WO2022107831A1 - Polyethylene fiber and method for producing same - Google Patents

Polyethylene fiber and method for producing same Download PDF

Info

Publication number
WO2022107831A1
WO2022107831A1 PCT/JP2021/042343 JP2021042343W WO2022107831A1 WO 2022107831 A1 WO2022107831 A1 WO 2022107831A1 JP 2021042343 W JP2021042343 W JP 2021042343W WO 2022107831 A1 WO2022107831 A1 WO 2022107831A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
less
fiber
fibrous material
dtex
Prior art date
Application number
PCT/JP2021/042343
Other languages
French (fr)
Japanese (ja)
Inventor
史香 川野
明久 古田
靖憲 福島
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022563813A priority Critical patent/JP7405279B2/en
Publication of WO2022107831A1 publication Critical patent/WO2022107831A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K91/00Lines
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • D04C1/12Cords, lines, or tows
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins

Abstract

The present invention provides: a polyethylene fiber which exhibits high adhesiveness without impairing characteristics intrinsic to the fiber, namely, high strength, high elastic modulus and dimensional stability at high temperatures; and a method for producing this polyethylene fiber. According to the present invention, a highly adhesive polyethylene fiber which has high fiber mechanical characteristics, especially high initial elastic modulus that contradicts adhesiveness, is achieved by applying a functional agent to a polyethylene fibrous material in a state where a residual solvent is present and by performing a heat stretching process.

Description

ポリエチレン繊維およびその製造方法Polyethylene fiber and its manufacturing method
 本発明は、高接着性のポリエチレン繊維に関する。 The present invention relates to a highly adhesive polyethylene fiber.
 従来、繊維の接着性向上には表面改質など様々な技術が開示されている。しかしながらポリエチレン繊維は、表面が極性基又は反応性基に乏しいため、市場の要求を満たすほどの接着性を有するポリエチレン繊維を得ることは大きな課題であった。
 これらの問題を解決することを目的として、ポリエチレン繊維表面をガス炎、加熱空気、加熱溶媒、酸、フッ素処理、コロナ放電、紫外線、電子線、放射線、プラズマ等種々の表面処理法により接着性を向上させる試みがなされてきており、例えば特許文献1にはコロナ処理により繊維表面に官能基を生成することで接着性を向上する方法が開示されている。
Conventionally, various techniques such as surface modification have been disclosed for improving the adhesiveness of fibers. However, since the surface of polyethylene fiber is poor in polar groups or reactive groups, it has been a big problem to obtain polyethylene fiber having adhesiveness enough to meet the market demand.
For the purpose of solving these problems, the surface of polyethylene fiber is made adhesive by various surface treatment methods such as gas flame, heated air, heating solvent, acid, fluorine treatment, corona discharge, ultraviolet rays, electron beam, radiation, plasma, etc. Attempts have been made to improve the adhesiveness. For example, Patent Document 1 discloses a method for improving the adhesiveness by forming a functional group on the fiber surface by corona treatment.
特開昭60-146078号公報Japanese Unexamined Patent Publication No. 60-146078
 特許文献1のような従来用いられていた表面処理による手法は、表面の接着性を上げるため処理の度合を上げるにつれ、その影響が繊維内部にも及ぶことで繊維が本来持っていた高強度、高弾性率を損なってしまうという問題があった。そのため、従来の高接着性繊維は未処理のポリエチレン繊維と比較すると初期弾性率が低くなり、それに伴い高温での寸法安定性に劣っていた。
 従って本発明の目的は、繊維が本来持っていた高強度、高弾性率や高温での寸法安定性を大きく損なわずに高い接着性を示すポリエチレン繊維及びその製造方法を提供することにある。
The conventionally used surface treatment method such as Patent Document 1 increases the degree of treatment in order to improve the adhesiveness of the surface, and the influence extends to the inside of the fiber, so that the high strength originally possessed by the fiber is achieved. There was a problem that the high elastic modulus was impaired. Therefore, the conventional high-adhesive fiber has a lower initial elastic modulus than the untreated polyethylene fiber, and accordingly, the dimensional stability at high temperature is inferior.
Therefore, an object of the present invention is to provide a polyethylene fiber which exhibits high adhesiveness without significantly impairing the high strength, high elastic modulus and dimensional stability at high temperature originally possessed by the fiber, and a method for producing the same.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、特定の条件下で機能剤をポリエチレン繊維状物に付与した後に延伸工程及び熱処理工程を行うことで、高い機械的特性、特に接着性と相反関係にある初期弾性率が高い高接着性のポリエチレン繊維が得られることを見出し、本発明を完成した。
 さらにこれらの繊維は高温での高い寸法安定性を有していることから、高温加工での安定性、さらには成形品の高い形態保持性を確保することができる。
 すなわち、本発明にかかる高接着性ポリエチレン繊維は、以下の技術的手段で構成される。
(1)側鎖にエポキシ環を有するエチレン共重合体を含有したポリエチレンからなる単糸を含むポリエチレン繊維であって、マイクロドロップレット法によるエポキシ樹脂を対象とした、前記単糸の界面せん断強度が16MPa以上30MPa以下であり、前記単糸での、引張強度が20cN/dtex以上、且つ初期弾性率が1000cN/dtex以上であり、140℃、30分の熱処理前後における前記単糸の寸法変化率が2.5%以下であるポリエチレン繊維。
(2)側鎖にエポキシ環を有する該エチレン共重合体を0.1質量%以上1.2質量%以下含有する、前記ポリエチレン繊維。
(3)前記単糸の繊度が0.1dtex以上80dtex以下である前記ポリエチレン繊維。
(4)前記ポリエチレン繊維が3本以上からなる、ポリエチレンマルチフィラメント繊維。
(5)前記ポリエチレンマルチフィラメント繊維を含む、組紐、撚糸、釣糸、ロープ、ネット、織物、又は編物のいずれかである物品。
(6)極限粘度[η]が5.0dL/g以上25dL/g以下であり、その繰り返し単位が90モル%以上エチレンからなり、溶媒が100ppm以上残存しているポリエチレン繊維状物と、上記ポリエチレンが可溶な溶媒で溶解させた、側鎖にエポキシ環を有するエチレン共重合体からなる加工液を用い、上記ポリエチレン繊維状物に張力をかけた状態で、0℃以上60℃未満である上記加工液を上記ポリエチレン繊維状物表面に付与し、上記加工液が付与されたポリエチレン繊維状物を、110℃以上の温度で10秒以上の熱処理を行い、総延伸倍率が30倍以下の延伸を実施し、上記ポリエチレン繊維状物は、未延伸又は上記総延伸倍率未満の倍率で延伸されていることを特徴とする、ポリエチレン繊維の製造方法。
As a result of diligent research to solve the above problems, the present inventors have applied a functional agent to a polyethylene fibrous material under specific conditions, and then performed a drawing step and a heat treatment step to obtain high mechanical properties. In particular, they have found that a highly adhesive polyethylene fiber having a high initial elastic coefficient, which has a reciprocal relationship with adhesiveness, can be obtained, and completed the present invention.
Further, since these fibers have high dimensional stability at high temperature, stability in high temperature processing and high morphological retention of the molded product can be ensured.
That is, the highly adhesive polyethylene fiber according to the present invention is composed of the following technical means.
(1) A polyethylene fiber containing a single yarn made of polyethylene containing an ethylene copolymer having an epoxy ring on the side chain, and the interfacial shear strength of the single yarn for an epoxy resin produced by the microdroplet method is high. The tensile strength of the single yarn is 16 MPa or more and 30 MPa or less, the tensile strength is 20 cN / dtex or more, the initial elastic coefficient is 1000 cN / dtex or more, and the dimensional change rate of the single yarn before and after heat treatment at 140 ° C. for 30 minutes is Polyethylene fiber that is 2.5% or less.
(2) The polyethylene fiber containing 0.1% by mass or more and 1.2% by mass or less of the ethylene copolymer having an epoxy ring in the side chain.
(3) The polyethylene fiber having a single yarn fineness of 0.1 dtex or more and 80 dtex or less.
(4) A polyethylene multifilament fiber composed of three or more polyethylene fibers.
(5) An article containing the polyethylene multifilament fiber, which is either a braid, a twisted line, a fishing line, a rope, a net, a woven fabric, or a knitted fabric.
(6) A polyethylene fibrous material having an ultimate viscosity [η] of 5.0 dL / g or more and 25 dL / g or less, a repeating unit of 90 mol% or more of ethylene, and a solvent remaining of 100 ppm or more, and the above polyethylene. The above is 0 ° C. or higher and lower than 60 ° C. in a state where the polyethylene fibrous material is tensioned by using a processing liquid made of an ethylene copolymer having an epoxy ring on the side chain, which is dissolved in a soluble solvent. The processing liquid is applied to the surface of the polyethylene fibrous material, and the polyethylene fibrous material to which the processing liquid is applied is heat-treated at a temperature of 110 ° C. or higher for 10 seconds or longer to draw a total draw ratio of 30 times or less. A method for producing polyethylene fibers, which is carried out and is characterized in that the polyethylene fibrous material is unstretched or stretched at a magnification lower than the total stretch ratio.
 本発明によれば、高強度・高弾性率な接着性に優れたポリエチレン繊維を提供できる。また、このポリエチレン繊維は高温での寸法安定性に優れていることから、組紐、釣糸、手袋、ロープ、ネット、織物及び編物等の材料として好適に用いられる。 According to the present invention, it is possible to provide a polyethylene fiber having high strength and high elastic modulus and excellent adhesiveness. Further, since this polyethylene fiber has excellent dimensional stability at high temperatures, it is suitably used as a material for braids, fishing lines, gloves, ropes, nets, woven fabrics, knits and the like.
 以下、本発明を詳細に説明する。本発明のポリエチレン繊維は、側鎖にエポキシ環を有するエチレン共重合体を含有したポリエチレンからなる単糸を少なくとも1本含み、該単糸は、後述する界面せん断強度、引張強度、初期弾性率、寸法変化率を満たす。本発明のポリエチレン繊維を構成する全ての単糸が、後述する界面せん断強度、引張強度、初期弾性率、寸法変化率を満たし、かつ、側鎖にエポキシ環を有するエチレン共重合体を含有したポリエチレンからなる単糸であることが好ましい。 Hereinafter, the present invention will be described in detail. The polyethylene fiber of the present invention contains at least one single yarn made of polyethylene containing an ethylene copolymer having an epoxy ring in the side chain, and the single yarn contains the interfacial shear strength, tensile strength, initial elastic modulus, which will be described later. Satisfy the dimensional change rate. All the single yarns constituting the polyethylene fiber of the present invention satisfy the interfacial shear strength, tensile strength, initial elastic modulus, and dimensional change rate described later, and contain an ethylene copolymer having an epoxy ring on the side chain. It is preferably a single yarn made of.
 マイクロドロップレット法によるエポキシ樹脂を対象とした、前記単糸の界面せん断強度は、16MPa以上、30MPa以下であることが好ましい。より好ましくは18MPa以上、29MPa以下である。界面せん断強度が低すぎると十分な接着性を得られない可能性があり、界面せん断強度が高すぎるとせん断が加わった際にフィブリル化が発生し易くなる可能性がある。界面せん断強度が上記範囲内であれば斯かる問題は生じ難いので好ましい。 The interfacial shear strength of the single yarn for the epoxy resin produced by the microdroplet method is preferably 16 MPa or more and 30 MPa or less. More preferably, it is 18 MPa or more and 29 MPa or less. If the interfacial shear strength is too low, sufficient adhesiveness may not be obtained, and if the interfacial shear strength is too high, fibrillation may easily occur when shearing is applied. If the interfacial shear strength is within the above range, such a problem is unlikely to occur, which is preferable.
 前記単糸の引張強度は、20cN/dtex以上であることが好ましい。引張強度は22cN/dtex以上であるのがより好ましく、さらに好ましくは25cN/dtex以上であり、特に好ましくは30cN/dtex以上であり、最も好ましくは35cN/dtex以上である。引張強度の上限は特に限定されないが、高接着性を維持したままで引張強度が60cN/dtexを超えるポリエチレン繊維を得ることは、技術的、工業生産的に困難である。 The tensile strength of the single yarn is preferably 20 cN / dtex or more. The tensile strength is more preferably 22 cN / dtex or more, further preferably 25 cN / dtex or more, particularly preferably 30 cN / dtex or more, and most preferably 35 cN / dtex or more. The upper limit of the tensile strength is not particularly limited, but it is technically and industrially difficult to obtain a polyethylene fiber having a tensile strength exceeding 60 cN / dtex while maintaining high adhesiveness.
 前記単糸の初期弾性率は1000cN/dtex以上、2000cN/dtex以下であることが好ましい。初期弾性率は1200cN/dtex以上であるのがより好ましく、さらに好ましくは1400cN/dtex以上であり、1900cN/dtex以下であるのがより好ましく、さらに好ましくは1800cN/dtex以下である。初期弾性率が高すぎると、ロープや組紐への成型加工時にポリエチレン繊維の引き揃えが困難になり、また単糸切れも発生し易くなる虞があるが、初期弾性率が上記範囲内であれば斯かる問題が生じ難いので好ましい。
 前記単糸の高温(140℃)における寸法変化率は2.5%以下であることが好ましく、より好ましくは2.0%以下であり、さらに好ましくは1.5%以下である。寸法変化率が高すぎると後加工で熱を付与する際に安定した加工ができなくなる虞があり、機械的物性が変動する虞がある。
The initial elastic modulus of the single yarn is preferably 1000 cN / dtex or more and 2000 cN / dtex or less. The initial elastic modulus is more preferably 1200 cN / dtex or more, further preferably 1400 cN / dtex or more, still more preferably 1900 cN / dtex or less, still more preferably 1800 cN / dtex or less. If the initial elastic modulus is too high, it becomes difficult to align the polyethylene fibers during molding into a rope or braid, and there is a risk that single yarn breakage may occur. However, if the initial elastic modulus is within the above range, It is preferable because such a problem is unlikely to occur.
The dimensional change rate of the single yarn at a high temperature (140 ° C.) is preferably 2.5% or less, more preferably 2.0% or less, still more preferably 1.5% or less. If the dimensional change rate is too high, stable machining may not be possible when heat is applied in post-machining, and mechanical properties may fluctuate.
 本発明の高接着性ポリエチレン繊維に含まれる機能剤は、側鎖にエポキシ環を有するエチレン共重合体であることが好ましい。極性基であるエポキシ基を添加することで、繊維表面の極性が改善され繊維の接着性が向上する傾向にある。
 本発明における該エチレン共重合体は、エチレン単位及びエポキシ基含有モノマー単位を有し、エポキシ基含有モノマーとしては、例えば、カルボニルオキシ基を有する不飽和カルボン酸グリシジルエステル、及び、メチレンオキシ基を有する不飽和カルボン酸グリシジルエーテルが好ましい。不飽和カルボン酸グリシジルエステルとしては、例えば、グリシジルアクリレート、グリシジルメタクリレート、イタコン酸グリシジルエステルなどが挙げられ、不飽和グリシジルエーテルとしては、例えば、アリルグリシジルエーテル、メタアリルグリシジルエーテル、スチレン-p-グリシジルエーテルなどが挙げられる。
 また、該エチレン共重合体はブロック共重合体、グラフト共重合体、ランダム共重合体、交互共重合体のいずれであってもよい。
The functional agent contained in the highly adhesive polyethylene fiber of the present invention is preferably an ethylene copolymer having an epoxy ring in the side chain. By adding an epoxy group which is a polar group, the polarity of the fiber surface is improved and the adhesiveness of the fiber tends to be improved.
The ethylene copolymer in the present invention has an ethylene unit and an epoxy group-containing monomer unit, and the epoxy group-containing monomer has, for example, an unsaturated carboxylic acid glycidyl ester having a carbonyloxy group and a methyleneoxy group. An unsaturated carboxylic acid glycidyl ether is preferred. Examples of the unsaturated carboxylic acid glycidyl ester include glycidyl acrylate, glycidyl methacrylate and itacon acid glycidyl ester, and examples of the unsaturated glycidyl ether include allyl glycidyl ether, methallyl glycidyl ether and styrene-p-glycidyl ether. And so on.
Further, the ethylene copolymer may be any of a block copolymer, a graft copolymer, a random copolymer, and an alternate copolymer.
 本発明の高接着性ポリエチレン繊維に含まれる該エチレン共重合体の量は0.1質量%以上、1.2質量%以下であるのが好ましい。下限としては、より好ましくは0.3質量%以上であり、0.5質量%以上がさらに好ましい。上限としては、より好ましくは1.0質量%以下であり、さらに好ましくは0.8質量%以下である。該エチレン共重合体の導入量が少なすぎると、高い接着性を発現することができない虞があり、また導入量が多すぎると、繊維の機械的物性に影響を及ぼす虞がある。 The amount of the ethylene copolymer contained in the highly adhesive polyethylene fiber of the present invention is preferably 0.1% by mass or more and 1.2% by mass or less. The lower limit is more preferably 0.3% by mass or more, and further preferably 0.5% by mass or more. The upper limit is more preferably 1.0% by mass or less, still more preferably 0.8% by mass or less. If the amount of the ethylene copolymer introduced is too small, high adhesiveness may not be exhibited, and if the amount introduced is too large, the mechanical properties of the fiber may be affected.
 前記単糸の繊度は0.1dtex以上、80dtex以下であるのが好ましい。単糸繊度が80dtexを超えると、ポリエチレン繊維が硬くなるのと同時に、強度を高め難くなる虞がある。好ましくは70dtex以下、より好ましくは60dtex以下であり、好ましくは0.7dtex以上であり、より好ましくは1dtex以上である。0.7dtex未満の繊維はその製造工程における延伸時や、ポリエチレン繊維の実使用時に毛羽等が発生し易くなる虞がある。 The fineness of the single yarn is preferably 0.1 dtex or more and 80 dtex or less. If the single yarn fineness exceeds 80 dtex, the polyethylene fiber may become hard and at the same time it may be difficult to increase the strength. It is preferably 70 dtex or less, more preferably 60 dtex or less, preferably 0.7 dtex or more, and more preferably 1 dtex or more. Fibers of less than 0.7 dtex may easily generate fluff or the like during stretching in the manufacturing process or when polyethylene fibers are actually used.
 前記単糸の破断伸度は2.0~7.0%であることが好ましく、3.0~5.0%であることがより好ましい。破断伸度が2.0%より低いと複数のマルチフィラメントを引き揃えてロープに加工する際、各マルチフィラメントの引き揃えが悪くなり、単糸が切れるなどのトラブルにより生産性が低下し、得られるロープの強力も低くなってしまうおそれがある。また破断伸度が7.0%より大きいと、引張強度が上述の範囲内となるポリエチレン繊維を得ることは、技術的、工業的に困難である。 The breaking elongation of the single yarn is preferably 2.0 to 7.0%, more preferably 3.0 to 5.0%. If the elongation at break is lower than 2.0%, when multiple multifilaments are aligned and processed into a rope, the alignment of each multifilament becomes poor, and productivity decreases due to troubles such as single yarn breakage. There is a risk that the strength of the rope will be reduced. Further, when the elongation at break is larger than 7.0%, it is technically and industrially difficult to obtain a polyethylene fiber having a tensile strength within the above range.
 ポリエチレンマルチフィラメント繊維を構成する単糸の本数は3本以上が好ましい。構成される単糸の本数が3本未満の場合、繊維が硬くなることで実使用時に扱い難くなる虞がある。また、ポリエチレンマルチフィラメント繊維は、本発明のポリエチレン繊維が3本以上からなることが好ましい。 The number of single yarns constituting the polyethylene multifilament fiber is preferably 3 or more. If the number of composed single yarns is less than 3, the fibers may become hard and difficult to handle in actual use. Further, the polyethylene multifilament fiber is preferably composed of three or more polyethylene fibers of the present invention.
 本発明の高接着性ポリエチレンマルチフィラメント繊維の初期弾性率は950cN/dtex以上、1900cN/dtex以下であることが好ましい。初期弾性率は1000cN/dtex以上であるのがより好ましく、さらに好ましくは1100cN/dtex以上であり、特に好ましくは1200cN/dtex以上であり、1800cN/dtex以下であるのがより好ましく、さらに好ましくは1600cN/dtex以下である。初期弾性率が高すぎると、ロープや組紐への成型加工時にポリエチレン繊維の引き揃えが困難になり、また単糸切れも発生し易くなる虞があるが、初期弾性率が上記範囲内であれば斯かる問題が生じ難いので好ましい。 The initial elastic modulus of the highly adhesive polyethylene multifilament fiber of the present invention is preferably 950 cN / dtex or more and 1900 cN / dtex or less. The initial elastic modulus is more preferably 1000 cN / dtex or more, further preferably 1100 cN / dtex or more, particularly preferably 1200 cN / dtex or more, still more preferably 1800 cN / dtex or less, still more preferably 1600 cN. It is less than / dtex. If the initial elastic modulus is too high, it becomes difficult to align the polyethylene fibers during molding into a rope or braid, and there is a risk that single yarn breakage may occur. However, if the initial elastic modulus is within the above range, It is preferable because such a problem is unlikely to occur.
 本発明においては、前述の高接着性に寄与する機能剤が前記単糸の表層に強固に存在することで、接着性つまり引き抜き試験における界面せん断強度が向上し、さらに超高分子量であるポリエチレンが前記単糸の中心に存在することで高強度及び高弾性率が達成されると推定される。本発明者らは機能剤を前記単糸に均一に分散させた場合は、本発明の効果は生じておらず、前記単糸の表面の方が前記単糸の中心よりも機能剤が高い割合で存在している場合においてのみ、高強度・高弾性率と高接着性が両立可能となることを見出した。前記単糸の表面の方が前記単糸の中心よりも機能剤が高い割合で存在するようにするためには、以下の製造方法で製造すればよい。 In the present invention, the above-mentioned functional agent contributing to high adhesiveness is strongly present on the surface layer of the single yarn, so that the adhesiveness, that is, the interfacial shear strength in the pull-out test is improved, and polyethylene having an ultra-high molecular weight is used. It is presumed that high strength and high elastic modulus are achieved by being present in the center of the single yarn. When the functional agent is uniformly dispersed in the single yarn, the present inventors do not have the effect of the present invention, and the ratio of the functional agent on the surface of the single yarn is higher than that in the center of the single yarn. It was found that high strength, high elastic modulus and high adhesiveness can be achieved only when they are present in. In order to allow the functional agent to be present in a higher proportion on the surface of the single yarn than in the center of the single yarn, it may be produced by the following production method.
 現状の分析機器では、機能剤の繊維内において微量に存在する分布を確認することは困難であるが、微量の機能剤付与下で高度な界面せん断強度が生じること自体が、機能剤が表層に強固に存在することを示している。 With the current analytical equipment, it is difficult to confirm the distribution of the functional agent in the fiber, which is present in a trace amount. It shows that it exists strongly.
 以下に本発明に係る製造方法を示す。 The manufacturing method according to the present invention is shown below.
 本発明では溶液形成法により高接着性ポリエチレン繊維を製造する。溶液形成法としては従来公知の方法を採用すればよく、特に制限はないが、例えば、デカリンやテトラリンなどの揮発性の有機溶媒やパラフィン等の非揮発性の有機溶媒にポリエチレンを溶解させてポリエチレンを繊維状に成形する溶液紡糸法を採用するのが好ましい。 In the present invention, a highly adhesive polyethylene fiber is produced by a solution forming method. As the solution forming method, a conventionally known method may be adopted and is not particularly limited. For example, polyethylene is dissolved in a volatile organic solvent such as decalin or tetraline or a non-volatile organic solvent such as paraffin to form polyethylene. It is preferable to adopt a solution spinning method in which polyethylene is formed into a fibrous form.
 本発明のポリエチレン繊維の原料ポリエチレンは、極限粘度[η]が5.0dL/g以上、25dL/g以下であり、繰り返し単位の90モル%以上がエチレンであるポリエチレンを使用することが好ましい。極限粘度は7.0~22dL/gであるのがより好ましく、さらに好ましくは8.0~20dL/gである。極限粘度が小さすぎると、寸法安定性が劣り、経時での力学物性の変動が大きくなる傾向があり、また20cN/dtex以上の引張強度を実現し難くなる虞がある。一方、極限粘度が大きすぎる場合には、高強度、高弾性率は実現し易くなるが、ポリエチレン繊維を組紐等の製品に加工する後工程において単糸切れが多発する虞がある。極限粘度が上記範囲内にあるポリエチレンを原料とすることで、ポリエチレンの分子末端基が適正範囲となり、繊維や繊維製品中の構造欠陥数を減少させることができる。その結果、ポリエチレン繊維の引張強度や初期弾性率等の力学物性、寸法安定性、および耐磨耗性能を向上させることができ、さらに経時での力学物性の変動も抑制できる。 As the raw material polyethylene for the polyethylene fiber of the present invention, it is preferable to use polyethylene having an ultimate viscosity [η] of 5.0 dL / g or more and 25 dL / g or less, and 90 mol% or more of the repeating unit is ethylene. The ultimate viscosity is more preferably 7.0 to 22 dL / g, still more preferably 8.0 to 20 dL / g. If the ultimate viscosity is too small, the dimensional stability is inferior, the fluctuation of the mechanical characteristics with time tends to be large, and it may be difficult to realize the tensile strength of 20 cN / dtex or more. On the other hand, if the ultimate viscosity is too large, high strength and high elastic modulus can be easily realized, but there is a risk that single yarn breakage will occur frequently in the post-process of processing polyethylene fibers into products such as braids. By using polyethylene having an ultimate viscosity within the above range as a raw material, the molecular terminal groups of polyethylene are in an appropriate range, and the number of structural defects in fibers and textile products can be reduced. As a result, mechanical properties such as tensile strength and initial elastic modulus of polyethylene fiber, dimensional stability, and abrasion resistance can be improved, and fluctuations in mechanical properties over time can be suppressed.
 原料ポリエチレンは、繰り返し単位の90モル%以上がエチレンである。エチレンの繰り返し単位は92モル%以上であるのが好ましく、94モル%以上であるのがより好ましく、最も好ましいのはエチレンの単独重合体である。なお、ポリエチレン繊維の物性に好ましくない影響を与えない範囲であれば、原料ポリエチレンはエチレン以外の成分を含んでいてもよい。例えば、エチレンと少量の他のモノマー、具体的には、α-オレフィン、アクリル酸及びその誘導体、メタクリル酸及びその誘導体、ビニルシラン及びその誘導体等の他のモノマーとエチレンとの共重合体を原料ポリエチレンとして使用することができる。以下では、極限粘度[η]が5.0dL/g以上、25dL/g以下であり、繰り返し単位の90モル%以上がエチレンであるポリエチレンを超高分子量ポリエチレンという。 The raw material polyethylene is ethylene in 90 mol% or more of the repeating unit. The repeating unit of ethylene is preferably 92 mol% or more, more preferably 94 mol% or more, and most preferably a homopolymer of ethylene. The raw material polyethylene may contain a component other than ethylene as long as it does not adversely affect the physical properties of the polyethylene fiber. For example, polyethylene as a raw material is a copolymer of ethylene and a small amount of other monomers, specifically α-olefin, acrylic acid and its derivative, methacrylic acid and its derivative, vinylsilane and its derivative, and other monomers and ethylene. Can be used as. In the following, polyethylene having an intrinsic viscosity [η] of 5.0 dL / g or more and 25 dL / g or less and 90 mol% or more of repeating units being ethylene is referred to as ultra-high molecular weight polyethylene.
 また、極限粘度が上述の範囲内にあるものであれば、原料ポリエチレンは、例えば高密度ポリエチレンと超高分子量ポリエチレンのブレンド、低密度ポリエチレンと超高分子量ポリエチレンのブレンドを含む重量平均分子量が異なるポリエチレンのブレンドであってもよい。さらに、原料ポリエチレンは、重量平均分子量が異なる2種類以上の超高分子量ポリエチレンのブレンドでもよく、分子量分布が異なる2種類以上の超高分子量ポリエチレンのブレンドであってもよい。 Further, if the ultimate viscosity is within the above range, the raw material polyethylene includes, for example, a blend of high-density polyethylene and ultra-high molecular weight polyethylene, and a blend of low-density polyethylene and ultra-high molecular weight polyethylene, and polyethylene having different weight average molecular weights. May be a blend of. Further, the raw material polyethylene may be a blend of two or more types of ultra-high molecular weight polyethylene having different weight average molecular weights, or may be a blend of two or more types of ultra-high molecular weight polyethylene having different molecular weight distributions.
 しかしながら、エチレン以外の成分の含有量が増えすぎると、却って延伸の阻害要因になる場合がある。そのため、高強度繊維を得るという観点から、ポリエチレン中に存在する分岐数は、主鎖炭素原子1000個あたり3個以下であることが好ましい。より好ましくは2個以下、さらに好ましくは1.5個以下である。上記分岐数については、250mgの試料をo-ジクロロベンゼン:p-ジクロロベンゼン-d4が体積比で7:3となるように混合した溶媒に145℃で溶解した後、120℃で13C-NMRを測定し、得られた13C-NMRスペクトルより以下の方法で算出することができる。
 ポリエチレンのエチレン連鎖ピークを30ppmとした時、メチル側鎖由来のピークは37.5ppm付近に、エチル側鎖由来のピークは34ppm付近に、ブチル側鎖由来のピークは23.5ppm付近に検出される。エチレン連鎖ピークの積分値を1000とした時、37.5ppmのピーク積分値をA、34ppmのピーク積分値をB、23.5ppmのピーク積分値をCとした場合、メチル側鎖数はA/2(個/1000C)、エチル側鎖数はB/2(個/1000C)、ブチル側鎖数はC/2(個/1000C)と算出することができる。
However, if the content of components other than ethylene increases too much, it may rather hinder stretching. Therefore, from the viewpoint of obtaining high-strength fibers, the number of branches existing in polyethylene is preferably 3 or less per 1000 main chain carbon atoms. It is more preferably 2 or less, still more preferably 1.5 or less. Regarding the number of branches, 250 mg of the sample was dissolved in a solvent in which o-dichlorobenzene: p-dichlorobenzene-d 4 was mixed so as to have a volume ratio of 7: 3 at 145 ° C., and then 13 C- at 120 ° C. NMR can be measured and calculated from the obtained 13 C-NMR spectrum by the following method.
When the ethylene chain peak of polyethylene is 30 ppm, the peak derived from the methyl side chain is detected at around 37.5 ppm, the peak derived from the ethyl side chain is detected at around 34 ppm, and the peak derived from the butyl side chain is detected at around 23.5 ppm. .. When the integral value of the ethylene chain peak is 1000, the peak integral value of 37.5 ppm is A, the peak integral value of 34 ppm is B, and the peak integral value of 23.5 ppm is C, the number of methyl side chains is A /. It can be calculated as 2 (pieces / 1000C), the number of ethyl side chains is B / 2 (pieces / 1000C), and the number of butyl side chains is C / 2 (pieces / 1000C).
 上述の原料ポリエチレンを有機溶媒に溶解させてポリエチレン溶液を調製する。ポリエチレンの濃度は、0.5質量%以上、40質量%以下であり、好ましくは2.0質量%以上、30質量%以下、より好ましくは4.0質量%以上、20質量%以下である。ポリエチレン濃度が低すぎると、生産効率が低下する傾向がある。一方、ポリエチレンの濃度が高すぎると、原料ポリエチレンの分子量が非常に大きいことに起因して、溶液紡糸法では後述するノズルから吐出させ難くなる傾向がある。 Prepare a polyethylene solution by dissolving the above-mentioned raw material polyethylene in an organic solvent. The concentration of polyethylene is 0.5% by mass or more and 40% by mass or less, preferably 2.0% by mass or more and 30% by mass or less, and more preferably 4.0% by mass or more and 20% by mass or less. If the polyethylene concentration is too low, the production efficiency tends to decrease. On the other hand, if the concentration of polyethylene is too high, it tends to be difficult to discharge from a nozzle, which will be described later, in the solution spinning method due to the extremely large molecular weight of the raw material polyethylene.
 原料ポリエチレンを溶解させる有機溶媒としては、原料ポリエチレンを溶解できる溶媒であって、原料ポリエチレンの融点以上の沸点を有する有機溶媒が好ましく、原料ポリエチレンの融点よりも20℃以上高い沸点を有する有機溶媒がより好ましい。斯かる溶媒としてはn-ノナン、n-デカン、n-ウンデカン、n-ドデカン、n-テトラデカン、n-オクタデカン、あるいは流動パラフィン、灯油等の脂肪族炭化水素系溶媒、キシレン、ナフタリン(ナフタレン)、テトラリン(テトラヒドロナフタレン)、デカリン(デカヒドロナフタレン)、ブチルベンゼン、p-シメン、シクロヘキシルベンゼン、ジエチルベンゼン、ペンチルベンゼン、ドデシルベンゼン、ビシクロヘキシル、メチルナフタリン、エチルナフタリン等の芳香族炭化水素系溶媒あるいはその水素化誘導体、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、1,2,3-トリクロロプロパン、ジクロロベンゼン、1,2,4-トリクロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素溶媒、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル等の鉱油が挙げられる。これらの有機溶媒の中でも揮発性の有機溶媒は、後述する延伸工程において延伸と同時に、ポリエチレン繊維状物から有機溶媒を除去できるので好ましい。なお、本明細書において「ポリエチレン繊維状物」は、未延伸又は後述する総延伸倍率未満の倍率で延伸されたものを指し、すなわち、未延伸糸又は後述する総延伸倍率未満の倍率で延伸された延伸糸(以下、中間糸という)を意味する。具体的には、中間糸は延伸工程が2段以上の多段延伸である場合に少なくとも1段の延伸工程を行っていない延伸糸を指す。 As the organic solvent for dissolving the raw material polyethylene, an organic solvent that can dissolve the raw material polyethylene and has a boiling point higher than the melting point of the raw material polyethylene is preferable, and an organic solvent having a boiling point 20 ° C. or higher higher than the melting point of the raw material polyethylene is preferable. More preferred. Examples of such a solvent include n-nonane, n-decane, n-undecane, n-dodecane, n-tetradecane, n-octadecane, or aliphatic hydrocarbon solvents such as liquid paraffin and kerosene, xylene, naphthalene (naphthalene), and the like. Aromatic hydrocarbon solvents such as tetraline (tetrahydronaphthalene), decalin (decahydronaphthalene), butylbenzene, p-simene, cyclohexylbenzene, diethylbenzene, pentylbenzene, dodecylbenzene, bicyclohexyl, methylnaphthalene, ethylnaphthalene or their hydrogens. Halogened hydrocarbon solvents such as chemical derivatives, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, 1,2,3-trichloropropane, dichlorobenzene, 1,2,4-trichlorobenzene, bromobenzene, etc. , Paraffin-based process oil, naphthalene-based process oil, aromatic process oil and other mineral oils. Among these organic solvents, a volatile organic solvent is preferable because it can remove the organic solvent from the polyethylene fibrous material at the same time as stretching in the stretching step described later. In addition, in this specification, "polyethylene fibrous material" refers to unstretched or stretched at a magnification less than the total draw ratio described later, that is, unstretched yarn or stretched at a magnification less than the total draw ratio described later. It means a drawn yarn (hereinafter referred to as an intermediate yarn). Specifically, the intermediate yarn refers to a drawn yarn in which at least one step of drawing is not performed when the drawing step is multi-step drawing of two or more steps.
 ポリエチレン溶液は、原料ポリエチレンの融点よりも10℃以上高い温度(原料ポリエチレンの融点+10℃以上)で加熱した後、紡糸ノズル(紡糸口金)を通過させて未延伸糸とするのが好ましい(紡糸工程)。加熱温度は原料ポリエチレンの融点+20℃以上であるのがより好ましく、更に好ましくは原料ポリエチレンの融点+30℃以上である。上記温度範囲内で加熱することで、有機溶媒中に分散している原料ポリエチレンを溶解させ均一な溶液とすることができる。 The polyethylene solution is preferably heated at a temperature 10 ° C. or higher higher than the melting point of the raw material polyethylene (melting point of the raw material polyethylene + 10 ° C. or higher) and then passed through a spinning nozzle (spinning cap) to obtain undrawn yarn (spinning step). ). The heating temperature is more preferably + 20 ° C. or higher, which is the melting point of the raw material polyethylene, and more preferably + 30 ° C. or higher, which is the melting point of the raw material polyethylene. By heating within the above temperature range, the raw material polyethylene dispersed in the organic solvent can be dissolved to obtain a uniform solution.
 紡糸口金の温度は、原料ポリエチレンの融点+5℃以上、ポリエチレン溶液に使用した有機溶媒の沸点以下にすることが好ましい。より好ましくは原料ポリエチレンの融点+10℃以上である。紡糸口金の温度が低すぎると、原料ポリエチレンの粘度が低下することにより所望する速度での未延伸糸の引き取りが困難になる場合がある。一方、紡糸口金の温度が有機溶媒の沸点を超えると、ポリエチレン溶液が紡糸口金から吐出された直後に有機溶媒が沸騰してしまい、紡糸口金直下で糸切れが頻繁に発生する虞がある。 The temperature of the spinneret is preferably such that the melting point of the raw material polyethylene is + 5 ° C. or higher and the boiling point of the organic solvent used in the polyethylene solution or lower. More preferably, the melting point of the raw material polyethylene is + 10 ° C. or higher. If the temperature of the spinneret is too low, the viscosity of the raw material polyethylene may decrease, making it difficult to take up the undrawn yarn at a desired speed. On the other hand, when the temperature of the spinneret exceeds the boiling point of the organic solvent, the organic solvent boils immediately after the polyethylene solution is discharged from the spinneret, and there is a possibility that yarn breakage occurs frequently directly under the spinneret.
 紡糸ノズルからの吐出成形物を冷却、固化し、引き取って未延伸糸を得る。冷却方法は特に限定されず、紡糸口金からの吐出成形物を雰囲気温度にさらすことで自然に冷却してもよく、あるいは冷却装置を使用してもよい。冷却装置による冷却方法としては、空気や窒素等のガスによる乾式クエンチ法でもよいし、ポリエチレン溶液に使用した有機溶媒と混和可能な液体、もしくは水等、ポリエチレン溶液に使用した有機溶媒とは混和し難い液体を用いた冷却方法であってもよい。 The molded product discharged from the spinning nozzle is cooled and solidified, and then taken back to obtain undrawn yarn. The cooling method is not particularly limited, and the molded product discharged from the spinneret may be naturally cooled by exposing it to the atmospheric temperature, or a cooling device may be used. The cooling method using the cooling device may be a dry quenching method using a gas such as air or nitrogen, or a liquid that can be mixed with the organic solvent used in the polyethylene solution, or a liquid such as water that is mixed with the organic solvent used in the polyethylene solution. A cooling method using a difficult liquid may be used.
 吐出成形物は、冷却され、固化して未延伸糸となるまでに、1.1倍以上、100倍以下の倍率で変形させることが好ましい。変形倍率は2.0倍以上、80倍以下とするのがより好ましく、更に好ましくは5.0倍以上、50倍以下であり、特に好ましくは7.0~30倍である。変形に要する時間は3分以内とすることが好ましい。より好ましくは2分以内、更に好ましくは1分以内である。変形に要する時間が3分を超えると、未延伸糸を構成するポリエチレン分子鎖の緩和が発生し、高強度・高弾性率のポリエチレン繊維が得られ難くなる虞がある。ポリエチレン溶液を紡糸し、未延伸糸を得る工程では、未延伸糸に含まれる溶媒の一部を除去してもよい。 It is preferable that the discharged molded product is deformed at a magnification of 1.1 times or more and 100 times or less until it is cooled and solidified to become an undrawn yarn. The deformation ratio is more preferably 2.0 times or more and 80 times or less, further preferably 5.0 times or more and 50 times or less, and particularly preferably 7.0 to 30 times. The time required for deformation is preferably 3 minutes or less. It is more preferably within 2 minutes, and even more preferably within 1 minute. If the time required for deformation exceeds 3 minutes, the polyethylene molecular chains constituting the undrawn yarn may be relaxed, making it difficult to obtain polyethylene fibers having high strength and high elastic modulus. In the step of spinning the polyethylene solution to obtain the undrawn yarn, a part of the solvent contained in the undrawn yarn may be removed.
 次いで、得られた未延伸糸を加熱し延伸する(延伸工程)。延伸工程は、1段延伸であってもよく、2段以上の多段延伸であってもよい。ポリエチレン繊維の強力を高める観点からは2段以上の多段延伸を行うのが好ましい。総延伸倍率は、8倍以上とするのが好ましく、より好ましくは10倍以上、さらに好ましくは12倍以上である。総延伸倍率の上限は30倍以下とするのが好ましく、25倍以下とするのがより好ましく、20倍以下とするのがさらに好ましい。なお、総延伸倍率とは、最終段の延伸が終了したポリエチレン繊維の長さを未延伸糸の長さで除した値のことである。 Next, the obtained undrawn yarn is heated and drawn (drawing step). The stretching step may be one-step stretching or multi-step stretching of two or more steps. From the viewpoint of increasing the strength of the polyethylene fiber, it is preferable to perform multi-stage stretching in two or more stages. The total draw ratio is preferably 8 times or more, more preferably 10 times or more, still more preferably 12 times or more. The upper limit of the total draw ratio is preferably 30 times or less, more preferably 25 times or less, and further preferably 20 times or less. The total draw ratio is a value obtained by dividing the length of the polyethylene fiber that has been stretched in the final stage by the length of the undrawn yarn.
 延伸工程においてポリエチレン繊維状物(未延伸糸及び中間糸)を加熱する方法は特に限定されず、空気、窒素等の不活性ガス、水蒸気、液体等の媒体を使用して加熱してもよく、また、加熱ローラー、接触式ヒーター等を使用してもよい。延伸温度は110℃以上が好ましく、より好ましくは120℃以上であり、さらに好ましくは130℃以上である。延伸温度の上限は、繊維が溶断しない範囲であればよい。
 ポリエチレン繊維の延伸倍率はローラーでの総延伸倍率として、8倍以上とするのが好ましく、より好ましくは10倍以上、さらに好ましくは12倍以上である。延伸倍率の上限は30倍以下であれば特に限定されず、所望の引張強度、破断伸度、初期弾性率のポリエチレン繊維が得られるように決定すればよい。
The method for heating the polyethylene fibrous material (unstretched yarn and intermediate yarn) in the drawing step is not particularly limited, and may be heated using a medium such as air, an inert gas such as nitrogen, steam, or a liquid. Further, a heating roller, a contact heater, or the like may be used. The stretching temperature is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 130 ° C. or higher. The upper limit of the stretching temperature may be a range in which the fibers do not melt.
The draw ratio of the polyethylene fiber is preferably 8 times or more, more preferably 10 times or more, still more preferably 12 times or more as the total draw ratio on the roller. The upper limit of the draw ratio is not particularly limited as long as it is 30 times or less, and it may be determined so that a polyethylene fiber having a desired tensile strength, elongation at break and initial elastic modulus can be obtained.
 ポリエチレン溶液が揮発性の有機溶媒を含む場合、ポリエチレン繊維状物の延伸と同時に、当該繊維状物に含まれる有機溶媒も除去することができる(脱溶媒)。一方、ポリエチレン溶液を構成する有機溶媒が不揮発性である場合は、抽出によりポリエチレン繊維状物から不揮発性の有機溶媒を除去すればよい。抽出には、例えば、クロロホルム、ベンゼン、トリクロロトリフルオロエタン(TCTFE)、ヘキサン、ヘプタン、ノナン、デカン、エタノール、高級アルコール等の有機溶媒を使用できる。
 ポリエチレン繊維状物から有機溶媒を除去する脱溶媒工程は、延伸工程とは別の工程として実施してもよいし、延伸工程と同時に行ってもよい。
When the polyethylene solution contains a volatile organic solvent, the organic solvent contained in the fibrous material can be removed at the same time as the polyethylene fibrous material is stretched (desolvent). On the other hand, when the organic solvent constituting the polyethylene solution is non-volatile, the non-volatile organic solvent may be removed from the polyethylene fibrous material by extraction. For extraction, for example, organic solvents such as chloroform, benzene, trichlorotrifluoroethane (TCTFE), hexane, heptane, nonane, decane, ethanol and higher alcohols can be used.
The desolvation step of removing the organic solvent from the polyethylene fibrous material may be carried out as a step different from the stretching step, or may be carried out at the same time as the stretching step.
 本発明の製造方法は、上述の紡糸工程、延伸工程に加えて、ポリエチレン繊維状物を加工液と接触させる工程を含む(加工液接触工程)。加工液接触工程では、100ppm以上の有機溶媒を含むポリエチレン繊維状物に、機能剤と有機溶媒とを含む、温度が0℃以上、60℃未満の加工液を張力をかけた状態で接触させる。これにより、ポリエチレン繊維状物に機能剤を付与することができる。 The manufacturing method of the present invention includes, in addition to the above-mentioned spinning step and drawing step, a step of bringing the polyethylene fibrous material into contact with the processing liquid (processing liquid contact step). In the processing liquid contacting step, a polyethylene fibrous material containing an organic solvent of 100 ppm or more is brought into contact with a working liquid containing a functional agent and an organic solvent and having a temperature of 0 ° C. or higher and lower than 60 ° C. under tension. This makes it possible to impart a functional agent to the polyethylene fibrous material.
 加工液接触工程は、有機溶媒量が100ppm以上であるポリエチレン繊維状物に対して行う限りその実施時期は限定されない。但し、ポリエチレンの結晶化が完了した後では、機能剤を繊維状物内部にまで移動させ難い場合があるので、予め設定した延伸倍率までポリエチレン繊維状物を延伸する最終延伸工程の前に実施するのが好ましい。したがって、加工液接触工程は、紡糸工程後延伸工程前に行うのが好ましく、2段以上の多段延伸を行う場合は、延伸工程の間、例えば2段延伸であれば、1段目と2段目の延伸工程の間に行ってもよい。 The timing of the processing liquid contacting step is not limited as long as it is performed on a polyethylene fibrous material having an organic solvent amount of 100 ppm or more. However, after the polyethylene crystallization is completed, it may be difficult to move the functional agent to the inside of the fibrous material, so this is carried out before the final drawing step of stretching the polyethylene fibrous material to a preset draw ratio. Is preferable. Therefore, the processing liquid contacting step is preferably performed after the spinning step and before the drawing step, and when performing multi-step stretching of two or more steps, it is performed during the drawing step, for example, in the case of two-step stretching, the first step and the second step. It may be performed during the stitch stretching step.
 ポリエチレン繊維状物に含まれる有機溶媒量(残留溶媒量)は100ppm以上であり、好ましくは200ppm以上であり、20質量%以下であるのが好ましく、より好ましくは15質量%以上であり、さらに好ましくは10質量%以上であり、特に好ましくは5質量%以下であり、最も好ましくは2質量%以下である。溶媒が完全に除去される前であれば、ポリエチレン繊維状物の内部にまで機能剤を移動させ易いため、個々の繊維状物の内部に機能剤を存在させられるものと考えられる。したがって、機能剤を繊維内部にまで定着させる観点からはポリエチレン繊維状物がある程度残留溶媒を含む状態で加工液接触工程を行うのが好ましい。しかしながら、残留溶媒量は多すぎても、少なすぎても機能剤の繊維状物内部への移動が阻害される傾向がある。なお、残留溶媒量が多すぎる場合は、加工液接触工程に上述の脱溶媒を行って、残留溶媒量を上記範囲内にしておくことが推奨される。 The amount of the organic solvent (residual solvent amount) contained in the polyethylene fibrous material is 100 ppm or more, preferably 200 ppm or more, preferably 20% by mass or less, more preferably 15% by mass or more, still more preferable. Is 10% by mass or more, particularly preferably 5% by mass or less, and most preferably 2% by mass or less. Before the solvent is completely removed, it is easy to move the functional agent to the inside of the polyethylene fibrous material, so that it is considered that the functional agent can be present inside the individual fibrous material. Therefore, from the viewpoint of fixing the functional agent to the inside of the fiber, it is preferable to perform the processing liquid contact step in a state where the polyethylene fibrous material contains a residual solvent to some extent. However, if the amount of residual solvent is too large or too small, the movement of the functional agent into the fibrous material tends to be hindered. If the amount of residual solvent is too large, it is recommended to perform the above-mentioned desolvation in the processing liquid contacting step to keep the amount of residual solvent within the above range.
 機能剤としては、上述したものが好ましく用いられる。より好ましくはエチレン・グリシジルメタクリレート共重合体である。加工液中の機能剤の濃度は、高接着性ポリエチレン繊維中に機能剤が0.1~1.2質量%含まれるように調整すればよいが、一般的には、加工液中の機能剤の濃度は1質量%~5質量%とするのが好ましい。より好ましくは1.2質量%以上、4質量%以下、さらに好ましくは1.4質量%以上、3質量%以下である。機能剤の濃度が低すぎると十分な接着性を発現し難くなる虞があり、機能剤濃度が高すぎる場合は、過剰な機能剤が繊維表面に残留してしまい、ポリエチレン繊維の接着性を低下させることがあるため好ましくない。 As the functional agent, the above-mentioned one is preferably used. More preferably, it is an ethylene / glycidyl methacrylate copolymer. The concentration of the functional agent in the processing liquid may be adjusted so that the highly adhesive polyethylene fiber contains 0.1 to 1.2% by mass of the functional agent, but in general, the functional agent in the processing liquid is used. The concentration of is preferably 1% by mass to 5% by mass. It is more preferably 1.2% by mass or more and 4% by mass or less, and further preferably 1.4% by mass or more and 3% by mass or less. If the concentration of the functional agent is too low, it may be difficult to develop sufficient adhesiveness, and if the concentration of the functional agent is too high, the excess functional agent remains on the fiber surface, and the adhesiveness of the polyethylene fiber is lowered. It is not preferable because it may cause a problem.
 加工液の温度は0℃以上、60℃未満である。より好ましくは5℃以上、さらに好ましくは8℃以上、より一層好ましくは10℃以上であり、好ましくは50℃以下であり、より好ましくは40℃以下である。
 また、加工液と接触させるポリエチレン繊維状物の温度は、50℃以下であるのが好ましく、より好ましくは45℃以下であり、さらに好ましくは40℃以下である。ポリエチレン繊維状物の温度の下限に制限はないが、一般的に室温以上であるのが好ましい。ポリエチレン繊維状物の温度は、例えば赤外線温度計の非接触タイプの温度計による測定することができる。
The temperature of the working liquid is 0 ° C. or higher and lower than 60 ° C. It is more preferably 5 ° C. or higher, further preferably 8 ° C. or higher, even more preferably 10 ° C. or higher, preferably 50 ° C. or lower, and even more preferably 40 ° C. or lower.
The temperature of the polyethylene fibrous material to be brought into contact with the processing liquid is preferably 50 ° C. or lower, more preferably 45 ° C. or lower, and further preferably 40 ° C. or lower. There is no limit to the lower limit of the temperature of the polyethylene fibrous material, but it is generally preferable that the temperature is above room temperature. The temperature of the polyethylene fibrous material can be measured by, for example, a non-contact type thermometer such as an infrared thermometer.
 加工液の温度が高すぎると、揮発性の有機溶媒を使用している場合、有機溶媒が速やかに蒸発して機能剤だけがポリエチレン繊維状物表面に残り、ポリエチレン繊維状物の内部にまで機能剤を移動させ難くなる傾向がある。この場合、続く工程において周辺部材を汚染する虞がある。また加工液温度が高すぎる場合には、これと接触するポリエチレン繊維状物の温度が上昇し、加工液接触工程後に行われる熱処理工程や延伸工程でポリエチレン繊維状物に負荷される張力の影響が大きくなり、その結果、繊度ムラや強度ムラ(糸ムラ)が生じる虞もある。特に加工液接触工程に続けて延伸工程を行う場合、ポリエチレン繊維状物の温度が高すぎると延伸点固定されず、延伸ムラが生じる虞がある。
 なお、ポリエチレン繊維状物の温度が十分低くても、加工液の温度が高い場合には、加工液との接触時にポリエチレン繊維状物内に形成された結晶構造が崩れて、結果的に付与ムラが生じる虞がある。加工液の温度、及びポリエチレン繊維状物の温度が上記範囲内であれば、上述の問題は生じ難いので好ましい。
If the temperature of the processing liquid is too high, when a volatile organic solvent is used, the organic solvent evaporates quickly and only the functional agent remains on the surface of the polyethylene fibrous material and functions even inside the polyethylene fibrous material. It tends to be difficult to move the agent. In this case, there is a risk of contaminating peripheral members in the subsequent steps. If the temperature of the working liquid is too high, the temperature of the polyethylene fibrous material in contact with the working liquid will rise, and the tension applied to the polyethylene fibrous material in the heat treatment step and stretching step performed after the working liquid contacting step will have an effect. As a result, there is a possibility that fineness unevenness and strength unevenness (thread unevenness) may occur. In particular, when the drawing step is performed after the working liquid contacting step, if the temperature of the polyethylene fibrous material is too high, the drawing point is not fixed and there is a possibility that stretching unevenness may occur.
Even if the temperature of the polyethylene fibrous material is sufficiently low, if the temperature of the processing liquid is high, the crystal structure formed in the polyethylene fibrous material collapses at the time of contact with the processing liquid, resulting in uneven application. May occur. When the temperature of the processing liquid and the temperature of the polyethylene fibrous material are within the above ranges, the above-mentioned problems are unlikely to occur, which is preferable.
ポリエチレン繊維状物と加工液との接触方法は、ポリエチレン繊維状物に加工液を付与できるものであれば特に限定されず、様々な手法を用いることができる。具体的な接触方法としては、ガイドオイリングによりポリエチレン繊維状物と加工液とを接触させる方法、加工液を付着させた回転ローラーの表面にポリエチレン繊維状物を接触させる方法、走行中のポリエチレン繊維状物に加工液を噴霧する方法、加工液のバス中にポリエチレン繊維状物を通過させて接触させる方法等が挙げられる。また、ポリエチレン溶液が不揮発性の有機溶媒(例えばパラフィン等)を含む場合には、脱溶媒工程で使用する抽出溶媒に機能剤を溶解させた加工液を抽出浴とし、この抽出浴中にポリエチレン繊維状物を通過させて、ポリエチレン繊維状物と加工液とを接触させてもよい。 The contact method between the polyethylene fibrous material and the processing liquid is not particularly limited as long as the processing liquid can be applied to the polyethylene fibrous material, and various methods can be used. Specific contact methods include a method of contacting the polyethylene fibrous material with the processing liquid by guide oiling, a method of contacting the polyethylene fibrous material with the surface of the rotating roller to which the processing liquid is adhered, and a running polyethylene fibrous material. Examples thereof include a method of spraying a processing liquid on an object, a method of passing a polyethylene fibrous material through a bath of the processing liquid and bringing it into contact with the object. When the polyethylene solution contains a non-volatile organic solvent (for example, paraffin), a processing solution in which a functional agent is dissolved in an extraction solvent used in the desolvation step is used as an extraction bath, and polyethylene fibers are contained in this extraction bath. The polyethylene fibrous material and the processing liquid may be brought into contact with each other by passing the material through the material.
 ポリエチレン繊維状物への加工液の付与量は、ポリエチレン繊維状物に対して10~60質量%の範囲とするのが好ましい。より好ましくは15質量%以上、さらに好ましくは20質量%以上であり、より好ましくは58質量%以下、さらに好ましくは55質量%以下である。加工液の付与量が少なすぎると十分な接着性が発現し難くなる虞があり、一方加工液の付与量が多すぎると、過剰な機能剤が繊維表面に残留してポリエチレン繊維の接着性が低下する虞がある。 The amount of the processing liquid applied to the polyethylene fibrous material is preferably in the range of 10 to 60% by mass with respect to the polyethylene fibrous material. It is more preferably 15% by mass or more, further preferably 20% by mass or more, still more preferably 58% by mass or less, still more preferably 55% by mass or less. If the amount of the processing liquid applied is too small, it may be difficult to develop sufficient adhesiveness, while if the amount of the processing liquid applied is too large, an excess functional agent remains on the fiber surface and the adhesiveness of the polyethylene fiber becomes poor. There is a risk of deterioration.
 加工液接触工程は、ポリエチレン繊維状物に0.05cN/dtex以上、3cN/dtex以下の張力をかけながら実施するのが好ましい。より好ましくは0.1cN/dtex以上、1cN/dtex以下であり、さらに好ましくは0.2cN/dtex以上、0.8cN/dtex以下である。ポリエチレン繊維状物に負荷される張力が小さすぎる場合には、ポリエチレン繊維状物を安定走行させ難く、振れが生じ、機能剤の付与斑が生じる虞がある。一方、張力が大きすぎると、ポリエチレン繊維状物が収束した状態になり加工液が個々の繊維状物内部にまで浸透し難くなる虞がある。この場合、単糸ごとの機能剤付与ムラが大きくなるだけでなく、機能剤の多くがポリエチレン繊維状物表面に残留し、結果としてポリエチレン繊維の接着性が低下する虞がある。 The processing liquid contacting step is preferably carried out while applying a tension of 0.05 cN / dtex or more and 3 cN / dtex or less to the polyethylene fibrous material. It is more preferably 0.1 cN / dtex or more and 1 cN / dtex or less, and further preferably 0.2 cN / dtex or more and 0.8 cN / dtex or less. If the tension applied to the polyethylene fibrous material is too small, it is difficult to allow the polyethylene fibrous material to run stably, runout may occur, and unevenness of the functional agent may occur. On the other hand, if the tension is too large, the polyethylene fibrous material may be in a converged state and it may be difficult for the processing liquid to permeate into the inside of each fibrous material. In this case, not only the unevenness of applying the functional agent for each single yarn becomes large, but also most of the functional agent remains on the surface of the polyethylene fiber-like material, and as a result, the adhesiveness of the polyethylene fiber may decrease.
 加工液接触工程から熱処理工程までは10秒以上100秒以下であることが好ましく、より好ましくは20秒以上90秒以下である。熱処理工程までの時間が長すぎると、ポリエチレン繊維状物に付与された溶媒が揮発してしまい、機能剤がポリエチレン繊維状物の深部まで移動することが難しくなる虞がある。一方、熱処理工程までの時間が短すぎると、ポリエチレン繊維状物への機能剤の浸透が十分に進まない虞があるため好ましくない。 The period from the processing liquid contacting step to the heat treatment step is preferably 10 seconds or more and 100 seconds or less, and more preferably 20 seconds or more and 90 seconds or less. If the time until the heat treatment step is too long, the solvent applied to the polyethylene fibrous material may volatilize, making it difficult for the functional agent to move to the deep part of the polyethylene fibrous material. On the other hand, if the time until the heat treatment step is too short, the permeation of the functional agent into the polyethylene fibrous material may not proceed sufficiently, which is not preferable.
 本発明では、加工液が付与されたポリエチレン繊維状物を110℃以上で10秒以上加熱する熱処理工程を実施する(熱処理工程)。これにより加工液のポリエチレン繊維状物内部への浸透が促進され、ポリエチレン繊維状物の深部にまで機能剤を移動させ易くなる。その結果、高い接着性を発現するポリエチレン繊維が得られる。熱処理工程を行うことにより、ポリエチレン繊維状物の内部に機能剤を存在させた状態で延伸工程を実施することになり、延伸によるポリエチレンの結晶化により、機能剤をポリエチレン繊維の内部に閉じ込めることができるためであると考えられる。 In the present invention, a heat treatment step of heating the polyethylene fibrous material to which the processing liquid is applied at 110 ° C. or higher for 10 seconds or longer is carried out (heat treatment step). As a result, the permeation of the processing liquid into the polyethylene fibrous material is promoted, and it becomes easy to move the functional agent to the deep part of the polyethylene fibrous material. As a result, a polyethylene fiber exhibiting high adhesiveness can be obtained. By performing the heat treatment step, the stretching step is carried out in a state where the functional agent is present inside the polyethylene fibrous material, and the functional agent can be confined inside the polyethylene fiber by crystallization of polyethylene by stretching. It is thought that this is because it can be done.
 熱処理工程は、加工液接触工程の後であればどのタイミングで行ってもよい。また、熱処理工程は単独で行ってもよく、延伸工程と同時に行ってもよい。熱処理工程を延伸工程と同時に行う場合には、加工液の浸透によるポリエチレン繊維状物の内部への機能剤の移動と、延伸によるポリエチレンの結晶化を同時に進行させることができる。また、熱処理工程と延伸工程とを別個に行う場合には、熱処理工程により機能剤がポリエチレン繊維状物内部に移動した後に、延伸工程を行うことができるため、機能剤をポリエチレン繊維の内部により閉じ込めることができる。好ましくは、熱処理工程を延伸工程と同時に行うことである。 The heat treatment step may be performed at any timing after the working liquid contact step. Further, the heat treatment step may be performed alone or at the same time as the stretching step. When the heat treatment step is performed at the same time as the stretching step, the movement of the functional agent into the polyethylene fibrous material due to the permeation of the processing liquid and the crystallization of polyethylene due to the stretching can proceed at the same time. Further, when the heat treatment step and the stretching step are performed separately, the stretching step can be performed after the functional agent is moved to the inside of the polyethylene fiber by the heat treatment step, so that the functional agent is confined inside the polyethylene fiber. be able to. Preferably, the heat treatment step is performed at the same time as the stretching step.
 加熱温度は、好ましくは120℃以上、より好ましくは130℃以上である。加熱温度の上限は溶断により糸切れが生じない温度、すなわちポリエチレン繊維状物の融点以下とすることが推奨される。 The heating temperature is preferably 120 ° C. or higher, more preferably 130 ° C. or higher. It is recommended that the upper limit of the heating temperature be a temperature at which thread breakage does not occur due to fusing, that is, a temperature equal to or lower than the melting point of the polyethylene fibrous material.
 加熱方法には特に制限がなく、例えば熱風、ホットローラー、輻射パネル、スチームジェット、ホットピンなどの公知の手法を採用することができる。なお、機能剤による汚染を最小限に抑える観点からは、熱風、輻射パネル、及びスチームジェット等を使用する非接触タイプの加熱方法を採用するのが好ましい。 There are no particular restrictions on the heating method, and known methods such as hot air, hot rollers, radiant panels, steam jets, and hot pins can be adopted. From the viewpoint of minimizing contamination by the functional agent, it is preferable to adopt a non-contact type heating method using hot air, a radiant panel, a steam jet, or the like.
 加熱時間は、好ましくは10秒以上、より好ましくは12秒以上、さらに好ましくは15秒以上である。加熱時間の上限は特に限定されないが、例えば150秒以下であるのが好ましく、より好ましくは120秒以下、さらに好ましくは100秒以下である。熱処理工程を単独で実施する場合には、上述の範囲内で熱処理工程と延伸工程とを実施するのが好ましい。 The heating time is preferably 10 seconds or longer, more preferably 12 seconds or longer, and even more preferably 15 seconds or longer. The upper limit of the heating time is not particularly limited, but is preferably 150 seconds or less, more preferably 120 seconds or less, and further preferably 100 seconds or less. When the heat treatment step is carried out independently, it is preferable to carry out the heat treatment step and the stretching step within the above range.
 熱処理工程はポリエチレン繊維状物に張力をかけながら行うことが好ましい。ポリエチレン繊維状物に負荷する張力は0.8cN/dtex~6.5cN/dtexとするのが好ましい。より好ましくは1cN/dtex以上であり、さらに好ましくは2cN/dtex以上であり、より好ましくは6cN/dtex以下であり、さらに好ましくは5cN/dtex以下である。 It is preferable that the heat treatment step is performed while applying tension to the polyethylene fibrous material. The tension applied to the polyethylene fibrous material is preferably 0.8 cN / dtex to 6.5 cN / dtex. It is more preferably 1 cN / dtex or more, further preferably 2 cN / dtex or more, more preferably 6 cN / dtex or less, still more preferably 5 cN / dtex or less.
 熱処理工程で上述の範囲の張力を負荷することでポリエチレンの分子鎖が引き伸ばされることにより毛細管現象が生じ、加工液のポリエチレン繊維状物内部への浸透が一層促進されるので好ましい。熱処理工程での張力が小さすぎる場合には、毛細管現象が生じにくくなる虞がある。一方張力が高すぎると毛羽等が生じ、繊度、強度ムラの少ないポリエチレン繊維を得ることが困難になる虞がある。 It is preferable because the capillarity occurs by stretching the molecular chain of polyethylene by applying the tension in the above range in the heat treatment step, and the permeation of the processing liquid into the polyethylene fibrous material is further promoted. If the tension in the heat treatment step is too small, the capillary phenomenon may be less likely to occur. On the other hand, if the tension is too high, fluffing or the like may occur, and it may be difficult to obtain polyethylene fibers having less unevenness in fineness and strength.
 熱処理工程の後、又は熱処理工程と同時に行う延伸工程では、少なくとも2倍の倍率でポリエチレン繊維状物を延伸するのが好ましい。より好ましくは2.5倍以上である。上限としては強度を高める目的では可能な限り延伸倍率を高めることが好ましいが、高くしすぎると糸切れや毛羽の発生が見られる虞がある。したがって延伸倍率は30倍以下とすることが好ましく、10倍以下とすることがより好ましく、5倍以下とすることがさらに好ましい。
 通常、ポリエチレン繊維の製造では、繊維の強度を高めるため高い延伸倍率で延伸を行う。しかしながら、延伸工程前に比較的温度の高い加工液と接触させる場合には、延伸工程に供される段階でポリエチレン繊維状物が軟化するので、この状態で高倍率の延伸を行うと、延伸点が固定されず繊度や強度にムラを生じる虞がある。したがって、熱処理工程の後、又は熱処理工程と同時に行う延伸工程での延伸倍率は上述の範囲内とすることが好ましい。
In the stretching step performed after the heat treatment step or at the same time as the heat treatment step, it is preferable to stretch the polyethylene fibrous material at a magnification of at least 2 times. More preferably, it is 2.5 times or more. As the upper limit, it is preferable to increase the draw ratio as much as possible for the purpose of increasing the strength, but if it is too high, thread breakage and fluffing may be observed. Therefore, the draw ratio is preferably 30 times or less, more preferably 10 times or less, and further preferably 5 times or less.
Usually, in the production of polyethylene fiber, stretching is performed at a high drawing ratio in order to increase the strength of the fiber. However, if it is brought into contact with a processing liquid having a relatively high temperature before the stretching step, the polyethylene fibrous material softens at the stage of being subjected to the stretching step. May not be fixed and may cause unevenness in fineness and strength. Therefore, it is preferable that the stretching ratio in the stretching step performed after the heat treatment step or at the same time as the heat treatment step is within the above range.
 本発明の高接着性ポリエチレン繊維やポリエチレンマルチフィラメント繊維は、引張強度や初期弾性率の機械的特性の低下を伴わずに高い接着性を発現するので、組紐、釣糸、手袋、ロープ、ネット、織物及び編物等の材料として好適に用いられる。これらの用途に用いられるすべての糸を上述の高接着性ポリエチレン繊維としてもよく、また一部に高接着性ポリエチレン繊維を用いてもよい。例えば、組紐の場合は、本発明の高接着性ポリエチレン繊維を少なくとも1本含んでいることが望ましい。
 組紐は、当該組紐から解いた単糸(ポリエチレン繊維)の引張強度が15cN/dtex以上であるのが好ましい。より好ましくは18cN/dtex以上であり、さらに好ましくは20cN/dtex以上である。引張強度の上限は上述の高接着性ポリエチレン繊維と同様である。
The highly adhesive polyethylene fiber and polyethylene multifilament fiber of the present invention exhibit high adhesiveness without deteriorating the mechanical properties of tensile strength and initial elastic coefficient. Therefore, braids, fishing threads, gloves, ropes, nets, and woven fabrics And is suitably used as a material for knitted fabrics and the like. All the threads used for these applications may be the above-mentioned high-adhesive polyethylene fibers, or some of them may be high-adhesive polyethylene fibers. For example, in the case of braid, it is desirable that it contains at least one highly adhesive polyethylene fiber of the present invention.
The braid preferably has a tensile strength of 15 cN / dtex or more of the single yarn (polyethylene fiber) unwound from the braid. It is more preferably 18 cN / dtex or more, and even more preferably 20 cN / dtex or more. The upper limit of the tensile strength is the same as that of the above-mentioned highly adhesive polyethylene fiber.
 本願は、2020年11月19日に出願された日本国特許出願第2020-192764号に基づく優先権の利益を主張するものである。2020年11月19日に出願された日本国特許出願第2020-192764号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2020-192764 filed on November 19, 2020. The entire contents of the specification of Japanese Patent Application No. 2020-192764 filed on November 19, 2020 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and appropriate modifications are made to the extent that it can meet the purposes of the preceding and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.
(1)マイクロドロップレット法による界面せん断強度測定
 測定にはエポキシ樹脂(三菱ケミカル社製、jER827、ビスフェノールA型エポキシ樹脂、色相(ガードナー)0.6max、粘度90~110P/25℃、エポキシ当量180~190、比重1.16)、硬化剤A(日立化成社製、HN-5500、3or4-メチル-ヘキサヒドロ無水フタル酸)、硬化剤B(三菱ケミカル社製、IBMI12、1-イソブチル-2-メチルイミダゾール)を、エポキシ樹脂:硬化剤A:硬化剤B=100:85:1の重量割合で混合し、25℃、24時間の条件でプレ硬化させた樹脂を用い作成した。
 一定長さの単糸の両端を水平方向に移動可能なホルダに固着した後、該単糸に溶融状態の上記のプレ硬化させた樹脂を接近させて、プレ硬化させた樹脂を単糸に付着させてマイクロドロップレットを形成させた。その後100℃、2時間の条件で樹脂を硬化させサンプル作成した。上記を複数回実施し、様々なサイズのマイクロドロップレットを作成したサンプルを作成した。
 上記サンプルを、東栄産業社製複合材界面特性評価装置MODELHM410を使用し繊維引き抜き試験を実施した。前記単糸にマイクロドロップレットを作成したサンプルにおいて、該マイクロドロップレットの移動を阻止するブレードを配設し、該ブレードでマイクロドロップレットが動かない状態で、単糸をマイクロドロップレットから引き抜く方向に移動させ、この移動中に作用する最大引き抜き荷重を測定した。このとき繊維の引き抜き速度は0.3mm/minとした。
 得られた最大引き抜き荷重から以下の式1を用いて界面せん断強度を求め、試験数n=50の結果の平均値を測定値とした。
 界面せん断強度(MPa)=引抜荷重(N)/(繊維径(mm)×樹脂玉長(繊維軸方向)(mm)×円周率)  (式1)
(1) Measurement of interfacial shear strength by microdroplet method Epoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., jER827, bisphenol A type epoxy resin, hue (Gardner) 0.6max, viscosity 90-110P / 25 ° C., epoxy equivalent 180 ~ 190, specific gravity 1.16), curing agent A (HN-5500 manufactured by Hitachi Chemical Co., Ltd., 3or4-methyl-hexahydrohydroan phthalic acid), curing agent B (Mitsubishi Chemical Co., Ltd., IBMI12, 1-isobutyl-2-methyl) (Imidazole) was mixed at a weight ratio of epoxy resin: curing agent A: curing agent B = 100: 85: 1 and pre-cured at 25 ° C. for 24 hours to prepare a resin.
After fixing both ends of a single yarn of a certain length to a holder that can move in the horizontal direction, the above-mentioned pre-cured resin in a molten state is brought close to the single yarn, and the pre-cured resin is attached to the single yarn. To form microdroplets. Then, the resin was cured under the conditions of 100 ° C. for 2 hours to prepare a sample. The above was repeated multiple times to create samples with various sizes of microdroplets.
The above sample was subjected to a fiber drawing test using a composite material interface characteristic evaluation device MODELHM410 manufactured by Toei Sangyo Co., Ltd. In the sample in which the microdroplet is created on the single yarn, a blade that prevents the movement of the microdroplet is arranged, and the single yarn is pulled out from the microdroplet while the microdroplet does not move with the blade. It was moved and the maximum withdrawal load acting during this movement was measured. At this time, the fiber pulling speed was set to 0.3 mm / min.
The interfacial shear strength was obtained from the obtained maximum pull-out load using the following formula 1, and the average value of the results of the number of tests n = 50 was taken as the measured value.
Interfacial shear strength (MPa) = drawing load (N) / (fiber diameter (mm) x resin ball length (fiber axial direction) (mm) x pi) (Equation 1)
 (2)引張強度・破断伸度・初期弾性率
 JIS L1013 8.5.1に準拠して測定した。単糸、およびマルチフィラメントでの引張強度、初期弾性率は、株式会社オリエンテック製の「テンシロン万能材料試験機」を用い、試料長200mm(チャック間長さ)、伸長速度100mm/分、雰囲気温度20℃、相対湿度65%の条件下で歪-応力曲線を測定し、破断点での応力と伸びから引張強度(cN/dtex)、破断伸度(%)、曲線の原点付近の最大勾配を与える接線から初期弾性率(cN/dtex)を計算して求めた。このとき測定時にサンプルに印加する初荷重を繊度の1/10(cN/dtex)とした。なお、各値は7回の測定値の平均値を使用した。
(2) Tensile strength, elongation at break, initial elastic modulus Measured according to JIS L1013 8.5.1. For the tensile strength and initial elastic modulus of single yarn and multifilament, the sample length 200 mm (chuck length), elongation speed 100 mm / min, atmospheric temperature using "Tencilon universal material tester" manufactured by Orientec Co., Ltd. The strain-stress curve is measured under the conditions of 20 ° C. and relative humidity of 65%, and the tensile strength (cN / dtex), breaking elongation (%), and maximum gradient near the origin of the curve are determined from the stress and elongation at the breaking point. The initial elastic modulus (cN / dtex) was calculated and obtained from the given tangent line. At this time, the initial load applied to the sample at the time of measurement was set to 1/10 (cN / dtex) of the fineness. For each value, the average value of the measured values of 7 times was used.
 (3)糸の繊度、寸法変化率
 試料を各々10m採取し、その重量を測定して糸の繊度(dtex)を求めた。単糸繊度は、マルチフィラメントの構成本数で糸の繊度を除することで算出できる。
 寸法変化率は以下の方法で測定した。ポリエチレン繊維の単糸を50cm取出し、繊維が垂直になるように140℃の恒温器に無荷重の状態で静置した。30分後にサンプルを取出し、その長さを各々測定し以下の式2を用いて寸法変化率を求めた。各値は2本の測定値の平均値を使用した。
 寸法変化率(%)=(熱処理前の繊維長-熱処理後の繊維長)/熱処理前の繊維長×100  (式2)
(3) Thread fineness and dimensional change rate A sample of 10 m each was sampled, and the weight thereof was measured to determine the thread fineness (dtex). The single yarn fineness can be calculated by dividing the fineness of the yarn by the number of constituents of the multifilament.
The dimensional change rate was measured by the following method. A single yarn of polyethylene fiber was taken out by 50 cm and placed in an incubator at 140 ° C. with no load so that the fiber was vertical. After 30 minutes, the samples were taken out, their lengths were measured, and the dimensional change rate was determined using the following formula 2. For each value, the average value of the two measured values was used.
Dimensional change rate (%) = (fiber length before heat treatment-fiber length after heat treatment) / fiber length before heat treatment x 100 (Equation 2)
 (4)繊維に含まれる機能剤の導入量
 機能剤の定量は共鳴周波数600MHzのH-NMR測定にて行った。測定装置はBRUKER社製NMR装置AVANCE-NEO600を用い、測定は以下の通りに行った。
 試料10~15mgをNMRチューブに充填し、ジメチルイソフタレートを既知量添加した重テトラクロロエタンを加えて110℃で溶解後、測定を行った。ロック溶媒には重テトラクロロエタンを用い、待ち時間を1秒、データ取り込み時間を4秒、積算回数を128回、測定温度を110℃とした。改質剤由来ピークとジメチルイソフタレートの積分値比率から改質剤重量を算出し、試料量とその比率から改質剤量(wt%対試料)を定量する事ができる。
(4) Amount of functional agent introduced in the fiber The functional agent was quantified by 1 H-NMR measurement at a resonance frequency of 600 MHz. As a measuring device, an NMR device AVANCE-NEO600 manufactured by BRUKER was used, and the measurement was performed as follows.
An NMR tube was filled with 10 to 15 mg of a sample, heavy tetrachloroethane to which a known amount of dimethylisophthalate was added was added, and the mixture was dissolved at 110 ° C. and then measured. Heavy tetrachloroethane was used as the lock solvent, the waiting time was 1 second, the data acquisition time was 4 seconds, the number of integrations was 128 times, and the measurement temperature was 110 ° C. The modifier weight can be calculated from the integral value ratio of the modifier-derived peak and dimethylisophthalate, and the modifier amount (wt% vs. sample) can be quantified from the sample amount and its ratio.
 (5)極限粘度
 135℃のデカリンにてウベローデ型毛細粘度管により、種々の希薄溶液の比粘度を測定し、その粘度の濃度に対するプロットの最小二乗近似で得られる直線の原点への外挿点より極限粘度を決定した。
(5) Extreme Viscosity The specific viscosity of various dilute solutions is measured with a Ubbelohde-type capillary viscosity tube at 135 ° C., and the extrapolation point to the origin of the straight line obtained by the minimum square approximation of the plot to the concentration of the viscosity. The more extreme viscosity was determined.
(実施例1)
 極限粘度18.8dL/gである超高分子量ポリエチレンとデカヒドロナフタレンの分散液をポリエチレン濃度10.5質量%に調整した。この分散液を押出機にて200℃で加熱して溶液にし、ポリエチレン溶液をオリフィス径φ0.6mmからなる紡糸口金から単糸数が192本となるようノズル面温度180℃で単孔吐出量1.6g/minで吐出した。ノズル直下で吐出物に窒素ガスをできるだけ糸条に均等に当たるようにして乾燥させ、110m/minの速度で前記吐出物を10倍に変形して未延伸糸を得た。続いて該未延伸糸を100℃の窒素の熱風で延伸し、更に連続して140℃の熱風で延伸することで4倍に延伸された中間糸を得た。得られた中間糸4本を合糸した後に、デカヒドロナフタリンに機能剤としてエチレン・グリシジルメタクリレート共重合体(住友精化社製、フロービーズGM-40400)を4質量%溶解させた加工液を付与し、該付与から50秒経過した後に150℃で3.5倍に延伸して巻き取ることにより、延伸工程及び熱処理工程を同時に行った。このとき該中間糸に対して、機能剤が2質量%の付与量になるように調整した。また、延伸工程及び熱処理工程は80秒間行った。加工液温度、中間糸への加工液の付与量、該付与時の張力、熱処理工程時の張力については表1に記載のとおりである。
 界面せん断強度の測定においては68μmから154μmの大きさの樹脂玉を任意に50個選択し、引き抜き試験を実施した。
 各種物性は表1に記載のとおりである。なお、機能剤の導入量分析について以下に詳細を示す。H-NMR測定より、テトラクロロエタンピークを6ppmとした時、機能剤由来グリシジルピークは2.4~3ppmに、ジメチルイソフタレート由来ピークは3.8ppmに検出される。
 元試料量をA(mg)、ジメチルイソフタレート添加量をB(mg)、2.4ppmのグリシジルピーク積分値をC、3.8ppmのジメチルイソフタレートピーク積分値をDとした時、機能剤量は以下の式3で表すことができる。
機能剤量(wt% 対試料)=(846.2×C×B÷32.3÷D)×100÷A  (式3)
(Example 1)
The dispersion of ultra-high molecular weight polyethylene and decahydronaphthalene having an ultimate viscosity of 18.8 dL / g was adjusted to a polyethylene concentration of 10.5% by mass. This dispersion is heated at 200 ° C. with an extruder to make a solution, and the polyethylene solution is discharged from a spinneret having an orifice diameter of φ0.6 mm at a nozzle surface temperature of 180 ° C. so that the number of single threads is 192. Discharged at 6 g / min. Nitrogen gas was dried so as to hit the yarn as evenly as possible directly under the nozzle, and the discharged material was deformed 10 times at a speed of 110 m / min to obtain an undrawn yarn. Subsequently, the undrawn yarn was drawn with hot air of nitrogen at 100 ° C., and further continuously drawn with hot air at 140 ° C. to obtain a quadruple stretched intermediate yarn. After combining the four obtained intermediate yarns, a processing solution prepared by dissolving 4% by mass of an ethylene / glycidyl methacrylate copolymer (Flobeads GM-40400, manufactured by Sumitomo Seika Chemical Co., Ltd.) in decahydronaphthalline as a functional agent was prepared. The yarn was applied, and after 50 seconds had passed from the application, the yarn was stretched 3.5 times at 150 ° C. and wound to perform a stretching step and a heat treatment step at the same time. At this time, the amount of the functional agent applied to the intermediate yarn was adjusted to 2% by mass. The stretching step and the heat treatment step were performed for 80 seconds. Table 1 shows the processing liquid temperature, the amount of the processing liquid applied to the intermediate yarn, the tension at the time of application, and the tension at the time of the heat treatment step.
In the measurement of the interfacial shear strength, 50 resin balls having a size of 68 μm to 154 μm were arbitrarily selected and a drawing test was carried out.
Various physical properties are as shown in Table 1. The details of the analysis of the amount of the functional agent introduced are shown below. 1 From 1 H-NMR measurement, when the tetrachloroethane peak is 6 ppm, the functional agent-derived glycidyl peak is detected at 2.4 to 3 ppm, and the dimethylisophthalate-derived peak is detected at 3.8 ppm.
When the original sample amount is A (mg), the amount of dimethylisophthalate added is B (mg), the integral value of glycidyl peak at 2.4 ppm is C, and the integral value of dimethylisophthalate peak at 3.8 ppm is D, the amount of functional agent. Can be expressed by the following equation 3.
Amount of functional agent (wt% vs. sample) = (846.2 x C x B ÷ 32.3 ÷ D) x 100 ÷ A (Equation 3)
(実施例2)
 実施例1で用いた加工液濃度を2質量%に変更したこと及び張力を3.0cN/dtexとしたこと以外は、実施例1と同様の条件で、紡糸、延伸を行ってポリエチレンマルチフィラメント繊維を製造した。製造条件、各種物性は表1に記載のとおりである。
 なお、繊維に含まれている機能剤の導入量はNMRの検出限界以下であるため、実施例1を含めた同条件で作製したサンプルの結果を用いて、前述の実施例1と後述の比較例2の結果からの外挿線から算出した。
(Example 2)
Polyethylene multifilament fibers were spun and drawn under the same conditions as in Example 1 except that the concentration of the processing liquid used in Example 1 was changed to 2% by mass and the tension was set to 3.0 cN / dtex. Manufactured. The manufacturing conditions and various physical properties are as shown in Table 1.
Since the amount of the functional agent introduced into the fiber is below the detection limit of NMR, the results of the samples prepared under the same conditions including Example 1 are used to compare the above-mentioned Example 1 with the following. Calculated from extrapolated lines from the results of Example 2.
(比較例1)
 未延伸糸と加工液の接触を行わなかったこと以外は、実施例1と同様の条件で、紡糸、延伸を行ってポリエチレンマルチフィラメント繊維を製造した。製造条件、各種物性は表1に記載のとおりである。
(Comparative Example 1)
Polyethylene multifilament fibers were produced by spinning and drawing under the same conditions as in Example 1 except that the undrawn yarn and the processing liquid were not brought into contact with each other. The manufacturing conditions and various physical properties are as shown in Table 1.
(比較例2)
 実施例2で用いた加工液濃度を6質量%に変更したこと以外は、実施例2と同様の条件で、紡糸、延伸を行ってポリエチレンマルチフィラメント繊維を製造した。製造条件、各種物性は表1に記載のとおりである。
(Comparative Example 2)
Polyethylene multifilament fibers were produced by spinning and drawing under the same conditions as in Example 2 except that the concentration of the processing liquid used in Example 2 was changed to 6% by mass. The manufacturing conditions and various physical properties are as shown in Table 1.
(比較例3)
 比較例1の条件で製造したポリエチレンマルチフィラメント繊維に、実施例2と同様の機能剤加工液を浸漬し、乾燥させることで機能剤付与繊維を作製した。製造条件、各種物性は表1に記載のとおりである。
(Comparative Example 3)
A functional agent-imparting fiber was produced by immersing the same functional agent processing liquid as in Example 2 in the polyethylene multifilament fiber produced under the conditions of Comparative Example 1 and drying it. The manufacturing conditions and various physical properties are as shown in Table 1.
(比較例4)
 超高分子量ポリエチレンとデカヒドロナフタレンの分散液に、機能剤としてエチレン・グリシジルメタクリレート共重合体を超高分子量ポリエチレン対比で1質量%添加した分散液を事前に混合したこと、変形倍率7倍としたこと以外は、比較例1と同様の条件で紡糸、延伸を行ってポリエチレンマルチフィラメント繊維を製造した。製造条件、各種物性は表1に記載のとおりである。
(Comparative Example 4)
A dispersion prepared by adding 1% by mass of an ethylene / glycidyl methacrylate copolymer as a functional agent to a dispersion of ultra-high molecular weight polyethylene and decahydronaphthalene was mixed in advance with a deformation ratio of 7 times. Except for this, polyethylene multifilament fiber was produced by spinning and drawing under the same conditions as in Comparative Example 1. The manufacturing conditions and various physical properties are as shown in Table 1.
(比較例5)
 比較例1の条件で作製したポリエチレンマルチフィラメント繊維にコロナ処理を施した。処理には、春日電機社製コロナ処理機を用いて、出力900W、処理速度90m/min、処理時間15秒の条件にて処理を行った。製造条件、各種物性は表1に記載のとおりである。
(Comparative Example 5)
The polyethylene multifilament fibers produced under the conditions of Comparative Example 1 were subjected to corona treatment. The processing was performed using a corona processing machine manufactured by Kasuga Denki Co., Ltd. under the conditions of an output of 900 W, a processing speed of 90 m / min, and a processing time of 15 seconds. The manufacturing conditions and various physical properties are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、高強度・高弾性率な接着性に優れたポリエチレン繊維を提供できる。また、このポリエチレン繊維は高温での寸法安定性に優れていることから、上記ポリエチレン繊維からなるマルチフィラメントは、組紐、釣糸、手袋、ロープ、ネット、織物及び編物等の材料として好適に用いられる。 According to the present invention, it is possible to provide a polyethylene fiber having high strength and high elastic modulus and excellent adhesiveness. Further, since the polyethylene fiber is excellent in dimensional stability at high temperature, the multifilament made of the polyethylene fiber is suitably used as a material for braids, fishing threads, gloves, ropes, nets, woven fabrics, knitted fabrics and the like.

Claims (6)

  1.  側鎖にエポキシ環を有するエチレン共重合体を含有したポリエチレンからなる単糸を含むポリエチレン繊維であって、
     マイクロドロップレット法によるエポキシ樹脂を対象とした、前記単糸の界面せん断強度が16MPa以上30MPa以下であり、
     前記単糸での、引張強度が20cN/dtex以上、且つ初期弾性率が1000cN/dtex以上であり、
     140℃、30分の熱処理前後における前記単糸の寸法変化率が2.5%以下であるポリエチレン繊維。
    A polyethylene fiber containing a single yarn made of polyethylene containing an ethylene copolymer having an epoxy ring in the side chain.
    The interfacial shear strength of the single yarn of the epoxy resin produced by the microdroplet method is 16 MPa or more and 30 MPa or less.
    The single yarn has a tensile strength of 20 cN / dtex or more and an initial elastic modulus of 1000 cN / dtex or more.
    A polyethylene fiber having a dimensional change rate of 2.5% or less of the single yarn before and after heat treatment at 140 ° C. for 30 minutes.
  2.  側鎖にエポキシ環を有する該エチレン共重合体を0.1質量%以上1.2質量%以下含有する、請求項1に記載のポリエチレン繊維。 The polyethylene fiber according to claim 1, which contains 0.1% by mass or more and 1.2% by mass or less of the ethylene copolymer having an epoxy ring in the side chain.
  3.  前記単糸の繊度が0.1dtex以上80dtex以下である請求項1又は2に記載のポリエチレン繊維。 The polyethylene fiber according to claim 1 or 2, wherein the single yarn has a fineness of 0.1 dtex or more and 80 dtex or less.
  4.  請求項1~3のいずれかに記載のポリエチレン繊維が3本以上からなる、ポリエチレンマルチフィラメント繊維。 A polyethylene multifilament fiber comprising 3 or more polyethylene fibers according to any one of claims 1 to 3.
  5.  請求項4に記載のポリエチレンマルチフィラメント繊維を含む、組紐、撚糸、釣糸、ロープ、ネット、織物、又は編物のいずれかである物品。 An article that is either a braid, a twisted line, a fishing line, a rope, a net, a woven fabric, or a knit, containing the polyethylene multifilament fiber according to claim 4.
  6.  極限粘度[η]が5.0dL/g以上25dL/g以下であり、その繰り返し単位が90モル%以上エチレンからなり、溶媒が100ppm以上残存しているポリエチレン繊維状物と、
     上記ポリエチレンが可溶な溶媒で溶解させた、側鎖にエポキシ環を有するエチレン共重合体からなる加工液を用い、
     上記ポリエチレン繊維状物に張力をかけた状態で、0℃以上60℃未満である上記加工液を上記ポリエチレン繊維状物表面に付与し、
     上記加工液が付与されたポリエチレン繊維状物を、110℃以上の温度で10秒以上の熱処理を行い、
     総延伸倍率が30倍以下の延伸を実施し、
     上記ポリエチレン繊維状物は、未延伸又は上記総延伸倍率未満の倍率で延伸されていることを特徴とする、
    請求項1~3のいずれかに記載のポリエチレン繊維の製造方法。
     
    A polyethylene fibrous material having an ultimate viscosity [η] of 5.0 dL / g or more and 25 dL / g or less, a repeating unit of 90 mol% or more of ethylene, and a solvent remaining of 100 ppm or more.
    Using a processing solution made of an ethylene copolymer having an epoxy ring on the side chain, which was dissolved in a solvent in which polyethylene was soluble, was used.
    With tension applied to the polyethylene fibrous material, the processing liquid having a temperature of 0 ° C. or higher and lower than 60 ° C. is applied to the surface of the polyethylene fibrous material.
    The polyethylene fibrous material to which the above processing liquid is applied is heat-treated at a temperature of 110 ° C. or higher for 10 seconds or longer.
    Stretching with a total draw ratio of 30 times or less was carried out,
    The polyethylene fibrous material is characterized by being unstretched or stretched at a magnification less than the total stretch ratio.
    The method for producing a polyethylene fiber according to any one of claims 1 to 3.
PCT/JP2021/042343 2020-11-19 2021-11-17 Polyethylene fiber and method for producing same WO2022107831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022563813A JP7405279B2 (en) 2020-11-19 2021-11-17 Polyethylene fiber and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020192764 2020-11-19
JP2020-192764 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022107831A1 true WO2022107831A1 (en) 2022-05-27

Family

ID=81709055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042343 WO2022107831A1 (en) 2020-11-19 2021-11-17 Polyethylene fiber and method for producing same

Country Status (2)

Country Link
JP (1) JP7405279B2 (en)
WO (1) WO2022107831A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174646A (en) * 1984-02-21 1985-09-07 東洋紡績株式会社 Fiber reinforced composite material
JPH02222433A (en) * 1989-02-23 1990-09-05 Tonen Sekiyukagaku Kk Polyethylene resin composition
JP2001262469A (en) * 2000-03-15 2001-09-26 Kanazawa Inst Of Technology Super high-molecular weight polyethylene fiber excellent in adhesivity and method for manufacturing the same
CN108004612A (en) * 2016-10-31 2018-05-08 中国石油化工股份有限公司 A kind of modified ultra-high molecular weight polyethylene fiber and its method
CN111944174A (en) * 2019-05-15 2020-11-17 天津工业大学 Method for improving interfacial adhesion of ultrahigh molecular weight polyethylene fibers and epoxy resin
WO2021089529A1 (en) * 2019-11-04 2021-05-14 Dsm Ip Assets B.V. Polymer filled polyolefin fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174646A (en) * 1984-02-21 1985-09-07 東洋紡績株式会社 Fiber reinforced composite material
JPH02222433A (en) * 1989-02-23 1990-09-05 Tonen Sekiyukagaku Kk Polyethylene resin composition
JP2001262469A (en) * 2000-03-15 2001-09-26 Kanazawa Inst Of Technology Super high-molecular weight polyethylene fiber excellent in adhesivity and method for manufacturing the same
CN108004612A (en) * 2016-10-31 2018-05-08 中国石油化工股份有限公司 A kind of modified ultra-high molecular weight polyethylene fiber and its method
CN111944174A (en) * 2019-05-15 2020-11-17 天津工业大学 Method for improving interfacial adhesion of ultrahigh molecular weight polyethylene fibers and epoxy resin
WO2021089529A1 (en) * 2019-11-04 2021-05-14 Dsm Ip Assets B.V. Polymer filled polyolefin fiber

Also Published As

Publication number Publication date
JPWO2022107831A1 (en) 2022-05-27
JP7405279B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
US10087560B2 (en) Braid
JP4444118B2 (en) Polyolefin fiber manufacturing method and conversion method
JP2010501740A (en) Method for preparing ultra high molecular weight multifilament poly (alpha-olefin) yarn
CS238383B2 (en) High tensile strength polyethylene fibres production method
TWI671444B (en) High performance multifilament
JP5794354B1 (en) braid
CN106133215B (en) Multifilament and braid
WO2022107831A1 (en) Polyethylene fiber and method for producing same
JP5794353B1 (en) braid
US20190194844A1 (en) Multifilament and braid using same
JP2017150103A (en) Colored polyethylene fiber and manufacturing method
CN112251834A (en) Multifilament and braid
JP6992257B2 (en) Colored polyethylene fiber and its manufacturing method
JP6676895B2 (en) Method for producing polypropylene fiber and polypropylene fiber obtained by the same method
JP5696809B1 (en) Multifilament
JP7017039B2 (en) Colored polyethylene fiber and its manufacturing method
JP6953741B2 (en) Polyethylene fibers, textile products, and methods for manufacturing polyethylene fibers
TWI715733B (en) Colored polyethylene fibers, braided ropes, fishing lines, gloves, ropes, nets, knitted fabrics or braids, and methods for manufacturing colored polyethylene fibers
JP2017172084A (en) Highly functional braid comprising polyethylene multifilament
JP5696808B1 (en) Multifilament
JP2016153542A (en) Multifilament
Mateva Valentin Velev", Anton Popov", Pencho Kyurkchiev", Lyubomira Veleva"
WO2017146144A1 (en) Colored polyethylene fiber and manufacturing method for same
Velev et al. THERMO-MECHANICALLY MODIFICATION OF AMORPHOUS POLYESTER FIBRES: ІІ. CALORIMETRIC INVESTIGATIONS: THERMO-MECHANICALLY MODIFICATION OF AMORPHOUS POLYESTER FIBRES: ІІ. CALORIMETRIC INVESTIGATIONS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21894704

Country of ref document: EP

Kind code of ref document: A1