WO2022111049A1 - 一种真空集热管 - Google Patents

一种真空集热管 Download PDF

Info

Publication number
WO2022111049A1
WO2022111049A1 PCT/CN2021/122001 CN2021122001W WO2022111049A1 WO 2022111049 A1 WO2022111049 A1 WO 2022111049A1 CN 2021122001 W CN2021122001 W CN 2021122001W WO 2022111049 A1 WO2022111049 A1 WO 2022111049A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
movable
tube
inner tube
coating area
Prior art date
Application number
PCT/CN2021/122001
Other languages
English (en)
French (fr)
Inventor
徐阳
Original Assignee
徐阳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐阳 filed Critical 徐阳
Publication of WO2022111049A1 publication Critical patent/WO2022111049A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/60Thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S2010/751Special fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention mainly relates to a heat collecting tube, in particular to a vacuum heat collecting tube.
  • the vacuum collector tube is the key component of the vacuum collector.
  • the vacuum collector tube has the characteristics of high heat collection efficiency and low cost, and has a wide range of applications in the solar collector market.
  • FIG. 1 shows a cross-sectional view of a conventional vacuum heat collector tube with a U-shaped cup-shaped structure open on one side.
  • the vacuum heat collector tube is composed of double-layer glass, including a glass inner tube 11 and a glass outer tube 12, a vacuum interlayer 13 is drawn between the two, and the outer wall of the glass inner tube 11 of the vacuum interlayer 13 is coated with a solar endothermic coating layer 14 to improve solar radiation absorption.
  • the glass outer tube 12 is a light-transmitting glass tube, and one end of the heat collecting tube is closed.
  • the inner and outer glass tubes are coaxial and one end is closed, and the other end is connected by direct melting.
  • the heat collecting medium (fluid or gas) enters the heat collecting tube from the open end 15 to absorb heat.
  • the heat exchange between the collector tube and the outside is completed by the natural convection of the fluid in the collector tube.
  • This traditional vacuum heat collector tube has a blind tube on one side of the heat collector tube, so the water or fluid in the heat collector tube cannot flow smoothly, and the heat exchange can only be carried out by natural convection, which is an inefficient heat exchange method, and the efficiency is low.
  • the scaling of the inner tube will also greatly reduce the heat transfer performance. In use, the pipes will burst due to factors such as not filling the water in time or not emptying them at night in winter, which will bring unnecessary losses to users and dealers.
  • heat pipe vacuum heat collectors introduce heat conduction elements to assist.
  • a heat pipe is an efficient heat conducting element that transfers heat using two phase transitions of the working medium.
  • the heat pipe type vacuum heat collector developed by combining the heat pipe and the vacuum heat collector has the advantages of high thermal conductivity and good antifreeze performance.
  • Invention patent application No. 200610098390.6 discloses a metal heat pipe type vacuum heat collector, which is sealed and welded by inserting the metal heat pipe into a metal flange.
  • the metal flange is welded to the glass outer nozzle by Kovar alloy.
  • Kovar alloy with a relatively low expansion rate is used, there is still a problem that processing is difficult. Due to the different expansion rates of metal and glass, gaps are likely to be formed at the melting seal in long-term use, and the vacuum degree cannot be guaranteed, reducing the efficiency of the heat collector tube. The same metal material increases the manufacturing cost, and the price is not competitive.
  • Another heat-pipe-type vacuum heat collector adopts an all-glass heat-pipe structure, such as a heat-pipe-type all-glass vacuum solar collector disclosed in Invention Patent No. 201210014689.4.
  • the idea is to use glass heat pipes instead of metal heat pipes.
  • the fully vacuum glass tube is coaxially extended from the mouth of the ring-sealed cup and has an equal diameter to form the condensation section of the glass heat pipe, and then the working medium is injected into the inner tube and then evacuated.
  • the disadvantage is that due to the existence of thermal stress at the ring seal, it is easy to break in actual use; because the outer wall of the inner tube is coated with a selective absorption coating and then the condensation section of the heat pipe is welded, the high temperature will cause the paint at the interface to volatilize, affecting the heat collection. Effect.
  • the heat pipe vacuum collector adopts indirect heat transfer. Although it adopts a high thermal conductivity scheme, its overall efficiency is still lower than that of direct heat transfer. Therefore, the technology has obvious deficiencies in terms of cost, performance and reliability, which also limits the extensiveness of the technology.
  • the straight-through collector tubes with smooth flow at both ends can directly collect the absorbed solar energy, and have good performance in terms of efficiency and system flow regulation control.
  • the current technology adopts solutions such as Kovar metal welding glass, which are expensive to manufacture and difficult to popularize on a large scale.
  • the present invention creatively solves the problem that the glass tube ruptures due to the large temperature difference between the inner and outer tubes of the straight-through vacuum heat collecting tube when the temperature is high, which causes different expansion and contraction states.
  • the high-efficiency characteristics of the vacuum heat collector are maintained within the target temperature range. And realize cost-effective innovative products, creating conditions for the large-scale application and promotion of straight-through collector tubes.
  • the technical problem to be solved by the present invention is to provide a vacuum heat collector tube, comprising a vacuum outer tube, a vacuum inner tube and a vacuum interlayer therebetween, characterized in that the vacuum heat collector tube further comprises:
  • a solar heat collecting layer which is arranged on the outer surface of the vacuum inner tube, and the solar heat collecting layer includes a coating area and a non-coating area;
  • the movable covering unit includes at least one movable heat preservation fin, which is arranged outside the non-coating area.
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the coating area and the non-coating area are axially arranged along the outer wall of the vacuum inner tube to form first and second fan-shaped areas, the central angle of the first fan-shaped area of the non-coating area is ⁇ , and the coating area The central angle of the second sector is 360- ⁇ .
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the range of the central angle of the first sector of the non-coated area satisfies: 10° ⁇ 180°.
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the coating area and the non-coating area are arranged at intervals along the outer wall of the vacuum inner tube to form first and second annular areas.
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the vacuum heat collector further includes:
  • the reflection unit is arranged between the outer side of the vacuum inner tube and the inner side of the vacuum outer tube in the coating area.
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the movable insulating fins move along the radial or circumferential direction of the vacuum inner tube.
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the reflection unit is movably connected with the movable heat preservation fin, and the movable heat preservation fin drives the reflection unit to rotate in the circumferential direction of the vacuum inner tube.
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the vacuum heat collector further includes:
  • the opening and closing part is arranged in the vacuum interlayer, and the opening and closing part drives the movable heat preservation fin to open and close relative to the vacuum inner tube.
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the opening and closing part includes a loose-leaf mechanism, a transmission key, a bimetallic sheet and a bimetallic bracket, the loose-leaf mechanism includes a loose-leaf shaft and a symmetrical movable blade, and the bimetallic sheet is fixed in the coating area through the bimetallic bracket , the loose-leaf mechanism and the bimetal are connected through the transmission key;
  • the bimetal sheet bounces up or resets, and drives the transmission key to push up or pull back the loose-leaf mechanism, drives the symmetrical movable blades to open and close, and passes through the movable blades
  • the movable heat-insulating fins connected thereto are driven to open and close.
  • the present invention further provides a vacuum heat collector, characterized in that:
  • the opening and closing part includes a memory alloy unit, and the memory alloy unit is connected with the movable heat preservation fin.
  • the memory alloy unit expands or retracts to drive the movable fin to move.
  • the vacuum heat collector tube of the present invention has a thermal barrier function for the vacuum tube through the coating area and non-coating area, and the design of the insulating fins in the covered state, and has a significant effect on reducing the heat loss coefficient of the heat collector tube.
  • FIG. 1 is a cross-sectional view of a conventional vacuum heat collector
  • Figures 2(1) to 2(4) show a perspective view and a cross-sectional view of the first preferred embodiment of the present invention
  • Figures 3(1) and 3(4) illustrate a perspective view and a cross-sectional view of a second preferred embodiment of the present invention
  • 4(1) and 4(4) are a perspective view and a sectional view of the third preferred embodiment of the present invention.
  • 5(1) and 5(2) are a perspective view and a sectional view of the fourth preferred embodiment of the present invention.
  • FIG. 6 is a perspective view of the fifth preferred embodiment of the present invention.
  • 7(1) and 7(2) are a perspective view and a sectional view of the sixth preferred embodiment of the present invention.
  • 8(1) and 8(2) are a perspective view and a cross-sectional view of a seventh preferred embodiment of the present invention.
  • orientations indicated by the orientation words such as “front, rear, top, bottom, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc.
  • positional relationship is usually based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present application and simplifying the description, and these orientations do not indicate or imply the indicated device or element unless otherwise stated. It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be construed as a limitation on the protection scope of the application; the orientation words “inside and outside” refer to the inside and outside relative to the contour of each component itself.
  • spatially relative terms such as “on”, “over”, “on the surface”, “above”, etc., may be used herein to describe what is shown in the figures.
  • spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “above” or “over” other devices or features would then be oriented “below” or “over” the other devices or features under other devices or constructions”.
  • the exemplary term “above” can encompass both an orientation of "above” and “below.”
  • the device may also be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
  • Figures 2(1) to 2(4) show the structure of the first preferred embodiment of this case.
  • the vacuum heat collecting tube in this embodiment 1 includes a vacuum outer tube 21, a vacuum inner tube 22, and a vacuum interlayer 23 therebetween.
  • the outer surface of the vacuum inner tube 22 is a solar heat collecting layer 24, and the heat collecting layer 24 is Selective absorption coating on the outer wall of the vacuum inner tube 22 .
  • the heat collecting layer 24 does not completely cover the outer wall of the vacuum inner tube 22, but adopts partial coverage.
  • the coating area 241 and the non-coating area 242 are axially arranged along the outer wall of the vacuum inner tube, forming two A sector-shaped area, wherein the central angle corresponding to the sector-shaped area of the non-coated area 242 is shown as ⁇ , and the central angle corresponding to the sector-shaped area of the coated area 241 is (360- ⁇ ), which must satisfy:
  • a movable cover unit 25 is provided in the non-coated area 242.
  • the movable cover unit 25 includes at least one movable heat preservation fin 251 that slides open and closes.
  • the fins 251 may be attached to the outer circumferential surface of the non-coated area 242, or may be separated by a certain distance.
  • the movable heat preservation fins 251 are slidably opened and closed along the outer wall of the vacuum inner tube 22 in the circumferential direction.
  • Figure 2(1) shows a schematic cross-sectional view of the movable heat preservation fins 251 that completely shield the non-coated area 242 and slide open in the direction of the arrow
  • Figure 2(2) is a perspective view of the corresponding vacuum heat collector.
  • 2(3) is a schematic diagram of the movable heat preservation fin 251 sliding from the coating area 241 back to the non-coating area 242 in the direction of the arrow and shielding the non-coating area 242.
  • Fig. 2(4) is a schematic cross-sectional view of Fig. 2(3).
  • the arrows indicate that the non-coated area 242 is slidably closed by the movable heat preservation fins 251 .
  • the coating area 241 of the solar heat collecting layer 24 is arranged on the outer surface of the vacuum inner tube 22 with the central angle of the fan-shaped area not exceeding 350°, and the outer surface of the non-coating area 242 with the central angle of the fan-shaped area not exceeding 180° , using a movable cover unit 25, once the temperature of the vacuum inner tube 22 of the vacuum heat collector is too high, or when the temperature difference between the vacuum inner tube 22 and the vacuum outer tube 21 is too large, the movable cover unit 25 is moved to make the vacuum The non-coated area 242 of the tube 22 is exposed, thereby dissipating heat, so as to control the temperature of the vacuum inner tube 22 and protect the vacuum heat collecting tube.
  • the solar collector layer 24 has a good thermal insulation effect when the collector tube is in an endothermic state. It is measured that the heat loss coefficient of the structure can be reduced by about 20% compared with the ordinary vacuum heat collector. It reflects the excellent thermal insulation effect and significantly improves the heat collection efficiency.
  • the maximum temperature of the vacuum inner tube 22 is more than 40 degrees lower than that of the ordinary vacuum heat collector. It is actually measured that when the solar radiation reaches 1000 watts per square meter, the ordinary vacuum heat collecting tube bursts, while the vacuum heat collecting tube adopting the structure of the present invention is intact.
  • Figures 3(1) to 3(4) show the structure of the second preferred embodiment of this case.
  • the basic structure of this embodiment is similar to that of Embodiment 1.
  • the vacuum heat collecting tube includes a vacuum outer tube 21, a vacuum inner tube 22, a vacuum interlayer 23 between the two, and a solar heat collecting layer 24 on the outer surface of the vacuum inner tube 22.
  • the heat collecting layer 24 includes two fan-shaped coating areas 241 and a non-coating area 242 .
  • Embodiment 1 The difference from Embodiment 1 is that a reflection unit 26 fixed by a bracket is added in the vacuum interlayer 23 . As shown in the figure, the two ends of the reflection unit 26 are respectively disposed on the outer side of the vacuum inner tube 22 and the inner side of the vacuum outer tube 21 , so as to separate the vacuum interlayer 23 into two areas, and all the coating areas 241 are located in the area separated by the reflection unit 26 . within the same area.
  • FIG. 251 Another movement mode of the movable heat preservation fins 251 is also given, that is, the movement of opening and closing in the radial direction.
  • Figures 3(1) and 3(2) show the movable heat preservation fins 251 It is an illustration of unfolding rather than sliding, and the arrow is a representation of the outward movement of the thermal insulation fins 251 in the radial direction.
  • Figures 3(3) and 3(4) illustrate that the movable heat preservation fins 251 are cohesive rather than slidably closed, and the arrows indicate the inward movement of the heat preservation fins 251 in the radial direction.
  • the movable cover structure composed of the movable thermal insulation fins 251 is moved radially to expose the cover when the temperature of the thermal insulation inner tube is too high, or the temperature difference between the inner tube and the outer tube is too large.
  • the outer surface of the inner tube increases the heat dissipation control temperature.
  • Figures 4(1) to 4(4) show the structure of the third preferred embodiment of this case.
  • the structure of this embodiment is similar to that of Embodiment 2, and a reflection unit 26 is also added in the vacuum interlayer 23 of the vacuum heat collector.
  • the reflection unit 26 is not fixed between the vacuum outer tube 21 and the vacuum inner tube 22, but is linked with the movable cover unit 25, that is, the movable heat preservation fins 251 of the movable cover unit 25
  • the temperature of the vacuum inner tube 22 is too high, or the temperature difference between the vacuum inner tube 22 and the vacuum outer tube 21 is too large, as shown in FIG. 4(3) and FIG.
  • the non-coated area 242 on the surface increases the heat dissipation control temperature, and drives the reflection unit 26 to move around the vacuum inner tube 22 during the opening process, thereby reducing the solar reflection and absorption area.
  • the movable heat preservation fins 251 are reset.
  • Figures 5(1) to 5(2) show the structure of the fourth preferred embodiment of this case.
  • the movable heat preservation fin 251 adopted by the movable covering unit 25 is a single fin structure, and the single fin 251 can slide circumferentially on the outer wall of the vacuum inner tube 22, That is, according to the actual situation, it slides between the coated area 241 and the non-coated area 242 of the solar heat collecting layer 24 .
  • the non-coated area 242 exposing the outer surface of the vacuum inner tube 22 is opened to increase the heat dissipation control temperature , and when the temperature or temperature difference drops, the single fin 251 is reset to cover the non-coated area 242 .
  • the foregoing embodiments are all structures in which the movable heat preservation fins 251 slide in the circumferential direction of the vacuum inner tube 22 or change and move radially with the axis as the center.
  • the embodiment shown in FIG. 6 adopts a structure that moves along the axial direction.
  • the coated area 241 and the non-coated area 242 on the solar heat collector layer 24 on the outer surface of the vacuum inner tube 22 are spaced along the outer wall of the vacuum inner tube as annular areas with alternate rings, in other words, the coating
  • the area 241 adopts annular coating, that is, the coating area 241 and the non-coating area 242 on the outer surface of the vacuum inner tube 22 are annularly alternated, so that when the temperature of the vacuum inner tube 22 is too high, or the temperature difference between the vacuum inner tube 22 and the vacuum outer tube 21 is too large
  • the movable heat preservation fin 251 slides along the axial direction as required to open the non-coated area 242 exposing the outer surface of the covered vacuum inner tube 22 to increase the heat dissipation control temperature, and when the temperature or temperature difference drops , the movable heat preservation fins 251 are reset to cover the non-coated area 242 .
  • Figures 7(1) and 7(2) further illustrate the structure of the sixth preferred embodiment of the present case.
  • the solar collector tube is composed of a vacuum outer tube 21 , a vacuum inner tube 22 and a vacuum interlayer 23 between the vacuum inner and outer tubes.
  • the vacuum interlayer 23 there is an opening and closing part 200, through which the movable heat preservation fins 251 can be opened or closed, and finally the heat dissipation and temperature control state or the heat collection and heat preservation state of the heat collecting pipe is realized.
  • the opening and closing portion 200 includes a loose-leaf mechanism 30 , a transmission key 29 , and a bimetallic sheet 27 , the structure of which will be described in detail below.
  • the bimetal sheet 27 is used to sense the temperature of the outer wall of the inner tube, and is fixed by the bimetal bracket 28 .
  • the bimetal 27 bounces up or resets when the temperature rises or falls to a certain threshold.
  • the bimetal 27 is connected to the transmission key 29 , and the transmission key 29 can lift up or pull back the loose-leaf mechanism 30 in contact with the bimetal 27 during the pop-up or reset action of the bimetal 27 .
  • the loose-leaf mechanism 30 includes a loose-leaf shaft 302 and movable blades 301 and 303 symmetrical on both sides.
  • the hinge mechanism 30 opens or closes the hinge shaft 302 around the hinge shaft 302 when the drive key 29 pushes up or pulls back the hinge, and the movable blades 301 and 303 are opened or closed by opening or closing, and the movable blades 301 , 303 drives the movable heat preservation fins 251 connected to the end connection points 31 to open or close.
  • Two ends or one end of the loose-leaf shaft 302 is provided with a supporting structure (not shown) composed of supporting holes or supporting grooves, and the supporting structure is fixed on the outer wall surface of the vacuum inner tube 22 .
  • the bimetal 27 is connected with the transmission key 29, and the two can be connected by welding, riveting and other processes.
  • the bimetal 27 is heated, the thermal expansion and cold contraction change from the state shown in FIG. 7(1) to the state shown in FIG. 7(2).
  • the shaft 302 opens the movable blades 301 and 303 on both sides, so that the angle of the movable blades 301 and 303 around the loose leaf shaft 302 can be changed. Thereby, the heat dissipation and temperature control state or the heat collection and heat preservation state of the heat collecting tube are realized.
  • a rotatable reflection unit 26 can also be movably connected to the end connection points 31 of the movable blades 301 and 303.
  • the reflection surface of the reflection unit 26 has an included angle of 45° to 60° with the vertical direction, so that the reflection unit 26 can During the opening or closing of the movable blades 301, 303, it is rotated to a protective angle state that reduces sunlight reflection and an endothermic optimized state that increases sunlight reflection.
  • Figures 8(1) and 8(2) further illustrate the structure of the seventh preferred embodiment of the present application.
  • the opening and closing portion 200 of another structure is used in the vacuum interlayer 23 .
  • the opening and closing portion 200 includes a memory alloy unit 32, and the memory alloy unit 32 adopts an extensible strip shape and is connected to the movable heat preservation fins 251 on both sides by means such as riveting.
  • the memory alloy unit 32 itself shrinks or stretches when it reaches a certain temperature threshold, which can drive the heat preservation fins 251 to realize that the movable fins 251 cover the coating area 241, so as to realize that the movable fins 251 avoid the high radiation area of the glass tube, Enhanced thermal protection for maximum temperature control.
  • Fig. 8(1) shows the state where the memory alloy unit 32 will expand outward from the original curve shape when the heat absorption reaches a certain level
  • Fig. 8(2) is the state where the memory alloy unit 32 retracts and resets after the temperature or temperature difference drops. signal.
  • the movable fins 251 are pushed from the non-coated area 242 to the coated area 241 to play a shielding role.
  • the coating area and the non-coating area are arranged on the outer wall of the inner tube of the existing vacuum heat collector. Then cover the movable insulation fins on this basis.
  • the optimization of the area of the coated area and the non-coated area and the coverage and opening of the thermal insulation fins in the non-coated area realizes the optimization of high heat collection efficiency and controlled high temperature protection.
  • the present invention has the following advantages:
  • bimetallic strips are widely used in aerospace industry and vacuum environment, the trigger is determined by material properties and structure, and the repeatability is good.
  • the cost is low: when the bimetallic sheet and the thermal insulation fin considered in this structure are applied in large quantities, the material cost is low and the manufacturing process is simple. Useful to provide extremely cost-effective.
  • thermal insulation fins are in the covered state, which acts as a thermal barrier for the vacuum tube and has a significant effect on reducing the heat loss coefficient of the collector tube.
  • references such as “one embodiment,” “an embodiment,” and/or “some embodiments” mean a certain feature, structure, or characteristic associated with at least one embodiment of the present application. Therefore, it should be emphasized and noted that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in different places in this specification are not necessarily referring to the same embodiment . Furthermore, certain features, structures or characteristics of the one or more embodiments of the present application may be combined as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Insulation (AREA)

Abstract

一种真空集热管,包括真空外管(21)、真空内管(22)及其间的真空夹层(23),并进一步包括:太阳能集热层(24),设置于所述真空内管(22)外表面,所述太阳能集热层(24)包括镀膜区(241)和非镀膜区(242);可移动覆盖单元(25),包括至少一可移动保温翅片(251),设置于所述非镀膜区(242)外侧。该真空集热管通过镀膜区(241)和非镀膜区(242)、以及保温翅片(251)在覆盖状态的设计,对于真空管起到热屏障作用,对降低集热管热损失系数有明显作用。

Description

一种真空集热管 技术领域
本发明主要涉及集热管,尤其涉及一种真空集热管。
背景技术
真空集热管是组成真空集热器的关键部件。真空集热管具备集热效率高,成本低的特点,并在太阳能集热器市场中具有广泛的应用。
如图1,所示为传统的真空集热管为单面开口的U型杯状结构真空管的剖视图。该真空集热管由双层玻璃组成,包括玻璃内管11和玻璃外管12,二者之间抽设真空夹层13,并在真空夹层13的玻璃内管11的外侧壁涂覆太阳能吸热涂层14,以提高太阳辐射吸收率。玻璃外管12为透光玻璃管,集热管一端封闭。内外玻璃管同轴且一端封闭,另一端通过直接烧熔联接。集热介质(流体或气体)从开口端15进入集热管吸热。集热管与外部的热交换通过集热管内流体的自然对流完成。
这种传统的真空集热管由于集热管一侧为盲管,集热管内水或流体无法顺畅流动,只能通过自然对流这一低效率换热方式进行热交换,效率较低。长时期使用后,内管结垢也会大大降低传热性能。在使用中还会因没有及时上水或冬季夜间未排空等因素而造成爆管,给用户和经销商带来不必要的损失。
考虑到传统真空集热管的缺点,热管式真空集热管引入导热元件辅助。热管是一种高效的导热元件,利用工作介质的两次相变传递热量。将热管与真空集热管结合所开发的热管式真空集热管具有导热效率高,抗冻性能好等优点。
发明专利申请号200610098390.6公开的一种金属热管式真空集热管,将金属热管插入金属法兰盘中密封焊接。金属法兰盘通过可伐合金与玻璃外管口熔封。虽然采用了膨胀率相对较低的可伐合金,但是依然存在加工较为困难的问题。由于金属与玻璃的膨胀率不同,长期使用中熔封处容易产生缝隙,无法保证真空度,降低集热管效率。同属金属材料增加了制造成本,价格不具备竞争力。
另一种热管式真空集热管采用全玻璃热管式结构,如发明专利号201210014689.4所公开的一种热管式全玻璃真空太阳集热管。其思路是利用玻璃热管代替金属热管。制作工艺上将全真空玻璃管自环封杯口处同轴并等直径外延伸形成玻璃热管的冷凝段,然后向内管中注入工质再抽真空。不足之处在于环封处由于热应力的存在,在实际使用时容易破裂;由于内管外壁涂敷选择性吸收涂层后再焊接热管冷凝段,高温会使接口处的涂料挥发,影响集热效果。
热管式真空集热管由于附加材料和工艺的引入,采用间接传热,尽管采用高的导热方案,但其整体效率还是比直接传热低。因此该技术在成本,性能和可靠性等方面还有明显不足,也限制了该技术推广的广泛性。
两端流动畅通的直通式集热管可以直接将吸收的太阳能收集,在效率和系统通过流量调节控制等方面都具备良好性能。然而当前技术采用可伐金属焊接玻璃等方案制造成本高,难以大规模推广。
发明内容
针对上述问题,本发明创造性解决直通式真空集热管在高 温时内外管温度差大从而引起不同膨胀和收缩状态,而导致玻璃管破裂的难题。同时,在目标温度范围内保持真空集热管的高效率特性。并实现高性价比的创新产品,为直通式集热管的大规模应用和推广创造条件。
本发明要解决的技术问题是提供一种真空集热管,包括真空外管、真空内管及其间的真空夹层,其特征在于,所述真空集热管进一步包括:
太阳能集热层,设置于所述真空内管外表面,所述太阳能集热层包括镀膜区和非镀膜区;
可移动覆盖单元,包括至少一可移动保温翅片,设置于所述非镀膜区外侧。
比较好的是,本发明进一步提供了一种真空集热管,其特征在于,
所述镀膜区和所述非镀膜区沿着所述真空内管外壁轴向设置形成第一、第二扇形区,所述非镀膜区的第一扇形区的圆心角为θ,所述镀膜区的第二扇形区的圆心角为360-θ。
比较好的是,本发明进一步提供了一种真空集热管,其特征在于,
所述非镀膜区的第一扇形区的圆心角范围满足:10°≤θ≤180°。
比较好的是,本发明进一步提供了一种真空集热管,其特征在于,
所述镀膜区和所述非镀膜区沿着所述真空内管外壁周向间隔设置形成第一、第二环形区。
比较好的是,本发明进一步提供了一种真空集热管,其特征在于,
所述真空集热管进一步包括:
反射单元,设置于所述镀膜区的所述真空内管外侧和所述真空外管内侧之间。
比较好的是,本发明进一步提供了一种真空集热管,其特征在于,
所述可移动保温翅片沿着所述真空内管的径向或周向移动。
比较好的是,本发明进一步提供了一种真空集热管,其特征在于,
所述反射单元与所述可移动保温翅片活动连接,所述可移动保温翅片带动所述反射单元绕所述真空内管周向转动。
比较好的是,本发明进一步提供了一种真空集热管,其特征在于,
所述真空集热管进一步包括:
开合部,设置在所述真空夹层内,所述开合部驱动所述可移动保温翅片相对所述真空内管开合。
比较好的是,本发明进一步提供了一种真空集热管,其特征在于,
所述开合部包括活页机构、传动键、双金属片和双金属支架,所述活页机构包括活页轴及对称的活动叶片,所述双金属片通过所述双金属支架固定在所述镀膜区,所述活页机构与所述双金属片之间通过所述传动键连接;
其中,当发生温度变化时,所述双金属片弹起或复位,并带动所述传动键顶起或拉回所述活页机构,带动所述对称的活动叶片开合,并通过所述活动叶片带动其连接的所述可移动保温翅片开合。
比较好的是,本发明进一步提供了一种真空集热管,其特 征在于,
所述开合部包括记忆合金单元,所述记忆合金单元与所述可移动保温翅片相连,当发生温度变换时,所述记忆合金单元伸展或回缩,带动所述可移动翅片移动。
通过实际测试,本发明真空集热管通过镀膜区和非镀膜区、以及保温翅片在覆盖状态的设计,对于真空管起到热屏障作用,对降低集热管热损失系数有明显作用。
附图说明
包括附图是为提供对本申请进一步的理解,它们被收录并构成本申请的一部分,附图示出了本申请的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1是传统真空集热管的剖视图;
图2(1)~2(4)给出了本发明第一较佳实施例的立体图和剖视图;
图3(1)和3(4)示意了本发明第二较佳实施例的立体图和剖视图;
图4(1)和4(4)是本发明第三较佳实施例的立体图和剖视图;
图5(1)和5(2)是本发明第四较佳实施例的立体图和剖视图;
图6是本发明第五较佳实施例的立体图;
图7(1)和7(2)是本发明第六较佳实施例的立体图和剖视图;
图8(1)和8(2)是本发明第七较佳实施例的立体图和剖视图。
附图标记
21――真空外管
22――真空内管
23――真空夹层
24――太阳能集热层
241――镀膜区
242――非镀膜区
25――可移动覆盖单元
251――可移动保温翅片
26――反射单元
27――双金属片
28――双金属支架
29――传动键
30――活页机构
301――活动叶片
302――活页轴
303――活动叶片
31――端部连接点
32――记忆合金单元
200――开合部
具体实施方式
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域 的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身 的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。此外,尽管本申请中所使用的术语是从公知公用的术语中选择的,但是本申请说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本申请。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,或将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
实施例1
图2(1)~2(4)给出了本案的第一个较佳实施例结构。
该实施例1中的真空集热管包括真空外管21、真空内管22,二者之间的真空夹层23,在真空内管22的外表面为太阳能集热层24,该集热层24为在真空内管22外壁的选择性吸收镀膜。
从图2(2)的剖视图上,该集热层24并非全覆盖真空内管22的外壁,而采用局部覆盖,镀膜区241和非镀膜区242沿着真空内管外壁轴向设置,形成两个扇形区,其中非镀膜区242的扇形区对应的圆心角图示为θ,镀膜区241的扇形区对应的圆心角为(360-θ)需满足:
10°≤θ≤180°
在非镀膜区242设置有一可移动覆盖单元25,较佳实施例中的该可移动覆盖单元25包括至少一滑动开合的可移动保温翅片251,图示的实施例中为两片,该翅片251可以贴合于非镀膜区242的外表圆周面,也可以相隔一定距离。该可移动保温翅片251沿真空内管22外壁周向滑动开合。图2(1)示意可移动保温翅片251完全遮蔽了非镀膜区242,并以箭头方向滑动开启的剖面示意图,图2(2)为其对应真空集热管的立体图。
图2(3)为可移动保温翅片251由镀膜区241按照箭头方向滑动回到非镀膜区242并遮蔽非镀膜区242的示意图。
图2(4)为图2(3)的剖面示意图。箭头为可移动保温翅片251将非镀膜区242滑动关闭的示意。
在上述实施例中,太阳能集热层24的镀膜区241布置在扇形区圆心角不超过350°的真空内管22的外表面,而对于扇形区圆心角不超过180°的非镀膜区242外侧,采用了可移动覆盖单元25,一旦真空集热管的真空内管22出现温度过高,或者真空 内管22与真空外管21温差过大时,该可移动覆盖单元25进行移动,使真空内管22的非镀膜区242暴露出来,由此进行散热,以控制真空内管22的温度,保护真空集热管。
在实际测量中,集热管在吸热状态下,太阳能集热层24起到很好的保温作用。实测所述结构的热损失系数比普通真空集热管最大可降低约20%。体现出优良的保温效果从而显著提升集热效率。
在高温保护状态实测对比中,该结构在露出覆盖部分的保护状态下,真空内管22的最高温度比普通真空集热管低40度以上。实测在太阳辐射达1000瓦每平方米的情况下,普通真空集热管炸裂,而采用本发明结构的真空集热管完好无损。
实施例2
图3(1)~3(4)给出了本案的第二个较佳实施例结构。
该实施例的基本结构与实施例1相似,真空集热管包括真空外管21、真空内管22,二者之间的真空夹层23,在真空内管22的外表面为太阳能集热层24,该集热层24包括两个呈扇形的镀膜区241和非镀膜区242,非镀膜区242设置至少一滑动开合的可移动保温翅片251。
不同于实施例1之处在于,在真空夹层23内添加通过支架固定的反射单元26。图中所示,该反射单元26的两端分别设置于真空内管22的外侧和真空外管21的内侧,从而将真空夹层23分隔为两个区域,全部镀膜区241位于反射单元26分隔的同一区域内。
在该实施例中,还给出了可移动保温翅片251的另一种移动方式,即在径向上开合的移动,图3(1)和3(2)给出可移动保 温翅片251展开而非滑动的示意,箭头即为保温翅片251沿径向向外的移动展开示意。
图3(3)和3(4)给出可移动保温翅片251抱合而非滑动闭合的示意,箭头即为保温翅片251沿径向向内的移动抱合示意。
与实施例1同样的工作原理,上述由可移动保温翅片251组成的可移动覆盖结构在保温内管温度过高,或者内管与外管温差过大的情况下通过径向移动以露出覆盖的内管外表面,增大散热控制温度。
实施例3
图4(1)~4(4)给出了本案的第三个较佳实施例结构。
该实施例与实施例2结构类似,同样在真空集热管的真空夹层23内添加反射单元26。不同之处在于,该反射单元26并非固定设置在真空外管21和真空内管22之间,而是与可移动覆盖单元25相联动,即可移动覆盖单元25的可移动保温翅片251在真空内管22温度过高,或者真空内管22与真空外管21温差过大的情况下,如图4(3)和图4(4)所示,开启暴露出覆盖的真空内管22外表面的非镀膜区242,以增大散热控制温度,在此开启过程中带动反射单元26绕真空内管22移动,从而减少太阳反射吸收面积。而当温度下降,或温差较小时,如图4(1)和图4(2)所示,可移动保温翅片251复位。
实施例4
图5(1)~5(2)给出了本案的第四个较佳实施例的结构。
该实施例较之前实施例很大的区别在于:可移动覆盖单元25所采用的可移动保温翅片251为单翅片结构,该单翅片251可 以在真空内管22的外壁周向滑动,即根据实际情况,在太阳能集热层24的镀膜区241和非镀膜区242之间滑动。
当真空内管22温度过高,或者真空内管22与真空外管21温差过大的情况下,开启暴露出覆盖的真空内管22的外表面的非镀膜区242,以增大散热控制温度,而当温度或温差下降时,单翅片251复位于覆盖非镀膜区242。
实施例5
前述实施例均为可移动保温翅片251在真空内管22的周向滑动、或以轴为中心径向变化移动的结构,图6所示的实施例采用沿着轴向方向移动的结构。
具体来说,真空内管22外表面的太阳能集热层24上的镀膜区241和非镀膜区242,沿着真空内管外壁周向间隔设置为环环相间的环形区,换句话说,镀膜区241采用环形镀膜,即在真空内管22的外表面镀膜区241和非镀膜区242环形相间,这样,当真空内管22温度过高,或者真空内管22与真空外管21温差过大的情况下,可移动保温翅片251根据需要,沿轴向滑动,以开启暴露出覆盖的真空内管22的外表面的非镀膜区242,以增大散热控制温度,而当温度或温差下降时,可移动保温翅片251复位于覆盖非镀膜区242。
实施例6
图7(1)和7(2)进一步示意了本案第六个较佳实施例的结构。
该太阳能集热管由真空外管21、真空内管22和真空内、外管间真空夹层23组成。
在真空夹层23中,设有开合部200,通过该开合部200实现可移动保温翅片251的张开或闭合,最终实现集热管的散热控温状态或集热保温状态。
该开合部200包括活页机构30,传动键29,双金属片27,下面具体介绍其结构。
双金属片27用以感应内管外壁面温度,并通过双金属支架28固定。该双金属片27在温度升高或下降到一定阈值是弹起或复位。双金属片27连接传动键29,传动键29可以在双金属片27弹起或复位动作中顶起或拉回与其接触的活页机构30。该活页机构30包括一活页轴302及两侧对称的活动叶片301、303。
该活页机构30围绕活页轴302在传动键29顶起或拉回活页的时候围绕活页轴302打开角度或关闭角度,通过打开或关闭牵动活动叶片301、303张开或关闭,并通过活动叶片301、303带动其端部连接点31连接的可移动保温翅片251张开或闭合。
该活页轴302的两端或一端有由支撑孔或支撑槽组成的支撑结构(未图示出),该支撑结构固定在真空内管22的外壁面上。
双金属片27与传动键29连接,二者可以采用焊接,铆接等工艺实现连接。双金属片27在受热情况下,热胀冷缩从图7(1)的状态变为图7(2)所示状态,将向外侧突起,并将传动键29向外侧顶起,连动活页轴302打开两侧的活动叶片301、303,实现活动叶片301、303绕活页轴302的角度变化。从而实现集热管的散热控温状态或集热保温状态。
此外,在活动叶片301、303的端部连接点31还可以活动连接可旋转的反射单元26,该反射单元26的反射面与垂直方向夹角为45°~60°,从而该反射单元26可以在该活动叶片301、 303的张开或闭合中转动到减少阳光反射的保护角度状态和增大阳光反射的吸热优化状态。
实施例7
图8(1)和8(2)进一步示意了本案第七个较佳实施例的结构。
在与实施例1较类似结构的太阳能集热管中,在真空夹层23内采用了另一种结构的开合部200。
该开合部200包括记忆合金单元32,该记忆合金单元32采用可伸展条状,通过铆接等手段与两侧的可移动保温翅片251相连。该记忆合金单元32本身在达到一定温度阈值时收缩或伸长的特性可以带动保温翅片251实现可移动翅片251覆盖镀膜区241,以实现可移动翅片251避开玻璃管高辐射区域,增强散热实现最高温度控制的保护功能。
其中图8(1)示意了吸热到一定程度时记忆合金单元32将从原始曲线形即将向外伸展的状态,图8(2)为温度或温差下降后,记忆合金单元32回缩复位的示意。在图8(1)所示的情况下,记忆合金单元32在拉直伸长过程中,将可移动翅片251从非镀膜区242推至镀膜区241,起到遮蔽作用。
综上所述,本申请通过在现有真空集热管内管外壁进行镀膜区和非镀膜区布置。再此基础上覆盖可移动保温翅片。通过镀膜区和非镀膜区面积优化和保温翅片在非镀膜区的覆盖和打开实现高集热效率与控制高温保护的优化。
与现有技术相比,本发明具有以下优点:
第一,可靠性高:双金属片在航天工业和真空环境中被广 泛采用,触发由材料性质和结构确定,重复性好。
第二,成本低:本结构考虑的双金属片和保温翅片在大批量应用时,材料成本低,制造工艺简便。有利用提供极高性价比。
第三,效率高:通过实际测试,保温翅片在覆盖状态,对于真空管起到热屏障作用,对降低集热管热损失系数有明显作用。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与 本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
虽然本申请已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本申请,在没有脱离本申请精神的情况下还可作出各种等效的变化或替换,因此,只要在本申请的实质精神范围内对上述实施例 的变化、变型都将落在本申请的权利要求书的范围内。

Claims (10)

  1. 一种真空集热管,包括真空外管、真空内管及其间的真空夹层,其特征在于,所述真空集热管进一步包括:
    太阳能集热层,设置于所述真空内管外表面,所述太阳能集热层包括镀膜区和非镀膜区;
    可移动覆盖单元,包括至少一可移动保温翅片,设置于所述非镀膜区外侧。
  2. 根据权利要求1所述的真空集热管,其特征在于,
    所述镀膜区和所述非镀膜区沿着所述真空内管外壁轴向设置形成第一、第二扇形区,所述非镀膜区的第一扇形区的圆心角为θ,所述镀膜区的第二扇形区的圆心角为360-θ。
  3. 根据权利要求2所述的真空集热管,其特征在于,
    所述非镀膜区的第一扇形区的圆心角范围满足:10°≤θ≤180°。
  4. 根据权利要求1所述的真空集热管,其特征在于,
    所述镀膜区和所述非镀膜区沿着所述真空内管外壁周向间隔设置形成第一、第二环形区。
  5. 根据权利要求3所述的真空集热管,其特征在于,所述真空集热管进一步包括:
    反射单元,设置于所述镀膜区的所述真空内管外侧和所述真空外管内侧之间。
  6. 根据权利要求3所述的真空集热管,其特征在于,
    所述可移动保温翅片沿着所述真空内管的径向或周向移动。
  7. 根据权利要求6所述的真空集热管,其特征在于,
    所述反射单元与所述可移动保温翅片活动连接,所述可移动保温翅片带动所述反射单元绕所述真空内管周向转动。
  8. 根据权利要求6所述的真空集热管,其特征在于,所述真空集热管进一步包括:
    开合部,设置在所述真空夹层内,所述开合部驱动所述可移动保温翅片相对所述真空内管开合。
  9. 根据权利要求8所述的真空集热管,其特征在于,
    所述开合部包括活页机构、传动键、双金属片和双金属支架,所述活页机构包括活页轴及对称的活动叶片,所述双金属片通过所述双金属支架固定在所述镀膜区,所述活页机构与所述双金属片之间通过所述传动键连接;
    其中,当发生温度变化时,所述双金属片弹起或复位,并带动所述传动键顶起或拉回所述活页机构,带动所述对称的活动叶片开合,并通过所述活动叶片带动其连接的所述可移动保温翅片开合。
  10. 根据权利要求8所述的真空集热管,其特征在于,
    所述开合部包括记忆合金单元,所述记忆合金单元与所述可移动保温翅片相连,当发生温度变换时,所述记忆合金单元伸展或回缩,带动所述可移动翅片移动。
PCT/CN2021/122001 2020-11-25 2021-09-30 一种真空集热管 WO2022111049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011341343.6A CN114543368A (zh) 2020-11-25 2020-11-25 一种真空集热管
CN202011341343.6 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022111049A1 true WO2022111049A1 (zh) 2022-06-02

Family

ID=81659323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122001 WO2022111049A1 (zh) 2020-11-25 2021-09-30 一种真空集热管

Country Status (2)

Country Link
CN (1) CN114543368A (zh)
WO (1) WO2022111049A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202613791U (zh) * 2012-04-16 2012-12-19 王昆玉 大口径玻璃真空管闷晒式热水器
CN204730496U (zh) * 2015-06-20 2015-10-28 周峰 一种半模型太阳能真空管
WO2016071931A1 (en) * 2014-11-06 2016-05-12 Pleion S.R.L. Evacuated tube solar collector provided with an improved actuation of the glazing sheets
CN106989522A (zh) * 2017-05-04 2017-07-28 徐阳 直通型全玻璃真空集热管
CN110440460A (zh) * 2019-08-15 2019-11-12 李梦珠 一种磁动防空晒太阳能集热管
CN110715455A (zh) * 2019-10-18 2020-01-21 李梦珠 一种防空晒太阳能集热管
CN214148382U (zh) * 2020-11-25 2021-09-07 徐阳 一种真空集热管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202613791U (zh) * 2012-04-16 2012-12-19 王昆玉 大口径玻璃真空管闷晒式热水器
WO2016071931A1 (en) * 2014-11-06 2016-05-12 Pleion S.R.L. Evacuated tube solar collector provided with an improved actuation of the glazing sheets
CN204730496U (zh) * 2015-06-20 2015-10-28 周峰 一种半模型太阳能真空管
CN106989522A (zh) * 2017-05-04 2017-07-28 徐阳 直通型全玻璃真空集热管
CN110440460A (zh) * 2019-08-15 2019-11-12 李梦珠 一种磁动防空晒太阳能集热管
CN110715455A (zh) * 2019-10-18 2020-01-21 李梦珠 一种防空晒太阳能集热管
CN214148382U (zh) * 2020-11-25 2021-09-07 徐阳 一种真空集热管

Also Published As

Publication number Publication date
CN114543368A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
EP1752720B1 (en) Glass vacuum heat pipe type solar heat collection pipe
US8347877B2 (en) Solar energy collecting system and method
CA1066974A (en) Solar collector comprising an evacuated absorber cover tube
Robles et al. Aluminum minichannel solar water heater performance under year-round weather conditions
JPS5844299B2 (ja) 被覆された箔の吸収要素を有する太陽エネルギ−収集装置
CN106766257A (zh) 一种槽式太阳能集热器
Smyth et al. Experimental comparison of alternative convection suppression arrangements for concentrating integral collector storage solar water heaters
WO2022111049A1 (zh) 一种真空集热管
JPS5911827B2 (ja) 集熱部の選択吸収面
CN214148382U (zh) 一种真空集热管
CN2733257Y (zh) 一种太阳能真空管集热器
CN102109231B (zh) 一种线聚焦太阳能真空集热管
RU94316U1 (ru) Панель солнечного коллектора
CN206387126U (zh) 直肋管插翅片槽式聚光真空太阳能集热器
CN111219889A (zh) 石墨烯平板热管太阳能集热器及其制备方法
CN1661296B (zh) 玻璃真空太阳换能热管
CN106679196A (zh) 直肋管插翅片槽式聚光真空太阳能集热器
CN203240805U (zh) 一种金属-玻璃封接热管式真空太阳能集热管
CN201352016Y (zh) 一种防爆型真空集热管
CN202494237U (zh) 一种太阳能集热管
CN202494236U (zh) 带有遮光板的储热式真空管及储热式真空管集热器
WO2010072056A1 (zh) 一种真空集热板及其集热装置
JP2004278837A (ja) 太陽集熱装置
WO2009000129A1 (fr) Tube de récupération de chaleur sous vide solaire
CN214197616U (zh) 波纹直通管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896551

Country of ref document: EP

Kind code of ref document: A1