即可获取到光电转换模块103当前接收到的电流。
步骤4012、控制模块104判断对第一发光单元上的目标电流的调整次数是否大于第四预设值。
若是,则执行步骤4018,否则,执行步骤4013。
在本步骤中,为了防止控制模块104不断的对第一发光单元上的目标电流进行调整或者分流的现象,在确定出控制模块104之前已经对第一发光单元上的目标电流进行了多次调整或者分流后,将不会继续对第一发光单元上的目标电流进行精确的调整,而是判断光电转换模块103当前接收到的电流是否满足PPG传感器中ADC准确度的理想区间。只有在确定出控制模块104之前对第一发光单元上的目标电流进行调整或者分流的次数不大于第四预设值时,才会执行步骤4013。
其中,第四预设值可以根据实际情况或者经验进行设置,例如可以为3或4等,对于第四预设值的具体取值,本申请实施例在此不做限制。
步骤4013、控制模块104判断光电转换模块103当前接收到的电流与所述第二预设值之间的差值的绝对值是否小于第三预设值。
若是,则执行步骤4018,否则,执行步骤4014。
在本步骤中,第二预设值和第三预设值用于保证光电转换模块103能够正常进行信号分析。在光电转换模块103当前接收到的电流值接近第二预设值时,光电转换模块103对信号进行分析时得到的结果比较准确,因此,若控制模块104判断出光电转换模块103当前接收到的电流值与第二预设值之间的差值的绝对值不小于第三预设值,也即光电转换模块103当前接收到的电流值与第二预设值之间的差值比较大时,说明光电转换模块103当前接收到的电流值可能过大,也可能过小,此时,就需要对第一发光单元上的电流进行调整。
举例来说,假设第二预设值为100mA,第三预设值为10mA,则当光电转换模块103当前接收到的电流值处于[90,110]这一区间内时,将执行步骤4018,否则,执行步骤4014。
步骤4014、控制模块104判断光电转换模块103当前接收到的电流是否大于所述第二预设值。
若是,则执行步骤4016;否则,执行步骤4015。
步骤4015、控制模块104根据第五预设值和第一发光单元的当前电流,确定目标电流值。
其中,第五预设值为PPG传感器能够承受的最大电流值,该第五预设值由PPG传感器的芯片特性所确定。
在本步骤中,由于第一发光单元的电流值可以由控制模块104实时控制,因此,第一发光单元的当前电流值,可以理解为控制模块104上一次所确定出的第一发光单元的电流值。
当控制模块104判断出光电转换模块103当前接收到的电流小于第二预设值时,说明光电转换模块103的电流值较小,此时,为了保证光电转换模块103能够正确的对信号进行分析,则需要增大第一发光单元的电流值,以增大第一发光单元的光强度,从而达到增大光电转换模块103的电流值的目的。
在一种可能的实现方式中,可以将第五预设值和当前周期内的第一发光单元的当前电流值的平均值确定为目标电流值。在另一种可能的实现方式中,也可以按照预设的权重值,根据第五预设值和当前周期内的第一发光单元的当前电流值,确定目标电流值。当然,还可以按照其他方式确定目标电流值,例如在第五预设值和当前周期内的第一发光单元的当前电流值之间随机选择一个值,作为目标电流值等等,只要确定出的目标电流值大于当前周期内的第一发光单元的当前电流值,且小于第五预设值即可。
步骤4016、控制模块104根据第六预设值和第一发光单元上的当前电流确定目标电流值。
其中,第六预设值为保证PPG传感器能够采集到信号的最小电流值,该第六预设值由PPG传感器的芯片特性所确定。
在本步骤中,当控制模块104判断出光电转换模块103当前接收到的电流值大于第二预设值时,说明光电转换模块103的电流值较大,此时,为了保证光电转换模块103能够正确的对信号进行分析,则需要减小第一发光单元的电流值,以降低第一发 光单元的光强度,从而达到减小光电转换模块103的电流值的目的。
在一种可能的实现方式中,可以将第六预设值和当前周期内的第一发光单元的当前电流值的平均值确定为目标电流值。在另一种可能的实现方式中,也可以按照预设的权重值,根据第六预设值和当前周期内的第一发光单元的当前电流值,确定目标电流值。当然,还可以按照其他方式确定目标电流值,例如在第六预设值和当前周期内的第一发光单元的当前电流值之间随机选择一个值,作为目标电流值等等,只要确定出的目标电流值小于当前周期内的第一发光单元的当前电流值,且大于第六预设值即可。
步骤4017、控制模块104将目标电流值确定为第一发光单元的目标电流。
在本步骤中,控制模块104在确定出目标电流值之后,可以将第一发光单元的电流值调整或者更新为该目标电流值。
步骤4018、控制模块104判断光电转换模块103当前接收到的电流值是否满足ADC准确度理想区间。
若是,则执行步骤4020;否则,执行步骤4019。
在本步骤中,ADC准确度理想区间也可以理解为,当电流值处于该区间内时,经过ADC处理后的结果准确度比较高。若光电转换模块103当前接收到的电流值处于该区间内时,将不再对第一发光单元的电流值继续进行调整。
若电流值未处于该区间内时,经过ADC处理后的结果准确度相对较低。因此,当控制模块104判断出光电转换模块103当前接收到的电流值未处于ADC准确度理想区间内时,将需要对第一发光单元的电流值进行调整。
另外,控制模块104判断光电转换模块103当前接收到的电流值是否满足ADC准确度理想区间,也可以为控制模块104判断光电转换模块103当前接收到的电流值是否处于ADC的饱和度区间内,若处于ADC的饱和度区间内,则ADC处理后的结果准确度较低,此时将执行步骤4019,若未处于ADC的饱和度区间内,则ADC处理后的结果准确度相对较高,此时将执行步骤4020。
步骤4019、控制模块104按照预设方式调整第一发光单元的当前电流,并将调整后的电流确定为所述第一发光单元的目标电流。
在本步骤中,若控制模块104判断出光电转换模块103当前接收到的电流值未处于ADC准确度理想区间,或者,控制模块104判断出光电转换模块103当前接收到的电流值处于ADC的饱和度区间内,则控制模块104需要调整第一发光单元的当前电流值。示例性的,可以按照步进的方式调整,比如按照预设电流值,每次在将第一发光单元的电流值调整预设电流值之后,将执行步骤4011中获取光电转换模块103当前接收待的电流值,若光电转换模块103当前接收到的电流值仍然未处于ADC准确度理想区间,或者,处于ADC的饱和度区间内,则将继续按照预设电流值进行调整,直至光电转换模块103当前接收到的电流值处于ADC准确度理想区间,或者,未处于ADC的饱和度区间内。
通过步进的方式调整第一发光单元的电流值的方式,可以提高电流调整的效率。
在本实施例中,通过接收PPG传感器102发送的光电转换模块103当前接收到的电流值,并根据该电流值调整第一发光单元的电流值,由此可以提高光电转换模块103 对信号进行分析的准确性,从而提高生物特征参数测量的精确度。
步骤4020、控制模块104将第一发光单元的当前电流确定为第一发光单元的目标电流。
其中,若光电转换模块103当前接收到的电流值满足ADC准确度理想区间,则说明ADC处理后的结果准确度相对较高,此时可以将第一发光单元的当前电流确定为第一发光单元的目标电流。
步骤402、控制模块104判断第一发光单元的目标电流是否大于第一预设值。
若第一发光单元的目标电流大于第一预设值,则执行步骤403,否则,执行步骤406。
其中,第一预设值为能够保证PPG传感器正常工作的最大电流值,该第一预设值例如可以为100mA。
在本步骤中,在第一发光单元的目标电流大于第一预设值时,由于第一发光单元为不理想器件,其实际阻值会超过理想阻值,在电流值较大时,其上的实际工作电压会超过导通电压,从而导致PPG传感器的pin引脚上的电压值会减小。因此,为了保证PPG传感器的pin引脚上的电压值的大小,控制模块104将控制对第一发光单元上的目标电流进行分流,以将第一发光单元的目标电流值分流到其他发光单元上,从而减小发光模组101的电压值,由此可以保证PPG传感器的pin引脚上的电压值的大小。
步骤403、控制模块104获取第一发光单元对应的分流系数和第二发光单元对应的分流系数。
其中,分流系数用于调整第一发光单元和第二发光单元上的电流值。根据第一发光单元对应的分流系数和第二发光单元对应的分流系数,以及控制模块104确定出的第一发光单元的目标电流,可以为当前周期内的第一发光单元和第二发光单元分别分配电流,并控制第一发光单元和第二发光单元同时点亮时,光电转换模块103接收到的电流值,与只有第一发光单元按照目标电流值点亮时光电转换模块103接收到的电流值相同。
在一种可能的实现方式中,分流系数可以通过采集两个发光单元的多组电流值,并对这多组电流值进行拟合得到。下面,以采集三组数据为例进行说明。具体的,在第一时刻,可以采集第一发光单元上的电流值Data1-1,可以采集第二发光单元上的电流值Data2-1,在第二时刻,可以采集第一发光单元上的电流值Data1-2,可以采集第二发光单元上的电流值Data2-2,在第三时刻,可以采集第一发光单元上的电流值Data1-3,可以采集第二发光单元上的电流值Data2-3。采集到数据之后,可以按照公式
Figure PCTCN2021133980-appb-000001
计算得到初始分流系数K',其中,i的值可以为1、2、3。在计算出K'之后,可以将K'代入预设分流算法中,并使用线性回归优化方法,得到调优后的分流系数。
在本方式中,通过采集多组电流值,从而通过拟合的方式确定分流系数,使得确定出的分流系数更加准确。
在另一种可能的实现方式中,该分流系数也可以是通过采集两个发光单元的一组电流值,通过对这一组电流值进行分析,从而得到每个发光单元所对应的分流系数。举例来说,图6为确定分流系数的示意图,如图6所示,两个发光单元分别为LED1和LED2,其中,LED1与PD的距离为距离1,LED2与PD的距离为距离2,且距离1大于距离2,由于LED1和LED2与PD的距离不同,因此,当LED1和LED2上的电流相同时,PD接收到的电流值是不同的。例如,LED1的工作电流为100mA时,LED1发出的光照射到皮肤后,一部分光经过皮肤反射到PD,PD将光信号转换为电信号后,PD接收到的电流为10mA,而LED2的工作电流为100mA时,LED2发出的光照射到皮肤后,一部分光经过皮肤反射到PD,PD将光信号转换为电信号后,PD接收到的电流为5mA。因此,LED1所对应的分流系数可以为1,而LED2所对应的分流系数可以为2,也即,LED2的工作电流为2*100mA时,PD接收到的电流为10mA,此时,PD接收到的电流值与LED1工作在100mA时接收到的电流值相同。
在本方式中,通过采集两个发光单元的一组电流值,从而通过对这一组电流值进行分析,以确定出每个发光单元所对应的分流系数,使得确定分流系数的方式更加简单。
在又一种可能的实现方式中,在控制模块104中可以预先存储有各发光单元与其所对应的分流系数的对应关系,控制模块104通过查询该对应关系,即可确定出每个发光单元所对应的分流系数。其中,该对应关系可以以表格的方式进行存储,也可以以列表的方式进行存储,当然,还可以以其他方式进行存储,对于对应关系的具体存储方式,本申请实施例在此不做限制。
在本方式中,通过预先存储的发光单元与分流系数之间的对应关系,可以确定出每个发光单元所对应的分流系数,使得确定分流系数的方式简单且高效。
应理解,对于某一可穿戴设备,若其包括的第一发光单元和第二发光单元与光电转换模块PD的距离相同,则第一发光单元和第二发光单元对应的分流系数均为1。若其所包括的第一发光单元和第二发光单元与光电转换模块PD的距离不相同,若第一发光单元与光电转换模块PD的距离小于第二发光单元与光电转换模块PD的距离,则第一发光单元所对应的分流系数可以为1,第二发光单元所对应的分流系数可以为k1,且k1大于1,或者,第一发光单元所对应的分流系数可以为k2,第二发光单元所对应的分流系数可以为1,且k2小于1。
步骤404、控制模块104根据第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为发光模组101中的第一发光单元和第二发光单元分配电流,以调整该第一发光单元上的目标电流,使得该第一发光单元和该第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数,其中,光电转换模块103接收到的电流值与第二预设值之间的差值的绝对值小于第三预设值,其中,第一发光单元和第二发光单元上分配的电流值均小于或等于第一预设值。
其中,第二预设值为光电转换模块103能够正常进行信号分析的电流值。
具体的,一种实施方式是,第一发光单元和第二发光单元为轮询点亮,因此,在当前时刻,应该只有第一发光单元按照目标电流被点亮。但是,由于目标电流大于第一预设值,因此,需要将该目标电流分流到其他发光单元,例如,可以将一部分电流值分流到第二发光单元中。示例性的,如图3所示,由于发光单元1011和发光单元 1013均发红光,发光单元1012和发光单元1014均发绿光,因此,若第一发光单元为1011时,第二发光单元可以为1013,或者,若第一发光单元为1013时,第二发光单元可以为1011,或者,若第一发光单元为1012时,第二发光单元可以为1014,或者,若第一发光单元为1014时,第二发光单元可以为1012。
控制模块104在确定出第一发光单元对应的分流系数和第二发光单元对应的分流系数之后,将根据该分流系数为第一发光单元和第二发光单元分配电流值。第一发光单元和第二发光单元会基于分配的电流发光,光电转换模块可以接收到经过皮肤反射的光信号,并将该光信号转换为电信号后,将电信号发送到控制模块104,控制模块104通过对电信号进行处理,从而可以得到目标对象的生物特征参数。
其中,为了保证测量结果的准确性,对于第一发光单元和第二发光单元与光电转换模块的距离相等的可穿戴设备来说,第一发光单元和第二发光单元对应的分流系数均为1,假设第一发光单元的目标电流为n,第一预设值为m,则控制模块将为第一发光单元和第二发光单元交替分配m和n-m的电流。
具体的,图7为发光单元和光电转换模块的一距离示意图,如图7所示,对于某一个可穿戴设备来说,其包括发光单元LED1和LED2,其中,LED1和LED2与光电转换模块PD的距离相同。此时,发光单元LED1和LED2对应的分流系数均为1。控制模块104在分配电流时,假设在第一时刻,控制模块104确定出发光单元LED1的目标电流为n,且该电流n大于第一预设值m,此时,可以为发光单元LED1分配电流m,为发光单元LED2分配电流n-m。
进一步的,为了保证测量结果的准确性,在第二时刻,控制模块104可以为发光单元LED1分配电流n-m,为发光单元LED2分配电流m,在第三时刻,控制模块104可以为发光单元LED1分配电流m,为发光单元LED2分配电流n-m等等。
对于第一发光单元和第二发光单元与光电转换模块的距离不相等的可穿戴设备来说,假设第一发光单元与光电转换模块的距离小于第二发光单元与光电转换模块PD的距离,则第一发光单元对应的分流系数可以为1,第二发光单元对应的分流系数可以为k1。假设第一发光单元的目标电流为n,第一预设值为m,则控制模块104将为第一发光单元分配电流m,为第二发光单元分配电流k1*(n-m)。
进一步的,为了保证生物特征参数测量的准确性,也可以在第一时刻时,为第一发光单元分配电流m,为第二发光单元分配电流k1*(n-m),在第二时刻时,为第一发光单元分配电流k2*(n-m),为第二发光单元分配电流m,在第三时刻时,为第一发光单元分配电流m,为第二发光单元分配电流k1*(n-m)等等。
具体的,图8为发光单元和光电转换模块的另一距离示意图,如图8所示,对于某一个可穿戴设备来说,其包括发光单元LED3和LED4,其中,LED3和LED4与光电转换模块PD的距离不相同,且LED3与光电转换模块PD的距离小于LED4与光电转换模块PD的距离。控制模块104在分配电流时,假设在第一时刻,控制模块104确定出发光单元LED3的电流为n,且该电流n大于第一预设值m,此时,可以为发光单元LED3分配电流m,为发光单元LED4分配电流k1*(n-m)。
进一步的,为了保证测量结果的准确性,也可以在第二时刻时,控制模块104为发光单元LED3分配电流k2*(n-m),为发光单元LED4分配电流m,在第三时刻, 控制模块104为发光单元LED3分配电流m,为发光单元LED4分配电流k1*(n-m)等等。
应理解,按照上述分流系数为第一发光单元和第二发光单元分配电流之后,第一发光单元和第二发光单元共同发光,光电转换模块103接收到的电流值与第二预设值之间的差值的绝对值小于第三预设值。因此,可以保证光电转换模块对信号进行分析的准确性,提高生物特征参数测量的精确度。
另外,由于控制模块104对第一发光单元上的目标电流进行分流处理后,使得第一发光单元和第二发光单元上分配的电流值均小于或等于第一预设值,这样,LED模组101上的电压值将会减小,从而可以保证PPG传感器pin引脚上的电压值,保证了PPG传感器可以正常工作。
在本实施例中,按照上述方式确定的分流系数,不但可以保证每个发光单元上的电流值均小于第一预设值,而且可以使两个发光单元同时点亮时,生物特征参数的测量精度可以逼近单个发光单元点亮时测量的生物特征参数的精度。
其中,表1中示出了在不同场景下时,单个发光单元点亮时测量的生物特征参数的精度和两个发光单元同时点亮时测量的生物特征参数的精度。
表1
Figure PCTCN2021133980-appb-000002
如表1所示,两个发光单元同时点亮时,测量的生物特征参数的精度可以逼近单个发光单元点亮时测量的生物特征参数的精度。
步骤405、控制模块104控制第一发光单元基于目标电流发光,以测量目标对象的生物特征参数。
在本步骤中,若控制模块104判断出第一发光单元的目标电流小于第一预设值,则说明第一发光单元的电压值较小,此时,PPG传感器102的pin引脚的电压值较大,可以保证PPG传感器的正常工作,因此,不需要对第一发光单元的目标电流进行分流。控制模块104将控制第一发光单元继续按照目标电流发光,这样,光电转换模块可以接收到经过皮肤反射的光信号,并将该光信号转换为电信号后,将电信号发送到控制模块104,控制模块104通过对电信号进行处理,从而可以得到目标对象的生物特征参数。
本申请实施例提供的生物特征参数的测量方法,该方法中控制模块通过确定发光模组中在当前周期内当前点亮的第一发光单元上的目标电流,并判断第一发光单元上的目标电流是否大于第一预设值,若确定出该第一发光单元上的目标电流大于第一预设值,则控制模块可以获取第一发光单元对应的分流系数和第二发光单元对应的分流系数,并根据该 第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为发光模组中的第一发光单元和第二发光单元分配电流,以调整该第一发光单元上的目标电流,使得该第一发光单元和该第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数。其中,光电转换模块接收到的电流值与第二预设值的差值的绝对值小于第三预设值,第一发光单元和第二发光单元上分配的电流值均小于或等于第一预设值。由于第一发光单元和第二发光单元上分配的电流均小于或等于第一预设值,因此发光模组上的分压较小,由此可以保证PPG传感器的pin引脚上的电压值满足预设的电压值,从而为PPG传感器中ADC提供稳定的参考电压,提高生物特征参数的测量结果的精确度。另外,由于在第一发光单元上的目标电流大于第一预设值时,可以将电流分流到第二发光单元上,这样,发光模组中发出的光的强度并没有降低,从而可以使得光电转换模块103接收到的电流值与第二预设值的差值的绝对值小于第三预设值,保证了光电转换模块可以正常进行信号的分析,由此可以进一步保证生物特征参数的测量结果的准确性。
图9为本申请一实施例提供的生物特征参数的测量装置的结构示意图。图9所示的装置可以用于执行前述任意一个实施例所述的方法。
如图9所示,本实施例的装置900可以包括:发光模组901、光电转换模块902和控制模块903,其中,发光模组901中包括至少两个发光单元9011,该至少两个发光单元9011在不同周期轮流点亮。
控制模块903用于确定发光模组901中在当前周期内当前点亮的第一发光单元上的目标电流;
该控制模块903,还用于判断该第一发光单元上的目标电流是否大于第一预设值;
该控制模块903,还用于在该第一发光单元上的目标电流大于第一预设值时,获取该第一发光单元对应的分流系数和第二发光单元对应的分流系数;
所述控制模块903,还用于根据该第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为该发光模组中的该第一发光单元和第二发光单元分配电流,以调整该第一发光单元上的目标电流,使得该第一发光单元和该第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数,其中,该光电转换模块接收到的电流与第二预设值的差值的绝对值小于第三预设值,该第一发光单元和该第二发光单元上分配的电流均小于或等于该第一预设值。
可选地,所述第一预设值为能够保证所述装置中的PPG传感器正常工作的最大电流值;所述第二预设值和所述第三预设值用于保证所述光电转换模块能够正常进行信号分析。
可选地,所述控制模块903,具体用于:
获取所述光电转换模块当前接收到的电流;
根据所述光电转换模块当前接收到的电流,确定所述第一发光单元的目标电流。
可选地,所述控制模块903,具体用于:
判断对所述第一发光单元的目标电流的调整次数是否大于第四预设值;
若对所述第一发光单元的目标电流的调整次数不大于所述第四预设值,则判断所述光电转换模块当前接收到的电流与所述第二预设值之间的差值的绝对值是否小于所述第三预设值;
若不小于所述第三预设值,则根据所述光电转换模块当前接收到的电流与所述第二预设值,确定所述第一发光单元的目标电流。
可选地,所述控制模块903,具体用于:
判断所述光电转换模块902当前接收到的电流是否小于所述第二预设值;
若小于所述第二预设值,则根据当前周期内所述第一发光单元的当前电流和第五预设值,确定所述第一发光单元的目标电流,其中,所述第五预设值为所述装置中的光电容积描记PPG传感器能够承受的最大电流值;
若大于所述第二预设值,则根据在当前周期内所述第一发光单元的当前电流和第六预设值,确定所述第一发光单元的目标电流,其中,所述第六预设值为保证所述PPG传感器能够采集到信号的最小电流值。
可选地,所述控制模块903,具体用于:
将所述第一发光单元的当前电流和所述第五预设值的平均值,确定为所述第一发光单元的目标电流。
可选地,所述控制模块903,具体用于:
将所述第一发光单元的当前电流和所述第六预设值的平均值,确定为所述第一发光单元的目标电流。
可选地,所述控制模块903,还用于:
若对所述第一发光单元上的目标电流的调整次数大于所述第四预设值,或者所述光电转换模块当前接收到的电流与所述第二预设值之间的差值的绝对值小于所述第三预设值时,则判断所述光电转换模块当前接收到的电流是否满足所述装置中的光电容积描记PPG传感器的模数转换器ADC的准确度理想区间;
若不满足所述PPG传感器的ADC的准确度理想区间,则按照预设方式调整所述第一发光单元的当前电流,并将调整后的电流确定为所述第一发光单元的目标电流;
若满足所述PPG传感器的ADC的准确度理想区间,则将所述第一发光单元的当前电流确定为所述第一发光单元的目标电流。
可选的,所述控制模块903,具体用于:
为所述第一发光单元分配电流a*m,为所述第二发光单元分配电流b*(n-m),其中,a为所述第一发光单元对应的分流系数,b为所述第二发光单元对应的分流系数,n为所述第一发光单元的目标电流,m为所述第一预设值。
可选的,所述a和所述b均为1,其中,所述第一发光单元和所述光电转换模块的距离,与所述第二发光单元和所述光电转换模块的距离相同。
可选的,所述a为1,所述b为k,其中,所述第一发光单元和所述光电转换模块的距离,小于所述第二发光单元和所述光电转换模块的距离,所述k为大于1的整数。
可选的,所述控制模块903,还用于:
在所述第一发光单元上的目标电流不大于所述第一预设值时,所述第一发光单元基于所述目标电流发光,以测量所述目标对象的生物特征参数。
本申请实施例所示的生物特征参数的测量装置,可以执行上述任一项实施例所示的生物特征参数的测量方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际 实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,控制模块可以为单独设立的处理元件,也可以集成在该生物特征参数的测量装置的某一个芯片中实现,此外,也可以以程序的形式存储于生物特征参数的测量装置的存储器中,由该生物特征参数的测量装置的某一个处理元件调用并执行该控制模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序的形式实现时,该控制模块可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。.
图10为本申请实施例提供的一种电子设备的结构示意图。如图10所示,该电子设备1000包括:LED模组1001、PD 1002、PPG传感器1005、处理器1003和存储器1004。其中,所述LED模组中包括至少两个发光单元,所述至少两个发光单元在不同周期轮流点亮;
该存储器1004用于存储实现以上方法实施例,或者图9所示实施例各个模块的程序,处理器1003调用该程序,执行以上方法实施例的操作,以实现图9所示的各个模块。
或者,以上各个模块的部分或全部也可以通过集成电路的形式内嵌于该电子设备的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些单元可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。
本申请实施例还提供了一种芯片,所述芯片包括至少一个处理器和通信接口,所述通信接口和所述至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行上述任一实施例所示的生物特征参数的测量方法,其实现原理以及有益效果与生物特征参数的测量方法的实现原理及有益效果类似,此处不再进行赘述。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在电子设备上运行时,使得所述电子设备执行上述任一实施例所示的生物特征参数的测量方法,其实现原理以及有益效果与生物特征参数的测量方法的实现原理及有益效果类似,此处不再进行赘述。
本申请实施例还提供了一种计算机程序产品,当所述计算机程序产品在电子设备上运行时,使得所述电子设备执行上述任一实施例所示的生物特征参数的测量方法,其实现原理以及有益效果与生物特征参数的测量方法的实现原理及有益效果类似,此处不再进行赘述。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU), 该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种方法,其特征在于,应用于电子设备,所述电子设备中包括发光模组和光电转换模块,所述发光模组中包括至少两个发光单元,所述至少两个发光单元在不同周期轮流点亮;所述方法包括:
    确定所述发光模组中在当前周期内当前点亮的第一发光单元上的目标电流;
    判断所述第一发光单元上的目标电流是否大于第一预设值;
    若所述第一发光单元上的目标电流大于第一预设值,则获取所述第一发光单元对应的分流系数和第二发光单元对应的分流系数;
    根据所述第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为所述发光模组中的所述第一发光单元和第二发光单元分配电流,以调整所述第一发光单元上的目标电流,使得所述第一发光单元和所述第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数,其中,所述光电转换模块接收到的电流与第二预设值的差值的绝对值小于第三预设值,所述第一发光单元和所述第二发光单元上分配的电流均小于或等于所述第一预设值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一预设值为能够保证所述电子设备中的PPG传感器正常工作的最大电流值;所述第二预设值和所述第三预设值用于保证所述光电转换模块能够正常进行信号分析。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定所述发光模组中在当前周期内当前点亮的第一发光单元上的目标电流,包括:
    获取所述光电转换模块当前接收到的电流;
    根据所述光电转换模块当前接收到的电流,确定所述第一发光单元的目标电流。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述光电转换模块当前接收到的电流,确定所述第一发光单元的目标电流,包括:
    判断对所述第一发光单元的目标电流的调整次数是否大于第四预设值;
    若对所述第一发光单元的目标电流的调整次数不大于所述第四预设值,则判断所述光电转换模块当前接收到的电流与所述第二预设值之间的差值的绝对值是否小于所述第三预设值;
    若不小于所述第三预设值,则根据所述光电转换模块当前接收到的电流与所述第二预设值,确定所述第一发光单元的目标电流。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述光电转换模块当前接收到的电流,确定所述第一发光单元的目标电流,包括:
    判断所述光电转换模块当前接收到的电流是否小于所述第二预设值;
    若小于所述第二预设值,则根据当前周期内所述第一发光单元的当前电流和第五预设值,确定所述第一发光单元的目标电流,其中,所述第五预设值为所述电子设备中的光电容积描记PPG传感器能够承受的最大电流值;
    若大于所述第二预设值,则根据在当前周期内所述第一发光单元的当前电流和第六预设值,确定所述第一发光单元的目标电流,其中,所述第六预设值为保证所述PPG传感器能够采集到信号的最小电流值。
  6. 根据权利要求5所述的方法,其特征在于,所述根据当前周期内所述第一发光单 元的当前电流和第五预设值,确定所述第一发光单元的目标电流,包括:
    将所述第一发光单元的当前电流和所述第五预设值的平均值,确定为所述第一发光单元的目标电流。
  7. 根据权利要求5或6所述的方法,其特征在于,所述根据当前周期内所述第一发光单元的当前电流和第六预设值,确定所述第一发光单元的目标电流,包括:
    将所述第一发光单元的当前电流和所述第六预设值的平均值,确定为所述第一发光单元的目标电流。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述方法还包括:
    若对所述第一发光单元上的目标电流的调整次数大于所述第四预设值,或者所述光电转换模块当前接收到的电流与所述第二预设值之间的差值的绝对值小于所述第三预设值时,则判断所述光电转换模块当前接收到的电流是否满足所述电子设备中的光电容积描记PPG传感器的模数转换器ADC的准确度理想区间;
    若不满足所述PPG传感器的ADC的准确度理想区间,则按照预设方式调整所述第一发光单元的当前电流,并将调整后的电流确定为所述第一发光单元的目标电流;
    若满足所述PPG传感器的ADC的准确度理想区间,则将所述第一发光单元的当前电流确定为所述第一发光单元的目标电流。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述根据所述第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为所述发光模组中的所述第一发光单元和第二发光单元分配电流,包括:
    为所述第一发光单元分配电流a*m,为所述第二发光单元分配电流b*(n-m),其中,a为所述第一发光单元对应的分流系数,b为所述第二发光单元对应的分流系数,n为所述第一发光单元上的目标电流,m为所述第一预设值。
  10. 根据权利要求9所述的方法,其特征在于,所述a和所述b均为1,其中,所述第一发光单元和所述光电转换模块的距离,与所述第二发光单元和所述光电转换模块的距离相同。
  11. 根据权利要求9所述的方法,其特征在于,所述a为1,所述b为k,其中,所述第一发光单元和所述光电转换模块的距离,小于所述第二发光单元和所述光电转换模块的距离,所述k为大于1的整数。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述方法还包括:
    若所述第一发光单元上的目标电流不大于所述第一预设值,则所述第一发光单元基于所述目标电流发光,以测量所述目标对象的生物特征参数。
  13. 一种装置,其特征在于,所述装置中包括发光模组和光电转换模块,所述发光模组中包括至少两个发光单元,所述至少两个发光单元在不同周期轮流点亮;所述装置还包括:
    控制模块,用于确定所述发光模组中在当前周期内当前点亮的第一发光单元上的目标电流;
    所述控制模块,还用于判断所述第一发光单元上的目标电流是否大于第一预设值;
    所述控制模块,还用于在所述第一发光单元上的目标电流大于第一预设值时,获取所述第一发光单元对应的分流系数和第二发光单元对应的分流系数;
    所述控制模块,还用于根据所述第一发光单元对应的分流系数和第二发光单元对应的分流系数,在当前周期内分别为所述发光模组中的所述第一发光单元和第二发光单元分配电流,以调整所述第一发光单元上的目标电流,使得所述第一发光单元和所述第二发光单元根据分配的电流发光,以测量目标对象的生物特征参数,其中,所述光电转换模块接收到的电流与第二预设值的差值的绝对值小于第三预设值,所述第一发光单元和所述第二发光单元上分配的电流均小于或等于所述第一预设值。
  14. 根据权利要求13所述的装置,其特征在于,所述第一预设值为能够保证所述装置中的PPG传感器正常工作的最大电流值;所述第二预设值和所述第三预设值用于保证所述光电转换模块能够正常进行信号分析。
  15. 根据权利要求13或14所述的装置,其特征在于,所述控制模块,具体用于:
    获取所述光电转换模块当前接收到的电流;
    根据所述光电转换模块当前接收到的电流,确定所述第一发光单元的目标电流。
  16. 根据权利要求15所述的装置,其特征在于,所述控制模块,具体用于:
    判断对所述第一发光单元的目标电流的调整次数是否大于第四预设值;
    若对所述第一发光单元的目标电流的调整次数不大于所述第四预设值,则判断所述光电转换模块当前接收到的电流与所述第二预设值之间的差值的绝对值是否小于所述第三预设值;
    若不小于所述第三预设值,则根据所述光电转换模块当前接收到的电流与所述第二预设值,确定所述第一发光单元的目标电流。
  17. 根据权利要求16所述的装置,其特征在于,所述控制模块,具体用于:
    判断所述光电转换模块当前接收到的电流是否小于所述第二预设值;
    若小于所述第二预设值,则根据当前周期内所述第一发光单元的当前电流和第五预设值,确定所述第一发光单元的目标电流,其中,所述第五预设值为所述装置中的光电容积描记PPG传感器能够承受的最大电流值;
    若大于所述第二预设值,则根据在当前周期内所述第一发光单元的当前电流和第六预设值,确定所述第一发光单元的目标电流,其中,所述第六预设值为保证所述PPG传感器能够采集到信号的最小电流值。
  18. 根据权利要求17所述的装置,其特征在于,所述控制模块,具体用于:
    将所述第一发光单元的当前电流和所述第五预设值的平均值,确定为所述第一发光单元的目标电流。
  19. 根据权利要求17或18所述的装置,其特征在于,所述控制模块,具体用于:
    将所述第一发光单元的当前电流和所述第六预设值的平均值,确定为所述第一发光单元的目标电流。
  20. 根据权利要求16-19中任一项所述的装置,其特征在于,所述控制模块,还用于:
    若对所述第一发光单元上的目标电流的调整次数大于所述第四预设值,或者所述光电转换模块当前接收到的电流与所述第二预设值之间的差值的绝对值小于所述第三预设值时,则判断所述光电转换模块当前接收到的电流是否满足所述装置中的光电容积描记PPG传感器的模数转换器ADC的准确度理想区间;
    若不满足所述PPG传感器的ADC的准确度理想区间,则按照预设方式调整所述第 一发光单元的当前电流,并将调整后的电流确定为所述第一发光单元的目标电流;
    若满足所述PPG传感器的ADC的准确度理想区间,则将所述第一发光单元的当前电流确定为所述第一发光单元的目标电流。
  21. 根据权利要求13-20任一项所述的装置,其特征在于,所述控制模块,具体用于:
    为所述第一发光单元分配电流a*m,为所述第二发光单元分配电流b*(n-m),其中,a为所述第一发光单元对应的分流系数,b为所述第二发光单元对应的分流系数,n为所述第一发光单元的目标电流,m为所述第一预设值。
  22. 根据权利要求21所述的装置,其特征在于,所述a和所述b均为1,其中,所述第一发光单元和所述光电转换模块的距离,与所述第二发光单元和所述光电转换模块的距离相同。
  23. 根据权利要求21所述的装置,其特征在于,所述a为1,所述b为k,其中,所述第一发光单元和所述光电转换模块的距离,小于所述第二发光单元和所述光电转换模块的距离,所述k为大于1的整数。
  24. 根据权利要求13-23任一项所述的装置,其特征在于,所述控制模块,还用于:
    在所述第一发光单元上的目标电流不大于所述第一预设值时,所述第一发光单元基于所述目标电流发光,以测量所述目标对象的生物特征参数。
  25. 一种电子设备,其特征在于,包括:LED模组、光电二极管PD、存储器和处理器,其中,所述LED模组中包括至少两个发光单元,所述至少两个发光单元在不同周期轮流点亮;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令执行如权利要求1至12中任一项所述的方法。
  26. 一种芯片,其特征在于,包括至少一个处理器和通信接口,所述通信接口和所述至少一个处理器通过线路互联,所述至少一个处理器用于运行计算机程序或指令,以执行如权利要求1至12中任一项所述的方法。
  27. 一种计算机可读介质,其特征在于,所述计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行如权利要求1至12中任一项所述的方法的指令。
  28. 一种程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施如权利要求1-12任意一项所述的方法。
PCT/CN2021/133980 2020-11-30 2021-11-29 生物特征参数的测量方法和装置 WO2022111686A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011376977.5 2020-11-30
CN202011376977.5A CN114569102A (zh) 2020-11-30 2020-11-30 生物特征参数的测量方法和装置

Publications (1)

Publication Number Publication Date
WO2022111686A1 true WO2022111686A1 (zh) 2022-06-02

Family

ID=81754022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133980 WO2022111686A1 (zh) 2020-11-30 2021-11-29 生物特征参数的测量方法和装置

Country Status (2)

Country Link
CN (1) CN114569102A (zh)
WO (1) WO2022111686A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100280342A1 (en) * 2009-04-30 2010-11-04 The General Electric Company Multiple wavelength physiological measuring apparatus, sensor and interface unit for determination of blood parameters
CN106456021A (zh) * 2014-05-22 2017-02-22 皇家飞利浦有限公司 用于以增加的准确性对组织变化进行光学感测的方法和装置
CN107773250A (zh) * 2017-11-22 2018-03-09 江苏康尚生物医疗科技有限公司 一种自动增益控制的光电脉搏血氧仪快速调光控制方法
CN110192867A (zh) * 2019-06-25 2019-09-03 深圳市蓝瑞格生物医疗科技有限公司 一种提升测量系统测量精度的方法及系统
CN111093490A (zh) * 2019-11-29 2020-05-01 深圳市汇顶科技股份有限公司 信号调整方法、装置及计算机存储介质
US20200187788A1 (en) * 2018-12-14 2020-06-18 Imec Vzw Device for read-out of a photoplethysmography signal and a wearable sensor
CN111529829A (zh) * 2020-07-07 2020-08-14 深圳市汇顶科技股份有限公司 一种ppg设备的信号调整方法和ppg设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100280342A1 (en) * 2009-04-30 2010-11-04 The General Electric Company Multiple wavelength physiological measuring apparatus, sensor and interface unit for determination of blood parameters
CN106456021A (zh) * 2014-05-22 2017-02-22 皇家飞利浦有限公司 用于以增加的准确性对组织变化进行光学感测的方法和装置
CN107773250A (zh) * 2017-11-22 2018-03-09 江苏康尚生物医疗科技有限公司 一种自动增益控制的光电脉搏血氧仪快速调光控制方法
US20200187788A1 (en) * 2018-12-14 2020-06-18 Imec Vzw Device for read-out of a photoplethysmography signal and a wearable sensor
CN110192867A (zh) * 2019-06-25 2019-09-03 深圳市蓝瑞格生物医疗科技有限公司 一种提升测量系统测量精度的方法及系统
CN111093490A (zh) * 2019-11-29 2020-05-01 深圳市汇顶科技股份有限公司 信号调整方法、装置及计算机存储介质
CN111529829A (zh) * 2020-07-07 2020-08-14 深圳市汇顶科技股份有限公司 一种ppg设备的信号调整方法和ppg设备

Also Published As

Publication number Publication date
CN114569102A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
US11337655B2 (en) Physiological monitoring devices and methods using optical sensors
CN107820410B (zh) 可穿戴设备的佩戴状态检测方法、装置和可穿戴设备
US11793467B2 (en) Detecting conditions using heart rate sensors
JP6650974B2 (ja) 生体情報獲得のための電子装置及びその方法
US20130231575A1 (en) Monitoring accumulated activity
US11000194B2 (en) Wrist-worn device and blood pressure measuring method based on the same
CA2875901C (en) Sensor for measuring vital parameters in the ear canal
US11937925B2 (en) Systems, devices, and methods for performing trans-abdominal fetal oximetry and/or trans-abdominal fetal pulse oximetry using independent component analysis
US10932677B2 (en) Optical heart rate sensor with reduced power
NL2017538B1 (en) Wireless vital sign monitoring
US20200337574A1 (en) Systems and methods for power reduction for wearable biometric monitoring devices using signal quality metrics
WO2022111686A1 (zh) 生物特征参数的测量方法和装置
US20180028077A1 (en) Circuits and methods for photoplethysmographic sensors
US20170049344A1 (en) Pulse wave sensor and pulse wave measurement module
KR20190049025A (ko) 복수의 발광부 및 복수의 수광부를 포함하는 전자 장치
US11326939B2 (en) Electronic device for measuring illuminance, and operating method therefor
JP5531233B2 (ja) 生体測定装置
WO2019215181A1 (en) Apparatus and method and computer program product for determining a blood pressure measurement
US11540727B2 (en) Apparatus and method for measuring bio-signal
US20220218288A1 (en) Signal adjustment method for ppg apparatus and ppg apparatus
TW201934085A (zh) 用以偵測材料之特性訊號之裝置以及辨識材料之特性訊號之方法、以及用以偵測材料特性訊號之裝置
CN111789583B (zh) 光感测方法、生理参数计算方法以及光感测系统
CN113647921B (zh) 血压测量方法、系统、设备及存储介质
RU2007106130A (ru) Способ определения пригодности человека для работы в сложных техногенных условиях
WO2019214990A1 (en) Apparatus, method and computer program for determining a blood pressure measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897186

Country of ref document: EP

Kind code of ref document: A1