WO2022107958A1 - High-efficiency thermoelectric generation module - Google Patents

High-efficiency thermoelectric generation module Download PDF

Info

Publication number
WO2022107958A1
WO2022107958A1 PCT/KR2020/016747 KR2020016747W WO2022107958A1 WO 2022107958 A1 WO2022107958 A1 WO 2022107958A1 KR 2020016747 W KR2020016747 W KR 2020016747W WO 2022107958 A1 WO2022107958 A1 WO 2022107958A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
module
temperature
efficiency
power module
Prior art date
Application number
PCT/KR2020/016747
Other languages
French (fr)
Korean (ko)
Inventor
권택율
권용재
Original Assignee
주식회사 리빙케어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 리빙케어 filed Critical 주식회사 리빙케어
Publication of WO2022107958A1 publication Critical patent/WO2022107958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction

Definitions

  • the present invention relates to a high-efficiency thermoelectric power module, and more particularly, it is possible to easily implement a thermoelectric power module, and through a simple series-parallel mixing structure inside the module, the maximum power generation output can be obtained without the installation of an additional load control device, etc. It relates to a high-efficiency thermoelectric generator.
  • the present invention is derived from research conducted as part of the energy technology development project of the Ministry of Trade, Industry and Energy and the Korea Energy Technology Evaluation Institute [Project management number: 20172010000760, task name: 10kW class thermoelectric power generation using unused waste heat of non-ferrous industry melting and casting process system development].
  • Thermoelectric technology is an eco-friendly energy technology that can freely convert heat and electricity by utilizing the Seebeck effect that converts thermal energy into electrical energy and the Peltier effect that converts electrical energy into thermal energy.
  • thermoelectric element 1 is a schematic diagram showing the basic principle of cooling (Peltier effect) and power generation (Seebeck effect) by a thermoelectric element is disclosed. In both cases, the scope of application depends on whether electrons and holes move charge or heat.
  • Thermoelectric energy conversion is implemented in the form of a module composed of n-type and p-type semiconductor thermoelectric materials and electrodes connected in series.
  • thermoelectric generation is a phenomenon in which an electromotive force is generated by a temperature difference applied to both ends of a module, and thermoelectric cooling uses a phenomenon in which heat flows by an applied current.
  • thermoelectric generators have been variously applied to household appliances or devices such as gas burners, stoves, or heating elements.
  • Gas burners have recently been widely used for heating in apartments and homes, or for cooking indoors and outdoors.
  • heating and cooking methods using a gas burner are preferred in many places.
  • the waste heat remaining after heating the heat exchanger of the gas burner is discharged to the outside as it is and wasted.
  • the thermal energy of the wasted gas is converted into electricity by a thermoelectric generator for power generation and energy saving for people's daily lives, and can be usefully used as power consumption for electric fans, lights, TVs, chargers, and the like.
  • thermoelectric module (thermopile) including an array of Bi 2 Te 3 based semiconductor devices.
  • the configuration of this module provides a chemically stable environment for the thermoelectric material to ensure a long lifespan.
  • the gas burner is installed on one side of the thermopile, and the other side is kept cold with aluminum cooling fins or heat pipe parts.
  • the thermoelectric module operates as a thermoelectric generator by maintaining a temperature of about 540°C on the high-temperature side and about 140°C on the low-temperature side. The flow of heat through a thermopile can produce stable DC power without mechanical motion.
  • thermoelectric power generation device using the Seebeck effect of the thermoelectric element continues to increase in demand and necessity in line with recent environmental pollution and energy saving issues.
  • various exhaust gases and waste heat can be used as energy sources to increase energy efficiency or collect waste heat, such as automobile engines and exhaust devices, waste heat from waste incinerators, steel mills, and medical devices using human body heat. It can be applied to various fields of use.
  • thermoelectric generator the main problem of such a thermoelectric generator is a relatively low conversion efficiency (typically about 5%). This problem limits the use of the thermoelectric generator as a power generator in many fields where reliability is an important consideration.
  • thermoelectric generator module uses waste heat as a heat source, the temperature of the waste heat is not uniform and there is a considerable variation. There is a problem that is lowered.
  • An object of the present invention is to provide a high-efficiency thermoelectric generator that can easily implement a thermoelectric power module and can achieve maximum power generation output without installing an additional load control device through a simple series-parallel mixing structure inside the module.
  • thermoelectric element that generates an electromotive force using the temperature difference between a high temperature part and a low temperature part
  • unit module in which at least two of the thermoelectric elements are connected in parallel to each other as a unit cell, and the unit modules are at least This is achieved through a high-efficiency thermoelectric power module comprising two thermoelectric modules connected in series with each other.
  • thermoelectric module may be formed as an integrated module in which a water jacket is provided at a low temperature part.
  • a temperature sensor may be further provided on the outer surface of the thermoelectric module or the water jacket.
  • thermoelectric module may be formed in a structure in which at least three or more unit modules are connected in series to each other.
  • a ceramic panel may be disposed on the high-temperature portion of the thermoelectric module.
  • thermoelectric power module can be easily implemented, and the maximum power generation output of the thermoelectric power module can be obtained without the installation of an additional load control device, etc. through a simple series-parallel mixing structure inside the module.
  • thermoelectric element 1 is a schematic diagram showing the basic principles of the Peltier effect and the Seebeck effect by a thermoelectric element.
  • thermoelectric power module 2 is a schematic diagram showing the overall appearance of a high-efficiency thermoelectric power module according to an embodiment of the present invention.
  • thermoelectric power module 3 is a schematic diagram showing a front view of a high-efficiency thermoelectric power module according to an embodiment of the present invention.
  • thermoelectric power module 4 is a schematic diagram showing a state of a ceramic panel in which a slit is formed in a high temperature part of a high-efficiency thermoelectric power module according to an embodiment of the present invention.
  • thermoelectric power module 5 is a schematic diagram showing the structure of the upper and lower substrates on which thermoelectric elements are installed and the upper and lower substrates on which conventional thermoelectric elements are disposed of the high-efficiency thermoelectric power module according to an embodiment of the present invention.
  • thermoelectric power module 6 is a schematic diagram illustrating a module structure in a state in which the upper and lower substrates of a high-efficiency thermoelectric power module are coupled and a module structure in a state in which the upper and lower substrates of a conventional thermoelectric power module are coupled according to an embodiment of the present invention.
  • thermoelectric power module 7 is a graph showing a change in power generation output of a high-efficiency thermoelectric power module according to an embodiment of the present invention compared with a change in power generation output of a thermoelectric module having a conventional structure.
  • thermoelectric element that generates an electromotive force using the temperature difference between a high temperature part and a low temperature part
  • unit module in which at least two of the thermoelectric elements are connected in parallel to each other as a unit cell, and the unit modules are at least This is achieved through a high-efficiency thermoelectric power module comprising two thermoelectric modules connected in series with each other.
  • thermoelectric module may be formed as an integrated module in which a water jacket is provided at a low temperature part.
  • a temperature sensor may be further provided on the outer surface of the thermoelectric module or the water jacket.
  • thermoelectric module may be formed in a structure in which at least three or more unit modules are connected in series to each other.
  • a ceramic panel may be disposed on the high-temperature portion of the thermoelectric module.
  • FIG. 2 is a schematic diagram showing the overall appearance of a high-efficiency thermoelectric power module according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a front view of a high-efficiency thermoelectric power module according to an embodiment of the present invention
  • 4 is a schematic diagram showing a ceramic panel in which a slit is formed in the high-temperature part of the high-efficiency thermoelectric power module according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the structure of an upper and lower substrate on which a thermoelectric element of a high-efficiency thermoelectric power module according to an embodiment of the present invention is installed and an upper and lower substrate on which a conventional thermoelectric element is disposed
  • FIG. 6 is an embodiment of the present invention
  • a schematic diagram showing the module structure in a state in which the upper and lower substrates of the high-efficiency thermoelectric power module are combined and the module structure in the state in which the upper and lower substrates of the conventional thermoelectric power module are combined are shown.
  • a graph showing the change in power generation output of the thermoelectric power module is shown by comparing it with the change in power generation output of the thermoelectric module having a conventional structure.
  • thermoelectric elements 111 that generate electromotive force by using the temperature difference between the high-temperature part and the low-temperature part, and the thermoelectric elements 111 are unit cells, at least two are connected in parallel with each other.
  • the unit module 110 and at least two of the unit modules 110 include a thermoelectric module 100 connected in series with each other.
  • the high-efficiency thermoelectric power module includes a unit module 110 in which at least two thermoelectric elements 111 are connected in parallel to each other as a unit cell, and a thermoelectric module 100 in which at least two of these unit modules 110 are connected in series with each other.
  • the thermoelectric power generation device can be easily implemented, and the maximum power generation output of the thermoelectric power module can be obtained without the installation of an additional load control device, etc. through a simple series-parallel mixing structure inside the module.
  • thermoelectric power module For reference, a thermoelectric power module (TEG) is generally used to improve power generation output through an increase in mounting density and a temperature difference between both ends of the module as a method of improving power generation output. That is, it can be said that the mounting density (quantity per unit area of the semiconductor chip mounted in the module) and the power generation output have a proportional relationship, and the temperature difference and the power generation output have a proportional relationship.
  • thermoelectric power module even in a situation where the external environment (temperature difference, mounting density, etc.) of the thermoelectric power module is the same, the power generation output of the thermoelectric power module can be improved even through internal and external resistance matching of the thermoelectric power module.
  • thermoelectric power module corresponds to the difference in heat dissipation at the low temperature side compared to the heat input at the high temperature side
  • the external load (resistance) had to be adjusted in a situation where the resistance of the module was fixed. It was impossible Also, in most cases, the external resistance cannot be adjusted because the load (resistance) connected to the thermoelectric power generation system is fixed, and an expensive load adjusting device can be connected, but there is a problem in that an additional expensive burden is incurred.
  • thermoelectric power module the internal circuit configuration method of the thermoelectric power module is composed of an electrical series connection, so the resistance of the thermoelectric power module is a semiconductor chip that is planted inside the thermoelectric module. It is proportional to the number of (element or leg), and the amount of power generation of the thermoelectric (generation) module is also proportional to the number and shape of the elements (elements) planted (mounted) inside, so to increase the power generation output, ), while increasing the mounting quantity, the method of lowering the height is applied.
  • thermoelectric power module structure the number of elements connected in series inside the module is increased to improve the power generation output, so the weight and volume of the module increase, and the module structure is complicated.
  • thermoelectric generator sequentially looking at the configuration of the thermoelectric generator to which the high-efficiency thermoelectric power module of the present invention is applied from the bottom to the top in terms of thermoelectric power generation, a heat source is disposed at the bottom first, and a heat absorbing plate is disposed on the top of the heat source. and a thermoelectric element are disposed. Therefore, as the heat energy generated from the heat source moves upward, the temperature of the high-temperature substrate of the thermoelectric element is increased, and the low-temperature substrate is cooled by external air, etc. to generate a significant temperature difference between the upper and lower portions of the thermoelectric element. Current is generated due to the Seebeck effect. The generated current is transmitted to the outside by an electrode connection line connected to the thermoelectric element.
  • thermoelectric element 111 The optimum power generation temperature of the thermoelectric element 111 and the temperature difference ( ⁇ t) between the high temperature and low temperature regions appear differently depending on the type of thermoelectric element used. For example, in the case of a thermoelectric element made of a Bi-Te-based alloy, ⁇ t The maximum amount of power generation can be produced at the level of 200 ⁇ 250°C. Also, in the case of SKD or H-H series thermoelectric elements, the maximum amount of power is generated at 500 ⁇ 600°C.
  • thermoelectric power generation system it is advantageous to obtain a large ⁇ t as much as possible because the amount of power generation increases proportionally or linearly by ⁇ t, which is the temperature difference between the temperature of the high temperature part and the low temperature part of the thermoelectric element. , it is possible to secure a large ⁇ t, but the reliability, that is, durability, of the thermoelectric power generation system may drop exponentially. Therefore, it is necessary to take measures to derive the optimal level of power generation by flexibly applying the thermoelectric power generation system according to the aspect of the heat source, and the thermoelectric power generation device according to the present invention can effectively satisfy this need.
  • thermoelectric semiconductors composed of p-type semiconductors and n-type semiconductors are disposed between these electrodes to absorb the heat absorption from the high temperature part substrate.
  • Current is generated in the process of transferring heat to the low-temperature substrate. That is, in the thermoelectric element 110 , in the p-type semiconductor, holes move from the high-temperature substrate to the low-temperature substrate due to the temperature difference between the high-temperature substrate and the low-temperature substrate in the thermoelectric element 110 , and in the n-type semiconductor, electrons move from the high-temperature substrate to the low-temperature substrate. direction, and the current flows counterclockwise according to the movement of holes and electrons, and is transmitted to the outside by the electrode connection line.
  • an insulating resin layer having electrical insulation performance may be further formed between the high temperature portion substrate and the electrode and between the low temperature portion substrate and the electrode, respectively.
  • the insulating resin layer has a glass transition temperature (Tg) of 250° C. or higher, preferably 250 to 300° C., so that it can exhibit continuous thermoelectric performance in a high temperature region ( ⁇ 300° C.). It is preferable to use a heat-resistant resin.
  • the insulating resin layer may include at least one of a thermosetting resin and a thermoplastic resin.
  • the thermosetting resin include an epoxy resin, a polyurethane resin, an alkyd resin, a phenol resin, a melamine resin, a silicone resin, a urea resin, a vegetable oil-modified phenol resin, a xylene resin, a guanamine resin, a diallyl phthalate resin, It may be at least one selected from the group consisting of a vinyl ester resin, an unsaturated polyester resin, a furan resin, a polyimide resin, a cyanate resin, a maleimide resin, and a benzocyclobutene resin.
  • the thermosetting resin may be at least one selected from the group consisting of an epoxy resin, a phenol resin, a melamine resin, a silicone resin, a urethane resin, and a urea resin.
  • the thermoelectric element 111 may be formed as an integrated thermoelectric module 100 with a water jacket 200 provided at a low temperature part.
  • the thermoelectric module 100 integrated with the water jacket 200 in the low-temperature part is a water-cooled thermoelectric module, and a radiation water control valve (not shown) in a pipe provided to supply the radiation water to the water jacket 200 . ) may be provided.
  • a radiation water control valve (not shown) in a pipe provided to supply the radiation water to the water jacket 200 . ) may be provided.
  • it is possible to improve the heat dissipation efficiency by additionally providing a closing valve (not shown) to adjust the pressure of the radiating water supplied by the radiating water control valve.
  • thermoelectric module 100 integrated with the water jacket 200 increases the temperature difference between the high-temperature part and the low-temperature part of the thermoelectric element 111, thereby increasing the efficiency of generating current due to the Seebeck effect. can be further improved.
  • a temperature sensor 210 may be further provided on the outer surface of the thermoelectric element 111 or the water jacket 200 .
  • the temperature sensor 210 may be appropriately installed around the thermoelectric module 100 and the water jacket 200 in consideration of the convenience of installation and the accuracy of temperature measurement of the thermoelectric element 111 according to the structure of the heat source.
  • the type of the heat source to which the thermoelectric generator is applied is not particularly limited, and, for example, may be a heat source selected from the group consisting of a planar heat source, a columnar heat source, and a flame heat source.
  • the flame-type heat source is not directly used for a heat absorbing plate, but uses a flat or cylindrical structure around the flame to use radiation, conduction, and convective heat. It can be applied and used.
  • the material of the heat source can be applied in a solid form such as a metal bar, or in a liquid form such as a molten metal, and the final form in contact with the heat absorbing plate is realized to be a gaseous state in the form of heat. It is preferable to do
  • thermoelectric module 100 may be formed in a structure in which at least three or more unit modules 110 are connected in series to each other.
  • the internal resistance of a general thermoelectric power module is obtained from the sum of the resistances of series-connected thermoelectric elements (element) in each zone, and is obtained by calculating the parallel-connected resistance of each zone.
  • a resistance value of approximately 2.5 ohms is derived. It can be designed by freely adjusting the internal resistance of
  • thermoelectric elements elements
  • the resistance value of the module is measured to be about 2.8 ohms.
  • thermoelectric elements are grouped into two unit modules so that the thermoelectric elements of each unit module are connected in parallel with each other, and between the unit modules are in series with each other.
  • the resistance of the module is measured with a resistance of 0.73 ohm
  • 391 pairs of thermoelectric elements (elements) are grouped into three unit modules so that the thermoelectric elements of each unit module are connected in parallel with each other, and the unit
  • the resistance of the module is measured to be 0.32 ohm.
  • thermoelectric power module can effectively obtain the maximum power generation output of the thermoelectric power module by remarkably reducing the internal resistance value through the series-parallel mixing structure inside the module when compared with the existing thermoelectric power module, and the thermoelectric device ( 111) by configuring the module by connecting three or more unit modules 110 connected in parallel to each other in series, the effect of improving the power generation output can be further maximized.
  • the ceramic panel 300 may be further disposed on the high-temperature portion of the thermoelectric module 100 . That is, the high-efficiency thermoelectric power module has a higher coefficient of thermal expansion compared to the low-temperature part, and frequent contraction and relaxation due to temperature changes, thereby reducing the performance of the module due to stress caused by thermal stress and shortening the life of the thermoelectric module 100.
  • thermoelectric module that can be applied to a bulky thermoelectric power generation device in which a large number of thermoelectric modules are used, and thermal deformation of the thermoelectric module due to the thermal energy of the high temperature part It is possible to improve the performance of the module and extend the lifespan by minimizing the stress and mechanical stress.
  • thermoelectric module 100 is formed on the surface of the ceramic panel 300 to minimize thermal deformation and mechanical stress of the thermoelectric module 100 due to the thermal energy of the high temperature part, thereby improving the performance of the thermoelectric module.
  • the present invention relates to a thermoelectric element for generating an electromotive force by using a temperature difference between a high temperature part and a low temperature part; a unit module in which at least two of the thermoelectric elements are connected in parallel to each other as a unit cell; and a thermoelectric module in which at least two of the unit modules are connected in series with each other.
  • thermoelectric power module can be easily implemented, and the maximum power generation output of the thermoelectric power module can be obtained without the installation of an additional load control device, etc. through a simple series-parallel mixing structure inside the module.

Abstract

The present invention relates to a high efficiency thermoelectric generation module comprising: thermoelectric elements for generating an electromotive force by using a temperature difference between a high-temperature portion and a low-temperature portion; unit modules each having at least two thermoelectric elements, which are connected in parallel to each other; and thermoelectric modules each having at least two unit modules, which are connected in series to each other. According to the present invention, the thermoelectric generation module can be easily implemented, and the maximum power generation output of the thermoelectric generation module can be obtained even without the installation of, for example, an additional load control device, through a serial-parallel mixing structure inside a simple module.

Description

고효율 열전발전모듈High-efficiency thermoelectric power module
본 발명은 고효율 열전발전모듈에 관한 것으로, 더욱 상세하게는 열전발전모듈을 용이하게 구현할 수 있고, 단순한 모듈 내부의 직병렬 혼합 구조를 통해 추가적인 부하조절 장치 등의 설치가 없어도 최대 발전출력을 얻을 수 있는 고효율 열전발전장치에 관한 것이다.The present invention relates to a high-efficiency thermoelectric power module, and more particularly, it is possible to easily implement a thermoelectric power module, and through a simple series-parallel mixing structure inside the module, the maximum power generation output can be obtained without the installation of an additional load control device, etc. It relates to a high-efficiency thermoelectric generator.
본 발명은 산업통상자원부 및 한국에너지기술평가원의 에너지기술개발사업의 일환으로 수행한 연구로부터 도출된 것이다[과제관리번호: 20172010000760, 과제명: 비철산업 용해주조공정의 미활용 폐열을 이용한 10kW급 열전발전시스템 개발].The present invention is derived from research conducted as part of the energy technology development project of the Ministry of Trade, Industry and Energy and the Korea Energy Technology Evaluation Institute [Project management number: 20172010000760, task name: 10kW class thermoelectric power generation using unused waste heat of non-ferrous industry melting and casting process system development].
열전(Thermoelectric) 기술은 열에너지를 전기에너지로 변환하는 Seebeck 효과와 전기에너지를 열에너지로 변환 하는 Peltier 효과를 활용하여 열과 전기를 자유롭게 변환할 수 있는 친환경 에너지 기술이다.Thermoelectric technology is an eco-friendly energy technology that can freely convert heat and electricity by utilizing the Seebeck effect that converts thermal energy into electrical energy and the Peltier effect that converts electrical energy into thermal energy.
도 1에는 열전소자에 의해 냉각(Peltier 효과)과 발전(Seebeck 효과)에 대한 기본원리를 나타낸 모식도가 개시되어 있다. 두 가지 모두 전자(electron)와 홀(hole)이 전하(charge)를 이동시키느냐 아니면 열(heat)을 이동시키느냐에 따라 그 응용범위가 결정된다.1 is a schematic diagram showing the basic principle of cooling (Peltier effect) and power generation (Seebeck effect) by a thermoelectric element is disclosed. In both cases, the scope of application depends on whether electrons and holes move charge or heat.
물성치가 서로 다른 도체 또는 반도체 A와 B를 접합시키고 접합부에 일정한 온도를 유지시켰을 경우 두 물질 A와 B의 양단에 일정한 기전력이 발생하는데, 이를 Seebeck 효과라 한다. 또한, 서로 다른 두 물질의 접합부에 전류를 흘렸을 경우 접합부에서 열의 흡수 및 방출이 일어나게 되는 데 이러한 현상을 Peltier 효과라 한다. 열전에너지 변환은 직렬로 연결된 n형 및 p형의 반도체 열전소재와 전극으로 구성된 모듈의 형태로 구현되는 것이다.When conductors or semiconductors A and B with different physical properties are joined and a constant temperature is maintained at the junction, a constant electromotive force is generated at both ends of the two materials A and B, which is called the Seebeck effect. In addition, when current flows through the junction of two different materials, heat is absorbed and released at the junction. This phenomenon is called the Peltier effect. Thermoelectric energy conversion is implemented in the form of a module composed of n-type and p-type semiconductor thermoelectric materials and electrodes connected in series.
열전발전(Thermolectric Generation)은 모듈의 양단에 인가된 온도 차이에 의해 기전력이 발생되는 현상이며, 열전냉각(Thermoelectric Cooling)은 인가된 전류에 의해 열의 흐름이 발생하는 현상을 이용하는 것이다.Thermoelectric generation is a phenomenon in which an electromotive force is generated by a temperature difference applied to both ends of a module, and thermoelectric cooling uses a phenomenon in which heat flows by an applied current.
최근 열전발전장치는 가스버너, 스토브, 또는 가열소자 등과 같은 생활용 기구나 장치에도 다양하게 적용되고 있다. 가스버너는 최근 아파트 및 가정에서 난방을 위해 사용되거나, 실내 외에서 요리를 하기 위해 널리 사용되고 있다. 특히 전력공급원이 제한되어 있는 경우 많은 장소에서 가스버너를 이용한 난방 및 조리방법이 선호된다. 이때 가스버너의 열교환기를 가열한 후 남은 폐열은 외부로 그대로 배출되어 낭비된다. 이와 같이 낭비되는 가스의 열에너지는 사람들의 일상생활을 위한 발전 및 에너지 절약을 위하여 열전발전장치에 의해 전기로 변환되어 전기 팬, 조명, TV, 충전기 등의 소비전력으로 유용하게 사용할 수 있다.Recently, thermoelectric generators have been variously applied to household appliances or devices such as gas burners, stoves, or heating elements. Gas burners have recently been widely used for heating in apartments and homes, or for cooking indoors and outdoors. In particular, when the power supply source is limited, heating and cooking methods using a gas burner are preferred in many places. At this time, the waste heat remaining after heating the heat exchanger of the gas burner is discharged to the outside as it is and wasted. The thermal energy of the wasted gas is converted into electricity by a thermoelectric generator for power generation and energy saving for people's daily lives, and can be usefully used as power consumption for electric fans, lights, TVs, chargers, and the like.
일반적인 열전발전장치의 핵심적인 구성은 Bi2Te3 계 반도체소자의 배열을 포함한 밀봉된 열전모듈(열전퇴, thermopile)이다. 이러한 모듈의 구성은 열전재료에 화학적으로 안정한 환경을 제공하여 긴 수명을 보장한다. 이러한 열전모듈을 가스버너에 적용할 경우, 가스버너는 열전퇴의 한 쪽에 설치하고, 반대쪽은 알루미늄 냉각핀 또는 히트파이프 부품으로 차갑게 유지한다. 이때 열전모듈은 열전발전기로서 작용하여 고온 측에 약 540℃ 저온 측에 약 140℃의 온도를 유지함으로써 작동하게 된다. 열전퇴를 통한 열의 흐름은 기계적인 운동 없이 안정적인 DC 전력을 만들어낼 수 있다.A key component of a general thermoelectric generator is a sealed thermoelectric module (thermopile) including an array of Bi 2 Te 3 based semiconductor devices. The configuration of this module provides a chemically stable environment for the thermoelectric material to ensure a long lifespan. When this thermoelectric module is applied to a gas burner, the gas burner is installed on one side of the thermopile, and the other side is kept cold with aluminum cooling fins or heat pipe parts. At this time, the thermoelectric module operates as a thermoelectric generator by maintaining a temperature of about 540°C on the high-temperature side and about 140°C on the low-temperature side. The flow of heat through a thermopile can produce stable DC power without mechanical motion.
이러한 열전소자의 제벡 효과(Seebeck effect)를 이용하는 열전발전장치는 최근의 환경 오염 문제와 에너지 절약 이슈와 맞물려 그 수요와 필요성이 계속 증가하고 있다. 즉, 각종 배기가스와 폐열(waste heat)을 에너지 원으로 활용할 수 있어서 자동차 엔진 및 배기장치, 쓰레기 소각장, 제철소 폐열, 인체 열을 이용한 인체 내 의료기기의 전원 등 에너지의 효율을 높이거나 폐열을 수거하여 사용하는 다양한 분야에 응용할 수 있다.The thermoelectric power generation device using the Seebeck effect of the thermoelectric element continues to increase in demand and necessity in line with recent environmental pollution and energy saving issues. In other words, various exhaust gases and waste heat can be used as energy sources to increase energy efficiency or collect waste heat, such as automobile engines and exhaust devices, waste heat from waste incinerators, steel mills, and medical devices using human body heat. It can be applied to various fields of use.
그러나, 이러한, 열전발전장치의 주요한 문제는 상대적으로 낮은 변환효율(일반적으로 약 5%)이다. 이러한 문제점은 열전발전장치가 특히 신뢰성이 중요한 고려사항이 되는 많은 분야에서 전력발전장치로 이용되는 것에 제약이 되고 있다. 또한, 종래 열전발전 소자 모듈은 폐열을 발열원으로 사용하는 경우, 폐열의 온도가 균일하지 않고, 상당폭의 편차가 존재하는데 이러한 발열원으로 온도 변화에 능동적으로 대응하지 못해 발전 성능이 균일하지 못하고, 신뢰도가 저하되는 문제점이 있다.However, the main problem of such a thermoelectric generator is a relatively low conversion efficiency (typically about 5%). This problem limits the use of the thermoelectric generator as a power generator in many fields where reliability is an important consideration. In addition, when the conventional thermoelectric generator module uses waste heat as a heat source, the temperature of the waste heat is not uniform and there is a considerable variation. There is a problem that is lowered.
본 발명의 목적은 열전발전모듈을 용이하게 구현할 수 있고, 단순한 모듈 내부의 직병렬 혼합 구조를 통해 추가적인 부하조절 장치 등의 설치가 없어도 최대 발전출력을 얻을 수 있는 고효율 열전발전장치를 제공하는 것이다.An object of the present invention is to provide a high-efficiency thermoelectric generator that can easily implement a thermoelectric power module and can achieve maximum power generation output without installing an additional load control device through a simple series-parallel mixing structure inside the module.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 고온부와 저온부의 온도차이를 이용하여 기전력을 발생시키는 열전소자, 상기 열전소자들이 단위셀로서 적어도 2개가 서로 병렬 연결된 단위모듈 및 상기 단위모듈들이 적어도 2개가 서로 직렬 연결된 열전모듈을 포함하는 고효율 열전발전모듈을 통해 달성된다.The present invention for achieving the above object is a thermoelectric element that generates an electromotive force using the temperature difference between a high temperature part and a low temperature part, a unit module in which at least two of the thermoelectric elements are connected in parallel to each other as a unit cell, and the unit modules are at least This is achieved through a high-efficiency thermoelectric power module comprising two thermoelectric modules connected in series with each other.
상기 열전모듈은 저온부에 워터재킷이 구비되어 일체화된 모듈로 형성될 수 있다.The thermoelectric module may be formed as an integrated module in which a water jacket is provided at a low temperature part.
상기 열전모듈 또는 워터재킷의 외면에는 온도센서가 더 구비될 수 있다.A temperature sensor may be further provided on the outer surface of the thermoelectric module or the water jacket.
상기 열전모듈은 적어도 3개 이상의 단위모듈들이 서로 직렬 연결된 구조로 형성될 수 있다.The thermoelectric module may be formed in a structure in which at least three or more unit modules are connected in series to each other.
상기 열전모듈의 고온부에는 세라믹 패널이 배치될 수 있다.A ceramic panel may be disposed on the high-temperature portion of the thermoelectric module.
본 발명에 의하면, 열전발전모듈을 용이하게 구현할 수 있고, 단순한 모듈 내부의 직병렬 혼합 구조를 통해 추가적인 부하조절 장치 등의 설치가 없어도 열전발전모듈의 최대 발전출력을 얻을 수 있는 효과가 있다.According to the present invention, the thermoelectric power module can be easily implemented, and the maximum power generation output of the thermoelectric power module can be obtained without the installation of an additional load control device, etc. through a simple series-parallel mixing structure inside the module.
도 1은 열전소자에 의한 Peltier 효과와 Seebeck 효과의 기본원리를 나타낸 모식도이다.1 is a schematic diagram showing the basic principles of the Peltier effect and the Seebeck effect by a thermoelectric element.
도 2는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 전체적인 모습을 나타낸 모식도이다.2 is a schematic diagram showing the overall appearance of a high-efficiency thermoelectric power module according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 고효율 열전발전모듈의 정면 모습을 나타낸 모식도이다.3 is a schematic diagram showing a front view of a high-efficiency thermoelectric power module according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 고온부의 슬릿이 형성된 세라믹 패널의 모습을 나타낸 모식도이다.4 is a schematic diagram showing a state of a ceramic panel in which a slit is formed in a high temperature part of a high-efficiency thermoelectric power module according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 열전소자가 설치된 상하 기판 및 종래 열전소자가 배치된 상하 기판 구조를 나타낸 모식도이다.5 is a schematic diagram showing the structure of the upper and lower substrates on which thermoelectric elements are installed and the upper and lower substrates on which conventional thermoelectric elements are disposed of the high-efficiency thermoelectric power module according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 고효율 열전발전모듈의 상하 기판이 결합된 상태의 모듈 구조 및 종래 열전발전모듈의 상하 기판이 결합된 상태의 모듈 구조를 나타낸 모식도이다.6 is a schematic diagram illustrating a module structure in a state in which the upper and lower substrates of a high-efficiency thermoelectric power module are coupled and a module structure in a state in which the upper and lower substrates of a conventional thermoelectric power module are coupled according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 고효율 열전발전모듈의 발전출력 변화를 종래 구조의 열전모듈의 발전출력 변화와 비교하여 나타낸 그래프이다.7 is a graph showing a change in power generation output of a high-efficiency thermoelectric power module according to an embodiment of the present invention compared with a change in power generation output of a thermoelectric module having a conventional structure.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 고온부와 저온부의 온도차이를 이용하여 기전력을 발생시키는 열전소자, 상기 열전소자들이 단위셀로서 적어도 2개가 서로 병렬 연결된 단위모듈 및 상기 단위모듈들이 적어도 2개가 서로 직렬 연결된 열전모듈을 포함하는 고효율 열전발전모듈을 통해 달성된다.The present invention for achieving the above object is a thermoelectric element that generates an electromotive force using the temperature difference between a high temperature part and a low temperature part, a unit module in which at least two of the thermoelectric elements are connected in parallel to each other as a unit cell, and the unit modules are at least This is achieved through a high-efficiency thermoelectric power module comprising two thermoelectric modules connected in series with each other.
상기 열전모듈은 저온부에 워터재킷이 구비되어 일체화된 모듈로 형성될 수 있다.The thermoelectric module may be formed as an integrated module in which a water jacket is provided at a low temperature part.
상기 열전모듈 또는 워터재킷의 외면에는 온도센서가 더 구비될 수 있다.A temperature sensor may be further provided on the outer surface of the thermoelectric module or the water jacket.
상기 열전모듈은 적어도 3개 이상의 단위모듈들이 서로 직렬 연결된 구조로 형성될 수 있다.The thermoelectric module may be formed in a structure in which at least three or more unit modules are connected in series to each other.
상기 열전모듈의 고온부에는 세라믹 패널이 배치될 수 있다.A ceramic panel may be disposed on the high-temperature portion of the thermoelectric module.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims have meanings consistent with the technical spirit of the present invention based on the principle that the inventor can appropriately define the concept of the term in order to best describe his invention. and should be interpreted as a concept.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part "includes" a certain element, it means that other elements may be further included, rather than excluding other elements, unless otherwise stated.
도 2에는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 전체적인 모습을 나타낸 모식도가 도시되어 있고, 도 3에는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 정면 모습을 나타낸 모식도가 도시되어 있으며, 도 4에는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 고온부의 슬릿이 형성된 세라믹 패널의 모습을 나타낸 모식도가 도시되어 있다.2 is a schematic diagram showing the overall appearance of a high-efficiency thermoelectric power module according to an embodiment of the present invention, and FIG. 3 is a schematic diagram showing a front view of a high-efficiency thermoelectric power module according to an embodiment of the present invention. 4 is a schematic diagram showing a ceramic panel in which a slit is formed in the high-temperature part of the high-efficiency thermoelectric power module according to an embodiment of the present invention.
도 5에는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 열전소자가 설치된 상하 기판 및 종래 열전소자가 배치된 상하 기판 구조를 나타낸 모식도가 도시되어 있고, 도 6에는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 상하 기판이 결합된 상태의 모듈 구조 및 종래 열전발전모듈의 상하 기판이 결합된 상태의 모듈 구조를 나타낸 모식도가 도시되어 있으며, 도 7에는 본 발명의 일실시예에 따른 고효율 열전발전모듈의 발전출력 변화를 종래 구조의 열전모듈의 발전출력 변화와 비교하여 나타낸 그래프가 도시되어 있다.5 is a schematic diagram showing the structure of an upper and lower substrate on which a thermoelectric element of a high-efficiency thermoelectric power module according to an embodiment of the present invention is installed and an upper and lower substrate on which a conventional thermoelectric element is disposed, and FIG. 6 is an embodiment of the present invention A schematic diagram showing the module structure in a state in which the upper and lower substrates of the high-efficiency thermoelectric power module are combined and the module structure in the state in which the upper and lower substrates of the conventional thermoelectric power module are combined are shown. A graph showing the change in power generation output of the thermoelectric power module is shown by comparing it with the change in power generation output of the thermoelectric module having a conventional structure.
이들 도면을 참조하면, 본 발명에 따른 고효율 열전발전모듈은 고온부와 저온부의 온도차이를 이용하여 기전력을 발생시키는 열전소자(111), 상기 열전소자(111)들이 단위셀로서 적어도 2개가 서로 병렬 연결된 단위모듈(110) 및 상기 단위모듈(110)들이 적어도 2개가 서로 직렬 연결된 열전모듈(100)을 포함하는 것으로 구성된다.Referring to these drawings, in the high-efficiency thermoelectric power module according to the present invention, at least two thermoelectric elements 111 that generate electromotive force by using the temperature difference between the high-temperature part and the low-temperature part, and the thermoelectric elements 111 are unit cells, at least two are connected in parallel with each other. The unit module 110 and at least two of the unit modules 110 include a thermoelectric module 100 connected in series with each other.
즉, 본 발명에 따른 고효율 열전발전모듈은 열전소자(111)들이 단위셀로서 적어도 2개가 서로 병렬 연결된 단위모듈(110)과 이러한 단위모듈(110)들이 적어도 2개가 서로 직렬 연결된 열전모듈(100) 구성을 통해 열전발전장치를 용이하게 구현할 수 있고, 단순한 모듈 내부의 직병렬 혼합 구조를 통해 추가적인 부하조절 장치 등의 설치가 없어도 열전발전모듈의 최대 발전출력을 얻을 수 있다.That is, the high-efficiency thermoelectric power module according to the present invention includes a unit module 110 in which at least two thermoelectric elements 111 are connected in parallel to each other as a unit cell, and a thermoelectric module 100 in which at least two of these unit modules 110 are connected in series with each other. Through the configuration, the thermoelectric power generation device can be easily implemented, and the maximum power generation output of the thermoelectric power module can be obtained without the installation of an additional load control device, etc. through a simple series-parallel mixing structure inside the module.
참고로, 열전발전모듈(TEG)은 발전출력 향상방안으로써, 실장밀도 및 모듈 양단의 온도차 증가 등을 통한 발전출력 향상이 일반적으로 사용되고 있다. 즉, 실장밀도(모듈 내 실장되는 반도체 칩의 단위면적당 수량) 와 발전출력은 비례 관계에 있으며, 온도차와 발전출력은 비례 관계에 있다고 할 수 있다.For reference, a thermoelectric power module (TEG) is generally used to improve power generation output through an increase in mounting density and a temperature difference between both ends of the module as a method of improving power generation output. That is, it can be said that the mounting density (quantity per unit area of the semiconductor chip mounted in the module) and the power generation output have a proportional relationship, and the temperature difference and the power generation output have a proportional relationship.
그러나, 열전발전모듈의 외부환경(온도차, 실장밀도 등)이 동일한 상황에서도, 열전발전모듈의 내부 및 외부저항 매칭을 통해서도 열전발전모듈의 발전출력을 향상시킬 수 있다.However, even in a situation where the external environment (temperature difference, mounting density, etc.) of the thermoelectric power module is the same, the power generation output of the thermoelectric power module can be improved even through internal and external resistance matching of the thermoelectric power module.
즉, 열전발전모듈의 발전출력은 고온측의 입열량 대비한 저온측의 방열량의 차이에 해당하므로, 열전발전모듈의 최대출력(Pmax)은 외부 조건이 동일한 조건(모듈양단의 온도차)에서는 Ri = R, 즉 내부저항(Ri)와 외부저항(R)이 같을 때 얻어지게 된다.That is, since the power generation output of the thermoelectric power module corresponds to the difference in heat dissipation at the low temperature side compared to the heat input at the high temperature side, the maximum output (Pmax) of the thermoelectric power module is equal to Ri = It is obtained when R, that is, the internal resistance (Ri) and the external resistance (R) are the same.
Figure PCTKR2020016747-appb-I000001
Figure PCTKR2020016747-appb-I000001
Figure PCTKR2020016747-appb-I000002
Figure PCTKR2020016747-appb-I000002
한편, 기존의 기술(열전모듈의 구조)에서는 모듈의 저항은 고정된 상황에서 외부부하(저항)을 조정할 수밖에 없었으며, 모듈 내부 회로구조가 모두 직렬연결로 이루어져 있기 때문에 모듈의 내부저항을 조정하는 것이 불가능했다. 또한 열전발전시스템에 연결되는 부하(저항)이 고정되어 외부저항을 조정할 수 없는 경우가 대부분이며, 고가의 부하조정 장치를 연결할 수 있지만, 추가적 고가의 부담 비용이 발생하는 문제가 있다.On the other hand, in the existing technology (the structure of the thermoelectric module), the external load (resistance) had to be adjusted in a situation where the resistance of the module was fixed. it was impossible Also, in most cases, the external resistance cannot be adjusted because the load (resistance) connected to the thermoelectric power generation system is fixed, and an expensive load adjusting device can be connected, but there is a problem in that an additional expensive burden is incurred.
즉, 기존 상용 열전모듈(냉각 및 발전모듈 동일)의 회로 구성 및 특징은 열전발전모듈의 내부 회로구성 방식이 전기적 직렬 연결로 회로 구성되어 있어서 열전발전모듈의 저항은 열전모듈 내부에 심겨지는 반도체 칩(엘리먼트 또는 레그)의 숫자에 비례하게 되며, 열전(발전)모듈의 발전량도 내부에 심겨지는(실장되는) 소자(엘리먼트)의 숫자 및 형상에 비례하게 되므로, 발전출력의 증가를 위해 소자(엘리먼트)의 실장 수량을 증가시키면서 높이를 낮추는 방법을 적용하고 있다. That is, the circuit configuration and characteristics of the existing commercial thermoelectric module (the same cooling and power generation module) is that the internal circuit configuration method of the thermoelectric power module is composed of an electrical series connection, so the resistance of the thermoelectric power module is a semiconductor chip that is planted inside the thermoelectric module. It is proportional to the number of (element or leg), and the amount of power generation of the thermoelectric (generation) module is also proportional to the number and shape of the elements (elements) planted (mounted) inside, so to increase the power generation output, ), while increasing the mounting quantity, the method of lowering the height is applied.
따라서 기존의 열전발전모듈 구조에서는 모듈 내부에서 직렬 연결된 소자 개수를 증가시켜 발전 출력을 향상을 도모하게 되므로, 모듈의 무게와 부피가 증가하고 모듈 구조가 복잡해는 문제점 등이 있다.Therefore, in the conventional thermoelectric power module structure, the number of elements connected in series inside the module is increased to improve the power generation output, so the weight and volume of the module increase, and the module structure is complicated.
한편, 본원발명의 고효율 열전발전모듈이 적용되는 열전발전장치의 구성을 열전발전의 측면에서 하부에서부터 상부로 올라가면서 순차적으로 살펴보면, 먼저 맨 하단부에는 발열원이 배치되어 있고, 이러한 발열원의 상부에 흡열판 및 열전소자가 배치된다. 따라서, 발열원에서 발생된 열에너지가 상부로 이동하면서 열전소자의 고온부 기판의 온도는 높게 하고, 저온부 기판은 외부 공기 등에 의해 냉각되어 열전소자의 상부와 하부에서 상당한 온도차가 발생하도록 함으로써, 열전소자는 제벡 효과(Seebeck effect)에 의한 전류를 발생시키게 된다. 이와 같이 발생된 전류는 열전소자에 연결된 전극 연결선에 의해 외부로 전달된다.On the other hand, sequentially looking at the configuration of the thermoelectric generator to which the high-efficiency thermoelectric power module of the present invention is applied from the bottom to the top in terms of thermoelectric power generation, a heat source is disposed at the bottom first, and a heat absorbing plate is disposed on the top of the heat source. and a thermoelectric element are disposed. Therefore, as the heat energy generated from the heat source moves upward, the temperature of the high-temperature substrate of the thermoelectric element is increased, and the low-temperature substrate is cooled by external air, etc. to generate a significant temperature difference between the upper and lower portions of the thermoelectric element. Current is generated due to the Seebeck effect. The generated current is transmitted to the outside by an electrode connection line connected to the thermoelectric element.
상기 열전소자(111)의 최적 발전 온도 및 고온부와 저온부의 온도차이(△t)는 사용된 열전소자의 종류에 따라 다르게 나타나는데, 예를 들어 Bi-Te 계 합금으로 만든 열전소자의 경우, △t 200~250℃수준에서 최대 발전량을 만들어 낼 수 있다. 또한 SKD나 H-H계 열전소자의 경우 500~600℃에서 최대 발전량이 발생된다.The optimum power generation temperature of the thermoelectric element 111 and the temperature difference (Δt) between the high temperature and low temperature regions appear differently depending on the type of thermoelectric element used. For example, in the case of a thermoelectric element made of a Bi-Te-based alloy, Δt The maximum amount of power generation can be produced at the level of 200~250℃. Also, in the case of SKD or H-H series thermoelectric elements, the maximum amount of power is generated at 500~600℃.
열전발전시스템은 열전소자의 고온부의 온도와 저온부의 온도차인 △t에 의해서 발전량이 비례적 또는 선형적으로 증가하게 되기 때문에 가급적이면 큰 △t를 얻는 것이 유리하며, 반대로 고온부의 온도가 너무 높아질 경우, 큰 △t 확보는 가능하나 열전발전시스템의 신뢰성, 즉 내구성은 기하 급수적으로 떨어질 수 있다. 따라서, 발열원의 양태에 따라 열전발전시스템을 유동적으로 적용하여 최적 수준의 발전량을 도출하는 조치가 필요한데, 본 발명에 따른 열전발전장치는 이러한 필요를 효과적으로 충족시킬 수 있다.In the thermoelectric power generation system, it is advantageous to obtain a large Δt as much as possible because the amount of power generation increases proportionally or linearly by Δt, which is the temperature difference between the temperature of the high temperature part and the low temperature part of the thermoelectric element. , it is possible to secure a large Δt, but the reliability, that is, durability, of the thermoelectric power generation system may drop exponentially. Therefore, it is necessary to take measures to derive the optimal level of power generation by flexibly applying the thermoelectric power generation system according to the aspect of the heat source, and the thermoelectric power generation device according to the present invention can effectively satisfy this need.
상기 열전소자(111)의 고온부 기판과 저온부 기판 사이에는 각각 고온부 전극과 저온부 전극이 각각 배치되어 있으며 이러한 전극들 사이에 p형 반도체와 n형 반도체들로 이루어진 열전반도체들이 배치되어 고온부 기판에서 흡수한 열을 저온부 기판로 전달하는 과정에서 전류가 발생하게 된다. 즉, 열전소자(110)에서 고온부 기판과 저온부 기판의 온도차에 의해 p형 반도체에서는 정공(hole)이 고온부 기판로부터 저온부 기판 방향으로 움직이게 되고, n형 반도체에서는 전자(electron)가 고온부 기판으로부터 저온부 기판 방향으로 움직이게 되며, 이러한 정공과 전자의 움직임에 따라 반 시계방향으로 전류가 흐르게 되어, 전극 연결선에 의해 외부로 전달된다.A high temperature part electrode and a low temperature part electrode are respectively disposed between the high temperature part substrate and the low temperature part substrate of the thermoelectric element 111, and thermoelectric semiconductors composed of p-type semiconductors and n-type semiconductors are disposed between these electrodes to absorb the heat absorption from the high temperature part substrate. Current is generated in the process of transferring heat to the low-temperature substrate. That is, in the thermoelectric element 110 , in the p-type semiconductor, holes move from the high-temperature substrate to the low-temperature substrate due to the temperature difference between the high-temperature substrate and the low-temperature substrate in the thermoelectric element 110 , and in the n-type semiconductor, electrons move from the high-temperature substrate to the low-temperature substrate. direction, and the current flows counterclockwise according to the movement of holes and electrons, and is transmitted to the outside by the electrode connection line.
여기서, 상기 고온부 기판과 전극 사이 및 상기 저온부 기판과 전극에는 각각 전기 절연 성능을 갖는 절연 수지층이 더 형성될 수 있다. 이러한 절연 수지층은 고온 영역(≥300℃)에서 지속적인 열전 성능을 발휘할 수 있도록 유리전이온도(Tg)가 250℃이상, 바람직하게는 250 내지 300℃ 내열성 수지를 사용하는 것이 바람직하다.Here, an insulating resin layer having electrical insulation performance may be further formed between the high temperature portion substrate and the electrode and between the low temperature portion substrate and the electrode, respectively. The insulating resin layer has a glass transition temperature (Tg) of 250° C. or higher, preferably 250 to 300° C., so that it can exhibit continuous thermoelectric performance in a high temperature region (≥ 300° C.). It is preferable to use a heat-resistant resin.
또한 상기 절연 수지층은 열경화성 수지(resin) 및 열가소성 수지 중 적어도 하나를 포함할 수 있다. 상기 열경화성 수지의 비제한적인 예로는, 에폭시 수지, 폴리우레탄 수지, 알키드 수지, 페놀 수지, 멜라민 수지, 실리콘 수지, 요소 수지, 식물성유 변성 페놀수지, 크실렌 수지, 구아나민 수지, 디알릴프탈레이트 수지, 비닐에스테르 수지, 불포화 폴리에스테르 수지, 푸란 수지, 폴리이미드 수지, 시아네이트 수지, 말레이미드 수지 및 벤조시클로부텐 수지로 이루어진 군에서 선택된 1종 이상일 수 있다. 구체적으로, 열경화성 수지는 에폭시 수지, 페놀 수지, 멜라민 수지, 실리콘 수지, 우레탄 수지 및 요소 수지로 구성된 군에서 선택된 1종 이상일 수 있다.In addition, the insulating resin layer may include at least one of a thermosetting resin and a thermoplastic resin. Non-limiting examples of the thermosetting resin include an epoxy resin, a polyurethane resin, an alkyd resin, a phenol resin, a melamine resin, a silicone resin, a urea resin, a vegetable oil-modified phenol resin, a xylene resin, a guanamine resin, a diallyl phthalate resin, It may be at least one selected from the group consisting of a vinyl ester resin, an unsaturated polyester resin, a furan resin, a polyimide resin, a cyanate resin, a maleimide resin, and a benzocyclobutene resin. Specifically, the thermosetting resin may be at least one selected from the group consisting of an epoxy resin, a phenol resin, a melamine resin, a silicone resin, a urethane resin, and a urea resin.
상기 열전소자(111)는 저온부에 워터재킷(200)이 구비되어 일체화된 열전모듈(100)로 형성될 수 있다. 이와 같이 저온부에 워터재킷(200)이 구비되어 일체화된 열전모듈(100)은 수냉 방식의 열전모듈로서, 워터재킷(200)에 방열수를 공급하도록 구비된 관에 방열수 제어 밸브(도시하지 않음)가 구비될 수 있다. 또한, 감입밸브(도시하지 않음)를 추가로 구비하여 방열수 제어 밸브에 의해 공급되는 방열수의 압력을 조절하여 방열 효율을 향상시킬 수 있다.The thermoelectric element 111 may be formed as an integrated thermoelectric module 100 with a water jacket 200 provided at a low temperature part. As described above, the thermoelectric module 100 integrated with the water jacket 200 in the low-temperature part is a water-cooled thermoelectric module, and a radiation water control valve (not shown) in a pipe provided to supply the radiation water to the water jacket 200 . ) may be provided. In addition, it is possible to improve the heat dissipation efficiency by additionally providing a closing valve (not shown) to adjust the pressure of the radiating water supplied by the radiating water control valve.
또한, 상기 워터재킷(200)이 구비되어 일체화된 열전모듈(100)은 상기 열전소자(111)의 고온부와 저온부 사이의 온도차를 더욱 크게 함으로써, 제벡 효과(Seebeck effect)에 의한 전류를 발생 효율을 더욱 향상시킬 수 있다.In addition, the thermoelectric module 100 integrated with the water jacket 200 increases the temperature difference between the high-temperature part and the low-temperature part of the thermoelectric element 111, thereby increasing the efficiency of generating current due to the Seebeck effect. can be further improved.
상기 열전소자(111) 또는 워터재킷(200)의 외면에는 온도센서(210)가 더 구비될 수 있다. 상기 온도센서(210)는 상기 발열원이 구조에 따라 설치의 편의성과 열전소자(111) 온도 측정의 정확성 등을 고려하여 열전모듈(100) 주변과 워터재킷(200)등에 적절히 설치될 수 있다.A temperature sensor 210 may be further provided on the outer surface of the thermoelectric element 111 or the water jacket 200 . The temperature sensor 210 may be appropriately installed around the thermoelectric module 100 and the water jacket 200 in consideration of the convenience of installation and the accuracy of temperature measurement of the thermoelectric element 111 according to the structure of the heat source.
상기 열전발전장치가 적용되는 상기 발열원의 종류는 특별히 제한되지 않으며, 예를 들어, 평면형 발열원, 원기둥형 발열원 및 화염형 발열원으로 이루어진 군에서 선택된 발열원일 수 있다. 여기서, 상기 화염형 발열원은 직접 흡열판에 사용하지는 않고 복사, 전도, 대류열을 이용하기 위하여 화염주위에 평면 또는 원기둥형태의 구조물을 덮어 사용하므로 결국, 화염형 발열원에도 평면형 발열원이나 원기둥형 발열원을 적용하여 사용할 수 있다.The type of the heat source to which the thermoelectric generator is applied is not particularly limited, and, for example, may be a heat source selected from the group consisting of a planar heat source, a columnar heat source, and a flame heat source. Here, the flame-type heat source is not directly used for a heat absorbing plate, but uses a flat or cylindrical structure around the flame to use radiation, conduction, and convective heat. It can be applied and used.
또한, 발열원의 소재는 금속 바(Bar) 등 고체형태, 용융된 금속 등의 액체형태등도 적용할 수 있으며, 상기 흡열판과 접촉하는 최종형태는 열기(熱氣)의 형태인 기체상태가 되도록 구현하는 것이 바람직하다.In addition, the material of the heat source can be applied in a solid form such as a metal bar, or in a liquid form such as a molten metal, and the final form in contact with the heat absorbing plate is realized to be a gaseous state in the form of heat. It is preferable to do
상기 열전모듈(100)은 적어도 3개 이상의 단위모듈(110)들이 서로 직렬 연결된 구조로 형성될 수 있다.The thermoelectric module 100 may be formed in a structure in which at least three or more unit modules 110 are connected in series to each other.
이와 관련하여, 일반적인 열전발전모듈의 내부저항은 각 구역에서 직렬 연결된 열전소자(엘리먼트)의 저항의 합에서, 개별 구역의 병렬 연결된 저항의 계산을 통해서 얻어진다. 이 때, 기존의 열전발전모듈에서 내부 저항 10옴의 직렬 회로를 2구역으로 분할된 병렬 구조로 회로 설계 시, 대략 2.5옴의 저항값이 도출되므로, 직병렬 구역의 조절에 따라 기존 열전발전모듈의 내부저항을 자유롭게 조절하여 설계할 수 있다.In this regard, the internal resistance of a general thermoelectric power module is obtained from the sum of the resistances of series-connected thermoelectric elements (element) in each zone, and is obtained by calculating the parallel-connected resistance of each zone. At this time, when designing a circuit in a parallel structure in which a series circuit with an internal resistance of 10 ohms is divided into two sections in an existing thermoelectric power module, a resistance value of approximately 2.5 ohms is derived. It can be designed by freely adjusting the internal resistance of
또한, 기존의 일반적인 열전발전모듈에서 예를 들어, 391쌍의 열전소자(엘리먼트)가 직렬 연결된 구조로 회로 구조를 구현할 경우, 모듈의 저항값은 2.8옴 정도로 측정된다.In addition, when a circuit structure is implemented in a structure in which, for example, 391 pairs of thermoelectric elements (elements) are connected in series in an existing general thermoelectric power module, the resistance value of the module is measured to be about 2.8 ohms.
그러나, 본 발명에 따른 고효율 열전발전모듈의 경우, 391쌍의 열전소자(엘리먼트)를 2개의 단위모듈로 그룹화하여 각 단위모듈의 열전소자들은 서로 병렬로 연결하고, 단위모듈들 사이는 서로 직렬로 연결하여 모듈을 구현할 경우, 모듈의 저항값은 0.73 옴의 저항이 측정되고, 391쌍의 열전소자(엘리먼트)를 3개의 단위모듈로 그룹화하여 각 단위모듈의 열전소자들은 서로 병렬로 연결하고, 단위모듈들 사이는 서로 직렬로 연결하여 모듈을 구현할 경우, 모듈의 저항값은 0.32 옴의 저항이 측정된다.However, in the case of the high-efficiency thermoelectric power module according to the present invention, 391 pairs of thermoelectric elements (elements) are grouped into two unit modules so that the thermoelectric elements of each unit module are connected in parallel with each other, and between the unit modules are in series with each other. When a module is implemented by connecting, the resistance of the module is measured with a resistance of 0.73 ohm, and 391 pairs of thermoelectric elements (elements) are grouped into three unit modules so that the thermoelectric elements of each unit module are connected in parallel with each other, and the unit When a module is implemented by connecting the modules in series with each other, the resistance of the module is measured to be 0.32 ohm.
즉, 상기 고효율 열전발전모듈은 기존의 열전발전모듈과 비교했을 경우, 모듈 내부의 직병렬 혼합 구조를 통해 내부 저항값을 현저히 축소시켜 열전발전모듈의 최대 발전출력을 효과적으로 얻을 수 있으며, 열전소자(111)들이 서로 병렬로 연결된 단위모듈(110)들을 3개 이상 서로 직렬로 연결하는 것으로 모듈을 구성함으로써, 발전출력 향상 효과를 더욱 극대화할 수 있다.That is, the high-efficiency thermoelectric power module can effectively obtain the maximum power generation output of the thermoelectric power module by remarkably reducing the internal resistance value through the series-parallel mixing structure inside the module when compared with the existing thermoelectric power module, and the thermoelectric device ( 111) by configuring the module by connecting three or more unit modules 110 connected in parallel to each other in series, the effect of improving the power generation output can be further maximized.
한편, 상기 열전모듈(100)의 고온부에는 세라믹 패널(300)이 더 배치될 수 있다. 즉, 상기 고효율 열전발전모듈은 저온부에 비해 열팽창률이 크고, 온도변화에 의한 수축과 이완 현상이 빈번히 발생하여 열응력으로 인한 스트레스로 인해 모듈의 성능을 저하시키고, 수명을 단축시키는 열전모듈(100)의 고온부에 세라믹 패널(300)을 설치함으로써, 다수의 열전모듈들이 사용되고 부피가 큰 열전발전장치 등에 적용될 수 있는 대용량의 열전모듈을 용이하게 구현할 수 있고, 고온부의 열에너지로 인한 열전모듈의 열변형과 기계적 스트레스를 최소화하여 모듈의 성능을 개선하며 수명을 연장시킬 수 있다. Meanwhile, the ceramic panel 300 may be further disposed on the high-temperature portion of the thermoelectric module 100 . That is, the high-efficiency thermoelectric power module has a higher coefficient of thermal expansion compared to the low-temperature part, and frequent contraction and relaxation due to temperature changes, thereby reducing the performance of the module due to stress caused by thermal stress and shortening the life of the thermoelectric module 100. ), by installing the ceramic panel 300 in the high temperature part, it is possible to easily implement a large-capacity thermoelectric module that can be applied to a bulky thermoelectric power generation device in which a large number of thermoelectric modules are used, and thermal deformation of the thermoelectric module due to the thermal energy of the high temperature part It is possible to improve the performance of the module and extend the lifespan by minimizing the stress and mechanical stress.
여기서 상기 세라믹 패널(300)의 표면에는 슬릿(310, 320)이 형성되어 고온부의 열에너지로 인한 열전모듈(100)의 열변형과 기계적 스트레스를 최소화하여 열전모듈의 성능을 개선할 수 있다.Here, slits 310 and 320 are formed on the surface of the ceramic panel 300 to minimize thermal deformation and mechanical stress of the thermoelectric module 100 due to the thermal energy of the high temperature part, thereby improving the performance of the thermoelectric module.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the present invention is not limited to the above embodiments, and various modifications and variations from these descriptions are provided by those skilled in the art to which the present invention pertains. This is possible.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the following claims as well as the claims and equivalents.
본 발명은 고온부와 저온부의 온도차이를 이용하여 기전력을 발생시키는 열전소자; 상기 열전소자들이 단위셀로서 적어도 2개가 서로 병렬 연결된 단위모듈; 및 상기 단위모듈들이 적어도 2개가 서로 직렬 연결된 열전모듈을 포함하는 고효율 열전발전모듈에 관한 것이다.The present invention relates to a thermoelectric element for generating an electromotive force by using a temperature difference between a high temperature part and a low temperature part; a unit module in which at least two of the thermoelectric elements are connected in parallel to each other as a unit cell; and a thermoelectric module in which at least two of the unit modules are connected in series with each other.
본 발명에 의하면, 열전발전모듈을 용이하게 구현할 수 있고, 단순한 모듈 내부의 직병렬 혼합 구조를 통해 추가적인 부하조절 장치 등의 설치가 없어도 열전발전모듈의 최대 발전출력을 얻을 수 있는 효과가 있다.According to the present invention, the thermoelectric power module can be easily implemented, and the maximum power generation output of the thermoelectric power module can be obtained without the installation of an additional load control device, etc. through a simple series-parallel mixing structure inside the module.

Claims (5)

  1. 고온부와 저온부의 온도차이를 이용하여 기전력을 발생시키는 열전소자;a thermoelectric element that generates an electromotive force by using the temperature difference between the high temperature part and the low temperature part;
    상기 열전소자들이 단위셀로서 적어도 2개가 서로 병렬 연결된 단위모듈; 및a unit module in which at least two of the thermoelectric elements are connected in parallel to each other as a unit cell; and
    상기 단위모듈들이 적어도 2개가 서로 직렬 연결된 열전모듈;a thermoelectric module in which at least two of the unit modules are connected in series;
    을 포함하는 고효율 열전발전모듈.A high-efficiency thermoelectric power module comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 열전모듈은 저온부에 워터재킷이 구비되어 일체화된 모듈로 형성되는 고효율 열전발전모듈.The thermoelectric module is a high-efficiency thermoelectric power module in which a water jacket is provided in a low temperature part and is formed as an integrated module.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 열전모듈 또는 워터재킷의 외면에는 온도센서가 더 구비되는 고효율 열전발전모듈.A high-efficiency thermoelectric power module further comprising a temperature sensor on an outer surface of the thermoelectric module or the water jacket.
  4. 제1항에 있어서,According to claim 1,
    상기 열전모듈은 적어도 3개 이상의 단위모듈들이 서로 직렬 연결된 구조로 형성되는 고효율 열전발전모듈.The thermoelectric module is a high-efficiency thermoelectric power module in which at least three unit modules are connected in series with each other.
  5. 제1항에 있어서,According to claim 1,
    상기 열전모듈의 고온부에는 세라믹 패널이 배치되는 고효율 열전발전모듈.A high-efficiency thermoelectric power module in which a ceramic panel is disposed on a high-temperature portion of the thermoelectric module.
PCT/KR2020/016747 2020-11-23 2020-11-25 High-efficiency thermoelectric generation module WO2022107958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0157852 2020-11-23
KR1020200157852A KR20220070856A (en) 2020-11-23 2020-11-23 High Efficiency Thermoelectric Power Generation Module

Publications (1)

Publication Number Publication Date
WO2022107958A1 true WO2022107958A1 (en) 2022-05-27

Family

ID=81709240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016747 WO2022107958A1 (en) 2020-11-23 2020-11-25 High-efficiency thermoelectric generation module

Country Status (2)

Country Link
KR (1) KR20220070856A (en)
WO (1) WO2022107958A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4350861A1 (en) 2022-06-10 2024-04-10 LG Energy Solution, Ltd. Battery pack, method for manufacturing battery pack, and vehicle including battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110010782A (en) * 2008-05-16 2011-02-07 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 Device for producing electrical energy from exhaust gas heat
JP2015070067A (en) * 2013-09-27 2015-04-13 Jfeスチール株式会社 Thermoelectric generator and thermoelectric power generation method
JP2016023625A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Thermoelectric generator
KR20180076025A (en) * 2016-12-27 2018-07-05 한국과학기술원 Thermoelectric generator and thermoelectric generator system including harvesting module array for thermal energy harvesting and reconfiguration method for harvesting module array
KR20190097381A (en) * 2018-02-12 2019-08-21 주식회사 경원이앤씨 Thermoelectric Generation Module Adaptive to Temperature Condition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892656A (en) 1993-10-19 1999-04-06 Bass; John C. Thermoelectric generator
KR101327735B1 (en) 2011-12-23 2013-11-11 현대자동차주식회사 Thermoelectric generator of vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110010782A (en) * 2008-05-16 2011-02-07 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 Device for producing electrical energy from exhaust gas heat
JP2015070067A (en) * 2013-09-27 2015-04-13 Jfeスチール株式会社 Thermoelectric generator and thermoelectric power generation method
JP2016023625A (en) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 Thermoelectric generator
KR20180076025A (en) * 2016-12-27 2018-07-05 한국과학기술원 Thermoelectric generator and thermoelectric generator system including harvesting module array for thermal energy harvesting and reconfiguration method for harvesting module array
KR20190097381A (en) * 2018-02-12 2019-08-21 주식회사 경원이앤씨 Thermoelectric Generation Module Adaptive to Temperature Condition

Also Published As

Publication number Publication date
KR20220070856A (en) 2022-05-31

Similar Documents

Publication Publication Date Title
Montecucco et al. Combined heat and power system for stoves with thermoelectric generators
US20100300504A1 (en) Thermoelectric solar plate
WO2022107958A1 (en) High-efficiency thermoelectric generation module
Qiu et al. Development of thermoelectric self-powered heating equipment
CN106816893B (en) Utilize the charge and discharge device of thermoelectric conversion effect
Fabbri et al. Numerical modeling of a new integrated PV-TE cooling system and support
CN110690833A (en) Design method of solar thermoelectric power generation system based on heat pipe heat conduction
US7812246B2 (en) Thermoelectric effect device, energy direct conversion system, and energy conversion system
US8618406B1 (en) Thermoelectric power generation method and apparatus
WO2022097792A1 (en) Large-capacity thermoelectric module
WO2021167203A1 (en) Thermoelectric generation device having uniform power generation performance
Greppi et al. Integrated PV-TEG cooling system and support
WO2021167204A1 (en) Thermoelectric generation apparatus having integrated thermoelectric elements
CN207050021U (en) Kitchen range self charger
WO2021194049A1 (en) Thermoelectric generation apparatus
CN201789451U (en) Vertical-arrangement interlinked water tank type solar thermoelectric double-generation heat collector
CN208690302U (en) A kind of organic/inorganic composite material thermoelectric generating device
GB2384113A (en) Hybrid photovoltaic module
CN201805383U (en) Entity heat pipe heat collector generating power through solar temperature difference
CN108417705A (en) A kind of organic/inorganic composite material thermoelectric generating device
CN201789452U (en) Vertical inline water tank type solar energy temperature difference single-generation heat collector
CN201789455U (en) Metal flow channel double-wing single power generation heat collector
CN216488141U (en) Thermoelectric module integrated structure
CN214949794U (en) Kitchen energy-saving system based on thermoelectric conversion
WO2021256802A1 (en) Power generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962564

Country of ref document: EP

Kind code of ref document: A1