WO2022110587A1 - Method for constructing color fiber six-dimensional color mixing space grid model and grid point array color matrix thereof, and application - Google Patents

Method for constructing color fiber six-dimensional color mixing space grid model and grid point array color matrix thereof, and application Download PDF

Info

Publication number
WO2022110587A1
WO2022110587A1 PCT/CN2021/082628 CN2021082628W WO2022110587A1 WO 2022110587 A1 WO2022110587 A1 WO 2022110587A1 CN 2021082628 W CN2021082628 W CN 2021082628W WO 2022110587 A1 WO2022110587 A1 WO 2022110587A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
dimensional
construct
equal
constant
Prior art date
Application number
PCT/CN2021/082628
Other languages
French (fr)
Chinese (zh)
Inventor
薛元
崔鹏
孙显强
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022110587A1 publication Critical patent/WO2022110587A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/12Cloth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention relates to a color fiber six-dimensional color mixing space grid model, a grid point array color matrix construction method and application, and belongs to the technical field of color mixing space grid construction.
  • Color fibers with different color effects can be obtained by technical means such as dyeing of textile fiber materials, dope dyeing, biological transgenic, and structural color generation.
  • Colored colored yarns in theory, the basic color, blending ratio, blending method, and the structure of the forming yarns of the blended fibers have a great influence on the hue, lightness and saturation of the colored yarns, but in the actual production process, usually Based on a certain color mixing method and yarn structure, the selection of the basic color of the colored fiber and the selection of the color mixing ratio are mainly considered.
  • the production of colored spun yarn requires the completion of color design, specification design and spinning process design of colored spun yarn.
  • color design of color spinning there are usually the following six workflows: (1) Innovate the color of the yarn based on the existing color system, and develop the colored yarn. At this time, it is necessary to make different combinations of several colored fibers in the library and select different proportions for mixed color spinning, and select several color schemes from the trial-spun serialized colored yarns as new products for market promotion; (2) Based on popular colors or Designers personally like to select color systems to innovate yarn colors and develop colored yarns.
  • the designer selects several groups of basic color systems for fiber dyeing according to his own understanding and imagination of colors, and combines several groups of color fibers selected by the designer in different combinations and selects different proportions for mixed color spinning.
  • determine which kinds of colored fibers are used for mixed color spinning in what proportion? Send the trial-spun colored yarn samples to the customer for confirmation, and determine the color-spun yarn color scheme after several rounds.
  • the core technology of producing colored yarns or colored yarns is to optimize the color scheme of colored yarns, whether it is based on the existing color system for yarn color innovation, or based on the designer's personal preference to select the color system for yarn color innovation, or based on the existing color system.
  • For color reproduction it is necessary to be familiar with the changing laws of color hue, lightness and saturation, to be sensitive to the subtle differences between colors, and to master the color matching skills of colored yarns.
  • the design of the color scheme mainly relies on the designer's personal experience and intuition.
  • the completion of the color matching process mainly relies on manual sample making, manual dyeing, and manual color matching.
  • the evaluation of the color matching results mainly relies on the observation of the physical samples on the spot and the subjective feeling. Evaluate.
  • the color mixing process of colored fibers is the color mixing process, which belongs to the space juxtaposition of colors.
  • the color mixing process of color fibers is the color mixing process of color materials.
  • the traditional color matching method does not establish a digital physical model to express the color mixing process of color fibers. It is necessary to build a physical model and digitally express the color mixing process of color fibers;
  • the color mixing process of colored fibers is to select several colored fibers as the basic colors, and obtain a serialized color spectrum by changing the blending ratio.
  • the traditional color matching method produces mixed color samples by hand proofing, and there is no digital method to obtain the color value of the mixed color body based on the color value of the base color and the change of the mixed color ratio.
  • Digital virtual color matching
  • Serialized chromatograms can be obtained through the color matching process of colored fibers.
  • the traditional color matching method is obtained by manual proofing, which is inefficient, time-consuming, and inconvenient for remote transmission. It is necessary to construct a standard color mixing chromatogram for the combination of eight primary color fibers such as red, green, blue, cyan, blue, magenta, black, and white to provide a reference for the color matching of colored yarns;
  • the technical problem to be solved by the present invention is to provide a color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method.
  • a coordinate digital quantization process is introduced to realize the six-primary color RGB color mixing space color. visualization.
  • the present invention designs a color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method. , ⁇ , ⁇ , and the quality of each primary color fiber corresponds to each coordinate axis in the six-dimensional coordinate system to realize the construction of a six-dimensional color mixing grid color mixing space grid point array model, including the following steps:
  • Step A Determine the maximum mass of each primary color fiber according to the preset maximum mass ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ corresponding to the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ respectively Respectively corresponding to the position of its set coordinate axis, and then enter step B;
  • step C For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber ⁇ in the six-dimensional coordinate system, perform t equal division, that is, obtain t+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment Represents the position direction of the coordinate axis and the serial number of each point corresponding to the origin in the six-dimensional coordinate system to the maximum mass of the primary color fiber ⁇ on the line segment; then enter step C;
  • Step C Construct the mixing ratios ⁇ ⁇ (i, j, k, ⁇ , ⁇ ) and ⁇ ⁇ (i, j, k, ⁇ , ⁇ ) corresponding to the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ respectively , ⁇ ⁇ (i, j, k, ⁇ , ⁇ ), ⁇ ⁇ (i, j, k, ⁇ , ⁇ ), ⁇ ⁇ (i, j, k, ⁇ , ⁇ ), ⁇ ⁇ (i, j, k, ⁇ , ⁇ ), ⁇ ⁇ (i, j, k, ⁇ , ⁇ ) are as follows, and then enter step D;
  • Step D Construct the quality model of any point in the cube space corresponding to the six-dimensional color mixing grid color mixing space based on the preset maximum quality of the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ as follows, and then proceed to step E;
  • Step E Constructing the six-dimensional color mixing grid color mixing space corresponding to the preset maximum quality of the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇
  • the quality matrix of any point in the cube space is as follows, and then enter step F;
  • Step F Constructing the color value model of any point in the cube space based on the preset maximum quality of the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
  • step G wherein R ⁇ , G ⁇ , B ⁇ represent the RGB color corresponding to the primary color fiber ⁇ , R ⁇ , G ⁇ , B ⁇ represent the RGB color corresponding to the primary color fiber ⁇ , R ⁇ , G ⁇ , B ⁇ represents the RGB color corresponding to the primary color fiber ⁇ , R ⁇ , G ⁇ , B ⁇ represent the RGB color corresponding to the primary color fiber ⁇ , R ⁇ , G ⁇ , B ⁇ represent the RGB color corresponding to the primary color fiber ⁇ ; R ⁇ , G ⁇ , B ⁇ represent the RGB color corresponding to the primary color fiber ⁇ ; Corresponding to the color value of the mixed yarn of six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , R ⁇ (i,j,k, ⁇ , ⁇ , ⁇ ), G ⁇ (i,j,k, ⁇ , ⁇ , ⁇ ), B ⁇ (i, j, k, ⁇ , ⁇ ,
  • Step G Constructing the color value matrix of any point in the cube space based on the preset maximum quality of the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
  • the color value model for any point in the cube space with the preset maximum quality is as follows:
  • M 1,1 [ ⁇ i,j,k, ⁇ , ⁇ , ⁇ ].
  • the primary color fiber ⁇ corresponds to the X axis in the six-dimensional coordinate system
  • the primary color fiber ⁇ corresponds to the Y axis in the six-dimensional coordinate system
  • the primary color fiber ⁇ corresponds to the six-dimensional coordinate system.
  • the Z axis of the primary color fiber ⁇ corresponds to the U axis in the six-dimensional coordinate system
  • the primary color fiber ⁇ corresponds to the V axis in the six-dimensional coordinate system
  • the primary color fiber ⁇ corresponds to the W axis in the six-dimensional coordinate system
  • k, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • i, k is a constant, and j, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ⁇ i,j,k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and j, k, ⁇ are equal to 1, ..., n+1 respectively, construct (n+1) 3 -dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and j, k, ⁇ are equal to 1, ..., n+1, respectively, construct (n+1) 3 -dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, k, ⁇ are respectively equal to 1,...,n+1, construct (n+1) 3 three-dimensional color arrays for ⁇ i,j,k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, k, ⁇ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, j, ⁇ are respectively equal to 1,..., n+1, construct (n+1) 3 -dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, j, ⁇ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • are constants, and i, j , k are equal to 1 , .
  • are constants, and i, k, ⁇ , Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • j is a constant, and i, k, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • are constants, and i, j, ⁇ , Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • i, j, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, j, k, ⁇ are equal to 1, ..., n+1, respectively, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • i is a constant based on i, and j, k, ⁇ , ⁇ , Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • i, j, k, ⁇ , ⁇ are constants, and i, j, k, ⁇ , ⁇ are equal to 1, .
  • the present invention designs an application of a six-dimensional color mixing space grid model for color fibers and a method for constructing a color matrix of a grid point array.
  • ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ preset the color value of any point in the cube space with the maximum quality, stored in the database, and used to analyze the target color in the following way;
  • a color detector to detect the RGB color detection data corresponding to the target color, and find the grid point corresponding to the RGB color detection data in the database; then take the grid point as the origin and the surrounding preset radius, The grid point corresponding to the target color is obtained by means of comparison; finally, the RGB color data corresponding to the target color is formed from the RGB color data corresponding to the grid point.
  • a color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method and application according to the present invention compared with the prior art by using the above technical solution, have the following technical effects:
  • the quality of the primary color fibers involved in the mixing is used as the coordinate axis data, and the mixed yarn object of the six primary color fibers is obtained from each grid point in the six-dimensional coordinate system space, and the mixing ratio of each primary color fiber is combined.
  • the RGB color of the fiber realizes the RGB color modeling of the mixed yarn object, that is, a six-dimensional color mixing grid color mixing space grid point array model, and thus further realizes the construction of line array model, area array model, and volume array model.
  • digital quantization is realized for the RGB color mixing space under the mixing of six primary color fibers, and each group of models can be called arbitrarily in practical applications to realize color visualization, which effectively improves the efficiency of color analysis and selection.
  • FIG. 1 is a schematic flowchart of a six-dimensional color mixing space grid model of color fibers designed by the present invention and a method for constructing a grid point array color matrix.
  • the invention designs a color fiber six-dimensional color mixing space grid model and a grid point array color matrix construction method.
  • the quality of each primary color fiber corresponds to
  • Each coordinate axis in the six-dimensional coordinate system realizes the construction of a six-dimensional color mixing grid color mixing space grid point array model, including the following steps A to G.
  • Step A Determine the maximum mass of each primary color fiber according to the preset maximum mass ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ , ⁇ ⁇ corresponding to the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ respectively Respectively corresponding to the position of its set coordinate axis, and then go to step B.
  • step C For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber ⁇ in the six-dimensional coordinate system, perform t equal division, that is, obtain t+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment Indicates the line segment from the origin in the six-dimensional coordinate system to the position direction of the coordinate axis corresponding to the maximum mass of the primary color fiber ⁇ , and the serial number of each point; then go to step C.
  • Step C Construct the mixing ratios ⁇ ⁇ (i, j, k, ⁇ , ⁇ ) and ⁇ ⁇ (i, j, k, ⁇ , ⁇ ) corresponding to the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ respectively , ⁇ ⁇ (i, j, k, ⁇ , ⁇ ), ⁇ ⁇ (i, j, k, ⁇ , ⁇ ), ⁇ ⁇ (i, j, k, ⁇ , ⁇ ), ⁇ ⁇ (i, j, k, ⁇ , ⁇ ), ⁇ ⁇ (i, j, k, ⁇ , ⁇ ) are as follows, and then enter step D;
  • Step D Construct the quality model of any point in the cube space corresponding to the six-dimensional color mixing grid color mixing space based on the preset maximum quality of the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ as follows, and then proceed to step E;
  • Step E Constructing the six-dimensional color mixing grid color mixing space corresponding to the preset maximum quality of the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇
  • the quality matrix of any point in the cube space is as follows, and then enter step F;
  • Step F Constructing the color value model of any point in the cube space based on the preset maximum quality of the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
  • R ⁇ , G ⁇ , B ⁇ represent the RGB colors corresponding to the primary color fiber ⁇
  • R ⁇ , G ⁇ , B ⁇ represent the RGB colors corresponding to the primary color fiber ⁇
  • R ⁇ , G ⁇ , B ⁇ represents the RGB color corresponding to the primary color fiber ⁇
  • R ⁇ , G ⁇ , B ⁇ represent the RGB color corresponding to the primary color fiber ⁇
  • R ⁇ , G ⁇ , B ⁇ represent the RGB color corresponding to the primary color fiber ⁇
  • R ⁇ , G ⁇ , B ⁇ represent the RGB color corresponding to the primary color fiber ⁇
  • Step G Constructing the color value matrix of any point in the cube space based on the preset maximum quality of the six primary color fibers ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
  • the color value model for a point is as follows:
  • M 1,1 [ ⁇ i,j,k, ⁇ , ⁇ , ⁇ ].
  • the base color fiber ⁇ corresponds to the X axis in the six-dimensional coordinate system
  • the base color fiber ⁇ corresponds to the Y axis in the six-dimensional coordinate system
  • the base color fiber ⁇ corresponds to the Z axis in the six-dimensional coordinate system
  • the base color fiber ⁇ corresponds to the six-dimensional coordinate system.
  • the U axis of the primary color fiber ⁇ corresponds to the V axis in the six-dimensional coordinate system
  • the primary color fiber ⁇ corresponds to the W axis in the six-dimensional coordinate system.
  • i, j is a constant, and k, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ⁇ i,j,k, ⁇ , ⁇ , ⁇ ;
  • i, k is a constant, and j, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ⁇ i,j,k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and j, k, ⁇ are equal to 1, ..., n+1 respectively, construct (n+1) 3 -dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and j, k, ⁇ are equal to 1, ..., n+1, respectively, construct (n+1) 3 -dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, k, ⁇ are respectively equal to 1,...,n+1, construct (n+1) 3 three-dimensional color arrays for ⁇ i,j,k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, k, ⁇ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, j, ⁇ are respectively equal to 1,..., n+1, construct (n+1) 3 -dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, j, ⁇ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, j , k are equal to 1 , .
  • i is a constant
  • j, k, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • are constants, and i, k, ⁇ , Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • j is a constant, and i, k, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • are constants, and i, j, ⁇ , Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • i, j, ⁇ , ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • is a constant, and i, j, k, ⁇ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ⁇ i, j, k, ⁇ , ⁇ , ⁇ ;
  • i, j, k, ⁇ , ⁇ are constants, and i, j, k, ⁇ , ⁇ are equal to 1, .
  • the present invention designs an application of a six-dimensional color mixing space grid model for color fibers and a method for constructing a color matrix of a grid point array.
  • ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ preset the color value of any point in the cube space with the maximum quality, stored in the database, and used to analyze the target color in the following way;
  • a color detector to detect the RGB color detection data corresponding to the target color, and find the grid point corresponding to the RGB color detection data in the database; then take the grid point as the origin and the surrounding preset radius, The grid point corresponding to the target color is obtained by means of comparison; finally, the RGB color data corresponding to the target color is formed from the RGB color data corresponding to the grid point.
  • the color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 1 below.
  • the color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 2 below.
  • the color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 3 below.
  • the color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 4 below.
  • the color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 5 below.
  • the color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 6 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Coloring (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

A method for constructing a color fiber six-dimensional color mixing space grid model and a grid point array color matrix thereof, and an application. A coordinate digital quantification process is introduced for specified six primary color fibers, the six primary color fibers are made to respectively correspond to coordinate axes of a six-dimensional coordinate system, and by using the mass of the primary color fibers involved in mixing as coordinate axis data, a mixed yarn object of the six primary color fibers is obtained from grid points of a six-dimensional coordinate system space. Thus, RGB color modeling of the mixed yarn object is implemented in combination with the mixing ratio of each primary color fiber and the RGB color of each primary color fiber, that is, a six-dimensional color mixing grid color mixing space grid point array model is formed, thereby further realizing the construction of a line array model, an area array model and a volume array model. Digital quantification is implemented for an RGB color mixing space under the mixing of the six primary color fibers, each group of models can be arbitrarily invoked in practical applications to realize color visualization, thereby effectively improving the color analysis and selection efficiency.

Description

一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法及应用A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method and application 技术领域technical field
本发明涉及一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法及应用,属于混色空间网格构建技术领域。The invention relates to a color fiber six-dimensional color mixing space grid model, a grid point array color matrix construction method and application, and belongs to the technical field of color mixing space grid construction.
背景技术Background technique
通过对纺织纤维材料的染色、原液着色、生物转基因、结构生色等技术手段可获取具有不同色彩效应的彩色纤维,将六种不同色彩的纤维按照某种比例进行混色纺纱可得到具有某种色彩的色纺纱,理论上混纺纤维的基色、混和比例、混和方式、成型纱线的结构等因素对色纺纱色相、明度及饱和度都有较大影响,但在实际生产过程中,通常以某种混色方式和成纱结构为基础,重点考虑彩色纤维基色的选择及其混色比例的选择。利用多元基色的染色纤维或者原液着色纤维混色纺制色纺纱,并通过变动基色纤维的比例调控色纺纱的色相、明度及饱和度,是设计并实现色纺纱的必要手段。Color fibers with different color effects can be obtained by technical means such as dyeing of textile fiber materials, dope dyeing, biological transgenic, and structural color generation. Colored colored yarns, in theory, the basic color, blending ratio, blending method, and the structure of the forming yarns of the blended fibers have a great influence on the hue, lightness and saturation of the colored yarns, but in the actual production process, usually Based on a certain color mixing method and yarn structure, the selection of the basic color of the colored fiber and the selection of the color mixing ratio are mainly considered. It is a necessary means to design and realize the color spun yarn by using the dyed fibers of multiple primary colors or the dope dyed fibers to mix the colors to make the colored spun yarn, and to adjust the hue, lightness and saturation of the colored spun yarn by changing the proportion of the primary color fibers.
生产色纺纱需要完成色纺纱的色彩设计、规格设计、纺纱工艺设计。在进行色纺纱色彩设计时,通常有以下六种工作流程:(1)基于现有色系进行纱线色彩创新,开发彩色纱线。此时需要将在库的若干彩色纤维进行不同组合并选用不同比例进行混色纺纱,从试纺的系列化彩色纱线中选择几个配色方案作为新品进行市场推广;(2)基于流行色或设计师个人喜好选定色系进行纱线色彩创新,开发彩色纱线。此时由设计师根据自己对色彩的理解和想象选择几组基础色系进行纤维染色,将设计师选定的几组彩纤维进行不同组合并选用不同比例进行混色纺纱,从试纺的系列化彩色纱线中选择几个配色方案作为新品进行市场推广;(3)基于来样进行色彩复制,开发彩色纱线。在分析来样的基础上,确定采用哪几种彩色纤维按照何种比例进行混色纺纱?将试纺色纺纱样交客户确认,经若干回合后确定色纺纱配色方案。The production of colored spun yarn requires the completion of color design, specification design and spinning process design of colored spun yarn. In the color design of color spinning, there are usually the following six workflows: (1) Innovate the color of the yarn based on the existing color system, and develop the colored yarn. At this time, it is necessary to make different combinations of several colored fibers in the library and select different proportions for mixed color spinning, and select several color schemes from the trial-spun serialized colored yarns as new products for market promotion; (2) Based on popular colors or Designers personally like to select color systems to innovate yarn colors and develop colored yarns. At this time, the designer selects several groups of basic color systems for fiber dyeing according to his own understanding and imagination of colors, and combines several groups of color fibers selected by the designer in different combinations and selects different proportions for mixed color spinning. Select several color schemes from the colored yarns as new products for market promotion; (3) Carry out color reproduction based on incoming samples and develop colored yarns. On the basis of analyzing the incoming samples, determine which kinds of colored fibers are used for mixed color spinning in what proportion? Send the trial-spun colored yarn samples to the customer for confirmation, and determine the color-spun yarn color scheme after several rounds.
生产色纺纱或彩色纱的核心技术是优选彩色纱的配色方案,无论是基于现有色系进行纱线色彩创新,还是基于设计师个人喜好选定色系进行纱线色彩创新,或是基于来样进行色彩复制,都需要熟悉色彩色相、明度及饱和度的变化规律,敏感察觉色彩之间的微妙差异,掌握彩色纱线的配色技巧。The core technology of producing colored yarns or colored yarns is to optimize the color scheme of colored yarns, whether it is based on the existing color system for yarn color innovation, or based on the designer's personal preference to select the color system for yarn color innovation, or based on the existing color system. For color reproduction, it is necessary to be familiar with the changing laws of color hue, lightness and saturation, to be sensitive to the subtle differences between colors, and to master the color matching skills of colored yarns.
当前,配色方案的设计主要依靠设计师个人的经验和直觉进行,配色过程的完成主要依靠手工制样、手工染色、手工配色,配色结果的评价主要依靠在现场对实物样的观察,依托主观感受进行评价。彩色纤维的混色过程是色料混色过程,属于色彩的空间并置混色。At present, the design of the color scheme mainly relies on the designer's personal experience and intuition. The completion of the color matching process mainly relies on manual sample making, manual dyeing, and manual color matching. The evaluation of the color matching results mainly relies on the observation of the physical samples on the spot and the subjective feeling. Evaluate. The color mixing process of colored fibers is the color mixing process, which belongs to the space juxtaposition of colors.
现有色彩体系中的颜色可通过混色空间中的R、G、B值进行标定,因此任一颜色都可用混色空间的某个向量表示。如果将颜色a(R a、G a、B a)、b(R b、G b、B b)、b(R b、G b、B b)、d(R d、G d、B d)混色可得到混色样的颜色值m(R m、G m、B m),则混色样的颜色值R m=R a+R b+R c+R d、G m=G a+G b+G c+G d、 B m=B a+B b+B c+B d,相当于混色空间中求向量之和的运算。既然色彩及色彩的混色均可数字化表达,所以也可对彩色纤维的混色过程进行数字化表达。基于上述分析,我们认为传统配色方法主要存在以下问题: The colors in the existing color system can be calibrated by the R, G, B values in the color mixing space, so any color can be represented by a vector in the color mixing space. If color a(R a , G a , B a ), b(R b , G b , B b ), b(R b , G b , B b ), d(R d , G d , B d ) The color value m (R m , G m , B m ) of the mixed color sample can be obtained by color mixing, then the color value of the mixed color sample R m =R a +R b +R c +R d , G m =G a +G b + G c +G d , B m =B a +B b +B c +B d , which are equivalent to the operation of summing vectors in the mixed color space. Since color and color mixing can be digitally expressed, the color mixing process of colored fibers can also be digitally expressed. Based on the above analysis, we believe that the traditional color matching method mainly has the following problems:
1、彩色纤维的混色过程是色料混色过程,传统配色方法未建立数字化的物理模型对彩色纤维的混色过程进行表达,需要构建物理模型并对彩色纤维的混色过程进行数字化表达;1. The color mixing process of color fibers is the color mixing process of color materials. The traditional color matching method does not establish a digital physical model to express the color mixing process of color fibers. It is necessary to build a physical model and digitally express the color mixing process of color fibers;
2、彩色纤维的混配色过程,就是选择几种彩色纤维作为基础颜色,通过变化混纺比得到系列化的色谱。传统配色方法通过手工打样制作混色样品,未建立基于基色颜色值以及混色比例变化求取混色体颜色值的数字化方法,需要构建彩色纤维离散混色模型及其混色色谱的可视化算法,实现彩色纱线的数字化虚拟配色;2. The color mixing process of colored fibers is to select several colored fibers as the basic colors, and obtain a serialized color spectrum by changing the blending ratio. The traditional color matching method produces mixed color samples by hand proofing, and there is no digital method to obtain the color value of the mixed color body based on the color value of the base color and the change of the mixed color ratio. Digital virtual color matching;
3、通过彩色纤维的配色过程可以得到系列化色谱。传统配色方法采用手工打样获取,获取配色色谱效率低、耗时长、不便于远程传输。需要构建红、绿、蓝、青、蓝、品红、黑、白等八基色纤维组合混配的标准混色色谱,为彩色纱线的配色提供参考依据;3. Serialized chromatograms can be obtained through the color matching process of colored fibers. The traditional color matching method is obtained by manual proofing, which is inefficient, time-consuming, and inconvenient for remote transmission. It is necessary to construct a standard color mixing chromatogram for the combination of eight primary color fibers such as red, green, blue, cyan, blue, magenta, black, and white to provide a reference for the color matching of colored yarns;
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是提供一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,针对指定六基色纤维,引入坐标数字量化过程,实现六基色RGB混色空间颜色的可视化。The technical problem to be solved by the present invention is to provide a color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method. For the designated six-primary color fibers, a coordinate digital quantization process is introduced to realize the six-primary color RGB color mixing space color. visualization.
本发明为了解决上述技术问题采用以下技术方案:本发明设计了一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,针对指定六基色纤维α、β、γ、δ、ε、θ,以各基色纤维质量分别对应六维坐标系中的各根坐标轴,实现六维混色网格混色空间网格点阵列模型的构建,包括如下步骤:In order to solve the above technical problems, the present invention adopts the following technical solutions: The present invention designs a color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method. , ε, θ, and the quality of each primary color fiber corresponds to each coordinate axis in the six-dimensional coordinate system to realize the construction of a six-dimensional color mixing grid color mixing space grid point array model, including the following steps:
步骤A.根据六基色纤维α、β、γ、δ、ε、θ分别所对应的预设最大质量ω α、ω β、ω γ、ω δ、ω ε、ω θ,确定各基色纤维最大质量分别所对应其所设坐标轴的位置,然后进入步骤B; Step A. Determine the maximum mass of each primary color fiber according to the preset maximum mass ω α , ω β , ω γ , ω δ , ω ε , ω θ corresponding to the six primary color fibers α, β, γ, δ, ε, θ respectively Respectively corresponding to the position of its set coordinate axis, and then enter step B;
步骤B.针对六维坐标系中原点与基色纤维α最大质量所对应其所设坐标轴位置之间的线段,执行m等分,即获得包含该线段两端顶点在内的m+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000001
i=1、…、m+1,i表示该线段上由六维坐标系中原点至基色纤维α最大质量所对应其所设坐标轴位置方向、各点的序号;
Step B. For the line segment between the origin and the position of the coordinate axis corresponding to the maximum mass of the primary color fiber α in the six-dimensional coordinate system, perform m equal division, that is, obtain m+1 points including the vertices at both ends of the line segment. , and the mass of each point on the line segment
Figure PCTCN2021082628-appb-000001
i=1, .
针对六维坐标系中原点与基色纤维β最大质量所对应其所设坐标轴位置之间的线段,执行n等分,即获得包含该线段两端顶点在内的n+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000002
j=1、…、n+1,j表 示该线段上由六维坐标系中原点至基色纤维β最大质量所对应其所设坐标轴位置方向、各点的序号;
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber β in the six-dimensional coordinate system, perform n equal divisions, that is, to obtain n+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000002
j=1, .
针对六维坐标系中原点与基色纤维γ最大质量所对应其所设坐标轴位置之间的线段,执行p等分,即获得包含该线段两端顶点在内的p+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000003
k=1、…、p+1,k表示该线段上由六维坐标系中原点至基色纤维γ最大质量所对应其所设坐标轴位置方向、各点的序号;
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber γ in the six-dimensional coordinate system, perform p equal division, that is, to obtain p+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000003
k=1, .
针对六维坐标系中原点与基色纤维δ最大质量所对应其所设坐标轴位置之间的线段,执行q等分,即获得包含该线段两端顶点在内的q+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000004
τ=1、…、q+1,τ表示该线段上由六维坐标系中原点至基色纤维δ最大质量所对应其所设坐标轴位置方向、各点的序号;
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber δ in the six-dimensional coordinate system, perform q equal division, that is, obtain q+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000004
τ=1, .
针对六维坐标系中原点与基色纤维ε最大质量所对应其所设坐标轴位置之间的线段,执行s等分,即获得包含该线段两端顶点在内的s+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000005
μ=1、…、s+1,μ表示该线段上由六维坐标系中原点至基色纤维ε最大质量所对应其所设坐标轴位置方向、各点的序号;
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber ε in the six-dimensional coordinate system, perform s equal division, that is, obtain s+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000005
μ=1, .
针对六维坐标系中原点与基色纤维θ最大质量所对应其所设坐标轴位置之间的线段,执行t等分,即获得包含该线段两端顶点在内的t+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000006
Figure PCTCN2021082628-appb-000007
表示该线段上由六维坐标系中原点至基色纤维θ最大质量所对应其所设坐标轴位置方向、各点的序号;然后进入步骤C;
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber θ in the six-dimensional coordinate system, perform t equal division, that is, obtain t+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000006
Figure PCTCN2021082628-appb-000007
Represents the position direction of the coordinate axis and the serial number of each point corresponding to the origin in the six-dimensional coordinate system to the maximum mass of the primary color fiber θ on the line segment; then enter step C;
步骤C.构建六基色纤维α、β、γ、δ、ε、θ分别所对应混合比λ α(i,j,k,τ,μ)、λ β(i,j,k,τ,μ)、λ γ(i,j,k,τ,μ)、λ δ(i,j,k,τ,μ)、λ ε(i,j,k,τ,μ)、λ θ(i,j,k,τ,μ)如下,然后进入步骤D; Step C. Construct the mixing ratios λ α (i, j, k, τ, μ) and λ β (i, j, k, τ, μ) corresponding to the six primary color fibers α, β, γ, δ, ε, and θ respectively , λ γ (i, j, k, τ, μ), λ δ (i, j, k, τ, μ), λ ε (i, j, k, τ, μ), λ θ (i, j, k, τ, μ) are as follows, and then enter step D;
Figure PCTCN2021082628-appb-000008
Figure PCTCN2021082628-appb-000008
Figure PCTCN2021082628-appb-000009
Figure PCTCN2021082628-appb-000009
Figure PCTCN2021082628-appb-000010
Figure PCTCN2021082628-appb-000010
Figure PCTCN2021082628-appb-000011
Figure PCTCN2021082628-appb-000011
Figure PCTCN2021082628-appb-000012
Figure PCTCN2021082628-appb-000012
Figure PCTCN2021082628-appb-000013
Figure PCTCN2021082628-appb-000013
步骤D.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的质量模型如下,然后进入步骤E;Step D. Construct the quality model of any point in the cube space corresponding to the six-dimensional color mixing grid color mixing space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ as follows, and then proceed to step E;
Figure PCTCN2021082628-appb-000014
Figure PCTCN2021082628-appb-000014
步骤E.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的质量矩阵如下,然后进入步骤F;Step E. Constructing the six-dimensional color mixing grid color mixing space corresponding to the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ The quality matrix of any point in the cube space is as follows, and then enter step F;
Figure PCTCN2021082628-appb-000015
Figure PCTCN2021082628-appb-000015
且i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000016
and i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1; τ =1,2,3,...,q+1; μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000016
步骤F.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型如下:Step F. Constructing the color value model of any point in the cube space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
Figure PCTCN2021082628-appb-000017
Figure PCTCN2021082628-appb-000017
然后进入步骤G,其中,R α、G α、B α表示基色纤维α所对应的RGB色,R β、G β、B β表示基色纤维β所对应的RGB色,R γ、G γ、B γ表示基色纤维γ所对应的RGB色,R δ、G δ、B δ表示基色纤维δ所对应的RGB色,R ε、G ε、B ε表示基色纤维ε所对应的RGB色;R θ、G θ、B θ表示基色纤维θ所对应的RGB色,;ξ i,j,k,τ,μ,θ表示六维坐标系中坐标(i,j,k,τ,μ,θ)位置所对应六基色纤维α、β、γ、δ、ε、θ混合纱线的颜色值,R ξ(i,j,k,τ,μ,θ)、G ξ(i,j,k,τ,μ,θ)、B ξ(i,j,k,τ,μ,θ)表示六维坐标系中坐标(i,j,k,τ,μ,θ)位置所对应六基色纤维α、β、γ、δ、ε、θ混合纱线的RGB色; Then enter step G, wherein R α , G α , B α represent the RGB color corresponding to the primary color fiber α, R β , G β , B β represent the RGB color corresponding to the primary color fiber β, R γ , G γ , B γ represents the RGB color corresponding to the primary color fiber γ, R δ , G δ , B δ represent the RGB color corresponding to the primary color fiber δ, R ε , G ε , B ε represent the RGB color corresponding to the primary color fiber ε; R θ , G θ , B θ represent the RGB color corresponding to the primary color fiber θ; Corresponding to the color value of the mixed yarn of six primary color fibers α, β, γ, δ, ε, θ, R ξ (i,j,k,τ,μ,θ), G ξ (i,j,k,τ,μ , θ), B ξ (i, j, k, τ, μ, θ) represent the six primary color fibers α, β, γ corresponding to the coordinates (i, j, k, τ, μ, θ) in the six-dimensional coordinate system , δ, ε, θ mixed yarn RGB color;
步骤G.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值矩阵如下:Step G. Constructing the color value matrix of any point in the cube space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
Figure PCTCN2021082628-appb-000018
Figure PCTCN2021082628-appb-000018
且i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;ω=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000019
and i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1; τ =1,2,3,...,q+1;ω=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000019
作为本发明的一种优选技术方案:基于所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t,则步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型如下: As a preferred technical solution of the present invention: the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, and θ are equal to each other, that is, ω αβγδ = ω εθ , m=n=p=q=s=t, then the color mixing space of the six-dimensional color mixing grid obtained in steps A to G is based on the six primary color fibers α, β, γ, δ, ε, θ corresponding to The color value model for any point in the cube space with the preset maximum quality is as follows:
Figure PCTCN2021082628-appb-000020
Figure PCTCN2021082628-appb-000020
作为本发明的一种优选技术方案:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t,按i=1、2、3、...、n+1,j=1、2、3、...、n+1,k=1、2、3、...、n+1,τ=1、2、3、...、n+1,μ=1、2、3、...、n+1,
Figure PCTCN2021082628-appb-000021
构建零维矩阵如下:
As a preferred technical solution of the present invention: based on the cube space with the maximum quality preset based on the six primary color fibers α, β, γ, δ, ε, and θ corresponding to the color mixing space of the six-dimensional color mixing grid obtained from steps A to G The color value model of any point, and the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, θ are equal to each other, that is, ω αβγδε = ω θ , m=n=p=q=s=t, according to i=1, 2, 3,..., n+1, j=1, 2, 3,..., n+1, k= 1, 2, 3, ..., n+1, τ=1, 2, 3, ..., n+1, μ=1, 2, 3, ..., n+1,
Figure PCTCN2021082628-appb-000021
The zero-dimensional matrix is constructed as follows:
M 1,1=[ξ i,j,k,τ,μ,θ]。 M 1,1 =[ξ i,j,k,τ,μ,θ ].
作为本发明的一种优选技术方案:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t,基色纤维α对应六维坐标系中的X轴、基色纤维β对应六维坐标系中的Y轴、基色纤维γ对应六维坐标系 中的Z轴,基色纤维δ对应六维坐标系中的U轴,基色纤维ε对应六维坐标系中的V轴,基色纤维θ对应六维坐标系中的W轴; As a preferred technical solution of the present invention: based on the cube space with the maximum quality preset based on the six primary color fibers α, β, γ, δ, ε, and θ corresponding to the color mixing space of the six-dimensional color mixing grid obtained from steps A to G The color value model of any point, and the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, θ are equal to each other, that is, ω αβγδε = ω θ , m=n=p=q=s=t, the primary color fiber α corresponds to the X axis in the six-dimensional coordinate system, the primary color fiber β corresponds to the Y axis in the six-dimensional coordinate system, and the primary color fiber γ corresponds to the six-dimensional coordinate system. The Z axis of the primary color fiber δ corresponds to the U axis in the six-dimensional coordinate system, the primary color fiber ε corresponds to the V axis in the six-dimensional coordinate system, and the primary color fiber θ corresponds to the W axis in the six-dimensional coordinate system;
其中,基于i、j、k、τ、μ为常数,构建与W轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下: Among them, based on i, j, k, τ, μ as constants, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the W axis as follows:
Figure PCTCN2021082628-appb-000022
Figure PCTCN2021082628-appb-000022
基于i、j、k、τ、
Figure PCTCN2021082628-appb-000023
为常数,构建与V轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on i, j, k, τ,
Figure PCTCN2021082628-appb-000023
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the V axis as follows:
Figure PCTCN2021082628-appb-000024
Figure PCTCN2021082628-appb-000024
基于i、j、k、μ、
Figure PCTCN2021082628-appb-000025
为常数,构建与U轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on i, j, k, μ,
Figure PCTCN2021082628-appb-000025
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the U axis as follows:
Figure PCTCN2021082628-appb-000026
Figure PCTCN2021082628-appb-000026
基于i、j、τ、μ、
Figure PCTCN2021082628-appb-000027
为常数,构建与Z轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on i, j, τ, μ,
Figure PCTCN2021082628-appb-000027
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the Z axis as follows:
Figure PCTCN2021082628-appb-000028
Figure PCTCN2021082628-appb-000028
基于i、k、τ、μ、
Figure PCTCN2021082628-appb-000029
为常数,构建与Y轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on i, k, τ, μ,
Figure PCTCN2021082628-appb-000029
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the Y axis as follows:
Figure PCTCN2021082628-appb-000030
Figure PCTCN2021082628-appb-000030
基于j、k、τ、μ、
Figure PCTCN2021082628-appb-000031
为常数,构建与X轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on j, k, τ, μ,
Figure PCTCN2021082628-appb-000031
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the X-axis as follows:
Figure PCTCN2021082628-appb-000032
Figure PCTCN2021082628-appb-000032
作为本发明的一种优选技术方案:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t; As a preferred technical solution of the present invention: based on the cube space with the maximum quality preset based on the six primary color fibers α, β, γ, δ, ε, and θ corresponding to the color mixing space of the six-dimensional color mixing grid obtained from steps A to G The color value model of any point, and the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, θ are equal to each other, that is, ω αβγδε = ω θ , m=n=p=q=s=t;
其中,基于i、j、k、τ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Among them, based on i, j, k, τ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000033
Figure PCTCN2021082628-appb-000033
基于i、j、k、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, j, k, and μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000034
Figure PCTCN2021082628-appb-000034
基于i、j、k、
Figure PCTCN2021082628-appb-000035
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, j, k,
Figure PCTCN2021082628-appb-000035
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000036
Figure PCTCN2021082628-appb-000036
基于i、j、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, j, τ, and μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000037
Figure PCTCN2021082628-appb-000037
基于i、j、τ、
Figure PCTCN2021082628-appb-000038
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, j, τ,
Figure PCTCN2021082628-appb-000038
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000039
Figure PCTCN2021082628-appb-000039
基于i、j、μ、
Figure PCTCN2021082628-appb-000040
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, j, μ,
Figure PCTCN2021082628-appb-000040
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000041
Figure PCTCN2021082628-appb-000041
基于i、k、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, k, τ, μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000042
Figure PCTCN2021082628-appb-000042
基于i、k、τ、
Figure PCTCN2021082628-appb-000043
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, k, τ,
Figure PCTCN2021082628-appb-000043
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000044
Figure PCTCN2021082628-appb-000044
基于i、k、μ、
Figure PCTCN2021082628-appb-000045
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, k, μ,
Figure PCTCN2021082628-appb-000045
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000046
Figure PCTCN2021082628-appb-000046
基于i、τ、μ、
Figure PCTCN2021082628-appb-000047
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, τ, μ,
Figure PCTCN2021082628-appb-000047
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000048
Figure PCTCN2021082628-appb-000048
基于j、k、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on j, k, τ, μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000049
Figure PCTCN2021082628-appb-000049
基于j、k、τ、
Figure PCTCN2021082628-appb-000050
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on j, k, τ,
Figure PCTCN2021082628-appb-000050
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000051
Figure PCTCN2021082628-appb-000051
基于j、k、μ、
Figure PCTCN2021082628-appb-000052
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on j, k, μ,
Figure PCTCN2021082628-appb-000052
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000053
Figure PCTCN2021082628-appb-000053
基于j、τ、μ、
Figure PCTCN2021082628-appb-000054
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on j, τ, μ,
Figure PCTCN2021082628-appb-000054
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000055
Figure PCTCN2021082628-appb-000055
基于k、τ、μ、
Figure PCTCN2021082628-appb-000056
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on k, τ, μ,
Figure PCTCN2021082628-appb-000056
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000057
Figure PCTCN2021082628-appb-000057
作为本发明的一种优选技术方案:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t; As a preferred technical solution of the present invention: based on the cube space with the maximum quality preset based on the six primary color fibers α, β, γ, δ, ε, and θ corresponding to the color mixing space of the six-dimensional color mixing grid obtained from steps A to G The color value model of any point, and the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, θ are equal to each other, that is, ω αβγδε = ω θ , m=n=p=q=s=t;
其中,基于i、j、k为常数,以及τ、μ、
Figure PCTCN2021082628-appb-000058
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Among them, based on i, j, k are constants, and τ, μ,
Figure PCTCN2021082628-appb-000058
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、j、τ为常数,以及k、μ、
Figure PCTCN2021082628-appb-000059
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, j, τ being constant, and k, μ,
Figure PCTCN2021082628-appb-000059
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、j、μ为常数,以及k、τ、
Figure PCTCN2021082628-appb-000060
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, j, μ being constant, and k, τ,
Figure PCTCN2021082628-appb-000060
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、j、
Figure PCTCN2021082628-appb-000061
为常数,以及k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, j,
Figure PCTCN2021082628-appb-000061
is a constant, and k, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、k、τ为常数,以及j、μ、
Figure PCTCN2021082628-appb-000062
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, k, τ being constant, and j, μ,
Figure PCTCN2021082628-appb-000062
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、k、μ为常数,以及j、τ、
Figure PCTCN2021082628-appb-000063
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, k, μ being constant, and j, τ,
Figure PCTCN2021082628-appb-000063
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、k、
Figure PCTCN2021082628-appb-000064
为常数,以及j、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, k,
Figure PCTCN2021082628-appb-000064
is a constant, and j, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ξ i,j,k,τ,μ,θ ;
基于i、τ、μ为常数,以及j、k、
Figure PCTCN2021082628-appb-000065
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, τ, μ being constant, and j, k,
Figure PCTCN2021082628-appb-000065
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、τ、
Figure PCTCN2021082628-appb-000066
为常数,以及j、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, τ,
Figure PCTCN2021082628-appb-000066
is a constant, and j, k, μ are equal to 1, ..., n+1 respectively, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、μ、
Figure PCTCN2021082628-appb-000067
为常数,以及j、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, μ,
Figure PCTCN2021082628-appb-000067
is a constant, and j, k, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、k、τ为常数,以及i、μ、
Figure PCTCN2021082628-appb-000068
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, k, τ being constant, and i, μ,
Figure PCTCN2021082628-appb-000068
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、k、μ为常数,以及i、τ、
Figure PCTCN2021082628-appb-000069
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, k, μ being constant, and i, τ,
Figure PCTCN2021082628-appb-000069
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、k、
Figure PCTCN2021082628-appb-000070
为常数,以及i、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, k,
Figure PCTCN2021082628-appb-000070
is a constant, and i , τ, μ are respectively equal to 1 , .
基于j、τ、μ为常数,以及i、k、
Figure PCTCN2021082628-appb-000071
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, τ, μ being constant, and i, k,
Figure PCTCN2021082628-appb-000071
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、τ、
Figure PCTCN2021082628-appb-000072
为常数,以及i、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, τ,
Figure PCTCN2021082628-appb-000072
is a constant, and i, k, μ are respectively equal to 1,...,n+1, construct (n+1) 3 three-dimensional color arrays for ξ i,j,k,τ,μ,θ ;
基于j、μ、
Figure PCTCN2021082628-appb-000073
为常数,以及i、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, μ,
Figure PCTCN2021082628-appb-000073
is a constant, and i, k, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、τ、μ为常数,以及i、j、
Figure PCTCN2021082628-appb-000074
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on k, τ, μ are constants, and i, j,
Figure PCTCN2021082628-appb-000074
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、τ、
Figure PCTCN2021082628-appb-000075
为常数,以及i、j、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on k, τ,
Figure PCTCN2021082628-appb-000075
is a constant, and i, j, μ are respectively equal to 1,..., n+1, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、μ、
Figure PCTCN2021082628-appb-000076
为常数,以及i、j、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on k, μ,
Figure PCTCN2021082628-appb-000076
is a constant, and i, j, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于τ、μ、
Figure PCTCN2021082628-appb-000077
为常数,以及i、j、k分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列。
Based on τ, μ,
Figure PCTCN2021082628-appb-000077
are constants, and i, j , k are equal to 1 , .
作为本发明的一种优选技术方案:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t; As a preferred technical solution of the present invention: based on the cube space with the maximum quality preset based on the six primary color fibers α, β, γ, δ, ε, and θ corresponding to the color mixing space of the six-dimensional color mixing grid obtained from steps A to G The color value model of any point, and the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, θ are equal to each other, that is, ω αβγδε = ω θ , m=n=p=q=s=t;
其中,基于i、j为常数,以及k、τ、μ、
Figure PCTCN2021082628-appb-000078
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Among them, based on i, j being constant, and k, τ, μ,
Figure PCTCN2021082628-appb-000078
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、k为常数,以及j、τ、μ、
Figure PCTCN2021082628-appb-000079
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on i, k being constant, and j, τ, μ,
Figure PCTCN2021082628-appb-000079
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、τ为常数,以及j、k、μ、
Figure PCTCN2021082628-appb-000080
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on i, τ being constant, and j, k, μ,
Figure PCTCN2021082628-appb-000080
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、μ为常数,以及j、k、τ、
Figure PCTCN2021082628-appb-000081
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on i, μ being constant, and j, k, τ,
Figure PCTCN2021082628-appb-000081
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、
Figure PCTCN2021082628-appb-000082
为常数,以及j、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on i,
Figure PCTCN2021082628-appb-000082
is a constant, and j, k, τ, μ are equal to 1, ..., n+1, respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、k为常数,以及i、τ、μ、
Figure PCTCN2021082628-appb-000083
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on j, k as constants, and i, τ, μ,
Figure PCTCN2021082628-appb-000083
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、τ为常数,以及i、k、μ、
Figure PCTCN2021082628-appb-000084
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on j, τ are constants, and i, k, μ,
Figure PCTCN2021082628-appb-000084
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、μ为常数,以及i、k、τ、
Figure PCTCN2021082628-appb-000085
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on j, μ being constant, and i, k, τ,
Figure PCTCN2021082628-appb-000085
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、
Figure PCTCN2021082628-appb-000086
为常数,以及i、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on j,
Figure PCTCN2021082628-appb-000086
is a constant, and i, k, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、τ为常数,以及i、j、μ、
Figure PCTCN2021082628-appb-000087
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on k, τ are constants, and i, j, μ,
Figure PCTCN2021082628-appb-000087
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、μ为常数,以及i、j、τ、
Figure PCTCN2021082628-appb-000088
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on k, μ being constant, and i, j, τ,
Figure PCTCN2021082628-appb-000088
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、
Figure PCTCN2021082628-appb-000089
为常数,以及i、j、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on k,
Figure PCTCN2021082628-appb-000089
is a constant, and i, j, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于τ、μ为常数,以及i、j、k、
Figure PCTCN2021082628-appb-000090
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on τ, μ being constant, and i, j, k,
Figure PCTCN2021082628-appb-000090
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于τ、
Figure PCTCN2021082628-appb-000091
为常数,以及i、j、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on τ,
Figure PCTCN2021082628-appb-000091
is a constant, and i, j, k, μ are equal to 1, ..., n+1, respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于μ、
Figure PCTCN2021082628-appb-000092
为常数,以及i、j、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列。
Based on μ,
Figure PCTCN2021082628-appb-000092
are constants, and i, j, k, τ are equal to 1 , .
作为本发明的一种优选技术方案:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t; As a preferred technical solution of the present invention: based on the cube space with the maximum quality preset based on the six primary color fibers α, β, γ, δ, ε, and θ corresponding to the color mixing space of the six-dimensional color mixing grid obtained from steps A to G The color value model of any point, and the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, θ are equal to each other, that is, ω αβγδε = ω θ , m=n=p=q=s=t;
其中,基于i为常数,以及j、k、τ、μ、
Figure PCTCN2021082628-appb-000093
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
where i is a constant based on i, and j, k, τ, μ,
Figure PCTCN2021082628-appb-000093
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j为常数,以及i、k、τ、μ、
Figure PCTCN2021082628-appb-000094
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
Based on j being a constant, and i, k, τ, μ,
Figure PCTCN2021082628-appb-000094
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k为常数,以及i、j、τ、μ、
Figure PCTCN2021082628-appb-000095
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
Based on k being a constant, and i, j, τ, μ,
Figure PCTCN2021082628-appb-000095
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于τ为常数,以及i、j、k、μ、
Figure PCTCN2021082628-appb-000096
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
Based on τ being a constant, and i, j, k, μ,
Figure PCTCN2021082628-appb-000096
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于μ为常数,以及i、j、k、τ、
Figure PCTCN2021082628-appb-000097
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
Based on μ being a constant, and i, j, k, τ,
Figure PCTCN2021082628-appb-000097
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于
Figure PCTCN2021082628-appb-000098
为常数,以及i、j、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列。
based on
Figure PCTCN2021082628-appb-000098
are constants, and i, j, k, τ , μ are equal to 1, .
作为本发明的一种优选技术方案:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t;基于i、j、k、τ、μ、
Figure PCTCN2021082628-appb-000099
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建1个六维颜色阵列。
As a preferred technical solution of the present invention: based on the cube space with the maximum quality preset based on the six primary color fibers α, β, γ, δ, ε, and θ corresponding to the color mixing space of the six-dimensional color mixing grid obtained from steps A to G The color value model of any point, and the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, θ are equal to each other, that is, ω αβγδε = ω θ , m=n=p=q=s=t; based on i, j, k, τ, μ,
Figure PCTCN2021082628-appb-000099
Equal to 1, ..., n+1, respectively, construct a six-dimensional color array for ξ i, j, k, τ, μ, θ .
与上述相对应,本发明设计了一种针对彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法的应用,将所述六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值,存储于数据库中,按如下方式,用于实现对目标颜色的分析;Corresponding to the above, the present invention designs an application of a six-dimensional color mixing space grid model for color fibers and a method for constructing a color matrix of a grid point array. α, β, γ, δ, ε, θ preset the color value of any point in the cube space with the maximum quality, stored in the database, and used to analyze the target color in the following way;
首选采用检色仪检测获得目标颜色所对应的RGB颜色检测数据,并在数据库中查找该RGB颜色检测数据所对应的网格点;然后在以该网格点为原点、周围预设半径范围,通过比对的方式,获得目标颜色所对应的网格点;最后由该网格点所对应的RGB颜色数据,构成目标颜色所对应的RGB颜色数据。It is preferred to use a color detector to detect the RGB color detection data corresponding to the target color, and find the grid point corresponding to the RGB color detection data in the database; then take the grid point as the origin and the surrounding preset radius, The grid point corresponding to the target color is obtained by means of comparison; finally, the RGB color data corresponding to the target color is formed from the RGB color data corresponding to the grid point.
本发明所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法及应用,采用以上技术方案与现有技术相比,具有以下技术效果:A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method and application according to the present invention, compared with the prior art by using the above technical solution, have the following technical effects:
本发明所设计彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法及应用,针对指定六基色纤维,引入坐标数字量化过程,将六基色纤维分别对应于六维坐标系的各坐标轴,以基色纤维参与混合的质量作为坐标轴数据,由六维坐标系空间的各个网格点获得六基色纤维的混合纱线对象,由此结合各基色纤维的混合比,以及各基色纤维的RGB颜色,实现对混合纱线对象的RGB颜色建模,即构成六维混色网格混色空间网格点阵列模型,并由此进一步实现线阵列模型、面阵列模型、体阵列模型的构建,针对六基色纤维混合下的RGB混色空间实现了数字量化,能够在实际应用中任意调用各组模型实现颜色的可视化,有效提高了颜色分析、选择的效率。The six-dimensional color mixing space grid model of the color fiber designed by the present invention and the construction method and application of the color matrix of the grid point array, for the designated six-color fiber, the coordinate digital quantization process is introduced, and the six-primary color fibers are respectively corresponding to the six-dimensional coordinate system. For each coordinate axis, the quality of the primary color fibers involved in the mixing is used as the coordinate axis data, and the mixed yarn object of the six primary color fibers is obtained from each grid point in the six-dimensional coordinate system space, and the mixing ratio of each primary color fiber is combined. The RGB color of the fiber realizes the RGB color modeling of the mixed yarn object, that is, a six-dimensional color mixing grid color mixing space grid point array model, and thus further realizes the construction of line array model, area array model, and volume array model. , digital quantization is realized for the RGB color mixing space under the mixing of six primary color fibers, and each group of models can be called arbitrarily in practical applications to realize color visualization, which effectively improves the efficiency of color analysis and selection.
附图说明Description of drawings
图1是本发明所设计彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法流程示意图。FIG. 1 is a schematic flowchart of a six-dimensional color mixing space grid model of color fibers designed by the present invention and a method for constructing a grid point array color matrix.
具体实施方式Detailed ways
下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。The specific embodiments of the present invention will be described in further detail below with reference to the accompanying drawings.
本发明设计了一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,针对指定六基色纤维α、β、γ、δ、ε、θ,以各基色纤维质量分别对应六维坐标系中的各根坐标轴,实现六维混色网格混色空间网格点阵列模型的构建,包括如下步骤A至步骤G。The invention designs a color fiber six-dimensional color mixing space grid model and a grid point array color matrix construction method. For the specified six primary color fibers α, β, γ, δ, ε, θ, the quality of each primary color fiber corresponds to Each coordinate axis in the six-dimensional coordinate system realizes the construction of a six-dimensional color mixing grid color mixing space grid point array model, including the following steps A to G.
步骤A.根据六基色纤维α、β、γ、δ、ε、θ分别所对应的预设最大质量ω α、ω β、ω γ、ω δ、ω ε、ω θ,确定各基色纤维最大质量分别所对应其所设坐标轴的位置,然后进入步骤B。 Step A. Determine the maximum mass of each primary color fiber according to the preset maximum mass ω α , ω β , ω γ , ω δ , ω ε , ω θ corresponding to the six primary color fibers α, β, γ, δ, ε, θ respectively Respectively corresponding to the position of its set coordinate axis, and then go to step B.
步骤B.针对六维坐标系中原点与基色纤维α最大质量所对应其所设坐标轴位置之间的线段,执行m等分,即获得包含该线段两端顶点在内的m+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000100
i=1、…、m+1,i表示该线段上由六维坐标系中原点至基色纤维α最大质量所对应其所设坐标轴位置方向、各点的序号。
Step B. For the line segment between the origin and the position of the coordinate axis corresponding to the maximum mass of the primary color fiber α in the six-dimensional coordinate system, perform m equal division, that is, obtain m+1 points including the vertices at both ends of the line segment. , and the mass of each point on the line segment
Figure PCTCN2021082628-appb-000100
i=1, .
针对六维坐标系中原点与基色纤维β最大质量所对应其所设坐标轴位置之间的线段,执行n等分,即获得包含该线段两端顶点在内的n+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000101
j=1、…、n+1,j表示该线段上由六维坐标系中原点至基色纤维β最大质量所对应其所设坐标轴位置方向、各点的序号。
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber β in the six-dimensional coordinate system, perform n equal divisions, that is, to obtain n+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000101
j=1, .
针对六维坐标系中原点与基色纤维γ最大质量所对应其所设坐标轴位置之间的线段,执行p等分,即获得包含该线段两端顶点在内的p+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000102
k=1、…、p+1,k表示该线段上由六维坐标系中原点至基色纤维γ最大质量所对应其所设坐标轴位置方向、各点的序号。
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber γ in the six-dimensional coordinate system, perform p equal division, that is, to obtain p+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000102
k=1, .
针对六维坐标系中原点与基色纤维δ最大质量所对应其所设坐标轴位置之间的线段,执行q等分,即获得包含该线段两端顶点在内的q+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000103
τ=1、…、q+1,τ表示该线段上由六维坐标系中原点至基色纤维δ最大质量所对应其所设坐标轴位置方向、各点的序号。
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber δ in the six-dimensional coordinate system, perform q equal division, that is, obtain q+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000103
τ=1, .
针对六维坐标系中原点与基色纤维ε最大质量所对应其所设坐标轴位置之间的线段,执行s等分,即获得包含该线段两端顶点在内的s+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000104
μ=1、…、s+1,μ表示该线段上由六维坐标系中原点至基色纤维ε最大质量所对应其所设坐标轴位置方向、各点的序号。
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber ε in the six-dimensional coordinate system, perform s equal division, that is, obtain s+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000104
μ=1, .
针对六维坐标系中原点与基色纤维θ最大质量所对应其所设坐标轴位置之间的线段,执行t等分,即获得包含该线段两端顶点在内的t+1个点,且该线段上各点的质量
Figure PCTCN2021082628-appb-000105
Figure PCTCN2021082628-appb-000106
表示该线段上由六维坐标系中原点至基色纤维θ最大质量所对应其所设坐标轴位置方向、各点的序号;然后进入步骤C。
For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber θ in the six-dimensional coordinate system, perform t equal division, that is, obtain t+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
Figure PCTCN2021082628-appb-000105
Figure PCTCN2021082628-appb-000106
Indicates the line segment from the origin in the six-dimensional coordinate system to the position direction of the coordinate axis corresponding to the maximum mass of the primary color fiber θ, and the serial number of each point; then go to step C.
步骤C.构建六基色纤维α、β、γ、δ、ε、θ分别所对应混合比λ α(i,j,k,τ,μ)、λ β(i,j,k,τ,μ)、λ γ(i,j,k,τ,μ)、λ δ(i,j,k,τ,μ)、λ ε(i,j,k,τ,μ)、λ θ(i,j,k,τ,μ)如下,然后进入步骤D; Step C. Construct the mixing ratios λ α (i, j, k, τ, μ) and λ β (i, j, k, τ, μ) corresponding to the six primary color fibers α, β, γ, δ, ε, and θ respectively , λ γ (i, j, k, τ, μ), λ δ (i, j, k, τ, μ), λ ε (i, j, k, τ, μ), λ θ (i, j, k, τ, μ) are as follows, and then enter step D;
Figure PCTCN2021082628-appb-000107
Figure PCTCN2021082628-appb-000107
Figure PCTCN2021082628-appb-000108
Figure PCTCN2021082628-appb-000108
Figure PCTCN2021082628-appb-000109
Figure PCTCN2021082628-appb-000109
Figure PCTCN2021082628-appb-000110
Figure PCTCN2021082628-appb-000110
Figure PCTCN2021082628-appb-000111
Figure PCTCN2021082628-appb-000111
Figure PCTCN2021082628-appb-000112
Figure PCTCN2021082628-appb-000112
步骤D.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的质量模型如下,然后进入步骤E;Step D. Construct the quality model of any point in the cube space corresponding to the six-dimensional color mixing grid color mixing space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ as follows, and then proceed to step E;
Figure PCTCN2021082628-appb-000113
Figure PCTCN2021082628-appb-000113
步骤E.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的质量矩阵如下,然后进入步骤F;Step E. Constructing the six-dimensional color mixing grid color mixing space corresponding to the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ The quality matrix of any point in the cube space is as follows, and then enter step F;
Figure PCTCN2021082628-appb-000114
Figure PCTCN2021082628-appb-000114
且i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000115
and i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1; τ =1,2,3,...,q+1; μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000115
步骤F.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型如下:Step F. Constructing the color value model of any point in the cube space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
Figure PCTCN2021082628-appb-000116
Figure PCTCN2021082628-appb-000116
然后进入步骤G,其中,R α、G α、B α表示基色纤维α所对应的RGB色,R β、G β、B β表示基色纤维β所对应的RGB色,R γ、G γ、B γ表示基色纤维γ所对应的RGB色,R δ、G δ、B δ表示基色纤维δ所对应的RGB色,R ε、G ε、B ε表示基色纤维ε所对应的RGB色;R θ、G θ、B θ表示基色纤维θ所对应的RGB色,;ξ i,j,k,τ,μ,θ表示六维坐标系中坐标(i,j,k,τ,μ,θ)位置所对应六基色纤维α、β、γ、δ、ε、θ混合纱线的颜色值,R ξ(i,j,k,τ,μ,θ)、G ξ(i,j,k,τ,μ,θ)、B ξ(i,j,k,τ,μ,θ)表示六维坐标系中坐标(i,j,k,τ,μ,θ)位置所对应六基色纤维α、β、γ、δ、ε、θ混合纱线的RGB色。 Then enter step G, wherein R α , G α , B α represent the RGB colors corresponding to the primary color fiber α, R β , G β , B β represent the RGB colors corresponding to the primary color fiber β, R γ , G γ , B γ represents the RGB color corresponding to the primary color fiber γ, R δ , G δ , B δ represent the RGB color corresponding to the primary color fiber δ, R ε , G ε , B ε represent the RGB color corresponding to the primary color fiber ε; R θ , G θ , B θ represent the RGB color corresponding to the primary color fiber θ; Corresponding to the color value of the mixed yarn of six primary color fibers α, β, γ, δ, ε, θ, R ξ (i,j,k,τ,μ,θ), G ξ (i,j,k,τ,μ , θ), B ξ (i, j, k, τ, μ, θ) represent the six primary color fibers α, β, γ corresponding to the coordinates (i, j, k, τ, μ, θ) in the six-dimensional coordinate system , δ, ε, θ mixed yarn RGB color.
步骤G.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值矩阵如下:Step G. Constructing the color value matrix of any point in the cube space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
Figure PCTCN2021082628-appb-000117
Figure PCTCN2021082628-appb-000117
且i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;ω=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000118
and i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1; τ =1,2,3,...,q+1;ω=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000118
由此得到以α(R α,G α,B α)、β(R β,G β,B β)、γ(R γ,G γ,B γ)、δ(R δ,G δ,B δ)、ε(R ε,G ε,B ε)、θ(R θ,G θ,B θ)为基色的六维网格混色空间,该空间的色域范围可通过(m+1)*(n+1)*(p+1)*(q+1)*(s+1)*(t+1)个网格点的颜色值ξ i,j,k,τ,μ,θ进行表达,由此得到彩色纤维六维混色的网格化色域空间。在笛卡尔坐标系下可按照以下7种模式进行展开: Thus, α(R α , G α , B α ), β(R β , G β , B β ), γ(R γ , G γ , B γ ), δ(R δ , G δ , B δ ) are obtained ), ε(R ε , G ε , B ε ), θ(R θ , G θ , B θ ) are the six-dimensional grid color mixing space of primary colors, the color gamut range of this space can be passed through (m+1)*( n+1)*(p+1)*(q+1)*(s+1)*(t+1) color values of grid points ξ i,j,k,τ,μ,θ are expressed, Thus, the gridded color gamut space of six-dimensional color mixing of colored fibers is obtained. In the Cartesian coordinate system, it can be expanded according to the following 7 modes:
1、当i=1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000119
时,则[ξ 1,j,k,τ,μ,θ]代表与X轴垂直的无数个面上(n+1)*(p+1)*(q+1)*(s+1)*(t+1)个网格点的颜色值;
1. When i=1; j=1,2,3,...,n+1; k=1,2,3,...,p+1; τ=1,2,3,... ,q+1; μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000119
, then [ξ 1,j,k,τ,μ,θ ] represents an infinite number of planes perpendicular to the X axis (n+1)*(p+1)*(q+1)*(s+1) *(t+1) color values of grid points;
2、当i=1,2,3,...,m+1;j=1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000120
时,则[ξ i,1,k,τ,μ,θ]代表Y轴垂直的面上(m+1)*(p+1)*(q+1)*(s+1)*(t+1)个网格点的颜色值;
2. When i=1,2,3,...,m+1; j=1; k=1,2,3,...,p+1; τ=1,2,3,... ,q+1; μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000120
, then [ξ i, 1, k, τ, μ, θ ] represents (m+1)*(p+1)*(q+1)*(s+1)*(t on the vertical plane of the Y-axis +1) color value of grid points;
3、当i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000121
时,则[ξ i,j,1,τ,μ,θ]代表Z轴垂直的面上(m+1)*(n+1)*(q+1)*(s+1)*(t+1)个网格点的颜色值;
3. When i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1; τ=1,2,3,... ,q+1; μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000121
, then [ξ i,j,1,τ,μ,θ ] represents (m+1)*(n+1)*(q+1)*(s+1)*(t on the vertical plane of Z-axis +1) color value of grid points;
4、当i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000122
时,则[ξ i,j,k,1,μ,θ]代表U轴垂直的面上(m+1)*(n+1)*(p+1)*(s+1)*(t+1)个网格点的颜色值;
4. When i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1 ;τ=1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000122
, then [ξ i,j,k,1,μ,θ ] represents the vertical plane of the U axis (m+1)*(n+1)*(p+1)*(s+1)*(t +1) color value of grid points;
5、当i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;μ=1;
Figure PCTCN2021082628-appb-000123
时,则[ξ i,j,k,τ,1,θ]代表V轴垂直的面上(m+1)*(n+1)*(p+1)*(q+1)*(t+1)个网格点的颜色值;
5. When i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1 ;τ=1,2,3,...,q+1;μ=1;
Figure PCTCN2021082628-appb-000123
, then [ξ i,j,k,τ,1,θ ] represents the vertical plane of the V axis (m+1)*(n+1)*(p+1)*(q+1)*(t +1) color value of grid points;
6、当i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000124
时,则[ξ i,j,k,τ,μ,1]代表V轴垂直的面上(m+1)*(n+1)*(p+1)*(q+1)个网格点的颜色值;
6. When i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1 ;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000124
, then [ξ i,j,k,τ,μ,1 ] represents (m+1)*(n+1)*(p+1)*(q+1) grids on the vertical surface of the V-axis the color value of the point;
7、当i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000125
时,可得到[ξ i,j,k,τ,μ,θ]的(m+1)*(n+1)*(p+1)*(q+1)*(s+1)*(t+1)个网格点的颜色值。
7. When i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1 ;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
Figure PCTCN2021082628-appb-000125
, one can obtain (m+1)*(n+1)*(p+1)*(q+1)*(s+1)*( of [ξ i,j,k,τ,μ,θ ] Color values of t+1) grid points.
实际应用当中,基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t,则步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型如下: In practical applications, the color value model of any point in the cube space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, and θ corresponding to the color mixing space of the six-dimensional color mixing grid obtained in steps A to G , and the maximum mass and equal fraction of the six primary color fibers α, β, γ, δ, ε, θ are equal to each other, that is, ω αβγδεθ , m=n =p=q=s=t, then the color mixing space of the six-dimensional color mixing grid obtained in steps A to G corresponds to any cubic space with the maximum quality preset based on the six primary color fibers α, β, γ, δ, ε, θ. The color value model for a point is as follows:
Figure PCTCN2021082628-appb-000126
Figure PCTCN2021082628-appb-000126
进一步按i=1、2、3、...、n+1,j=1、2、3、...、n+1,k=1、2、3、...、n+1,τ=1、2、3、...、n+1,μ=1、2、3、...、n+1,
Figure PCTCN2021082628-appb-000127
构建零维矩阵如下:
Further press i=1, 2, 3,..., n+1, j=1, 2, 3,..., n+1, k=1, 2, 3,..., n+1, τ=1, 2, 3,..., n+1, μ=1, 2, 3,..., n+1,
Figure PCTCN2021082628-appb-000127
The zero-dimensional matrix is constructed as follows:
M 1,1=[ξ i,j,k,τ,μ,θ]。 M 1,1 =[ξ i,j,k,τ,μ,θ ].
并且基于基色纤维α对应六维坐标系中的X轴、基色纤维β对应六维坐标系中的Y轴、基色纤维γ对应六维坐标系中的Z轴,基色纤维δ对应六维坐标系中的U轴,基色纤维ε对应六维坐标系中的V轴,基色纤维θ对应六维坐标系中的W轴。And based on the base color fiber α corresponds to the X axis in the six-dimensional coordinate system, the base color fiber β corresponds to the Y axis in the six-dimensional coordinate system, the base color fiber γ corresponds to the Z axis in the six-dimensional coordinate system, and the base color fiber δ corresponds to the six-dimensional coordinate system. The U axis of the primary color fiber ε corresponds to the V axis in the six-dimensional coordinate system, and the primary color fiber θ corresponds to the W axis in the six-dimensional coordinate system.
其中,基于i、j、k、τ、μ为常数,构建与W轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下: Among them, based on i, j, k, τ, μ as constants, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the W axis as follows:
Figure PCTCN2021082628-appb-000128
Figure PCTCN2021082628-appb-000128
其中:in:
Figure PCTCN2021082628-appb-000129
Figure PCTCN2021082628-appb-000129
且i=i;j=j;k=k;τ=τ;μ=μ;
Figure PCTCN2021082628-appb-000130
and i=i; j=j; k=k; τ=τ; μ=μ;
Figure PCTCN2021082628-appb-000130
基于i、j、k、τ、
Figure PCTCN2021082628-appb-000131
为常数,构建与V轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on i, j, k, τ,
Figure PCTCN2021082628-appb-000131
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the V axis as follows:
Figure PCTCN2021082628-appb-000132
Figure PCTCN2021082628-appb-000132
基于i、j、k、μ、
Figure PCTCN2021082628-appb-000133
为常数,构建与U轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on i, j, k, μ,
Figure PCTCN2021082628-appb-000133
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the U axis as follows:
Figure PCTCN2021082628-appb-000134
Figure PCTCN2021082628-appb-000134
基于i、j、τ、μ、
Figure PCTCN2021082628-appb-000135
为常数,构建与Z轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on i, j, τ, μ,
Figure PCTCN2021082628-appb-000135
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the Z axis as follows:
Figure PCTCN2021082628-appb-000136
Figure PCTCN2021082628-appb-000136
基于i、k、τ、μ、
Figure PCTCN2021082628-appb-000137
为常数,构建与Y轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on i, k, τ, μ,
Figure PCTCN2021082628-appb-000137
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the Y axis as follows:
Figure PCTCN2021082628-appb-000138
Figure PCTCN2021082628-appb-000138
基于j、k、τ、μ、
Figure PCTCN2021082628-appb-000139
为常数,构建与X轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
Based on j, k, τ, μ,
Figure PCTCN2021082628-appb-000139
is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the X-axis as follows:
Figure PCTCN2021082628-appb-000140
Figure PCTCN2021082628-appb-000140
实际应用当中,对于一维阵列进行展开,主要如下:In practical applications, the expansion of one-dimensional arrays is mainly as follows:
①当i=1、j=1、k=1、τ=1、μ=1时,所组成的1行(n+1)列一维公式进行展开,展开后的矩阵如下:①When i=1, j=1, k=1, τ=1, μ=1, the 1-row (n+1)-column one-dimensional formula is expanded, and the expanded matrix is as follows:
Figure PCTCN2021082628-appb-000141
Figure PCTCN2021082628-appb-000141
②当i=i、j=j、k=k、τ=τ、μ=μ时,所组成的1行(n+1)列一维公式进行展开,展开后的矩阵如下:②When i=i, j=j, k=k, τ=τ, μ=μ, the 1-row (n+1)-column one-dimensional formula is expanded, and the expanded matrix is as follows:
Figure PCTCN2021082628-appb-000142
Figure PCTCN2021082628-appb-000142
其中:in:
Figure PCTCN2021082628-appb-000143
Figure PCTCN2021082628-appb-000143
③当i=n+1、j=n+1、k=n+1、τ=n+1、
Figure PCTCN2021082628-appb-000144
时,所组成的1行(n+1)列一维公式进行展开,展开后的矩阵如下:
③When i=n+1, j=n+1, k=n+1, τ=n+1,
Figure PCTCN2021082628-appb-000144
When , the one-dimensional formula composed of 1 row (n+1) column is expanded, and the expanded matrix is as follows:
Figure PCTCN2021082628-appb-000145
Figure PCTCN2021082628-appb-000145
其中:in:
Figure PCTCN2021082628-appb-000146
Figure PCTCN2021082628-appb-000146
其余十四种情况可根据上述方法和思路,进行推导得出。The remaining fourteen cases can be derived according to the above methods and ideas.
相应基于i、j、k、τ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Correspondingly, based on i, j, k, and τ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000147
Figure PCTCN2021082628-appb-000147
其中:in:
Figure PCTCN2021082628-appb-000148
Figure PCTCN2021082628-appb-000148
且i=i;j=j;k=k;τ=τ;μ=1,2,3,...,n+1;
Figure PCTCN2021082628-appb-000149
and i=i; j=j; k=k; τ=τ; μ=1,2,3,...,n+1;
Figure PCTCN2021082628-appb-000149
基于i、j、k、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, j, k, and μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000150
Figure PCTCN2021082628-appb-000150
基于i、j、k、
Figure PCTCN2021082628-appb-000151
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, j, k,
Figure PCTCN2021082628-appb-000151
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000152
Figure PCTCN2021082628-appb-000152
基于i、j、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, j, τ, and μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000153
Figure PCTCN2021082628-appb-000153
基于i、j、τ、
Figure PCTCN2021082628-appb-000154
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, j, τ,
Figure PCTCN2021082628-appb-000154
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000155
Figure PCTCN2021082628-appb-000155
基于i、j、μ、
Figure PCTCN2021082628-appb-000156
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, j, μ,
Figure PCTCN2021082628-appb-000156
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000157
Figure PCTCN2021082628-appb-000157
基于i、k、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, k, τ, μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000158
Figure PCTCN2021082628-appb-000158
基于i、k、τ、
Figure PCTCN2021082628-appb-000159
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, k, τ,
Figure PCTCN2021082628-appb-000159
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000160
Figure PCTCN2021082628-appb-000160
基于i、k、μ、
Figure PCTCN2021082628-appb-000161
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, k, μ,
Figure PCTCN2021082628-appb-000161
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000162
Figure PCTCN2021082628-appb-000162
基于i、τ、μ、
Figure PCTCN2021082628-appb-000163
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on i, τ, μ,
Figure PCTCN2021082628-appb-000163
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000164
Figure PCTCN2021082628-appb-000164
基于j、k、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on j, k, τ, μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000165
Figure PCTCN2021082628-appb-000165
基于j、k、τ、
Figure PCTCN2021082628-appb-000166
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on j, k, τ,
Figure PCTCN2021082628-appb-000166
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000167
Figure PCTCN2021082628-appb-000167
基于j、k、μ、
Figure PCTCN2021082628-appb-000168
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on j, k, μ,
Figure PCTCN2021082628-appb-000168
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000169
Figure PCTCN2021082628-appb-000169
基于j、τ、μ、
Figure PCTCN2021082628-appb-000170
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on j, τ, μ,
Figure PCTCN2021082628-appb-000170
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000171
Figure PCTCN2021082628-appb-000171
基于k、τ、μ、
Figure PCTCN2021082628-appb-000172
为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
Based on k, τ, μ,
Figure PCTCN2021082628-appb-000172
is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
Figure PCTCN2021082628-appb-000173
Figure PCTCN2021082628-appb-000173
实际应用当中,对于二维阵列进行展开,主要如下:In practical applications, the expansion of two-dimensional arrays is mainly as follows:
①当i=1、j=1、k=1、τ=1时,所组成的(n+1)行(n+1)列二维阵列进行展开,展开后的矩阵如下:①When i=1, j=1, k=1, τ=1, the two-dimensional array formed by (n+1) rows (n+1) columns is expanded, and the expanded matrix is as follows:
Figure PCTCN2021082628-appb-000174
Figure PCTCN2021082628-appb-000174
其中:in:
Figure PCTCN2021082628-appb-000175
Figure PCTCN2021082628-appb-000175
②当i=i、j=j、k=k、τ=τ时,所组成的(n+1)行(n+1)列二维阵列公式进行展开,展开后的矩阵如下:②When i=i, j=j, k=k, τ=τ, the two-dimensional array formula composed of (n+1) rows (n+1) columns is expanded, and the expanded matrix is as follows:
Figure PCTCN2021082628-appb-000176
Figure PCTCN2021082628-appb-000176
其中:in:
Figure PCTCN2021082628-appb-000177
Figure PCTCN2021082628-appb-000177
③当i=n+1、j=n+1、k=n+1、τ=n+1时,所组成的(n+1)行(n+1)列二维阵列公式进行展开,展开后的矩阵如下:③ When i=n+1, j=n+1, k=n+1, τ=n+1, the (n+1) row (n+1) column two-dimensional array formula formed is expanded and expanded. The resulting matrix is as follows:
Figure PCTCN2021082628-appb-000178
Figure PCTCN2021082628-appb-000178
其中:in:
Figure PCTCN2021082628-appb-000179
Figure PCTCN2021082628-appb-000179
其余十四种情况可根据上述方法和思路,进行推导得出。The remaining fourteen cases can be derived according to the above methods and ideas.
进一步基于i、j、k为常数,以及τ、μ、
Figure PCTCN2021082628-appb-000180
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列,其中:
Further based on i, j, k being constant, and τ, μ,
Figure PCTCN2021082628-appb-000180
Equal to 1,...,n+1 respectively, construct (n+1) 3 -dimensional color arrays for ξ i,j,k,τ,μ,θ , where
Figure PCTCN2021082628-appb-000181
Figure PCTCN2021082628-appb-000181
且i=i;j=j;k=k;τ=1,2,3,...,n+1;μ=1,2,3,...,n+1;
Figure PCTCN2021082628-appb-000182
and i=i; j=j; k=k; τ=1,2,3,...,n+1; μ=1,2,3,...,n+1;
Figure PCTCN2021082628-appb-000182
基于i、j、τ为常数,以及k、μ、
Figure PCTCN2021082628-appb-000183
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, j, τ being constant, and k, μ,
Figure PCTCN2021082628-appb-000183
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、j、μ为常数,以及k、τ、
Figure PCTCN2021082628-appb-000184
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, j, μ being constant, and k, τ,
Figure PCTCN2021082628-appb-000184
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、j、
Figure PCTCN2021082628-appb-000185
为常数,以及k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, j,
Figure PCTCN2021082628-appb-000185
is a constant, and k, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ξ i,j,k,τ,μ,θ ;
基于i、k、τ为常数,以及j、μ、
Figure PCTCN2021082628-appb-000186
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, k, τ being constant, and j, μ,
Figure PCTCN2021082628-appb-000186
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、k、μ为常数,以及j、τ、
Figure PCTCN2021082628-appb-000187
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, k, μ being constant, and j, τ,
Figure PCTCN2021082628-appb-000187
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、k、
Figure PCTCN2021082628-appb-000188
为常数,以及j、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, k,
Figure PCTCN2021082628-appb-000188
is a constant, and j, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ξ i,j,k,τ,μ,θ ;
基于i、τ、μ为常数,以及j、k、
Figure PCTCN2021082628-appb-000189
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, τ, μ being constant, and j, k,
Figure PCTCN2021082628-appb-000189
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、τ、
Figure PCTCN2021082628-appb-000190
为常数,以及j、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, τ,
Figure PCTCN2021082628-appb-000190
is a constant, and j, k, μ are equal to 1, ..., n+1 respectively, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、μ、
Figure PCTCN2021082628-appb-000191
为常数,以及j、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on i, μ,
Figure PCTCN2021082628-appb-000191
is a constant, and j, k, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、k、τ为常数,以及i、μ、
Figure PCTCN2021082628-appb-000192
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, k, τ being constant, and i, μ,
Figure PCTCN2021082628-appb-000192
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、k、μ为常数,以及i、τ、
Figure PCTCN2021082628-appb-000193
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, k, μ being constant, and i, τ,
Figure PCTCN2021082628-appb-000193
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、k、
Figure PCTCN2021082628-appb-000194
为常数,以及i、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, k,
Figure PCTCN2021082628-appb-000194
is a constant, and i , τ, μ are respectively equal to 1 , .
基于j、τ、μ为常数,以及i、k、
Figure PCTCN2021082628-appb-000195
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, τ, μ being constant, and i, k,
Figure PCTCN2021082628-appb-000195
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、τ、
Figure PCTCN2021082628-appb-000196
为常数,以及i、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, τ,
Figure PCTCN2021082628-appb-000196
is a constant, and i, k, μ are respectively equal to 1,...,n+1, construct (n+1) 3 three-dimensional color arrays for ξ i,j,k,τ,μ,θ ;
基于j、μ、
Figure PCTCN2021082628-appb-000197
为常数,以及i、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on j, μ,
Figure PCTCN2021082628-appb-000197
is a constant, and i, k, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、τ、μ为常数,以及i、j、
Figure PCTCN2021082628-appb-000198
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on k, τ, μ are constants, and i, j,
Figure PCTCN2021082628-appb-000198
Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、τ、
Figure PCTCN2021082628-appb-000199
为常数,以及i、j、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on k, τ,
Figure PCTCN2021082628-appb-000199
is a constant, and i, j, μ are respectively equal to 1,..., n+1, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、μ、
Figure PCTCN2021082628-appb-000200
为常数,以及i、j、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
Based on k, μ,
Figure PCTCN2021082628-appb-000200
is a constant, and i, j, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于τ、μ、
Figure PCTCN2021082628-appb-000201
为常数,以及i、j、k分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列。
Based on τ, μ,
Figure PCTCN2021082628-appb-000201
is a constant, and i, j , k are equal to 1 , .
实际应用当中,对于三维阵列进行展开,主要如下:In practical applications, the expansion of three-dimensional arrays is mainly as follows:
①当i=1、j=1、k=1时,所组成的三维阵列进行展开,展开后的矩阵如下:①When i=1, j=1, k=1, the three-dimensional array formed is expanded, and the expanded matrix is as follows:
Figure PCTCN2021082628-appb-000202
Figure PCTCN2021082628-appb-000202
其中:in:
Figure PCTCN2021082628-appb-000203
Figure PCTCN2021082628-appb-000203
②当i=i、j=j、k=k时,所组成的三维阵列进行展开,展开后的矩阵如下:②When i=i, j=j, k=k, the three-dimensional array formed is expanded, and the expanded matrix is as follows:
Figure PCTCN2021082628-appb-000204
Figure PCTCN2021082628-appb-000204
其中:in:
Figure PCTCN2021082628-appb-000205
Figure PCTCN2021082628-appb-000205
③当i=n+1、j=n+1、k=n+1时,所组成的三维阵列进行展开,展开后的矩阵如下:③When i=n+1, j=n+1, k=n+1, the three-dimensional array formed is expanded, and the expanded matrix is as follows:
Figure PCTCN2021082628-appb-000206
Figure PCTCN2021082628-appb-000206
其中:in:
Figure PCTCN2021082628-appb-000207
Figure PCTCN2021082628-appb-000207
其余十九种情况可根据上述方法和思路,进行推导得出。The remaining nineteen cases can be derived according to the above methods and ideas.
还有基于i、j为常数,以及k、τ、μ、
Figure PCTCN2021082628-appb-000208
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列其中:
There are also constants based on i and j, and k, τ, μ,
Figure PCTCN2021082628-appb-000208
Equal to 1,...,n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i,j,k,τ,μ,θ where:
Figure PCTCN2021082628-appb-000209
Figure PCTCN2021082628-appb-000209
且i=i;j=j;k=1,2,3,...,n+1;τ=1,2,3,...,n+1;μ=1,2,3,...,n+1;
Figure PCTCN2021082628-appb-000210
and i=i; j=j; k=1,2,3,...,n+1; τ=1,2,3,...,n+1; μ=1,2,3,. ..,n+1;
Figure PCTCN2021082628-appb-000210
基于i、k为常数,以及j、τ、μ、
Figure PCTCN2021082628-appb-000211
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on i, k being constant, and j, τ, μ,
Figure PCTCN2021082628-appb-000211
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、τ为常数,以及j、k、μ、
Figure PCTCN2021082628-appb-000212
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on i, τ being constant, and j, k, μ,
Figure PCTCN2021082628-appb-000212
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、μ为常数,以及j、k、τ、
Figure PCTCN2021082628-appb-000213
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on i, μ being constant, and j, k, τ,
Figure PCTCN2021082628-appb-000213
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于i、
Figure PCTCN2021082628-appb-000214
为常数,以及j、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on i,
Figure PCTCN2021082628-appb-000214
is a constant, and j, k, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、k为常数,以及i、τ、μ、
Figure PCTCN2021082628-appb-000215
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on j, k being constant, and i, τ, μ,
Figure PCTCN2021082628-appb-000215
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、τ为常数,以及i、k、μ、
Figure PCTCN2021082628-appb-000216
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on j, τ are constants, and i, k, μ,
Figure PCTCN2021082628-appb-000216
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、μ为常数,以及i、k、τ、
Figure PCTCN2021082628-appb-000217
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on j, μ being constant, and i, k, τ,
Figure PCTCN2021082628-appb-000217
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于j、
Figure PCTCN2021082628-appb-000218
为常数,以及i、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on j,
Figure PCTCN2021082628-appb-000218
is a constant, and i, k, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、τ为常数,以及i、j、μ、
Figure PCTCN2021082628-appb-000219
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on k, τ are constants, and i, j, μ,
Figure PCTCN2021082628-appb-000219
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、μ为常数,以及i、j、τ、
Figure PCTCN2021082628-appb-000220
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on k, μ being constant, and i, j, τ,
Figure PCTCN2021082628-appb-000220
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k、
Figure PCTCN2021082628-appb-000221
为常数,以及i、j、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on k,
Figure PCTCN2021082628-appb-000221
is a constant, and i, j, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于τ、μ为常数,以及i、j、k、
Figure PCTCN2021082628-appb-000222
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on τ, μ being constant, and i, j, k,
Figure PCTCN2021082628-appb-000222
Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于τ、
Figure PCTCN2021082628-appb-000223
为常数,以及i、j、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
Based on τ,
Figure PCTCN2021082628-appb-000223
is a constant, and i, j, k, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于μ、
Figure PCTCN2021082628-appb-000224
为常数,以及i、j、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列。
Based on μ,
Figure PCTCN2021082628-appb-000224
are constants, and i, j, k, τ are equal to 1 , .
实际应用当中,对于四维阵列进行展开,主要如下:In practical applications, the expansion of four-dimensional arrays is mainly as follows:
①当i=1、j=1时,所组成的四维阵列,如下:①When i=1, j=1, the four-dimensional array formed is as follows:
Figure PCTCN2021082628-appb-000225
Figure PCTCN2021082628-appb-000225
其中:in:
Figure PCTCN2021082628-appb-000226
Figure PCTCN2021082628-appb-000226
②当i=i、j=j时,所组成的四维阵列,如下:②When i=i, j=j, the four-dimensional array formed is as follows:
Figure PCTCN2021082628-appb-000227
Figure PCTCN2021082628-appb-000227
其中:in:
Figure PCTCN2021082628-appb-000228
Figure PCTCN2021082628-appb-000228
③当i=n+1、j=n+1时,所组成的四维阵列进行展开,如下:③ When i=n+1, j=n+1, the formed four-dimensional array is expanded, as follows:
Figure PCTCN2021082628-appb-000229
Figure PCTCN2021082628-appb-000229
其中:in:
Figure PCTCN2021082628-appb-000230
Figure PCTCN2021082628-appb-000230
其余九种情况可根据上述方法和思路,进行推导得出。The remaining nine cases can be derived according to the above methods and ideas.
此外,基于i为常数,以及j、k、τ、μ、
Figure PCTCN2021082628-appb-000231
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列如下:
In addition, based on i being a constant, and j, k, τ, μ,
Figure PCTCN2021082628-appb-000231
Equal to 1,...,n+1 respectively, construct (n+1) five-dimensional color arrays for ξ i,j,k,τ,μ,θ as follows:
Figure PCTCN2021082628-appb-000232
Figure PCTCN2021082628-appb-000232
其中:in:
Figure PCTCN2021082628-appb-000233
Figure PCTCN2021082628-appb-000233
且i=i;j=1,2,3,...,n+1;k=1,2,3,...,n+1;τ=1,2,3,...,n+1;μ=1,2,3,...,n+1;
Figure PCTCN2021082628-appb-000234
and i=i; j=1,2,3,...,n+1; k=1,2,3,...,n+1; τ=1,2,3,...,n +1; μ=1,2,3,...,n+1;
Figure PCTCN2021082628-appb-000234
基于j为常数,以及i、k、τ、μ、
Figure PCTCN2021082628-appb-000235
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
Based on j being a constant, and i, k, τ, μ,
Figure PCTCN2021082628-appb-000235
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于k为常数,以及i、j、τ、μ、
Figure PCTCN2021082628-appb-000236
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
Based on k being a constant, and i, j, τ, μ,
Figure PCTCN2021082628-appb-000236
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于τ为常数,以及i、j、k、μ、
Figure PCTCN2021082628-appb-000237
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
Based on τ being a constant, and i, j, k, μ,
Figure PCTCN2021082628-appb-000237
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于μ为常数,以及i、j、k、τ、
Figure PCTCN2021082628-appb-000238
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
Based on μ being a constant, and i, j, k, τ,
Figure PCTCN2021082628-appb-000238
Equal to 1, ..., n+1, respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
基于
Figure PCTCN2021082628-appb-000239
为常数,以及i、j、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列。
based on
Figure PCTCN2021082628-appb-000239
are constants, and i, j, k, τ , μ are equal to 1, .
实际应用当中,对于五维阵列进行展开,主要如下:In practical applications, the expansion of five-dimensional arrays is mainly as follows:
①当i=1时,所组成的四维阵列,如下:①When i=1, the four-dimensional array formed is as follows:
Figure PCTCN2021082628-appb-000240
Figure PCTCN2021082628-appb-000240
其中:in:
Figure PCTCN2021082628-appb-000241
Figure PCTCN2021082628-appb-000241
②当i=i时,所组成的四维阵列,如下:②When i=i, the four-dimensional array formed is as follows:
Figure PCTCN2021082628-appb-000242
Figure PCTCN2021082628-appb-000242
其中:in:
Figure PCTCN2021082628-appb-000243
Figure PCTCN2021082628-appb-000243
③当i=n+1时,所组成的四维阵列进行展开,如下:③ When i=n+1, the formed four-dimensional array is expanded, as follows:
Figure PCTCN2021082628-appb-000244
Figure PCTCN2021082628-appb-000244
其中:in:
Figure PCTCN2021082628-appb-000245
Figure PCTCN2021082628-appb-000245
其余五种情况可根据上述方法和思路,进行推导得出。The remaining five cases can be derived according to the above methods and ideas.
以及基于i、j、k、τ、μ、
Figure PCTCN2021082628-appb-000246
分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建1个六维颜色阵列如下:
and based on i, j, k, τ, μ,
Figure PCTCN2021082628-appb-000246
Equal to 1, ..., n+1 respectively, construct a six-dimensional color array for ξ i, j, k, τ, μ, θ as follows:
Figure PCTCN2021082628-appb-000247
Figure PCTCN2021082628-appb-000247
与上述相对应,本发明设计了一种针对彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法的应用,将所述六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值,存储于数据库中,按如下方式,用于实现对目标颜色的分析;Corresponding to the above, the present invention designs an application of a six-dimensional color mixing space grid model for color fibers and a method for constructing a color matrix of a grid point array. α, β, γ, δ, ε, θ preset the color value of any point in the cube space with the maximum quality, stored in the database, and used to analyze the target color in the following way;
首选采用检色仪检测获得目标颜色所对应的RGB颜色检测数据,并在数据库中查找该RGB颜色检测数据所对应的网格点;然后在以该网格点为原点、周围预设半径范围,通过比对的方式,获得目标颜色所对应的网格点;最后由该网格点所对应的RGB颜色数据,构成目标颜色所对应的RGB颜色数据。It is preferred to use a color detector to detect the RGB color detection data corresponding to the target color, and find the grid point corresponding to the RGB color detection data in the database; then take the grid point as the origin and the surrounding preset radius, The grid point corresponding to the target color is obtained by means of comparison; finally, the RGB color data corresponding to the target color is formed from the RGB color data corresponding to the grid point.
基于上述所设计彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,在具体的实际应用当中,假设六元彩纤α、β、γ、δ、ε、θ的重量分别为ω α=10、ω β=10、ω γ=10、ω δ=10、ω ε=10、ω θ=10,颜色值为α(255,0,0)、β(0,255,0)、γ(0,0,255)、δ(0,255,255)、ε(255,0,255)、θ(255,255,0),分别将彩纤α的重量分成10等分,彩纤β的重量分成10等分,彩纤γ的重量分成4等分,彩纤δ的重量分成4等分,彩纤ε的重量分成4等分,彩纤θ的重量分成4等分,并按等差数列进行配重,得到混合体ω ξ。将混合体ω ξ沿 着点α、点β所在的面展开,可得625个11*11的面矩阵,在这里只例举前三个和最后三个,其他619个面矩阵可按照上述讨论出的面阵列矩阵计算得出,其对应的RGB值见颜色对照表。 Based on the above designed color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method, in specific practical applications, it is assumed that the weights of six-element color fibers α, β, γ, δ, ε, and θ are respectively is ω α =10, ω β =10, ω γ =10, ω δ =10, ω ε =10, ω θ =10, the color values are α(255,0,0), β(0,255,0), γ(0,0,255), δ(0,255,255), ε(255,0,255), θ(255,255,0), respectively divide the weight of color fiber α into 10 equal parts, the weight of color fiber β into 10 equal parts, the color fiber The weight of γ is divided into 4 equal parts, the weight of color fiber δ is divided into 4 equal parts, the weight of color fiber ε is divided into 4 equal parts, the weight of color fiber θ is divided into 4 equal parts, and the weight is carried out according to the arithmetic sequence to obtain a mixture ωξ . Expanding the mixture ω ξ along the surface where the point α and the point β are located, 625 surface matrices of 11*11 can be obtained, only the first three and the last three are listed here, and the other 619 surface matrices can be discussed as above. The obtained surface array matrix is calculated, and its corresponding RGB value is shown in the color comparison table.
如下表1所示彩色纤维六维网格混色矩阵的颜色对照表。The color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 1 below.
表1Table 1
i,j,1,1,1,1] i,j,1,1,1,1 ] 11 22 33 44 55 66 77 88 99 1010 1111
11 255,0,0255,0,0 232,23,0232,23,0 213,43,0213,43,0 196,59,0196,59,0 182,73,0182,73,0 170,85,0170,85,0 159,96,0159,96,0 150,105,0150,105,0 142,113,0142,113,0 134,121,0134,121,0 128,128,0128,128,0
22 255,0,0255,0,0 230,26,0230,26,0 209,46,0209,46,0 191,64,0191,64,0 177,78,0177,78,0 164,91,0164,91,0 153,102,0153,102,0 143,112,0143,112,0 135,120,0135,120,0 128,128,0128,128,0 121,134,0121,134,0
33 255,0,0255,0,0 227,28,0227,28,0 204,51,0204,51,0 185,70,0185,70,0 170,85,0170,85,0 157,98,0157,98,0 146,109,0146,109,0 136,119,0136,119,0 128,128,0128,128,0 120,135,0120,135,0 113,142,0113,142,0
44 255,0,0255,0,0 223,32,0223,32,0 198,57,0198,57,0 179,77,0179,77,0 162,93,0162,93,0 149,106,0149,106,0 137,118,0137,118,0 128,128,0128,128,0 119,136,0119,136,0 112,143,0112,143,0 105,150,0105,150,0
55 255,0,0255,0,0 219,36,0219,36,0 191,64,0191,64,0 170,85,0170,85,0 153,102,0153,102,0 139,116,0139,116,0 128,128,0128,128,0 118,137,0118,137,0 109,146,0109,146,0 102,153,0102,153,0 96,159,096,159,0
66 255,0,0255,0,0 213,43,0213,43,0 182,73,0182,73,0 159,96,0159,96,0 142,113,0142,113,0 128,128,0128,128,0 116,139,0116,139,0 106,149,0106,149,0 98,157,098,157,0 91,164,091,164,0 85,170,085,170,0
77 255,0,0255,0,0 204,51,0204,51,0 170,85,0170,85,0 146,109,0146,109,0 128,128,0128,128,0 113,142,0113,142,0 102,153,0102,153,0 93,162,093,162,0 85,170,085,170,0 78,177,078,177,0 73,182,073,182,0
88 255,0,0255,0,0 191,64,0191,64,0 153,102,0153,102,0 128,128,0128,128,0 109,146,0109,146,0 96,159,096,159,0 85,170,085,170,0 77,179,077,179,0 70,185,070,185,0 64,191,064,191,0 59,196,059,196,0
99 255,0,0255,0,0 170,85,0170,85,0 128,128,0128,128,0 102,153,0102,153,0 85,170,085,170,0 73,182,073,182,0 64,191,064,191,0 57,198,057,198,0 51,204,051,204,0 46,209,046,209,0 43,213,043,213,0
1010 255,0,0255,0,0 128,128,0128,128,0 85,170,085,170,0 64,191,064,191,0 51,204,051,204,0 43,213,043,213,0 36,219,036,219,0 32,223,032,223,0 28,227,028,227,0 26,230,026,230,0 23,232,023,232,0
1111 255,255,255255,255,255 0,255,00,255,0 0,255,00,255,0 0,255,00,255,0 0,255,00,255,0 0,255,00,255,0 0,255,00,255,0 0,255,00,255,0 0,255,00,255,0 0,255,00,255,0 0,255,00,255,0
如下表2所示彩色纤维六维网格混色矩阵的颜色对照表。The color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 2 below.
表2Table 2
i,j,1,1,1,2] i,j,1,1,1,2 ] 11 22 33 44 55 66 77 88 99 1010 1111
11 255,0,51255,0,51 236,19,47236,19,47 220,35,44220,35,44 206,49,41206,49,41 193,62,39193,62,39 182,73,36182,73,36 172,83,34172,83,34 163,92,33163,92,33 155,100,31155,100,31 148,107,30148,107,30 142,113,28142,113,28
22 255,0,55255,0,55 235,20,51235,20,51 217,38,47217,38,47 202,53,44202,53,44 189,66,41189,66,41 178,77,39178,77,39 168,87,36168,87,36 159,96,34159,96,34 150,105,33150,105,33 143,112,31143,112,31 136,119,30136,119,30
33 255,0,61255,0,61 233,22,55233,22,55 214,41,51214,41,51 198,57,47198,57,47 185,70,44185,70,44 173,82,41173,82,41 162,93,39162,93,39 153,102,36153,102,36 145,110,34145,110,34 137,118,33137,118,33 131,124,31131,124,31
44 255,0,67255,0,67 231,24,61231,24,61 211,44,55211,44,55 194,61,51194,61,51 179,76,47179,76,47 167,88,44167,88,44 156,99,41156,99,41 147,108,39147,108,39 138,117,36138,117,36 131,124,34131,124,34 124,131,33124,131,33
55 255,0,75255,0,75 228,27,67228,27,67 206,49,61206,49,61 188,67,55188,67,55 173,82,51173,82,51 161,94,47161,94,47 149,106,44149,106,44 140,115,41140,115,41 131,124,39131,124,39 124,131,36124,131,36 117,138,34117,138,34
66 255,0,85255,0,85 225,30,75225,30,75 201,54,67201,54,67 182,73,61182,73,61 166,89,55166,89,55 153,102,51153,102,51 142,113,47142,113,47 132,123,44132,123,44 123,132,41123,132,41 116,139,39116,139,39 109,146,36109,146,36
77 255,0,98255,0,98 221,34,85221,34,85 195,60,75195,60,75 174,81,67174,81,67 158,97,61158,97,61 144,111,55144,111,55 133,122,51133,122,51 123,132,47123,132,47 114,141,44114,141,44 107,148,41107,148,41 100,155,39100,155,39
88 255,0,116255,0,116 216,39,98216,39,98 187,68,85187,68,85 165,90,75165,90,75 148,107,67148,107,67 134,121,61134,121,61 122,133,55122,133,55 112,143,51112,143,51 104,151,47104,151,47 97,158,4497,158,44 90,165,4190,165,41
99 255,0,142255,0,142 209,46,116209,46,116 177,78,98177,78,98 153,102,85153,102,85 135,120,75135,120,75 121,134,67121,134,67 109,146,61109,146,61 100,155,55100,155,55 92,163,5192,163,51 85,170,4785,170,47 79,176,4479,176,44
1010 255,0,182255,0,182 198,57,142198,57,142 162,93,116162,93,116 137,118,98137,118,98 119,136,85119,136,85 105,150,75105,150,75 94,161,6794,161,67 85,170,6185,170,61 78,177,5578,177,55 71,184,5171,184,51 66,189,4766,189,47
1111 255,0,255255,0,255 182,73,182182,73,182 142,113,142142,113,142 116,139,116116,139,116 98,157,9898,157,98 85,170,8585,170,85 75,180,7575,180,75 67,188,6767,188,67 61,194,6161,194,61 55,200,5555,200,55 51,204,5151,204,51
如下表3所示彩色纤维六维网格混色矩阵的颜色对照表。The color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 3 below.
表3table 3
i,j,1,1,1,3] i,j,1,1,1,3 ] 11 22 33 44 55 66 77 88 99 1010 1111
11 255,0,85255,0,85 239,16,80239,16,80 225,30,75225,30,75 213,43,71213,43,71 201,54,67201,54,67 191,64,64191,64,64 182,73,61182,73,61 174,81,58174,81,58 166,89,55166,89,55 159,96,53159,96,53 153,102,51153,102,51
22 255,0,91255,0,91 238,17,85238,17,85 223,32,80223,32,80 210,45,75210,45,75 198,57,71198,57,71 188,67,67188,67,67 179,77,64179,77,64 170,85,61170,85,61 162,93,58162,93,58 155,100,55155,100,55 149,106,53149,106,53
33 255,0,98255,0,98 237,18,91237,18,91 221,34,85221,34,85 207,48,80207,48,80 195,60,75195,60,75 184,71,71184,71,71 174,81,67174,81,67 166,89,64166,89,64 158,97,61158,97,61 151,104,58151,104,58 144,111,55144,111,55
44 255,0,106255,0,106 235,20,98235,20,98 219,36,91219,36,91 204,51,85204,51,85 191,64,80191,64,80 180,75,75180,75,75 170,85,71170,85,71 161,94,67161,94,67 153,102,64153,102,64 146,109,61146,109,61 139,116,58139,116,58
55 255,0,116255,0,116 234,21,106234,21,106 216,39,98216,39,98 200,55,91200,55,91 187,68,85187,68,85 175,80,80175,80,80 165,90,75165,90,75 156,99,71156,99,71 148,107,67148,107,67 140,115,64140,115,64 134,121,61134,121,61
66 255,0,128255,0,128 232,23,116232,23,116 213,43,106213,43,106 196,59,98196,59,98 182,73,91182,73,91 170,85,85170,85,85 159,96,80159,96,80 150,105,75150,105,75 142,113,71142,113,71 134,121,67134,121,67 128,128,64128,128,64
77 255,0,142255,0,142 230,26,128230,26,128 209,46,116209,46,116 191,64,106191,64,106 177,78,98177,78,98 164,91,91164,91,91 153,102,85153,102,85 143,112,80143,112,80 135,120,75135,120,75 128,128,71128,128,71 121,134,67121,134,67
88 255,0,159255,0,159 227,28,142227,28,142 204,51,128204,51,128 185,70,116185,70,116 170,85,106170,85,106 157,98,98157,98,98 146,109,91146,109,91 136,119,85136,119,85 128,128,80128,128,80 120,135,75120,135,75 113,142,71113,142,71
99 255,0,182255,0,182 223,32,159223,32,159 198,57,142198,57,142 179,77,128179,77,128 162,93,116162,93,116 149,106,106149,106,106 137,118,98137,118,98 128,128,91128,128,91 119,136,85119,136,85 112,143,80112,143,80 105,150,75105,150,75
1010 255,0,213255,0,213 219,36,182219,36,182 191,64,159191,64,159 170,85,142170,85,142 153,102,128153,102,128 139,116,116139,116,116 128,128,106128,128,106 118,137,98118,137,98 109,146,91109,146,91 102,153,85102,153,85 96,159,8096,159,80
1111 255,0,255255,0,255 213,43,213213,43,213 182,73,182182,73,182 159,96,159159,96,159 142,113,142142,113,142 128,128,128128,128,128 116,139,116116,139,116 106,149,106106,149,106 98,157,9898,157,98 91,164,9191,164,91 85,170,8585,170,85
如下表4所示彩色纤维六维网格混色矩阵的颜色对照表。The color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 4 below.
表4Table 4
i,j,5,5,5,3] i,j,5,5,5,3 ] 11 22 33 44 55 66 77 88 99 1010 1111
11 109,73,182109,73,182 106,78,177106,78,177 103,83,172103,83,172 101,87,168101,87,168 98,92,16398,92,163 96,96,15996,96,159 93,100,15593,100,155 91,103,15291,103,152 89,107,14889,107,148 87,110,14587,110,145 85,113,14285,113,142
22 105,75,188105,75,188 102,80,182102,80,182 99,85,17799,85,177 96,90,17296,90,172 94,94,16894,94,168 92,98,16392,98,163 89,102,15989,102,159 87,106,15587,106,155 85,109,15285,109,152 83,113,14883,113,148 81,116,14581,116,145
33 100,77,193100,77,193 98,83,18898,83,188 95,87,18295,87,182 92,92,17792,92,177 90,96,17290,96,172 87,101,16887,101,168 85,105,16385,105,163 83,108,15983,108,159 81,112,15581,112,155 79,115,15279,115,152 77,119,14877,119,148
44 96,80,19996,80,199 93,85,19393,85,193 90,90,18890,90,188 87,95,18287,95,182 85,99,17785,99,177 83,103,17283,103,172 81,107,16881,107,168 78,111,16378,111,163 77,115,15977,115,159 75,118,15575,118,155 73,121,15273,121,152
55 90,82,20690,82,206 88,88,19988,88,199 85,93,19385,93,193 83,98,18883,98,188 80,102,18280,102,182 78,106,17778,106,177 76,110,17276,110,172 74,114,16874,114,168 72,118,16372,118,163 70,121,15970,121,159 68,124,15568,124,155
66 85,85,21385,85,213 82,90,20682,90,206 80,96,19980,96,199 77,100,19377,100,193 75,105,18875,105,188 73,109,18273,109,182 71,113,17771,113,177 69,117,17269,117,172 67,121,16867,121,168 65,124,16365,124,163 64,128,15964,128,159
77 79,88,22079,88,220 77,94,21377,94,213 74,99,20674,99,206 72,104,19972,104,199 70,108,19370,108,193 68,113,18868,113,188 66,117,18266,117,182 64,120,17764,120,177 62,124,17262,124,172 60,128,16860,128,168 59,131,16359,131,163
88 73,91,22873,91,228 70,97,22070,97,220 68,102,21368,102,213 66,107,20666,107,206 64,112,19964,112,199 62,116,19362,116,193 60,120,18860,120,188 58,124,18258,124,182 57,128,17757,128,177 55,131,17255,131,172 54,134,16854,134,168
99 66,94,23666,94,236 64,100,22864,100,228 62,106,22062,106,220 60,111,21360,111,213 58,115,20658,115,206 56,120,19956,120,199 54,124,19354,124,193 53,128,18853,128,188 51,131,18251,131,182 50,135,17750,135,177 48,138,17248,138,172
1010 59,98,24559,98,245 57,104,23657,104,236 55,109,22855,109,228 53,114,22053,114,220 51,119,21351,119,213 49,123,20649,123,206 48,128,19948,128,199 46,131,19346,131,193 45,135,18845,135,188 44,138,18244,138,182 43,142,17743,142,177
1111 51,102,25551,102,255 49,108,24549,108,245 47,113,23647,113,236 46,118,22846,118,228 44,123,22044,123,220 43,128,21343,128,213 41,132,20641,132,206 40,135,19940,135,199 39,139,19339,139,193 38,143,18838,143,188 36,146,18236,146,182
如下表5所示彩色纤维六维网格混色矩阵的颜色对照表。The color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 5 below.
表5table 5
i,j,5,5,5,4] i,j,5,5,5,4 ] 11 22 33 44 55 66 77 88 99 1010 1111
11 119,68,187119,68,187 116,73,182116,73,182 113,77,178113,77,178 110,82,173110,82,173 108,86,169108,86,169 105,90,165105,90,165 103,94,161103,94,161 100,97,158100,97,158 98,101,15498,101,154 96,104,15196,104,151 94,107,14894,107,148
22 115,70,192115,70,192 112,75,187112,75,187 109,79,182109,79,182 107,84,178107,84,178 104,88,173104,88,173 101,92,169101,92,169 99,96,16599,96,165 97,100,16197,100,161 95,103,15895,103,158 92,106,15492,106,154 90,110,15190,110,151
33 111,72,198111,72,198 108,77,192108,77,192 105,82,187105,82,187 103,86,182103,86,182 100,90,178100,90,178 98,94,17398,94,173 95,98,16995,98,169 93,102,16593,102,165 91,106,16191,106,161 89,109,15889,109,158 87,112,15487,112,154
44 107,74,203107,74,203 104,79,198104,79,198 101,84,192101,84,192 99,88,18799,88,187 96,93,18296,93,182 94,97,17894,97,178 91,101,17391,101,173 89,104,16989,104,169 87,108,16587,108,165 85,111,16185,111,161 83,115,15883,115,158
55 103,76,209103,76,209 100,81,203100,81,203 97,86,19897,86,198 94,91,19294,91,192 92,95,18792,95,187 89,99,18289,99,182 87,103,17887,103,178 85,107,17385,107,173 83,111,16983,111,169 81,114,16581,114,165 79,117,16179,117,161
66 98,78,21698,78,216 95,84,20995,84,209 92,89,20392,89,203 90,93,19890,93,198 87,98,19287,98,192 85,102,18785,102,187 83,106,18283,106,182 81,110,17881,110,178 79,113,17379,113,173 77,117,16977,117,169 75,120,16575,120,165
77 93,81,22393,81,223 90,86,21690,86,216 88,91,20988,91,209 85,96,20385,96,203 83,101,19883,101,198 80,105,19280,105,192 78,109,18778,109,187 76,113,18276,113,182 74,116,17874,116,178 72,120,17372,120,173 71,123,16971,123,169
88 88,84,23088,84,230 85,89,22385,89,223 82,94,21682,94,216 80,99,20980,99,209 78,103,20378,103,203 75,108,19875,108,198 73,112,19273,112,192 71,116,18771,116,187 70,119,18270,119,182 68,123,17868,123,178 66,126,17366,126,173
99 82,86,23882,86,238 79,92,23079,92,230 77,97,22377,97,223 75,102,21675,102,216 72,107,20972,107,209 70,111,20370,111,203 68,115,19868,115,198 66,119,19266,119,192 65,122,18765,122,187 63,126,18263,126,182 61,129,17861,129,178
1010 76,89,24676,89,246 73,95,23873,95,238 71,100,23071,100,230 69,105,22369,105,223 67,110,21667,110,216 65,114,20965,114,209 63,118,20363,118,203 61,122,19861,122,198 59,126,19259,126,192 58,129,18758,129,187 56,132,18256,132,182
1111 70,93,25570,93,255 67,98,24667,98,246 65,104,23865,104,238 63,109,23063,109,230 61,113,22361,113,223 59,118,21659,118,216 57,122,20957,122,209 55,126,20355,126,203 54,129,19854,129,198 52,133,19252,133,192 51,136,18751,136,187
如下表6所示彩色纤维六维网格混色矩阵的颜色对照表。The color comparison table of the color fiber six-dimensional grid color mixing matrix is shown in Table 6 below.
表6Table 6
i,j,5,5,5,5] i,j,5,5,5,5 ] 11 22 33 44 55 66 77 88 99 1010 1111
11 128,64,191128,64,191 124,68,187124,68,187 121,73,182121,73,182 119,77,178119,77,178 116,81,174116,81,174 113,85,170113,85,170 111,89,166111,89,166 109,92,163109,92,163 106,96,159106,96,159 104,99,156104,99,156 102,102,153102,102,153
22 124,65,196124,65,196 121,70,191121,70,191 118,75,187118,75,187 115,79,182115,79,182 113,83,178113,83,178 110,87,174110,87,174 108,91,170108,91,170 105,94,166105,94,166 103,98,163103,98,163 101,101,159101,101,159 99,104,15699,104,156
33 121,67,201121,67,201 118,72,196118,72,196 115,77,191115,77,191 112,81,187112,81,187 109,85,182109,85,182 107,89,178107,89,178 104,93,174104,93,174 102,96,170102,96,170 100,100,166100,100,166 98,103,16398,103,163 96,106,15996,106,159
44 117,69,207117,69,207 114,74,201114,74,201 111,78,196111,78,196 108,83,191108,83,191 106,87,187106,87,187 103,91,182103,91,182 101,95,178101,95,178 99,99,17499,99,174 96,102,17096,102,170 94,105,16694,105,166 92,109,16392,109,163
55 113,71,213113,71,213 110,76,207110,76,207 107,81,201107,81,201 105,85,196105,85,196 102,89,191102,89,191 100,93,187100,93,187 97,97,18297,97,182 95,101,17895,101,178 93,104,17493,104,174 91,108,17091,108,170 89,111,16689,111,166
66 109,73,219109,73,219 106,78,213106,78,213 103,83,207103,83,207 101,87,201101,87,201 98,92,19698,92,196 96,96,19196,96,191 93,100,18793,100,187 91,103,18291,103,182 89,107,17889,107,178 87,110,17487,110,174 85,113,17085,113,170
77 105,75,225105,75,225 102,80,219102,80,219 99,85,21399,85,213 96,90,20796,90,207 94,94,20194,94,201 92,98,19692,98,196 89,102,19189,102,191 87,106,18787,106,187 85,109,18285,109,182 83,113,17883,113,178 81,116,17481,116,174
88 100,77,232100,77,232 98,83,22598,83,225 95,87,21995,87,219 92,92,21392,92,213 90,96,20790,96,207 87,101,20187,101,201 85,105,19685,105,196 83,108,19183,108,191 81,112,18781,112,187 79,115,18279,115,182 77,119,17877,119,178
99 96,80,23996,80,239 93,85,23293,85,232 90,90,22590,90,225 87,95,21987,95,219 85,99,21385,99,213 83,103,20783,103,207 81,107,20181,107,201 78,111,19678,111,196 77,115,19177,115,191 75,118,18775,118,187 73,121,18273,121,182
1010 90,82,24790,82,247 88,88,23988,88,239 85,93,23285,93,232 83,98,22583,98,225 80,102,21980,102,219 78,106,21378,106,213 76,110,20776,110,207 74,114,20174,114,201 72,118,19672,118,196 70,121,19170,121,191 68,124,18768,124,187
1111 85,85,25585,85,255 82,90,24782,90,247 80,96,23980,96,239 77,100,23277,100,232 75,105,22575,105,225 73,109,21973,109,219 71,113,21371,113,213 69,117,20769,117,207 67,121,20167,121,201 65,124,19665,124,196 64,128,19164,128,191
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments, and can also be made within the scope of knowledge possessed by those of ordinary skill in the art without departing from the purpose of the present invention. Various changes.

Claims (10)

  1. 一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征在于:针对指定六基色纤维α、β、γ、δ、ε、θ,以各基色纤维质量分别对应六维坐标系中的各根坐标轴,实现六维混色网格混色空间网格点阵列模型的构建,包括如下步骤:A color fiber six-dimensional color mixing space grid model and a method for constructing a color matrix of a grid point array, characterized in that: for the specified six primary color fibers α, β, γ, δ, ε, θ, the quality of each primary color fiber corresponds to Each coordinate axis in the six-dimensional coordinate system realizes the construction of a six-dimensional color mixing grid color mixing space grid point array model, including the following steps:
    步骤A.根据六基色纤维α、β、γ、δ、ε、θ分别所对应的预设最大质量ω α、ω β、ω γ、ω δ、ω ε、ω θ,确定各基色纤维最大质量分别所对应其所设坐标轴的位置,然后进入步骤B; Step A. Determine the maximum mass of each primary color fiber according to the preset maximum mass ω α , ω β , ω γ , ω δ , ω ε , ω θ corresponding to the six primary color fibers α, β, γ, δ, ε, θ respectively Respectively corresponding to the position of its set coordinate axis, and then enter step B;
    步骤B.针对六维坐标系中原点与基色纤维α最大质量所对应其所设坐标轴位置之间的线段,执行m等分,即获得包含该线段两端顶点在内的m+1个点,且该线段上各点的质量
    Figure PCTCN2021082628-appb-100001
    i表示该线段上由六维坐标系中原点至基色纤维α最大质量所对应其所设坐标轴位置方向、各点的序号;针对六维坐标系中原点与基色纤维β最大质量所对应其所设坐标轴位置之间的线段,执行n等分,即获得包含该线段两端顶点在内的n+1个点,且该线段上各点的质量
    Figure PCTCN2021082628-appb-100002
    j表示该线段上由六维坐标系中原点至基色纤维β最大质量所对应其所设坐标轴位置方向、各点的序号;
    Step B. For the line segment between the origin and the position of the coordinate axis corresponding to the maximum mass of the primary color fiber α in the six-dimensional coordinate system, perform m equal division, that is, obtain m+1 points including the vertices at both ends of the line segment. , and the mass of each point on the line segment
    Figure PCTCN2021082628-appb-100001
    i represents the position direction and the serial number of each point on the line segment from the origin in the six-dimensional coordinate system to the maximum mass of the primary color fiber α; for the origin in the six-dimensional coordinate system and the maximum mass of the primary color fiber β corresponding to the Set the line segment between the coordinate axis positions and perform n equal divisions, that is, n+1 points including the vertices at both ends of the line segment are obtained, and the quality of each point on the line segment is obtained.
    Figure PCTCN2021082628-appb-100002
    j represents the position direction of the coordinate axis and the serial number of each point on the line segment from the origin in the six-dimensional coordinate system to the maximum mass of the primary color fiber β;
    针对六维坐标系中原点与基色纤维γ最大质量所对应其所设坐标轴位置之间的线段,执行p等分,即获得包含该线段两端顶点在内的p+1个点,且该线段上各点的质量
    Figure PCTCN2021082628-appb-100003
    k表示该线段上由六维坐标系中原点至基色纤维γ最大质量所对应其所设坐标轴位置方向、各点的序号;
    For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber γ in the six-dimensional coordinate system, perform p equal division, that is, to obtain p+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
    Figure PCTCN2021082628-appb-100003
    k represents the position direction of the coordinate axis and the serial number of each point on the line segment from the origin in the six-dimensional coordinate system to the maximum mass of the primary color fiber γ;
    针对六维坐标系中原点与基色纤维δ最大质量所对应其所设坐标轴位置之间的线段,执行q等分,即获得包含该线段两端顶点在内的q+1个点,且该线段上各点的质量
    Figure PCTCN2021082628-appb-100004
    τ表示该线段上由六维坐标系中原点至基色纤维δ最大质量所对应其所设坐标轴位置方向、各点的序号;
    For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber δ in the six-dimensional coordinate system, perform q equal division, that is, obtain q+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
    Figure PCTCN2021082628-appb-100004
    τ represents the position direction of the coordinate axis and the serial number of each point on the line segment from the origin in the six-dimensional coordinate system to the maximum mass of the primary color fiber δ;
    针对六维坐标系中原点与基色纤维ε最大质量所对应其所设坐标轴位置之间的线段,执行s等分,即获得包含该线段两端顶点在内的s+1个点,且该线段上各点的质量
    Figure PCTCN2021082628-appb-100005
    μ表示该线段上由六维坐标系中原点至基色纤维ε最大质量所对应其所设坐标轴位置方向、各点的序号;
    For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber ε in the six-dimensional coordinate system, perform s equal division, that is, obtain s+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
    Figure PCTCN2021082628-appb-100005
    μ represents the position direction of the coordinate axis and the serial number of each point on the line segment from the origin in the six-dimensional coordinate system to the maximum mass of the primary color fiber ε;
    针对六维坐标系中原点与基色纤维θ最大质量所对应其所设坐标轴位置之间的线段,执行t等分,即获得包含该线段两端顶点在内的t+1个点,且该线段上各点的质量
    Figure PCTCN2021082628-appb-100006
    表示该线段上由六维坐标系中原点至基色纤维θ最大质量所对应其所设坐标轴位置方向、各点的序号;然后进入步骤C;
    For the line segment between the origin and the coordinate axis position corresponding to the maximum mass of the primary color fiber θ in the six-dimensional coordinate system, perform t equal division, that is, obtain t+1 points including the vertices at both ends of the line segment, and the the mass of each point on the line segment
    Figure PCTCN2021082628-appb-100006
    Represents the position direction of the coordinate axis and the serial number of each point corresponding to the origin in the six-dimensional coordinate system to the maximum mass of the primary color fiber θ on the line segment; then enter step C;
    步骤C.构建六基色纤维α、β、γ、δ、ε、θ分别所对应混合比λ α(i,j,k,τ,μ)、λ β(i,j,k,τ,μ)、λ γ(i,j,k,τ,μ)、λ δ(i,j,k,τ,μ)、λ ε(i,j,k,τ,μ)、λ θ(i,j,k,τ,μ)如下,然后进入步骤D; Step C. Construct the mixing ratios λ α (i, j, k, τ, μ) and λ β (i, j, k, τ, μ) corresponding to the six primary color fibers α, β, γ, δ, ε, and θ respectively , λ γ (i, j, k, τ, μ), λ δ (i, j, k, τ, μ), λ ε (i, j, k, τ, μ), λ θ (i, j, k, τ, μ) are as follows, and then enter step D;
    Figure PCTCN2021082628-appb-100007
    Figure PCTCN2021082628-appb-100007
    Figure PCTCN2021082628-appb-100008
    Figure PCTCN2021082628-appb-100008
    Figure PCTCN2021082628-appb-100009
    Figure PCTCN2021082628-appb-100009
    Figure PCTCN2021082628-appb-100010
    Figure PCTCN2021082628-appb-100010
    Figure PCTCN2021082628-appb-100011
    Figure PCTCN2021082628-appb-100011
    Figure PCTCN2021082628-appb-100012
    Figure PCTCN2021082628-appb-100012
    步骤D.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的质量模型如下,然后进入步骤E;Step D. Construct the quality model of any point in the cube space corresponding to the six-dimensional color mixing grid color mixing space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ as follows, and then proceed to step E;
    Figure PCTCN2021082628-appb-100013
    Figure PCTCN2021082628-appb-100013
    步骤E.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的质量矩阵如下,然后进入步骤F;Step E. Constructing the six-dimensional color mixing grid color mixing space corresponding to the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ The quality matrix of any point in the cube space is as follows, and then enter step F;
    Figure PCTCN2021082628-appb-100014
    Figure PCTCN2021082628-appb-100014
    且i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;μ=1,2,3,...,s+1;
    Figure PCTCN2021082628-appb-100015
    and i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1; τ =1,2,3,...,q+1; μ=1,2,3,...,s+1;
    Figure PCTCN2021082628-appb-100015
    步骤F.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型如下:Step F. Construct the color value model of any point in the cube space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ corresponding to the color mixing space of the six-dimensional color mixing grid as follows:
    Figure PCTCN2021082628-appb-100016
    Figure PCTCN2021082628-appb-100016
    然后进入步骤G,其中,R α、G α、B α表示基色纤维α所对应的RGB色,R β、G β、B β表示基色纤维β所对应的RGB色,R γ、G γ、B γ表示基色纤维γ所对应的RGB色,R δ、G δ、B δ表示基色纤维δ所对应的RGB色,R ε、G ε、B ε表示基色纤维ε所对应的RGB色;R θ、G θ、B θ表示基色纤维θ所对应的RGB色,;ξ i,j,k,τ,μ,θ表示六维坐标系中坐标(i,j,k,τ,μ,θ)位置所对应六基色纤维α、β、γ、δ、ε、θ混合纱线的颜色值,R ξ(i,j,k,τ,μ,θ)、G ξ(i,j,k,τ,μ,θ)、B ξ(i,j,k,τ,μ,θ)表示六维坐标系中坐标(i,j,k,τ,μ,θ)位置所对应六基色纤维α、β、γ、δ、ε、θ混合纱线的RGB色; Then enter step G, wherein R α , G α , B α represent the RGB color corresponding to the primary color fiber α, R β , G β , B β represent the RGB color corresponding to the primary color fiber β, R γ , G γ , B γ represents the RGB color corresponding to the primary color fiber γ, R δ , G δ , B δ represent the RGB color corresponding to the primary color fiber δ, R ε , G ε , B ε represent the RGB color corresponding to the primary color fiber ε; R θ , G θ , B θ represent the RGB color corresponding to the primary color fiber θ; Corresponding to the color value of the mixed yarn of six primary color fibers α, β, γ, δ, ε, θ, R ξ (i,j,k,τ,μ,θ), G ξ (i,j,k,τ,μ , θ), B ξ (i, j, k, τ, μ, θ) represent the six primary color fibers α, β, γ corresponding to the coordinates (i, j, k, τ, μ, θ) in the six-dimensional coordinate system , δ, ε, θ mixed yarn RGB color;
    步骤G.构建六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值矩阵如下:Step G. Constructing the color value matrix of any point in the cube space based on the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ corresponding to the color mixing space of the six-dimensional color mixing grid is as follows:
    Figure PCTCN2021082628-appb-100017
    Figure PCTCN2021082628-appb-100017
    且i=1,2,3,...,m+1;j=1,2,3,...,n+1;k=1,2,3,...,p+1;τ=1,2,3,...,q+1;ω=1,2,3,...,s+1;
    Figure PCTCN2021082628-appb-100018
    and i=1,2,3,...,m+1; j=1,2,3,...,n+1; k=1,2,3,...,p+1; τ =1,2,3,...,q+1;ω=1,2,3,...,s+1;
    Figure PCTCN2021082628-appb-100018
  2. 根据权利要求1所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征在于:基于所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即A color fiber six-dimensional color mixing space grid model and a method for constructing a grid point array color matrix according to claim 1, wherein: based on the six primary color fibers α, β, γ, δ, ε, θ The maximum mass and the equal fraction are equal to each other, namely
    ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t,则步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型如下: ω αβγδεθ , m=n=p=q=s=t, then the six-dimensional color mixing grid color space obtained from steps A to G corresponds to the six primary colors. The color value model of any point in the cube space with the preset maximum mass of fibers α, β, γ, δ, ε, θ is as follows:
    Figure PCTCN2021082628-appb-100019
    Figure PCTCN2021082628-appb-100019
  3. 根据权利要求1所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征 在于:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t,按i=1、2、3、...、n+1,j=1、2、3、...、n+1,k=1、2、3、...、n+1,τ=1、2、3、...、n+1,μ=1、2、3、...、n+1,
    Figure PCTCN2021082628-appb-100020
    构建零维矩阵如下:
    A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method according to claim 1, characterized in that: based on the six-dimensional color mixing grid color mixing space obtained in steps A to G corresponding to the The color value model of any point in the cube space with the preset maximum mass of the six primary color fibers α, β, γ, δ, ε, θ, and the maximum mass of the six primary color fibers α, β, γ, δ, ε, θ and The equal parts are equal to each other, that is, ω αβγδεθ , m=n=p=q=s=t, according to i=1, 2, 3,..., n+1, j=1, 2, 3,..., n+1, k=1, 2, 3,..., n+1, τ=1, 2, 3,..., n+ 1, μ=1, 2, 3, ..., n+1,
    Figure PCTCN2021082628-appb-100020
    The zero-dimensional matrix is constructed as follows:
    M 1,1=[ξ i,j,k,τ,μ,θ]。 M 1,1 =[ξ i,j,k,τ,μ,θ ].
  4. 根据权利要求1所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征在于:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t,基色纤维α对应六维坐标系中的X轴、基色纤维β对应六维坐标系中的Y轴、基色纤维γ对应六维坐标系中的Z轴,基色纤维δ对应六维坐标系中的U轴,基色纤维ε对应六维坐标系中的V轴,基色纤维θ对应六维坐标系中的W轴; A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method according to claim 1, characterized in that: based on the six-dimensional color mixing grid color mixing space obtained in steps A to G corresponding to the The color value model of any point in the cube space with the preset maximum mass of the six primary color fibers α, β, γ, δ, ε, θ, and the maximum mass of the six primary color fibers α, β, γ, δ, ε, θ and The equal parts are equal to each other, that is, ω αβγδεθ , m=n=p=q=s=t, the primary color fiber α corresponds to the X-axis in the six-dimensional coordinate system, The primary color fiber β corresponds to the Y axis in the six-dimensional coordinate system, the primary color fiber γ corresponds to the Z axis in the six-dimensional coordinate system, the primary color fiber δ corresponds to the U axis in the six-dimensional coordinate system, and the primary color fiber ε corresponds to the V axis in the six-dimensional coordinate system. axis, the primary color fiber θ corresponds to the W axis in the six-dimensional coordinate system;
    其中,基于i、j、k、τ、μ为常数,构建与W轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下: Among them, based on i, j, k, τ, μ as constants, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the W axis as follows:
    Figure PCTCN2021082628-appb-100021
    Figure PCTCN2021082628-appb-100021
    基于i、j、k、τ、
    Figure PCTCN2021082628-appb-100022
    为常数,构建与V轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
    Based on i, j, k, τ,
    Figure PCTCN2021082628-appb-100022
    is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the V axis as follows:
    Figure PCTCN2021082628-appb-100023
    Figure PCTCN2021082628-appb-100023
    基于i、j、k、μ、
    Figure PCTCN2021082628-appb-100024
    为常数,构建与U轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
    Based on i, j, k, μ,
    Figure PCTCN2021082628-appb-100024
    is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the U axis as follows:
    Figure PCTCN2021082628-appb-100025
    Figure PCTCN2021082628-appb-100025
    基于i、j、τ、μ、
    Figure PCTCN2021082628-appb-100026
    为常数,构建与Z轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
    Based on i, j, τ, μ,
    Figure PCTCN2021082628-appb-100026
    is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the Z axis as follows:
    Figure PCTCN2021082628-appb-100027
    Figure PCTCN2021082628-appb-100027
    基于i、k、τ、μ、
    Figure PCTCN2021082628-appb-100028
    为常数,构建与Y轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
    Based on i, k, τ, μ,
    Figure PCTCN2021082628-appb-100028
    is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the Y axis as follows:
    Figure PCTCN2021082628-appb-100029
    Figure PCTCN2021082628-appb-100029
    基于j、k、τ、μ、
    Figure PCTCN2021082628-appb-100030
    为常数,构建与X轴平行的(n+1) 5个1行(n+1)列一维颜色线阵列如下:
    Based on j, k, τ, μ,
    Figure PCTCN2021082628-appb-100030
    is a constant, construct (n+1) 5 1-row (n+1)-column one-dimensional color line arrays parallel to the X-axis as follows:
    Figure PCTCN2021082628-appb-100031
    Figure PCTCN2021082628-appb-100031
  5. 根据权利要求1所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征在于:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t; A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method according to claim 1, characterized in that: based on the six-dimensional color mixing grid color mixing space obtained in steps A to G corresponding to the The color value model of any point in the cube space with the preset maximum mass of the six primary color fibers α, β, γ, δ, ε, θ, and the maximum mass of the six primary color fibers α, β, γ, δ, ε, θ and The equal parts are equal to each other, that is, ω αβγδεθ , m=n=p=q=s=t;
    其中,基于i、j、k、τ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Among them, based on i, j, k, τ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100032
    Figure PCTCN2021082628-appb-100032
    基于i、j、k、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, j, k, and μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100033
    Figure PCTCN2021082628-appb-100033
    基于i、j、k、
    Figure PCTCN2021082628-appb-100034
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on i, j, k,
    Figure PCTCN2021082628-appb-100034
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100035
    Figure PCTCN2021082628-appb-100035
    基于i、j、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, j, τ, and μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100036
    Figure PCTCN2021082628-appb-100036
    基于i、j、τ、
    Figure PCTCN2021082628-appb-100037
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on i, j, τ,
    Figure PCTCN2021082628-appb-100037
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100038
    Figure PCTCN2021082628-appb-100038
    基于i、j、μ、
    Figure PCTCN2021082628-appb-100039
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on i, j, μ,
    Figure PCTCN2021082628-appb-100039
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100040
    Figure PCTCN2021082628-appb-100040
    基于i、k、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on i, k, τ, μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100041
    Figure PCTCN2021082628-appb-100041
    基于i、k、τ、
    Figure PCTCN2021082628-appb-100042
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on i, k, τ,
    Figure PCTCN2021082628-appb-100042
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100043
    Figure PCTCN2021082628-appb-100043
    基于i、k、μ、
    Figure PCTCN2021082628-appb-100044
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on i, k, μ,
    Figure PCTCN2021082628-appb-100044
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100045
    Figure PCTCN2021082628-appb-100045
    基于i、τ、μ、
    Figure PCTCN2021082628-appb-100046
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on i, τ, μ,
    Figure PCTCN2021082628-appb-100046
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100047
    Figure PCTCN2021082628-appb-100047
    基于j、k、τ、μ为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下: Based on j, k, τ, μ as constants, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100048
    Figure PCTCN2021082628-appb-100048
    基于j、k、τ、
    Figure PCTCN2021082628-appb-100049
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on j, k, τ,
    Figure PCTCN2021082628-appb-100049
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100050
    Figure PCTCN2021082628-appb-100050
    基于j、k、μ、
    Figure PCTCN2021082628-appb-100051
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on j, k, μ,
    Figure PCTCN2021082628-appb-100051
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100052
    Figure PCTCN2021082628-appb-100052
    基于j、τ、μ、
    Figure PCTCN2021082628-appb-100053
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Based on j, τ, μ,
    Figure PCTCN2021082628-appb-100053
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100054
    基于k、τ、μ、
    Figure PCTCN2021082628-appb-100055
    为常数,构建(n+1) 4个(n+1)行(n+1)列二维颜色阵列如下:
    Figure PCTCN2021082628-appb-100054
    Based on k, τ, μ,
    Figure PCTCN2021082628-appb-100055
    is a constant, construct (n+1) 4 (n+1) rows (n+1) columns two-dimensional color array as follows:
    Figure PCTCN2021082628-appb-100056
    Figure PCTCN2021082628-appb-100056
  6. 根据权利要求1所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征在于:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t; A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method according to claim 1, characterized in that: based on the six-dimensional color mixing grid color mixing space obtained in steps A to G corresponding to the The color value model of any point in the cube space with the preset maximum mass of the six primary color fibers α, β, γ, δ, ε, θ, and the maximum mass of the six primary color fibers α, β, γ, δ, ε, θ and The equal parts are equal to each other, that is, ω αβγδεθ , m=n=p=q=s=t;
    其中,基于i、j、k为常数,以及τ、μ、
    Figure PCTCN2021082628-appb-100057
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Among them, based on i, j, k are constants, and τ, μ,
    Figure PCTCN2021082628-appb-100057
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、j、τ为常数,以及k、μ、
    Figure PCTCN2021082628-appb-100058
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, j, τ being constant, and k, μ,
    Figure PCTCN2021082628-appb-100058
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、j、μ为常数,以及k、τ、
    Figure PCTCN2021082628-appb-100059
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, j, μ being constant, and k, τ,
    Figure PCTCN2021082628-appb-100059
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、j、
    Figure PCTCN2021082628-appb-100060
    为常数,以及k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, j,
    Figure PCTCN2021082628-appb-100060
    is a constant, and k, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ξ i,j,k,τ,μ,θ ;
    基于i、k、τ为常数,以及j、μ、
    Figure PCTCN2021082628-appb-100061
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, k, τ being constant, and j, μ,
    Figure PCTCN2021082628-appb-100061
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、k、μ为常数,以及j、τ、
    Figure PCTCN2021082628-appb-100062
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, k, μ being constant, and j, τ,
    Figure PCTCN2021082628-appb-100062
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、k、
    Figure PCTCN2021082628-appb-100063
    为常数,以及j、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, k,
    Figure PCTCN2021082628-appb-100063
    is a constant, and j, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 3 -dimensional color arrays for ξ i,j,k,τ,μ,θ ;
    基于i、τ、μ为常数,以及j、k、
    Figure PCTCN2021082628-appb-100064
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, τ, μ being constant, and j, k,
    Figure PCTCN2021082628-appb-100064
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、τ、
    Figure PCTCN2021082628-appb-100065
    为常数,以及j、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, τ,
    Figure PCTCN2021082628-appb-100065
    is a constant, and j, k, μ are equal to 1, ..., n+1 respectively, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、μ、
    Figure PCTCN2021082628-appb-100066
    为常数,以及j、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on i, μ,
    Figure PCTCN2021082628-appb-100066
    is a constant, and j, k, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 -dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于j、k、τ为常数,以及i、μ、
    Figure PCTCN2021082628-appb-100067
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on j, k, τ being constant, and i, μ,
    Figure PCTCN2021082628-appb-100067
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于j、k、μ为常数,以及i、τ、
    Figure PCTCN2021082628-appb-100068
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on j, k, μ being constant, and i, τ,
    Figure PCTCN2021082628-appb-100068
    Equal to 1,...,n+1 respectively, construct (n+1) 3 -dimensional color arrays for ξ i,j,k,τ,μ,θ ;
    基于j、k、
    Figure PCTCN2021082628-appb-100069
    为常数,以及i、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on j, k,
    Figure PCTCN2021082628-appb-100069
    is a constant, and i , τ, μ are respectively equal to 1 , .
    基于j、τ、μ为常数,以及i、k、
    Figure PCTCN2021082628-appb-100070
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on j, τ, μ being constant, and i, k,
    Figure PCTCN2021082628-appb-100070
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于j、τ、
    Figure PCTCN2021082628-appb-100071
    为常数,以及i、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on j, τ,
    Figure PCTCN2021082628-appb-100071
    is a constant, and i, k, μ are respectively equal to 1,...,n+1, construct (n+1) 3 three-dimensional color arrays for ξ i,j,k,τ,μ,θ ;
    基于j、μ、
    Figure PCTCN2021082628-appb-100072
    为常数,以及i、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on j, μ,
    Figure PCTCN2021082628-appb-100072
    is a constant, and i, k, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于k、τ、μ为常数,以及i、j、
    Figure PCTCN2021082628-appb-100073
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on k, τ, μ are constants, and i, j,
    Figure PCTCN2021082628-appb-100073
    Equal to 1, ..., n+1 respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于k、τ、
    Figure PCTCN2021082628-appb-100074
    为常数,以及i、j、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on k, τ,
    Figure PCTCN2021082628-appb-100074
    is a constant, and i, j, μ are respectively equal to 1,...,n+1, construct (n+1) 3 -dimensional color arrays for ξ i,j,k,τ,μ,θ ;
    基于k、μ、
    Figure PCTCN2021082628-appb-100075
    为常数,以及i、j、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列;
    Based on k, μ,
    Figure PCTCN2021082628-appb-100075
    is a constant, and i, j, τ are equal to 1, ..., n+1, respectively, construct (n+1) 3 three-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于τ、μ、
    Figure PCTCN2021082628-appb-100076
    为常数,以及i、j、k分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 3个三维颜色阵列。
    Based on τ, μ,
    Figure PCTCN2021082628-appb-100076
    is a constant, and i, j , k are equal to 1 , .
  7. 根据权利要求1所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征在于:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t; A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method according to claim 1, characterized in that: based on the six-dimensional color mixing grid color mixing space obtained in steps A to G corresponding to the The color value model of any point in the cube space with the preset maximum mass of the six primary color fibers α, β, γ, δ, ε, θ, and the maximum mass of the six primary color fibers α, β, γ, δ, ε, θ and The equal parts are equal to each other, that is, ω αβγδεθ , m=n=p=q=s=t;
    其中,基于i、j为常数,以及k、τ、μ、
    Figure PCTCN2021082628-appb-100077
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Among them, based on i, j being constant, and k, τ, μ,
    Figure PCTCN2021082628-appb-100077
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、k为常数,以及j、τ、μ、
    Figure PCTCN2021082628-appb-100078
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on i, k being constant, and j, τ, μ,
    Figure PCTCN2021082628-appb-100078
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、τ为常数,以及j、k、μ、
    Figure PCTCN2021082628-appb-100079
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on i, τ being constant, and j, k, μ,
    Figure PCTCN2021082628-appb-100079
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、μ为常数,以及j、k、τ、
    Figure PCTCN2021082628-appb-100080
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on i, μ being constant, and j, k, τ,
    Figure PCTCN2021082628-appb-100080
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于i、
    Figure PCTCN2021082628-appb-100081
    为常数,以及j、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on i,
    Figure PCTCN2021082628-appb-100081
    is a constant, and j, k, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于j、k为常数,以及i、τ、μ、
    Figure PCTCN2021082628-appb-100082
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on j, k as constants, and i, τ, μ,
    Figure PCTCN2021082628-appb-100082
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于j、τ为常数,以及i、k、μ、
    Figure PCTCN2021082628-appb-100083
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on j, τ are constants, and i, k, μ,
    Figure PCTCN2021082628-appb-100083
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于j、μ为常数,以及i、k、τ、
    Figure PCTCN2021082628-appb-100084
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on j, μ being constant, and i, k, τ,
    Figure PCTCN2021082628-appb-100084
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于j、
    Figure PCTCN2021082628-appb-100085
    为常数,以及i、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on j,
    Figure PCTCN2021082628-appb-100085
    is a constant, and i, k, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于k、τ为常数,以及i、j、μ、
    Figure PCTCN2021082628-appb-100086
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on k, τ are constants, and i, j, μ,
    Figure PCTCN2021082628-appb-100086
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于k、μ为常数,以及i、j、τ、
    Figure PCTCN2021082628-appb-100087
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on k, μ being constant, and i, j, τ,
    Figure PCTCN2021082628-appb-100087
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于k、
    Figure PCTCN2021082628-appb-100088
    为常数,以及i、j、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on k,
    Figure PCTCN2021082628-appb-100088
    is a constant, and i, j, τ, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于τ、μ为常数,以及i、j、k、
    Figure PCTCN2021082628-appb-100089
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on τ, μ being constant, and i, j, k,
    Figure PCTCN2021082628-appb-100089
    Equal to 1, ..., n+1 respectively, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于τ、
    Figure PCTCN2021082628-appb-100090
    为常数,以及i、j、k、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列;
    Based on τ,
    Figure PCTCN2021082628-appb-100090
    is a constant, and i, j, k, μ are respectively equal to 1, ..., n+1, construct (n+1) 2 four-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于μ、
    Figure PCTCN2021082628-appb-100091
    为常数,以及i、j、k、τ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1) 2个四维颜色阵列。
    Based on μ,
    Figure PCTCN2021082628-appb-100091
    are constants, and i, j, k, τ are equal to 1 , .
  8. 根据权利要求1所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征在于:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t; A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method according to claim 1, characterized in that: based on the six-dimensional color mixing grid color mixing space obtained in steps A to G corresponding to the The color value model of any point in the cube space with the preset maximum mass of the six primary color fibers α, β, γ, δ, ε, θ, and the maximum mass of the six primary color fibers α, β, γ, δ, ε, θ and The equal parts are equal to each other, that is, ω αβγδεθ , m=n=p=q=s=t;
    其中,基于i为常数,以及j、k、τ、μ、
    Figure PCTCN2021082628-appb-100092
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
    where i is a constant based on i, and j, k, τ, μ,
    Figure PCTCN2021082628-appb-100092
    Equal to 1, ..., n+1 respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于j为常数,以及i、k、τ、μ、
    Figure PCTCN2021082628-appb-100093
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
    Based on j being a constant, and i, k, τ, μ,
    Figure PCTCN2021082628-appb-100093
    Equal to 1, ..., n+1 respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于k为常数,以及i、j、τ、μ、
    Figure PCTCN2021082628-appb-100094
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
    Based on k being a constant, and i, j, τ, μ,
    Figure PCTCN2021082628-appb-100094
    Equal to 1, ..., n+1 respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于τ为常数,以及i、j、k、μ、
    Figure PCTCN2021082628-appb-100095
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
    Based on τ being a constant, and i, j, k, μ,
    Figure PCTCN2021082628-appb-100095
    Equal to 1, ..., n+1 respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于μ为常数,以及i、j、k、τ、
    Figure PCTCN2021082628-appb-100096
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列;
    Based on μ being a constant, and i, j, k, τ,
    Figure PCTCN2021082628-appb-100096
    Equal to 1, ..., n+1 respectively, construct (n+1) five-dimensional color arrays for ξ i, j, k, τ, μ, θ ;
    基于
    Figure PCTCN2021082628-appb-100097
    为常数,以及i、j、k、τ、μ分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建(n+1)个五维颜色阵列。
    based on
    Figure PCTCN2021082628-appb-100097
    are constants, and i, j, k, τ , μ are equal to 1, .
  9. 根据权利要求1所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法,其特征在于:基于步骤A至步骤G所获六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值模型,以及所述六基色纤维α、β、γ、δ、ε、θ的最大质量与等分数就彼此相等,即ω α=ω β=ω γ=ω δ=ω ε=ω θ,m=n=p=q=s=t;基于i、j、k、τ、μ、
    Figure PCTCN2021082628-appb-100098
    分别等于1、…、n+1,针对ξ i,j,k,τ,μ,θ构建1个六维颜色阵列。
    A color fiber six-dimensional color mixing space grid model and its grid point array color matrix construction method according to claim 1, characterized in that: based on the six-dimensional color mixing grid color mixing space obtained in steps A to G corresponding to the The color value model of any point in the cube space with the preset maximum mass of the six primary color fibers α, β, γ, δ, ε, θ, and the maximum mass of the six primary color fibers α, β, γ, δ, ε, θ and The equal parts are equal to each other, that is, ω αβγδεθ ,m=n=p=q=s=t; based on i,j,k,τ,μ,
    Figure PCTCN2021082628-appb-100098
    Equal to 1, ..., n+1, respectively, construct a six-dimensional color array for ξ i, j, k, τ, μ, θ .
  10. 一种针对权利要求1至9中任意一项所述一种彩色纤维六维混色空间网格模型及其网格点阵列颜色矩阵构建方法的应用,其特征在于:将所述六维混色网格混色空间所对应基于六基色纤维α、β、γ、δ、ε、θ预设最大质量的立方体空间中任意点的颜色值,存储于数据库中,按如下方式,用于实现对目标颜色的分析;An application for a color fiber six-dimensional color mixing space grid model and a method for constructing a grid point array color matrix according to any one of claims 1 to 9, characterized in that: the six-dimensional color mixing grid The color value of any point in the cube space corresponding to the preset maximum quality of the six primary color fibers α, β, γ, δ, ε, θ corresponding to the color mixing space is stored in the database, and is used to analyze the target color as follows ;
    首选采用检色仪检测获得目标颜色所对应的RGB颜色检测数据,并在数据库中查找该RGB颜色检测数据所对应的网格点;然后在以该网格点为原点、周围预设半径范围,通过比对的方式,获得目标颜色所对应的网格点;最后由该网格点所对应的RGB颜色数据,构成目标颜色所对应的RGB颜色数据。It is preferred to use a color detector to detect the RGB color detection data corresponding to the target color, and find the grid point corresponding to the RGB color detection data in the database; The grid point corresponding to the target color is obtained by way of comparison; finally, the RGB color data corresponding to the target color is formed from the RGB color data corresponding to the grid point.
PCT/CN2021/082628 2020-11-30 2021-03-24 Method for constructing color fiber six-dimensional color mixing space grid model and grid point array color matrix thereof, and application WO2022110587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011372178.0A CN112347683B (en) 2020-11-30 2020-11-30 Construction and application of color fiber six-dimensional color mixing space grid model and grid point array chromatogram
CN202011372178.0 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110587A1 true WO2022110587A1 (en) 2022-06-02

Family

ID=74365106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082628 WO2022110587A1 (en) 2020-11-30 2021-03-24 Method for constructing color fiber six-dimensional color mixing space grid model and grid point array color matrix thereof, and application

Country Status (2)

Country Link
CN (1) CN112347683B (en)
WO (1) WO2022110587A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112347683B (en) * 2020-11-30 2021-08-10 江南大学 Construction and application of color fiber six-dimensional color mixing space grid model and grid point array chromatogram
CN113538690B (en) * 2021-06-16 2024-01-12 江南大学 HSV gridding model construction and chromatographic visualization method
CN115491909B (en) * 2022-09-05 2024-02-02 愉悦家纺有限公司 Color space based on gridding mixing of nine-primary color dye liquor and equal brightness color spectrum construction thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103729472A (en) * 2014-01-21 2014-04-16 成都齐力丝绸有限公司 Creation method and application of brocade color tissue bank
CN110490981A (en) * 2019-08-14 2019-11-22 愉悦家纺有限公司 A kind of eight yuan of primary colours HSB full gamut color space gridding methods and its discrete chromatography construction method
CN110485018A (en) * 2019-08-14 2019-11-22 愉悦家纺有限公司 A kind of spinning for the discrete ramp chromatography and gradual change dyed yarn that four primary fiber coupling mixture constructs
US20200118295A1 (en) * 2018-10-12 2020-04-16 Xiangtan University Dyeing color matching method and system based on preference genetic algorithm
CN112347683A (en) * 2020-11-30 2021-02-09 江南大学 Color fiber six-dimensional color mixing space grid model and grid point array color matrix construction method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794290B (en) * 2009-12-30 2011-12-28 清华大学 Colour three-dimensional model search method based on vision cognitive characteristic
CN101853484A (en) * 2010-05-21 2010-10-06 天津大学 Construction method and detection method for three-dimensional mesh non-embedded robust watermark
CN102041592A (en) * 2010-12-31 2011-05-04 山东岱银纺织集团股份有限公司 Method for producing color-spun and hollow yarns
KR101325881B1 (en) * 2012-09-06 2013-11-05 민승기 Yarn making a formula
US9463150B2 (en) * 2014-12-19 2016-10-11 Henkel Ag & Co. Kgaa Agent for coloring and/or lightening keratinic fibers without ammonia odor
CN109811442B (en) * 2019-03-13 2023-10-27 经纬智能纺织机械有限公司 Six-channel alternating drafting twisting coating ring spindle fancy yarn forming device and method
CN110424082B (en) * 2019-08-14 2021-11-02 愉悦家纺有限公司 Method for spinning gradient yarns by three-primary-color fiber coupling blending based on discrete gradient chromatography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103729472A (en) * 2014-01-21 2014-04-16 成都齐力丝绸有限公司 Creation method and application of brocade color tissue bank
US20200118295A1 (en) * 2018-10-12 2020-04-16 Xiangtan University Dyeing color matching method and system based on preference genetic algorithm
CN110490981A (en) * 2019-08-14 2019-11-22 愉悦家纺有限公司 A kind of eight yuan of primary colours HSB full gamut color space gridding methods and its discrete chromatography construction method
CN110485018A (en) * 2019-08-14 2019-11-22 愉悦家纺有限公司 A kind of spinning for the discrete ramp chromatography and gradual change dyed yarn that four primary fiber coupling mixture constructs
CN112347683A (en) * 2020-11-30 2021-02-09 江南大学 Color fiber six-dimensional color mixing space grid model and grid point array color matrix construction method and application thereof

Also Published As

Publication number Publication date
CN112347683A (en) 2021-02-09
CN112347683B (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022110583A1 (en) Method for constructing multi-dimensional color mixing space grid model and grid point array color matrix for color fibers, and application thereof
WO2022110587A1 (en) Method for constructing color fiber six-dimensional color mixing space grid model and grid point array color matrix thereof, and application
WO2022110585A1 (en) Method for constructing color fiber three-dimensional color mixing space grid model and grid point array color matrix, and use of method
WO2022110584A1 (en) Method for constructing five-dimensional color mixing space grid model and grid point array color matrix for color fibers, and application thereof
WO2022110588A1 (en) Construction method for grid model and grid point array color matrix of color fiber four-dimensional color mixing space and use thereof
WO2022110589A1 (en) Colored-fiber two-dimensional color mixing space grid model and grid point array color matrix construction method thereof and application thereof
CN110490981B (en) Gridding model of eight-primary-color HSB color space and discrete chromatogram construction method thereof
CN112733079B (en) Method for constructing multi-dimensional superposition color mixing model and gradient chromatography matrix
US5907495A (en) Method of formulating paint through color space modeling
CN114792363B (en) Full-color domain gridding color mixing model construction method and color spinning method for three-primary-color fiber construction
CN114820848B (en) Seven-primary-color fiber full-color-gamut color mixing mode and annular gridding color matching model construction method
CN113538691B (en) HSI gridding model construction and equal brightness equal chroma equal color spectrum visualization method
CN113536540A (en) Method for constructing high-dimensional discrete chromatogram and visualization by using multi-element mixed-color fiber system
CN112785664B (en) Construction and application of multi-dimensional coupling color mixing model and gradient chromatography matrix algorithm
CN115115717B (en) Seven-primary-color polyester three-dimensional gridding mixed three-dimensional color stereoscopic and full-color domain color matching method based on gradient gray value construction
CN112632790B (en) Construction application of multi-dimensional coupling-superposition composite color mixing model and gradient chromatography matrix algorithm
US20020015051A1 (en) Method of visualization and graphical analysis for multidimensional functions
CN115146489B (en) HSI color stereo constructed by gridding, mixing and blending seven-primary-color dye solution and method for acquiring chromatogram thereof
CN115146490B (en) Full-color-domain color model prepared by blending multidimensional gridding dye liquor and chromatographic construction method thereof
CN115491909B (en) Color space based on gridding mixing of nine-primary color dye liquor and equal brightness color spectrum construction thereof
CN115115716A (en) Color stereo constructed by gridding, mixing and blending four-primary-color polyester and full-color-domain digitalization method thereof
CN113538690B (en) HSV gridding model construction and chromatographic visualization method
Chen et al. Research and Algorithm Optimization on the Intelligent Color Selection of Mosaic Tiles through RGB Color model
CN118781249A (en) Color allocation method and system based on Ostwald full-color domain color mixing model
CN114724650A (en) Cement base material digitalized complex color matching method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896105

Country of ref document: EP

Kind code of ref document: A1