WO2022111061A1 - 具有缝隙天线的装置 - Google Patents

具有缝隙天线的装置 Download PDF

Info

Publication number
WO2022111061A1
WO2022111061A1 PCT/CN2021/122557 CN2021122557W WO2022111061A1 WO 2022111061 A1 WO2022111061 A1 WO 2022111061A1 CN 2021122557 W CN2021122557 W CN 2021122557W WO 2022111061 A1 WO2022111061 A1 WO 2022111061A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
slot
antenna
slot antenna
capacitor
Prior art date
Application number
PCT/CN2021/122557
Other languages
English (en)
French (fr)
Inventor
任周游
赵安平
李明洋
Original Assignee
安徽华米信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022761117.5U external-priority patent/CN213425185U/zh
Priority claimed from CN202011345510.4A external-priority patent/CN112490634A/zh
Application filed by 安徽华米信息科技有限公司 filed Critical 安徽华米信息科技有限公司
Publication of WO2022111061A1 publication Critical patent/WO2022111061A1/zh
Priority to US18/316,760 priority Critical patent/US20230282967A1/en

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • G04G17/02Component assemblies
    • G04G17/04Mounting of electronic components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/103Resonant slot antennas with variable reactance for tuning the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground

Definitions

  • the present disclosure relates to the technical field of electronic equipment, and in particular, to a device with a slot antenna.
  • smart wearable devices With the development of electronic devices, more and more functions can be realized by smart wearable devices. Taking a smart watch as an example, it has functions such as sports assistance, satellite positioning, wireless connection, and calls, and these functions need to be realized by the built-in antenna of the watch.
  • an embodiment of the present disclosure provides a device with a slot antenna.
  • Embodiments of the present disclosure provide a device with a slot antenna, including:
  • a feeding terminal one end of which is connected to the feeding point of the slot antenna across the gap, and the other end is electrically connected to the radio frequency circuit of the device;
  • a first inductor one end of which is connected to the ground point of the slot antenna across the slot, and the other end is electrically connected to the ground unit of the device;
  • a first capacitor is arranged in the slot and two electrodes of the first capacitor are respectively connected to both ends in the width direction of the slot, and in the length direction of the slot, the first capacitor is located in the feeder between the terminal and the first inductor.
  • the operating frequency of the slot antenna includes at least two order resonant frequencies, and the first capacitor and the first inductance are used to adjust at least one order resonant frequency of the operating frequencies.
  • the operating frequency of the slot antenna includes a first resonant frequency and a second resonant frequency
  • the first resonant frequency is a second-order resonant frequency of the slot antenna
  • the second resonant frequency is a the third-order resonant frequency of the slot antenna.
  • the operating frequency of the slot antenna includes a first resonance frequency and a second resonance frequency
  • the frequency band of the first resonance frequency includes the L5 frequency band of the GPS satellite positioning system
  • the frequency band of the second resonance frequency includes L1 frequency band of GPS satellite positioning system
  • the working frequency of the slot antenna further includes a third resonance frequency
  • the frequency band of the third resonance frequency includes the Bluetooth/WiFi working frequency band.
  • the third resonance is a fourth order resonance frequency of the slot antenna.
  • the operating frequency of the slot antenna includes two-order resonant frequencies, and in the length direction of the slot, the voltage value of the first capacitor at one of the first-order resonant frequencies is zero, and in another order The position where the voltage value at the first-order resonant frequency is not zero.
  • the first capacitor in the length direction of the slot, is located at a voltage value of zero at the second resonant frequency and a voltage value of the first resonant frequency is not zero. location.
  • the slot antenna is a half wavelength slot antenna.
  • the apparatus further includes: a mainboard, including the grounding unit and the radio frequency circuit.
  • the device further comprises: a first conductor, the first conductor is disposed opposite to the main board at a distance, so that the gap between the first conductor and the main board forms the gap .
  • the device further includes: a second conductor, the second conductor is electrically connected to the grounding unit, and the slot is opened on the second conductor.
  • the device is a mobile terminal.
  • the device includes: a conductive middle frame, the middle frame forms the first conductor, the middle frame is arranged around the outer side of the main board at intervals, and the middle frame and the main board The spaces therebetween form the gaps.
  • the device includes: a conductive housing, the housing forms the second conductor, the main board is arranged inside the housing, and the grounding module of the main board is electrically connected to the housing, so The slit is opened on the casing.
  • the mobile terminal includes a wrist-worn device.
  • the device includes a slot formed on the device, a feeding terminal and a first inductance bridged across both ends in the longitudinal direction of the slot, the feeding terminal and the radio frequency circuit of the device are connected to form an excitation source of the antenna, and the first inductance and The ground unit of the device is connected, that is, returned to the ground through the first inductance, thereby increasing the effective electrical length of the slot antenna. Under the same operating frequency, the required slot length of the antenna is shorter, reducing the space occupied by the antenna slot on the equipment.
  • the first capacitor is arranged between the feeding terminal and the first inductor.
  • the frequency multiplication relationship of the multi-order resonance can be adjusted, and the multi-order resonance frequency can be adjusted.
  • the frequency is adjusted to the available working frequency, and one antenna structure can meet the working requirements of multiple frequencies.
  • FIG. 1 is an exploded view of the structure of a terminal device according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram of a dual frequency slot antenna in accordance with some embodiments of the present disclosure.
  • FIG 3 is a schematic diagram of the current distribution of the antenna at the first order resonant frequency according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of the current distribution of the antenna at the second order resonant frequency according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of the current distribution of the antenna at the third-order resonance frequency according to some embodiments of the present disclosure.
  • FIG. 6 is a graph showing the variation of the S-parameter of the antenna when the first capacitance is applied at the position of the voltage zero point.
  • FIG. 7 is a schematic diagram of the current distribution of the antenna at the second-order resonance frequency after the first capacitor is applied at the voltage zero position.
  • FIG. 8 is a graph showing the variation of the S parameter of the antenna with the first inductance after the first capacitance is applied.
  • FIG. 9 is a graph of S-parameters of an antenna according to an embodiment of the present disclosure.
  • FIG. 10 is a graph of the efficiency of an antenna according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an antenna according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an antenna according to yet another embodiment of the present disclosure.
  • a slot antenna refers to an antenna formed by opening a slot on a conductor surface.
  • a typical slot antenna can, for example, form a long slot between the device PCB (Printed Circuit Board, printed circuit board) and the metal middle frame, or on the metal shell. A long slot is opened, and the feed terminal connected across the slot is used as the excitation source of the antenna.
  • PCB Print Circuit Board, printed circuit board
  • the length of the slot is 1/2 of the wavelength of the first-order resonant frequency of the antenna, that is, the slot length L of the slot antenna and the antenna operating frequency wavelength ⁇ have the following relationship:
  • C is the speed of light
  • f is the first-order resonance frequency
  • the civil frequency band of the GPS satellite positioning system includes the L1 frequency band and the L5 frequency band, the L1 center frequency is 1.575GHz, and the L5 center frequency is 1.176GHz.
  • L1 is usually used as the basic GPS working frequency band
  • the single-frequency GPS antenna is an antenna that only supports the L1 frequency band.
  • the dual-frequency GPS antenna supports both L1 and L5 frequency bands, the L1 frequency band is used as the basic frequency band, and the L5 frequency band is used as the auxiliary L1 frequency band, which can eliminate the ionospheric error and greatly improve the positioning accuracy.
  • the 1/2 wavelength of the L1 wave of the GPS satellite positioning system in free space is about 95mm, and the 1/2 wavelength of the L5 wave in free space is about 127mm.
  • some terminal devices such as typical smart watches, due to the limited space of the watch, it is impossible to make a slot antenna covering both the GPS L1 frequency band and the GPS L5 frequency band in the watch at the same time, and wearable devices often require Bluetooth/ The WiFi antenna further compresses the internal space of the device. This also makes it difficult for some terminal equipment to implement a dual-frequency GPS satellite positioning system, resulting in a low positioning accuracy of the equipment.
  • a device with a slot antenna which can be any device with a slot antenna structure, such as a handheld device such as a smart phone and a tablet computer, or a smart watch, a smart hand
  • a wrist-worn device such as a ring is not limited in this disclosure.
  • the device of the embodiment of the present disclosure aims to realize the multiplexing of two or more frequencies by using the multi-order resonance frequency of the slot antenna, and can realize the multi-frequency antenna structure in a small equipment space, for example, in an existing watch or wristband
  • the design of dual-frequency GPS antenna is realized under the volume. Therefore, the apparatus of the present disclosure has a better effect on a terminal device with a smaller volume, such as a wrist-worn device.
  • the device of the present disclosure is also applicable to any other device having a slot antenna, and can also achieve the same effect, which is not limited in the present disclosure.
  • a device with a slot antenna provided by the present disclosure includes: a slot formed on the device, and a feeding terminal and a first inductor connected across the slot.
  • the gap may be a gap formed by the main board of the device and the metal middle frame, or may be a gap opened on the metal casing of the device, which is not limited in the present disclosure.
  • One end of the feeding terminal is connected to the feeding point of the antenna across the gap, and the other end is connected to the radio frequency circuit on the main board of the device, so as to serve as the excitation source of the antenna.
  • One end of the first inductance is connected to the grounding point of the antenna across the gap, and the other end is connected to the grounding unit of the main board of the device, so that the first inductance is used as the return end of the antenna, that is, the gap between the feeding terminal and the first inductance is Radiation slot for the antenna.
  • the first capacitor is arranged between the feeding terminal and the first inductance, and the two ends of its electrodes are respectively connected to the two ends in the width direction of the slot, so that the first capacitor and the first inductance are used to adjust at least the antenna.
  • first-order resonant frequency In the length direction of the slot, the first capacitor is arranged between the feeding terminal and the first inductance, and the two ends of its electrodes are respectively connected to the two ends in the width direction of the slot, so that the first capacitor and the first inductance are used to adjust at least the antenna.
  • the frequency multiplication relationship of the multi-order resonance frequency of the slot antenna is adjusted, so that the multi-order resonance frequency is adjusted to the available working frequency, and the One antenna structure can meet the working requirements of multiple frequency bands.
  • the slot antenna can generate multi-order resonance frequencies, and the multi-order resonance frequencies have a frequency multiplication relationship.
  • the first-order resonant mode also referred to as the "fundamental mode” in the multi-order resonant frequency that is available.
  • the "multi-frequency antenna” in the present disclosure refers to: for the same slot antenna structure, two or more resonant frequencies of the same slot antenna structure can be used simultaneously.
  • the antenna covers both the GPS L1 frequency band and the GPS L5 frequency band.
  • the multi-order resonance frequencies of the slot antenna have a frequency-doubling relationship.
  • the former third-order resonance frequency is taken as an example. If the first-order resonance frequency is f 0 , the second-order resonance frequency is 2f 0 , and the third-order resonance frequency is 2f 0 .
  • the resonant frequency is 3f 0 . This results in the inability to directly utilize multi-order resonant frequencies in most cases. For example, when the first-order resonance frequency of the slot antenna is 1.176GHz, the second-order resonance frequency reaches 2.352GHz, far exceeding the center frequency of the GPS L1 frequency band of 1.575GHz.
  • the first capacitance and the first inductance can be used to adjust the frequency multiplication relationship of the multi-order resonance frequency of the slot antenna to make it meet the required target frequency, and the same
  • the antenna structure realizes a multi-frequency antenna, which greatly simplifies the structure of the device antenna, which will make it possible to realize the antenna structure that could not be realized on the smaller volume device.
  • the device takes a smart watch as an example
  • the slot antenna takes the realization of a dual-frequency GPS antenna as an example.
  • the slot antenna structure cannot be used to make a dual-frequency GPS antenna due to limited volume space.
  • This embodiment describes the design of implementing a dual-frequency GPS antenna in a smart watch.
  • the smart watch of this embodiment includes a screen assembly 100 , a metal middle frame 200 , a device mainboard 300 , a battery 400 and a bottom case 500 .
  • the slot antenna is formed by feeding and returning ground through the slot between the main board 300 of the device and the metal middle frame 200 .
  • FIG. 2 shows a schematic structural diagram of the slot antenna in this embodiment. Specifically, as shown in FIG. 2 , an annular slot 610 is formed between the main board 300 of the device and the metal middle frame 200 .
  • the feeding terminal 620 is connected across the gap 610 , one end of the feeding terminal 620 is connected to the metal middle frame 200 to form a feeding point, and the other end is connected to the radio frequency circuit on the main board 300 of the device.
  • the first inductor 630 is connected across the gap 610 , one end of the first inductor 630 is connected to the metal middle frame 200 to form a return point, and the other end is connected to the grounding unit of the device mainboard 300 . Therefore, a slot antenna structure is formed between the feeding terminal 620 and the first inductor 630 .
  • the grounding unit of the device described in this embodiment refers to the PCB board of the main board 300 of the device, and the PCB board is the ground of the entire system, which can be understood by those skilled in the art.
  • the antenna is not directly returned to the ground at the location of the return point, but is returned to the ground through the first inductance 630.
  • the first inductance 630 it can be seen that through the first inductance 630 to return to the ground, it is equivalent to increasing the amount of the antenna. The effective electrical length, thereby shifting the resonant frequency of the slot antenna towards low frequencies.
  • the first capacitor 640 is connected across the gap 610 , one end electrode of the first capacitor 640 is connected to the metal middle frame 200 , and the other end electrode is connected to the grounding unit of the device mainboard 300 .
  • Setting a capacitor in the slot antenna can also increase the effective electrical length of the antenna, so that the resonant frequency of the slot antenna is shifted toward low frequencies.
  • the frequency multiplication relationship between the two is about 1.34 times.
  • the first three-order resonance frequencies of the slot antenna are the frequency multiplication relationship of f 0 , 2f 0 , and 3f 0
  • the frequency multiplication relationship between the second-order resonance frequency and the third-order resonance frequency is 1.5 times, which is relatively close to L1 and The frequency doubling relationship of the L5 frequency band. Therefore, in this embodiment, the dual-frequency GPS antenna is implemented using the second-order resonance frequency and the third-order resonance frequency of the slot antenna.
  • the second-order resonance frequency of the slot antenna is hereinafter defined as "first resonance frequency”
  • the third-order resonance frequency is defined as "second resonance frequency”.
  • the second-order resonance frequency and the third-order resonance frequency are adjusted to realize a dual-frequency GPS antenna.
  • the solution provided by the present disclosure can theoretically realize the adjustment of any two-order or multi-order resonance frequency, and does not need to be limited to the present disclosure. Examples of implementation manners, which will not be repeated in the present disclosure.
  • 3 to 5 show schematic diagrams of the current distribution of the antenna at the first three-order resonance frequencies when the first capacitor 640 is not provided.
  • Figure 3 shows the current distribution of the slot antenna at the first-order resonant frequency. It can be seen that in the direction from the feed point A to the ground point B, the current density first gradually decreases, and at the current zero point C, it decreases as zero, and then the current density gradually increases, that is, at the first order resonance frequency, there is a current zero point C. It is worth noting that, theoretically, if the slot 610 is a regular slot, the current zero point C at the first-order resonance frequency should be located near the midpoint of the slot. The position of the zero point C is slightly offset from the midpoint of the gap.
  • Fig. 4 shows the current distribution of the slot antenna at the second-order resonance frequency. It can be seen that at the second-order resonance frequency, there are two current zero points D1 and D2.
  • Figure 5 shows the current distribution of the slot antenna at the third-order resonance frequency, and it can be seen that at the third-order resonance frequency, there are three current zero points E1, E2 and E3.
  • the third-order resonant frequency has a frequency multiplication relationship of f 0 , 2f 0 , and 3f 0 .
  • the voltage distribution at the resonant frequency is opposite to the current distribution, that is, the position of the current zero corresponds to the voltage peak, and the current peak corresponds to the voltage zero.
  • the frequency reduction effect of the capacitor on the resonant frequency is stronger. It can be seen from this that if the first capacitor 640 is set at a position where the voltage value at a certain order resonance frequency is zero, the frequency reduction effect of the order resonance frequency will not be produced.
  • the position of the first capacitor 640 should satisfy: the larger the voltage value of the position of the first capacitor 640 is, the greater the degree of the resonant frequency of this order is shifted to the low frequency.
  • the position of the first capacitor 640 is at the position where the voltage is zero at the second resonance frequency and the voltage is not zero at the first resonance frequency.
  • the current zero points D1 and D2 at the first resonance frequency approximately correspond to the current peak value at the second resonance frequency, that is, the voltage zero point at the second resonance frequency corresponds to the The current zero points D1 and D2 at the first resonant frequency, therefore, the first capacitor 640 can be set at one of D1 and D2.
  • FIG. 6 shows the variation curve of the S-parameter (return loss) of the antenna when the first capacitor 640 is set at the position D2.
  • the original value of the first resonant frequency of the antenna is about 1.32GHz.
  • the first resonant frequency shifts to about 1.18GHz to a low frequency, while the second resonant frequency of the antenna also hardly changes.
  • the S parameters of the antenna are all below -10dB, which has good antenna performance and fully meets the needs of the watch for the GPS satellite positioning system.
  • the first capacitor 640 when using the first capacitor 640 to adjust the frequency of the first resonant frequency, the following rules can be satisfied: the first capacitor 640 is set near the voltage zero point at the second resonant frequency, so that the first resonant frequency can be independently adjusted. adjustment without affecting the second resonant frequency; and, the larger the capacitance value of the first capacitor 640 is, the more the first resonant frequency is shifted to a low frequency. Based on the guidance of this law, those skilled in the art can undoubtedly realize the adjustment of the first resonance frequency.
  • the first resonant frequency can be independently adjusted by the first capacitor 640. Therefore, when designing part of the dual-frequency slot antenna, the second resonant frequency of the antenna can be adjusted by applying the first inductance 630 to ground. to the target frequency, and then the first resonant frequency is independently adjusted to the target frequency by using the first capacitor 640 based on the above rules, so as to realize the design of the dual-frequency slot antenna.
  • the first resonant frequency may be lower than 1.176 GHz, and the first capacitor 640 The function is to shift the first resonance to the low frequency, so the design of the dual-frequency GPS antenna may not be realized.
  • the inventor of the present application further studies the independent adjustment of the second resonance frequency by the first inductor 630 .
  • FIG. 7 shows the current distribution at the first resonant frequency after applying the first capacitor 640 at the D2 position. It can be seen that the current distribution in the direction of the slit length from the feeding terminal 620 to the first capacitor 640 is the same as the above, while there is little current distribution in the slit length from the first capacitor 640 to the first inductor 630 .
  • the inventor of the present application found through research that this is because: the application of the first capacitor 640 cuts off the current at the first resonant frequency, so the current is concentrated in the left slot of the first capacitor 640, and only a small amount of current passes through the first capacitor 640.
  • the first inductance 630 since there is less current distribution near the first inductance 630 at the first resonant frequency, the first inductance 630 hardly affects the first resonant frequency changes, and as the capacitance value of the first capacitor 640 increases, the effect of the first inductance 630 on the first resonant frequency is smaller.
  • FIG. 8 shows the variation curve of the first inductance 630 with respect to the S-parameter of the antenna when the first capacitance 640 of 1.5 pF is applied at the D2 position.
  • the second resonant frequency is shifted to about 1.7GHz to the low frequency, and when using the first inductor 6.8nH In the case of 630, the second resonant frequency is shifted to a low frequency of about 1.6 GHz, while the first resonant frequency also does not change significantly.
  • the S parameters of the antenna are all below -10dB, which has good antenna performance and fully meets the needs of the watch for the GPS satellite positioning system.
  • the first capacitor 640 is set near the voltage zero point at the second resonant frequency, and the first inductor 630 can be used to return to ground.
  • the second resonant frequency is independently adjusted without affecting the first resonant frequency; and, the larger the inductance value of the first inductor 630 is, the more the second resonant frequency is shifted to low frequencies. Based on the guidance of this law, those skilled in the art can undoubtedly realize the adjustment of the second resonance frequency.
  • a typical slot antenna structure is designed, so that the second-order resonance frequency of the slot antenna structure is as close as possible and greater than 1.176GHz, and the third-order resonance frequency is as close as possible and greater than 1.575GHz. Then, a first capacitor 640 is applied at the voltage zero point of the third-order resonance frequency, and the center frequency of the second-order resonance is adjusted to be within the range of 1.176 GHz by adjusting the position and capacitance value of the first capacitor 640 .
  • the center frequency of the third-order resonance is adjusted to a range near 1.575 GHz, thereby realizing a dual-frequency GPS slot antenna.
  • FIG. 9 shows the S-parameter curve diagram of the dual-frequency GPS slot antenna in this embodiment.
  • the first resonant frequency of the antenna structure in this embodiment can cover the GPS L5 center frequency 1.150GHz-1.2GHz band, and the second resonant frequency can cover the GPS L1 center frequency 1.560GHz-1.620GHz band. to the antenna with good return loss.
  • FIG. 10 shows the efficiency curve of the antenna of this embodiment. It can be seen that in the two frequency bands of GPS, the total efficiency of the antenna of this embodiment is greater than 13%, which can meet the performance requirements of wearable devices for dual-frequency GPS antennas.
  • the device with the slot antenna in this embodiment uses the first capacitor and the first inductance to adjust the two-order resonance frequencies of the antenna respectively, so that the same antenna structure can meet the requirements of the dual-frequency GPS antenna.
  • the dual-frequency GPS antenna is realized by using the second-order resonance frequency and the third-order resonance frequency with a closer frequency multiplication relationship, which is more conducive to the design of the dual-frequency GPS antenna.
  • the structure and implementation principle of the slot antenna of the present disclosure are described by taking the dual-frequency GPS as an example. Order resonance antenna design.
  • a Bluetooth/WiFi antenna is an indispensable antenna for a smart watch.
  • the center frequency of the Bluetooth/WiFi antenna is 2.4GHz, which is approximately 2 times the frequency multiplication relationship with the GPS L5 frequency band, and the fourth-order resonance frequency of the slot antenna is multiplied by the second-order resonance frequency. The relationship is 2x.
  • the slot antenna of the watch may include a third resonance in addition to the above-mentioned first resonance and second resonance, and the third resonance frequency is the fourth-order resonance frequency of the slot antenna. That is, the operating frequency of the slot antenna includes: the GPS L5 frequency band realized by the first resonant frequency, the GPS L1 frequency band realized by the second resonant frequency, and the Bluetooth/WiFi frequency band realized by the third resonant frequency. Therefore, for smart watches, dual-frequency GPS and Bluetooth/WiFi antennas can be realized by using the same slot antenna structure, and there is no need to set up Bluetooth/WiFi antennas separately. The frequency GPS connection is enough, which simplifies the internal stacking design of the watch. For the parts not described in detail, those skilled in the art can realize it by referring to the foregoing and related technologies, and details are not repeated here.
  • the device of the present disclosure is to realize the frequency adjustment of two or more order resonances through the first capacitor and the first inductance, so as to realize the slot antenna of dual-frequency GPS, dual-frequency GPS and Bluetooth/WiFi.
  • the embodiments of the present disclosure are not limited to the implementation of the dual-frequency GPS antenna in the above-mentioned embodiments, and can also be any other dual-frequency or more-frequency antenna suitable for implementation. .
  • the above-mentioned inventive concept can also be used to realize dual-frequency or multi-frequency multiplexing of GPS and Bluetooth, GPS and 4G LTE multiplexing, Bluetooth and 4G/5G multiplexing, and 4G and 5G multiplexing Slot antenna, the present disclosure does not limit the type of antenna.
  • the structure of the slot antenna of the apparatus of the present disclosure is not limited to that shown in the above-mentioned embodiments.
  • the apparatus of the present disclosure includes a main board and a first conductor, and the first conductor and the main board are spaced apart from each other, so that the space therebetween forms a radiation gap. That is, as shown in FIG. 1 , the first conductor is the conductive metal middle frame 200 , and the gap 610 is formed by the distance between the complete device mainboard 300 and the metal middle frame 200 . In the embodiment shown in FIG. 11 , the gap 610 can also be formed by the incomplete device mainboard 300 and the metal middle frame 200 .
  • the shape of the smart watch is not limited to a circle, and can also be any other shape suitable for implementation, such as a rectangle with rounded corners and the like. The present disclosure does not need to limit this, and those skilled in the art can undoubtedly understand and fully implement it on the basis of the foregoing embodiments, which will not be repeated in the present disclosure.
  • the apparatus of the present disclosure includes a second conductor, the second conductor is electrically connected to the grounding unit, and a slot is opened on the second conductor.
  • the second conductor may be an all-metal casing of the watch, and the all-metal casing refers to a metal material in which the outer, middle frame and bottom casing of the watch are made of conductors, and the metal casing is electrically connected to the grounding unit of the main board of the device, so that the casing is equivalent to land.
  • the radiation slot of the slot antenna is opened on the casing, for example, around the middle frame of the watch, and the slot antenna structure of the present disclosure can also be implemented.
  • the principle of the antenna structure in this example is the same as the above, and those skilled in the art can understand and fully implement it with reference to the above and related technologies, which will not be repeated in this disclosure.
  • the device of the embodiment of the present disclosure realizes the adjustment of the multi-order resonance frequency of the slot antenna through the first inductance and the first capacitance, so that the same antenna structure is used to realize the slot antenna including multiple available frequency bands, and the multi-frequency Design of slot antennas.
  • the operating frequency of the slot antenna includes a first resonant frequency and a second resonant frequency
  • the first resonant frequency is the second-order resonant frequency, which is used to realize the GPS L5 radiation frequency band
  • the second resonant frequency is the third-order resonant frequency Resonant frequency to achieve GPS L1 radiation band.
  • the dual-frequency GPS antenna is realized by using the resonant frequency of the third and second order frequency multiplication relationship which is closer to the frequency multiplication of GPS L1 and L5, which is more conducive to the adjustment of the antenna resonant frequency and simplifies the design process.
  • the operating frequency of the slot antenna further includes a third resonance frequency
  • the third resonance frequency is the fourth-order resonance frequency
  • the third resonance frequency is used to realize the radiation frequency band of the Bluetooth/WiFi antenna.
  • the frequency multiplication relationship between the GPS L5 frequency band and the Bluetooth/WiFi frequency band is relatively close to the frequency multiplication relationship between the first resonant frequency and the third resonant frequency. Therefore, the third resonance frequency is used to realize the Bluetooth/WiFi frequency band, that is, the same antenna structure is used to realize dual frequency at the same time. GPS and Bluetooth/WiFi antenna, no need to set additional Bluetooth/WiFi antenna, simplifying the internal structure of the device.
  • the operating frequency of the slot antenna includes two-order resonance frequencies, and the voltage value of the first capacitor at the first-order resonance frequency is zero, and the voltage value at the other-order resonance frequency is not zero. position, so that the first capacitor realizes the independent adjustment of the resonance frequency of the other order without affecting the resonance frequency of the first order. Moreover, under the action of the first capacitor, the independent adjustment of the first-order resonance frequency is realized through the inductance value of the first inductance, which is more conducive to realizing the design of the dual-frequency antenna.
  • the radiation slot of the slot antenna can be realized by using the main board and the metal middle frame of the terminal, or it can be realized by using the gap on the metal shell, thereby providing the design of the terminal antenna with the metal shell. More design options.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguide Aerials (AREA)

Abstract

本公开涉及电子设备技术领域,提供了一种具有缝隙天线的装置,包括:形成于所述装置上的辐射缝隙;馈电端子,一端横跨所述缝隙连接于所述缝隙天线的馈电点,另一端与所述装置的射频电路电性连接;第一电感,一端横跨所述缝隙连接于所述缝隙天线的接地点,另一端与所述装置的接地单元电性连接;以及第一电容,设于所述缝隙且所述第一电容的两个电极分别连接于所述缝隙宽度方向的两端,在所述缝隙的长度方向上,所述第一电容位于所述馈电端子与所述第一电感之间。本公开天线可满足多频天线的工作要求,在较小体积的设备上实现多频缝隙天线。

Description

具有缝隙天线的装置 技术领域
本公开涉及电子设备技术领域,具体涉及一种具有缝隙天线的装置。
背景技术
随着电子设备的发展,智能可穿戴设备所能实现的功能越来越多。以智能手表为例,其具有运动辅助、卫星定位、无线连接、通话等功能,而这些功能都需要依靠手表内置的天线来实现。
为了追求设备外观的美感和质感,越来越多的智能穿戴设备采用金属材质,同时采用缝隙天线结构实现天线功能。对于可穿戴设备而言,其体积往往较小,天线的设计空间受限,难以实现较多频段的天线功能。以智能手表为例,由于手表体积限制,相关技术中难以利用缝隙天线实现双频GPS天线设计。
发明内容
为解决电子设备的多频段天线设计的技术问题,本公开实施方式提供了一种具有缝隙天线的装置。
本公开实施方式提供了一种具有缝隙天线的装置,包括:
形成于所述装置上的辐射缝隙;
馈电端子,一端横跨所述缝隙连接于所述缝隙天线的馈电点,另一端与所述装置的射频电路电性连接;
第一电感,一端横跨所述缝隙连接于所述缝隙天线的接地点,另一端与所述装置的接地单元电性连接;以及
第一电容,设于所述缝隙且所述第一电容的两个电极分别连接于所述缝隙宽度方向的两端,在所述缝隙的长度方向上,所述第一电容位于所述馈电端子与所述第一电感之间。
在一些实施方式中,所述缝隙天线的工作频率包括至少两阶谐振频率,所述第一电容和所述第一电感用于调节所述工作频率中的至少一阶谐振频率。
在一些实施方式中,所述缝隙天线的工作频率包括第一谐振频率和第二谐振频率,所述第一谐振频率为所述缝隙天线的第二阶谐振频率,所述第二谐振频率为所述缝隙天线的第三阶谐振频率。
在一些实施方式中,所述缝隙天线的工作频率包括第一谐振频率和第二谐振频率,所述第一谐振频率的频带包括GPS卫星定位系统的L5频段,所述第二谐振频率的频带包括GPS卫星定位系统的L1频段。
在一些实施方式中,所述缝隙天线的工作频率还包括第三谐振频率,所述第三谐振频率的频带包括蓝牙/WiFi工作频段。
在一些实施方式中,所述第三谐振为所述缝隙天线的第四阶谐振频率。
在一些实施方式中,所述缝隙天线的工作频率包括两阶谐振频率,在所述缝隙的长度方向上,所述第一电容位于在其中一阶谐振频率下的电压值为零,且在另一阶谐振频率下的电压值不为零的位置处。
在一些实现方式中,在所述缝隙的长度方向上,所述第一电容位于在所述第二谐振频率下的电压值为零且在所述第一谐振频率下的电压值不为零的位置处。
在一些实施方式中,所述缝隙天线为半波长缝隙天线。
在一些实施方式中,所述的装置,还包括:主板,包括所述接地单元和所述射频电路。
在一些实施方式中,所述的装置,还包括:第一导体,所述第一导体与所述主板间隔相对设置,以使所述第一导体与所述主板之间的间隔形成所述缝隙。
在一些实施方式中,所述的装置,还包括:第二导体,所述第二导体与所述接地单元电性连接,所述缝隙开设于所述第二导体上。
在一些实施方式中,所述装置为移动终端。
在一些实施方式中,所述装置包括:导电的中框,所述中框形成所述第一导体,所述中框间隔环绕设于所述主板的外侧,且所述中框与所述主板之间的间隔形成所述缝隙。
在一些实施方式中,所述装置包括:导电的外壳,所述外壳形成所述第二导体,所述主板设于所述外壳内部,所述主板的接地模块与所述外壳电性连接,所述缝隙开设于所述外壳上。
在一些实施方式中,所述移动终端包括腕戴式设备。
本公开实施方式的装置,包括形成于装置上的缝隙以及跨接于缝隙长度方向两端的馈电端子和第一电感,馈电端子与装置的射频电路连接形成天线的激发源,第一电感与装置的接地单元连接,也即通过第一电感回地,从而增加缝隙天线的有效电长度,在实现相同工作频率下,天线所需的缝隙长度更短,减小天线缝隙对设备空间的占用。第一电容设于馈电端子与第一电感之间,通过调节第一电容在多阶谐振频率的电压分布关系的区域位置,即可实现对多阶谐振的倍频关系调整,将多阶谐振频率调整至可利用的工作频率,利用一个天线结构即可满足多个频率的工作要求。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开一些实施方式中终端设备的结构爆炸图。
图2是根据本公开一些实施方式中双频缝隙天线的原理图。
图3是根据本公开一些实施方式中天线在第一阶谐振频率下的电流分布示意图。
图4是根据本公开一些实施方式中天线在第二阶谐振频率下的电流分布示意图。
图5是根据本公开一些实施方式中天线在第三阶谐振频率下的电流分布示意图。
图6是在电压零点位置处施加第一电容的天线S参数变化曲线图。
图7是在电压零点位置处施加第一电容后天线在第二阶谐振频率下的电流分布示意图。
图8是施加第一电容后,天线的S参数随第一电感的变化曲线图。
图9是根据本公开一个具体实施方式中天线的S参数曲线图。
图10是根据本公开一个具体实施方式中天线的效率曲线图。
图11是根据本公开另一个实施方式中天线的结构示意图。
图12是根据本公开又一个实施方式中天线的结构示意图。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本公开一部分实施方式,而不是全部的实施方式。基于本公开中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本公开保护的范围。此外,下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
缝隙天线是指在导体面上开设缝隙形成的天线,典型的缝隙天线例如可通过设备PCB(Printed Circuit Board,印制电路板)与金属中框形成长条状的缝隙,或者在金属壳体上开设长条状的缝隙,跨接在缝隙上的馈电端子作为天线的激发源。
缝隙天线的工作原理类似于偶极子天线,一般缝隙的长度为天线的第一阶谐振频率波长的1/2,也即缝隙天线的缝隙长度L与天线工作频率波长λ之间具有如下关系:
Figure PCTCN2021122557-appb-000001
式(1)中,C为光速,f为第一阶谐振频率。通过式(1)可以看到,缝隙的长度L与天线的工作频率f成反比,也即天线的工作频率越低,所需要的缝隙长度越长。
以GPS卫星定位系统为例,GPS卫星定位系统的民用频段包括L1频段和L5频段,L1中心频率为1.575GHz,L5中心频率为1.176GHz。由于L1频段的卫星覆盖率较大,所以通常采用L1作为基础的GPS工作频段,单频GPS天线即为仅支持L1频段的天线。而双频GPS天线同时支持L1和L5频段,L1频段作为基础频段,而L5作为辅助L1的频段使用,从而可以消除电离层的误差,大大提高定位精度。
通过式(1)计算可知,GPS卫星定位系统的L1波在自由空间的1/2波长约为95mm,而L5波在自由空间的1/2波长约为127mm。对于部分终端设备来说,例如典型的智能手表,受限于手表体积空间,无法在手表中同时做出既覆盖GPS L1频段又覆盖GPS L5频段的缝隙天线,并且可穿戴设备往往还需要蓝牙/WiFi天线,进一步压缩了设备的内部空间。也就造成了部分终端设备难以实现双频GPS卫星定位系统,导致设备的定位精度较低。
为了解决上述技术问题,本公开实施方式提供了一种具有缝隙天线的装置,该装置可以是任何具有缝隙天线结构的设备,例如智能手机、平板电脑等手持式设备,又例如智能手表、智能手环等腕戴式设备,本公开对此不作限制。本公开实施方式的装置,旨 在利用缝隙天线的多阶谐振频率实现双频或更多频率的复用,可以在较小的设备空间实现多频天线结构,例如在现有的手表或手环体积下实现双频GPS天线的设计。因此本公开装置在体积较小的终端设备上具有更优的效果,例如腕戴式设备等。但是,本公开的装置同样适用于其他任何具有缝隙天线的设备,也可以起到同样的效果,本公开对此不作限制。
在一些实施方式中,本公开提供的具有缝隙天线的装置包括:形成于装置上的缝隙、以及跨接于缝隙的馈电端子和第一电感。缝隙可以是装置的主板与金属中框形成的缝隙,也可以是在装置的金属壳体上开设的缝隙,本公开对此不作限制。
馈电端子一端横跨缝隙连接于天线的馈电点,另一端与设备主板上的射频电路连接,从而作为天线的激发源。第一电感一端横跨缝隙连接于天线的接地点,另一端与设备主板的接地单元连接,从而第一电感即作为天线的回地端,也即馈电端子至第一电感之间的缝隙即为天线的辐射缝隙。在缝隙的长度方向上,第一电容设置在馈电端子与第一电感之间,其电极两端分别连接于缝隙宽度方向的两端,从而利用第一电容和第一电感来调整天线的至少一阶谐振频率。
在本公开实施方式中,通过在缝隙天线中增加第一电容和第一电感,对缝隙天线的多阶谐振频率的倍频关系进行调整,使得多阶谐振频率调整至可利用的工作频率,利用一个天线结构即可满足多个频段的工作要求。
基于缝隙天线的原理可知,当通过馈电端子为缝隙天线馈电后,该缝隙天线可产生多阶谐振频率,多阶谐振频率之间具有倍频的关系。对于单频天线来说,其可利用的是多阶谐振频率中的第一阶谐振模式(也称“基模”)。而本公开所述的“多频天线”是指:对于同一个缝隙天线结构,可同时利用其两阶或更多阶的谐振频率。
例如对于同一个缝隙天线,若其某一阶谐振频率为1.176GHz,另一阶谐振频率为1.575GHz,则该天线同时覆盖GPS L1频段和GPS L5频段。但是根据前述可知,缝隙天线的多阶谐振频率之间具有倍频的关系,以前三阶谐振频率为例,若第一阶谐振频率为f 0,第二阶谐振频率为2f 0,第三阶谐振频率为3f 0。这就导致大多数情况下无法直接利用多阶谐振频率。例如当缝隙天线的第一阶谐振频率为1.176GHz时,第二阶谐振频率则达到了2.352GHz,远远超过了GPS L1频段的中心频率1.575GHz。
正是基于上述原理,在本公开实施方式中,可利用第一电容和第一电感来对缝隙天线的多阶谐振频率的倍频关系进行调整,使其满足所需要的目标频率,利用同一个天线 结构实现多频天线,大大简化设备天线的结构,这将使得原本无法在较小体积设备上实现的天线结构成为可能。
为便于直观的理解本公开方案,下面结合一个具体的实施方式对本公开方案进行说明。在本实施方式中,装置以智能手表为例,缝隙天线以实现双频GPS天线为例。通过前述可知,在智能手表中,受限于体积空间无法利用缝隙天线结构做出双频GPS天线,本实施方式针对在智能手表中实现双频GPS天线的设计进行说明。
如图1所示,本实施方式的智能手表包括屏幕组件100、金属中框200、设备主板300、电池400以及底壳500。在本实施方式中,缝隙天线由通过对设备主板300与金属中框200之间的缝隙馈电和回地形成。图2示出了本实施方式的缝隙天线的结构原理图,具体来说,如图2所示,设备主板300与金属中框200之间形成环形的缝隙610。馈电端子620跨接于缝隙610,馈电端子620一端连接于金属中框200上形成馈电点,另一端连接于设备主板300上的射频电路。第一电感630跨接于缝隙610,第一电感630一端连接于金属中框200上形成回地点,另一端连接于设备主板300的接地单元。从而馈电端子620至第一电感630之间即形成缝隙天线结构。值得说明的是,本实施方式所述的装置的接地单元指的是设备主板300的PCB板,PCB板即为整个系统的地,本领域技术人员对此可以理解。
可以理解,在本实施方式中,并非在天线回地点位置直接回地,而是通过第一电感630回地,通过前述缝隙天线的原理可知,通过第一电感630回地,相当于增加天线的有效电长度,从而使得缝隙天线的谐振频率朝向低频偏移。
继续参照图2,第一电容640跨接于缝隙610,第一电容640的一端电极连接于金属中框200,另一端电极连接于设备主板300的接地单元。在缝隙天线中设置电容,同样可以增加天线的有效电长度,从而使得缝隙天线的谐振频率朝向低频偏移。
在此基础上,继续来探究如何将缝隙天线的某两阶谐振频率调整到GPS L1和L5频段的中心频率。
首先,考虑到GPS L1频段的中心频率为1.575GHz,L5频段的中心频率为1.176GHz,两者倍频关系大约为1.34倍。基于前述可知,缝隙天线前三阶谐振频率为f 0,2f 0,3f 0的倍频关系,其中第二阶谐振频率和第三阶谐振频率的倍频关系为1.5倍,较为接近于L1和L5频段的倍频关系。因此在本实施方式中,使用缝隙天线的第二阶谐振频率和第三阶谐振频率来实现双频GPS天线。为便于描述,下文中将缝隙天线的第二阶谐振频 率定义为“第一谐振频率”,将第三阶谐振频率定义为“第二谐振频率”。
在本公开实施方式中,在前三阶谐振频率的基础上,对第二阶谐振频率和第三阶谐振频率进行调整,以实现双频GPS天线。但是本领域技术人员应当理解,在本公开构思的基础上,在其他实施方式的场景下,本公开提供的方案理论上可以实现对任意两阶或多阶谐振频率的调整,无需局限于本公开实施方式示例,本公开对此不再赘述。
其次,在前述基础上进一步探究第一电容640对于第一谐振频率和第二谐振频率的影响。图3至图5示出了在不设置第一电容640时,天线在前三阶谐振频率下的电流分布示意图,图中颜色越深表示电流分布越密集,颜色越浅表示电流分布越少。
图3示出了缝隙天线在第一阶谐振频率下的电流分布,可以看到,在由馈电点A至接地点B方向上,电流密度先逐渐减小,在电流零点C处减小为零,随后电流密度逐渐增大,也即在第一阶谐振频率下,有一个电流零点C。值得说明的是,理论上来说,若缝隙610为规则缝隙的情况下,在第一阶谐振频率下的电流零点C应当位于缝隙中点附近,由于本实施方式中设备主板300并不规则,电流零点C的位置相对于缝隙中点略有偏移。
同理,图4示出了缝隙天线在第二阶谐振频率下的电流分布,可以看到在第二阶谐振频率下,有两个电流零点D1和D2。图5示出了缝隙天线在第三阶谐振频率下的电流分布,可以看到在第三阶谐振频率下,有三个电流零点E1、E2和E3。通过图3至图5的电流分布,也证明了三阶谐振频率具有f 0,2f 0,3f 0的倍频关系。
在谐振频率下的电压分布则与电流分布正相反,即电流零点位置处则对应电压峰值,电流峰值位置则对应电压零点。根据电容的工作原理可知,当施加在电容两极的电压差值越大时,电容对谐振频率的降频效果越强。据此可知,若将第一电容640设于在某一阶谐振频率下的电压值为零的位置,将不会对该阶谐振频率产生降频的效果。并且,第一电容640的位置应当满足:第一电容640的位置的电压值越大,该阶谐振频率向低频偏移的程度越大。
基于此规律,在对第一谐振频率进行频率调整时,应当保证不影响或尽可能少的影响第二谐振频率。因此,在本实施方式中,第一电容640的位置位于在第二谐振频率下电压零点且在第一谐振频率下电压不为零的位置。
继续参照图4和图5可以看到,在第一谐振频率下的电流零点D1和D2近似对应于在第二谐振频率下的电流峰值,也即在第二谐振频率下的电压零点对应于在第一谐振频 率下的电流零点D1和D2,因此,可将第一电容640设于D1和D2两者之一。
图6示出了第一电容640设于D2位置时天线的S参数(回波损耗)变化曲线。首先对比不施加第一电容640与施加1.5pF大小的第一电容640的曲线可知,天线的第一谐振频率的原始值约为1.32GHz,在D2位置施加1.5pF电容之后,第一谐振频率向低频偏移至约为1.25GHz,同时天线的第二谐振频率几乎没有发生变化,由此也证明了上述结论的正确性。
进一步地,对比施加1.5pF大小的电容和2.7pF的电容的曲线可知,天线的第一谐振频率的原始值约为1.32GHz,在D2位置施加1.5pF电容之后,第一谐振频率向低频偏移至约为1.25GHz,在D2位置施加2.7pF电容之后,第一谐振频率向低频偏移至约为1.18GHz,同时天线的第二谐振频率同样几乎没有发生变化。同时参见图6可知,天线的S参数均位于-10dB以下,具有很好的天线性能,完全满足手表对于GPS卫星定位系统的需求。
结合上述可知,利用第一电容640对第一谐振频率进行频率调整时,可满足以下规律:将第一电容640设于在第二谐振频率下电压零点附近,从而可对第一谐振频率进行独立调节,而不影响第二谐振频率;并且,第一电容640的电容值越大,第一谐振频率向低频偏移越多。基于此规律的指导,本领域技术人员毫无疑问可以实现对第一谐振频率的调节。
下面继续来探究第一电感630对天线谐振频率的影响。
通过前述原理可知,在采用第一电感630回地的情况下,相当于增加了缝隙天线的有效电长度,从而天线的多阶谐振频率均会朝向低频偏移。在此基础上,理论上已经能够实现对一些双频缝隙天线的设计,但是本案发明人进一步研究发现,通过第一电感630还可以实现对第二谐振频率的独立调节,使得手表的双频GPS天线的实现成为可能,下面进行层次化的说明。
首先,通过前述可知,利用第一电容640可以对第一谐振频率进行独立调节,因此在部分双频缝隙天线设计时,可以首先通过施加第一电感630回地,将天线的第二谐振频率调整至目标频率,然后再基于上述规律利用第一电容640将第一谐振频率独立调整至目标频率,实现双频缝隙天线的设计。
但是,对于双频GPS天线来说较难实现,例如,当通过第一电感630将第二谐振频率调整至1.575GHz附近,则第一谐振频率有可能已经低于1.176GHz,而第一电容640 的作用是将第一谐振向低频偏移,因此可能无法实现双频GPS天线的设计。正是基于此,本案发明人进一步研究通过第一电感630对第二谐振频率的独立调节。
图7示出了在D2位置施加第一电容640之后在第一谐振频率下的电流分布情况。可以看到,在馈电端子620至第一电容640的缝隙长度方向上,电流分布与前述相同,而在第一电容640至第一电感630的缝隙长度上,几乎很少有电流分布。本案发明人通过研究发现,这是由于:第一电容640的施加,对在第一谐振频率下的电流形成截止,因此电流集中于第一电容640左侧缝隙,只有较少的电流通过第一电容640的右侧缝隙,并且随着第一电容640电容值的增大,第一电容640对在第一谐振频率下的电流截止效果越明显。而且,由于第一电容640位于在第二谐振频率下的电压零点位置,因此对在第二谐振频率下的电流分布没有影响。
在此基础上,在改变第一电感630的情况下,由于在第一谐振频率下,靠近第一电感630的附近只有较少的电流分布,因此第一电感630几乎很少影响第一谐振频率变化,并且随着第一电容640电容值的增大,第一电感630对第一谐振频率的影响越小。
图8示出了在D2位置处施加1.5pF的第一电容640的情况下,第一电感630对于天线S参数的变化曲线。通过对比无电感和3.3nH电感的曲线可知,在不采用第一电感630回地的情况下,第二谐振频率大约为1.9GHz,而采用3.3nH的第一电感630的情况下,第二谐振频率向低频偏移至大约1.7GHz,并且第一谐振频率几乎没有发生明显变化。
进一步地,对于3.3nH电感和6.8nH电感的曲线可知,在采用3.3nH的第一电感630的情况下,第二谐振频率向低频偏移至大约1.7GHz,而在采用6.8nH的第一电感630的情况下,第二谐振频率向低频偏移至大约1.6GHz,同时第一谐振频率同样没有发生明显变化。而且参见图8可知,天线的S参数均位于-10dB以下,具有很好的天线性能,完全满足手表对于GPS卫星定位系统的需求。
结合上述可知,利用第一电感630对第二谐振频率进行频率调整时,可满足以下规律:将第一电容640设于在第二谐振频率下电压零点附近,利用第一电感630回地可对第二谐振频率进行独立调节,而不影响第一谐振频率;并且,第一电感630的电感值越大,第二谐振频率向低频偏移越多。基于此规律的指导,本领域技术人员毫无疑问可以实现对第二谐振频率的调节。
基于上述所有,本领域技术人员能够理解通过第一电容640和第一电感630对天线第一谐振频率和第二谐振频率调节的原理,下面结合具体实施方式来说明双频GPS天 线的设计过程。
首先在手表允许的空间范围内,设计出典型的缝隙天线结构,使得缝隙天线结构的第二阶谐振频率尽可能的接近且大于1.176GHz、第三阶谐振频率尽可能的接近且大于1.575GHz。然后在第三阶谐振频率的电压零点处施加第一电容640,通过调整第一电容640位置和电容值将第二阶谐振的中心频率调整至1.176GHz附近范围内。在天线回地点处利用第一电感630回地,通过调整第一电感630的电感值大小,将第三阶谐振的中心频率调整至1.575GHz附近范围内,从而实现双频GPS缝隙天线。
图9示出了本实施方式中双频GPS缝隙天线的S参数曲线图。通过图9所示可知,本实施方式天线结构的第一谐振频率可以覆盖GPS L5中心频率1.150GHz~1.2GHz波段,第二谐振频率可以覆盖GPS L1中心频率1.560GHz~1.620GHz频段,同时可以看到天线具有良好的回波损耗。图10示出了本实施方式天线的效率曲线,可以看到,在GPS两个频段内,本实施方式的天线总效率都大于13%,可以满足可穿戴设备对双频GPS天线性能的要求。
通过上述可知,本实施方式的具有缝隙天线的装置,利用第一电容和第一电感对天线的两阶谐振频率分别进行调整,从而利用同一个天线结构即可满足双频GPS天线的要求。同时利用倍频关系更为接近的第二阶谐振频率和第三阶谐振频率实现双频GPS天线,更有利于双频GPS天线的设计。
上述实施方式中以双频GPS为例对本公开的缝隙天线的结构以及实现原理进行了说明,事实上,本公开所述的缝隙天线并不局限于双频天线,还可以实现工作频率包括更多阶谐振的天线设计。
在一些实施方式中,仍以前述的智能手表为例,对于智能手表来说,其往往需要和智能手机通过蓝牙或WiFi建立通信连接,因此蓝牙/WiFi天线是智能手表必不可少的天线。而在本实施方式中,考虑到蓝牙/WiFi天线的中心频率为2.4GHz,与GPS L5频段近似2倍的倍频关系,而且缝隙天线的第四阶谐振频率与第二阶谐振频率的倍频关系即为2倍。
因此,在本公开实施方式中,手表的缝隙天线除了包括上述的第一谐振和第二谐振外,还可包括第三谐振,第三谐振频率即为缝隙天线的第四阶谐振频率。也即,缝隙天线的工作频率包括:利用第一谐振频率实现的GPS L5频段、利用第二谐振频率实现的GPS L1频段以及利用第三谐振频率实现的蓝牙/WiFi频段。从而对于智能手表来说,利 用同一个缝隙天线结构即可实现双频GPS和蓝牙/WiFi天线,无需单独再设置蓝牙/WiFi天线,只需要将原本蓝牙/WiFi的射频电路通过合路器与双频GPS连接即可,简化手表的内部堆叠设计。对于未尽详述之处,本领域技术人员参照前述以及相关技术即可实现,在此不再赘述。
本公开的装置在于通过第一电容和第一电感实现对两阶或多阶谐振的频率调整,从而实现双频GPS、双频GPS和蓝牙/WiFi的缝隙天线。在此发明构思基础上,本领域技术人员能够理解,本公开实施方式并不局限于实现上述实施方式中的双频GPS天线,还可以是其他任何适于实施的双频或更多频的天线。
例如,在一些替代实施方式中,还可以利用上述的发明构思,实现GPS和蓝牙复用、GPS和4G LTE复用、蓝牙和4G/5G复用、4G和5G复用的双频或多频缝隙天线,本公开对于天线的类型不作限制。
在另一些替代实施方式中,本公开装置的缝隙天线的结构也不局限于上述实施方式所示。
例如在一些示例中,本公开装置包括主板和第一导体,第一导体和主板间隔相对设置,从而两者之间的间隔形成辐射缝隙。也即图1中所示,第一导体即为导电的金属中框200,缝隙610由完整的设备主板300与金属中框200之间的间距形成。而在图11所示实施方式中,缝隙610也可由不完整的设备主板300与金属中框200形成。在图12示例的实施方式中,智能手表的形状也不局限于圆形,还可以是其他任何适于实施的形状,例如圆角矩形等。本公开对此无需限制,本领域技术人员在前述实施方式的基础上毫无疑问可以理解并充分实施,本公开对此不再赘述。
例如在又一些示例中,本公开装置包括第二导体,第二导体与接地单元电连接,缝隙开设于第二导体上。具体来说,第二导体可以是手表的全金属外壳,全金属外壳指手表外中框和底壳均采用导体的金属材质,金属外壳与设备主板的接地单元电性连接,从而外壳即相当于地。缝隙天线的辐射缝隙则开设于外壳上,例如环绕开设于手表中框上,同样可以实现本公开缝隙天线结构。本示例中的天线结构原理与前述相同,本领域技术人员参照前述以及相关技术可以理解并充分实施,本公开对此不再赘述。
通过前述可知,本公开实施方式的装置,通过第一电感和第一电容实现对缝隙天线的多阶谐振频率进行调整,从而利用同一个天线结构实现包括多个可用频段的缝隙天线,实现多频缝隙天线的设计。
本公开实施方式的装置,缝隙天线的工作频率包括第一谐振频率和第二谐振频率,第一谐振频率为第二阶谐振频率,用以实现GPS L5辐射频段,第二谐振频率为第三阶谐振频率,用以实现GPS L1辐射频段。利用第三和第二阶倍频关系较为接近GPS L1和L5倍频的谐振频率实现双频GPS天线,更有利于对天线谐振频率的调整,简化设计过程。
本公开实施方式的装置,缝隙天线的工作频率还包括第三谐振频率,第三谐振频率为第四阶谐振频率,第三谐振频率用以实现蓝牙/WiFi天线的辐射频段。GPS L5频段与蓝牙/WiFi频段的倍频关系较为接近第一谐振频率与第三谐振频率的倍频关系,因此利用第三谐振频率实现蓝牙/WiFi频段,即利用同一个天线结构同时实现双频GPS和蓝牙/WiFi天线,无需额外设置蓝牙/WiFi天线,简化装置内部结构。
本公开实施方式的装置,缝隙天线的工作频率包括两阶谐振频率,第一电容位于在其中一阶谐振频率下的电压值为零,且在另一阶谐振频率下的电压值不为零的位置处,从而第一电容在不影响其中一阶谐振频率的基础上实现对另一阶谐振频率的独立调节。而且,在第一电容的作用下,通过第一电感的电感值实现对其中一阶谐振频率的独立调节,更有利于实现双频天线的设计。
本公开实施方式的装置,在装置为移动终端时,缝隙天线的辐射缝隙可以利用终端的主板与金属中框实现,也可以利用金属壳体上的缝隙实现,从而为金属外壳的终端天线设计提供更多设计方案。
显然,上述实施方式仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本公开创造的保护范围之中。

Claims (12)

  1. 一种具有缝隙天线的装置,包括:
    形成于所述装置上的辐射缝隙;
    馈电端子,一端横跨所述缝隙连接于所述缝隙天线的馈电点,另一端与所述装置的射频电路电性连接;
    第一电感,一端横跨所述缝隙连接于所述缝隙天线的接地点,另一端与所述装置的接地单元电性连接;以及
    第一电容,设于所述缝隙且所述第一电容的两个电极分别连接于所述缝隙宽度方向的两端,在所述缝隙的长度方向上,所述第一电容位于所述馈电端子与所述第一电感之间。
  2. 根据权利要求1所述的装置,其特征在于,
    所述缝隙天线的工作频率包括至少两阶谐振频率,所述第一电容和所述第一电感用于调节所述工作频率中的至少一阶谐振频率。
  3. 根据权利要求1所述的装置,其特征在于,
    所述缝隙天线的工作频率包括第一谐振频率和第二谐振频率,其中,
    所述第一谐振频率为所述缝隙天线的第二阶谐振频率,所述第二谐振频率为所述缝隙天线的第三阶谐振频率;和/或,
    所述第一谐振频率的频带包括GPS卫星定位系统的L5频段,所述第二谐振频率的频带包括GPS卫星定位系统的L1频段。
  4. 根据权利要求3所述的装置,其特征在于,
    所述缝隙天线的工作频率还包括第三谐振频率,所述第三谐振频率的频带包括蓝牙/WiFi工作频段。
  5. 根据权利要求1所述的装置,其特征在于,
    所述缝隙天线的工作频率包括两阶谐振频率,在所述缝隙的长度方向上,所述第一电容位于在其中一阶谐振频率下的电压值为零,且在另一阶谐振频率下的电压值不为零的位置处。
  6. 根据权利要求1所述的装置,其特征在于,
    所述缝隙天线为半波长缝隙天线。
  7. 根据权利要求1至6任一项所述的装置,其特征在于,还包括:
    主板,包括所述接地单元和所述射频电路。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    第一导体,所述第一导体与所述主板间隔相对设置,以使所述第一导体与所述主板之间的间隔形成所述缝隙。
  9. 根据权利要求8所述的装置,其特征在于,所述装置包括:
    导电的中框,所述中框形成所述第一导体,所述中框间隔环绕设于所述主板的外侧,且所述中框与所述主板之间的间隔形成所述缝隙。
  10. 根据权利要求7所述的装置,其特征在于,还包括:
    第二导体,所述第二导体与所述接地单元电性连接,所述缝隙开设于所述第二导体上。
  11. 根据权利要求10所述的装置,其特征在于,所述装置包括:
    导电的外壳,所述外壳形成所述第二导体,所述主板设于所述外壳内部,所述主板的接地模块与所述外壳电性连接,所述缝隙开设于所述外壳上。
  12. 根据权利要求1至11中任一项所述的装置,其特征在于,
    所述装置包括腕戴式设备。
PCT/CN2021/122557 2020-11-25 2021-10-08 具有缝隙天线的装置 WO2022111061A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/316,760 US20230282967A1 (en) 2020-11-25 2023-05-12 Apparatuses With Slot Antennas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011345510.4 2020-11-25
CN202022761117.5 2020-11-25
CN202022761117.5U CN213425185U (zh) 2020-11-25 2020-11-25 具有缝隙天线的装置
CN202011345510.4A CN112490634A (zh) 2020-11-25 2020-11-25 具有缝隙天线的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/316,760 Continuation US20230282967A1 (en) 2020-11-25 2023-05-12 Apparatuses With Slot Antennas

Publications (1)

Publication Number Publication Date
WO2022111061A1 true WO2022111061A1 (zh) 2022-06-02

Family

ID=81755284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122557 WO2022111061A1 (zh) 2020-11-25 2021-10-08 具有缝隙天线的装置

Country Status (2)

Country Link
US (1) US20230282967A1 (zh)
WO (1) WO2022111061A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701618A (zh) * 2013-12-04 2015-06-10 苹果公司 具有混合倒f缝隙天线的电子设备
CN104821428A (zh) * 2015-04-28 2015-08-05 瑞声精密制造科技(常州)有限公司 天线装置
WO2016165113A1 (zh) * 2015-04-16 2016-10-20 华为技术有限公司 一种缝隙天线和移动终端
CN110544815A (zh) * 2018-05-29 2019-12-06 苹果公司 电子设备宽带天线
CN111613893A (zh) * 2020-06-10 2020-09-01 安徽华米信息科技有限公司 多频缝隙天线、终端设备及天线设计方法
CN112490634A (zh) * 2020-11-25 2021-03-12 安徽华米信息科技有限公司 具有缝隙天线的装置
CN213425185U (zh) * 2020-11-25 2021-06-11 安徽华米信息科技有限公司 具有缝隙天线的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701618A (zh) * 2013-12-04 2015-06-10 苹果公司 具有混合倒f缝隙天线的电子设备
WO2016165113A1 (zh) * 2015-04-16 2016-10-20 华为技术有限公司 一种缝隙天线和移动终端
CN104821428A (zh) * 2015-04-28 2015-08-05 瑞声精密制造科技(常州)有限公司 天线装置
CN110544815A (zh) * 2018-05-29 2019-12-06 苹果公司 电子设备宽带天线
CN111613893A (zh) * 2020-06-10 2020-09-01 安徽华米信息科技有限公司 多频缝隙天线、终端设备及天线设计方法
CN112490634A (zh) * 2020-11-25 2021-03-12 安徽华米信息科技有限公司 具有缝隙天线的装置
CN213425185U (zh) * 2020-11-25 2021-06-11 安徽华米信息科技有限公司 具有缝隙天线的装置

Also Published As

Publication number Publication date
US20230282967A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
EP3896790B1 (en) Antenna structure and communication terminal
CN104795623B (zh) 移动装置及其制造方法
CN107394351B (zh) 一种全金属外壳移动智能终端天线
EP2704252B1 (en) Mobile device and antenna structure
TWI557989B (zh) 行動裝置
CN112490634A (zh) 具有缝隙天线的装置
US20090289858A1 (en) antenna device , a portable radio communication device comprising such antenna device, and a battery package for a portable radio communication device
TWI531115B (zh) 通訊裝置
TWI539676B (zh) 通訊裝置
JP2016536934A (ja) 可変インピーダンス素子の弱結合によりアンテナを調整する技術
CN111613893A (zh) 多频缝隙天线、终端设备及天线设计方法
EP3246989B1 (en) Multi-frequency antenna and terminal device
CN212257694U (zh) 多频缝隙天线和终端设备
TWI531116B (zh) 通訊裝置
CN112821039A (zh) 天线结构及电子装置
TW201515316A (zh) 通訊裝置
CN108140929B (zh) 天线装置和终端
EP3258539B1 (en) Multi-frequency antenna and terminal device
CN213425185U (zh) 具有缝隙天线的装置
US20240014556A1 (en) Antenna assembly and electronic device
Wu et al. Co-design of a compact dual-band filter-antenna for WLAN application
TWI283496B (en) Multiband microwave antenna
WO2022111061A1 (zh) 具有缝隙天线的装置
CN108123209B (zh) 移动装置
WO2021249170A1 (zh) 多频缝隙天线、终端设备及天线谐振频率调整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896563

Country of ref document: EP

Kind code of ref document: A1