WO2022110051A1 - Methods for communications, terminal devices and computer readable media - Google Patents

Methods for communications, terminal devices and computer readable media Download PDF

Info

Publication number
WO2022110051A1
WO2022110051A1 PCT/CN2020/132397 CN2020132397W WO2022110051A1 WO 2022110051 A1 WO2022110051 A1 WO 2022110051A1 CN 2020132397 W CN2020132397 W CN 2020132397W WO 2022110051 A1 WO2022110051 A1 WO 2022110051A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
reference signals
power
stationary
processor
Prior art date
Application number
PCT/CN2020/132397
Other languages
French (fr)
Inventor
Zhe Chen
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2020/132397 priority Critical patent/WO2022110051A1/en
Publication of WO2022110051A1 publication Critical patent/WO2022110051A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • Embodiments of the present disclosure generally relate to the field of communication, and in particular, to a solution for saving powers of terminal devices.
  • NR Release 16 New Radio (NR) Release 16 relaxed measurements for stationary terminal devices were introduced to save battery powers of the terminal devices. In NR Release 17, it was agreed to inherit the feature of power saving in Release 16 as the baseline. In addition, it was proposed to introduce some enhancement for the stationary terminal devices. However, no detailed solution on enhancement of power saving for the stationary terminal devices has been proposed.
  • example embodiments of the present disclosure provide a solution for saving powers of terminal devices.
  • a method for communications comprises receiving, at a terminal device, at least one reference signal with a first received power based on the number of discontinuous reception, DRX, cycles; in accordance with a determination that an absolute value of a first difference between the first received power and a reference power is below a threshold, receiving the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.
  • a method for communications comprises receiving, at a terminal device, at least one reference signal for a measurement of a received power based on the number of discontinuous reception, DRX, cycles; in accordance with a determination that an absolute value of a difference between the received power and a reference power is below a threshold, determining that the terminal device is entering a temporary stationary mode; and in accordance with a determination that the absolute value is above the threshold, determining that the terminal device is entering a moving mode.
  • a method for communications comprises receiving, at a terminal device, a first set of reference signals in a serving cell for a measurement of received powers; receiving, from a network device, information about an association between the first set of reference signals and lists of neighbor cells or neighbour frequencies; and in accordance with a determination that received powers of a first number of reference signals in the first set are higher than received powers of other reference signals in the first set, receiving a second set of reference signals in at least one neighbour cell or neighbour frequency associated with the first number of reference signals.
  • a method for communications comprises transmitting, from a network device to a terminal device, information about an association between a first set of reference signals in a serving cell and lists of neighbor cells or neighbour frequencies, the information being used for a measurement of received powers of a second set of reference signals in at least one of the neighbour cells or neighbour frequencies associated with the first number of reference signals in the first set.
  • a terminal device comprising a processor and a memory storing instructions.
  • the memory and the instructions are configured, with the processor, to cause the terminal device to perform the method according to the first aspect.
  • a terminal device comprising a processor and a memory storing instructions.
  • the memory and the instructions are configured, with the processor, to cause the terminal device to perform the method according to the second aspect.
  • a terminal device comprising a processor and a memory storing instructions.
  • the memory and the instructions are configured, with the processor, to cause the terminal device to perform the method according to the third aspect.
  • a network device comprising a processor and a memory storing instructions.
  • the memory and the instructions are configured, with the processor, to cause the network device to perform the method according to the fourth aspect.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor of a device, cause the device to perform the method according to the first aspect.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor of a device, cause the device to perform the method according to the second aspect.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor of a device, cause the device to perform the method according to the third aspect.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor of a device, cause the device to perform the method according to the fourth aspect.
  • Fig. 1 is a schematic diagram of a communication network in which some embodiments of the present disclosure can be implemented
  • Fig. 2 illustrates an example signaling chart showing an example process for saving power of a terminal device in accordance with some embodiments of the present disclosure
  • Fig. 3 illustrates an example signaling chart showing an example process for saving power of a terminal device in accordance with some other embodiments of the present disclosure
  • Fig. 4 illustrates an example signaling chart showing an example process for saving power of a terminal device in accordance with still other embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure
  • Fig. 6 illustrates a flowchart of an example method in accordance with some other embodiments of the present disclosure
  • Fig. 7 illustrates a flowchart of an example method in accordance with still other embodiments of the present disclosure
  • Fig. 8 illustrates a flowchart of an example method in accordance with yet other embodiments of the present disclosure.
  • Fig. 9 is a simplified block diagram of a device that is suitable for implementing some embodiments of the present disclosure.
  • BS base station
  • BS refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can perform communications.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , an infrastructure device for a V2X communication, a Transmission/Reception Point (TRP) , a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, and the like.
  • TRP Transmission/Reception Point
  • RRU Remote Radio Unit
  • RH radio head
  • RRH remote radio head
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , vehicle-mounted terminal devices, devices of pedestrians, roadside units, personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • UE user equipment
  • vehicle-mounted terminal devices devices of pedestrians, roadside units
  • PDAs personal digital assistants
  • portable computers portable computers
  • image capture devices such as digital cameras
  • gaming devices music storage and playback appliances
  • Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • a terminal device performs a measurement of a first received power of at least one reference signal based on the number of discontinuous reception (DRX) cycles. If the terminal device determines, based on the first received power, that a relaxed measurement of a second received power of the at least one reference signal is to be performed, the terminal device updates the number of the DRX cycles with a measurement interval factor greater than one. In turn, the terminal device performs the relaxed measurement based on the updated number of the DRX cycles. With this solution, the terminal device performs the relaxed measurement based on larger DRX cycles, power saving of the terminal device is achieved.
  • DRX discontinuous reception
  • Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 comprises terminal devices 110, 120, 130 and 140 which are served by a network device 150.
  • the network device 150 provides a serving cell 160 and neighbor cells 161, 162, 163 and 164 for the terminal devices 110, 120, 130 and 140.
  • the neighbor cell 161 may be associated with a frequency F1
  • the neighbor cell 162 may be associated with a frequency F2
  • the neighbor cell 163 may be associated with a frequency F3
  • the neighbor cell 164 may be associated with a frequency F4.
  • the network 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure.
  • the terminal devices 110, 120, 130 and 140 each may measure a respective received power of at least one reference signal in the serving cell 160.
  • the terminal devices 110, 120, 130 and 140 each may also measure a respective received power of at least one reference signal in all or part of the neighbor cells 161, 162, 163 and 164.
  • the terminal devices 110, 120, 130 and 140 and the network device 150 can communicate with each other.
  • the communication may follow any suitable communication standards or protocols such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) NR, Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) and ultra-reliable low latency communication (uRLLC) technologies.
  • UMTS Universal Mobile Telecommunications System
  • LTE long term
  • the present disclosure provides a mechanism to allow a terminal device to be aware of a stationary level and provides measurement relaxation specific to the stationary level of the terminal device. This will be described with reference to Fig. 2.
  • Fig. 2 illustrates an example signaling chart showing an example process 200 for saving power of a terminal device in accordance with some embodiments of the present disclosure.
  • the process 200 may involve the network device 150 and one of the terminal devices 110, 120, 130, 140 as shown in Fig. 1.
  • the process 200 will be described by taking the terminal device 110 for example. It is to be understood that the process 200 may include additional acts not shown and/or may omit some acts as shown, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives (210) , from the network device 150, at least one reference signal for a measurement of a first received power based on the number of DRX cycles.
  • the terminal device 110 may receive the at least one reference signal every the number of DRX cycles.
  • the number of DRX cycles may be determined based on Table 1.
  • the terminal device 110 may filter the Synchronization Signal based Reference Signal Received Power (SS-RSRP) and Synchronization Signal based Reference Signal Received Quality (SS-RSRQ) measurements of the serving cell 160 using at least two measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least DRX cycle/2.
  • SS-RSRP Synchronization Signal based Reference Signal Received Power
  • SS-RSRQ Synchronization Signal based Reference Signal Received Quality
  • the terminal device 110 may initiate the measurements of all neighbour cells indicated by the serving cell 160, regardless of the measurement rules currently limiting measurement activities of the terminal device 110.
  • the terminal device 110 may initiate cell selection procedures for the selected Public Land Mobile Network (PLMN) as defined in TS 38.304.
  • PLMN Public Land Mobile Network
  • the terminal device 110 determines (220) whether an absolute value of a first difference between the first received power and a reference power is below a threshold.
  • the terminal device 110 determines that the absolute value of the first difference is below the threshold, the terminal device 110 receives the at least one reference signal for a measurement of a second received power based on the number of the DRX cycles and a predefined factor.
  • the terminal device 110 receives the at least one reference signal based on a product of the number of the DRX cycles and the predefined factor.
  • the product of the number of the DRX cycles and the predefined factor is also referred to as an updated number of the DRX cycles.
  • the terminal device 110 may receive the at least one reference signal every the updated number of the DRX cycles.
  • the updated number of the DRX cycles may be determined based on Table 2.
  • N’ serv represents the updated number of DRX cycles
  • factorX represents the predefined factor
  • the updated number of DRX cycles may greater than the number of DRX cycles.
  • the predefined factor may be any value greater than one. In this way, the terminal device 110 may perform a relaxed measurement of the at least one reference signal so as to save power of the terminal device 110.
  • the predefined factor may be specific to a stationary level of the terminal device 110.
  • the stationary level of the terminal device 110 may be one of stationary levels, such as Level 1, Level 2, Level 3 and Level 4.
  • the terminal device 110 may be a still device at fixed location.
  • the terminal device 110 may be a fixed static sensor. Purely stationary terminal devices in the Level 1 will not perform any mobility, unless there is a significant change of radio condition. Therefore, only extremely minimal measurement may be needed for the terminal devices.
  • the terminal device 110 may be a moving device at a fixed location.
  • the terminal device 110 may be a rotary device at the fixed location, such as a camera or robot.
  • Terminal devices in Level 2 would have almost same characteristics with still devices at fixed location (that is, the terminal devices in Level 1) . Therefore, same RRM relaxation mechanism can be considered with the terminal devices in Level 1.
  • the terminal device 110 may be a temporarily fixed device.
  • the terminal device 110 may be a smart watch at night.
  • Terminal devices in Level 3 may be mobile all day long (can be stationary from time to time) and stationary during the night.
  • the terminal device 110 may be a device that is moving around slowly.
  • the terminal device 110 may be a medical wearable. Devices moving around slowly may have certain path or area to locate in. Therefore, measurement results of the neighbour cells may be stable. In other words, the measured quality of neighbour cells would not vary much as time flows. For example, once measured quality of a cell is bad, it is low possibility for a while that measured quality of the cell becomes much better so that the cell becomes cell reselection candidate. On the contrary, if measured quality of a cell is good, it is low possibility that measured quality of the cell gets much worse. Therefore, it may bring less power consumption if such terminal devices perform measurements on the cells with good quality.
  • the terminal device 110 may determine whether the absolute value is associated with a first stationary level among the stationary levels. If the terminal device 110 determines that the absolute value is associated with the first stationary level, the terminal device 110 determines the predefined factor based on the first stationary level.
  • the terminal device 110 may select, based on the first stationary level, the predefined factor from a first set of measurement interval factors associated with the stationary levels. In such example embodiments, the terminal device 110 may receive, from the network device 150, first information about the first set of measurement interval factors.
  • the terminal device 110 may receive the first information about the first set of measurement interval factors in a System Information Block (SIB) as below.
  • SIB System Information Block
  • Factor1, Factor2, Factor3, and Factor4 represent the measurement interval factors.
  • Factor1 may be set a value between 17 and 32.
  • the first set of measurement interval factors may be preconfigured.
  • the terminal device 110 may receive a parameter associated with the stationary levels from the network device 150. In turn, the terminal device 110 may determine the predefined factor based on the following:
  • factorX represents the predefined factor
  • M represents the parameter
  • levelx represents a serial number of the stationary level of the terminal device 110.
  • the network device 150 may configures measurement triggering conditions associated with the stationary levels. As such, the terminal device 110 may trigger measurement relaxation based on one of the measurement triggering conditions.
  • the terminal device 110 may receive, from the network device 150, second information about a second set of thresholds that define distribution intervals associated with the stationary levels. The terminal device 110 may determine whether the absolute of the first difference is within a first distribution interval among the distribution intervals. If the terminal device 110 determines that the absolute of the first difference is within the first distribution interval, the terminal device 110 determines that the predefined factor is associated with the first stationary level of the terminal device 110.
  • the second set of thresholds may comprise thresholds Sdelta1, Sdelta2, Sdelta3 and Sdelta4, where Sdelta1 ⁇ Sdelta2 ⁇ Sdelta3 ⁇ Sdelta4.
  • the thresholds Sdelta1, Sdelta2, Sdelta3 and Sdelta4 are associated with Level 1, Level 2, Level 3 and Level 4, respectively.
  • the thresholds Sdelta1, Sdelta2, Sdelta3 and Sdelta4 may define five distribution intervals associated with the four stationary levels.
  • the five distribution intervals may comprise a first distribution interval 0 ⁇ Sdelta1, a second distribution interval Sdelta1 ⁇ Sdelta2, a third distribution interval Sdelta2 ⁇ Sdelta3, a fourth distribution interval Sdelta3 ⁇ Sdelta4, and a fifth distribution interval Sdelta4 ⁇ .
  • the terminal device 110 may determine which distribution interval the absolute of the first difference is within. If the absolute of the first difference is within the first distribution interval, the terminal device 110 may determine that the predefined factor is associated with the first stationary level. If the absolute of the first difference is within the second distribution interval, the terminal device 110 may determine that the predefined factor is associated with the second stationary level. If the absolute of the first difference is within the third distribution interval, the terminal device 110 may determine that the predefined factor is associated with the third stationary level. If the absolute of the first difference is within the fourth distribution interval, the terminal device 110 may determine that the predefined factor is associated with the fourth stationary level. If the absolute of the first difference is within the fifth distribution interval, the terminal device 110 may determine that the terminal device 110 is in a non-stationary level.
  • the terminal device 110 may switch from one stationary level to another. In such example embodiments, if the terminal device 110 determines that the first received power is above the reference power, the terminal device 110 may update the reference power with the first received power. The terminal device 110 may determine a second difference between the second received power and the updated reference power. If the terminal device 110 determines that an absolute of the second difference is within the second distribution interval among the distribution intervals that is associated with the second stationary level, the terminal device 110 may determine that the predefined factor is associated with the second stationary level.
  • the second distribution interval is adjacent to the first distribution interval.
  • the terminal device 110 can only switch from one stationary level to another stationary level that is adjacent to the stationary level. For example, it is assumed that the terminal device 110 is currently in Level 3. Even if the terminal device 110 determines that the absolute of the second difference is within the second distribution interval, the terminal device 110 cannot switch from Level 3 to Level 1. Instead, the terminal device 110 should switch from Level 3 to Level 2.
  • the terminal device 110 may switch from Level 2 to Level 1. As such, the terminal device 110 may determine that the predefined factor is associated with the first stationary level.
  • the terminal device 110 may upgrade to the higher stationary level. For example, after ten times of measurements, if the terminal device 110 in Level 3 determines that an absolute of a difference between a received power of the at least one reference signal and the reference power is within the distribution interval associated with Level 2, the terminal device 110 may upgrade to Level 2.
  • the terminal device 110 may degrade to a lower stationary level. For example, if in one of the ten times of measurements, if the terminal device 110 in Level 2 determines that an absolute of a difference between a received power of the at least one reference signal and the reference power is within a distribution interval associated with Level 2, the terminal device 110 will degrade to Level 3.
  • the network device 150 may configure the terminal device 110 to be a specific stationary level based on the subscription information. For example, the network device 150 may configure the terminal device 110 to be a specific stationary level via an RRCReconfiguration message.
  • the terminal device 110 may report the stationary level to the network device 150.
  • the terminal device 110 may report the stationary level to the network device 150 via an RRCSetupComplete message.
  • the terminal device 110 may perform a relaxed measurement of the at least one reference signal that is specific to the stationary level of the terminal device 110.
  • the terminal device 110 may measure received powers of preconfigured reference signals during a first measurement cycle.
  • the terminal device 110 selects a first number of reference signals from the preconfigured reference signals based on the stationary level of the terminal device 110.
  • the terminal device 110 may determine an average of a first plurality of received powers of the first number of reference signals as the second received power.
  • the first plurality of received powers are higher than received powers of other reference signals among the preconfigured reference signals.
  • the terminal device 110 selects the first number of the best reference signals from the preconfigured reference signals.
  • the terminal device 110 determines the average of the received powers of the first number of best reference signals as the received power of the preconfigured reference signals
  • the terminal device 110 receives, from the network device 150, third information about candidate numbers for reference signals associated with the stationary levels. In turn, the terminal device 110 selects the first number from the candidate numbers that is associated with the first stationary level.
  • the terminal device 110 may receive, from the network device 150, the third information about the candidate numbers in an SIB.
  • the terminal device 110 may only measure a second plurality of received powers of the first number of reference signals during a second measurement cycle subsequent to the first measurement cycle.
  • the terminal device 110 may measure the received powers of all the preconfigured reference signals during a third measurement cycle subsequent to the second measurement cycle. In some example embodiments, the terminal device 110 may receive the threshold power from the network device 150.
  • the present disclosure provides the entering condition and leaving condition of a temporary stationary terminal device. This will be described with reference to Fig. 3.
  • Fig. 3 illustrates an example signaling chart showing an example process 300 for saving power of a terminal device in accordance with some embodiments of the present disclosure.
  • the process 300 may involve the network device 150 and one of the terminal devices 110, 120, 130, 140 as shown in Fig. 1.
  • the process 300 will be described by taking the terminal device 110 for example. It is to be understood that the process 300 may include additional acts not shown and/or may omit some acts as shown, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives (310) at least one reference signal for a measurement of a received power.
  • the terminal device 110 determines (320) whether an absolute value of a difference between the received power and a reference power is below a threshold. If the terminal device 110 determines that the absolute value is below the threshold, the terminal device 110 determines (330) that the terminal device 110 is entering a temporary stationary mode. On the other hand, if the terminal device 110 determines that the absolute value is above the threshold, the terminal device 110 determines (324) that the terminal device 110 is entering a moving mode. In other words, if the terminal device 110 determines that the absolute value is above the threshold, the terminal device 110 determines that the terminal device 110 is leaving the temporary stationary mode.
  • the terminal device 110 may receive the reference power Stmpfix and the threshold Stmpdelta from the network device 150.
  • Stmpfix may be set to the last measured received power.
  • the terminal device 110 may perform measurement result evaluation associated with preconfigured reference signals.
  • the granularity of measurement result of SSB is more accurate compared to cell level measurement result to evaluate the movement of a temporary stationary terminal device.
  • the terminal device 110 may measure received powers of preconfigured reference signals and select a first reference signal from the preconfigured reference signals. A first received power of the first reference signal is higher than received powers of other reference signals among the preconfigured reference signals.
  • the preconfigured reference signals may comprise SSBs.
  • the terminal device 110 may determine a first difference between the first received power and the reference power as the difference between the received power and the reference power.
  • the terminal device 110 may receive, from the network device 150, information about a set of thresholds associated with the preconfigured reference signals.
  • the terminal device 110 may receive the information about the set of thresholds via SIB as below.
  • S SearchDeltaP represents a threshold associated with an SSB indicated by an index of SSB.
  • the set of thresholds associated with the preconfigured reference signals may be in the form of Table 3.
  • the terminal device 110 may select a first threshold from the set that is associated with the first reference signal and determine whether the first absolute value is below the first threshold. If the terminal device 110 determines that a first absolute value of the first difference is below the first threshold, the terminal device 110 determines that the absolute value of the difference is below the threshold.
  • the terminal device 110 may update the reference power with the first received power.
  • the entering condition of temporary stationary terminal device may be as below. It is assumed that Srxlevssb1 represents the first received power of SSB1 and the first received power is higher than the received powers of SSB2, SSB3 and so on. If abs (Srxlevssb Ref1 –Srxlevssb1) ⁇ S SearchDeltaP1 for the past T SearchSSBDeltaP , the terminal device 110 considers itself in the temporary stationary mode, where Srxlevssb Ref1 represents the reference power. T SearchSSBDeltaP specifies the time period over which the Srxlevx for a SSB variation is evaluated for relaxed measurement.
  • the terminal device 110 may set the value of Srxlevssb Ref1 to be the current Srxlev1.
  • a stationary terminal device mostly moves in a limited area, so only a few number of reference signals should be measured. In addition, in this very limited area, it is possible that only one or two neighbor cells can be detected. Therefore, it is unnecessary to measure frequencies of other neighbor cells.
  • the terminal device 110 is in the coverage of an SSB 171, and the neighbor frequency that the terminal device 110 should measure is F1.
  • the terminal device 120 is in the coverage of an SSB 172, and the neighbor frequencies that the terminal device 120 should measure are F1 and F2.
  • the terminal device 130 is in the coverage of an SSB 173, and the neighbor frequency that the terminal device 130 should measure is F3.
  • the terminal device 140 is in the coverage of an SSB 174, and the neighbor frequency that the terminal device 140 should measure is F4.
  • the present disclosure provides neighbour cell measurement specific to reference signals. This will be described with reference to Fig. 4.
  • Fig. 4 illustrates an example signaling chart showing an example process 400 for saving power of a terminal device in accordance with some embodiments of the present disclosure.
  • the process 400 may involve the network device 150 and one of the terminal devices 110, 120, 130, 140 as shown in Fig. 1.
  • the process 400 will be described by taking the terminal device 110 for example. It is to be understood that the process 400 may include additional acts not shown and/or may omit some acts as shown, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives (410) , from the network device 150, a first set of reference signals in a serving cell for a measurement of received powers.
  • the terminal device 110 receives (420) , from the network device 150, information about an association between the first set of reference signals and lists of neighbour cells or neighbour frequencies.
  • the terminal device 110 determines (430) whether received powers of a first number of reference signals in the first set are higher than received powers of other reference signals in the first set. If the terminal device 110 determines that the received powers of the first number of reference signals are higher than the received powers of other reference signals in the first set, the terminal device 110 receives (440) a second set of reference signals in at least one neighbour cell or neighbour frequency associated with the first number of reference signals.
  • the reference signals may comprise SSBs.
  • the network device 150 may configure the association between SSBs and lists of the neighbor cells that the terminal device 110 should measure in an SIB as below.
  • the network device 150 may configure the association between SSBs and lists of the neighbor frequencies that the terminal device 110 should measure in an SIB.
  • the terminal device 110 may evaluate the serving cell signals of two best SSBs, that is, SSB1 and SSB2.
  • the terminal device 110 should measurement both F1 (the cell 161) corresponding to SSB1 and F2 (the cell 162) corresponding to SSB2. In this way, power of the terminal device 110 may be saved.
  • Fig. 5 illustrates a flowchart of an example method 500 in accordance with some embodiments of the present disclosure.
  • the method 500 can be performed at any of the terminal devices 110 to 140 as shown in Fig. 1. It is to be understood that the method 500 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives at least one reference signal with a first received power based on the number of DRX cycles.
  • the terminal device 110 determines that an absolute value of a first difference between the first received power and a reference power is below a threshold, the terminal device 110 receives the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.
  • the terminal device 110 determines that the absolute value is associated with a first stationary level among stationary levels, the terminal device 110 determines the predefined factor based on the first stationary level.
  • the terminal device 110 determines the predefined factor from a first set of measurement interval factors associated with the first stationary level.
  • the terminal device 110 receives, from a network device 150, first information about the first set of measurement interval factors.
  • the first set of measurement interval factors is preconfigured.
  • the terminal device 110 receives a parameter associated with the stationary levels from a network device 150 and determines the predefined factor based on the following:
  • factorX represents the predefined factor
  • M represents the parameter
  • levelx represents the serial number of first stationary level
  • the terminal device 110 receives, from a network device 150, second information about a second set of thresholds that define distribution intervals associated with the stationary levels. In such embodiments, if the terminal device 110 determines that the absolute value of the first difference is within a first distribution interval among the distribution intervals, the terminal device 110 determines that the predefined factor is associated with the first stationary level, the first distribution interval being associated with the first stationary level.
  • the terminal device 110 updates the reference power with the first received power. If the terminal device 110 determines that an absolute value of the second difference between the second received power and the updated reference power is associated with a second stationary level among the stationary levels, the terminal device 110 determines the predefined factor based on the second stationary level.
  • the second distribution interval is adjacent to the first distribution interval.
  • the terminal device 110 measures received powers of preconfigured reference signals during a first measurement cycle. In turn, the terminal device 110 determines an average power of a first number of reference signals as the second received power, received power of the first number of reference signals being higher than received powers of other reference signals among the preconfigured reference signals.
  • the terminal device 110 receives, from a network device 150, third information about candidate numbers for reference signals associated with the stationary levels. In turn, the terminal device 110 selects the first number from the candidate numbers that is associated with the first stationary level.
  • the terminal device 110 measures the received powers of the first number of reference signals during a second measurement cycle subsequent to the first measurement cycle.
  • the terminal device 110 determines that at least one received power among the received powers of the first number of reference signals is lower than a threshold power, the terminal device 110 measures the received powers of the preconfigured reference signals during a third measurement cycle subsequent to the second measurement cycle.
  • the terminal device 110 receives the threshold power from the network device 150.
  • Fig. 6 illustrates a flowchart of an example method 600 in accordance with some embodiments of the present disclosure.
  • the method 600 can be performed at any of the terminal devices 110 to 140 as shown in Fig. 1. It is to be understood that the method 600 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives, at a terminal device, at least one reference signal for a measurement of a received power based on the number of DRX cycles.
  • the terminal device 110 determines that an absolute value of a difference between the received power and a reference power is below a threshold, the terminal device 110 determines that the terminal device is entering a temporary stationary mode.
  • the terminal device 110 determines that the absolute value is above the threshold, the terminal device 110 determines that the terminal device 110 is entering a moving mode.
  • the measurement comprises: measuring received powers of preconfigured reference signals; and selecting a first reference signal from the preconfigured reference signals, a received power of the first reference signal being higher than received powers of other reference signals among the preconfigured reference signals.
  • the difference between the received power of the at least one reference signal and the reference power comprises a first difference between the received power of the first reference signal and the reference power.
  • the terminal device 110 determines that an absolute value of the first difference is below a first threshold associated with the first reference signal.
  • the terminal device 110 receives, from a network device, information about a set of thresholds associated with the preconfigured reference signals.
  • the terminal device 110 selects the first threshold from the set that is associated with the first reference signal and determines whether the first absolute value is below the first threshold.
  • the terminal device 110 determines that the first received power is above the reference power, the terminal device 110 updates the reference power with the first received power.
  • the terminal device 110 determines that the terminal device 110 is entering the temporary stationary mode, receives the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.
  • the terminal device 110 receives the predefined factor from a network device.
  • the predefined factor is preconfigured.
  • Fig. 7 illustrates a flowchart of an example method 700 in accordance with some embodiments of the present disclosure.
  • the method 700 can be performed at any of the terminal devices 110 to 140 as shown in Fig. 1. It is to be understood that the method 700 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives a first set of reference signals in a serving cell for a measurement of received powers.
  • the terminal device 110 receives, from a network device, information about an association between the first set of reference signals and lists of neighbor cells or neighbour frequencies.
  • the terminal device 110 receives a second set of reference signals in at least one neighbour cell or neighbour frequency associated with the first number of reference signals.
  • Fig. 8 illustrates a flowchart of an example method 800 in accordance with some embodiments of the present disclosure.
  • the method 800 can be performed at the network device 150 as shown in Fig. 1. It is to be understood that the method 800 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the network device 150 transmits, to a terminal device, information about an association between a first set of reference signals in a serving cell and lists of neighbor cells or neighbour frequencies.
  • the information is used for a measurement of received powers of a second set of reference signals in at least one of the neighbour cells or neighbour frequencies associated with the first number of reference signals in the first set.
  • the network device 150 transmits a second set of reference signals to the terminal device.
  • Fig. 9 is a simplified block diagram of a device 900 that is suitable for implementing embodiments of the present disclosure.
  • the device 900 can be considered as a further example implementation of the terminal devices 110 to 140 or the network device 150 as shown in Fig. 1. Accordingly, the device 900 can be implemented at or as at least a part of the terminal devices 110 to 140 or the network device 150.
  • the device 900 includes a processor 910, a memory 920 coupled to the processor 910, a suitable transmitter (TX) and receiver (RX) 940 coupled to the processor 910, and a communication interface coupled to the TX/RX 940.
  • the memory 910 stores at least a part of a program 930.
  • the TX/RX 940 is for bidirectional communications.
  • the TX/RX 940 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the eNB and a relay node (RN)
  • Uu interface for communication between the eNB and a terminal device.
  • the program 930 is assumed to include program instructions that, when executed by the associated processor 910, enable the device 900 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 2-8.
  • the embodiments herein may be implemented by computer software executable by the processor 910 of the device 900, or by hardware, or by a combination of software and hardware.
  • the processor 910 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 910 and memory 910 may form processing means 950 adapted to implement various embodiments of the present disclosure.
  • the memory 910 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 910 is shown in the device 900, there may be several physically distinct memory modules in the device 900.
  • the processor 910 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Fig. 2.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure provide a solution for saving powers of terminal devices. A method for communications comprises receiving, at a terminal device, at least one reference signal with a first received power based on the number of DRX cycles. The method further comprises in accordance with a determination that an absolute value of a first difference between the first received power and a reference power is below a threshold, receiving the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.

Description

METHODS FOR COMMUNICATIONS, TERMINAL DEVICES AND COMPUTER READABLE MEDIA FIELD
Embodiments of the present disclosure generally relate to the field of communication, and in particular, to a solution for saving powers of terminal devices.
BACKGROUND
In New Radio (NR) Release 16, relaxed measurements for stationary terminal devices were introduced to save battery powers of the terminal devices. In NR Release 17, it was agreed to inherit the feature of power saving in Release 16 as the baseline. In addition, it was proposed to introduce some enhancement for the stationary terminal devices. However, no detailed solution on enhancement of power saving for the stationary terminal devices has been proposed.
SUMMARY
In general, example embodiments of the present disclosure provide a solution for saving powers of terminal devices.
In a first aspect, there is provided a method for communications. The method comprises receiving, at a terminal device, at least one reference signal with a first received power based on the number of discontinuous reception, DRX, cycles; in accordance with a determination that an absolute value of a first difference between the first received power and a reference power is below a threshold, receiving the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.
In a second aspect, there is provided a method for communications. The method comprises receiving, at a terminal device, at least one reference signal for a measurement of a received power based on the number of discontinuous reception, DRX, cycles; in accordance with a determination that an absolute value of a difference between the received power and a reference power is below a threshold, determining that the terminal device is entering a temporary stationary mode; and in accordance with a determination that the absolute value is above the threshold, determining that the terminal device is entering a moving mode.
In a third aspect, there is provided a method for communications. The method comprises receiving, at a terminal device, a first set of reference signals in a serving cell for a measurement of received powers; receiving, from a network device, information about an association between the first set of reference signals and lists of neighbor cells or neighbour frequencies; and in accordance with a determination that received powers of a first number of reference signals in the first set are higher than received powers of other reference signals in the first set, receiving a second set of reference signals in at least one neighbour cell or neighbour frequency associated with the first number of reference signals.
In a fourth aspect, there is provided a method for communications. The method comprises transmitting, from a network device to a terminal device, information about an association between a first set of reference signals in a serving cell and lists of neighbor cells or neighbour frequencies, the information being used for a measurement of received powers of a second set of reference signals in at least one of the neighbour cells or neighbour frequencies associated with the first number of reference signals in the first set.
In a fifth aspect, there is provided a terminal device. The terminal device comprises a processor and a memory storing instructions. The memory and the instructions are configured, with the processor, to cause the terminal device to perform the method according to the first aspect.
In a sixth aspect, there is provided a terminal device. The terminal device comprises a processor and a memory storing instructions. The memory and the instructions are configured, with the processor, to cause the terminal device to perform the method according to the second aspect.
In a seventh aspect, there is provided a terminal device. The terminal device comprises a processor and a memory storing instructions. The memory and the instructions are configured, with the processor, to cause the terminal device to perform the method according to the third aspect.
In an eighth aspect, there is provided a network device. The terminal device comprises a processor and a memory storing instructions. The memory and the instructions are configured, with the processor, to cause the network device to perform the method according to the fourth aspect.
In a ninth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor of a device, cause  the device to perform the method according to the first aspect.
In a tenth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor of a device, cause the device to perform the method according to the second aspect.
In an eleventh aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor of a device, cause the device to perform the method according to the third aspect.
In a twelfth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor of a device, cause the device to perform the method according to the fourth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
Fig. 1 is a schematic diagram of a communication network in which some embodiments of the present disclosure can be implemented;
Fig. 2 illustrates an example signaling chart showing an example process for saving power of a terminal device in accordance with some embodiments of the present disclosure;
Fig. 3 illustrates an example signaling chart showing an example process for saving power of a terminal device in accordance with some other embodiments of the present disclosure;
Fig. 4 illustrates an example signaling chart showing an example process for saving power of a terminal device in accordance with still other embodiments of the present disclosure;
Fig. 5 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure;
Fig. 6 illustrates a flowchart of an example method in accordance with some other embodiments of the present disclosure;
Fig. 7 illustrates a flowchart of an example method in accordance with still other embodiments of the present disclosure;
Fig. 8 illustrates a flowchart of an example method in accordance with yet other embodiments of the present disclosure; and
Fig. 9 is a simplified block diagram of a device that is suitable for implementing some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar elements.
DETAILED DESCRIPTION OF EMBODIMENTS
Principles of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “network device” or “base station” (BS) refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can perform communications. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , an infrastructure device for a V2X communication, a Transmission/Reception Point (TRP) , a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, and the like.
As used herein, the term “terminal device” refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , vehicle-mounted terminal devices, devices of pedestrians, roadside units, personal computers, desktops, mobile phones, cellular phones, smart phones, personal  digital assistants (PDAs) , portable computers, image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. For the purpose of discussion, some embodiments will be described with reference to UEs as examples of terminal devices and the terms “terminal device” and “user equipment” (UE) may be used interchangeably in the context of the present disclosure.
As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
As mentioned above, in NR Release 17, it was agreed to inherit the feature of power saving in Release 16 as the baseline. In addition, it was proposed to introduce some enhancement for the stationary terminal devices. However, no detailed solution on enhancement of power saving for the stationary terminal devices has been proposed.
In order to solve the above technical problems in conventional solutions, embodiments of the present disclosure provide a solution for saving powers of terminal devices. In this solution, a terminal device performs a measurement of a first received power of at least one reference signal based on the number of discontinuous reception (DRX) cycles. If the terminal device determines, based on the first received power, that a relaxed measurement of a second received power of the at least one reference signal is to be performed, the terminal device updates the number of the DRX cycles with a measurement interval factor greater than one. In turn, the terminal device performs the relaxed measurement based on the updated number of the DRX cycles. With this solution, the  terminal device performs the relaxed measurement based on larger DRX cycles, power saving of the terminal device is achieved.
Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. The communication network 100 comprises  terminal devices  110, 120, 130 and 140 which are served by a network device 150. The network device 150 provides a serving cell 160 and  neighbor cells  161, 162, 163 and 164 for the  terminal devices  110, 120, 130 and 140.
In some example embodiments, the neighbor cell 161 may be associated with a frequency F1, the neighbor cell 162 may be associated with a frequency F2, the neighbor cell 163 may be associated with a frequency F3, and the neighbor cell 164 may be associated with a frequency F4.
It is to be understood that the number of network devices and terminal devices is only for the purpose of illustration without suggesting any limitations. The network 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure.
In some example embodiments, the  terminal devices  110, 120, 130 and 140 each may measure a respective received power of at least one reference signal in the serving cell 160. The  terminal devices  110, 120, 130 and 140 each may also measure a respective received power of at least one reference signal in all or part of the  neighbor cells  161, 162, 163 and 164.
The  terminal devices  110, 120, 130 and 140 and the network device 150 can communicate with each other. The communication may follow any suitable communication standards or protocols such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) NR, Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) and ultra-reliable low latency communication (uRLLC) technologies.
In a first aspect, the present disclosure provides a mechanism to allow a terminal  device to be aware of a stationary level and provides measurement relaxation specific to the stationary level of the terminal device. This will be described with reference to Fig. 2.
Fig. 2 illustrates an example signaling chart showing an example process 200 for saving power of a terminal device in accordance with some embodiments of the present disclosure. As shown in Fig. 2, the process 200 may involve the network device 150 and one of the  terminal devices  110, 120, 130, 140 as shown in Fig. 1. Hereinafter, the process 200 will be described by taking the terminal device 110 for example. It is to be understood that the process 200 may include additional acts not shown and/or may omit some acts as shown, and the scope of the present disclosure is not limited in this regard. In addition, it will be appreciated that, although primarily presented herein as being performed serially, at least a portion of the acts of the process 200 may be performed contemporaneously or in a different order than as presented in Fig. 2.
As shown in Fig. 2, the terminal device 110 receives (210) , from the network device 150, at least one reference signal for a measurement of a first received power based on the number of DRX cycles.
In some example embodiments, the terminal device 110 may receive the at least one reference signal every the number of DRX cycles.
In some example embodiments, the number of DRX cycles may be determined based on Table 1.
Table 1
Figure PCTCN2020132397-appb-000001
In Table 1, N serv represents the number of DRX cycles. If SMTC periodicity (TSMTC) > 20 ms and DRX cycle ≤ 0.64 second, M1=2; otherwise M1=1.
In some example embodiments, the terminal device 110 may filter the Synchronization Signal based Reference Signal Received Power (SS-RSRP) and Synchronization Signal based Reference Signal Received Quality (SS-RSRQ) measurements of the serving cell 160 using at least two measurements. Within the set of measurements used for the filtering, at least two measurements shall be spaced by at least DRX cycle/2.
In some example embodiments, if the terminal device 110 has evaluated according to Table 1 in Nserv consecutive DRX cycles that the serving cell 160 does not fulfil the cell selection criterion S defined in TS 38.304, the terminal device 110 may initiate the measurements of all neighbour cells indicated by the serving cell 160, regardless of the measurement rules currently limiting measurement activities of the terminal device 110.
In some example embodiments, if the terminal device 110 in a Radio Resource Control IDLE (RRC_IDLE) state has not found any new suitable cell based on searches and measurements using the intra-frequency, inter-frequency and inter-RAT information indicated in the system information for 10 s, the terminal device 110 may initiate cell selection procedures for the selected Public Land Mobile Network (PLMN) as defined in TS 38.304.
It should be understood that the number of DRX cycles may be determined in any appropriate manner. The scope of the present disclosure is not limited in this regard.
With continued reference to Fig. 2, the terminal device 110 determines (220) whether an absolute value of a first difference between the first received power and a reference power is below a threshold.
If the terminal device 110 determines that the absolute value of the first difference is below the threshold, the terminal device 110 receives the at least one reference signal for a measurement of a second received power based on the number of the DRX cycles and a predefined factor.
In some example embodiments, the terminal device 110 receives the at least one reference signal based on a product of the number of the DRX cycles and the predefined factor. Hereinafter, for the purpose of discussion, the product of the number of the DRX cycles and the predefined factor is also referred to as an updated number of the DRX cycles. In such example embodiments, the terminal device 110 may receive the at least one reference signal every the updated number of the DRX cycles.
In some example embodiments, the updated number of the DRX cycles may be determined based on Table 2.
Table 2
Figure PCTCN2020132397-appb-000002
In Table 2, N’ serv represents the updated number of DRX cycles, and factorX represents the predefined factor.
In some example embodiments, in order to save power of the terminal device 110, the updated number of DRX cycles may greater than the number of DRX cycles. In other words, the predefined factor may be any value greater than one. In this way, the terminal device 110 may perform a relaxed measurement of the at least one reference signal so as to save power of the terminal device 110.
In some example embodiments, the predefined factor may be specific to a stationary level of the terminal device 110.
In some example embodiments, the stationary level of the terminal device 110 may be one of stationary levels, such as Level 1, Level 2, Level 3 and Level 4.
In some example embodiments, if the stationary level of the terminal device 110 is Level 1, the terminal device 110 may be a still device at fixed location. For example, the terminal device 110 may be a fixed static sensor. Purely stationary terminal devices in the Level 1 will not perform any mobility, unless there is a significant change of radio condition. Therefore, only extremely minimal measurement may be needed for the terminal devices.
In some example embodiments, if the stationary level of the terminal device 110 is  Level 2, the terminal device 110 may be a moving device at a fixed location. For example, the terminal device 110 may be a rotary device at the fixed location, such as a camera or robot. Terminal devices in Level 2 would have almost same characteristics with still devices at fixed location (that is, the terminal devices in Level 1) . Therefore, same RRM relaxation mechanism can be considered with the terminal devices in Level 1.
In some example embodiments, if the stationary level of the terminal device 110 is Level 3, the terminal device 110 may be a temporarily fixed device. For example, the terminal device 110 may be a smart watch at night. Terminal devices in Level 3 may be mobile all day long (can be stationary from time to time) and stationary during the night.
In some example embodiments, if the stationary level of the terminal device 110 is Level 4, the terminal device 110 may be a device that is moving around slowly. For example, the terminal device 110 may be a medical wearable. Devices moving around slowly may have certain path or area to locate in. Therefore, measurement results of the neighbour cells may be stable. In other words, the measured quality of neighbour cells would not vary much as time flows. For example, once measured quality of a cell is bad, it is low possibility for a while that measured quality of the cell becomes much better so that the cell becomes cell reselection candidate. On the contrary, if measured quality of a cell is good, it is low possibility that measured quality of the cell gets much worse. Therefore, it may bring less power consumption if such terminal devices perform measurements on the cells with good quality.
In some example embodiments, the terminal device 110 may determine whether the absolute value is associated with a first stationary level among the stationary levels. If the terminal device 110 determines that the absolute value is associated with the first stationary level, the terminal device 110 determines the predefined factor based on the first stationary level.
In some example embodiments, the terminal device 110 may select, based on the first stationary level, the predefined factor from a first set of measurement interval factors associated with the stationary levels. In such example embodiments, the terminal device 110 may receive, from the network device 150, first information about the first set of measurement interval factors.
For example, the terminal device 110 may receive the first information about the first set of measurement interval factors in a System Information Block (SIB) as below.
relaxfactor SEQUENCE {
Factor1: = {17.. 32}
Factor2: = {9.. 16}
Factor3: = {5.. 8}
Factor4: = {1.. 4}
}
In the above SIB, Factor1, Factor2, Factor3, and Factor4 represent the measurement interval factors. For example, Factor1 may be set a value between 17 and 32.
Alternatively, the first set of measurement interval factors may be preconfigured. For example, the first set of measurement interval factors may comprise factor1, factor2, factor3, and factor4, where factor1=32, factor2=16, factor3=8, factor4=4.
In some example embodiments, the terminal device 110 may receive a parameter associated with the stationary levels from the network device 150. In turn, the terminal device 110 may determine the predefined factor based on the following:
factorX = M *32/2 levelx
where factorX represents the predefined factor, M represents the parameter, and levelx represents a serial number of the stationary level of the terminal device 110.
For example, referring to Table 1, if it is assumed that DRX cycle=0.64, FR2, M1=2 if SMTC periodicity (T SMTC) > 20 ms and DRX cycle ≤ 0.64 second, the terminal device 110 supports power class 1, N1 = 8 for all DRX cycle length, then N serv =2*8*4=64. If it is also assumed that the stationary level of the terminal device 110 is Level 3 and the factorX for Level 3 is 8, then referring to Table 2, the updated number of DRX cycles N’ serv=64*8=512.
In embodiments where the terminal device 110 may be in one of the stationary levels, the network device 150 may configures measurement triggering conditions associated with the stationary levels. As such, the terminal device 110 may trigger measurement relaxation based on one of the measurement triggering conditions.
In such example embodiments, the terminal device 110 may receive, from the network device 150, second information about a second set of thresholds that define distribution intervals associated with the stationary levels. The terminal device 110 may determine whether the absolute of the first difference is within a first distribution interval  among the distribution intervals. If the terminal device 110 determines that the absolute of the first difference is within the first distribution interval, the terminal device 110 determines that the predefined factor is associated with the first stationary level of the terminal device 110.
For example, in embodiments where the stationary levels comprise four stationary levels, such as Level 1, Level 2, Level 3 and Level 4, the second set of thresholds may comprise thresholds Sdelta1, Sdelta2, Sdelta3 and Sdelta4, where Sdelta1 < Sdelta2 < Sdelta3 < Sdelta4. The thresholds Sdelta1, Sdelta2, Sdelta3 and Sdelta4 are associated with Level 1, Level 2, Level 3 and Level 4, respectively.
The thresholds Sdelta1, Sdelta2, Sdelta3 and Sdelta4 may define five distribution intervals associated with the four stationary levels. The five distribution intervals may comprise a first distribution interval 0~Sdelta1, a second distribution interval Sdelta1~Sdelta2, a third distribution interval Sdelta2~Sdelta3, a fourth distribution interval Sdelta3~Sdelta4, and a fifth distribution interval Sdelta4~∞.
The terminal device 110 may determine which distribution interval the absolute of the first difference is within. If the absolute of the first difference is within the first distribution interval, the terminal device 110 may determine that the predefined factor is associated with the first stationary level. If the absolute of the first difference is within the second distribution interval, the terminal device 110 may determine that the predefined factor is associated with the second stationary level. If the absolute of the first difference is within the third distribution interval, the terminal device 110 may determine that the predefined factor is associated with the third stationary level. If the absolute of the first difference is within the fourth distribution interval, the terminal device 110 may determine that the predefined factor is associated with the fourth stationary level. If the absolute of the first difference is within the fifth distribution interval, the terminal device 110 may determine that the terminal device 110 is in a non-stationary level.
In some example embodiments, the terminal device 110 may switch from one stationary level to another. In such example embodiments, if the terminal device 110 determines that the first received power is above the reference power, the terminal device 110 may update the reference power with the first received power. The terminal device 110 may determine a second difference between the second received power and the updated reference power. If the terminal device 110 determines that an absolute of the second difference is  within the second distribution interval among the distribution intervals that is associated with the second stationary level, the terminal device 110 may determine that the predefined factor is associated with the second stationary level.
In some example embodiments, the second distribution interval is adjacent to the first distribution interval. In other words, in order to ensure stability of state change of the terminal device 110, the terminal device 110 can only switch from one stationary level to another stationary level that is adjacent to the stationary level. For example, it is assumed that the terminal device 110 is currently in Level 3. Even if the terminal device 110 determines that the absolute of the second difference is within the second distribution interval, the terminal device 110 cannot switch from Level 3 to Level 1. Instead, the terminal device 110 should switch from Level 3 to Level 2.
In Level 2, if the terminal device 110 determines that an absolute of a difference between a received power of the at least one reference signal and the reference power is within the first distribution interval, the terminal device 110 may switch from Level 2 to Level 1. As such, the terminal device 110 may determine that the predefined factor is associated with the first stationary level.
In some example embodiments, in order to ensure stability of state change of the terminal device 110, after a plurality of times of measurements, if the terminal device 110 determines that an absolute of a difference between a received power of the at least one reference signal and the reference power is within a distribution interval associated with a higher stationary level, the terminal device 110 may upgrade to the higher stationary level. For example, after ten times of measurements, if the terminal device 110 in Level 3 determines that an absolute of a difference between a received power of the at least one reference signal and the reference power is within the distribution interval associated with Level 2, the terminal device 110 may upgrade to Level 2.
However, if in one of the plurality of times of measurements, if the terminal device 110 determines that an absolute of a difference between a received power of the at least one reference signal and the reference power is within a distribution interval associated with the current stationary level, the terminal device 110 may degrade to a lower stationary level. For example, if in one of the ten times of measurements, if the terminal device 110 in Level 2 determines that an absolute of a difference between a received power of the at least one reference signal and the reference power is within a distribution interval associated with Level  2, the terminal device 110 will degrade to Level 3.
In some example embodiments, the network device 150 may configure the terminal device 110 to be a specific stationary level based on the subscription information. For example, the network device 150 may configure the terminal device 110 to be a specific stationary level via an RRCReconfiguration message.
In some example embodiments, the terminal device 110 may report the stationary level to the network device 150. For example, the terminal device 110 may report the stationary level to the network device 150 via an RRCSetupComplete message.
In some example embodiments, the terminal device 110 may perform a relaxed measurement of the at least one reference signal that is specific to the stationary level of the terminal device 110.
In such example embodiments, the terminal device 110 may measure received powers of preconfigured reference signals during a first measurement cycle. The terminal device 110 selects a first number of reference signals from the preconfigured reference signals based on the stationary level of the terminal device 110. In turn, the terminal device 110 may determine an average of a first plurality of received powers of the first number of reference signals as the second received power. The first plurality of received powers are higher than received powers of other reference signals among the preconfigured reference signals. In other words, the terminal device 110 selects the first number of the best reference signals from the preconfigured reference signals. In turn, the terminal device 110 determines the average of the received powers of the first number of best reference signals as the received power of the preconfigured reference signals
In some example embodiments, the terminal device 110 receives, from the network device 150, third information about candidate numbers for reference signals associated with the stationary levels. In turn, the terminal device 110 selects the first number from the candidate numbers that is associated with the first stationary level.
In some example embodiments, the terminal device 110 may receive, from the network device 150, the third information about the candidate numbers in an SIB.
For example, the candidate numbers for reference signals may comprise nrofSS-BlocksToAveragelevel1: = {2} , nrofSS-BlocksToAveragelevel2: = {2.. 4} , nrofSS-BlocksToAveragelevel3: = {4.. 6} , and nrofSS-BlocksToAveragelevel4: = {6.. 8} , which are associated with Level 1, Level 2, Level 3 and Level 4, respectively.
In such example embodiments, in order to save power of the terminal device 110, the terminal device 110 may only measure a second plurality of received powers of the first number of reference signals during a second measurement cycle subsequent to the first measurement cycle.
In such example embodiments, if the terminal device 110 determines that at least one received power among the second plurality of received powers is lower than a threshold power, the terminal device 110 may measure the received powers of all the preconfigured reference signals during a third measurement cycle subsequent to the second measurement cycle. In some example embodiments, the terminal device 110 may receive the threshold power from the network device 150.
In a second aspect, the present disclosure provides the entering condition and leaving condition of a temporary stationary terminal device. This will be described with reference to Fig. 3.
Fig. 3 illustrates an example signaling chart showing an example process 300 for saving power of a terminal device in accordance with some embodiments of the present disclosure. As shown in Fig. 3, the process 300 may involve the network device 150 and one of the  terminal devices  110, 120, 130, 140 as shown in Fig. 1. Hereinafter, the process 300 will be described by taking the terminal device 110 for example. It is to be understood that the process 300 may include additional acts not shown and/or may omit some acts as shown, and the scope of the present disclosure is not limited in this regard. In addition, it will be appreciated that, although primarily presented herein as being performed serially, at least a portion of the acts of the process 300 may be performed contemporaneously or in a different order than as presented in Fig. 3.
As shown in Fig. 3, the terminal device 110 receives (310) at least one reference signal for a measurement of a received power.
The terminal device 110 determines (320) whether an absolute value of a difference between the received power and a reference power is below a threshold. If the terminal device 110 determines that the absolute value is below the threshold, the terminal device 110 determines (330) that the terminal device 110 is entering a temporary stationary mode. On the other hand, if the terminal device 110 determines that the absolute value is above the threshold, the terminal device 110 determines (324) that the terminal device 110 is entering a moving mode. In other words, if the terminal device 110 determines that the absolute value  is above the threshold, the terminal device 110 determines that the terminal device 110 is leaving the temporary stationary mode.
For example, if abs (Stmpfix –Srxlev) < Stmpdelta, then the terminal device 110 determines that the terminal device 110 is entering a moving mode, where Stmpfix represents the reference power, Srxlev represents the received power and Stmpdelta represents the threshold. In turn, the terminal device 110 may perform relaxed measurement to both the serving cell 160 and neighbor cells 161 to 164. If abs (Stmpfix –Srxlev) > =Stmpdelta, then the terminal device 110 determines that the terminal device 110 is entering the moving mode. In other words, the terminal device 110 is activated from the temporary stationary mode to the moving mode. In turn, the terminal device 110 may perform regular measurements to both the serving cell 160 and neighbor cells 161 to 164.
In some example embodiments, the terminal device 110 may receive the reference power Stmpfix and the threshold Stmpdelta from the network device 150.
In some example embodiments, if the terminal device 110 is in the temporary stationary mode, Stmpfix may be set to the last measured received power.
In some example embodiments, the terminal device 110 may perform measurement result evaluation associated with preconfigured reference signals. The granularity of measurement result of SSB is more accurate compared to cell level measurement result to evaluate the movement of a temporary stationary terminal device.
In such example embodiments, the terminal device 110 may measure received powers of preconfigured reference signals and select a first reference signal from the preconfigured reference signals. A first received power of the first reference signal is higher than received powers of other reference signals among the preconfigured reference signals. In such example embodiments, the preconfigured reference signals may comprise SSBs. In turn, the terminal device 110 may determine a first difference between the first received power and the reference power as the difference between the received power and the reference power.
In such example embodiments, the terminal device 110 may receive, from the network device 150, information about a set of thresholds associated with the preconfigured reference signals. For example, the terminal device 110 may receive the information about the set of thresholds via SIB as below.
SSBmeasconfig SEQUENCE (SIZE (1.. maxSSB) ) of SSBmeasurement
SSBmeasurement SEQUENCE {
SSB      index of SSB
S SearchDeltaP
}
In the above SIB, S SearchDeltaP represents a threshold associated with an SSB indicated by an index of SSB.
In some example embodiments, the set of thresholds associated with the preconfigured reference signals may be in the form of Table 3.
Table 3
  Index of SSB Threshold associated with SSB
entry1 SSB1 S SearchDeltaP1
entry1 SSB2 S SearchDeltaP2
entry1 SSB3 S SearchDeltaP3
The terminal device 110 may select a first threshold from the set that is associated with the first reference signal and determine whether the first absolute value is below the first threshold. If the terminal device 110 determines that a first absolute value of the first difference is below the first threshold, the terminal device 110 determines that the absolute value of the difference is below the threshold.
In some example embodiments, if the terminal device 110 determines that the first received power is above the reference power, the terminal device 110 may update the reference power with the first received power.
For example, referring to Table 3, the entering condition of temporary stationary terminal device may be as below. It is assumed that Srxlevssb1 represents the first received power of SSB1 and the first received power is higher than the received powers of SSB2, SSB3 and so on. If abs (Srxlevssb Ref1 –Srxlevssb1) < S SearchDeltaP1 for the past T SearchSSBDeltaP, the terminal device 110 considers itself in the temporary stationary mode, where Srxlevssb Ref1 represents the reference power. T SearchSSBDeltaP specifies the time period over which the  Srxlevx for a SSB variation is evaluated for relaxed measurement.
If (Srxlevssb1 –SrxlevssbRef1) > 0, the terminal device 110 may set the value of Srxlevssb Ref1 to be the current Srxlev1.
Referring to Table 3, the leaving condition of temporary stationary terminal device may be as below. If abs (Srxlevssb Ref1 –Srxlevssb1) > =S SearchDeltaP1, or Srxlevssb1 is not higher than the received powers of SSB2, SSB3 and so on, the terminal device 110 considers it is leaving the temporary stationary mode.
A stationary terminal device mostly moves in a limited area, so only a few number of reference signals should be measured. In addition, in this very limited area, it is possible that only one or two neighbor cells can be detected. Therefore, it is unnecessary to measure frequencies of other neighbor cells. For example, with reference to Fig. 1, the terminal device 110 is in the coverage of an SSB 171, and the neighbor frequency that the terminal device 110 should measure is F1. The terminal device 120 is in the coverage of an SSB 172, and the neighbor frequencies that the terminal device 120 should measure are F1 and F2. The terminal device 130 is in the coverage of an SSB 173, and the neighbor frequency that the terminal device 130 should measure is F3. The terminal device 140 is in the coverage of an SSB 174, and the neighbor frequency that the terminal device 140 should measure is F4.
In this regard, the present disclosure provides neighbour cell measurement specific to reference signals. This will be described with reference to Fig. 4.
Fig. 4 illustrates an example signaling chart showing an example process 400 for saving power of a terminal device in accordance with some embodiments of the present disclosure. As shown in Fig. 4, the process 400 may involve the network device 150 and one of the  terminal devices  110, 120, 130, 140 as shown in Fig. 1. Hereinafter, the process 400 will be described by taking the terminal device 110 for example. It is to be understood that the process 400 may include additional acts not shown and/or may omit some acts as shown, and the scope of the present disclosure is not limited in this regard. In addition, it will be appreciated that, although primarily presented herein as being performed serially, at least a portion of the acts of the process 400 may be performed contemporaneously or in a different order than as presented in Fig. 4.
As shown in Fig. 4, the terminal device 110 receives (410) , from the network device 150, a first set of reference signals in a serving cell for a measurement of received powers.
The terminal device 110 receives (420) , from the network device 150, information  about an association between the first set of reference signals and lists of neighbour cells or neighbour frequencies.
The terminal device 110 determines (430) whether received powers of a first number of reference signals in the first set are higher than received powers of other reference signals in the first set. If the terminal device 110 determines that the received powers of the first number of reference signals are higher than the received powers of other reference signals in the first set, the terminal device 110 receives (440) a second set of reference signals in at least one neighbour cell or neighbour frequency associated with the first number of reference signals.
In some example embodiments, the reference signals may comprise SSBs.
In some example embodiments, for the intra-frequency neighbor cells, the network device 150 may configure the association between SSBs and lists of the neighbor cells that the terminal device 110 should measure in an SIB as below.
SSBmeasfreqlist : : = SEQUENCE (SIZE (1.. maxNrofSSBs) ) OF SSBmeasfreq
SSBmeasfreq SEQUENCE {
SSBmeasurement      SSB-index
Celllist
}
In some example embodiments, the network device 150 may configure the association between SSBs and lists of the neighbor frequencies that the terminal device 110 should measure in an SIB.
SSBmeasfreqlist : : =      SEQUENCE (SIZE (1.. maxNrofSSBs) ) OF SSBmeasfreq
SSBmeasfreq SEQUENCE {
SSBmeasurement       SSB-index
frequencylist
}
For example, if the first number of reference signals is 2, then the terminal device 110 may evaluate the serving cell signals of two best SSBs, that is, SSB1 and SSB2. The terminal device 110 should measurement both F1 (the cell 161) corresponding to SSB1 and  F2 (the cell 162) corresponding to SSB2. In this way, power of the terminal device 110 may be saved.
Fig. 5 illustrates a flowchart of an example method 500 in accordance with some embodiments of the present disclosure. For example, the method 500 can be performed at any of the terminal devices 110 to 140 as shown in Fig. 1. It is to be understood that the method 500 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
At block 510, the terminal device 110 receives at least one reference signal with a first received power based on the number of DRX cycles.
At block 520, if the terminal device 110 determines that an absolute value of a first difference between the first received power and a reference power is below a threshold, the terminal device 110 receives the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.
Additionally, in some embodiments, if the terminal device 110 determines that the absolute value is associated with a first stationary level among stationary levels, the terminal device 110 determines the predefined factor based on the first stationary level.
In some embodiments, the terminal device 110 determines the predefined factor from a first set of measurement interval factors associated with the first stationary level.
Additionally, in some embodiments, the terminal device 110 receives, from a network device 150, first information about the first set of measurement interval factors.
In some embodiments, the first set of measurement interval factors is preconfigured.
In some embodiments, the terminal device 110 receives a parameter associated with the stationary levels from a network device 150 and determines the predefined factor based on the following:
factorX = M *32/2 levelx
where factorX represents the predefined factor, M represents the parameter, and levelx represents the serial number of first stationary level.
Additionally, in some embodiments, the terminal device 110 receives, from a network device 150, second information about a second set of thresholds that define distribution intervals associated with the stationary levels. In such embodiments, if the  terminal device 110 determines that the absolute value of the first difference is within a first distribution interval among the distribution intervals, the terminal device 110 determines that the predefined factor is associated with the first stationary level, the first distribution interval being associated with the first stationary level.
Additionally, in some embodiments, the terminal device 110 updates the reference power with the first received power. If the terminal device 110 determines that an absolute value of the second difference between the second received power and the updated reference power is associated with a second stationary level among the stationary levels, the terminal device 110 determines the predefined factor based on the second stationary level.
In some embodiments, the second distribution interval is adjacent to the first distribution interval.
Additionally, in some embodiments, the terminal device 110 measures received powers of preconfigured reference signals during a first measurement cycle. In turn, the terminal device 110 determines an average power of a first number of reference signals as the second received power, received power of the first number of reference signals being higher than received powers of other reference signals among the preconfigured reference signals.
Additionally, in some embodiments, the terminal device 110 receives, from a network device 150, third information about candidate numbers for reference signals associated with the stationary levels. In turn, the terminal device 110 selects the first number from the candidate numbers that is associated with the first stationary level.
Additionally, in some embodiments, the terminal device 110 measures the received powers of the first number of reference signals during a second measurement cycle subsequent to the first measurement cycle.
Additionally, in some embodiments, if the terminal device 110 determines that at least one received power among the received powers of the first number of reference signals is lower than a threshold power, the terminal device 110 measures the received powers of the preconfigured reference signals during a third measurement cycle subsequent to the second measurement cycle.
Additionally, in some embodiments, the terminal device 110 receives the threshold power from the network device 150.
Fig. 6 illustrates a flowchart of an example method 600 in accordance with some  embodiments of the present disclosure. For example, the method 600 can be performed at any of the terminal devices 110 to 140 as shown in Fig. 1. It is to be understood that the method 600 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
At block 610, the terminal device 110 receives, at a terminal device, at least one reference signal for a measurement of a received power based on the number of DRX cycles.
At block 620, if the terminal device 110 determines that an absolute value of a difference between the received power and a reference power is below a threshold, the terminal device 110 determines that the terminal device is entering a temporary stationary mode.
At block 630, if the terminal device 110 determines that the absolute value is above the threshold, the terminal device 110 determines that the terminal device 110 is entering a moving mode.
In some embodiments, the measurement comprises: measuring received powers of preconfigured reference signals; and selecting a first reference signal from the preconfigured reference signals, a received power of the first reference signal being higher than received powers of other reference signals among the preconfigured reference signals. In such embodiments, the difference between the received power of the at least one reference signal and the reference power comprises a first difference between the received power of the first reference signal and the reference power.
Additionally, in some embodiments, if the terminal device 110 determines that an absolute value of the first difference is below a first threshold associated with the first reference signal, the terminal device 110 determines that the absolute value of the difference is below the threshold.
Additionally, in some embodiments, the terminal device 110 receives, from a network device, information about a set of thresholds associated with the preconfigured reference signals. The terminal device 110 selects the first threshold from the set that is associated with the first reference signal and determines whether the first absolute value is below the first threshold.
Additionally, in some embodiments, if the terminal device 110 determines that the first received power is above the reference power, the terminal device 110 updates the reference power with the first received power.
Additionally, in some embodiments, if the terminal device 110 determines that the terminal device 110 is entering the temporary stationary mode, receives the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.
Additionally, in some embodiments, the terminal device 110 receives the predefined factor from a network device.
In some embodiments, the predefined factor is preconfigured.
Fig. 7 illustrates a flowchart of an example method 700 in accordance with some embodiments of the present disclosure. For example, the method 700 can be performed at any of the terminal devices 110 to 140 as shown in Fig. 1. It is to be understood that the method 700 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
At block 710, the terminal device 110 receives a first set of reference signals in a serving cell for a measurement of received powers.
At block 720, the terminal device 110 receives, from a network device, information about an association between the first set of reference signals and lists of neighbor cells or neighbour frequencies.
At block 730, if the terminal device determines that received powers of a first number of reference signals in the first set are higher than received powers of other reference signals in the first set, the terminal device 110 receives a second set of reference signals in at least one neighbour cell or neighbour frequency associated with the first number of reference signals.
Fig. 8 illustrates a flowchart of an example method 800 in accordance with some embodiments of the present disclosure. For example, the method 800 can be performed at the network device 150 as shown in Fig. 1. It is to be understood that the method 800 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
At block 810, the network device 150 transmits, to a terminal device, information about an association between a first set of reference signals in a serving cell and lists of neighbor cells or neighbour frequencies. The information is used for a measurement of received powers of a second set of reference signals in at least one of the neighbour cells or  neighbour frequencies associated with the first number of reference signals in the first set.
Optionally, at block 820, the network device 150 transmits a second set of reference signals to the terminal device.
Fig. 9 is a simplified block diagram of a device 900 that is suitable for implementing embodiments of the present disclosure. The device 900 can be considered as a further example implementation of the terminal devices 110 to 140 or the network device 150 as shown in Fig. 1. Accordingly, the device 900 can be implemented at or as at least a part of the terminal devices 110 to 140 or the network device 150.
As shown, the device 900 includes a processor 910, a memory 920 coupled to the processor 910, a suitable transmitter (TX) and receiver (RX) 940 coupled to the processor 910, and a communication interface coupled to the TX/RX 940. The memory 910 stores at least a part of a program 930. The TX/RX 940 is for bidirectional communications. The TX/RX 940 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
The program 930 is assumed to include program instructions that, when executed by the associated processor 910, enable the device 900 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 2-8. The embodiments herein may be implemented by computer software executable by the processor 910 of the device 900, or by hardware, or by a combination of software and hardware. The processor 910 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 910 and memory 910 may form processing means 950 adapted to implement various embodiments of the present disclosure.
The memory 910 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 910 is shown in the device 900, there may  be several physically distinct memory modules in the device 900. The processor 910 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Fig. 2. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute  entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (32)

  1. A method for communications, comprising:
    receiving, at a terminal device, at least one reference signal with a first received power based on the number of discontinuous reception, DRX, cycles;
    in accordance with a determination that an absolute value of a first difference between the first received power and a reference power is below a threshold, receiving the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.
  2. The method of claim 1, further comprising:
    in accordance with a determination that the absolute value is associated with a first stationary level among stationary levels, determining the predefined factor based on the first stationary level.
  3. The method of claim 2, wherein determining the predefined factor comprises:
    determining the predefined factor from a first set of measurement interval factors associated with the first stationary level.
  4. The method of claim 3, further comprising:
    receiving, from a network device, first information about the first set of measurement interval factors.
  5. The method of claim 3, wherein the first set of measurement interval factors is preconfigured.
  6. The method of claim 2, wherein determining the predefined factor comprises:
    receiving a parameter associated with the stationary levels from a network device; and
    determining the predefined factor based on the following:
    factorX = M *32/2 levelx
    where factorX represents the predefined factor, M represents the parameter, and levelx represents the serial number of first stationary level.
  7. The method of claim 2, further comprising:
    receiving, from a network device, second information about a second set of thresholds that define distribution intervals associated with the stationary levels; and
    wherein determining the predefined factor comprises:
    in accordance with a determination that the absolute value of the first difference is within a first distribution interval among the distribution intervals, determining that the predefined factor is associated with the first stationary level, the first distribution interval being associated with the first stationary level.
  8. The method of claim 2, further comprising:
    updating the reference power with the first received power; and
    in accordance with a determination that an absolute value of the second difference between the second received power and the updated reference power is associated with a second stationary level among the stationary levels, determining the predefined factor based on the second stationary level.
  9. The method of claim 8, wherein the second distribution interval is adjacent to the first distribution interval.
  10. The method of claim 2, further comprising:
    measuring received powers of preconfigured reference signals during a first measurement cycle; and
    determining an average power of a first number of reference signals as the second received power, received power of the first number of reference signals being higher than received powers of other reference signals among the preconfigured reference signals.
  11. The method of claim 10, further comprising:
    receiving, from a network device, third information about candidate numbers for reference signals associated with the stationary levels; and
    selecting the first number from the candidate numbers that is associated with the first stationary level.
  12. The method of claim 11, further comprising:
    measuring the received powers of the first number of reference signals during a second measurement cycle subsequent to the first measurement cycle.
  13. The method of claim 12, further comprising:
    in accordance with a determination that at least one received power among the received powers of the first number of reference signals is lower than a threshold power, measuring the received powers of the preconfigured reference signals during a third measurement cycle subsequent to the second measurement cycle.
  14. The method of claim 13, further comprising:
    receiving the threshold power from the network device.
  15. A method for communications, comprising:
    receiving, at a terminal device, at least one reference signal for a measurement of a received power based on the number of discontinuous reception, DRX, cycles;
    in accordance with a determination that an absolute value of a difference between the received power and a reference power is below a threshold, determining that the terminal device is entering a temporary stationary mode; and
    in accordance with a determination that the absolute value is above the threshold, determining that the terminal device is entering a moving mode.
  16. The method of claim 15, wherein the measurement comprises:
    measuring received powers of preconfigured reference signals; and
    selecting a first reference signal from the preconfigured reference signals, a received power of the first reference signal being higher than received powers of other reference signals among the preconfigured reference signals; and
    wherein the difference between the received power of the at least one reference signal and the reference power comprises a first difference between the received power of the first reference signal and the reference power.
  17. The method of claim 16, further comprising:
    in accordance with a determination that an absolute value of the first difference is below a first threshold associated with the first reference signal, determining that the absolute value of the difference is below the threshold.
  18. The method of claim 17, further comprising:
    receiving, from a network device, information about a set of thresholds associated with the preconfigured reference signals;
    selecting the first threshold from the set that is associated with the first reference signal; and
    determining whether the first absolute value is below the first threshold.
  19. The method of claim 16, further comprising:
    in accordance with a determination that the first received power is above the reference power, updating the reference power with the first received power.
  20. The method of any of claims 15 to 18, further comprising:
    in accordance with a determination that the terminal device is entering the temporary stationary mode, receiving the at least one reference signal with a second received power based on the number of the DRX cycles and a predefined factor.
  21. The method of claim 20, further comprising:
    receiving the predefined factor from a network device.
  22. The method of claim 20, wherein the predefined factor is preconfigured.
  23. A method for communications, comprising:
    receiving, at a terminal device, a first set of reference signals in a serving cell for a measurement of received powers;
    receiving, from a network device, information about an association between the first set of reference signals and lists of neighbor cells or neighbour frequencies; and
    in accordance with a determination that received powers of a first number of reference signals in the first set are higher than received powers of other reference signals in the first set, receiving a second set of reference signals in at least one neighbour cell or neighbour frequency associated with the first number of reference signals.
  24. A method for communications, comprising:
    transmitting, from a network device to a terminal device, information about an association between a first set of reference signals in a serving cell and lists of neighbor cells or neighbour frequencies, the information being used for a measurement of received powers  of a second set of reference signals in at least one of the neighbour cells or neighbour frequencies associated with the first number of reference signals in the first set.
  25. A terminal device, comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method according to any of claims 1-14.
  26. A terminal device, comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method according to any of claims 15-22.
  27. A terminal device, comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method according to claim 23.
  28. A network device, comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method according to claim 24.
  29. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor of a device, causing the device to carry out the method according to any of claims 1-14.
  30. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor of a device, causing the device to carry out the method according to any of claims 15-22.
  31. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor of a device, causing the device to carry out the method according to claim 23.
  32. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor of a device, causing the device to carry out the method according to claim 24.
PCT/CN2020/132397 2020-11-27 2020-11-27 Methods for communications, terminal devices and computer readable media WO2022110051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132397 WO2022110051A1 (en) 2020-11-27 2020-11-27 Methods for communications, terminal devices and computer readable media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132397 WO2022110051A1 (en) 2020-11-27 2020-11-27 Methods for communications, terminal devices and computer readable media

Publications (1)

Publication Number Publication Date
WO2022110051A1 true WO2022110051A1 (en) 2022-06-02

Family

ID=81755134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132397 WO2022110051A1 (en) 2020-11-27 2020-11-27 Methods for communications, terminal devices and computer readable media

Country Status (1)

Country Link
WO (1) WO2022110051A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3142406A1 (en) * 2014-05-09 2017-03-15 Sony Corporation Device
CN106941658A (en) * 2016-01-04 2017-07-11 中国移动通信集团公司 The motion management method and device of a kind of Radio Resource
CN111641962A (en) * 2020-05-19 2020-09-08 广东小天才科技有限公司 Cell measurement method and terminal equipment
CN111726817A (en) * 2019-03-18 2020-09-29 中国移动通信有限公司研究院 Information processing method, device, equipment and computer readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3142406A1 (en) * 2014-05-09 2017-03-15 Sony Corporation Device
CN106941658A (en) * 2016-01-04 2017-07-11 中国移动通信集团公司 The motion management method and device of a kind of Radio Resource
CN111726817A (en) * 2019-03-18 2020-09-29 中国移动通信有限公司研究院 Information processing method, device, equipment and computer readable storage medium
CN111641962A (en) * 2020-05-19 2020-09-08 广东小天才科技有限公司 Cell measurement method and terminal equipment

Similar Documents

Publication Publication Date Title
CN113273254B (en) Power consumption reduction method for measurement configuration
CN110611922B (en) Method for measuring cell and terminal equipment
CN112020872A (en) Electronic device and method for Radio Resource Management (RRM) measurement relaxation
WO2020034568A1 (en) Method and apparatus for early measurement configuration
CN111937434B (en) Cell measurement method, terminal equipment and network equipment
US20160157116A1 (en) Methods, apparatuses, and computer-readable storage media for inter-frequency small cell detection and reporting
CN104885504A (en) Fast small cell discovery
US20230327737A1 (en) Beam management
CN114846851A (en) Cell reselection method, terminal equipment and network equipment
KR102360183B1 (en) User equipment, base station and measurement method
WO2021207944A1 (en) Method for communication, terminal device, and computer readable media
EP3210417B1 (en) Method and apparatus to acquire system information
US20210204216A1 (en) Power-saving signal transmission method, power-saving signal reception method, base station and terminal
EP3579632A1 (en) Base station and method for transmitting synchronization signal
WO2021208085A1 (en) Methods, devices, and medium for communication
WO2022110051A1 (en) Methods for communications, terminal devices and computer readable media
WO2021227072A1 (en) Methods for communication, terminal device, network device, and computer readable media
WO2022006893A1 (en) Methods for communications, terminal device, and computer readable media
CN110996354B (en) Cell reselection method with interference avoidance in mobile communication and device thereof
CA3186661A1 (en) Methods, apparatus and systems for scheduling and transmission of system information in wireless communication
US20230209593A1 (en) Methods for communications, terminal device, and computer readable media
US20240114543A1 (en) Methods for sidelink communication, terminal device, and computer readable media
WO2022077462A1 (en) A new configuration for measurement
US20230224861A1 (en) Methods, apparatus and systems for scheduling and transmission of system information in a wireless communication
EP4222999A1 (en) Method, device and computer readable medium for communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962941

Country of ref document: EP

Kind code of ref document: A1