WO2022110995A1 - 开关量输出电路、电路板组件及电子设备 - Google Patents

开关量输出电路、电路板组件及电子设备 Download PDF

Info

Publication number
WO2022110995A1
WO2022110995A1 PCT/CN2021/118857 CN2021118857W WO2022110995A1 WO 2022110995 A1 WO2022110995 A1 WO 2022110995A1 CN 2021118857 W CN2021118857 W CN 2021118857W WO 2022110995 A1 WO2022110995 A1 WO 2022110995A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection device
overvoltage protection
coil
output circuit
control circuit
Prior art date
Application number
PCT/CN2021/118857
Other languages
English (en)
French (fr)
Inventor
黎小刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2023532188A priority Critical patent/JP2023551261A/ja
Priority to KR1020237019708A priority patent/KR20230104955A/ko
Priority to EP21896499.7A priority patent/EP4250505A4/en
Publication of WO2022110995A1 publication Critical patent/WO2022110995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/44Magnetic coils or windings
    • H01H50/443Connections to coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere

Definitions

  • the embodiments of the present application relate to the technical field of circuits, and in particular, to a switch output circuit, a circuit board assembly, and an electronic device.
  • the switch output interface is an electrical interface that realizes equipment interconnection, communication and control actions.
  • the switch output interface works in a complex electromagnetic environment.
  • the switch output interface may be impacted by surge voltage due to lightning strike or operating overvoltage. If the switch output circuit connected to the switch output interface does not add any overvoltage protection device, it only depends on the isolation of the switch output circuit itself. It cannot withstand large surge voltages, which will lead to device damage, information loss, reset or malfunction of the switching output circuit.
  • an overvoltage protection device can be added at each switch output interface, so that the switch output circuit has good anti-surge capability.
  • the overvoltage protection device added to prevent the impact of the surge voltage destroys the insulation of the switching output circuit, which easily makes the switching output circuit fail to pass the withstand voltage test. That is, the switch output circuit will be applied with a higher power frequency or DC voltage during the withstand voltage test, and the power frequency overvoltage intruding along the switch output cable from the outside will cause overpower damage to the overvoltage protection device, and cause the switch value.
  • the output circuit withstand voltage test failed.
  • it is necessary to add an overvoltage protection device to each contact which occupies a large area of the circuit board and has a high cost.
  • An embodiment of the present application provides a switch output circuit, including: a control circuit, a contact switch, a coil, a first overvoltage protection device, and a second overvoltage protection device; the first end of the control circuit is connected to the The first end of the coil, the second end of the control circuit is connected to the second end of the coil, there is a distributed capacitance between the contact switch and the coil; the control circuit controls the magnetic field by adjusting the coil The turn-on and turn-off of the contact switch; the first end of the first overvoltage protection device is connected between the first end of the control circuit and the first end of the coil, and the first overvoltage protection device is connected between the first end of the control circuit and the first end of the coil.
  • the second end of the overvoltage protection device is connected between the second end of the control circuit and the second end of the coil; the first end of the second overvoltage protection device is connected to the second end of the control circuit Between the second end of the coil and the second end of the second overvoltage protection device, the second end of the second overvoltage protection device is connected to the protective ground.
  • Embodiments of the present application also provide a circuit board assembly, including the above-mentioned switching output circuit.
  • Embodiments of the present application further provide an electronic device including the above circuit board assembly.
  • FIG. 1 is a schematic diagram of the circuit structure of a switching quantity output circuit according to the first embodiment of the present application
  • FIG. 2 is a voltage waveform diagram of a switch output circuit on one side of a contact switch according to the first embodiment of the present application;
  • FIG. 3 is a voltage waveform diagram of a switch output circuit on one side of the coil according to the first embodiment of the present application;
  • FIG. 4 is a voltage waveform diagram of a switch output circuit in a control circuit according to the first embodiment of the present application
  • FIG. 5 is a schematic diagram of the circuit structure of a switch output circuit according to the second embodiment of the present application.
  • the main purpose of the embodiments of the present application is to provide a switch output circuit, a circuit board assembly and an electronic device, which can reduce the surge voltage borne by the overvoltage protection device in the switch output circuit and at the same time improve the resistance of the switch output circuit. pressure capacity.
  • the first embodiment of the present application relates to a switch output circuit.
  • the switch output circuit in this embodiment includes: a control circuit 101 , a contact switch S, a coil L, and a first overvoltage protection device 102 .
  • a second overvoltage protection device 103 is a first overvoltage protection device.
  • the first end a of the control circuit 101 is connected to the first end g of the coil L
  • the second end b of the control circuit 101 is connected to the second end h of the coil L
  • the control circuit 101 controls the on and off of the contact switch S by adjusting the magnetic field of the coil L
  • the first end c of the first overvoltage protection device 102 is connected to the first end a of the control circuit 101 and the first end of the coil L
  • the terminals g, namely SW the second terminal d of the first overvoltage protection device 102 is connected between the second terminal b of the control circuit 101 and the second terminal h of the coil L, that is, the ground terminal GND of the switching output circuit
  • the first end e of the second overvoltage protection device 103 is connected between the second end b of the control circuit 101 and the second end h of the coil L
  • the second end f of the second overvoltage protection device 103 is connected to the protective ground
  • the structure composed of the contact switch S and the coil L can be provided by a relay, or by other devices with the contact switch S and the coil L, as long as the device has the contact switch S and the coil L, that is Can.
  • control circuit 101 is a digital control circuit.
  • the voltage at the switch output interfaces out+ and out- can reach up to 4KV; as shown in Figure 3, when the surges of the switch output interfaces out+ and out- are the same, the voltage on the coil L side
  • the maximum voltage is only 200V; that is to say, when there is a surge at the switch output interface out+, out-, the surge voltage on the S side of the contact switch is larger, and the surge voltage on the coil L side is smaller.
  • the first overvoltage protection device 102 and the second overvoltage protection device 103 at one end of the coil L, due to the distributed capacitance between the contact switch S and the coil L, it has a certain isolation capability, It can block most of the surge from the contact switch S side to the coil L side, so that the surge voltage on the coil L side is greatly reduced.
  • the surge voltage borne by the overvoltage protection device of the present application is relatively small.
  • the overvoltage protection device bears a relatively large surge voltage, while the first overvoltage protection device 102 and the second overvoltage protection device 102 and the second overvoltage protection device in this application
  • the voltage protection devices 103 are all arranged on the side of the coil L, and the surge voltage they bear is relatively small. Therefore, under the condition that the surge voltages endured by the switch output interface are the same, the surge voltage endured by the overvoltage protection device of the present application Smaller, reducing the probability of damage to the overvoltage protection device.
  • the distributed capacitance between the contact switch S and the coil L first blocks most of the surge from being transmitted from the contact switch S side To the side of the coil L, part of the surge will reach the first overvoltage protection device 102 and the second overvoltage protection device 103, the first end of the first overvoltage protection device 102 is connected to SW, and the first overvoltage protection device 102
  • the second end of the second overvoltage protection device 103 is connected to GND, which can absorb the differential mode surge and reverse electromotive force in the switching output circuit.
  • the first end of the second overvoltage protection device 103 is connected to GND, and the second end of the second overvoltage protection device 103 is connected to PGND.
  • the surge of GND can be drained to the protective ground PGND. It should be noted that when the surge voltage at SW is greater than the surge voltage at GND, the first overvoltage protection device 102 will transmit the surge voltage at SW to GND, and surge through the second overvoltage protection device 103 Bleed to protective ground PGND.
  • FIG. 4 a schematic diagram of the voltage waveform of the switch output circuit of the present embodiment at the control circuit, wherein the voltages of the switch output interfaces out+ and out- are the same as those in FIGS. 2 and 3 ; it can be seen that this In the embodiment, the voltage at the control circuit can be reduced to about 30V when the voltage of the switch output interfaces out+ and out- can reach up to 4KV. Referring to FIG. 3, it can be seen that there is no overshoot between the coil L and the control circuit.
  • the voltage on the side of the coil L in Figure 3 is the voltage of the control circuit; it can be seen that the voltage at the control circuit of the present application is greatly reduced, thereby avoiding the intrusion of the switching output interface out+ and out-. The surge damages the control circuit.
  • the switch output circuit will be subjected to a withstand voltage test, that is, a higher power frequency or DC voltage will be applied to the switch output circuit during the withstand voltage test.
  • a withstand voltage test that is, a higher power frequency or DC voltage will be applied to the switch output circuit during the withstand voltage test.
  • the switch output circuit under the condition that the test voltages borne by the switch output interface are the same, when the switch output circuit is subjected to the withstand voltage test in this embodiment, due to the distributed capacitance between the contact switch S and the coil L, and The distributed capacitance can block the voltage of the withstand voltage test from being transmitted to the first overvoltage protection device 102 and the second overvoltage protection device 103.
  • the first overvoltage protection device 102 and the second overvoltage protection device 103 do not need to withstand the test voltage, which improves the switching performance.
  • the withstand voltage capability of the output circuit is relatively strong, that is, the pass rate of the withstand voltage test of the switch output circuit is relatively high.
  • the switching output interface at each contact switch will be connected with an overvoltage protection device, such as the technical solution of a varistor.
  • the switch quantity output interfaces of each contact switch are provided with overvoltage protection devices, which not only increases the complexity and cost of the circuit, but also increases the volume of the circuit board with the circuit.
  • the first overvoltage protection device 102 and the second overvoltage protection device 103 only need to be arranged on one side of the coil, so as to ensure that the switching output circuit still has good anti-surge capability, and at the same time reduce the switching quantity
  • the complexity of the output circuit reduces the volume and cost of the switch output circuit.
  • the switching output circuit of the present application by arranging the first overvoltage protection device 102 and the second overvoltage protection device 103 at one end of the coil L, a large amount of surges are isolated by the distributed capacitance between the contact switch S and the coil L, so that they reach the coil L
  • the surge at one end is small, and under the condition that the surge voltage borne by the switching output interface is the same, the surge voltage borne by the overvoltage protection device of the present application is smaller; when the switching output circuit is subjected to a withstand voltage test, Due to the distributed capacitance between the contact switch S and the coil L, the voltage of the withstand voltage test is blocked from being transmitted to the first overvoltage protection device 102, the second overvoltage protection device 103, the first overvoltage protection device 102, the second overvoltage protection device 102, the second The overvoltage protection device 103 does not need to withstand the test voltage. Under the condition that the rated voltage of the overvoltage protection device is the same, the switching output circuit of the present application has
  • the first overvoltage protection device 102 includes one of a transient diode, a rectifier diode, and an RC circuit.
  • the second overvoltage protection device 103 is one of a transient diode and a clamp diode.
  • the rated voltage of the first overvoltage protection device is greater than the working voltage of the switching output circuit, such as 1.2 times, 1.3 times, 1.4 times; the rated voltage of the second overvoltage protection device is greater than the working voltage of the switching output circuit, For example, 1.2 times, 1.3 times, 1.4 times.
  • the overvoltage protection device Set the rated voltage of the overvoltage protection device to be higher than the working voltage of the switching output circuit, so that the normal working voltage of the switching output circuit will not cause the overvoltage protection device to operate under the condition of no overvoltage shock, so as to ensure that the When the output circuit is working normally, the overvoltage protection device will not affect the operation of the switching output circuit; in the case of surge impact, when the voltage of the overvoltage protection device rises to the startup voltage of the overvoltage protection device (this startup voltage Slightly higher than the rated voltage of the overvoltage protection device), the overvoltage protection device absorbs the surge voltage when it starts to operate, so as to achieve the purpose of protecting the control circuit.
  • the overvoltage protection device in order to ensure that the overvoltage protection device operates only in the presence of surge shock, it is necessary to set the rated power of the overvoltage protection device to be greater than the voltage at which the switching output circuit works normally, to ensure that when the switching output circuit is working normally, The overvoltage protection device does not operate.
  • the second embodiment of the present application relates to a switching output circuit.
  • the second embodiment is roughly the same as the first embodiment, and the main difference is that: in the second embodiment of the present application, the first overvoltage protection device is a unidirectional transient diode, and the second overvoltage protection device is a bidirectional transient diode . It should be noted that the implementation details of the above-mentioned first embodiment are still valid in this embodiment, and are not repeated here in order to avoid repetition.
  • the second embodiment of the present application relates to a switch output circuit.
  • the specific process is shown in FIG. 5 , including: a control circuit 201 , a contact switch S, a coil L, a unidirectional transient diode VD1 , and a bidirectional transient diode VD2 .
  • the first end a of the control circuit 201 is connected to the first end g of the coil L
  • the second end b of the control circuit 201 is connected to the second end h of the coil L, and there is a distributed capacitance between the contact switch S and the coil L
  • the control circuit 201 controls the on and off of the contact switch S by adjusting the magnetic field of the coil L
  • the first end c of the unidirectional transient diode VD1 is the cathode, connected to the first end a of the control circuit 201 and the coil L
  • the second end d of the unidirectional transient diode VD1 is the anode, which is connected between the second end b of the control circuit 101 and the second end h of the coil L, that is, the switching output circuit GND
  • the first end e of the bidirectional transient diode VD2 is connected between the second end b of the control circuit 201 and the second end h of the coil L, and the second end f
  • the unidirectional transient diode VD1 will be broken down by the surge, so that the surge voltage at SW will be transferred to GND, and discharged to the protection ground PGND through the second overvoltage protection device 103;
  • the bidirectional transient diode VD2 discharges the surge of GND to the protection ground PGND.
  • the first overvoltage protection device by setting the first overvoltage protection device as a unidirectional transient diode, not only the speed of absorbing the reverse electromotive force and the differential mode surge is improved, but also because the unidirectional transient diode is compared with the bidirectional transient diode The cost is low, and the cost of the switching output circuit can be saved; in this embodiment, by setting the second overvoltage protection device as a bidirectional transient diode, the speed at which the second overvoltage protection device absorbs the surge voltage of the ground terminal is improved.
  • the rated voltage of the first overvoltage protection device is 1.2 times the working voltage of the switching output circuit; the rated voltage of the second overvoltage protection device is 1.2 times the working voltage of the switching output circuit. Since the rated voltage parameters of the overvoltage protection device have a certain tolerance range, the operating voltage of the switching output circuit also has an upper limit of fluctuation. If the working voltage of the output circuit fluctuates and malfunctions, the rated voltage of the overvoltage protection device must be higher than the working voltage of the switching output circuit; 1.2 times of the working voltage is to consider the rated voltage tolerance range of the overvoltage protection device and the working voltage of the switching output circuit also has an upper limit of fluctuation. Setting the rated power of the overvoltage protection device at this value can avoid the external surge. When the voltage surges, the overvoltage protection device malfunctions.
  • the third embodiment of the present application relates to a circuit board assembly, including the switching output circuit of the first embodiment and the second embodiment.
  • the surge voltage borne by the overvoltage protection device in the circuit board assembly is reduced, and the withstand voltage capability of the circuit board assembly is improved at the same time.
  • the fourth embodiment of the present application relates to an electronic device, including the circuit board assembly of the above-mentioned third embodiment.
  • the surge voltage borne by the overvoltage protection device in the circuit board assembly of the electronic equipment is reduced, and the withstand voltage capability of the circuit board assembly of the electronic equipment is improved at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例涉及电路技术领域,提出了一种开关量输出电路、电路板组件及电子设备,该电路包括:控制电路、触点开关、线圈、第一过压保护器件、第二过压保护器件;控制电路的第一端连接线圈的第一端,控制电路的第二端连接线圈的第二端,触点开关与线圈之间存在分布电容;控制电路通过调整线圈的磁场控制触点开关的导通与关断;第一过压保护器件的第一端连接至控制电路的第一端与线圈的第一端之间,第一过压保护器件的第二端连接至控制电路的第二端与线圈的第二端之间;第二过压保护器件的第一端连接至控制电路的第二端与线圈的第二端之间,第二过压保护器件的第二端连接至保护地。

Description

开关量输出电路、电路板组件及电子设备
相关申请的交叉引用
本申请基于申请号为“202011340211.1”、申请日为2020年11月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请的实施例涉及电路技术领域,特别涉及一种开关量输出电路、电路板组件及电子设备。
背景技术
目前,在通讯、工业控制、电力自动化等领域中,开关量输出接口是实现设备互连、通信及控制动作的电气接口,但由于在实际中,开关量输出接口处于复杂的电磁环境中工作,开关量输出接口可能受到源于雷击或操作过电压等的浪涌电压的冲击,若开关量输出接口连接的开关量输出电路不增加任何过压保护器件,仅依靠开关量输出电路本身器件的隔离性能,无法承受较大的浪涌电压,会导致开关量输出电路的器件损坏、信息丢失、复位或误动作。为了应对开关量输出接口的浪涌电压的冲击,可以在每个开关量输出接口处增加过压保护器件,从而使得开关量输出电路具有良好的防浪涌能力。
然而,为了防浪涌电压的冲击而增加的过压保护器件,破坏了开关量输出电路的绝缘,容易使得开关量输出电路在耐压测试中无法顺利通过。即,开关量输出电路在耐压测试中会被施加较高的工频或直流电压,外界沿开关量输出电缆侵入的工频过电压会导致过压保护器件过功率损坏,且导致该开关量输出电路耐压测试不通过。而且,对于多回路继电器,需要每个触点都增加过压保护器件,占用电路板面积大,成本高。
发明内容
本申请的实施例提供了一种开关量输出电路,包括:控制电路、触点开关、线圈、第一过压保护器件、第二过压保护器件;所述控制电路的第一端连接所述线圈的第一端,所述控制电路的第二端连接所述线圈的第二端,所述触点开关与所述线圈之间存在分布电容;所述控制电路通过调整所述线圈的磁场控制所述触点开关的导通与关断;所述第一过压保护器件的第一端连接至所述控制电路的第一端与所述线圈的第一端之间,所述第一过压保护器件的第二端连接至所述控制电路的第二端与所述线圈的第二端之间;所述第二过压保护器件的第一端连接至所述控制电路的第二端与所述线圈的第二端之间,所述第二过压保护器件的第二端连接至保护地。
本申请的实施例还提供了一种电路板组件,包括上述的开关量输出电路。
本申请的实施例还提供了一种电子设备,包括上述的电路板组件。
附图说明
图1是本申请第一实施例的一种开关量输出电路的电路结构示意图;
图2是本申请第一实施例的一种开关量输出电路在触点开关一侧的电压波形图;
图3是本申请第一实施例的一种开关量输出电路在线圈一侧的电压波形图;
图4是本申请第一实施例的一种开关量输出电路在控制电路的电压波形图;
图5是本申请第二实施例的一种开关量输出电路的电路结构示意图。
具体实施方式
本申请实施例的主要目的在于提出一种开关量输出电路、电路板组件及电子设备,使得在降低开关量输出电路中过压保护器件承受的浪涌电压的同时,提高开关量输出电路的耐压能力。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的第一实施例涉及一种开关量输出电路,本实施例中的开关量输出电路如图1所示,包括:控制电路101、触点开关S、线圈L、第一过压保护器件102、第二过压保护器件103。
具体地说,控制电路101的第一端a连接线圈L的第一端g,控制电路101的第二端b连接线圈L的第二端h,触点开关S与线圈L之间存在分布电容;控制电路101通过调整线圈L的磁场控制触点开关S的导通与关断;第一过压保护器件102的第一端c连接至控制电路101的第一端a与线圈L的第一端g之间,即SW,第一过压保护器件102的第二端d连接至控制电路101的第二端b与线圈L的第二端h之间,即开关量输出电路的接地端GND;第二过压保护器件103的第一端e连接至控制电路101的第二端b与线圈L的第二端h之间,第二过压保护器件103的第二端f连接至保护地PGND,触点开关的两端分别为开关量输出电路的开关量输出接口out+、out-。
在实际应用中,触点开关S与线圈L组成的结构可以由一个继电器提供,也可以由其他具有触点开关S与线圈L的其他器件提供,只要该器件存在触点开关S与线圈L即可。
在一个例子中,控制电路101为数字控制电路。
如图2所示,为开关量输出接口out+、out-存在浪涌时,开关量输出接口out+、out-处的电压波形图,如图3所示,为开关量输出接口out+、out-存在浪涌时,线圈L一侧的电压波形图,其中,图2、图3中开关量输出接口out+、out-存在浪涌相同。
参见图2可知,开关量输出接口out+、out-处的电压最高可达到4KV;参见图3所示,在开关量输出接口out+、out-存在的浪涌相同的情况下,线圈L一侧的电压最高仅为200V;也就是说,在开关量输出接口out+、out-处受到浪涌时,触点开关S一侧的浪涌电压较大,线圈L一侧的浪涌电压较小。
具体地说,本实施例通过将第一过压保护器件102、第二过压保护器件103设置在线圈L一端,由于触点开关S与线圈L之间存在分布电容,具有一定的隔离能力,可以阻挡大部分的浪涌从触点开关S一侧传递到线圈L一侧,从而使得线圈L一侧的浪涌电压大幅度降低,在开关量输出接口承受的浪涌电压相同的情况下,本申请的过压保护器件承受的浪涌电压较小。考虑到开关量输出接口out+、out-分别连接有一个过压保护器件的技术方案,过压保护 器件承受的浪涌电压较大,而本申请中的第一过压保护器件102、第二过压保护器件103均设置在线圈L一侧,所承受的浪涌电压较小,因此,在开关量输出接口承受的浪涌电压相同的情况下,本申请的过压保护器件承受的浪涌电压较小,降低了过压保护器件被损坏的几率。
在实际应用中,当开关量输出接口out+、out-存在的浪涌的情况下,首先通过触点开关S、线圈L之间的分布电容阻挡大部分的浪涌从触点开关S一侧传递到线圈L一侧,之后会有部分浪涌到达第一过压保护器件102和第二过压保护器件103,第一过压保护器件102的第一端连接SW,第一过压保护器件102的第二端连接GND,可以吸收开关量输出电路中的差模浪涌以及反向电动势,第二过压保护器件103第一端连接GND,第二过压保护器件103第二端连接PGND,可以将GND的浪涌泄放到保护地PGND。需要说明的是,当SW处的浪涌电压大于GND的浪涌电压时,第一过压保护器件102会将SW处的浪涌电压传递至GND处,并通过第二过压保护器件103涌泄放到保护地PGND。
如图4所示,为本实施例的开关量输出电路在控制电路处的电压波形示意图,其中,开关量输出接口out+、out-的电压与图2、图3的相同;可以看出,本实施例可以在开关量输出接口out+、out-的电压最高可达到4KV的情况下,将控制电路处的电压降低在30V左右,而参见图3可知,使用线圈L与控制电路之间不存过压保护器件的技术方案,图3中的线圈L一侧的电压就是控制电路的电压;可见,本申请的控制电路处的电压大幅度降低,从而避免开关量输出接口out+、out-侵入的浪涌对控制电路的冲击破坏。
需要说明的是,在实际生产加工过程中,会对开关量输出电路进行耐压测试,即开关量输出电路在耐压测试中会被施加较高的工频或直流电压,而考虑到直接将过压保护器件设置在开关量输出接口out+、out-的技术方案,外界沿开关量输出电缆侵入的工频过电压会导致过压保护器件过功率损坏,从而导致该开关量输出电路耐压测试不通过。而本实施例,在开关量输出接口承受的测试电压相同的情况下,本实施例在对该开关量输出电路进行耐压测试时,由于触点开关S与线圈L之间存在分布电容,而分布电容可以阻挡耐压测试的电压传递至第一过压保护器件102、第二过压保护器件103,第一过压保护器件102、第二过压保护器件103无需承受测试电压,提高了开关量输出电路的耐压能力较强,即开关量输出电路耐压测试通过率较高。
需要说明的是,考虑到开关量输出电路可能会存在多个触点开关,每个触点开关处的开关量输出接口均会连接有过压保护器件,例如压敏电阻的技术方案,由于每个触点开关的开关量输出接口均设置有过压保护器件,不仅增加的电路的复杂性以及成本,具有该电路的电路板的体积也会较大。而本申请中,仅需在线圈一侧设置第一过压保护器件102、第二过压保护器件103,就可在保证开关量输出电路仍具有良好的防浪涌能力的同时,降低开关量输出电路的复杂性,减小开关量输出电路的体积以及成本。
本实施例中,通过将第一过压保护器件102、第二过压保护器件103设置在线圈L一端,通过触点开关S与线圈L之间存在分布电容隔离大量浪涌,使得到达线圈L一端的浪涌较小,在开关量输出接口承受的浪涌电压相同的情况下,本申请的过压保护器件承受的浪涌电压较小;当对该开关量输出电路进行耐压测试时,由于触点开关S与线圈L之间存在分布电容,从而阻挡了耐压测试的电压传递至第一过压保护器件102、第二过压保护器件103,第一过压保护器件102、第二过压保护器件103无需承受测试电压,在过压保护器件的额定电压相同的情况下,本申请的开关量输出电路的耐压能力较强。
在一个例子中,第一过压保护器件102包括瞬态二极管、整流二级管、RC电路的其中一个。
在一个例子中,第二过压保护器件103为瞬态二极管、钳位二极管的其中一种。
在一个例子中,第一过压保护器件的额定电压大于开关量输出电路的工作电压,例如1.2倍、1.3倍、1.4倍;第二过压保护器件的额定电压大于开关量输出电路工作电压,例如1.2倍、1.3倍、1.4倍。将过压保护的器件的额定电压设置比开关量输出电路的工作电压高,使得在没有过电压冲击的情况下,开关量输出电路正常工作的电压不会导致过压保护器件运作,确保在开关量输出电路正常工作时,过压保护器件不会影响开关量输出电路的工作;在有浪涌冲击的情况下,过压保护器件的电压上升到过压保护器件的启动电压时(这个启动电压比过压保护器件的额定电压稍高),过压保护器件开启运转即吸收浪涌电压,达到保护控制电路的目的。因此,为了确保过压保护器件仅在存在浪涌冲击的情况下才运作,需要设置过压保护器件的额定功率大于开关量输出电路正常工作的电压,确保在开关量输出电路在正常工作时,过压保护器件不运作。
本申请的第二实施例涉及一种开关量输出电路。第二实施例与第一实施例大致相同,主要区别之处在于:本申请第二实施例中,第一过压保护器件为单向瞬态二极管,第二过压保护器件为双向瞬态二极管。需要说明的是,上述第一实施例的各实施细节在本实施例中依然有效,为了避免重复,在此不作赘述。
本申请的第二实施例涉及一种开关量输出电路,具体流程如图5所示,包括:控制电路201、触点开关S、线圈L、单向瞬态二极管VD1、双向瞬态二极管VD2。
具体地说,控制电路201的第一端a连接线圈L的第一端g,控制电路201的第二端b连接线圈L的第二端h,触点开关S与线圈L之间存在分布电容;控制电路201通过调整线圈L的磁场控制触点开关S的导通与关断;单向瞬态二极管VD1的第一端c为阴极,连接至控制电路201的第一端a与线圈L的第一端g之间,即SW,单向瞬态二极管VD1的第二端d为阳极,连接至控制电路101的第二端b与线圈L的第二端h之间,即开关量输出电路的接地端GND;双向瞬态二极管VD2的第一端e连接至控制电路201的第二端b与线圈L的第二端h之间,双向瞬态二极管VD2的第二端f连接至保护地PGND,触点开关的两端分别为开关量输出电路的开关量输出接口out+、out-。
具体地说,当开关量输出接口out+、out-的浪涌通过触点开关S、线圈L之间的分布电容部分传递至线圈L一侧之后,若SW处的浪涌电压大于GND的浪涌电压时,单向瞬态二极管VD1会被浪涌击穿,从而将SW处的浪涌电压传递至GND处,并通过第二过压保护器件103涌泄放到保护地PGND;若GND处的浪涌电压大于SW的浪涌电压时,双向瞬态二极管VD2将GND的浪涌泄放到保护地PGND。
本实施例通过将第一过压保护器件设置为单向瞬态二极管,不仅提高了吸收反向电动势、差模浪涌的速度,而且由于单向瞬态二极管相比较于双向瞬态二极管而言成本较低,可以节约开关量输出电路的成本;本实施例通过将第二过压保护器件设置为双向瞬态二极管,提高了第二过压保护器件吸收接地端浪涌电压的速度。
在一个例子中,第一过压保护器件的额定电压为开关量输出电路工作电压的1.2倍;第二过压保护器件的额定电压为开关量输出电路工作电压的1.2倍。由于过压保护器件额定电压参数存在一定容差范围,开关量输出电路的工作电压也有波动上限,为了避免在没有外界 浪涌过电压冲击时,过压保护器件由于本身的容差范围以及开关量输出电路的工作电压的波动而误动作,过压保护的器件的额定电压必须比开关量输出电路的工作电压高;因此,本实施例将过压保护器件的额定功率设置为开关量输出电路的工作电压的1.2倍就是考虑了过压保护器件额定电压容差范围和开关量输出电路的工作电压也有波动上限,将过压保护器件的额定功率设置在此数值,可以避免在没有外界浪涌过电压冲击时,过压保护器件误动作的问题。
本申请第三实施例涉及一种电路板组件,包括上述第一实施例、第二实施例的开关量输出电路。
本实施例通过运用上述的开关量输出电路,在降低电路板组件中过压保护器件承受的浪涌电压同时,提高电路板组件的耐压能力。
本申请第四实施例涉及一种电子设备,包括上述第三实施例的电路板组件。
本实施例通过运用上述的电路板组件,在降低电子设备的电路板组件中过压保护器件承受的浪涌电压同时,提高电子设备的电路板组件的耐压能力。

Claims (10)

  1. 一种开关量输出电路,包括:控制电路、触点开关、线圈、第一过压保护器件、第二过压保护器件;
    所述控制电路的第一端连接所述线圈的第一端,所述控制电路的第二端连接所述线圈的第二端,所述触点开关与所述线圈之间存在分布电容;
    所述控制电路通过调整所述线圈的磁场控制所述触点开关的导通与关断;
    所述第一过压保护器件的第一端连接至所述控制电路的第一端与所述线圈的第一端之间,所述第一过压保护器件的第二端连接至所述控制电路的第二端与所述线圈的第二端之间;
    所述第二过压保护器件的第一端连接至所述控制电路的第二端与所述线圈的第二端之间,所述第二过压保护器件的第二端连接至保护地。
  2. 根据权利要求1所述的开关量输出电路,其中,所述第一过压保护器件为瞬态二极管、钳位二极管、整流二级管、RC电路的其中一种。
  3. 根据权利要求1所述的开关量输出电路,其中,所述第一过压保护器件为单向瞬态二极管。
  4. 根据权利要求1至3任一项所述的开关量输出电路,其中,所述第二过压保护器件为瞬态二极管、钳位二极管的其中一种。
  5. 根据权利要求1至3任一项所述的开关量输出电路,其中,所述第二过压保护器件为双向瞬态二极管。
  6. 根据权利要求1至5任一项所述的开关量输出电路,其中,所述控制电路为数字控制电路。
  7. 根据权利要求1至6任一项所述的开关量输出电路,其中,所述第一过压保护器件的额定电压大于所述开关量输出电路的工作电压,所述第二过压保护器件的额定电压大于所述开关量输出电路的工作电压。
  8. 根据权利要求7所述的开关量输出电路,其中,所述第一过压保护器件的额定电压为所述开关量输出电路工作电压的1.2倍,所述第二过压保护器件的额定电压为所述开关量输出电路工作电压的1.2倍。
  9. 一种电路板组件,包括权利要求1至8任一项所述的开关量输出电路。
  10. 一种电子设备,包括权利要求9所述的电路板组件。
PCT/CN2021/118857 2020-11-25 2021-09-16 开关量输出电路、电路板组件及电子设备 WO2022110995A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023532188A JP2023551261A (ja) 2020-11-25 2021-09-16 スイッチング量出力回路、回路基板組立体及び電子機器
KR1020237019708A KR20230104955A (ko) 2020-11-25 2021-09-16 스위치량 출력 회로, 회로 기판 어셈블리 및 전자 장치
EP21896499.7A EP4250505A4 (en) 2020-11-25 2021-09-16 SWITCHING QUANTITY OUTPUT CIRCUIT, CIRCUIT BOARD AND ELECTRONIC DEVICE ASSEMBLY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011340211.1 2020-11-25
CN202011340211.1A CN114552554A (zh) 2020-11-25 2020-11-25 开关量输出电路、电路板组件及电子设备

Publications (1)

Publication Number Publication Date
WO2022110995A1 true WO2022110995A1 (zh) 2022-06-02

Family

ID=81660337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118857 WO2022110995A1 (zh) 2020-11-25 2021-09-16 开关量输出电路、电路板组件及电子设备

Country Status (5)

Country Link
EP (1) EP4250505A4 (zh)
JP (1) JP2023551261A (zh)
KR (1) KR20230104955A (zh)
CN (1) CN114552554A (zh)
WO (1) WO2022110995A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229695A (en) * 1991-07-17 1993-07-20 Asmo Co., Ltd. Controller for automatically stopping motor in response to overcurrent condition
CN201113426Y (zh) * 2007-04-27 2008-09-10 刘继富 插入隔离家电保护器
CN102122142A (zh) * 2011-01-12 2011-07-13 株洲变流技术国家工程研究中心有限公司 一种高压变频器的开关量控制方法及控制插件
CN205029328U (zh) * 2015-06-02 2016-02-10 山东科技大学 一种基于can总线的svc电容器微机继电保护装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229695A (en) * 1991-07-17 1993-07-20 Asmo Co., Ltd. Controller for automatically stopping motor in response to overcurrent condition
CN201113426Y (zh) * 2007-04-27 2008-09-10 刘继富 插入隔离家电保护器
CN102122142A (zh) * 2011-01-12 2011-07-13 株洲变流技术国家工程研究中心有限公司 一种高压变频器的开关量控制方法及控制插件
CN205029328U (zh) * 2015-06-02 2016-02-10 山东科技大学 一种基于can总线的svc电容器微机继电保护装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4250505A4 *

Also Published As

Publication number Publication date
EP4250505A1 (en) 2023-09-27
CN114552554A (zh) 2022-05-27
JP2023551261A (ja) 2023-12-07
EP4250505A4 (en) 2024-04-10
KR20230104955A (ko) 2023-07-11

Similar Documents

Publication Publication Date Title
US8179654B2 (en) Surge preventing circuit, local area network connector, and network module
KR102015295B1 (ko) 로드 스위치 집적 회로 및 전자 디바이스
KR100957833B1 (ko) 써지 보호기
KR101475147B1 (ko) 연결 장치 회로 및 이의 고전압 서지 보호 방법
CN101895106B (zh) 用于保护串联电容器组的系统和方法
WO2022110995A1 (zh) 开关量输出电路、电路板组件及电子设备
CN113783173A (zh) 高压固态半导体开关器件及提高该电压利用率方法和应用
CN204578080U (zh) 一种浪涌保护电路
EP3579497A1 (en) Power sourcing equipment and power over ethernet system
CN108808644A (zh) 用于电力电子装置防雷的多级串联间隙避雷器
CN114597875A (zh) 一种双向多端口固态式直流断路器及其控制方法
CN110086158B (zh) 一种电子电路过电压保护装置
CN112952785A (zh) 浪涌防护电路
CN101877473A (zh) 用于高清摄像机的浪涌保护器中保护电路
CN208820449U (zh) 短路保护电路及短路保护系统
CN101752853B (zh) 突波保护电路、局域网络连接器以及网络模块
CN114243667B (zh) 供电电路、电源和基站
CN113809724B (zh) 混合式高压直流断路器主支路电子开关保护方法及装置
CN217508762U (zh) 一种具有频带兼容性的防静电电路及微组装射频电路
CN214380090U (zh) 浪涌防护电路、具有浪涌防护功能的碰撞检测设备
CN109756113B (zh) 抗静电保护与对地或电源短路保护的多态开关及实现方法
CN210957791U (zh) 一种耐高压输入的防雷器
CN101931225A (zh) 用于末端设备的组合型浪涌保护器
CN201498982U (zh) 用于末端设备的组合型浪涌保护器
CN114256824A (zh) 防雷电路、电路板组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532188

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237019708

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021896499

Country of ref document: EP

Effective date: 20230620

NENP Non-entry into the national phase

Ref country code: DE