WO2022111531A1 - 一种整流模组和整流模组的应用方法 - Google Patents

一种整流模组和整流模组的应用方法 Download PDF

Info

Publication number
WO2022111531A1
WO2022111531A1 PCT/CN2021/132818 CN2021132818W WO2022111531A1 WO 2022111531 A1 WO2022111531 A1 WO 2022111531A1 CN 2021132818 W CN2021132818 W CN 2021132818W WO 2022111531 A1 WO2022111531 A1 WO 2022111531A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
phase
power supply
bridge arm
pole
Prior art date
Application number
PCT/CN2021/132818
Other languages
English (en)
French (fr)
Inventor
张晓博
樊志强
梁舒展
张超华
付君宇
雷爽
Original Assignee
深圳市科华恒盛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科华恒盛科技有限公司 filed Critical 深圳市科华恒盛科技有限公司
Publication of WO2022111531A1 publication Critical patent/WO2022111531A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of electric power technology, and in particular, to a rectifier module and an application method of the rectifier module.
  • the input source of the three-phase Vienna rectifier circuit can be a DC power supply or a single-phase AC power supply or a three-phase AC power supply.
  • the input source is a DC power supply or a single-phase AC power supply
  • only the three-phase Vienna rectifier circuit is used.
  • the two bridge arms in the three-phase Vienna rectifier circuit will be idle, resulting in a lower maximum output power of the three-phase Vienna rectifier circuit.
  • the purpose of the present application is to provide a rectifier module and an application method of the rectifier module, which is beneficial to increase the maximum output power of the rectifier circuit when the input source is a DC input source or a single-phase AC input source.
  • the first aspect of the present application provides a rectifier module, including:
  • a three-phase Vienna rectifier circuit composed of three bridge arms with the same structure, a first bus capacitor and a second bus capacitor;
  • an extended bridge arm having the same structure as the bridge arm of the above-mentioned three-phase Vienna rectifier circuit
  • the output end of the expansion bridge arm is electrically connected with the output end of the three bridge arms.
  • each bridge arm of the above-mentioned three-phase Vienna rectifier circuit and the above-mentioned extended bridge arm respectively include: an inductor, a first diode, a second diode and switch;
  • One end of the inductance is used as the input end of the corresponding bridge arm to be electrically connected to the power supply, and the other end of the inductance is respectively connected to the anode of the first diode, the cathode of the second diode and the first diode of the switch. terminal electrical connection;
  • Both ends of the first bus capacitor are electrically connected to the cathode of the first diode and the second end of the switch, respectively, and the two ends of the second bus capacitor are respectively connected to the second end of the switch and the second end of the switch.
  • the positive pole of the pole tube is electrically connected.
  • a second aspect of the present application provides an application method for a rectifier module according to the first aspect of the present application or the first possible implementation manner of the first aspect of the present application, including:
  • the first connection step the input ends of the first bridge arm and the second bridge arm are respectively electrically connected to the first pole of the non-three-phase AC power supply, wherein the first bridge arm and the second bridge arm are the above three
  • the above-mentioned non-three-phase AC power supply is a DC power supply or a single-phase AC power supply;
  • the second connection step the input ends of the third bridge arm and the extended bridge arm are respectively electrically connected to the second pole of the non-three-phase AC power supply, wherein the third bridge arm is the three bridge arms except the above-mentioned third bridge arm.
  • the first control step based on the voltage value of the first bus capacitor, the voltage value of the second bus capacitor, the current value of any pole of the non-three-phase AC power supply, and one or more PI controllers, control the first bridge arm. , The switches on the second bridge arm, the third bridge arm and the expansion bridge arm are controlled.
  • the above-mentioned first control step includes:
  • Control signal determination step determine the first control signal and a second control signal
  • the second control step controlling the switch of the first bridge arm based on the first control signal, and controlling the switch of the second bridge arm based on the first control signal shifted by half a cycle;
  • the third control step control the switch of the third bridge arm based on the second control signal, and control the switch of the extended bridge arm based on the second control signal shifted by half a cycle.
  • the above-mentioned non-three-phase AC power supply is specifically the above-mentioned DC power supply
  • control signal determination steps include:
  • an integral proportional operation is performed on the bus capacitor voltage difference to obtain a fifth value, wherein the bus capacitor voltage difference is the voltage value of the first bus capacitor minus the second bus capacitor. The value obtained from the voltage value;
  • a sixth value is determined based on the polarity of any pole of the DC power supply and the fifth value, and any pole of the DC power supply corresponds to any pole of the DC power supply when the third value is obtained;
  • the above-mentioned fourth value is added to the above-mentioned sixth value to obtain the first control signal, and the above-mentioned fourth value is subtracted from the above-mentioned sixth value to obtain the second control signal.
  • the above-mentioned non-three-phase AC power supply is specifically the above-mentioned single-phase AC power supply;
  • control signal determination steps include:
  • integral-proportional operation is performed on the eleventh value to obtain the twelfth value
  • an integral proportional operation is performed on the bus capacitor voltage difference to obtain a fifteenth value, wherein the bus capacitor voltage difference is the voltage value of the first bus capacitor minus the second bus capacitor The value obtained from the voltage value of ;
  • the sixteenth value is determined based on the polarity of any pole of the single-phase AC power supply and the fifteenth value, and the polarity of any pole of the single-phase AC power supply and the single-phase AC power supply when the eleventh value is obtained is determined. either pole corresponds;
  • the first control signal is obtained by adding the fourteenth value to the sixteenth value
  • the second control signal is obtained by subtracting the sixteenth value from the fourteenth value
  • the first bridge arm, the second bridge arm, The input ends of the third bridge arm and the expanded bridge arm are electrically connected to the first pole of the non-three-phase AC power supply through different first power switches, and are respectively connected to the non-three-phase AC power supply through different second power switches.
  • the second pole of the AC power supply is electrically connected;
  • the above-mentioned first connection step is specifically: controlling the corresponding first power switch to be turned on to electrically connect the input ends of the first bridge arm and the second bridge arm respectively with the first pole of the non-three-phase AC power supply;
  • the above-mentioned second connection step is specifically: controlling the corresponding second power switch to be turned on to electrically connect the input ends of the third bridge arm and the above-mentioned extended bridge arm to the second pole of the non-three-phase AC power supply, respectively.
  • the input ends of the above-mentioned extended bridge arms are respectively connected in parallel
  • the switch is electrically connected to the input ends of the three bridge arms;
  • the above-mentioned second connection step includes:
  • the corresponding parallel switch is controlled so that the input end of the third bridge arm is electrically connected to the input end of the expansion bridge arm.
  • a third aspect of the present application provides an application method of the rectifier module according to the first aspect of the present application or the first possible implementation manner of the first aspect of the present application, including:
  • the third connection step electrically connect the input ends of the above three bridge arms with the three phases of the three-phase AC power supply in one-to-one correspondence;
  • Fourth control step based on the voltage value of the first bus capacitor, the voltage value of the second bus capacitor, the current value of each phase of the three-phase AC power supply, the voltage value of each phase of the three-phase AC power supply, and one or more PI control controller to control the switches on the above three bridge arms.
  • the above-mentioned three-phase AC power supply includes: a first-phase AC power supply, a second-phase AC power supply, and a third-phase AC power supply;
  • the above-mentioned third connection step includes:
  • the input ends of the three bridge arms are electrically connected to the first pole of the first-phase AC power supply, the first pole of the second-phase AC power supply, and the first pole of the third-phase AC power supply in one-to-one correspondence;
  • the above-mentioned application method further includes:
  • the second pole of the above-mentioned first-phase alternating current power supply, the second pole of the above-mentioned second-phase alternating-current power supply and the second pole of the above-mentioned third-phase alternating current power supply are respectively electrically connected with the input end of the expansion bridge arm;
  • the switch on the above-mentioned extended bridge arm is controlled to be turned on.
  • a rectifier module comprising: a three-phase Vienna rectifier circuit composed of three bridge arms, a first busbar capacitor and a second busbar capacitor with the same structure;
  • the bridge arms have extended bridge arms with the same structure; wherein, the output ends of the expanded bridge arms are electrically connected with the output ends of the three bridge arms.
  • the rectifier circuit when the input source is a three-phase AC power supply, the rectifier circuit can be used as a traditional three-phase Vienna rectifier circuit, and the output power remains unchanged; and when the input source is a DC power supply or a single-phase power supply In the case of AC power supply, the two poles of the input source can be electrically connected to the input ends of the two bridge arms to make full use of each bridge arm in the rectifier circuit. Compared with the traditional three-phase Vienna rectifier circuit, the rectifier circuit has a The maximum output power can be doubled. Based on the technical solution of the present application, it is beneficial to increase the maximum output power of the rectifier circuit when the input source is a DC power supply or a single-phase AC power supply.
  • FIG. 2 is a second structural schematic diagram of an embodiment of a rectifier module provided by the application.
  • FIG. 3 is a schematic flowchart of an embodiment of an application method of a rectifier module provided by the present application
  • FIG. 4 is a third schematic structural diagram of an embodiment of a rectifier module provided by the application.
  • FIG. 5 is a fourth schematic view of the structure of an embodiment of a rectifier module provided by the application.
  • FIG. 6 is a fifth structural schematic diagram of an embodiment of a rectifier module provided by the application.
  • FIG. 7 is a schematic flowchart of another embodiment of the application method of the rectifier module provided by the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of a rectifier module and a three-phase AC power supply provided by the present application.
  • FIG. 9 is a schematic structural diagram of another embodiment of a rectifier module and a three-phase AC power supply provided by the present application.
  • the present application provides a rectifier module, as shown in FIG. 1 , including:
  • a three-phase Vienna rectifier circuit composed of three bridge arms 101, a first bus capacitor 102 and a second bus capacitor 103 with the same structure;
  • the output end of the extended bridge arm 104 is electrically connected to the output ends of the three bridge arms 101 .
  • each bridge arm 101 and the extended bridge arm 104 have the same structure, and the above-mentioned rectifier module is composed of four bridge arms with the same structure, a first bus capacitor 102 and a second bus capacitor 103 .
  • each bridge arm 101 and the extended bridge arm 104 of the above-mentioned three-phase Vienna rectifier circuit respectively include: an inductor 1011 , a first diode 1012 , a second diode 1013 and a switch 1014 ;
  • One end of the inductor 1011 is used as the input end of the corresponding bridge arm to be electrically connected to the power supply, and the other end of the inductor 1011 is respectively connected to the anode of the first diode 1012 , the cathode of the second diode 1013 and the first terminal of the switch 1014 . terminal electrical connection;
  • Both ends of the first bus capacitor 102 are electrically connected to the cathode of the first diode 1012 and the second end of the switch 1014 respectively, and the two ends of the second bus capacitor 103 are respectively connected to the second end of the switch 1014 and the second diode
  • the positive electrode of the tube 1013 is electrically connected.
  • each bridge arm 101 and the extended bridge arm 104 of the above-mentioned three-phase Vienna rectifier circuit further include: a first filter capacitor 1015 and a second filter capacitor 1016, and two ends of the first filter capacitor 1015 are respectively connected to the first two-pole
  • the negative pole of the tube 1012 is electrically connected to the second terminal of the switch 1014
  • the two ends of the second filter capacitor 1016 are electrically connected to the second terminal of the switch 1014 and the positive pole of the second diode 1013 respectively
  • the first filter capacitor 1015 and The second filter capacitor 1016 can be used to filter out the high frequency current in the bridge arm 101 or expand the bridge arm 104;
  • the switch 1014 can be a single-pole switch, a bidirectional switch formed by an IGBT switch tube, or any other switch that can conduct the circuit connected to both ends.
  • one end of the inductance 1011 in the extended bridge arm 104 used for electrical connection with the power supply is connected to a bridge arm 101 for electrical connection with the power supply.
  • One end of the inductor 1011 is electrically connected, that is, the input end of the extended bridge arm 104 is electrically connected to the input end of a bridge arm 101 .
  • the rectifier module includes: a three-phase Vienna rectifier composed of three bridge arms with the same structure, a first bus capacitor and a second bus capacitor. circuit; and an expanded bridge arm having the same structure as the bridge arm of the three-phase Vienna rectifier circuit; wherein, the output end of the expanded bridge arm is electrically connected to the output ends of the three bridge arms.
  • the rectifier circuit when the input source is a three-phase AC power supply, the rectifier circuit can be used as a traditional three-phase Vienna rectifier circuit, and the output power remains unchanged; when the input source is a DC power supply or a single-phase AC power supply
  • the two poles of the input source can be electrically connected to the input ends of the two bridge arms respectively, so as to make full use of each bridge arm in the rectifier circuit.
  • the maximum output of the rectifier circuit is The power can be doubled.
  • the technical solution of the present application is beneficial to increase the maximum output power of the rectifier circuit when the input source is a DC power supply or a single-phase AC power supply.
  • the present application also provides an application method of the rectifier module described in the first embodiment.
  • the input source of the above-mentioned rectifier module is a DC power supply or a single-phase AC power supply, as shown in FIG. 3
  • the application method includes:
  • Step 201 (first connection step): electrically connect the input ends of the first bridge arm and the second bridge arm to the first pole of the non-three-phase AC power supply respectively;
  • the first bridge arm and the second bridge arm are any two bridge arms among the three bridge arms, and the non-three-phase AC power supply is a DC power supply or a single-phase AC power supply.
  • the first bridge arm and the second bridge arm may be any two bridge arms 101 among the three bridge arms 101 ;
  • the terminals are electrically connected to one pole of the above-mentioned non-three-phase AC power supply, it is not necessary to consider the positive and negative polarity of the above-mentioned non-three-phase AC power supply.
  • Any pole of the non-three-phase AC power supply may be electrically connected to the input ends of the first bridge arm and the second bridge arm.
  • Step 202 (second connection step): electrically connecting the input ends of the third bridge arm and the above-mentioned extended bridge arm to the second pole of the above-mentioned non-three-phase AC power supply;
  • the third bridge arm is the bridge arm of the three bridge arms except the first bridge arm and the second bridge arm.
  • Step 203 (first control step): Based on the voltage value of the first bus capacitor, the voltage value of the second bus capacitor, the current value of any pole of the non-three-phase AC power supply, and one or more PI controllers, the above The switches on the first bridge arm, the second bridge arm, the third bridge arm and the extended bridge arm are controlled.
  • step 203 includes:
  • Control signal determination step determine the first control signal and a second control signal
  • the second control step controlling the switch of the first bridge arm based on the first control signal, and controlling the switch of the second bridge arm based on the first control signal shifted by half a cycle;
  • the third control step control the switch of the third bridge arm based on the second control signal, and control the switch of the extended bridge arm based on the second control signal shifted by half a cycle.
  • the foregoing step 203 (the first control step) includes:
  • Control signal determination step I Determine the first control signal based on the voltage value of the first bus capacitor, the voltage value of the second bus capacitor, the current value of any pole of the non-three-phase AC power supply, and one or more PI controllers and the second control signal;
  • the second control step I controlling the switch of the first bridge arm based on the first control signal, and controlling the switch of the second bridge arm based on the first control signal shifted by half a cycle;
  • the third control step I control the switch of the third bridge arm based on the second control signal phase-shifted by a quarter of a period, and control the switch of the third bridge arm based on the second control signal phase-shifted by three quarters of a period.
  • the switch of the above-mentioned extended bridge arm is controlled.
  • the above-mentioned method of using the phase-shifted first control signal or the second control signal to control the switches of each bridge arm respectively can effectively reduce the ripple in the rectified output of the above-mentioned rectifier module, so as to improve the above-mentioned The effect of rectification by the rectifier module.
  • the above-mentioned control signal determination step includes:
  • an integral proportional operation is performed on the bus capacitor voltage difference to obtain a fifth value, wherein the bus capacitor voltage difference is the voltage value of the first bus capacitor minus the second bus capacitor. The value obtained from the voltage value;
  • the sixth value is determined based on the polarity of any pole of the DC power supply and the fifth value, and any pole of the DC power supply corresponds to any pole of the DC power supply when the third value is obtained; when the third value is obtained When any pole of the DC power supply is the first pole, the polarity of any pole of the DC power supply here also refers to the polarity of the first pole; when the third value is obtained, when any pole of the DC power supply is the second pole , where the polarity of any pole of the DC power supply also refers to the polarity of the second pole;
  • the above-mentioned fourth value is added to the above-mentioned sixth value to obtain the first control signal, and the above-mentioned fourth value is subtracted from the above-mentioned sixth value to obtain the second control signal.
  • control signal determination step includes:
  • integral-proportional operation is performed on the eleventh value to obtain the twelfth value
  • an integral proportional operation is performed on the bus capacitor voltage difference to obtain a fifteenth value, wherein the bus capacitor voltage difference is the voltage value of the first bus capacitor minus the second bus capacitor The value obtained from the voltage value of ;
  • the sixteenth value is determined based on the polarity of any pole of the single-phase AC power supply and the fifteenth value, and the polarity of any pole of the single-phase AC power supply and the single-phase AC power supply when the eleventh value is obtained is determined. either pole corresponds;
  • the first control signal is obtained by adding the fourteenth value to the sixteenth value
  • the second control signal is obtained by subtracting the sixteenth value from the fourteenth value
  • the input ends of the first bridge arm, the second bridge arm, the third bridge arm, and the extended bridge arm are electrically connected to the first poles of the non-three-phase AC power supply through different first power switches, respectively. connected, and electrically connected to the second pole of the non-three-phase AC power source through different second power switches;
  • the above step 201 is specifically: controlling the corresponding first power switch to be turned on, and electrically connecting the input ends of the first bridge arm and the second bridge arm respectively with the first pole of the non-three-phase AC power supply;
  • the above-mentioned step 202 is specifically: controlling the corresponding second power switch to be turned on, and electrically connecting the input ends of the third bridge arm and the extended bridge arm to the second pole of the non-three-phase AC power supply, respectively.
  • 105 to 108 are the above-mentioned first power switches
  • 109 to 112 are the above-mentioned second power switches; for example, the first power switch can be controlled
  • the switches 105 and 107 are turned on, and the second power switches 110 and 112 are controlled to be turned on, and the input terminals of the first bridge arm and the second bridge arm are electrically connected to the first pole of the non-three-phase AC power supply respectively, and the third The input ends of the three bridge arms and the above-mentioned extended bridge arms are respectively electrically connected to the second pole of the non-three-phase AC power supply.
  • the above-mentioned rectifier module further includes: a first input switch 113 , a second input switch 114 , a third input switch 115 and a fourth input switch 116; one end of the first input switch 113 and one end of the second input switch 114 are respectively electrically connected to the first pole of the non-three-phase AC power supply, and the other end of the first input switch 113 and the other end of the second input switch 114 are electrically connected to The input end of the first bridge arm and the input end of the second bridge arm are electrically connected in one-to-one correspondence; one end of the third input switch 115 and one end of the fourth input switch 116 are respectively connected with the second pole of the non-three-phase AC power supply. Electrical connection, the other end of the third input switch 115 and the other end of the fourth input switch 116 are electrically connected to the input end of the third bridge arm and the input end of the expansion bridge arm 104 in one-to
  • the third input switch 115 and the fourth input switch 116 are controlled to be turned on, and the input ends of the third bridge arm and the extended bridge arm 104 are respectively electrically connected to the second pole of the non-three-phase AC power supply.
  • the input ends of the above-mentioned extended bridge arms are respectively electrically connected to the input ends of the above-mentioned three bridge arms through different parallel switches;
  • the above step 202 includes:
  • the corresponding parallel switch is controlled so that the input end of the third bridge arm is electrically connected to the input end of the expansion bridge arm.
  • any two bridge arms 101 (the first bridge arm and the second bridge arm) among the three bridge arms 101 are respectively electrically connected to the first pole of the above-mentioned non-three-phase AC power supply.
  • the third bridge arm 101 can be directly electrically connected to the second pole of the non-three-phase AC power source, and then corresponding switches are controlled to connect the expansion bridge arm and the third bridge arm 101 in parallel.
  • the above-mentioned parallel switch includes: a first parallel sub-switch 117 , a second parallel sub-switch 118 and a third parallel sub-switch 119 , the first parallel sub-switch 119 .
  • One end of the switch 117, one end of the second parallel sub-switch 118, and one end of the third parallel sub-switch 119 are respectively electrically connected to the input ends of the three bridge arms in a one-to-one correspondence.
  • the other end of the two parallel sub-switches 118 and the other end of the third parallel sub-switch 119 are respectively electrically connected to the input end of the extended bridge arm 104;
  • the third bridge arm 101 can be connected to the second pole of the non-three-phase AC power supply.
  • the target bridge arm in the three bridge arms 101 can be determined by the detection means, and then the first parallel sub-switch 117, the second parallel sub-switch 118 and the third parallel sub-switch 119 can be controlled to be connected with the above-mentioned target bridge arm.
  • the corresponding switch is turned on, so that the expansion bridge arm 104 is connected in parallel with the target bridge arm; wherein, the target bridge arm is the third bridge arm 101 that is not electrically connected to the first pole of the non-three-phase AC power supply.
  • the application method includes: connecting the input ends of the first bridge arm and the second bridge arm to the first bridge arm of the non-three-phase AC power supply, respectively.
  • the poles are electrically connected; the input ends of the third bridge arm and the extended bridge arm are respectively electrically connected to the second pole of the non-three-phase AC power supply; based on the voltage value of the first bus capacitor, the voltage value of the second bus capacitor, and the The current value of any pole of the three-phase AC power supply and one or more PI controllers control the switches on the first bridge arm, the second bridge arm, the third bridge arm and the extended bridge arm.
  • the two poles of the input source can be electrically connected to the input ends of the two bridge arms respectively, so as to make full use of each bridge in the rectifier circuit
  • the maximum output power of the rectifier circuit can be doubled, so it is beneficial to increase the maximum output power of the rectifier circuit when the input source is a DC power supply or a single-phase AC power supply.
  • the present application also provides another application method of the rectifier module described in the first embodiment.
  • the input source of the above-mentioned rectifier module is a three-phase AC power supply, as shown in FIG. 7
  • the application method includes:
  • Step 301 (third connection step): electrically connect the input ends of the three bridge arms with the three phases of the three-phase AC power supply in one-to-one correspondence;
  • Step 302 (fourth control step): based on the voltage value of the first bus capacitor, the voltage value of the second bus capacitor, the current value of each phase of the three-phase AC power supply, the voltage value of each phase of the three-phase AC power supply and More than one PI controller controls the switches on the above three bridge arms.
  • the first bridge arm and the second bridge arm are any two bridge arms among the three bridge arms, and the third bridge arm is the three bridge arms except the first bridge arm and the bridge arm. the bridge arm outside the above-mentioned second bridge arm;
  • the above step 302 includes:
  • Control signal determination step II based on the voltage value of the first bus capacitor, the voltage value of the second bus capacitor, the current value of each phase of the three-phase AC power supply, the voltage value of each phase of the three-phase AC power supply, and one or more PI a controller to determine the third control signal, the fourth control signal and the fifth control signal;
  • the sixth control step controlling the switch of the second bridge arm based on the fourth control signal
  • Seventh control step control the switch of the third bridge arm based on the fifth control signal, and control the switch of the extended bridge arm based on the fifth control signal shifted by half a cycle.
  • the above-mentioned method of using the phase-shifted fifth control signal to control the switch of the expanding bridge arm can effectively reduce the ripple in the rectified output of the above-mentioned rectifier module, so as to improve the rectification of the above-mentioned rectifier module. Effect.
  • control signal determination step II includes:
  • the phase voltage value input by the above-mentioned three-phase AC power supply on the above-mentioned first bridge arm is first Subtract the above-mentioned twenty-first value, divide it by half of the output voltage value of the above-mentioned rectifier module, and then subtract a preset multiple of the bus capacitor voltage difference to obtain a third control signal, wherein the above-mentioned bus capacitor voltage difference is the value obtained by subtracting the voltage value of the second bus capacitor from the voltage value of the first bus capacitor;
  • the twenty-fourth value is obtained; based on the tenth preset PI controller, the integral proportional operation is performed on the above-mentioned twenty-fourth value to obtain the twenty-fifth value; the above-mentioned three-phase AC power supply is The phase voltage value input on the above-mentioned third bridge arm and the above-mentioned extended bridge arm is first subtracted from the above-mentioned twenty-fifth value, then divided by half of the output voltage value of the above-mentioned rectifier module, and then subtracted by a preset multiple of the bus capacitor voltage difference value to obtain the fifth control signal.
  • the above-mentioned three-phase AC power supply includes: a first-phase AC power supply 120 , a second-phase AC power supply 121 and a third-phase AC power supply 122 ;
  • the above step 301 includes:
  • the input ends of the three bridge arms 101 are electrically connected to the first pole of the first-phase AC power supply 120, the first pole of the second-phase AC power supply 121, and the first pole of the third-phase AC power supply 122 in one-to-one correspondence;
  • the above application method further includes:
  • the switch on the extended bridge arm 104 is controlled to be turned on.
  • the above-mentioned rectifier module further includes: a first neutral switch 123 , a second neutral switch 124 and a third neutral switch 125 , and the first neutral switch 125 .
  • One end of 123, one end of the second neutral switch 124 and one end of the third neutral switch 125 are respectively connected with the second pole of the first phase AC power supply 120, the second pole of the second phase AC power supply 121 and the third phase AC power supply 122.
  • the second poles are electrically connected in a one-to-one correspondence, and the other end of the first neutral switch 123, the other end of the second neutral switch 124, and the other end of the third neutral switch 125 are respectively electrically connected to the input terminal of the extended bridge arm 104;
  • the above-mentioned electrically connecting the second pole of the first-phase AC power supply 120 , the second pole of the second-phase AC power supply 121 , and the second pole of the third-phase AC power supply 122 to the input end of the extended bridge arm 104 respectively includes:
  • the switch on the above-mentioned expansion bridge arm is controlled to be kept in a conducting state, so that the expansion bridge arm can play the role of the neutral line, and the above-mentioned expansion bridge arm can be controlled.
  • the rectifier module can have the same effect as the three-phase four-wire Vienna rectifier circuit during rectification, which can avoid the situation that one bridge arm in the above-mentioned rectifier module is idle when the input source is a three-phase AC power supply. The waste of circuit resources is prevented, and the reliability of the rectifier module when rectifying the three-phase AC power supply is improved.
  • the disclosed apparatus/terminal device and method may be implemented in other manners.
  • the apparatus/equipment embodiments described above are only illustrative.
  • the division of the above modules or units is only a logical function division.
  • other division methods such as multiple units or components, may be used. May be combined or may be integrated into another system, or some features may be omitted, or not implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本申请提供一种整流模组和整流模组的应用方法,涉及电力技术领域,该整流模组包括:由结构相同的三个桥臂、第一母线电容和第二母线电容构成的三相维也纳整流电路;以及,与上述三相维也纳整流电路的桥臂具有相同结构的拓展桥臂;其中,上述拓展桥臂的输出端与上述三个桥臂的输出端电性连接。基于本申请的技术方案,有利于增大整流电路在输入源为直流电源或单相交流电源时的最大输出功率。

Description

一种整流模组和整流模组的应用方法
本专利申请要求于2020年11月25日提交的中国专利申请No.CN202011342759.X的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及电力技术领域,特别是涉及一种整流模组和整流模组的应用方法。
背景技术
随着时代的发展,人们对电力系统的输出功率要求越来越高,如何在有限条件下尽可能提高电力系统的输出功率已成为本领域研究的重点。
现有技术中,三相维也纳整流电路的输入源可以是直流电源或单相交流电源或三相交流电源,在输入源为直流电源或单相交流电源时,只会用到三相维也纳整流电路中的两条桥臂,三相维也纳整流电路中剩下的一条桥臂将会被闲置,进而导致三相维也纳整流电路的最大输出功率较低。
技术问题
本申请的目的在于提供一种整流模组和整流模组的应用方法,有利于增大整流电路在输入源为直流输入源或单相交流输入源时的最大输出功率。
技术解决方案
本申请采用的技术方案是:本申请第一方面提供一种整流模组,包括:
由结构相同的三个桥臂、第一母线电容和第二母线电容构成的三相维也纳整流电路;
以及,与上述三相维也纳整流电路的桥臂具有相同结构的拓展桥臂;
其中,上述拓展桥臂的输出端与上述三个桥臂的输出端电性连接。
基于本申请第一方面,在第一种可能的实现方式中,上述三相维也纳整流电路的每个桥臂和上述拓展桥臂分别包括:电感、第一二极管、第二二极管和开关;
上述电感的一端作为相应桥臂的输入端用以与电源电性连接,且上述电感的另一端分别与上述第一二极管的正极、上述第二二极管的负极和上述开关的第一端电性连接;
上述第一母线电容的两端分别与上述第一二极管的负极和上述开关的第二端电性连接,上述第二母线电容的两端分别与上述开关的第二端和上述第二二极管的正极电性连接。
本申请第二方面提供一种如本申请第一方面或本申请第一方面的第一种可能的实现方式所述整流模组的应用方法,包括:
第一连接步骤:将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接,其中,上述第一桥臂和上述第二桥臂为上述三个桥臂中的任意两个桥臂,上述非三相交流电源为直流电源或单相交流电源;
第二连接步骤:将第三桥臂和上述拓展桥臂的输入端分别与上述非三相交流电源的第二极电性连接,其中,上述第三桥臂为上述三个桥臂除上述第一桥臂和上述第二桥臂外的桥臂;
第一控制步骤:基于上述第一母线电容的电压值、上述第二母线电容的电压值、上述非三相交流电源的任一极的电流值和一个以上PI控制器,对上述第一桥臂、上述第二桥臂、上述第三桥臂和上述拓展桥臂上的开关进行控制。
基于本申请第二方面,在第一种可能的实现方式中,上述第一控制步骤包括:
控制信号确定步骤:基于上述第一母线电容的电压值、上述第二母线电容的电压值、上述非三相交流电源的任一极的电流值和一个以上PI控制器,确定第一控制信号和第二控制信号;
第二控制步骤:基于上述第一控制信号,对上述第一桥臂的开关进行控制,并基于移相半个周期的第一控制信号,对上述第二桥臂的开关进行控制;
第三控制步骤:基于上述第二控制信号,对上述第三桥臂的开关进行控制,并基于移相半个周期的第二控制信号,对上述拓展桥臂的开关进行控制。
基于本申请第二方面的第一种可能的实现方式,在第二种可能的实现方式中,上述非三相交流电源具体为上述直流电源;
上述控制信号确定步骤包括:
将第一期望输出电压值减去整流模组输出电压值,得到第一值,其中,上述整流模组输出电压值为上述第一母线电容与上述第二母线电容的电压值之和;
基于第一预设PI控制器,对上述第一值进行积分比例运算,得到第二值;
将上述第二值减去上述直流电源的任一极的电流绝对值,得到第三值;
基于第二预设PI控制器,对上述第三值进行积分比例运算,得到第四值;
基于第三预设PI控制器,对母线电容电压差值进行积分比例运算,得到第五值,其中,上述母线电容电压差值为上述第一母线电容的电压值减去上述第二母线电容的电压值所得到的值;
基于上述直流电源的任一极的极性和第五值确定第六值,所述直流电源的任一极与得到第三值时所述直流电源的任一极相对应;
将上述第四值加上上述第六值,得到第一控制信号,并将上述第四值减去上述第六值,得到第二控制信号。
基于本申请第二方面的第一种可能的实现方式,在第三种可能的实现方式中,上述非三相交流电源具体为上述单相交流电源;
上述控制信号确定步骤包括:
将第二期望输出电压值减去整流模组输出电压值,得到第七值,其中,上述整流模组输出电压值为上述第一母线电容与上述第二母线电容的电压值之和;
基于第四预设PI控制器,对上述第七值进行积分比例运算,得到第八值;
将上述单相交流电源的实时电压值除以上述单相交流电源的最大电压值,得到第九值;
将上述第八值除以上述第九值,得到第十值;
将上述第十值减去上述单相交流电源的任一极的电流值,得到第十一值;
基于第五预设PI控制器,对上述第十一值进行积分比例运算,得到第十二值;
将上述实时电压值先除以上述整流模组输出电压值的一半,再减去上述第十二值,得到第十三值;
将1减去上述第十三值的绝对值,得到第十四值;
基于第六预设PI控制器,对母线电容电压差值进行积分比例运算,得到第十五值,其中,上述母线电容电压差值为上述第一母线电容的电压值减去上述第二母线电容的电压值所得到的值;
基于上述单相交流电源的任一极的极性和上述第十五值,确定第十六值,所述单相交流电源的任一极与得到第十一值时所述单相交流电源的任一极相对应;
将上述第十四值加上上述第十六值,得到第一控制信号,并将上述第十四值减去上述第十六值,得到第二控制信号。
基于本申请第二方面或本申请第二方面的第一种或第二种或第三种的实现方式,在第四种可能的实现方式中,上述第一桥臂、上述第二桥臂、上述第三桥臂和上述拓展桥臂的输入端分别经不同的第一电源开关与上述非三相交流电源的第一极电性连接,且分别经不同的第二电源开关与上述非三相交流电源的第二极电性连接;
上述第一连接步骤具体为:控制相应第一电源开关导通以将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接;
上述第二连接步骤具体为:控制相应第二电源开关导通以将第三桥臂和上述拓展桥臂的输入端分别与非三相交流电源的第二极电性连接。
基于本申请第二方面或本申请第二方面的第一种或第二种或第三种的实现方式,在第五种可能的实现方式中,上述拓展桥臂的输入端分别经不同的并联开关与上述三个桥臂的输入端电性连接;
上述第二连接步骤包括:
将上述第三桥臂的输入端与上述非三相交流电源的第二极电性连接;
控制相应并联开关,使上述第三桥臂的输入端与上述拓展桥臂的输入端电性连接。
本申请第三方面提供一种如本申请第一方面或本申请第一方面的第一种可能的实现方式所述整流模组的应用方法,包括:
第三连接步骤:将上述三个桥臂的输入端与三相交流电源的三相一一对应电性连接;
第四控制步骤:基于上述第一母线电容的电压值、上述第二母线电容的电压值、上述三相交流电源的各相电流值、上述三相交流电源的各相电压值和一个以上PI控制器,对上述三个桥臂上的开关进行控制。
基于本申请第三方面,在第一种可能的实现方式中,上述三相交流电源包括:第一相交流电源、第二相交流电源和第三相交流电源;
上述第三连接步骤包括:
将上述三个桥臂的输入端与上述第一相交流电源的第一极、上述第二相交流电源的第一极和上述第三相交流电源的第一极一一对应电性连接;
在上述第三连接步骤后,上述应用方法还包括:
将上述第一相交流电源的第二极、上述第二相交流电源的第二极和上述第三相交流电源的第二极分别与上述拓展桥臂的输入端电性连接;
控制上述拓展桥臂上的开关导通。
有益效果
本申请的技术方案提供一种整流模组,包括:由结构相同的三个桥臂、第一母线电容和第二母线电容构成的三相维也纳整流电路;以及,与上述三相维也纳整流电路的桥臂具有相同结构的拓展桥臂;其中,上述拓展桥臂的输出端与上述三个桥臂的输出端电性连接。基于本申请技术方案中的整流电路,在输入源为三相交流电源时,可将该整流电路当做传统的三相维也纳整流电路使用,输出功率不变;而在输入源为直流电源或单相交流电源时,可将输入源的两极各电性连接两条桥臂的输入端,以充分利用该整流电路中的每一条桥臂,相较于传统的三相维也纳整流电路,该整流电路的最大输出功率可提升一倍。基于本申请的技术方案,有利于增大整流电路在输入源为直流电源或单相交流电源时的最大输出功率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请提供的整流模组一实施例结构示意图之一;
图2为本申请提供的整流模组一实施例结构示意图之二;
图3为本申请提供的整流模组的应用方法一实施例流程示意图;
图4为本申请提供的整流模组一实施例结构示意图之三;
图5为本申请提供的整流模组一实施例结构示意图之四;
图6为本申请提供的整流模组一实施例结构示意图之五;
图7为本申请提供的整流模组的应用方法另一实施例流程示意图;
图8为本申请提供的整流模组和三相交流电源一实施例结构示意图。
图9为本申请提供的整流模组和三相交流电源另一实施例结构示意图。
本申请的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其他实施例中也可以实现本申请。在其它情况下,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。术语“第一”、“第二”、“第三”、“第四”、“Ⅰ”“Ⅱ”等仅用于描述目的,而不能理解为指示或暗示相对重要性,也不能理解为对步骤先后顺序的限定。
还应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其它不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
实施例一
本申请提供一种整流模组,如图1所示,包括:
由结构相同的三个桥臂101、第一母线电容102和第二母线电容103构成的三相维也纳整流电路;
以及,与上述三相维也纳整流电路的桥臂具有相同结构的拓展桥臂104;
其中,拓展桥臂104的输出端与三个桥臂101的输出端电性连接。
具体的,如图1所示,每个桥臂101和拓展桥臂104均具有相同结构,上述整流模组由四个结构相同的桥臂、第一母线电容102和第二母线电容103构成。
可选的,如图1所示,上述三相维也纳整流电路的每个桥臂101和拓展桥臂104分别包括:电感1011、第一二极管1012、第二二极管1013和开关1014;
电感1011的一端作为相应桥臂的输入端用以与电源电性连接,且电感1011的另一端分别与第一二极管1012的正极、第二二极管1013的负极和开关1014的第一端电性连接;
第一母线电容102的两端分别与第一二极管1012的负极和开关1014的第二端电性连接,第二母线电容103的两端分别与开关1014的第二端和第二二极管1013的正极电性连接。
具体的,上述三相维也纳整流电路的每个桥臂101和拓展桥臂104分别还包括:第一滤波电容1015和第二滤波电容1016,第一滤波电容1015的两端分别与第一二极管1012的负极和开关1014的第二端电性连接,第二滤波电容1016的两端分别与开关1014的第二端和第二二极管1013的正极电性连接,第一滤波电容1015和第二滤波电容1016可用于滤掉桥臂101或拓展桥臂104中的高频电流;
开关1014可以是单刀开关,可以是IGBT开关管构成的双向开关,也可以是其它任一种可导通两端所连接电路的开关。
进一步的,在图1所示实施例的基础上,如图2所示,拓展桥臂104中用以与电源电性连接的电感1011的一端与一桥臂101中用以与电源电性连接的电感1011的一端电性连接,也即拓展桥臂104的输入端与一桥臂101的输入端电性连接。
相比于现有技术,本申请的技术方案提供了一种整流模组,该整流模组包括:由结构相同的三个桥臂、第一母线电容和第二母线电容构成的三相维也纳整流电路;以及,与上述三相维也纳整流电路的桥臂具有相同结构的拓展桥臂;其中,上述拓展桥臂的输出端与上述三个桥臂的输出端电性连接。基于本申请提供的整流电路,在输入源为三相交流电源时,可将该整流电路当做传统的三相维也纳整流电路使用,输出功率不变;而在输入源为直流电源或单相交流电源时,可将输入源的两极分别电性连接两条桥臂的输入端,以充分利用该整流电路中的每一条桥臂,相较于传统的三相维也纳整流电路,该整流电路的最大输出功率可提升一倍。本申请的技术方案,有利于增大整流电路在输入源为直流电源或单相交流电源时的最大输出功率。
实施例二
本申请还提供了实施例一中所述整流模组的应用方法,在上述整流模组的输入源为直流电源或单相交流电源时,如图3所示,该应用方法包括:
步骤201(第一连接步骤):将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接;
其中,上述第一桥臂和上述第二桥臂为上述三个桥臂中的任意两个桥臂,上述非三相交流电源为直流电源或单相交流电源。
具体的,如图1所示,上述第一桥臂和上述第二桥臂可以是三个桥臂101中任意两个桥臂101;在将上述第一桥臂和上述第二桥臂的输入端分别与上述非三相交流电源的一极电性连接时,无需考虑上述非三相交流电源的极性正负的问题,仅需选取上述非三相交流电源的任一极,并将上述非三相交流电源的任一极与上述第一桥臂和上述第二桥臂的输入端电性连接即可。
步骤202(第二连接步骤):将第三桥臂和上述拓展桥臂的输入端分别与上述非三相交流电源的第二极电性连接;
其中,上述第三桥臂为上述三个桥臂除上述第一桥臂和上述第二桥臂外的桥臂。
具体的,在将上述第三桥臂和上述拓展桥臂的输入端分别与上述非三相交流电源的第二极电性连接时,仅需选取上述非三相交流电源的未与上述第一桥臂和上述第二桥臂的输入端进行电性连接的第二极,并将上述非三相交流电源的第二极与上述第三桥臂和上述拓展桥臂的输入端电性连接即可。
步骤203(第一控制步骤):基于上述第一母线电容的电压值、上述第二母线电容的电压值、上述非三相交流电源的任一极的电流值和一个以上PI控制器,对上述第一桥臂、上述第二桥臂、上述第三桥臂和上述拓展桥臂上的开关进行控制。
可选的,上述步骤203包括:
控制信号确定步骤:基于上述第一母线电容的电压值、上述第二母线电容的电压值、上述非三相交流电源的任一极的电流值和一个以上PI控制器,确定第一控制信号和第二控制信号;
第二控制步骤:基于上述第一控制信号,对上述第一桥臂的开关进行控制,并基于移相半个周期的第一控制信号,对上述第二桥臂的开关进行控制;
第三控制步骤:基于上述第二控制信号,对上述第三桥臂的开关进行控制,并基于移相半个周期的第二控制信号,对上述拓展桥臂的开关进行控制。
可选的,上述步骤203(第一控制步骤)包括:
控制信号确定步骤Ⅰ:基于上述第一母线电容的电压值、上述第二母线电容的电压值、上述非三相交流电源的任一极的电流值和一个以上PI控制器,确定第一控制信号和第二控制信号;
第二控制步骤Ⅰ:基于上述第一控制信号,对上述第一桥臂的开关进行控制,并基于移相半个周期的第一控制信号,对上述第二桥臂的开关进行控制;
第三控制步骤Ⅰ:基于移相四分之一个周期的上述第二控制信号,对上述第三桥臂的开关进行控制,并基于移相四分之三个周期的第二控制信号,对上述拓展桥臂的开关进行控制。
需要说明的是,上述采用移相后的第一控制信号或第二控制信号分别对各桥臂的开关进行控制的方法,可有效降低上述整流模组的整流输出中的纹波,以改善上述整流模组进行整流的效果。
进一步的,上述非三相交流电源具体为上述直流电源时,上述控制信号确定步骤包括:
将第一期望输出电压值减去整流模组输出电压值,得到第一值,其中,上述整流模组输出电压值为上述第一母线电容与上述第二母线电容的电压值之和;
基于第一预设PI控制器,对上述第一值进行积分比例运算,得到第二值;
将上述第二值减去上述直流电源的任一极的电流绝对值,得到第三值;
基于第二预设PI控制器,对上述第三值进行积分比例运算,得到第四值;
基于第三预设PI控制器,对母线电容电压差值进行积分比例运算,得到第五值,其中,上述母线电容电压差值为上述第一母线电容的电压值减去上述第二母线电容的电压值所得到的值;
基于上述直流电源的任一极的极性和第五值确定第六值,所述直流电源的任一极与得到第三值时所述直流电源的任一极相对应;得到第三值时所述直流电源的任一极为第一极时,此处直流电源的任一极的极性也是指第一极的极性;得到第三值时所述直流电源的任一极为第二极时,此处直流电源的任一极的极性也是指第二极的极性;
将上述第四值加上上述第六值,得到第一控制信号,并将上述第四值减去上述第六值,得到第二控制信号。
进一步的,上述非三相交流电源具体为上述单相交流电源时;上述控制信号确定步骤包括:
将第二期望输出电压值减去整流模组输出电压值,得到第七值,其中,上述整流模组输出电压值为上述第一母线电容与上述第二母线电容的电压值之和;
基于第四预设PI控制器,对上述第七值进行积分比例运算,得到第八值;
将上述单相交流电源的实时电压值除以上述单相交流电源的最大电压值,得到第九值;
将上述第八值除以上述第九值,得到第十值;
将上述第十值减去上述单相交流电源的任一极的电流值,得到第十一值;
基于第五预设PI控制器,对上述第十一值进行积分比例运算,得到第十二值;
将上述实时电压值先除以上述整流模组输出电压值的一半,再减去上述第十二值,得到第十三值;
将1减去上述第十三值的绝对值,得到第十四值;
基于第六预设PI控制器,对母线电容电压差值进行积分比例运算,得到第十五值,其中,上述母线电容电压差值为上述第一母线电容的电压值减去上述第二母线电容的电压值所得到的值;
基于上述单相交流电源的任一极的极性和上述第十五值,确定第十六值,所述单相交流电源的任一极与得到第十一值时所述单相交流电源的任一极相对应;
将上述第十四值加上上述第十六值,得到第一控制信号,并将上述第十四值减去上述第十六值,得到第二控制信号。
可选的,上述第一桥臂、上述第二桥臂、上述第三桥臂和上述拓展桥臂的输入端分别经不同的第一电源开关与上述非三相交流电源的第一极电性连接,且分别经不同的第二电源开关与上述非三相交流电源的第二极电性连接;
上述步骤201具体为:控制相应第一电源开关导通,将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接;
上述步骤202具体为:控制相应第二电源开关导通,将第三桥臂和上述拓展桥臂的输入端分别与非三相交流电源的第二极电性连接。
具体的,在图1所示实施例的基础上,如图4所示,105至108均为上述第一电源开关,109至112均为上述第二电源开关;举例说明,可控制第一电源开关105和107导通,并控制第二电源开关110和112导通,将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接,并将第三桥臂和上述拓展桥臂的输入端分别与非三相交流电源的第二极电性连接。
可选的,在图1所示实施例的基础上,如图5所示,上述整流模组还包括:第一输入开关113、第二输入开关114、第三输入开关115和第四输入开关116;第一输入开关113的一端和第二输入开关114的一端分别与非三相交流电源的第一极电性连接,第一输入开关113的另一端和第二输入开关114的另一端与上述第一桥臂的输入端和上述第二桥臂的输入端一一对应电性连接;第三输入开关115的一端和第四输入开关116的一端分别与非三相交流电源的第二极电性连接,第三输入开关115的另一端和第四输入开关116的另一端与上述第三桥臂的输入端和上述拓展桥臂104的输入端一一对应电性连接;
上述控制相应第一电源开关导通,将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接具体为:
控制第一输入开关113和第二输入开关114导通,将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接;
上述控制相应第二电源开关导通,将第三桥臂和拓展桥臂104的输入端分别与非三相交流电源的第二极电性连接具体为:
控制第三输入开关115和第四输入开关116导通,将第三桥臂和拓展桥臂104的输入端分别与非三相交流电源的第二极电性连接。
可选的,上述拓展桥臂的输入端分别经不同的并联开关与上述三个桥臂的输入端电性连接;
上述步骤202包括:
将上述第三桥臂的输入端与上述非三相交流电源的第二极电性连接;
控制相应并联开关,使上述第三桥臂的输入端与上述拓展桥臂的输入端电性连接。
具体的,如图1所示,在将三个桥臂101中任意两个桥臂101(第一桥臂和第二桥臂),分别与上述非三相交流电源的第一极电性连接后,可直接将第三桥臂101与上述非三相交流电源的第二极电性连接,再控制相应开关,使上述拓展桥臂与上述第三桥臂101进行并联。
具体的,在图1所示实施例的基础上,如图6所示,上述并联开关包括:第一并联子开关117、第二并联子开关118和第三并联子开关119,第一并联子开关117的一端、第二并联子开关118的一端和第三并联子开关119的一端分别与上述三个桥臂的输入端一一对应电性连接,第一并联子开关117的另一端、第二并联子开关118的另一端和第三并联子开关119的另一端分别与拓展桥臂104的输入端电性连接;
在将三个桥臂101中任意两个桥臂101,分别与上述非三相交流电源的第一极电性连接后,可将第三桥臂101与上述非三相交流电源的第二极电性连接,之后可通过检测手段确定上述三个桥臂101中的目标桥臂,再控制第一并联子开关117、第二并联子开关118和第三并联子开关119中与上述目标桥臂相对应的开关导通,使拓展桥臂104与上述目标桥臂进行并联;其中,上述目标桥臂为未与上述非三相交流电源的第一极电性连接的第三桥臂101。
相比于现有技术,本申请的技术方案提供一种整流模组的应用方法,该应用方法包括:将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接;将第三桥臂和拓展桥臂的输入端分别与非三相交流电源的第二极电性连接;基于第一母线电容的电压值、第二母线电容的电压值、非三相交流电源的任一极的电流值和一个以上PI控制器,对第一桥臂、第二桥臂、第三桥臂和拓展桥臂上的开关进行控制。基于本申请提供的应用方法,在输入源为直流电源或单相交流电源时,可将输入源的两极分别电性连接两条桥臂的输入端,以充分利用该整流电路中的每一条桥臂,相较于传统的三相维也纳整流电路,该整流电路的最大输出功率可提升一倍,故有利于增大整流电路在输入源为直流电源或单相交流电源时的最大输出功率。
实施例三
本申请还提供了实施例一中所述整流模组的另一种应用方法,在上述整流模组的输入源为三相交流电源时,如图7所示,该应用方法包括:
步骤301(第三连接步骤):将上述三个桥臂的输入端与上述三相交流电源的三相一一对应电性连接;
步骤302(第四控制步骤):基于上述第一母线电容的电压值、上述第二母线电容的电压值、上述三相交流电源的各相电流值、上述三相交流电源的各相电压值和一个以上PI控制器,对上述三个桥臂上的开关进行控制。
可选的,本实施例中,第一桥臂和第二桥臂为上述三个桥臂中的任意两个桥臂,上述第三桥臂为上述三个桥臂除上述第一桥臂和上述第二桥臂外的桥臂;
上述步骤302包括:
控制信号确定步骤Ⅱ:基于上述第一母线电容的电压值、上述第二母线电容的电压值、上述三相交流电源的各相电流值、上述三相交流电源的各相电压值和一个以上PI控制器,确定第三控制信号、第四控制信号和第五控制信号;
第五控制步骤:基于上述第三控制信号,对上述第一桥臂的开关进行控制;
第六控制步骤:基于上述第四控制信号,对上述第二桥臂的开关进行控制;
第七控制步骤:基于上述第五控制信号,对上述第三桥臂的开关进行控制,并基于移相半个周期的第五控制信号,对上述拓展桥臂的开关进行控制。
需要说明的是,上述采用移相后的第五控制信号对拓展桥臂的开关进行控制的方法,可有效降低上述整流模组的整流输出中的纹波,以改善上述整流模组进行整流的效果。
进一步的,上述控制信号确定步骤Ⅱ包括:
将第三期望输出电压值减去整流模组输出电压值,得到第十七值,其中,上述整流模组输出电压值为上述第一母线电容与上述第二母线电容的电压值之和;
基于第七预设PI控制器,对上述第十七值进行积分比例运算,得到第十八值;
将上述第十八值除以上述三相交流电源的相电压有效值,得到第十九值;
将上述第十九值先乘以上述三相交流电源在上述第一桥臂上输入的相电压值,再减去上述三相交流电源在上述第一桥臂上输入的相电流值,得到第二十值;基于第八预设PI控制器,对上述第二十值进行积分比例运算,得到第二十一值;将上述三相交流电源在上述第一桥臂上输入的相电压值先减去上述第二十一值,再除以上述整流模组输出电压值的一半,然后减去预设倍数的母线电容电压差值,得到第三控制信号,其中,上述母线电容电压差值为上述第一母线电容的电压值减去上述第二母线电容的电压值所得到的值;
将上述第十九值先乘以上述三相交流电源在上述第二桥臂上输入的相电压值,再减去上述三相交流电源在上述第二桥臂上输入的相电流值,得到第二十二值;基于第九预设PI控制器,对上述第二十二值进行积分比例运算,得到第二十三值;将上述三相交流电源在上述第二桥臂上输入的相电压值先减去上述第二十三值,再除以上述整流模组输出电压值的一半,然后减去预设倍数的母线电容电压差值,得到第四控制信号;
将上述第十九值先乘以上述三相交流电源在上述第三桥臂和上述拓展桥臂上输入的相电压值,再减去上述三相交流电源在上述第三桥臂和上述拓展桥臂上输入的相电流值,得到第二十四值;基于第十预设PI控制器,对上述第二十四值进行积分比例运算,得到第二十五值;将上述三相交流电源在上述第三桥臂和上述拓展桥臂上输入的相电压值先减去上述第二十五值,再除以上述整流模组输出电压值的一半,然后减去预设倍数的母线电容电压差值,得到第五控制信号。
进一步的,在图1所示实施例的基础上,如图8所示,上述三相交流电源包括:第一相交流电源120、第二相交流电源121和第三相交流电源122;
上述步骤301包括:
将三个桥臂101的输入端与第一相交流电源120的第一极、第二相交流电源121的第一极和第三相交流电源122的第一极一一对应电性连接;
在上述步骤301后,上述应用方法还包括:
将第一相交流电源120的第二极、第二相交流电源121的第二极和第三相交流电源122的第二极分别与拓展桥臂104的输入端电性连接;
控制拓展桥臂104上的开关导通。
更进一步的,在图8所示实施例的基础上,如图9所示,上述整流模组还包括:第一中线开关123、第二中线开关124和第三中线开关125,第一中线开关123的一端、第二中线开关124的一端和第三中线开关125的一端分别与第一相交流电源120的第二极、第二相交流电源121的第二极和第三相交流电源122的第二极一一对应电性连接,第一中线开关123的另一端、第二中线开关124的另一端和第三中线开关125的另一端分别与拓展桥臂104的输入端电性连接;
上述将第一相交流电源120的第二极、第二相交流电源121的第二极和第三相交流电源122的第二极分别与拓展桥臂104的输入端电性连接包括:
控制第一中线开关123、第二中线开关124和第三中线开关125导通,使第一相交流电源120的第二极、第二相交流电源121的第二极和第三相交流电源122的第二极分别与拓展桥臂104的输入端电性连接。
相比于现有技术,经上述对三相交流电源和整流模组的接线,控制上述拓展桥臂上的开关一直保持导通的状态,以使拓展桥臂起到中线的作用,并使上述整流模组可在整流时起到与三相四线制维也纳整流电路同样的效果,即可避免在输入源为三相交流电源时,上述整流模组中的一桥臂被闲置的情况发生,防止了电路资源的浪费,提高了整流模组在对三相交流电源进行整流时的可靠性。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将上述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
需要说明的是,上述实施例所提供的方法及其细节举例可结合至实施例提供的装置和设备中,相互参照,不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各实例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟是以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/设备实施例仅仅是示意性的,例如,上述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以由另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
上述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种整流模组,其特征在于,包括:
    由结构相同的三个桥臂、第一母线电容和第二母线电容构成的三相维也纳整流电路;
    以及,与所述三相维也纳整流电路的桥臂具有相同结构的拓展桥臂;
    其中,所述拓展桥臂的输出端与所述三个桥臂的输出端电性连接。
  2. 根据权利要求1所述的整流模组,其特征在于,所述三相维也纳整流电路的每个桥臂和所述拓展桥臂分别包括:电感、第一二极管、第二二极管和开关;
    所述电感的一端作为相应桥臂的输入端用以与电源电性连接,且所述电感的另一端分别与所述第一二极管的正极、所述第二二极管的负极和所述开关的第一端电性连接;
    所述第一母线电容的两端分别与所述第一二极管的负极和所述开关的第二端电性连接,所述第二母线电容的两端分别与所述开关的第二端和所述第二二极管的正极电性连接。
  3. 一种如权利要求1或2所述整流模组的应用方法,其特征在于,包括:
    第一连接步骤:将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接,其中,所述第一桥臂和所述第二桥臂为所述三个桥臂中的任意两个桥臂,所述非三相交流电源为直流电源或单相交流电源;
    第二连接步骤:将第三桥臂和所述拓展桥臂的输入端分别与所述非三相交流电源的第二极电性连接,其中,所述第三桥臂为所述三个桥臂除所述第一桥臂和所述第二桥臂外的桥臂;
    第一控制步骤:基于所述第一母线电容的电压值、所述第二母线电容的电压值、所述非三相交流电源的任一极的电流值和一个以上PI控制器,对所述第一桥臂、所述第二桥臂、所述第三桥臂和所述拓展桥臂上的开关进行控制。
  4. 根据权利要求3所述的应用方法,其特征在于,所述第一控制步骤包括:
    控制信号确定步骤:基于所述第一母线电容的电压值、所述第二母线电容的电压值、所述非三相交流电源的任一极的电流值和一个以上PI控制器,确定第一控制信号和第二控制信号;
    第二控制步骤:基于所述第一控制信号,对所述第一桥臂的开关进行控制,并基于移相半个周期的第一控制信号,对所述第二桥臂的开关进行控制;
    第三控制步骤:基于所述第二控制信号,对所述第三桥臂的开关进行控制,并基于移相半个周期的第二控制信号,对所述拓展桥臂的开关进行控制。
  5. 根据权利要求4所述的应用方法,其特征在于,所述非三相交流电源具体为所述直流电源;
    所述控制信号确定步骤包括:
    将第一期望输出电压值减去整流模组输出电压值,得到第一值,其中,所述整流模组输出电压值为所述第一母线电容与所述第二母线电容的电压值之和;
    基于第一预设PI控制器,对所述第一值进行积分比例运算,得到第二值;
    将所述第二值减去所述直流电源的任一极的电流绝对值,得到第三值;
    基于第二预设PI控制器,对所述第三值进行积分比例运算,得到第四值;
    基于第三预设PI控制器,对母线电容电压差值进行积分比例运算,得到第五值,其中,所述母线电容电压差值为所述第一母线电容的电压值减去所述第二母线电容的电压值所得到的值;
    基于所述直流电源的任一极的极性和第五值确定第六值,所述直流电源的任一极与得到第三值时所述直流电源的任一极相对应;
    将所述第四值加上所述第六值,得到所述第一控制信号,并将所述第四值减去所述第六值,得到所述第二控制信号。
  6. 根据权利要求4所述的应用方法,其特征在于,所述非三相交流电源具体为所述单相交流电源;
    所述控制信号确定步骤包括:
    将第二期望输出电压值减去整流模组输出电压值,得到第七值,其中,所述整流模组输出电压值为所述第一母线电容与所述第二母线电容的电压值之和;
    基于第四预设PI控制器,对所述第七值进行积分比例运算,得到第八值;
    将所述单相交流电源的实时电压值除以所述单相交流电源的最大电压值,得到第九值;
    将所述第八值除以所述第九值,得到第十值;
    将所述第十值减去所述单相交流电源的任一极的电流值,得到第十一值;
    基于第五预设PI控制器,对所述第十一值进行积分比例运算,得到第十二值;
    将所述实时电压值先除以所述整流模组输出电压值的一半,再减去所述第十二值,得到第十三值;
    将1减去所述第十三值的绝对值,得到第十四值;
    基于第六预设PI控制器,对母线电容电压差值进行积分比例运算,得到第十五值,其中,所述母线电容电压差值为所述第一母线电容的电压值减去所述第二母线电容的电压值所得到的值;
    基于所述单相交流电源的任一极的极性和所述第十五值,确定第十六值,所述单相交流电源的任一极与得到第十一值时所述单相交流电源的任一极相对应;
    将所述第十四值加上所述第十六值,得到所述第一控制信号,并将所述第十四值减去所述第十六值,得到所述第二控制信号。
  7. 根据权利要求3至6任一项所述的应用方法,其特征在于,所述第一桥臂、所述第二桥臂、所述第三桥臂和所述拓展桥臂的输入端分别经不同的第一电源开关与所述非三相交流电源的第一极电性连接,且分别经不同的第二电源开关与所述非三相交流电源的第二极电性连接;
    所述第一连接步骤具体为:控制相应第一电源开关导通,将第一桥臂和第二桥臂的输入端分别与非三相交流电源的第一极电性连接;
    所述第二连接步骤具体为:控制相应第二电源开关导通,将第三桥臂和所述拓展桥臂的输入端分别与非三相交流电源的第二极电性连接。
  8. 根据权利要求3至6任一项所述的应用方法,其特征在于,所述拓展桥臂的输入端分别经不同的并联开关与所述三个桥臂的输入端电性连接;
    所述第二连接步骤包括:
    将所述第三桥臂的输入端与所述非三相交流电源的第二极电性连接;
    控制相应并联开关,使所述第三桥臂的输入端与所述拓展桥臂的输入端电性连接。
  9. 一种如权利要求1或2所述整流模组的应用方法,其特征在于,包括:
    第三连接步骤:将所述三个桥臂的输入端与三相交流电源的三相一一对应电性连接;
    第四控制步骤:基于所述第一母线电容的电压值、所述第二母线电容的电压值、所述三相交流电源的各相电流值、所述三相交流电源的各相电压值和一个以上PI控制器,对所述三个桥臂上的开关进行控制。
  10. 根据权利要求9所述的应用方法,其特征在于,所述三相交流电源包括:第一相交流电源、第二相交流电源和第三相交流电源;
    所述第三连接步骤包括:
    将所述三个桥臂的输入端与所述第一相交流电源的第一极、所述第二相交流电源的第一极和所述第三相交流电源的第一极一一对应电性连接;
    在所述第三连接步骤后,所述应用方法还包括:
    将所述第一相交流电源的第二极、所述第二相交流电源的第二极和所述第三相交流电源的第二极分别与所述拓展桥臂的输入端电性连接;
    控制所述拓展桥臂上的开关导通。
PCT/CN2021/132818 2020-11-25 2021-11-24 一种整流模组和整流模组的应用方法 WO2022111531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011342759.XA CN112600447B (zh) 2020-11-25 2020-11-25 整流模组的应用方法
CN202011342759.X 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022111531A1 true WO2022111531A1 (zh) 2022-06-02

Family

ID=75184629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132818 WO2022111531A1 (zh) 2020-11-25 2021-11-24 一种整流模组和整流模组的应用方法

Country Status (2)

Country Link
CN (1) CN112600447B (zh)
WO (1) WO2022111531A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166374A (zh) * 2022-07-25 2022-10-11 福州大学 基于开机启动下母线电容电流重构的直流母线电容准在线监测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600447B (zh) * 2020-11-25 2023-02-28 深圳市科华恒盛科技有限公司 整流模组的应用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860192A (zh) * 2010-03-30 2010-10-13 艾默生网络能源有限公司 一种三态三电平pfc电路及多态三电平pfc电路
CN102664542A (zh) * 2012-04-27 2012-09-12 华为技术有限公司 一种电路及其控制方法
CN105897017A (zh) * 2016-05-17 2016-08-24 中国矿业大学(北京) 三相线电压级联vienna变换器
US10574153B1 (en) * 2019-01-30 2020-02-25 Ametek Rotron Control circuit and control method for a three phase Vienna converter
CN111740584A (zh) * 2020-07-24 2020-10-02 上海万暨电子科技有限公司 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置
CN112600447A (zh) * 2020-11-25 2021-04-02 深圳市科华恒盛科技有限公司 一种整流模组和整流模组的应用方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099510A (ja) * 2006-10-16 2008-04-24 Matsushita Electric Ind Co Ltd 直流電源装置とそれを用いた機器
CN103001573B (zh) * 2011-09-13 2016-03-23 台达电子企业管理(上海)有限公司 中压变频驱动系统
US9293985B2 (en) * 2013-06-14 2016-03-22 Hamilton Sundstrand Corporation Method of reducing input current distortion in a rectifier
CN106452119A (zh) * 2016-10-19 2017-02-22 南京博兰得电子科技有限公司 多路交错并联的电源变换器及其控制方法
CN110690830A (zh) * 2018-06-20 2020-01-14 浙江昱能科技有限公司 一种三相逆变器及其控制方法
CN108809138A (zh) * 2018-06-29 2018-11-13 西安特锐德智能充电科技有限公司 一种兼容三相和单相交流电源的双向acdc电路及其控制方法
CN109449990B (zh) * 2018-12-20 2020-09-25 上海交通大学 一种永磁直驱风力发电系统及控制方法
CN209845399U (zh) * 2018-12-21 2019-12-24 成都英格瑞德电气有限公司 基于维也纳pfc及全桥逆变电路的变频调光器
CN110995047B (zh) * 2019-09-03 2022-06-07 山特电子(深圳)有限公司 多输入功率变换器及其控制方法和包括其的不间断电源
CN111404221B (zh) * 2020-03-19 2021-11-09 深圳市科华恒盛科技有限公司 充电模块的控制方法、控制装置、控制设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860192A (zh) * 2010-03-30 2010-10-13 艾默生网络能源有限公司 一种三态三电平pfc电路及多态三电平pfc电路
CN102664542A (zh) * 2012-04-27 2012-09-12 华为技术有限公司 一种电路及其控制方法
CN105897017A (zh) * 2016-05-17 2016-08-24 中国矿业大学(北京) 三相线电压级联vienna变换器
US10574153B1 (en) * 2019-01-30 2020-02-25 Ametek Rotron Control circuit and control method for a three phase Vienna converter
CN111740584A (zh) * 2020-07-24 2020-10-02 上海万暨电子科技有限公司 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置
CN112600447A (zh) * 2020-11-25 2021-04-02 深圳市科华恒盛科技有限公司 一种整流模组和整流模组的应用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166374A (zh) * 2022-07-25 2022-10-11 福州大学 基于开机启动下母线电容电流重构的直流母线电容准在线监测方法

Also Published As

Publication number Publication date
CN112600447A (zh) 2021-04-02
CN112600447B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN101073197B (zh) 多相电流供给电路、驱动装置、压缩机及空气调和机
EP2882083B1 (en) Bridgeless power factor correction circuit
Pan et al. Power factor correction using a series active filter
WO2022111531A1 (zh) 一种整流模组和整流模组的应用方法
CN109889073B (zh) 驱动控制电路和家电设备
TW201414171A (zh) 單相三線三埠式電能轉換系統
EP2675052A1 (en) Circuit and control method thereof
CN206379880U (zh) Boost升压与半桥llc两级组合振动控制电源电路
CN104253549A (zh) 一种基于lcl滤波的大功率pwm整流器电路拓扑结构
JP4460572B2 (ja) 高力率を有するアーク溶接用発電機
CN110165921B (zh) 一种具有高输出电压增益开关电感型准z源逆变器
CN107332438B (zh) 基于双电感双电压直流输出电路的功率因数校正方法
CN108923637A (zh) 一种降压式非隔离三相pfc变换器及其控制方法
CN102437761B (zh) 一种单相全桥三电平逆变器及一种三相三电平逆变器
CN101295918B (zh) 一种三相交流输入电路电控开关软开关方法
CN203301387U (zh) 大功率高频高压电源
CN209692665U (zh) 一种变频控制器驱动电路
CN208986844U (zh) 一种自均压五电平电压源型变换装置
CN103248260A (zh) 大功率高频高压电源
CN206223830U (zh) 一种基于变频器的新型节能回馈型电子负载
CN105048827A (zh) 倍压整流电路
CN204835962U (zh) 一种倍压整流电路
CN213461552U (zh) 一种ac-ac混合升压开关电容变换器
CN220732614U (zh) 一种变流器功率模块及储能变流器
CN217037069U (zh) 一种用于两相交流电机变频调速的逆变电路拓扑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897031

Country of ref document: EP

Kind code of ref document: A1