WO2022108128A1 - Cryogenic cutting tool kit - Google Patents

Cryogenic cutting tool kit Download PDF

Info

Publication number
WO2022108128A1
WO2022108128A1 PCT/KR2021/014509 KR2021014509W WO2022108128A1 WO 2022108128 A1 WO2022108128 A1 WO 2022108128A1 KR 2021014509 W KR2021014509 W KR 2021014509W WO 2022108128 A1 WO2022108128 A1 WO 2022108128A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryogenic
cutting
toolkit
tool holder
tool
Prior art date
Application number
PCT/KR2021/014509
Other languages
French (fr)
Korean (ko)
Inventor
김동민
강성욱
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2022108128A1 publication Critical patent/WO2022108128A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools
    • B23Q11/141Methods or arrangements for maintaining a constant temperature in parts of machine tools using a closed fluid circuit for cooling or heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/30Fluoropolymers
    • F16C2208/32Polytetrafluorethylene [PTFE]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • the present invention relates to a cutting toolkit for cryogenic use.
  • coolant is supplied as a coolant.
  • cryogenic fluid such as -196°C liquid nitrogen (LN2) is used as the refrigerant instead of the conventional cutting oil to improve the cooling effect when processing difficult-to-cut materials.
  • the lubricant and oil of the bearings disposed in the toolkit are overcooled, so that the tool does not rotate, so productivity is reduced, and the cryogenic fluid leaks to the outside and affects the surrounding components. .
  • a cryogenic cutting toolkit includes a housing having a hollow portion formed therein, an injection hole into which a cryogenic refrigerant is injected on an outer surface, inserted into the hollow portion and a machining tool is coupled to the end, It is formed along the axial direction therein and includes a tool holder for supplying the cryogenic refrigerant to the processing tool through a supply passage communicating with the hollow part, and a bearing disposed in the hollow part and coupled to the outer surface of the tool holder, ,
  • the tool holder may include a pattern portion formed on the inner surface of the supply passage to stabilize the flow of the cryogenic refrigerant.
  • the pattern portion may extend along a longitudinal direction of the supply passage, and a plurality of pattern portions may be disposed along the circumference of the supply passage.
  • the pattern portion may be formed in a spiral shape along the inner circumference of the supply passage.
  • inclined surfaces inclined toward the inner surface of the supply passage may be formed at both ends.
  • the pattern portion may have a triangular cross-section.
  • the tool holder may include a guide groove formed along the circumferential direction of the outer surface and a delivery passage extending from the guide groove toward the supply passage to deliver the cryogenic refrigerant in the hollow portion to the supply passage.
  • the hollow part may further include a sealing part disposed on one side of the bearing and coupled to the outer surface of the processing tool.
  • the bearing may be coated with a PTFE material.
  • a stopper coupled to the end of the housing and passing through the tool holder through the center may further include a stopper sealing the end of the hollow part.
  • the stopper may have a second seating groove extending along the circumferential direction on the inner surface to insert the sealing part.
  • the cryogenic cutting toolkit according to an embodiment of the present invention can improve cooling efficiency by stabilizing the flow of cryogenic refrigerant.
  • the cryogenic cutting toolkit according to an embodiment of the present invention can prevent cooling of the cryogenic refrigerant due to low temperature by applying a material capable of self-lubrication.
  • the cryogenic cutting toolkit according to an embodiment of the present invention can improve durability and stability by preventing the outflow of cryogenic refrigerant to the outside.
  • FIG. 1 is a perspective view of a cutting toolkit for cryogenic use according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a cutting toolkit for cryogenic use according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line A-A' of the second body shown in FIG. 2 .
  • FIG. 4 is a cross-sectional view of the cryogenic cutting toolkit shown in FIG. 1 .
  • FIG. 5 is an enlarged view of the cryogenic cutting toolkit shown in FIG.
  • FIG. 6 is a cross-sectional view illustrating a first modified example of the second body shown in FIG. 3 .
  • FIG. 7 is a cross-sectional view illustrating a first modified example of the cryogenic cutting toolkit shown in FIG. 4 .
  • FIG. 8 is a cross-sectional view illustrating a second modified example of the second body shown in FIG. 3 .
  • FIG. 9 is a cross-sectional view illustrating a second modified example of the cryogenic cutting toolkit shown in FIG. 4 .
  • FIG. 1 is a perspective view of a cryogenic cutting toolkit according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of a cryogenic cutting toolkit according to an embodiment of the present invention
  • FIG. 3 is the second body shown in FIG. A-A' cross-sectional view
  • FIG. 4 is a cross-sectional view of the cryogenic cutting toolkit shown in FIG.
  • the housing 100 side is defined as the upper side
  • the stopper 600 side is defined as the lower side in the housing 100 .
  • a cryogenic cutting toolkit 10 includes a housing 100 , a tool holder 200 , a coupling part 300 , a bearing 400 , and a stopper 600 . ) may be included.
  • the housing 100 is formed in a cylindrical shape, and a hollow part 110 may be formed therein in the axial direction.
  • the hollow part 110 may be formed through the upper and lower surfaces of the housing 100 .
  • the outer surface of the housing 100 is formed to extend to the hollow portion 110, the injection hole 120 into which the cryogenic refrigerant is injected may be formed.
  • a hose (not shown) for supplying cryogenic refrigerant may be connected to the injection hole 120 , and thus cryogenic refrigerant may be supplied to the hollow part 110 through the injection hole 120 .
  • first coupling hole 130 may be formed in the lower surface of the housing 100 .
  • a plurality of first coupling holes 130 may be spaced apart from each other along the lower surface of the housing 100 .
  • a stopper 600 to be described later may be coupled to the first coupling hole 130 through a fastening member such as a bolt or a rivet.
  • the tool holder 200 may include a first body 210 and a second body 220 .
  • the first body 210 may have a predetermined cylindrical shape, and a second body 220 may be formed at a lower portion thereof.
  • the first body 210 is inserted into the hollow part 110 and may be located at an upper end of the hollow part 110 .
  • the first body 210 may be fixed to the upper end of the hollow part 110 , and may protrude by a predetermined length from the upper surface of the housing 100 .
  • a coupling part 300 to be described later may be coupled to the upper end of the first body 210 .
  • the second body 220 may be connected to the center of the lower surface of the first body 210 in a predetermined cylindrical shape.
  • a diameter of the second body 220 may be smaller than a diameter of the first body 210 and a diameter of the hollow part 110 .
  • the second body 220 is inserted into the hollow part 110, and accordingly, when the first body 210 is fixed to the upper end of the hollow part 110 and the tool holder 200 is coupled to the housing 100, A lower end of the second body 220 may protrude out of the housing 100 by a predetermined length.
  • a processing tool (not shown) may be coupled to the lower end of the second body 220 .
  • the machining tool may be a machining tool for cutting an object.
  • the second body 220 may include a guide groove 221 , a delivery passage 222 , and a supply passage 223 .
  • the guide groove 221 may be formed along the circumferential direction of the outer surface of the second body 220 .
  • the guide groove 221 may be formed at a position corresponding to the injection hole 120 .
  • Cryogenic refrigerant may be filled along the guide groove 221 .
  • the transmission passage 222 may be formed to extend inwardly from the outer surface of the second body 220 .
  • the transmission flow path 222 may be formed in the guide groove 221 and extend toward the central axis of the second body 220 .
  • the cryogenic refrigerant moved through the injection hole 120 and the hollow part 110 may be introduced into the delivery passage 222 .
  • the guide groove 221 is filled with the cryogenic refrigerant, even when the second body 220 rotates, the cryogenic refrigerant can easily flow into the delivery passage 222 side.
  • the supply passage 223 may be formed along the axial direction from the center of the second body 220 .
  • the upper end of the supply passage 223 may be connected to the delivery passage 222 .
  • the supply passage 223 may supply the cryogenic refrigerant introduced from the delivery passage 222 in the direction of the lower processing tool.
  • a pattern portion 225 to be described later may be formed on the inner surface of the supply passage 223 .
  • the tool holder 200 may be connected to the spindle of the machine tool through the coupling unit 300 to rotate. Accordingly, while the machining tool fixed to the second body 220 rotates, it is possible to cut the object.
  • the coupling part 300 may be coupled to the upper end of the tool holder 200 .
  • the coupling part 300 may be coupled to the upper end of the first body 210 .
  • the coupling unit 300 may transmit the rotational force of the spindle to the tool holder 200 by coupling the tool holder 200 to the spindle (not shown) of the machine tool. That is, the tool holder 200 may be connected to the spindle of the machine tool through the coupling unit 300 to rotate.
  • the bearing 400 may be disposed in the hollow part 110 and coupled to the tool holder 200 to rotate the tool holder 200 .
  • the bearing 400 is formed in plurality, each of which may be disposed at the upper and lower portions of the hollow part 110 . In this case, each bearing 400 may be coupled to the outer surface of the tool holder 200 and the second body 220 .
  • the bearing 400 may be a ball bearing coated with a PTFE (Teflon) material. Accordingly, the bearing 400 is self-lubricated during friction with the tool holder 200 by the PTFE coating, so that it can rotate without being frozen by the cryogenic refrigerant.
  • PTFE Teflon
  • the sealing part 500 may be disposed in the hollow part 110 and coupled to the tool holder 200 .
  • the sealing part 500 is formed in plurality, and each may be disposed on one side of the bearing 400 . Accordingly, the sealing part 500 prevents the outflow of the cryogenic refrigerant through between the housing 100 and the bearing 400 , thereby improving the durability and stability of the cutting toolkit 10 .
  • the sealing part 500 is a first seating groove 112 formed at a position facing the first body 210 on the inner surface of the housing 100 or a through part 610 of the stopper 600 to be described later. It may be additionally disposed in the second seating groove 612 formed on the side surface.
  • the stopper 600 may be coupled to the lower surface of the housing 100 in a plate shape having a ring-shaped cross-section.
  • the stopper 600 has a penetrating portion 610 formed in the center thereof, and the second body 220 may be penetrated through the through portion 610 .
  • a second seating groove 612 may be formed on the inner surface of the through portion 610 to provide the above-described sealing portion 500 .
  • the stopper 600 may have a second coupling hole 630 penetrating the upper and lower surfaces.
  • a plurality of second coupling holes 630 may be disposed to be spaced apart from each other along the circumference of the through portion 610 .
  • the first coupling hole 130 of the housing 100 and the second coupling hole 630 of the stopper 600 may correspond. Accordingly, by inserting the fastening member through the second coupling hole 630 and the first coupling hole 130 , the stopper 600 may be coupled to the housing 100 .
  • This stopper 600 closes the lower surface of the hollow part 110 to prevent the outflow of cryogenic refrigerant, while preventing the components installed inside the housing from being separated.
  • FIG. 5 is an enlarged view of the cryogenic cutting toolkit shown in FIG.
  • the pattern part 225 is formed to protrude on the inner surface of the supply passage 223 and may rub against the cryogenic refrigerant.
  • the pattern part 225 may have a shape extending along the longitudinal direction of the supply passage 223 .
  • inclined surfaces 226 inclined toward the inner surface of the supply passage 223 may be formed at both ends of the pattern portion 225 . Accordingly, both ends of the pattern portion 225 may be gently formed to facilitate the inflow and outflow of cryogenic refrigerant.
  • a plurality of pattern parts 225 may be disposed to be spaced apart from each other along the inner surface of the supply passage 223 .
  • the pattern portion 225 may stabilize the flow of cryogenic refrigerant flowing into the supply passage 223 through the delivery passage 222 .
  • the flow of the cryogenic refrigerant becomes unstable and a pulsation phenomenon in which it is supplied at an uneven pressure occurred.
  • the flow direction of the cryogenic refrigerant is rapidly changed, turbulence is formed and the temperature of the refrigerant increases and vaporizes easily, making it difficult to deliver the cryogenic refrigerant to the object in a liquid state.
  • the pattern part 225 can stabilize the flow of cryogenic refrigerant to maintain a liquid state, and can supply a uniform pressure to the processing tool, thereby improving cooling efficiency and working efficiency.
  • FIG. 6 is a cross-sectional view illustrating a first modified example of the second body shown in FIG. 3
  • FIG. 7 is a cross-sectional view illustrating a first modified example of the cryogenic cutting toolkit illustrated in FIG. 4 .
  • the pattern part 225 according to the first modified example is formed to protrude on the inner surface of the supply passage 223 and may rub against the cryogenic refrigerant.
  • the pattern part 225 may have a shape extending along the longitudinal direction of the supply passage 223 .
  • the cross-section of the pattern part 225 may be formed in a triangular shape.
  • a plurality of pattern parts 225 may be disposed to be spaced apart from each other along the inner surface of the supply passage 223 .
  • the pattern portion 225 may stabilize the flow of cryogenic refrigerant flowing into the supply passage 223 through the delivery passage 222 .
  • FIG. 8 is a cross-sectional view illustrating a second modified example of the second body shown in FIG. 3
  • FIG. 9 is a cross-sectional view illustrating a second modified example of the cryogenic cutting toolkit shown in FIG. 4 .
  • the pattern part 225 according to the second modified example is spirally formed along the periphery on the inner surface of the supply passage 223 to rub against the cryogenic refrigerant.
  • the pattern portion 225 may be formed to extend from one end of the supply passage 223 to the other end. Accordingly, the pattern unit 225 may stabilize the flow of the cryogenic refrigerant by inducing the cryogenic refrigerant introduced into the supply passage 223 to flow in a rotational form.

Abstract

A cryogenic cutting tool kit according to an embodiment of the present invention may comprise: a housing having a hollow portion which is formed inside the housing and having an injection hole which is formed at the outer surface of the housing and through which a cryogenic coolant is injected; a tool holder inserted into the hollow portion, having an end to which a processing tool is coupled, and having a supply channel which is formed in the axial direction inside the tool holder to communicate with the hollow portion and through which the cryogenic coolant is supplied to the processing tool side; and a bearing disposed in the hollow portion and coupled to the outer surface of the tool holder, wherein the tool holder includes a pattern portion which is formed on the inner surface of the supply channel to stabilize the flow of the cryogenic coolant.

Description

극저온용 절삭 툴킷Cryogenic cutting toolkit
본 발명은 극저온용 절삭 툴킷에 관한 것이다. The present invention relates to a cutting toolkit for cryogenic use.
일반적으로 공작물을 가공하는 과정에서 열이 발생되며, 이는 가공물의 변형 및 손상시키거나 공구들의 마모 및 변형을 야기하므로 이를 방지하기위해 냉매로써 절삭유를 공급하였다.In general, heat is generated in the process of machining a workpiece, and this causes deformation or damage to the workpiece or wear and deformation of tools. To prevent this, coolant is supplied as a coolant.
최근에는 자동차 및 항공 우주 등 첨단산업의 경량화, 친환경화 및 고효율화에 따라 이를 실현할 수 있는 티타늄, 인코넬 및 CGI 등의 난삭재료의 가공이 증가하고 있는 추세이다.In recent years, the processing of difficult-to-cut materials such as titanium, Inconel, and CGI, which can realize this, is increasing according to the lightweight, eco-friendly, and high-efficiency of high-tech industries such as automobiles and aerospace.
그러나, 이러한 난삭재료는 기존 금속보다 낮은 열전도도 및 고강도 등의 특성에 의해 고온의 절삭열 및 공구의 열변형이 발생하였다. 이에 따라, 난삭재료 가공 시 냉각 효과의 향상을 위해 종래의 절삭유 대신 -196℃의 액체질소(LN2) 등의 극저온 유체를 냉매로 사용하고 있다.However, the high-temperature cutting heat and thermal deformation of the tool occurred in these difficult-to-cut materials due to characteristics such as lower thermal conductivity and high strength than conventional metals. Accordingly, cryogenic fluid such as -196°C liquid nitrogen (LN2) is used as the refrigerant instead of the conventional cutting oil to improve the cooling effect when processing difficult-to-cut materials.
그러나, 극저온 유체의 저온에 의해 툴킷에 배치된 베어링의 윤활제 및 오일 등이 과냉각되어 공구의 회전이 이루어지지 않아 생산성이 저하되고, 극저온 유체가 외부로 유출되어 주변 구성들에 영향을 주는 문제점이 있었다.However, due to the low temperature of the cryogenic fluid, the lubricant and oil of the bearings disposed in the toolkit are overcooled, so that the tool does not rotate, so productivity is reduced, and the cryogenic fluid leaks to the outside and affects the surrounding components. .
또한, 극저온 유체가 툴킷을 통해 공구로 공급될 경우 유로의 꺾임에 따라 흐름이 불안정해지면서 극저온 유체의 압력이 일정하지 않아 냉각효과가 저하되는 문제점이 있었다.In addition, when the cryogenic fluid is supplied to the tool through the toolkit, the flow becomes unstable due to the bending of the flow path, and the pressure of the cryogenic fluid is not constant, so there is a problem in that the cooling effect is reduced.
상기와 같은 기술적 배경을 바탕으로 안출된 것으로, 극저온냉매의 흐름을 안정화하여 냉각 효율을 향상시킬 수 있는 극저온용 절삭 툴킷을 제공하는데 있다.It was devised based on the technical background as described above, and it is to provide a cutting toolkit for cryogenics that can improve cooling efficiency by stabilizing the flow of cryogenic refrigerant.
본 발명의 일 실시예에 따른 극저온용 절삭 툴킷은, 내부에 중공부가 형성되고, 외측면에 극저온냉매가 주입되는 주입홀이 형성되는 하우징, 상기 중공부에 삽입되고 단부에는 가공툴이 결합되며, 내부에 축방향을 따라 형성되어 상기 중공부와 연통되는 공급유로를 통해 상기 극저온냉매를 상기 가공툴 측으로 공급하는 툴홀더 및 상기 중공부에 배치되어 상기 툴홀더의 외측면에 결합되는 베어링을 포함하고, 상기 툴홀더는, 상기 공급유로 내측면에 형성되어 상기 극저온냉매의 흐름을 안정화하는 패턴부를 포함할 수 있다.A cryogenic cutting toolkit according to an embodiment of the present invention includes a housing having a hollow portion formed therein, an injection hole into which a cryogenic refrigerant is injected on an outer surface, inserted into the hollow portion and a machining tool is coupled to the end, It is formed along the axial direction therein and includes a tool holder for supplying the cryogenic refrigerant to the processing tool through a supply passage communicating with the hollow part, and a bearing disposed in the hollow part and coupled to the outer surface of the tool holder, , The tool holder may include a pattern portion formed on the inner surface of the supply passage to stabilize the flow of the cryogenic refrigerant.
상기 패턴부는, 상기 공급유로의 길이방향을 따라 연장되고, 복수개가 상기 공급유로 둘레를 따라 배치될 수 있다.The pattern portion may extend along a longitudinal direction of the supply passage, and a plurality of pattern portions may be disposed along the circumference of the supply passage.
상기 패턴부는, 상기 공급유로의 내측면 둘레를 따라 나선형으로 형성될 수 있다.The pattern portion may be formed in a spiral shape along the inner circumference of the supply passage.
상기 패턴부는, 양단부에 상기 공급유로 내측면을 향해 경사지는 경사면이 형성될 수 있다.In the pattern part, inclined surfaces inclined toward the inner surface of the supply passage may be formed at both ends.
상기 패턴부는, 단면이 삼각형상으로 형성될 수 있다.The pattern portion may have a triangular cross-section.
상기 툴홀더는, 외측면의 둘레방향을 따라 형성되는 가이드홈 및 상기 가이드홈에서 상기 공급유로 측으로 연장되어, 상기 중공부의 상기 극저온냉매를 상기 공급유로로 전달하는 전달유로를 포함할 수 있다.The tool holder may include a guide groove formed along the circumferential direction of the outer surface and a delivery passage extending from the guide groove toward the supply passage to deliver the cryogenic refrigerant in the hollow portion to the supply passage.
상기 중공부에서 상기 베어링의 일측에 배치되어, 상기 가공툴의 외측면에 결합되는 실링부를 더 포함할 수 있다.The hollow part may further include a sealing part disposed on one side of the bearing and coupled to the outer surface of the processing tool.
상기 베어링은, PTFE 소재가 코팅될 수 있다.The bearing may be coated with a PTFE material.
상기 하우징의 단부에 결합되고 중심부에는 상기 툴홀더가 관통하며, 상기 중공부의 단부를 밀폐하는 스토퍼를 더 포함할 수 있다.A stopper coupled to the end of the housing and passing through the tool holder through the center may further include a stopper sealing the end of the hollow part.
상기 스토퍼는, 내측면에 둘레방향을 따라 연장되어 상기 실링부가 삽입되는 제2 안착홈이 형성될 수 있다.The stopper may have a second seating groove extending along the circumferential direction on the inner surface to insert the sealing part.
본 발명의 일 실시예에 따른 극저온용 절삭 툴킷은, 극저온냉매의 흐름을 안정화하여 냉각 효율을 향상시킬 수 있다.The cryogenic cutting toolkit according to an embodiment of the present invention can improve cooling efficiency by stabilizing the flow of cryogenic refrigerant.
본 발명의 일 실시예에 따른 극저온용 절삭 툴킷은, 자가 윤활이 가능한 소재를 적용하여 극저온 냉매의 저온에 의한 냉각을 방지할 수 있다.The cryogenic cutting toolkit according to an embodiment of the present invention can prevent cooling of the cryogenic refrigerant due to low temperature by applying a material capable of self-lubrication.
본 발명의 일 실시예에 따른 극저온용 절삭 툴킷은, 극저온냉매의 외부 유출을 방지하여 내구성 및 안정성이 향상될 수 있다.The cryogenic cutting toolkit according to an embodiment of the present invention can improve durability and stability by preventing the outflow of cryogenic refrigerant to the outside.
도 1은 본 발명의 일 실시예에 따른 극저온용 절삭 툴킷의 사시도이다.1 is a perspective view of a cutting toolkit for cryogenic use according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 극저온용 절삭 툴킷의 분해 사시도이다.2 is an exploded perspective view of a cutting toolkit for cryogenic use according to an embodiment of the present invention.
도 3은 도 2에 도시된 제2 몸체의 A-A'단면도이다.3 is a cross-sectional view taken along line A-A' of the second body shown in FIG. 2 .
도 4는 도 1에 도시된 극저온용 절삭 툴킷의 단면도이다.4 is a cross-sectional view of the cryogenic cutting toolkit shown in FIG. 1 .
도 5는 도 4에 도시된 극저온용 절삭 툴킷의 확대도이다.5 is an enlarged view of the cryogenic cutting toolkit shown in FIG.
도 6은 도 3에 도시된 제2 몸체의 제1 변형예를 나타낸 단면도이다.6 is a cross-sectional view illustrating a first modified example of the second body shown in FIG. 3 .
도 7은 도 4에 도시된 극저온용 절삭 툴킷의 제1 변형예를 나타낸 단면도이다.FIG. 7 is a cross-sectional view illustrating a first modified example of the cryogenic cutting toolkit shown in FIG. 4 .
도 8은 도 3에 도시된 제2 몸체의 제2 변형예를 나타낸 단면도이다.8 is a cross-sectional view illustrating a second modified example of the second body shown in FIG. 3 .
도 9는 도 4에 도시된 극저온용 절삭 툴킷의 제2 변형예를 나타낸 단면도이다.9 is a cross-sectional view illustrating a second modified example of the cryogenic cutting toolkit shown in FIG. 4 .
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, with reference to the accompanying drawings, the embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.In order to clearly explain the present invention, parts irrelevant to the description are omitted, and the same reference numerals are assigned to the same or similar components throughout the specification.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily indicated for convenience of description, the present invention is not necessarily limited to the illustrated bar.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, throughout the specification, when a part "includes" a certain component, this means that other components may be further included, rather than excluding other components, unless otherwise stated.
도 1은 본 발명의 일 실시예에 따른 극저온용 절삭 툴킷의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 극저온용 절삭 툴킷의 분해 사시도이며, 도 3은 도 2에 도시된 제2 몸체의 A-A'단면도이고, 도 4는 도 1에 도시된 극저온용 절삭 툴킷의 단면도이다.1 is a perspective view of a cryogenic cutting toolkit according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of a cryogenic cutting toolkit according to an embodiment of the present invention, and FIG. 3 is the second body shown in FIG. A-A' cross-sectional view, FIG. 4 is a cross-sectional view of the cryogenic cutting toolkit shown in FIG.
도 1에 도시된 바와 같이, 스토퍼(600)에서 하우징(100) 측을 상방으로 규정하고, 하우징(100)에서 스토퍼(600) 측을 하방으로 규정하여 설명한다.As shown in FIG. 1 , in the stopper 600 , the housing 100 side is defined as the upper side, and the stopper 600 side is defined as the lower side in the housing 100 .
도 1 및 도 2를 참고하면, 본 발명의 일 실시예에 따른 극저온용 절삭 툴킷(10)은 하우징(100), 툴홀더(200), 결합부(300), 베어링(400) 및 스토퍼(600)를 포함할 수 있다.1 and 2 , a cryogenic cutting toolkit 10 according to an embodiment of the present invention includes a housing 100 , a tool holder 200 , a coupling part 300 , a bearing 400 , and a stopper 600 . ) may be included.
하우징(100)은 원통형으로 형성되며 내부에는 축방향으로 중공부(110)가 형성될 수 있다. 중공부(110)는 하우징(100)의 상면 및 하면을 관통하여 형성될 수 있다. The housing 100 is formed in a cylindrical shape, and a hollow part 110 may be formed therein in the axial direction. The hollow part 110 may be formed through the upper and lower surfaces of the housing 100 .
하우징(100)의 외측면에는 중공부(110)까지 연장 형성되며, 극저온냉매가 주입되는 주입홀(120)이 형성될 수 있다. 예를 들어, 주입홀(120)에는 극저온냉매를 공급하는 호스(미도시)가 연결될 수 있으며, 이에 따라 주입홀(120)을 통해 중공부(110) 측으로 극저온 냉매가 공급될 수 있다.The outer surface of the housing 100 is formed to extend to the hollow portion 110, the injection hole 120 into which the cryogenic refrigerant is injected may be formed. For example, a hose (not shown) for supplying cryogenic refrigerant may be connected to the injection hole 120 , and thus cryogenic refrigerant may be supplied to the hollow part 110 through the injection hole 120 .
또한, 하우징(100)의 하면에는 제1 결합홀(130)이 형성될 수 있다. 예를 들어, 제1 결합홀(130)은 하우징(100)의 하면 테두리를 따라 복수개가 이격 배치될 수 있다. 이러한 제1 결합홀(130)에는 볼트나 리벳 등의 체결부재를 통해 후술할 스토퍼(600)가 결합될 수 있다.In addition, the first coupling hole 130 may be formed in the lower surface of the housing 100 . For example, a plurality of first coupling holes 130 may be spaced apart from each other along the lower surface of the housing 100 . A stopper 600 to be described later may be coupled to the first coupling hole 130 through a fastening member such as a bolt or a rivet.
툴홀더(200)는 제1 몸체(210) 및 제2 몸체(220)를 포함할 수 있다.The tool holder 200 may include a first body 210 and a second body 220 .
제1 몸체(210)는 소정의 원통 형상으로 하부에는 제2 몸체(220)가 형성될 수 있다. 제1 몸체(210)는 중공부(110)에 삽입되며 중공부(110) 상단에 위치할 수 있다. 예를 들어, 제1 몸체(210)는 중공부(110) 상단에 고정되며, 하우징(100) 상면보다 소정 길이 돌출될 수 있다. 이러한 제1 몸체(210)의 상단부에는 후술할 결합부(300)가 결합될 수 있다.The first body 210 may have a predetermined cylindrical shape, and a second body 220 may be formed at a lower portion thereof. The first body 210 is inserted into the hollow part 110 and may be located at an upper end of the hollow part 110 . For example, the first body 210 may be fixed to the upper end of the hollow part 110 , and may protrude by a predetermined length from the upper surface of the housing 100 . A coupling part 300 to be described later may be coupled to the upper end of the first body 210 .
제2 몸체(220)는 소정의 원통 형상으로 제1 몸체(210)의 하면 중심부에 연결될 수 있다. 예를 들어, 제2 몸체(220)의 직경은 제1 몸체(210)의 직경 및 중공부(110)의 직경보다 작게 형성될 수 있다. The second body 220 may be connected to the center of the lower surface of the first body 210 in a predetermined cylindrical shape. For example, a diameter of the second body 220 may be smaller than a diameter of the first body 210 and a diameter of the hollow part 110 .
제2 몸체(220)는 중공부(110)에 삽입되며, 이에 따라 제1 몸체(210)가 중공부(110) 상단에 고정되어 툴홀더(200)가 하우징(100)에 결합이 완료된 경우, 제2 몸체(220)의 하단이 하우징(100) 외부로 소정 길이 돌출될 수 있다. 이러한 제2 몸체(220)의 하단부에는 가공툴(미도시)이 결합될 수 있다. 예를 들어, 가공툴은 대상물의 절삭을 수행하는 절삭용 가공툴일 수 있다.The second body 220 is inserted into the hollow part 110, and accordingly, when the first body 210 is fixed to the upper end of the hollow part 110 and the tool holder 200 is coupled to the housing 100, A lower end of the second body 220 may protrude out of the housing 100 by a predetermined length. A processing tool (not shown) may be coupled to the lower end of the second body 220 . For example, the machining tool may be a machining tool for cutting an object.
또한, 도 3 및 도 4를 참고하면, 제2 몸체(220)는 가이드홈(221), 전달유로(222) 및 공급유로(223)가 형성될 수 있다.In addition, referring to FIGS. 3 and 4 , the second body 220 may include a guide groove 221 , a delivery passage 222 , and a supply passage 223 .
가이드홈(221)은 제2 몸체(220)의 외측면 둘레방향을 따라 형성될 수 있다. 예를 들어, 가이드홈(221)은 주입홀(120)과 대응되는 위치에 형성될 수 있다. 가이드홈(221)을 따라 극저온냉매가 채워질 수 있다.The guide groove 221 may be formed along the circumferential direction of the outer surface of the second body 220 . For example, the guide groove 221 may be formed at a position corresponding to the injection hole 120 . Cryogenic refrigerant may be filled along the guide groove 221 .
전달유로(222)는 제2 몸체(220)의 외측면에서 내측방향으로 연장 형성될 수 있다. 예를 들어, 전달유로(222)는 가이드홈(221)에 형성되며, 제2 몸체(220)의 중심축을 향해 연장 형성될 수 있다. 이러한 전달유로(222)에는 주입홀(120) 및 중공부(110)를 통해 이동된 극저온냉매가 유입될 수 있다. 한편, 가이드홈(221)에는 극저온냉매가 채워져있으므로 제2 몸체(220)가 회전 시에도 전달유로(222) 측으로 극저온냉매가 용이하게 유입될 수 있다.The transmission passage 222 may be formed to extend inwardly from the outer surface of the second body 220 . For example, the transmission flow path 222 may be formed in the guide groove 221 and extend toward the central axis of the second body 220 . The cryogenic refrigerant moved through the injection hole 120 and the hollow part 110 may be introduced into the delivery passage 222 . On the other hand, since the guide groove 221 is filled with the cryogenic refrigerant, even when the second body 220 rotates, the cryogenic refrigerant can easily flow into the delivery passage 222 side.
공급유로(223)는 제2 몸체(220)의 중심부에서 축방향을 따라 형성될 수 있다. 이때, 공급유로(223)의 상단은 전달유로(222)와 연결될 수 있다. 이에 따라, 공급유로(223)는 전달유로(222)로부터 유입된 극저온냉매를 하단의 가공툴 방향으로 공급할 수 있다. 또한, 공급유로(223)의 내면에는 후술할 패턴부(225)가 형성될 수 있다.The supply passage 223 may be formed along the axial direction from the center of the second body 220 . In this case, the upper end of the supply passage 223 may be connected to the delivery passage 222 . Accordingly, the supply passage 223 may supply the cryogenic refrigerant introduced from the delivery passage 222 in the direction of the lower processing tool. In addition, a pattern portion 225 to be described later may be formed on the inner surface of the supply passage 223 .
이러한 툴홀더(200)는 결합부(300)를 통해 공작기계의 스핀들과 연결되어 회전할 수 있다. 이에 따라, 제2 몸체(220)에 고정된 가공툴이 회전하면서 대상물의 절삭을 수행할 수 있다.The tool holder 200 may be connected to the spindle of the machine tool through the coupling unit 300 to rotate. Accordingly, while the machining tool fixed to the second body 220 rotates, it is possible to cut the object.
도 1, 도 2 및 도 4를 참고하면, 결합부(300)는 툴홀더(200)의 상단부에 결합될 수 있다. 구체적으로, 결합부(300)는 제1 몸체(210)의 상단에 결합될 수 있다. 결합부(300)는 툴홀더(200)를 공작기계의 스핀들(미도시)에 결합시킴으로써, 스핀들의 회전력을 툴홀더(200)에 전달할 수 있다. 즉, 툴홀더(200)는 결합부(300)를 통해 공작기계의 스핀들에 연결되어 회전할 수 있다.1, 2 and 4 , the coupling part 300 may be coupled to the upper end of the tool holder 200 . Specifically, the coupling part 300 may be coupled to the upper end of the first body 210 . The coupling unit 300 may transmit the rotational force of the spindle to the tool holder 200 by coupling the tool holder 200 to the spindle (not shown) of the machine tool. That is, the tool holder 200 may be connected to the spindle of the machine tool through the coupling unit 300 to rotate.
도 2 및 도 4를 참고하면, 베어링(400)은 중공부(110)에 배치되고 툴홀더(200)와 결합되어 툴홀더(200)가 회전되도록 할 수 있다. 베어링(400)은 복수개로 형성되며 각각은 중공부(110)의 상하부에 배치될 수 있다. 이때, 각 베어링(400)은 툴홀더(200) 제2 몸체(220)의 외측면에 결합될 수 있다.2 and 4 , the bearing 400 may be disposed in the hollow part 110 and coupled to the tool holder 200 to rotate the tool holder 200 . The bearing 400 is formed in plurality, each of which may be disposed at the upper and lower portions of the hollow part 110 . In this case, each bearing 400 may be coupled to the outer surface of the tool holder 200 and the second body 220 .
베어링(400)은 PTFE(테프론) 소재가 코팅된 볼베어링일 수 있다. 이에 따라, 베어링(400)은 PTFE 코팅에 의해 툴홀더(200)와 마찰 시 자기 윤활이 가능하여, 극저온냉매에 의해 얼지않으면서도 회전이 가능하다.The bearing 400 may be a ball bearing coated with a PTFE (Teflon) material. Accordingly, the bearing 400 is self-lubricated during friction with the tool holder 200 by the PTFE coating, so that it can rotate without being frozen by the cryogenic refrigerant.
실링부(500)는 중공부(110)에 배치되고 툴홀더(200)에 결합될 수 있다. 예를 들어, 실링부(500)는 복수개로 형성되며 각각은 베어링(400)의 일측에 배치될 수 있다. 이에 따라, 실링부(500)는 하우징(100)과 베어링(400) 사이를 통한 극저온냉매의 외부 유출을 방지하여, 절삭 툴킷(10)의 내구성 및 안정성을 향상시킬 수 있다.The sealing part 500 may be disposed in the hollow part 110 and coupled to the tool holder 200 . For example, the sealing part 500 is formed in plurality, and each may be disposed on one side of the bearing 400 . Accordingly, the sealing part 500 prevents the outflow of the cryogenic refrigerant through between the housing 100 and the bearing 400 , thereby improving the durability and stability of the cutting toolkit 10 .
다른 예로, 실링부(500)는 하우징(100) 내측면에서 제1 몸체(210)와 마주하는 위치에 형성된 제1 안착홈(112)이나, 후술할 스토퍼(600)의 관통부(610) 내측면에 형성된 제2 안착홈(612)에 추가적으로 배치될 수도 있다.As another example, the sealing part 500 is a first seating groove 112 formed at a position facing the first body 210 on the inner surface of the housing 100 or a through part 610 of the stopper 600 to be described later. It may be additionally disposed in the second seating groove 612 formed on the side surface.
도 2 및 도 4를 참고하면, 스토퍼(600)는 링형 단면을 갖는 판 형상으로 하우징(100)의 하면에 결합될 수 있다. 스토퍼(600)는 중심부에 관통부(610)가 형성되며, 이러한 관통부(610)에는 제2 몸체(220)가 관통될 수 있다. 관통부(610)의 내측면에는 제2 안착홈(612)이 형성되어 전술한 실링부(500)가 배치될 수도 있다.2 and 4 , the stopper 600 may be coupled to the lower surface of the housing 100 in a plate shape having a ring-shaped cross-section. The stopper 600 has a penetrating portion 610 formed in the center thereof, and the second body 220 may be penetrated through the through portion 610 . A second seating groove 612 may be formed on the inner surface of the through portion 610 to provide the above-described sealing portion 500 .
또한, 스토퍼(600)에는 상하면을 관통하는 제2 결합홀(630)이 형성될 수 있다. 예를 들어, 제2 결합홀(630)은 관통부(610) 주위를 따라 복수개가 이격 배치될 수 있다. 다른 예로, 하우징(100)의 제1 결합홀(130) 및 스토퍼(600)의 제2 결합홀(630)은 대응될 수 있다. 이에 따라, 체결부재를 제2 결합홀(630) 및 제1 결합홀(130)을 통해 삽입함으로써, 스토퍼(600)를 하우징(100)에 결합시킬 수 있다.In addition, the stopper 600 may have a second coupling hole 630 penetrating the upper and lower surfaces. For example, a plurality of second coupling holes 630 may be disposed to be spaced apart from each other along the circumference of the through portion 610 . As another example, the first coupling hole 130 of the housing 100 and the second coupling hole 630 of the stopper 600 may correspond. Accordingly, by inserting the fastening member through the second coupling hole 630 and the first coupling hole 130 , the stopper 600 may be coupled to the housing 100 .
이러한 스토퍼(600)는 중공부(110)의 하면을 마감하여 극저온냉매의 유출을 방지하면서도, 하우징 내부에 설치된 구성들이 이탈되는 것을 방지할 수 있다.This stopper 600 closes the lower surface of the hollow part 110 to prevent the outflow of cryogenic refrigerant, while preventing the components installed inside the housing from being separated.
도 5는 도 4에 도시된 극저온용 절삭 툴킷의 확대도이다.5 is an enlarged view of the cryogenic cutting toolkit shown in FIG.
도 5를 참고하면, 패턴부(225)는 공급유로(223)의 내측면에 돌출형성되어 극저온냉매와 마찰될 수 있다. 예를 들어, 패턴부(225)는 공급유로(223)의 길이방향을 따라 연장되는 형태일 수 있다. 다른 예로, 패턴부(225)는 양단부에 공급유로(223)의 내측면 방향으로 경사지는 경사면(226)이 형성될 수 있다. 이에 따라, 패턴부(225)의 양단부는 완만하게 형성되어 극저온냉매의 유입 및 유출이 용이할 수 있다.Referring to FIG. 5 , the pattern part 225 is formed to protrude on the inner surface of the supply passage 223 and may rub against the cryogenic refrigerant. For example, the pattern part 225 may have a shape extending along the longitudinal direction of the supply passage 223 . As another example, inclined surfaces 226 inclined toward the inner surface of the supply passage 223 may be formed at both ends of the pattern portion 225 . Accordingly, both ends of the pattern portion 225 may be gently formed to facilitate the inflow and outflow of cryogenic refrigerant.
또한, 패턴부(225)는 공급유로(223)의 내측면을 따라 복수개가 이격 배치될 수 있다. 이러한 패턴부(225)는 전달유로(222)를 거처 공급유로(223)로 유입되는 극저온냉매의 흐름을 안정화할 수 있다. In addition, a plurality of pattern parts 225 may be disposed to be spaced apart from each other along the inner surface of the supply passage 223 . The pattern portion 225 may stabilize the flow of cryogenic refrigerant flowing into the supply passage 223 through the delivery passage 222 .
구체적으로, 극저온냉매는 전달유로(222)에서 공급유로(223)로 유입되는 과정에서 방향이 급격히 바뀌게 되므로, 극저온냉매의 흐름이 불안정해지면서 불균일한 압력으로 공급되는 맥동현상이 발생하였다. 뿐만 아니라, 극저온냉매의 흐름 방향이 급변하게 될 경우 난류가 형성되면서 냉매의 온도가 증가하여 쉽게 기화되므로 가공대상물에 극저온냉매를 액체상태로 전달하는 것이 어려웠다.Specifically, since the direction of the cryogenic refrigerant is rapidly changed while flowing from the delivery flow path 222 to the supply flow path 223, the flow of the cryogenic refrigerant becomes unstable and a pulsation phenomenon in which it is supplied at an uneven pressure occurred. In addition, when the flow direction of the cryogenic refrigerant is rapidly changed, turbulence is formed and the temperature of the refrigerant increases and vaporizes easily, making it difficult to deliver the cryogenic refrigerant to the object in a liquid state.
이때, 공급유로(223)에 패턴부(225)를 형성시킴으로써, 공급유로(223)로 유입되는 극저온냉매와 마찰을 일으켜 난류를 방지함으로써 흐름을 안정화할 수 있다. 즉, 패턴부(225)는 극저온냉매의 흐름을 안정화하여 액체상태를 유지시킬 수 있을 뿐만 아니라, 가공툴에 균일한 압력으로 공급할 수 있으므로 냉각 효율 및 작업 효율을 향상시킬 수 있다. At this time, by forming the pattern portion 225 in the supply passage 223 , friction with the cryogenic refrigerant flowing into the supply passage 223 is generated to prevent turbulence, thereby stabilizing the flow. That is, the pattern part 225 can stabilize the flow of cryogenic refrigerant to maintain a liquid state, and can supply a uniform pressure to the processing tool, thereby improving cooling efficiency and working efficiency.
도 6은 도 3에 도시된 제2 몸체의 제1 변형예를 나타낸 단면도이고, 도 7은 도 4에 도시된 극저온용 절삭 툴킷의 제1 변형예를 나타낸 단면도이다.6 is a cross-sectional view illustrating a first modified example of the second body shown in FIG. 3 , and FIG. 7 is a cross-sectional view illustrating a first modified example of the cryogenic cutting toolkit illustrated in FIG. 4 .
도 6 및 도 7을 참고하면, 제1 변형예에 따른 패턴부(225)는 공급유로(223)의 내측면에 돌출형성되어 극저온냉매와 마찰될 수 있다. 예를 들어, 패턴부(225)는 공급유로(223)의 길이방향을 따라 연장되는 형태일 수 있다. 또한, 패턴부(225)의 단면은 삼각형 형태로 형성될 수 있다. 6 and 7 , the pattern part 225 according to the first modified example is formed to protrude on the inner surface of the supply passage 223 and may rub against the cryogenic refrigerant. For example, the pattern part 225 may have a shape extending along the longitudinal direction of the supply passage 223 . Also, the cross-section of the pattern part 225 may be formed in a triangular shape.
또한, 패턴부(225)는 공급유로(223)의 내측면을 따라 복수개가 이격 배치될 수 있다. 이러한 패턴부(225)는 전달유로(222)를 거처 공급유로(223)로 유입되는 극저온냉매의 흐름을 안정화할 수 있다.In addition, a plurality of pattern parts 225 may be disposed to be spaced apart from each other along the inner surface of the supply passage 223 . The pattern portion 225 may stabilize the flow of cryogenic refrigerant flowing into the supply passage 223 through the delivery passage 222 .
도 8은 도 3에 도시된 제2 몸체의 제2 변형예를 나타낸 단면도이고, 도 9는 도 4에 도시된 극저온용 절삭 툴킷의 제2 변형예를 나타낸 단면도이다.8 is a cross-sectional view illustrating a second modified example of the second body shown in FIG. 3 , and FIG. 9 is a cross-sectional view illustrating a second modified example of the cryogenic cutting toolkit shown in FIG. 4 .
도 8 및 도 9를 참고하면, 제2 변형예에 따른 패턴부(225)는 공급유로(223)의 내측면에 둘레를 따라 나선형으로 형성되어 극저온냉매와 마찰될 수 있다. 예를 들어, 패턴부(225)는 공급유로(223)의 일단부로부터 타단부까지 연장 형성될 수 있다. 이에 따라, 패턴부(225)는 공급유로(223)로 유입된 극저온냉매가 회전형태로 흐르도록 유도함으로써 극저온냉매의 흐름을 안정화할 수 있다.Referring to FIGS. 8 and 9 , the pattern part 225 according to the second modified example is spirally formed along the periphery on the inner surface of the supply passage 223 to rub against the cryogenic refrigerant. For example, the pattern portion 225 may be formed to extend from one end of the supply passage 223 to the other end. Accordingly, the pattern unit 225 may stabilize the flow of the cryogenic refrigerant by inducing the cryogenic refrigerant introduced into the supply passage 223 to flow in a rotational form.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments presented herein, and those skilled in the art who understand the spirit of the present invention can add components within the scope of the same spirit. , changes, deletions, additions, etc. may easily suggest other embodiments, but this will also fall within the scope of the present invention.

Claims (10)

  1. 내부에 중공부가 형성되고, 외측면에 극저온냉매가 주입되는 주입홀이 형성된 하우징;a housing having a hollow portion formed therein and an injection hole through which a cryogenic refrigerant is injected on an outer surface thereof;
    상기 중공부에 삽입되고 단부에는 가공툴이 결합되며, 내부에 축방향을 따라 형성되어 상기 중공부와 연통되는 공급유로를 통해 상기 극저온냉매를 상기 가공툴 측으로 공급하는 툴홀더; 및a tool holder inserted into the hollow part and coupled to an end of the processing tool, the tool holder being formed along the axial direction therein and supplying the cryogenic refrigerant to the processing tool side through a supply passage communicating with the hollow part; and
    상기 중공부에 배치되어 상기 툴홀더의 외측면에 결합되는 베어링을 포함하고,and a bearing disposed in the hollow part and coupled to the outer surface of the tool holder,
    상기 툴홀더는,The tool holder is
    상기 공급유로 내측면에 형성되어 상기 극저온냉매의 흐름을 안정화하는 패턴부를 포함하는 극저온용 절삭 툴킷.A cryogenic cutting toolkit including a pattern part formed on the inner surface of the supply passage to stabilize the flow of the cryogenic refrigerant.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 패턴부는,The pattern part,
    상기 공급유로의 길이방향을 따라 돌출 형성되고, 복수개가 상기 공급유로 둘레를 따라 배치되는 극저온용 절삭 툴킷.A cutting toolkit for cryogenic temperatures protruding along the longitudinal direction of the supply flow path, the plurality of which are disposed along the circumference of the supply flow path.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 패턴부는,The pattern part,
    상기 공급유로의 내측면 둘레를 따라 나선형으로 형성되는 극저온용 절삭 툴킷.A cutting toolkit for cryogenic temperatures that is spirally formed along the periphery of the inner surface of the supply passage.
  4. 제 2 항에 있어서,3. The method of claim 2,
    상기 패턴부는,The pattern part,
    양단부에 상기 공급유로 내측면을 향해 경사지는 경사면이 형성되는 극저온용 절삭 툴킷.A cutting toolkit for cryogenic temperatures in which inclined surfaces inclined toward the inner surface of the supply passage are formed at both ends.
  5. 제 2 항에 있어서,3. The method of claim 2,
    상기 패턴부는,The pattern part,
    단면이 삼각형상으로 형성되는 극저온용 절삭 툴킷.Cryogenic cutting toolkit with a triangular cross section.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 툴홀더는,The tool holder is
    외측면의 둘레방향을 따라 형성되는 가이드홈; 및a guide groove formed along the circumferential direction of the outer surface; and
    상기 가이드홈에서 상기 공급유로 측으로 연장되어, 상기 중공부의 상기 극저온냉매를 상기 공급유로로 전달하는 전달유로를 포함하는 극저온용 절삭 툴킷.Cryogenic cutting tool kit including a delivery flow path extending from the guide groove toward the supply flow path to deliver the cryogenic refrigerant of the hollow part to the supply flow path.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 중공부에서 상기 베어링의 일측에 배치되어, 상기 가공툴의 외측면에 결합되는 실링부를 더 포함하는 극저온용 절삭 툴킷.Cryogenic cutting tool kit disposed on one side of the bearing in the hollow portion, further comprising a sealing portion coupled to the outer surface of the machining tool.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 베어링은,The bearing is
    PTFE 소재가 코팅되는 극저온용 절삭 툴킷.Cryogenic cutting toolkit coated with PTFE material.
  9. 제 7 항에 있어서,8. The method of claim 7,
    상기 하우징의 단부에 결합되고 중심부에는 상기 툴홀더가 관통하며, 상기 중공부의 단부를 밀폐하는 스토퍼를 더 포함하는 극저온용 절삭 툴킷.Cryogenic cutting toolkit coupled to the end of the housing and passing through the tool holder in the center, further comprising a stopper for sealing the end of the hollow part.
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 스토퍼는,The stopper is
    내측면에 둘레방향을 따라 연장되어 상기 실링부가 삽입되는 제2 안착홈이 형성된 극저온용 절삭 툴킷.A cryogenic cutting toolkit having a second seating groove extending along the circumferential direction on the inner surface into which the sealing part is inserted.
PCT/KR2021/014509 2020-11-23 2021-10-18 Cryogenic cutting tool kit WO2022108128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0157877 2020-11-23
KR1020200157877A KR102477395B1 (en) 2020-11-23 2020-11-23 Cryogenic cutting toolkit

Publications (1)

Publication Number Publication Date
WO2022108128A1 true WO2022108128A1 (en) 2022-05-27

Family

ID=81709127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014509 WO2022108128A1 (en) 2020-11-23 2021-10-18 Cryogenic cutting tool kit

Country Status (2)

Country Link
KR (1) KR102477395B1 (en)
WO (1) WO2022108128A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007493A (en) * 2005-06-28 2007-01-18 Isuzu Motors Ltd Mist generator
US20120093604A1 (en) * 2010-10-15 2012-04-19 Jay Christopher Rozzi Mechanism for delivering cryogenic coolant to a rotating tool
CN109648372A (en) * 2019-01-29 2019-04-19 大连理工大学 A kind of knife handle suitable for ultralow temperature medium cooling and lubricating
JP2019103972A (en) * 2017-12-12 2019-06-27 株式会社塩 Nozzle, nozzle module and machine tool mounted with nozzle module
KR102136977B1 (en) * 2019-02-18 2020-07-23 한국정밀기계(주) Tooling kit with cryogenic injection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220200A (en) * 2008-03-14 2009-10-01 Jtekt Corp Fluid feeding unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007493A (en) * 2005-06-28 2007-01-18 Isuzu Motors Ltd Mist generator
US20120093604A1 (en) * 2010-10-15 2012-04-19 Jay Christopher Rozzi Mechanism for delivering cryogenic coolant to a rotating tool
JP2019103972A (en) * 2017-12-12 2019-06-27 株式会社塩 Nozzle, nozzle module and machine tool mounted with nozzle module
CN109648372A (en) * 2019-01-29 2019-04-19 大连理工大学 A kind of knife handle suitable for ultralow temperature medium cooling and lubricating
KR102136977B1 (en) * 2019-02-18 2020-07-23 한국정밀기계(주) Tooling kit with cryogenic injection

Also Published As

Publication number Publication date
KR20220070872A (en) 2022-05-31
KR102477395B1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
US4928997A (en) Rotating union with carbon graphite labyrinthine seal
US6511228B2 (en) Oil annulus to circumferentially equalize oil feed to inner race of a bearing
EP0458499A2 (en) Apparatus for cooling a spindle bearing of a machine
US6672809B2 (en) Tool holder and cooling apparatus therefor
US20010047885A1 (en) Rotating drilling head system with static seals
US4514099A (en) Hydrodynamic bearing assembly
WO2022108128A1 (en) Cryogenic cutting tool kit
US4127309A (en) Unlimited sliding ball spline assembly
EP1111287B1 (en) High temperature rotating union
WO2014157943A1 (en) Chuck for combining full-stud bolt and manufacturing method therefor
JP6487329B2 (en) Sealing system for a tool gripping device
US6389939B1 (en) Multiple-spindle bar machine
US4621568A (en) Rotary hydraulic cylinder
EP0922873B1 (en) Hydrodynamic shaft bearing with concentric outer hydrostatic bearing
CN214534064U (en) Small hole and slit composite throttling gas static pressure thrust bearing
KR100818595B1 (en) Rotary joint for spindle of construction machine
CN214617464U (en) Integrated dual-lubrication connecting rod bushing
TW202129166A (en) Angular contact ball bearing and spindle device for machine tool
CN214404395U (en) High-strength machine tool spindle bearing structure
KR101336347B1 (en) Ball screw for machine tool
CN220497799U (en) Boring cutter and boring machine
CN219925933U (en) Interference shaft sleeve disassembling tool
WO2023065157A1 (en) Mounting sleeve for bearing, shaft, and bearing assembly
KR102112216B1 (en) Cooling the compressor shaft seal apparatus
CN115990833A (en) Workpiece fixture device of bearing inner ring superfinishing machine and bearing inner ring superfinishing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894900

Country of ref document: EP

Kind code of ref document: A1