WO2022110992A1 - 网络切片管理方法、控制器及计算机可读存储介质 - Google Patents

网络切片管理方法、控制器及计算机可读存储介质 Download PDF

Info

Publication number
WO2022110992A1
WO2022110992A1 PCT/CN2021/118843 CN2021118843W WO2022110992A1 WO 2022110992 A1 WO2022110992 A1 WO 2022110992A1 CN 2021118843 W CN2021118843 W CN 2021118843W WO 2022110992 A1 WO2022110992 A1 WO 2022110992A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
slice
network slice
physical
resource
Prior art date
Application number
PCT/CN2021/118843
Other languages
English (en)
French (fr)
Inventor
王振宇
王大江
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022110992A1 publication Critical patent/WO2022110992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present application relates to, but is not limited to, the field of communication technologies, and in particular, relates to a network slice management method, a controller, and a computer-readable storage medium.
  • Optical Transport Network is an important part of the 5G network system and is usually considered to be deployed on the 5G midhaul and backhaul networks.
  • OTN Optical Transport Network
  • SLA Service-Level Agreement
  • OTN network slicing is mainly based on a single resource attribute or a single strategy.
  • the optical communication technology enters the super 100G era, there are more and more resource attributes that can be flexibly scheduled at the application layer, and the existing slicing methods cannot use multiple dimensions. It is unable to meet the growing demand for refined management and customized services, nor can it make full use of OTN network resources.
  • the embodiments of the present application provide a network slice management method, a controller, and a computer-readable storage medium, which can make full use of network resources and improve the fineness of OTN management and control and the degree of customization.
  • an embodiment of the present application provides a network slice management method, including: acquiring all node pairs in a network topology, and determining all transmission paths corresponding to each of the node pairs; according to a preset first slice The allocation strategy allocates the first network resource to the transmission path, and determines the set of transmission paths obtained after allocating the first network resource as the first network slice; A second network slice is determined in the network slice, wherein a transmission path in the second network slice is allocated with a second network resource that conforms to the second slice allocation policy.
  • an embodiment of the present application further provides a controller, including: a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the following when executing the computer program.
  • a controller including: a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the following when executing the computer program.
  • an embodiment of the present application further provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the network slice management method described in the first aspect.
  • FIG. 1 is a flowchart of a network slice management method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a network topology provided by another embodiment of the present application.
  • FIG. 3 is a flowchart of determining a transmission path according to OVPN provided by another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a virtual network topology provided by another embodiment of the present application.
  • FIG. 5 is a flowchart of determining a transmission path according to a physical link provided by another embodiment of the present application.
  • FIG. 6 is a flowchart of allocating first network resources provided by another embodiment of the present application.
  • FIG. 7 is a flowchart of determining a second network slice by allocating second network resources provided by another embodiment of the present application.
  • FIG. 8 is a flowchart of determining a second network slice from a first network slice provided by another embodiment of the present application.
  • FIG. 9 is a flowchart of determining at least two second network slices from a first network slice provided by another embodiment of the present application.
  • FIG. 10 is a flowchart of determining network slices according to the number of attributes of network resources provided by another embodiment of the present application.
  • FIG. 11 is a flowchart of a network slice management method provided by another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a first network slice provided by another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a first network slice provided by another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a first network slice provided by another embodiment of the present application.
  • FIG. 15 is a schematic diagram of a second network slice obtained according to the first network slice shown in FIG. 12 according to another embodiment of the present application;
  • FIG. 16 is a schematic diagram of a second network slice obtained according to the first network slice shown in FIG. 12 according to another embodiment of the present application;
  • FIG. 17 is a schematic diagram of a third network slice obtained from the second network slice shown in FIG. 15 according to another embodiment of the present application.
  • FIG. 18 is a schematic diagram of a third network slice obtained from the second network slice shown in FIG. 15 according to another embodiment of the present application.
  • FIG. 19 is a schematic diagram of a third network slice obtained according to the second network slice shown in FIG. 16 according to another embodiment of the present application.
  • FIG. 20 is a schematic diagram of a third network slice obtained according to the second network slice shown in FIG. 16 according to another embodiment of the present application;
  • FIG. 21 is a schematic topology diagram of a network slice provided by another embodiment of the present application.
  • FIG. 22 is a schematic diagram of a controller provided by another embodiment of the present application.
  • Embodiments of the present application provide a network slice management method, a controller, and a computer-readable storage medium.
  • the network slice management method includes: acquiring all node pairs in a network topology, and determining all transmission paths corresponding to each node pair; Allocate the first network resource to the transmission path according to the preset first slice allocation strategy, and determine the set of transmission paths obtained after allocating the first network resource as the first network slice; according to the preset second slice allocation strategy from A second network slice is determined in the first network slice, wherein a transmission path in the second network slice is allocated with a second network resource that conforms to the second slice allocation policy.
  • At least two slice allocation strategies can be used to make the network slices available from the dimensions of at least two network resources meet the requirements, which is beneficial to improve the fineness and customization of OTN management and control, and make full use of the network resource.
  • the physical link described in the embodiments of the present application is a link directly connected between two physical nodes in the physical topology, such as the solid lines in the physical topology shown in FIG. 2 ;
  • the virtual link A path is a link directly connected between two virtualized nodes in OVPN, such as each dotted line in the OVPN topology shown in Figure 4;
  • a physical path is a path formed by connecting several physical links.
  • the physical path A-B-D consists of the physical link A-B and the physical link B-D.
  • FIG. 1 is a flowchart of a network slice management method provided by an embodiment of the present application.
  • the network slice management method includes but is not limited to step S110 , step S120 and step S130 .
  • Step S110 Acquire all node pairs in the network topology, and determine all transmission paths corresponding to each node pair.
  • the network topology needs to include at least two nodes to form a transmission path, and each node forms a node pair in pairs.
  • the nodes in the network topology may be network elements in the OTN, and physical transmission links can be formed between them. This embodiment does not limit the specific physical form of the nodes.
  • the network topology may be a physical topology.
  • FIG. 2 shows an undirected physical topology of a super 100G optical transmission network.
  • the network topology includes 5 nodes, namely node A, node B, node C, and node C. D and node E, the hardware structure of each node can be the same or different, and can be selected according to actual needs.
  • the physical topology shown in FIG. 2 is only an example used in the present embodiment to explain the technical solution, and is not a limitation on the network topology of the present application, which will not be repeated in the following.
  • the network topology shown in Fig. 2 includes 5 nodes, but the number of nodes can also be increased or decreased according to the user's needs, for example, only the nodes A, B, C and D need to be involved.
  • node E can be ignored when determining the transmission path and slice allocation, reducing the computational complexity.
  • the transmission paths corresponding to all node pairs can be obtained and removed when the network slice is finally allocated.
  • the specific method can be selected according to actual requirements.
  • all transmission paths corresponding to each node pair may be determined by traversing, for example, the transmission paths between node pairs AB may include physical paths A-B, physical paths A-D-B, For the sake of brevity, it is not exhaustive here.
  • Step S120 Allocate the first network resource to the transmission path according to the preset first slice allocation policy, and determine the set of transmission paths obtained after allocating the first network resource as the first network slice.
  • the allocation of network resources can be determined first. The specific value of one type of network resources, and then allocate other types of network resources according to the actual resource situation. For example, after the transmission path is determined, the service rate of all transmission paths is set to 224Gb/s, under this basis , complete the allocation of other network resources according to the available resources, and select according to preset conditions when determining the second network slice; in addition, since the technical side of the present application needs to complete at least two slices, it can also be based on the first slice.
  • the allocation strategy allocates the first network resources, and determines the set of transmission paths that can be allocated to the first network resources as the first network slice, and does not allocate other network resources, but determines the first network slice according to the second slice allocation strategy. Second, after network slicing, all network resources are allocated, and the allocation can be completed according to the actual available resources.
  • the specific method can be selected according to actual needs. It can be understood that, in addition to the above network resources to be allocated, it can also include the physical resources of the physical link itself, such as transmission delay, transmission distance, and transmission cost.
  • the above physical resources can be determined according to the actual situation of the physical link itself, for example Depending on the transmission distance of the physical link, if the transmission path is a physical path composed of multiple physical links, the physical resources corresponding to the involved physical links may be added up, which will not be repeated here.
  • step S110 if the actual available resources are limited, there may be a situation that some transmission paths cannot be allocated to resources, so it may be completed according to the first slice allocation strategy. After the allocation of the first network resource, a set of transmission paths successfully allocated to the network resource is determined as the first network slice, so as to ensure the availability of the transmission paths in the first network slice.
  • the number of the first network slices can be arbitrary, and can be the same as the number of the first slice allocation policies. For example, for the sake of demand, two first slice allocation policies are set, corresponding to two different values respectively. Then, the second network slice is determined on the basis of each first network slice. The number of first slice allocation strategies can be adjusted according to the actual slice requirements. It is not repeated here.
  • Step S130 Determine a second network slice from the first network slice according to the preset second slice allocation strategy, wherein the transmission path in the second network slice is allocated with second network resources conforming to the second slice allocation strategy.
  • slice allocation policies can also be adjusted according to actual needs, including at least two or more, and the network slice allocation can be realized from the dimensions of multiple network resources. It is understandable that, for the needs of customized management, slice allocation policies involving the same resource attribute can also be divided into SLA levels, such as “diamond level” and “platinum level” according to the performance from high to low. , “Gold Level”, “Silver Level”, users can select the specific slice allocation strategy level according to their own needs, and the operator allocates corresponding slices to users according to the slice allocation strategy level selected by the user, so as to realize the customization of network slicing and refined management. It should be noted that the above-mentioned classification manner is not a limitation to the embodiments of the present application, but is merely an example for the convenience of explaining the technical solution.
  • the number of second slices can be determined based on the first network slice based on the actual demand, and a plurality of second network slices conforming to the second slice allocation policy are determined.
  • the first network resource corresponds to the service rate.
  • the service rate of the transmission path in the first network slice satisfies the first slice allocation strategy, and the allocation of other network resources is completed in combination with the actual available resources.
  • the second slice strategy can use the transmission delay-related Conditions, such as filtering out transmission paths with a transmission delay greater than a certain preset value from the first network slice, the set of transmission paths obtained is the second network slice. Therefore, the number of second network slices can be adjusted by adjusting the first network slice. Determined by the two-slicing strategy, this embodiment does not limit the specific quantity.
  • the second network resource and the first network resource may have different resource attributes, and the network corresponding to the first slicing strategy and the second slicing strategy may be preset.
  • the type of the resource and the specific setting method can be selected according to the actual situation, which is not limited in this embodiment.
  • step S120 when multiple first network slices are obtained in step S120 due to having multiple first slice allocation strategies, it can be ensured that the second network slice is determined based on one first network slice, so as to ensure that the second The network slice satisfies both the first slice allocation strategy and the second slice allocation strategy.
  • step S100 in the embodiment shown in FIG. 1 further includes but is not limited to the following steps:
  • Step S310 generate OVPN according to all node pairs
  • Step S320 determining the virtual link corresponding to each node pair in the OVPN
  • Step S330 Determine all transmission paths corresponding to each node pair according to the determined virtual link.
  • all transmission paths can be determined according to the virtualized topology.
  • the following describes the method for determining transmission paths with a specific example based on the physical topology shown in FIG. 2 . :
  • the paths between all node pairs in the physical topology are virtualized into directly connected virtual links, and all node pairs are virtualized into virtual node pairs, thus forming the OVPN topology shown in Figure 4.
  • traversal is performed in the physical topology shown in Figure 2, so that the set of physical paths corresponding to each virtual link is all transmission paths.
  • node pair AB its The virtual path is A ⁇ B ⁇ , and all the corresponding transmission paths are: physical path A-B, physical path A-D-B, physical path A-E-D-B, and physical path A-C-E-D-B.
  • the transmission paths of other node pairs can be obtained in the same way, and will not be repeated here. .
  • the set of physical paths related to the virtual link can be obtained. Therefore, the OVPN obtained by allocating network resources according to the slice allocation policy is adopted. The network slices derived from this slice allocation strategy.
  • step S230 in the embodiment shown in FIG. 3 further includes but is not limited to the following steps:
  • Step S510 determining available physical links in the network topology
  • Step S520 determining all physical paths corresponding to each virtual link according to the physical links, and the physical paths are composed of several physical links;
  • Step S530 all physical paths corresponding to the virtual link are determined as all transmission paths corresponding to each node pair.
  • the feasibility of the transmission path also needs to be determined according to specific network resources. For example, according to the actual network resource situation, network resources cannot be allocated for a certain physical link, for example, there is no available wavelength. , the physical link can be determined as unavailable, and the transmission path is not considered when determining the transmission path, and the available network resources in the network topology can be determined according to the actual situation.
  • the transmission path in this embodiment is a physical path composed of physical links.
  • the transmission path from node B to node C can be physical link B-A and physical link
  • the transmission path B-A-C composed of AC.
  • step S110 in the embodiment shown in FIG. 1 further includes but is not limited to the following steps:
  • Step S610 determining resource parameters according to a preset first slice allocation strategy
  • Step S620 assigning resource parameters to the physical link
  • Step S630 Obtain, according to the physical link to which the resource parameter is allocated, a transmission path allocated with the first network resource, where the first network resource includes the resource parameter.
  • the resource parameters determined by the first slicing strategy may be any network resources that can be allocated, such as service rate, spectrum width, wavelength, modulation mode, etc.
  • the specific type may be selected according to actual requirements.
  • the specific value of the resource parameter obtained in step S620 needs to be determined according to the type of the resource parameter. For example, to allocate the service rate, all physical links may be allocated the same rate, which does not cause any problems. Conflicts, so they can be allocated normally. However, when the wavelength is allocated, it needs to be adjusted according to the occupied wavelength to avoid different transmission paths using the same wavelength. Those skilled in the art can adapt according to the type of specific resource parameters. Sex adjustment, which will not be repeated here. Based on the above reasons, the allocation of the first network resource may be performed for a single physical link to ensure that the physical link can be normally allocated to the corresponding network resource and avoid the situation that the physical link is unavailable.
  • step S130 in the embodiment shown in FIG. 1 further includes but is not limited to the following steps:
  • Step S710 in the case that all the transmission paths of the first network slice are allocated the first network resources, allocate the second network resources to the transmission paths according to the second slice allocation policy;
  • Step S720 Determine the set of transmission paths obtained after allocating the second network resource as the second network slice.
  • the first network resource can be determined according to the first network slice, and the first network slice can be obtained after the allocation of the first network resource is completed.
  • second network resources are allocated to the transmission paths in the first network slice. For example, according to the first slice allocation policy, the service rate is allocated to the transmission path, based on the service rate that has been allocated to the transmission path, and then according to the second slice allocation policy, the available spectrum width is allocated to the transmission path.
  • the set of obtained transmission paths is determined as the second network slice, so that the transmission paths in the second network slice satisfy the first slicing strategy and the second slicing strategy at the same time, that is, the obtained transmission path can satisfy the user's requirements in two dimensions. need.
  • the second slice allocation strategy includes preset conditions
  • step S130 in the embodiment shown in FIG. 1 also includes but is not limited to the following steps:
  • Step S810 Select a set of transmission paths in which the second network resource meets a preset condition from the first network slice to obtain a second network slice.
  • the second slice allocation strategy can also be set in the form of a preset condition, and on the basis of obtaining the first network slice, filter out those that satisfy the preset condition.
  • the set of transmission paths, and use this as the second network slice For example, after determining the service rate of the physical link according to the first slice allocation strategy, and after allocating network resources such as spectrum width and wavelength, the first network is obtained. Slicing meets the requirements in the dimension of service rate.
  • the physical resources of all transmission paths can be calculated by calculation. For example, the transmission delays of the physical links corresponding to the transmission paths are added to obtain the sum of the transmission delays. The sum is the transmission delay of the transmission path.
  • the second slice allocation policy can be set to a preset condition associated with the transmission delay. For example, the transmission delay is greater than the preset value, and the first network slice A set of transmission paths satisfying the transmission delay greater than the preset value is filtered out, and the set is determined as a second network slice.
  • the preset conditions are not limited to screening physical resources, and the allocated network resources can also be screened.
  • the preset conditions are set to the specified spectrum width, and the set of transmission paths obtained is determined as the first.
  • the preset condition may be for any resource parameter except the first network resource, which is not limited in this embodiment, and can be selected according to actual requirements.
  • a preset condition can also be associated with multiple parameters. For example, if the transmission delay is set to be greater than the preset value and a specific modulation mode, it can be selected from the transmission path of the first network slice that conforms to the preset. A set of conditional transmission paths is sufficient, which is not limited in this application.
  • the second slice allocation strategy includes at least two preset conditions
  • step S810 in the embodiment shown in FIG. 8 further includes, but is not limited to, the following steps:
  • Step S910 at least two second network slices are determined from the first network slice, and the second network resources of the transmission path in the second network slice meet a preset condition.
  • the second network slice can be obtained from the first network slice according to preset conditions. Therefore, for practical needs, at least two preset network slices can be set in the second slice allocation policy by setting at least two network slices. condition, the second network slice and the preset condition may have a one-to-one correspondence, that is, a corresponding second network slice is obtained from the first network slice according to a preset condition, thereby improving the degree of customization of the network slice.
  • At least two preset conditions may correspond to different network resources, for example, the first preset condition is associated with transmission delay, the second preset condition is associated with cost value, and sliced from the first network The second network slice whose transmission delay satisfies the first preset condition is selected, and the second network slice whose cost value satisfies the second preset condition is selected from the first network slice, so that the degree of customization of the network slice can be improved. It can provide different network slices according to the actual needs of different users.
  • the transmission path includes N kinds of network resources, where N is an integer greater than 2, and after performing step S130 in the embodiment shown in FIG. 1 , the following steps are included but not limited to: :
  • Step S1010 Determine the Nth network slice from the N-1th network slice according to the preset Nth slice allocation policy, and the Nth network resource of the transmission path in the Nth network slice conforms to the Nth slice allocation policy.
  • network slices can also be allocated from any number of dimensions.
  • the third network slice can be obtained according to the third slice allocation strategy. , until the Nth network slice is obtained, where N is the number of network resources, that is, when the transmission path includes six kinds of network resources, at most the sixth network slice can be obtained. The method for determining the second network slice is not repeated here.
  • N can be adjusted according to actual needs. For example, according to the needs of customers, network slices that meet the dimensions of five network resources are required, and the fifth network slice is obtained according to the above method. This embodiment is not correct. The specific number of layers of network slicing is limited.
  • the first network resource and the second network resource need to be different types of network resources, and when N is greater than 2, the Nth slice allocation strategy depends on
  • the corresponding network resource may be the same as the first network resource and the second network resource, for example, the first network resource is the service rate, and the second network resource is the transmission delay, that is, the obtained service rate of the second network slice satisfies the first.
  • the slice allocation strategy and transmission delay satisfy the second slice allocation strategy.
  • the third slice allocation strategy can be network resources other than service rate and transmission delay, or can use the same type of network resources, such as the first
  • the preset condition of the three-slice allocation strategy is set to the 10 transmission paths with the smallest transmission delay, then the 10 transmission paths with the smallest transmission delay are selected from the second network slice to obtain the third network slice. Therefore, when N In the case where the value is greater than 2, the network resources corresponding to the Nth slice allocation strategy can be selected according to actual requirements, and there are no limitations here.
  • ROADM 80-wave Reconfigurable Optical Add-Drop Multiplexer
  • the first slice allocation strategy includes a diamond-level SLA service rate with a service rate of 224Gb/s occupied by a single physical link, and a platinum-level SLA service rate with a service rate of 112Gb/s occupied by a single physical link;
  • the second slice allocation strategy includes diamond-level SLA delay with a delay value of less than 10,000 microseconds, and platinum-level SLA delay with a delay value greater than or equal to 10,000 microseconds;
  • the third slice allocation strategy includes a diamond-level SLA price with a cumulative cost value of physical paths less than or equal to 1,500, and a gold-level SLA price with a cumulative cost value of physical paths greater than 1,500.
  • FIG. 11 is a flowchart of a network slice management method in this example, including but not limited to the following steps:
  • Step S1110 constructing an undirected physical topology instance of the super-100G optical transport network
  • the constructed physical topology is shown in Figure 2 as an example, including physical nodes A, B, C, D and E, and the physical links available in the physical topology are the solid lines shown in Figure 2 , namely A-B, A-C, A-D, A-E, B-D, D-E and E-C, and determine its transmission delay value and cost value according to the actual link conditions of each physical link.
  • Step S1120 virtualizing paths between all node pairs in the undirected physical topology instance into directly connected virtual links, and virtualizing all physical node pairs into virtual node pairs to construct an OVPN topology;
  • the constructed OVPN topology can refer to the structure shown in FIG. 4 , and the specific method can refer to the description of the embodiment shown in FIG. 3 , which will not be repeated here. .
  • Step S1130 performing traversal on the physical topology to obtain all transmission paths corresponding to each virtual link
  • Step S1140 complete the allocation of physical resources in the OVPN according to the first slice allocation strategy, and determine the determined OVPN topology as the first network slice;
  • the service rate of each physical link can be set to the corresponding SLA level, and other network resources can be allocated according to the actual optional resources. Allocation, for example, setting the service rate of the physical link to 224Gb/s, in the first network slice, the service rate of all physical links is 224Gb/s, and on this basis, the wavelength, spectrum width, modulation Then, the transmission delay and cost value of the physical links involved in the transmission path are superimposed, and the obtained OVPN topology is determined as the first network slice, and the obtained diamond-level SLA service rate is the first network slice.
  • the transmission path table is shown in Figure 12.
  • the service rate of the physical link can also be set to 112Gb/s according to the first slice allocation policy.
  • the transmission path table of the first network slice with a platinum-level SLA service rate can be obtained as shown in Figure 13 . It should be noted that if there are many resources actually available, multiple first network slices that satisfy the same slice allocation policy can also be obtained.
  • the service rate of the physical link is set to 112Gb/ In the case of s, in addition to the first network slice shown in the transmission path table shown in FIG. 13 , if resources allow, the first network slice shown in the transmission path table shown in FIG. 14 can be further obtained.
  • the specific number of slices can be adjusted according to resource conditions and customer needs, and is not limited here.
  • Step S1150 on the basis of the first network slice, obtain a second network slice according to the second slice strategy
  • the second slice allocation strategy includes diamond-level SLA delay with a delay value of less than 10,000 microseconds, and platinum-level SLA delay with a delay value greater than or equal to 10,000 microseconds.
  • the corresponding delay value is filtered, and the transmission path less than 10,000 microseconds is determined as the second network slice with diamond-level SLA delay.
  • the resulting transmission path table is shown in Figure 15.
  • the second network slice meets both The diamond-level SLA service rate meets the diamond-level SLA delay.
  • the platinum-level SLA delay is determined by the transmission path whose delay value is greater than or equal to 10,000 microseconds.
  • the resulting transmission path table is shown in Figure 16.
  • the second network slice meets both the diamond-level SLA service rate and the platinum-level SLA latency.
  • Step S1160 on the basis of the second network slice, obtain a third network slice according to the third slice strategy
  • the third slice allocation strategy includes the diamond-level SLA cost with the cumulative cost value of the physical path less than or equal to 1500, and the gold-level SLA cost with the cumulative cost value of the physical path greater than 1500.
  • the delay value corresponding to the second network slice corresponding to the transmission path is filtered, and the transmission path whose cumulative cost value of the physical path is less than or equal to 1500 is determined as the third network slice with the diamond-level SLA cost.
  • the path table is shown in Figure 17.
  • the third network slice satisfies the diamond-level SLA service rate, diamond-level SLA delay, and diamond-level SLA cost respectively;
  • the corresponding delay value is filtered, and the transmission path whose cumulative cost value of the physical path is less than or equal to 1500 is determined as the third network slice with diamond-level SLA cost.
  • the resulting transmission path table is shown in Figure 18.
  • the three network slices satisfy the diamond-level SLA service rate, platinum-level SLA delay, and diamond-level SLA cost respectively.
  • the secondary network corresponding to the transmission path shown in Figure 15 is further sliced and allocated to obtain
  • the resulting transmission path table is shown in Figure 19.
  • the third network slice satisfies the diamond-level SLA service rate, diamond-level SLA delay, and gold-level SLA cost respectively.
  • the secondary network corresponding to the path is further sliced, and the resulting transmission path table is shown in Figure 20.
  • the third network slice satisfies the diamond-level SLA service rate, platinum-level SLA delay, and gold-level SLA cost, respectively.
  • Step S1170 After the slice allocation is completed according to all the slice allocation policies, a target transmission path that conforms to the at least two preset slice allocation policies is obtained.
  • the slices obtained according to steps S1140 to S1160 can be referred to as shown in FIG. 21 , wherein the topology of slice 1 corresponds to the transmission path shown in FIG. 12 , and the topology of slice 11 corresponds to the transmission path shown in FIG. 15 .
  • the topology of slice 12 corresponds to the transmission path shown in FIG. 16
  • the topology of slice 111 corresponds to the transmission path shown in FIG. 17
  • the topology of slice 112 corresponds to the transmission path shown in FIG. 18
  • the topology of slice 121 The structure corresponds to the transmission path shown in FIG. 19
  • the topology of the slice 122 corresponds to the transmission path shown in FIG. 20 .
  • an embodiment of the present application further provides a controller 2200 , the controller 2200 includes: a memory 2210 , a processor 2220 , and a computer program stored in the memory 2210 and running on the processor 2220 .
  • the processor 2220 and the memory 2210 may be connected by a bus or other means.
  • the non-transitory software programs and instructions required to implement the network slice management method of the above embodiment are stored in the memory 2210, and when executed by the processor 2220, the network slice management method in the above embodiment is executed, for example, the above-described method is executed.
  • an embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor 2220 or a controller 2200, for example, Executed by a processor 2220 in the above-mentioned embodiment of the controller 2200, the above-mentioned processor 2220 can execute the network slice management method in the above-mentioned embodiment.
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种网络切片管理方法、控制器及计算机可读存储介质,该网络切片管理方法包括:获取网络拓扑中的全部节点对,确定每个节点对所对应的全部传输路径(S110);根据预置的第一切片分配策略为传输路径分配第一网络资源,将分配第一网络资源后所得出的传输路径的集合确定为第一网络切片(S120);根据预置的第二切片分配策略从第一网络切片中确定出第二网络切片,其中,第二网络切片中的传输路径被分配有符合第二切片分配策略的第二网络资源(S130)。

Description

网络切片管理方法、控制器及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202011355495.1、申请日为2020年11月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及但不限于通信技术领域,尤其涉及一种网络切片管理方法、控制器及计算机可读存储介质。
背景技术
光传送网(Optical Transport Network,OTN)是5G网络体系中的重要部分,通常被考虑部署在5G的中传和回传网上。为了实现网络资源的定制化服务和精细化管控,满足5G业务更高的性能需求,需要根据服务等级协议(Service-Level Agreement,SLA)进行网络资源的分配,从而实现对OTN的网络切片。
目前OTN的网络切片主要基于单一资源属性或者单一策略,但是随着光通信技术进入超100G时代,能够在应用层进行灵活调度的资源属性越来越多,现有的切片方法无法从多个维度的资源属性进行管控,既无法满足日益增长的精细化管控和定制化服务需求,也无法充分利用OTN的网络资源。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种网络切片管理方法、控制器及计算机可读存储介质,能够充分利用网络资源,提高OTN的管控精细度和定制化程度。
第一方面,本申请实施例提供了一种网络切片管理方法,包括:获取网络拓扑中的全部节点对,确定每个所述节点对所对应的全部传输路径;根据预置的第一切片分配策略为所述传输路径分配第一网络资源,将分配所述第一网络资源后所得出的传输路径的集合确定为第一网络切片;根据预置的第二切片分配策略从所述第一网络切片中确定出第二网络切片,其中,所述第二网络切片中的传输路径被分配有符合所述第二切片分配策略的第二网络资源。
第二方面,本申请实施例还提供了一种控制器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的网络切片管理方法。
第三方面,本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如第一方面所述的网络切片管理方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的 实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的网络切片管理方法的流程图;
图2是本申请另一个实施例提供的网络拓扑的示意图;
图3是本申请另一个实施例提供的根据OVPN确定传输路径的流程图;
图4是本申请另一个实施例提供的虚拟网络拓扑的示意图;
图5是本申请另一个实施例提供的根据物理链路确定传输路径的流程图;
图6是本申请另一个实施例提供的分配第一网络资源的流程图;
图7是本申请另一个实施例提供的通过分配第二网络资源确定第二网络切片的流程图;
图8是本申请另一个实施例提供的从第一网络切片中确定第二网络切片的流程图;
图9是本申请另一个实施例提供的从第一网络切片中确定出至少两个第二网络切片的流程图;
图10是本申请另一个实施例提供的根据网络资源的属性数量确定网络切片的流程图;
图11是本申请另一个实施例提供的网络切片管理方法的流程图;
图12是本申请另一个实施例提供的第一网络切片的示意图;
图13是本申请另一个实施例提供的第一网络切片的示意图;
图14是本申请另一个实施例提供的第一网络切片的示意图;
图15是本申请另一个实施例提供的根据图12所示的第一网络切片所得的第二网络切片的示意图;
图16是本申请另一个实施例提供的根据图12所示的第一网络切片所得的第二网络切片的示意图;
图17是本申请另一个实施例提供的根据图15所示的第二网络切片所得的第三网络切片的示意图;
图18是本申请另一个实施例提供的根据图15所示的第二网络切片所得的第三网络切片的示意图;
图19是本申请另一个实施例提供的根据图16所示的第二网络切片所得的第三网络切片的示意图;
图20是本申请另一个实施例提供的根据图16所示的第二网络切片所得的第三网络切片的示意图;
图21是本申请另一个实施例提供的网络切片的拓扑示意图;
图22是本申请另一个实施例提供的控制器的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种网络切片管理方法、控制器及计算机可读存储介质,该网络切片管理方法包括:获取网络拓扑中的全部节点对,确定每个节点对所对应的全部传输路径;根据预置的第一切片分配策略为传输路径分配第一网络资源,将分配第一网络资源后所得出 的传输路径的集合确定为第一网络切片;根据预置的第二切片分配策略从第一网络切片中确定出第二网络切片,其中,第二网络切片中的传输路径被分配有符合第二切片分配策略的第二网络资源。根据本申请实施例提供的方案,能够通过至少两个切片分配策略,使得出的网络切片从至少两个网络资源的维度满足需求,有利于提高OTN的管控精细度和定制化程度,充分利用网络资源。
需要说明的是,本申请实施例中所述的物理链路为物理拓扑中两个物理节点之间直接相连的链路,例如图2所示的物理拓扑中的各实线所示;虚拟链路为OVPN中两个虚拟化所得的节点之间直接相连的链路,例如图4所示的OVPN拓扑中的各虚线所示;物理路径为由若干条物理链路相连接所组成的路径,例如在图2所示的物理拓扑中,物理路径A-B-D由物理链路A-B和物理链路B-D组成。本申请实施例中的相关概念参考上述解释,后续不再赘述。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的网络切片管理方法的流程图,在该网络切片管理方法中,包括但不限于有步骤S110、步骤S120和步骤S130。
步骤S110,获取网络拓扑中的全部节点对,确定每个节点对所对应的全部传输路径。
本领域技术人员可以理解的是,为了实现网络切片,网络拓扑中至少需要包括两个节点以形成传输路径,每个节点两两之间组成节点对。需要说明的是,网络拓扑中的节点可以是OTN中的网元,能够两两之间形成物理传输链路即可,本实施例不对节点的具体物理形态多作限定。
在一实施例中,网络拓扑可以是物理拓扑,例如图2示出了超100G光传输网无向物理拓扑,该网络拓扑中包括5个节点,分别为节点A、节点B、节点C、节点D和节点E,每个节点的硬件结构可以相同也可以不同,根据实际需求选取即可。需要说明的是,图2所示的物理拓扑仅为本实施例用于解释技术方案的一个示例,并非对本申请的网络拓扑作出的限定,后续不再赘述。
值得注意的是,参考图2,在图2所示的网络拓扑中包括5个节点,但也可以根据用户的需求增加或者减少节点的数量,例如仅需要涉及A、B、C和D节点的网络切片,可以在确定传输路径和切片分配的时候不考虑节点E,减少计算的复杂度,当然,也可以为了便于管理,获取全部节点对所对应的传输路径,在最后分配网络切片的时候去掉与节点E相关的传输路径,具体方法根据实际需求选取即可。
需要说明的是,为了充分利用网络资源,本实施例可以通过遍历的方式确定每个节点对所对应的全部传输路径,例如节点对AB之间的传输路径可以包括物理路径A-B、物理路径A-D-B,为了叙述简便在此不作穷举。
步骤S120,根据预置的第一切片分配策略为传输路径分配第一网络资源,将分配第一网络资源后所得出的传输路径的集合确定为第一网络切片。
需要说明的是,对于超100G光传送网而言,网络资源的种类较多,可以是任意与OTN相关的资源,例如波长、业务速率、频谱宽度、调制模式,因此,分配网络资源可以先确定其中一个类型的网络资源的具体数值,再根据实际的资源情况进行其他类型的网络资源的分配,例如,确定传输路径之后,将所有传输路径的业务速率设置为224Gb/s,在该基础之下,根据可用的资源完成其他网络资源的分配,在确定第二网络切片时根据预设条件进行选取;另外,由于本申请的技术方需要至少完成两次切片,因此也可以是根据第一切片分配策略进行第一网络资源的分配,将能够分配到第一网络资源所得出的传输路径的集合确定为第一网络切片,不对其他网络资源进行分配,而是在根据第二切片分配策略确定第二网络切片之后再完成所有网络资源的分配,能够根据实际可用的资源完成分配即可,具体方式可以根据实际 需求选取。可以理解的是,除了上述需要分配的网络资源,还可以包括物理链路本身的物理资源,例如传输时延、传输距离和传输代价,上述物理资源可以根据物理链路本身的实际情况确定,例如取决于物理链路的传输距离,若传输路径为多个物理链路组成的物理路径,则将所涉及的物理链路所对应的物理资源相加即可,在此不再赘述。
需要说明的是,在根据步骤S110所确定的全部传输路径中,若实际可用的资源受到限制,可能会出现部分传输路径无法被分配到资源的情况,因此可以是根据第一切片分配策略完成第一网络资源的分配之后,将成功被分配到网络资源的传输路径的集合确定为第一网络切片,以确保第一网络切片中的传输路径的可用性。
可以理解的是,第一网络切片的数量可以是任意,与第一切片分配策略的数量相同即可,例如出于需求考虑,设置两个第一切片分配策略,分别对应两个不同数值的业务速率,从而得出两个第一网络切片,再在每个第一网络切片的基础上进行第二网络切片的确定,第一切片分配策略的数量根据实际的切片需求调整即可,在此不再赘述。
步骤S130,根据预置的第二切片分配策略从第一网络切片中确定出第二网络切片,其中,第二网络切片中的传输路径被分配有符合第二切片分配策略的第二网络资源。
需要说明的是,切片分配策略的数量也可以根据实际的需求调整,至少包括两个以上,能够从多个网络资源的维度实现网络切片的分配即可。可以理解的是,出于定制化管理的需求,还可以对涉及同一个资源属性的切片分配策略进行SLA等级的划分,例如根据性能从高到低依次分为“钻石级”、“白金级”、“黄金级”、“银级”,用户可以根据自身的需求选择具体的切片分配策略的等级,运营商根据用户选取的切片分配策略等级为用户分配对应的切片,从而实现网络切片的定制化和精细化管理。需要说明的是,上述分级方式并非对本申请实施例作出的限定,而仅是为了便于技术方案阐述的举例说明。
需要说明的是,第二切片的数量可以根据实际的需求,在第一网络切片的基础上确定出多个符合第二切片分配策略的第二网络切片,例如,第一网络资源对应为业务速率,则第一网络切片中的传输路径的业务速率满足第一切片分配策略,并结合实际可用的资源完成其他网络资源的分配,在此基础上第二切片策略可以采用与传输时延相关的条件,例如从第一网络切片中筛选出传输时延大于某个预设值的传输路径,所得出的传输路径的集合即为第二网络切片,因此,第二网络切片的数量可以通过调整第二切片策略所确定,本实施例并不对具体的数量作出限定。
需要说明的是,为了实现网络切片从多维度满足用户需求,第二网络资源和第一网络资源可以是不同的资源属性,可以预先设置好第一切片策略和第二切片策略所对应的网络资源的类型,具体的设置方式可以根据实际情况选取,本实施例不多作限定。
可以理解的是,当步骤S120中由于具有多个第一切片分配策略而得出多个第一网络切片,能够确保第二网络切片是基于一个第一网络切片确定得出,以确保第二网络切片同时满足第一切片分配策略和第二切片分配策略。
另外,参照图3,在一实施例中,图1所示实施例中的步骤S100还包括但不限于有以下步骤:
步骤S310,根据全部节点对生成OVPN;
步骤S320,在OVPN中确定每个节点对所对应的虚拟链路;
步骤S330,根据所确定的虚拟链路确定每个节点对所对应的全部传输路径。
在一实施例中,当确定好网络拓扑中可用的节点,可以根据虚拟化拓扑的方式确定全部传输路径,以下基于图2所示的物理拓扑,以一个具体示例进行传输路径的确定方法的说明:
将物理拓扑中所有节点对之间的路径虚拟化为直连的虚拟链路,并将所有节点对虚拟化 为虚拟节点对,从而构成图4所示的OVPN拓扑。根据虚拟链路所涉及的节点对,在图2所示的物理拓扑中执行遍历,从而得出每个虚拟链路对应的物理路径的集合即为全部传输路径,例如,对于节点对AB,其虚拟路径为A`B`,对应的全部传输路径分别为:物理路径A-B、物理路径A-D-B、物理路径A-E-D-B和物理路径A-C-E-D-B,其他节点对的传输路径同理可得,在此不再一一赘述。
可以理解的是,在确定虚拟链路所对应的全部传输路径之后,可以得出与虚拟链路相关的物理路径的集合,因此在根据切片分配策略对网络资源进行分配所得出的OVPN即为采用了该切片分配策略所得出的网络切片。
另外,参照图5,在一实施例中,图3所示实施例中的步骤S230还包括但不限于有以下步骤:
步骤S510,确定网络拓扑中可用的物理链路;
步骤S520,根据物理链路确定每个虚拟链路所对应的全部物理路径,物理路径由若干条物理链路组成;
步骤S530,将虚拟链路所对应的全部物理路径确定为每个节点对所对应的全部传输路径。
在一实施例中,需要说明的是,还需要根据具体的网络资源确定传输路径的可行性,例如,根据实际的网络资源情况,无法为某条物理链路分配网络资源,例如没有可用的波长,则该物理链路可以被认定为不可用,确定传输路径时不作考虑,网络拓扑中可用的网络资源根据实际情况确定即可。
需要说明的是,本实施例中的传输路径为根据物理链路所组成的物理路径,例如在图2所示物理拓扑中,并非所有的节点对之间均设置有物理链路,因此,例如从节点A至节点C有直连的物理链路A-C,而从节点B至节点C并没有直接连通的物理链路,因此节点B至节点C的传输路径可以是物理链路B-A和物理链路AC所组成的传输路径B-A-C。
另外,参照图6,在一实施例中,图1所示实施例中的步骤S110还包括但不限于有以下步骤:
步骤S610,根据预置的第一切片分配策略确定资源参数;
步骤S620,为物理链路分配资源参数;
步骤S630,根据分配有资源参数的物理链路,得到分配有第一网络资源的传输路径,其中,第一网络资源包括资源参数。
需要说明的是,第一切片策略所确定的资源参数可以是任意可被分配的网络资源,例如业务速率、频谱宽度、波长、调制模式等,具体类型根据实际需求选取即可。
值得注意的是,步骤S620中所得的资源参数的具体取值,需要根据资源参数的类型确定,例如进行业务速率的分配,可以是所有的物理链路均分配相同的速率,这并不会产生冲突,因此能够被正常分配,但是在进行波长的分配时,需要根据波长被占用的情况进行调整,避免不同的传输路径采用相同的波长,本领域技术人员能够根据具体的资源参数的类型进行适应性调整,在此不再赘述。基于上述理由,在进行第一网络资源的分配时,可以是针对单一的物理链路进行,以确保该物理链路能够正常被分配到对应的网络资源,避免物理链路不可用的情况。
可以理解的是,在为物理链路分配资源参数时,可以仅考虑第一网络资源能否被分配至物理链路,而无需考虑其他网络资源的可用情况,有利于通过资源分配的过程对物理链路的可用性进行初步的筛选,例如进行业务速率的分配,可以仅考虑该物理链路能否用于承载该被分配的业务速率,若可以,则认为该物理链路能够用于构成第一网络切片中的传输路径,若不可以,则可以判定该物理链路无法满足需求,确定传输路径时不考虑该物理链路,具体 分配方式根据资源参数的类型调整即可,本实施例不多作限定。
另外,参照图7,在一实施例中,图1所示实施例中的步骤S130还包括但不限于有以下步骤:
步骤S710,在第一网络切片的全部传输路径被分配第一网络资源的情况下,根据第二切片分配策略为传输路径分配第二网络资源;
步骤S720,将分配第二网络资源后所得出的传输路径的集合确定为第二网络切片。
需要说明的是,为了实现得到的网络切片可以在多个资源属性的维度满足需求,因此可以根据第一网络切片确定第一网络资源,完成第一网络资源的分配后得出第一网络切片,再进一步根据第二切片策略对第一网络切片中的传输路径进行第二网络资源的分配。例如,根据第一切片分配策略为传输路径分配业务速率,基于传输路径已被分配好的业务速率,再根据第二切片分配策略,为传输路径分配可用的频谱宽度,将成功分配频谱宽度所得到的传输路径的集合确定为第二网络切片,从而使第二网络切片中的传输路径同时满足第一切片策略和第二切片策略,即得出的传输路径能够在两个维度满足用户的需求。
另外,参照图8,在一实施例中,第二切片分配策略包括预设条件,图1所示实施例中的步骤S130还包括但不限于有以下步骤:
步骤S810,从第一网络切片中选择第二网络资源符合预设条件的传输路径的集合,得到第二网络切片。
值得注意的是,对于传输路径的网络资源,并非全部都是根据可用资源分配所得,例如每条物理链路所对应的物理资源,如传输时延和代价值,上述物理资源取决于物理链路本身,而物理资源也能够用于表征传输路径的性能,因此,也可以将第二切片分配策略设置为预设条件的形式,在得出第一网络切片的基础上筛选出满足该预设条件的传输路径的集合,并以此作为第二网络切片,例如,根据第一切片分配策略确定物理链路业务速率,并进行频谱宽度、波长等网络资源的分配后,得出的第一网络切片在业务速率的维度上满足需求,同时,全部传输路径的物理资源可以通过计算的方式得出,例如将传输路径所对应的物理链路的传输时延相加,得出的传输时延之和即为该传输路径的传输时延,基于此,可以将第二切片分配策略设置为与传输时延相关联的预设条件,例如传输时延大于预设值,再从第一网络切片中筛选出满足传输时延大于该预设值的传输路径的集合,并将该集合确定第二网络切片。
可以理解的是,预设条件并不限定用于筛选物理资源,也可以对被分配的网络资源进行筛选,例如将预设条件设置为指定的频谱宽度,所得出的传输路径的集合确定为第二网络切片,因此,预设条件可以针对任意除第一网络资源以外的资源参数,本实施例对此并不作出限定,根据实际需求选取即可。
值得注意的是,一个预设条件还可以与多个参数相关联,例如设置传输时延大于预设值和具体的调制模式,能够根据从第一网络切片的传输路径中选取出符合该预设条件的传输路径的集合即可,本申请对此不多作限定。
另外,参照图9,在一实施例中,第二切片分配策略包括至少两个预设条件,图8所示实施例中的步骤S810还包括但不限于有以下步骤:
步骤S910,从第一网络切片中确定出至少两个第二网络切片,第二网络切片中的传输路径的第二网络资源符合一个预设条件。
基于图8中所示实施例的论述,可以根据预设条件从第一网络切片中获取第二网络切片,因此,出于实际需求,可以通过在第二切片分配策略中设置至少两个预设条件,第二网络切片与预设条件可以是一一对应,即根据一个预设条件从第一网络切片中获取出一个对应的第二网络切片,从而提高了网络切片的定制化程度。
值得注意的是,至少两个预设条件可以与不同的网络资源相对应,例如,第一预设条件与传输时延相关联,第二预设条件与代价值相关联,从第一网络切片中选取出传输时延满足第一预设条件的第二网络切片,和从第一网络切片中选取出代价值满足第二预设条件的第二网络切片,从而使得网络切片的定制化程度更高,能够根据不同用户的实际需求提供不同的网络切片。
另外,参照图10,在一实施例中,传输路径包括N种网络资源,其中,N为大于2的整数,在执行完图1所示实施例中的步骤S130还包括但不限于有以下步骤:
步骤S1010,根据预置的第N切片分配策略从第N-1网络切片中确定出第N网络切片,第N网络切片中的传输路径的第N网络资源符合第N切片分配策略。
值得注意的是,为了满足切片的定制化需求,还可以从任意数量的维度对网络切片进行分配,例如在第二网络切片的基础上,进一步根据第三切片分配策略,得出第三网络切片,直至得出第N网络切片,其中N为网络资源的数量,即当传输路径包括六种网络资源时,可以至多得出第六网络切片,具体的切片获取方法可以参考上述根据第一网络切片确定第二网络切片的方法,在此不再赘述。
可以理解的是,N的具体取值可以根据实际需求调整,例如根据客户的需求,需要满足五种网络资源的维度的网络切片,则根据上述方式得出第五网络切片,本实施例并不对网络切片的具体层数作出限定。
值得注意的是,由于网络切片需要至少从两个维度满足需求,因此第一网络资源和第二网络资源需要是不同类型的网络资源,而当N大于2的情况下,第N切片分配策略所对应的网络资源可以是与第一网络资源和第二网络资源相同,例如第一网络资源为业务速率,第二网络资源为传输时延,即所得出的第二网络切片的业务速率满足第一切片分配策略、传输时延满足第二切片分配策略,在此基础上,第三切片分配策略可以是除业务速率和传输时延以外的网络资源,也可以采用相同类型的网络资源,例如第三切片分配策略设置预设条件为传输时延最小的10个传输路径,则从第二网络切片中筛选出传输时延最小的10个传输路径,从而得出第三网络切片,因此,当N大于2的情况下,第N切片分配策略所对应的网络资源可以根据实际需求选取,在此不多作限定。
为了更好地阐述本申请的技术方案,以下以一个具体示例进行举例说明:
需要说明的是,本示例以超100G光传送网的80波可重构光分插复用器(Reconfigurable Optical Add-Drop Multiplexer,ROADM)物理节点构建的组网为基础进行示例说明,并且,各个ROADM物理节点均支持超100G技术,例如灵活栅格RSA、RWA、调制模式可调,同时各个ROADM物理节点间的物理链路及所承载的业务连接均考虑为双向的情况。
为了叙述简便,本示例中根据SLA等级预先设置3个切片策略,分别为:
第一切片分配策略,包括单条物理链路占用224Gb/s业务速率的钻石级SLA业务速率,以及单条物理链路占用112Gb/s业务速率的白金级SLA业务速率;
第二切片分配策略,包括时延值小于10000微秒的钻石级SLA时延,以及时延值大于或等于10000微秒的白金级SLA时延;
第三切片分配策略,包括物理路径累积代价值之小于或等于1500的钻石级SLA代价,以及物理路径累积代价值之大于1500的金级SLA代价。
参考图11,图11为本示例中网络切片管理方法的流程图,包括但不限于有以下步骤:
步骤S1110,构建超100G光传送网的无向物理拓扑实例;
需要说明的是,所构建出的物理拓扑以图2所示为例,包括物理节点A、B、C、D和E,物理拓扑中可用的物理链路为图2中所示的实线部分,即A-B、A-C、A-D、A-E、B-D、D-E和 E-C,并根据每个物理链路的实际链路情况确定其传输时延值和代价值。
步骤S1120,将无向物理拓扑实例中的所有节点对之间的路径虚拟化为直连的虚拟链路,并将所有物理节点对虚拟化为虚拟节点对,构建出OVPN拓扑;
需要说明的是,以图2所示的物理拓扑为例,所构建出的OVPN拓扑可以参考图4所示的结构,具体的方式可以参考图3所示实施例的描述,在此不再赘述。
步骤S1130,在物理拓扑执行遍历,得出每条虚拟链路对应的全部传输路径;
步骤S1140,根据第一切片分配策略在OVPN中完成物理资源的分配,将确定出的OVPN拓扑确定为第一网络切片;
需要说明的是,由于本示例中第一切片分配策略与业务速率相关,因此可以将每条物理链路的业务速率设置为对应的SLA级别,并根据实际的可选资源进行其他网络资源的分配,例如将物理链路的业务速率设置为224Gb/s,在该第一网络切片中,所有物理链路的业务速率均为224Gb/s,并在此基础上,分别波长、频谱宽度、调制模式进行分配,再对传输路径所涉及的物理链路的传输时延和代价值进行叠加,将得出的OVPN拓扑确定为第一网络切片,所得出的钻石级SLA业务速率的第一网络切片的传输路径表如图12所示。另外,还可以将物理链路的业务速率根据第一切片分配策略设置为112Gb/s,参考上述原理,可以得出白金级SLA业务速率的第一网络切片的传输路径表如图13所示。需要说明的是,若实际可用的资源较多,也可以得出多个满足相同切片分配策略的第一网络切片,例如在将物理链路的业务速率根据第一切片分配策略设置为112Gb/s的情况下,除了可以得出传输路径表如图13所示的第一网络切片,在资源允许的情况下,还可以进一步得出传输路径表如图14所示的第一网络切片。具体的切片数量根据资源情况和客户需求调整即可,在此不多作限定。
需要说明的是,为了叙述方便,后续步骤中以传输路径表如图12所示的第一网络切片进行进一步的举例说明,其余第一网络切片的相应操作参考原理可以推断得出,后续不多作赘述。
步骤S1150,在第一网络切片的基础上,根据第二切片策略得出第二网络切片;
需要说明的是,第二切片分配策略包括时延值小于10000微秒的钻石级SLA时延,以及时延值大于或等于10000微秒的白金级SLA时延,因此,从第一网络切片所对应的时延值中进行筛选,将小于10000微秒的传输路径确定为具有钻石级SLA时延的第二网络切片,得出的传输路径表如图15所示,该第二网络切片既满足钻石级SLA业务速率,又满足钻石级SLA时延;同时,将时延值大于或等于10000微秒的传输路径确定白金级SLA时延,得出的传输路径表如图16所示,该第二网络切片既满足钻石级SLA业务速率,又满足白金级SLA时延。
步骤S1160,在第二网络切片的基础上,根据第三切片策略得出第三网络切片;
需要说明的是,第三切片分配策略包括物理路径累积代价值之小于或等于1500的钻石级SLA代价,以及物理路径累积代价值之大于1500的金级SLA代价,因此,从图15所示的传输路径所对应的第二网络切片所对应的时延值中进行筛选,将物理路径累积代价值之小于或等于1500的传输路径确定为具有钻石级SLA代价的第三网络切片,得出的传输路径表如图17所示,该第三网络切片分别满足钻石级SLA业务速率、钻石级SLA时延和钻石级SLA代价;同时,从图16所示的传输路径所对应的第二网络切片所对应的时延值中进行筛选,将物理路径累积代价值之小于或等于1500的传输路径确定为具有钻石级SLA代价的第三网络切片,得出的传输路径表如图18所示,该第三网络切片分别满足钻石级SLA业务速率、白金级SLA时延和钻石级SLA代价;同理,根据金级SLA代价对图15所示的传输路径所对应的二级网络进行进一步切片分配,得出的传输路径表如图19所示,该第三网络切片分别满足钻石级SLA业务速率、钻石级SLA时延和金级SLA代价;同理,根据金级SLA代价对图16所示的传输路径 所对应的二级网络进行进一步切片分配,得出的传输路径表如图20所示,该第三网络切片分别满足钻石级SLA业务速率、白金级SLA时延和金级SLA代价。
步骤S1170,当所根据全部切片分配策略完成切片分配后,得到符合所述至少两个预置的切片分配策略的目标传输路径。
其中,根据步骤S1140至步骤S1160所得出的切片可以参考图21所示,其中,切片1的拓扑结构与图12所示的传输路径对应、切片11的拓扑结构与图15所示的传输路径对应、切片12的拓扑结构与图16所示的传输路径对应、切片111的拓扑结构与图17所示的传输路径对应、切片112的拓扑结构与图18所示的传输路径对应、切片121的拓扑结构与图19所示的传输路径对应、切片122的拓扑结构与图20所示的传输路径对应。
另外,参考图22,本申请的一个实施例还提供了一种控制器2200,该控制器2200包括:存储器2210、处理器2220及存储在存储器2210上并可在处理器2220上运行的计算机程序。
处理器2220和存储器2210可以通过总线或者其他方式连接。
实现上述实施例的网络切片管理方法所需的非暂态软件程序以及指令存储在存储器2210中,当被处理器2220执行时,执行上述实施例中的网络切片管理方法,例如,执行以上描述的图1中的方法步骤S100至步骤S300,图3中的方法步骤S210至步骤S220,图5中的方法步骤S310至步骤S320,图11中的方法步骤S1110至步骤S1170。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器2220或控制器2200执行,例如,被上述控制器2200实施例中的一个处理器2220执行,可使得上述处理器2220执行上述实施例中的网络切片管理方法,例如,执行以上描述的图1中的方法步骤S110至步骤S130,图3中的方法步骤S310至步骤S330,图5中的方法步骤S310至步骤S330,图6中的方法步骤S610至步骤S630,图7中的方法步骤S710至步骤S720,图8中的方法步骤S810,图9中的方法步骤S910,图10中的方法步骤S1010,图11中的方法步骤S1110至步骤S1170。本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种网络切片管理方法,包括:
    获取网络拓扑中的全部节点对,确定每个所述节点对所对应的全部传输路径;
    根据预置的第一切片分配策略为所述传输路径分配第一网络资源,将分配所述第一网络资源后所得出的传输路径的集合确定为第一网络切片;
    根据预置的第二切片分配策略从所述第一网络切片中确定出第二网络切片,其中,所述第二网络切片中的传输路径被分配有符合所述第二切片分配策略的第二网络资源。
  2. 根据权利要求1所述的方法,其中,所述确定每个所述节点对所对应的全部传输路径,包括:
    根据所述全部节点对生成光虚拟专用网络OVPN;
    在所述OVPN中确定每个节点对所对应的虚拟链路;
    根据所确定的虚拟链路确定每个节点对所对应的全部传输路径。
  3. 根据权利要求2所述的方法,其中,所述根据所确定的虚拟链路确定每个节点对所对应的全部传输路径,包括:
    确定所述网络拓扑中可用的物理链路;
    根据所述物理链路确定每个虚拟链路所对应的全部物理路径,所述物理路径由若干条所述物理链路组成;
    将所述虚拟链路所对应的全部物理路径确定为每个节点对所对应的全部传输路径。
  4. 根据权利要求3所述的方法,其中,所述根据预置的第一切片分配策略为所述传输路径分配第一网络资源,包括:
    根据预置的第一切片分配策略确定资源参数;
    为所述物理链路分配所述资源参数;
    根据分配有所述资源参数的所述物理链路,得到分配有所述第一网络资源的所述传输路径,其中,所述第一网络资源包括所述资源参数。
  5. 根据权利要求1至4任意一项所述的方法,其中,所述根据预置的第二切片分配策略从所述第一网络切片中确定出第二网络切片,包括:
    在所述第一网络切片的全部传输路径被分配第一网络资源的情况下,根据第二切片分配策略为所述传输路径分配第二网络资源;
    将分配所述第二网络资源后所得出的传输路径的集合确定为第二网络切片。
  6. 根据权利要求1至4任意一项所述的方法,其中,所述第二切片分配策略包括预设条件,所述根据预置的第二切片分配策略从所述第一网络切片中确定出第二网络切片,包括:
    从所述第一网络切片中选择所述第二网络资源符合所述预设条件的传输路径的集合,得到第二网络切片。
  7. 根据权利要求6所述的方法,其中,所述第二切片分配策略包括至少两个预设条件,所述根据预置的第二切片分配策略从所述第一网络切片中确定出第二网络切片,包括:
    从所述第一网络切片中选择所述第二网络资源符合所述预设条件的传输路径的至少两个集合,得到至少两个第二网络切片。
  8. 根据权利要求1所述的方法,其中,所述传输路径包括N种网络资源,其中,N为大于2的整数,在所述根据预置的第二切片分配策略从所述第一网络切片中确定出第二网络切片之后,还包括:
    根据预置的第N切片分配策略从第N-1网络切片中确定出第N网络切片,所述第N网络 切片中的传输路径的第N网络资源符合所述第N切片分配策略。
  9. 一种控制器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至8中任意一项所述的网络切片管理方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行如权利要求1至8中任意一项所述的网络切片管理方法。
PCT/CN2021/118843 2020-11-27 2021-09-16 网络切片管理方法、控制器及计算机可读存储介质 WO2022110992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011355495.1 2020-11-27
CN202011355495.1A CN114567826A (zh) 2020-11-27 2020-11-27 网络切片管理方法、控制器及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022110992A1 true WO2022110992A1 (zh) 2022-06-02

Family

ID=81711117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118843 WO2022110992A1 (zh) 2020-11-27 2021-09-16 网络切片管理方法、控制器及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114567826A (zh)
WO (1) WO2022110992A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024108810A1 (zh) * 2022-11-22 2024-05-30 网络通信与安全紫金山实验室 智能切片系统的数据参考集生成方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180123961A1 (en) * 2016-10-31 2018-05-03 Huawei Technologies Co., Ltd. System and method for policy configuration of control plane functions by management plane functions
CN110391920A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 一种网络切片管理方法和装置、及设备
CN110855542A (zh) * 2018-08-20 2020-02-28 中国电信股份有限公司 传送网络切片的管理方法、系统及装置
WO2020103902A1 (zh) * 2018-11-23 2020-05-28 中兴通讯股份有限公司 实现网络切片的方法、装置和控制器
WO2020185794A1 (en) * 2019-03-11 2020-09-17 Intel Corporation Multi-slice support for mec-enabled 5g deployments
US20200328944A1 (en) * 2019-04-12 2020-10-15 Huawei Technologies Co., Ltd. Systems and methods for communication network customization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180123961A1 (en) * 2016-10-31 2018-05-03 Huawei Technologies Co., Ltd. System and method for policy configuration of control plane functions by management plane functions
CN110391920A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 一种网络切片管理方法和装置、及设备
CN110855542A (zh) * 2018-08-20 2020-02-28 中国电信股份有限公司 传送网络切片的管理方法、系统及装置
WO2020103902A1 (zh) * 2018-11-23 2020-05-28 中兴通讯股份有限公司 实现网络切片的方法、装置和控制器
WO2020185794A1 (en) * 2019-03-11 2020-09-17 Intel Corporation Multi-slice support for mec-enabled 5g deployments
US20200328944A1 (en) * 2019-04-12 2020-10-15 Huawei Technologies Co., Ltd. Systems and methods for communication network customization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
U.S. CELLULAR, INTEL: "Priority marking for a network slice", 3GPP DRAFT; S5-194134, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG5, no. Sapporo, Japan; 20190625 - 20190628, 17 June 2019 (2019-06-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051753582 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024108810A1 (zh) * 2022-11-22 2024-05-30 网络通信与安全紫金山实验室 智能切片系统的数据参考集生成方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114567826A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
Lu et al. Highly efficient data migration and backup for big data applications in elastic optical inter-data-center networks
EP3342138B1 (en) Systems and methods for distributing network resources to network service providers
US11868793B2 (en) Tenant-controlled cloud updates
US10104010B2 (en) Method and apparatus for allocating resources
EP2571184B1 (en) Allocation of spectral capacity in a wavelength-division multiplexing optical network
US20180006757A1 (en) Gridless optical routing and spectrum assignment
CN111165019B (zh) 接入网中的控制器
EP3679704B1 (en) Method and apparatus for sla management in distributed cloud environments
US10069570B2 (en) Multi-layer modem reclamation systems and methods
JP6097449B2 (ja) ソフトウェア定義型フレキシブルグリッド転送ネットワークにおける時間変動するトラフィックのプロビジョニング
EP3289734B1 (en) Resource provisioning in a virtualized network
US10491542B2 (en) Dynamic allocation of network bandwidth
WO2019174000A1 (zh) 用于业务管理的方法和装置
CN112383846B (zh) 面向云-雾弹性光网络提前预留请求的频谱资源分配方法
WO2022110992A1 (zh) 网络切片管理方法、控制器及计算机可读存储介质
US11399340B2 (en) Controller of a radio access network
WO2015106795A1 (en) Methods and systems for selecting resources for data routing
JPWO2018029913A1 (ja) リソース割当装置及びリソース割当方法
WO2018018135A1 (en) System and method for joint embedding and backup provisioning in virtual networks
Wang et al. Scheduling large data flows in elastic optical inter-datacenter networks
Din Spectrum expansion/contraction and survivable routing and spectrum assignment problems on EONs with time-varying traffic
US20230261942A1 (en) Flow orchestration for network configuration
CN113630671A (zh) 基于串扰感知的专用保护频谱分配方法及系统
US10452669B2 (en) Simplifying quantitative analysis of time-bounded resource consumption
US11901936B1 (en) Optical communication network configuration

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2023)