WO2022107793A1 - Immortalized pig-fetus small-intestinal macrophages - Google Patents

Immortalized pig-fetus small-intestinal macrophages Download PDF

Info

Publication number
WO2022107793A1
WO2022107793A1 PCT/JP2021/042171 JP2021042171W WO2022107793A1 WO 2022107793 A1 WO2022107793 A1 WO 2022107793A1 JP 2021042171 W JP2021042171 W JP 2021042171W WO 2022107793 A1 WO2022107793 A1 WO 2022107793A1
Authority
WO
WIPO (PCT)
Prior art keywords
pig
virus
cells
macrophages
cell
Prior art date
Application number
PCT/JP2021/042171
Other languages
French (fr)
Japanese (ja)
Inventor
敬人 竹之内
俊一 鈴木
博英 上西
綾子 宮▲崎▼
賢太郎 舛甚
健浩 國保
道浩 ▲高▼木
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to JP2022563788A priority Critical patent/JP7477914B2/en
Publication of WO2022107793A1 publication Critical patent/WO2022107793A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6897Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters

Definitions

  • the present invention relates to an immortalized pig small intestine macrophage and a method for producing the macrophage.
  • the present invention also relates to a method for producing a pig infectious virus or a vaccine using the macrophages.
  • the present invention relates to a method for detecting a pig infectious virus or a method for detecting a neutralizing antibody against a pig infectious virus using the macrophages.
  • diarrhea In pig farming, diarrhea is one of the causes of livestock mortality and growth retardation, and is a serious problem in stable and efficient pork production. Diarrhea occurs alone or in association with various factors such as pathogen infection, nutrition, and host stress. Small intestinal macrophages, which are cells responsible for innate immunity, play a major role in the activation and termination of host immunity, and their response greatly affects the severity of diarrhea and the excretion of pathogens. It is also becoming clear that enteritis accompanied by diarrhea occurs due to changes in nutrition and the accompanying changes in the intestinal flora and its metabolites, and that the response of small intestinal macrophages plays a part in the pathological condition.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a cell line of porcine small intestine macrophages that can be passaged.
  • Non-Patent Document 1 The present inventors have previously succeeded in isolating macrophages from the kidneys of pigs (6 days old) and immortalizing them (Non-Patent Document 1). Therefore, we also tried to isolate macrophages and immortalize them in the small intestine of pigs (about 1 month old). However, even when a medium containing an antibiotic and an antifungal drug was used, the contamination of microorganisms was severe, and it was not possible to isolate macrophages from the small intestine of pigs.
  • the obtained cells were divided at least 60 times or more. It became clear that it was possible.
  • the immortalized cells may maintain the expression of marker molecules and the function as macrophages (activation of intracellular signal transduction molecules and induction of inflammatory cytokine production in response to bacterial-derived components). It was revealed.
  • the immortalized swine fever small intestine macrophages thus obtained were subjected to a susceptibility test against African swine fever virus (ASFV).
  • ASFV African swine fever virus
  • CPE cytopathic effect
  • HAD blood cell adsorption
  • PAM primary cultured pig alveolar macrophages
  • the present invention has thus found that the production of immortalized pig small intestine macrophages was successful for the first time, and that the produced immortalized pig fetal small intestine macrophages have high infection susceptibility to virus. It is based on the above, and specifically, it is as follows. ⁇ 1> Immortalized cells of small intestinal macrophages of porcine fetus. ⁇ 2> The cell according to ⁇ 1>, wherein the small intestinal macrophage of a pig embryo expresses at least one protein selected from the group consisting of SV40 large T antigen and telomerase reverse transcriptase. ⁇ 3> The cell according to ⁇ 2>, wherein the expression is an expression from a lentivirus encoding the protein.
  • telomerase reverse transcriptase is a pig-derived telomerase reverse transcriptase.
  • pig fetus is a pig fetus having a fetal age of 30 to 114 days.
  • a method for producing immortalized pig small intestine macrophages which comprises a step of expressing at least one protein selected from the group consisting of SV40 large T antigen and telomerase reverse transcriptase in small intestine macrophages of pig embryo.
  • ⁇ 7> The method according to ⁇ 6>, wherein the step is a step of introducing a lentivirus encoding the protein into the small intestinal macrophages of the pig fetal body to express the protein.
  • the telomerase reverse transcriptase is a pig-derived telomerase reverse transcriptase.
  • ⁇ 9> The method according to any one of ⁇ 6> to ⁇ 8>, wherein the pig fetus is a pig fetus with a fetal age of 30 to 114 days.
  • a method for producing a pig-infecting virus which comprises a step of contacting the cell according to any one of ⁇ 1> to ⁇ 5> with a pig-infecting virus and propagating the virus in the cell.
  • a method for producing a vaccine containing a pig infectious virus which comprises a step of isolating the propagated pig infectious virus and a step of mixing the isolated pig infectious virus with a pharmacologically acceptable carrier or medium.
  • the pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, pig epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus.
  • the pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, pig epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus.
  • a method for detecting a pig infectious virus which comprises the following steps, a step of culturing the cells according to ⁇ 13> or ⁇ 14> in the presence of a test sample.
  • a step of detecting the expression of the reporter gene in the cell and a step of determining that the test sample contains a pig infectious virus when the expression of the reporter gene is detected.
  • a method for detecting a neutralizing antibody against a pig infectious virus which comprises the following steps. In the presence of a biological sample isolated from a test pig, any one of ⁇ 1> to ⁇ 5>.
  • the step of detecting the number of the propagated virus and the number of the virus detected in the step proliferate in the cell according to any one of ⁇ 1> to ⁇ 5> in the absence of the biological sample.
  • the pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, pig epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus.
  • the present invention it is possible to provide a cell line of a passageable pig fetal small intestine macrophage.
  • the immortalized pig fetal small intestine macrophages have high infectivity to viruses, various viruses can be propagated, and vaccines against the viruses can be produced and developed.
  • the scale bar in the figure represents 200 ⁇ m.
  • 6 is a photomicrograph showing the results of observing spherical cells (macrophages, PIM) that are weakly adhered and proliferate on a cell sheet formed by peeling and reseeding primary cultured pig fetal small intestine cells.
  • the scale bar in the figure represents 100 ⁇ m.
  • FIG. 1 It is a photograph showing the result of analysis of the primary cultured pig fetal small intestine cells after re-seeding and culturing by immunostaining.
  • the upper left side shows the result of staining the myofibroblast marker ⁇ -smooth muscle actin ( ⁇ SMA), and the uppermost right side shows the result of staining the mesenchymal cell marker Vimentin. Is shown.
  • the center shows the results of staining the epithelial marker cytokeratin (the left side shows the results of staining cytokeratin 18 (CK18), and the right side shows the results of staining cytokeratin 19 (CK19)).
  • the lower left side shows the result of staining the macrophage marker CD172a
  • the lowermost right side shows the result of staining the macrophage marker CD204.
  • the scale bar represents 400 ⁇ m.
  • brown represents antibody staining and bluish purple represents nuclear staining.
  • the upper left side shows the result of staining the macrophage marker Iba1
  • the upper right side shows the result of staining the macrophage marker CD172a
  • the middle left side shows the result of staining the macrophage marker CD204. The result is shown.
  • the right side in the middle shows the results of staining the mesenchymal cell marker Vimentin.
  • the bottom shows the results of staining the epithelial marker cytokeratin (the left side shows the results of staining CK18, and the right side shows the results of staining CK19).
  • the scale bar represents 400 ⁇ m.
  • brown represents antibody staining and bluish purple represents nuclear staining.
  • 6 is a photomicrograph showing the results of observing macrophages (IPIM) isolated from the small intestine of a pig fetal and immortalized.
  • the scale bar in the figure represents 100 ⁇ m. It is a graph which shows the result of having tested the cell proliferation of IPIM. It is a photograph showing the result of analysis of IPIM by immunostaining.
  • the upper part shows the results of staining the macrophage marker Iba1, the macrophage marker CD172a, the macrophage marker CD204, and the macrophage-containing antigen-presenting cell marker MHC-II, respectively, in order from the left side.
  • the lower part shows the results of staining CD16, which is a macrophage marker, CD163, which is an M2 type macrophage marker, CD169, which is an M1 type macrophage marker, and CD203a, which is a pig macrophage marker, in order from the left side.
  • the scale bar in the figure represents 200 ⁇ m. In addition, under color display, brown represents antibody staining and bluish purple represents nuclear staining.
  • IPIM is a photograph showing activation of intracellular signaling molecules (phosphorylation of p38MAP kinase) in response to bacterial-derived components (muramyl dipeptide: MDP, lipopolysaccharide: LPS). IPIM is a photograph showing that it induces the production of inflammatory cytokines (IL-1 ⁇ ) in response to bacterially derived components (MDP, LPS). It is a micrograph showing the result of detecting the cytopathic effect (CPE) by inoculating IPIM with African swine fever virus (Armenia 07 strain) and observing it 2 days later. In the figure, the left panel “non-infected" shows the results of the negative control of the non-inoculated ASFV strain.
  • CPE cytopathic effect
  • IPIM blood cell adsorption
  • the present invention relates to cells in which porcine fetal small intestine macrophages are immortalized (immortalized porcine fetal small intestine macrophages).
  • immortalized pig fetal small intestine macrophages means cells in which macrophages present in the small intestine of a pig (an animal of the family Cetartiodactyla, Mammalia) are immortalized.
  • “Pig fetal” means a prenatal individual in a pig mother, preferably a pig with a fetal age of 30 to 114 days, and more preferably a pig with a fetal age of 90 to 114 days from the viewpoint of maturation in small intestinal tissue formation. be.
  • the "small intestine" from which macrophages are collected is not particularly limited, and examples thereof include the ileum, jejunum, and duodenum, but the ileum is preferable from the viewpoint of the development of lymphatic tissue in which immune cells are concentrated.
  • Immortalized "porcine small intestinal macrophages” are macrophages that are present in the pig small intestine and are differentiated from oval sac, fetal liver-derived macrophages or monospheres, and are active macrophages (inflammatory M1 type macrophages, anti-inflammatory). It may be a sex M2 type macrophage) or a resting type macrophage. Such macrophages remove the capsule from the small intestine collected from pig embryos, for example, as shown in Examples below. The isolated small intestinal tissue is then chopped, washed with buffer, subjected to enzymatic treatment and then cultured. Macrophage-like cells that are loosely adhered to a monolayer of cell sheets that occur during the culture process can be prepared by isolation.
  • the buffer solution used for washing the shredded small intestinal tissue is not particularly limited, and for example, dalbecco phosphate buffered saline (DPBS), phosphate buffered saline (PBS), and Tris hydrochloric acid buffer (TBS). , HEPES buffer.
  • DPBS dalbecco phosphate buffered saline
  • PBS phosphate buffered saline
  • TBS Tris hydrochloric acid buffer
  • HEPES buffer HEPES buffer.
  • the enzyme treatment is not particularly limited as long as cells can be separated and dispersed from the tissue, and examples thereof include collagenase, dispase, DNase (DNase I, etc.), trypsin, hyaluronidase, elastase, and pronase. , Preferably a combination of collagenase, dispase and DNase I.
  • the treatment temperature and time are not limited, and can be appropriately adjusted according to the type of enzyme used and the degree of cell separation / dispersion.
  • the medium used for culturing the cells dispersed by the enzyme treatment is not particularly limited as long as the small intestinal macrophages can be maintained, but it can be prepared by appropriately adding a well-known and conventional medium additive based on a known basal medium.
  • basal medium examples include DMEM medium, DMEM medium (high glucose), DMEM medium (low glucose), RPMI 160 medium, RPMI 1640 medium, ham F12 medium, KSOM medium, Eagle MEM medium, Glasgow MEM medium, ⁇ MEM medium, and the like.
  • Examples include ham medium, Fishers medium, BME medium, BGJb medium, CMRL 1066 medium, MEM Zinc option improvement medium, IMDM medium, medium 199 medium, and any mixed medium thereof.
  • Examples of the "medium additive” include antibiotics (penicillin, streptomycin, gentamycin, sayomycin, etc.), antifungal agents (pimaricin, amphotericin B, etc.), functional proteins (insulin, transferase, lactoferrin, etc.), reducing agents (mono). Thioglycerol, 2-mercaptoethanol, catalase, superoxide dismutase, N-acetylcysteine, etc.), lipids other than fatty acids (cholesterol, etc.), amino acids (alanine, L-glutamine, non-essential amino acids, etc.), peptides (glutathione, reduced form) Glutathion, etc.), nucleotides, etc.
  • the culture conditions using such a medium are not particularly limited, but the culture temperature is usually 30 to 40 ° C, preferably 37 ° C.
  • the concentration of carbon dioxide in the gas in contact with the medium is usually 1 to 10% by volume, preferably 2 to 5% by volume.
  • the primary cultured cells of the small intestine can be obtained.
  • the culture time for obtaining the cells is not particularly limited, but is usually 1 week to 1 month, preferably 2 to 3 weeks.
  • the enzyme treatment here can also be carried out using the above-mentioned enzyme, but preferably a combination of protease (enzyme having at least degrading activity for non-collagen protein), collagenase and DNase (for example, product name: Accumax (registered)). Trademark), manufactured by Sigma-Aldrich).
  • a mixed culture system consisting of a cell sheet composed of myofibroblast-like cells and spherical cells (pork small intestine macrophages) that weakly adhere and proliferate on the cell sheet is constructed.
  • the culture time for constructing the culture system is not particularly limited, but is usually between several days (2 to 4 days) and several weeks (2 to 3 weeks), preferably 1 to 2 weeks.
  • the method for immortalizing the small intestinal macrophages of the pig fetus thus obtained is not particularly limited, but it can be carried out by introducing at least one immortalizing gene.
  • the immortalizing gene include SV40 large T antigen (SV40T antigen), telomerase reverse transcriptase (TERT), Myc, and Ras, and it is preferable to introduce SV40T antigen and TERT, and the immortalization efficiency of pig macrophages is preferable. From the viewpoint of enhancing the above, it is more preferable to introduce SV40T antigen and TERT derived from pig.
  • the immortalization gene can be introduced by using a vector encoding the gene.
  • the vector may be linear or circular, and examples thereof include a viral vector, a plasmid vector, an episomal vector, an artificial chromosomal vector, and a transposon vector.
  • virus vector examples include retrovirus vectors such as lentivirus, Sendai virus vector, adenovirus vector, adeno-associated virus vector, herpesvirus vector, vaccinia virus vector, poxvirus vector, poliovirus vector, sylvis virus vector, and labd. Examples include virus vectors, paramixovirus vectors, and orthomixovirus vectors.
  • plasmid vector examples include plasmid vectors for animal cell expression such as pcDNA3.1, pA1-11, pXT1, pRc / CMV, pRc / RSV, and pcDNAI / Neo.
  • retroviral vectors are preferable, and lentiviruses are more preferable, from the viewpoint of increasing the efficiency of gene transfer into porcine macrophages.
  • the vector according to the present invention encodes an expression control sequence such as a promoter, enhancer, poly-A addition signal, terminator, etc., and a protein that binds to a replication initiation site or a replication initiation site to control replication.
  • each polynucleotide By operably arranging the immortalizing gene downstream of the promoter, each polynucleotide can be efficiently transcribed.
  • promoters include EF1 ⁇ promoter, CMV promoter, SR ⁇ promoter, SV40 initial promoter, LTR promoter, RSV promoter, HSV-TK promoter, MSCV promoter, hTERT promoter, ⁇ -actin promoter, CAG promoter, metallothioneine promoter, and heat.
  • shock promoters include shock promoters.
  • nucleotide encoding other proteins examples include marker genes such as reporter genes and drug resistance genes.
  • these genes when introducing a plurality of immortalizing genes, these genes may be integrated into a single vector or may be integrated into separate vectors, but from the viewpoint of increasing expression efficiency, they may be integrated into separate vectors. It is desirable to incorporate it. Further, when incorporating into a single vector, for example, by inserting an IRES, 2A peptide sequence or the like into the vector, it becomes possible to express a plurality of immortalizing genes polycistronically.
  • Examples of the method for introducing the vector into cells include a lipofection method, a microinjection method, a calcium phosphate method, a DEAE-dextran method, an electroporation method, a particle gun method and the like.
  • the vector of the present invention is a retrovirus vector
  • appropriate packaging cells are selected based on the LTR sequence and packaging signal sequence possessed by the vector, and retrovirus particles are prepared using this. You may.
  • the packaging cells include PG13, PA317, GP + E-86, GP + envelopeAm-12, and Psi-Crip.
  • 293 cells and 293T cells having high transfection efficiency can also be used as packaging cells.
  • the virus particles thus prepared can be introduced into cells by the Polybrene method, Protamine method, RetroNectin method and the like.
  • the gene transfer and subsequent maintenance culture can be performed by the above-mentioned medium for primary culture of the fetal small intestine of pigs and the culture conditions using the same.
  • the immortalized pig fetal small intestinal macrophages established by introducing the immortalizing gene in this way show proliferative properties of at least 1 month or longer, preferably 2 months or longer, and more preferably 3 months or longer. Shows the proliferative nature of.
  • the doubling time for immortalized pig kidney macrophages is at least 4 days, preferably 2 days, more preferably 1 day.
  • the immortalized pig fetal small intestine macrophages preferably maintain the characteristics of the macrophages, for example, at least among the macrophage-specific genes CD172a, CD16, Iba-1, CD204 (MSR-A) and CD203a.
  • 1 gene is expressed, preferably 2 or more genes are expressed, more preferably 3 or more genes are expressed, still more preferably 4 or more genes are expressed, and particularly preferably. All these genes are expressed.
  • the immortalized pig fetal small intestinal macrophages may express at least one gene of CD163 and CD169, which are marker genes of a specific macrophage subpopulation, and MHC-II, which is an antigen-presenting cell marker gene.
  • the immortalized pig fetal small intestinal macrophages according to the present invention have at least one of the functions of phagocytosis, LPS-stimulated inflammatory cytokine production, and IL-1 ⁇ maturation associated with inflammasome activity. It retains, preferably two or more functions.
  • the "pig infectious virus (virus that infects pigs)” may be at least a virus that can infect pigs, and is a DNA virus (double-stranded (ds) DNA virus, single-stranded (ss) DNA virus. , A DNA virus containing both ss and dsDNA regions), RNA virus (single-stranded (ss) RNA virus (plus-stranded RNA virus or minus-stranded RNA virus), double-stranded (ds) RNA virus. ) May be.
  • pig infectious virus examples include African pig fever virus (ASFV), pig epidemic diarrhea (PED) virus, pig rotavirus, pig circovirus (PCV2), and pig breeding / respiratory disorder syndrome (PRRS) virus.
  • ASFV African pig fever virus
  • PED pig epidemic diarrhea virus
  • PCV2 pig circovirus
  • PRRS pig breeding / respiratory disorder syndrome
  • the method for producing a pig infectious virus (proliferation method, amplification method) of the present invention comprises a step of contacting an immortalized pig fetal small intestine macrophage with a pig infectious virus and propagating the virus in the immortalized pig fetal small intestine macrophage. , The method.
  • the pig infectious virus to be brought into contact with immortalized pig fetal small intestine macrophages is as described above, but it may be a sample containing not only the isolated virus itself but also the virus.
  • samples include tissues and cells derived from pigs, their cultures, lavage fluids or extracts, or samples from pig breeding environments (breeding facilities, etc.), lavage fluids or their cultures.
  • Contact is usually performed by adding a pig-infecting virus to a medium for culturing immortalized pig fetal small intestinal macrophages.
  • the “medium” is not particularly limited, and examples thereof include the above-mentioned medium for primary culture of the fetal small intestine of pigs.
  • Proliferation of a pig-infecting virus can be performed by culturing immortalized pig fetal small intestinal macrophages that the virus has come into contact with and infected.
  • the culture temperature is not particularly limited, but is usually 30 to 40 ° C, preferably 37 ° C.
  • the concentration of carbon dioxide in the gas in contact with the medium is not particularly limited, but is usually 1 to 10% by volume, preferably 2 to 5% by volume.
  • the culture period after contact with the pig-infecting virus is not particularly limited, but is usually 1 to 10 days, preferably 2 to 7 days, and more preferably 3 to 5 days.
  • Whether or not the pig infectious virus has propagated can be determined by a person skilled in the art by a known method. Examples of such a method include a CPE test using the cytopathic effect (CPE) as an index, as shown in Examples described later, and a method for detecting the degree of intracellular ATP depletion associated with CPE (for example, Promega). (Viral ToxGlo assay) provided by. In addition, a method for detecting a gene derived from a pig infectious virus or its expression can also be used. Here, the expression of the gene may be at the transcription level (RNA level) or the translation level (protein level).
  • RNA As a method for detecting a gene (genomic DNA, genomic RNA) or RNA, for example, PCR (RT-PCR, real-time PCR, quantitative PCR), sequencing, DNA microarray analysis method, Northern blotting or Southern blotting, in situ hybridization. , Dot blot, RNA protection assay, mass analysis.
  • the gene or RNA level can be quantitatively detected by counting the number of reads in the so-called next-generation sequencing method.
  • an antibody such as an ELISA method, an antibody array, immunoblotting, imaging cytometry, flow cytometry, radioimmunoassay, immunoprecipitation method, or immunohistochemical staining method is used for detection. Methods (immunological methods) and mass analysis methods can be mentioned.
  • the method for producing a vaccine containing a pig infectious virus of the present invention is a step of contacting an immortalized pig fetal small intestine macrophage with a pig infectious virus and propagating the virus in the immortalized pig fetal small intestine macrophage.
  • a method comprising the step of isolating the propagated porcine infectious virus and the step of mixing the isolated porcine infectious virus with a pharmacologically acceptable carrier or vehicle.
  • the step of multiplying the virus in the immortalized pig fetal small intestine macrophages is as described above.
  • "Isolation" of the propagated porcine infectious virus means separation, purification and / or concentration of the immortalized porcine fetal small intestinal macrophages and / or the cells from the culture medium.
  • Examples of the virus isolation method include filtration of culture medium, cell disruption (ultrasonic treatment, hypotonic solution treatment, freeze-thaw, etc.), centrifugation (ultracentrifugation method, density gradient centrifugation, etc.), and concentration (concentration (ultracentrifugation method, density gradient centrifugation, etc.)). Ammonium sulfate, resin column, polyethylene glycol salting out, etc.).
  • the pig infectious virus thus isolated may be used as it is as a vaccine (so-called live vaccine), may be used in an attenuated live form (so-called live attenuated virus), or may be used as a vaccine in an inactivated form. You may use it. Furthermore, as long as it has immunogenicity, some of these isolated pig infectious viruses (proteins, polypeptides, sugars, glycoproteins, lipids, nucleic acids, etc.) may be used as vaccines.
  • a live attenuated virus is a virus with a reduced virulence level compared to a virus isolated from the field.
  • Attenuated virus can be propagated in known methods, such as in the presence of mutagens, acclimatization to cultured cells by continuous (long-term) passage in vitro, and conditions deviating from the natural growth environment (eg,). It can be obtained by feeding the pig infectious virus to the growth under high temperature conditions).
  • a live attenuated virus can also be obtained by deleting or recombining a specific gene of a virus by using genome editing, gene modification technology, or the like.
  • a person skilled in the art can also inactivate the virus by using a known method.
  • inactivation methods include formaldehyde treatment, UV irradiation, X-ray irradiation, electron beam irradiation, gamma ray irradiation, alkylation treatment, ethylene-imine treatment, thimerosal treatment, ⁇ -propiolactone treatment, and glutaraldehyde treatment. ..
  • Examples of the "pharmacologically acceptable carrier” to be mixed with the isolated pig infectious virus include stabilizers, excipients, preservatives, surfactants, chelating agents, and binders.
  • Examples of the "pharmacologically acceptable medium” include water, physiological saline, phosphate buffer, and Tris-HCl buffer. Those skilled in the art can select and use these carriers and vehicles as appropriate or in combination with known substances used in the art, depending on the dosage form and method of use of the vaccine.
  • the form of the vaccine is not particularly limited, and may be, for example, a suspension form or a freeze-dried form.
  • an adjuvant may be further mixed.
  • the adjuvant include inorganic substances such as aluminum gel adjuvants, microorganisms or substances derived from microorganisms (BCG, alum dipeptide, alum, pertussis toxin, cholera toxin, etc.), and surfactant substances (saponin, deoxycol). Acids, etc.), emulsions of oily substances (mineral oil, vegetable oil, animal oil, etc.), alum, etc. may be mentioned.
  • the present invention provides immortalized pig fetal small intestinal macrophages having DNA functionally bound to a reporter gene downstream of the promoter region of a pig infectious virus-derived gene.
  • the step of culturing the immortalized pig fetal small intestine macrophages having the DNA the step of detecting the expression of the reporter gene in the immortalized pig fetal small intestine macrophages, and the expression of the reporter gene
  • a method for detecting a pig infectious virus which comprises a step of determining that the test sample contains a pig infectious virus when detected.
  • the "immortalized pig fetal small intestine macrophages" into which the DNA is introduced are as described above. Further, the DNA may be in the form of the vector described in the above-mentioned "immortalization gene". Further, the introduction of the DNA into the immortalized pig fetal small intestine macrophage can also be carried out by those skilled in the art using the methods listed in the above description regarding the "immortalization gene”.
  • the "promoter region of a gene derived from a pig infectious virus” in the DNA is particularly limited as long as it is a region derived from a pig infectious virus and capable of activating the expression of a gene downstream thereof according to the infection / proliferation of the virus. It may be any of the earliest gene (immediate-early), the early stage gene (early), the late early stage gene (late), and the late stage gene (very-late).
  • genes derived from the pig infectious virus to be used can be selected by a person skilled in the art with reference to known information as appropriate.
  • genes derived from ASFV are selected by referring to the list of "functions of proteins encoded by ASFV" in Table 1 of Virus Taxonomy International Committee on Taxonomy (ICTV) 9th Edition, 2012, pp. 155-157.
  • the promoter region of p72, U104L, CD2v, DNA polymerase or p30 gene is preferably used (see Portal RS. et al., Virus, August 2017, Vol. 508, pp. 70-80).
  • the "reporter gene” that is functionally (operably) bound downstream of the promoter region is not particularly limited, and known ones are appropriately used.
  • a fluorescent protein gene a luciferase gene, and a color-developing enzyme gene can be mentioned.
  • Specific examples of the fluorescent protein gene include GFP (green fluorescent protein) gene, YFP (yellow fluorescent protein) gene, RFP (red fluorescent protein) gene and the like.
  • Specific examples of the photoprotein / enzyme gene include an aequorin gene and a luciferase gene.
  • color-developing enzyme gene examples include a chloramphenicole acetyltransferase (CAT) gene, a ⁇ -glucuronidase (GUS) gene, a ⁇ -galactosidase gene, an alkaline phosphatase gene, and a SEAP gene.
  • CAT chloramphenicole acetyltransferase
  • GUS ⁇ -glucuronidase
  • SEAP SEAP gene
  • the presence of swine infectious virus can be detected.
  • the test sample is not particularly limited as long as it is a sample in which a pig infectious virus can be present.
  • a pig-derived tissue, cells, their culture, a washing solution, or an extract, or a pig breeding environment ( A cleaning solution of a breeding facility, etc.) or a culture thereof can be mentioned.
  • the "medium” used for culturing in the detection method of the present invention is not particularly limited, and examples thereof include the above-mentioned medium for primary culturing of pig fetal small intestine.
  • the temperature of the culture is not particularly limited, but is usually 30 to 42 ° C, preferably 37 ° C.
  • the concentration of carbon dioxide in the gas in contact with the medium is not particularly limited, but is usually 1 to 10% by volume, preferably 2 to 5% by volume.
  • the culture period until the expression of the reporter gene is detected in the presence of the test sample is not particularly limited, but is usually 1 to 10 days, preferably 2 to 7 days, and more preferably 2 to 5 days. be.
  • the method for detecting a neutralizing antibody against a virus that infects pigs of the present invention is A step of contacting an immortalized pig fetal small intestine macrophage with a virus that infects a pig and propagating the virus on the immortalized pig fetal small intestine macrophage in the presence of a biological sample isolated from a test pig.
  • the step of detecting the number of propagated viruses and the number of viruses detected in the steps are smaller than the number of viruses propagated in the immortalized pig fetal small intestine macrophages in the absence of the biological sample, the above-mentioned It is a method including a step of determining that the biological sample contains a neutralizing antibody against the virus.
  • the “neutralizing antibody” means an antibody that suppresses infection or proliferation of a pig infectious virus. Such antibodies also include all classes and subclasses of immunoglobulins. In addition, there are no particular restrictions on the "tested pig” as long as it is a pig, regardless of the experience of infection with the pig-infecting virus.
  • the "biological sample” isolated from the test pig includes a sample derived from pig (for example, blood (serum, plasma, etc.), mucus (saliva, nasal juice, milk, gastrointestinal secretion, etc.), and purified from them. Antibodies).
  • the culture temperature is not particularly limited, but is usually 30 to 40 ° C, preferably 37 ° C.
  • the concentration of carbon dioxide in the gas in contact with the medium is not particularly limited, but is usually 1 to 10% by volume, preferably 2 to 5% by volume.
  • the culture period in the presence or absence of the biological sample is not particularly limited, but is usually 1 to 10 days, preferably 2 to 7 days, and more preferably 3 to 5 days.
  • the propagated virus can be detected by CPE test or the like, or by detecting a gene derived from a pig-infecting virus or its expression, as described above.
  • the presence or absence of a neutralizing antibody is determined using not only the number of viruses themselves but also the gene (genome DNA amount, etc.) reflecting the number of viruses or the expression level thereof as an index. May be.
  • ⁇ Isolation of pig small intestine macrophages from pig fetus About 5 cm of the small intestine (ileum site) was collected from a pig fetus (about 108 days old), and after excision of the adhered film, it was cut in the vertical direction and opened in half.
  • the small intestinal tissue was sufficiently shredded with scissors, transferred to a conical tube, washed with Dulbecco phosphate buffered saline (DPBS), and then immersed in DPBS containing collagenase / dispase / DNase I and enzymatically treated at 37 ° C. for 1 hour. ..
  • DPBS Dulbecco phosphate buffered saline
  • Tissues are dispersed by pipetting, washed with DPBS, and then grown medium (DMEM High glucose: 10% bovine fetal serum, 10 ⁇ g / mL insulin, 25 ⁇ M monothioglycerol, 100 U / ml penicillin, 100 ⁇ g / mL streptomycin, 5 ⁇ g / mL. It was suspended in penicillin (product name: Fungin, manufactured by InvivoGen) and seeded in a T75 flask.
  • DMEM High glucose 10% bovine fetal serum, 10 ⁇ g / mL insulin, 25 ⁇ M monothioglycerol, 100 U / ml penicillin, 100 ⁇ g / mL streptomycin, 5 ⁇ g / mL. It was suspended in penicillin (product name: Fungin, manufactured by InvivoGen) and seeded in a T75 flask.
  • penicillin product name: Fungin, manufactured by InvivoGen
  • FIG. 1B A cell sheet was formed in about one week, and spherical cells that weakly adhered and proliferated appeared on it (Fig. 1B).
  • the cell sheet was composed of ⁇ -smooth muscle actin ( ⁇ SMA) -positive myofibroblast-like cells, on which a mixed culture system in which macrophage marker (CD172a, CD204) -positive cells proliferated was constructed. It was confirmed that The epithelial cell markers (cytokeratin 18 and 19 (CK18, CK19)) were negative. (Fig. 2A).
  • the cells were seeded on an 8-well chamber slide, cultured for a certain period of time, and then immersed in 4% paraformaldehyde phosphate buffer (manufactured by Nakarai) and fixed. After washing with PBST, it is treated with 1% Triton X-100 / PBS solution, blocked with a hydrogen peroxide solution (manufactured by DAKO) and a blocking agent (product name: Blocking Onehist, manufactured by Nacalai), and then the primary antibody [anti].
  • SV40LT Large T antigen
  • pTERT pig telomerase reverse transcriptase
  • the recombinant lentivirus particles include a pLVSIN-EF1 ⁇ neo vector encoding the SV40LT gene and the pTERT gene, respectively, together with the packaging vector, and a cell line for lentivirus packaging (product name:: It was prepared by introduction into Lenti-X 293T cells, Takara Bio, Inc.). Then, about one week later, PIM was exposed to the same lentivirus particles again, and the culture was continued.
  • IPIM immortalized PIM
  • IPIM cells (1 ⁇ 10 6 cells) were seeded in a 90 mm suspension culture dish (manufactured by SUMILON), peeled off with a TrypLE Express reagent (manufactured by Thermo Fisher) every 3 to 5 days, and subcultured. When the cells were collected, the number of cells was counted using a TC10 fully automatic cell counter (manufactured by Bio-Rad).
  • IPIM cells activate intracellular signal transduction molecules in response to bacterial-derived components (muramildipeptide: MDP, lipopolysaccharide: LPS) (Muramildipeptide: MDP, lipopolysaccharide: LPS). It was able to phosphorylate p38MAP kinase (FIG. 5A) and further induce the production of inflammatory cytokine (IL-1 ⁇ ) (FIG. 5B).
  • MDP muramildipeptide
  • LPS lipopolysaccharide
  • IL-1 ⁇ inflammatory cytokine
  • IPIM cells were seeded on a 24-well suspension culture plate (manufactured by SUMILON) at 3 ⁇ 10 5 cells per hole. The next day, the medium was replaced with serum-free DMEM (400 ⁇ L) containing bacterial-derived components (MDP or LPS) at the respective concentrations shown in FIGS. 5A and 5B, and the cells were stimulated. After an additional 24 hours, the culture supernatant was collected and 50 mM Tris- containing lysis buffer (150 mM sodium chloride, 0.5% Triton X-100, 0.5% sodium deoxycholate, protease inhibitor, phosphatase inhibitor). Cell lysates were prepared using HCl buffer pH 7.5).
  • the culture supernatant (300 ⁇ L) was enriched with protein components by the trichloroacetic acid / acetone precipitation method.
  • the proteins contained in the culture supernatant and cell lysate were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrically transferred to a polyvinylidene fluoride (PVDF) membrane (manufactured by Merck).
  • PVDF polyvinylidene fluoride
  • IPIM cells small intestinal macrophages
  • SV40 large T antigen gene and the telomerase reverse transcriptase gene show high proliferative properties, while not only expressing the marker protein but also the expression thereof. It became clear that the function was also maintained.
  • African swine fever virus susceptibility test Next, the virus susceptibility of IPIM cells was evaluated for African swine fever virus (ASFV) by the method shown below.
  • ASFV strain used Three ASFV fields: European / Chinese epidemic strain Armenia07 (genotype: type II), strain Kenya05 / Tk-1 (genotype: type I) isolated from soft mites, and ASFV standard strain Espana75 (genotype: type I).
  • Outbreak isolates were introduced from the World Organization for Animal Health of Madrid, Spin, ASF Reference Laboratory of the World Organization for Animal Health (OIE). Information such as the year of occurrence and the place of occurrence of each virus strain can be found in Fernandez-Pinero J, et al. (2013) (Transboundary and Emerging Diseases. 60 (2013) 48-58).
  • the Vero cell-conditioned strain Portugal60 / V was introduced from Plum Island Animal Disease Center (PIADC), USA.
  • Pig alveolar macrophage (PAM) cells were recovered from pig lungs according to previously reported (Carrascosa AL. et al., Curr Protocol Cell Biol, December 2011, Chapter 26, UNIT 26.14, pp. 1-26).
  • Virus susceptibility test The susceptibility of cells to virus was determined by a CPE test using the cytopathic effect (CPE) as an index or a HAD test using a hemad adsorption (HAD) reaction specifically observed in ASFV-infected cells as an index. Specifically, first, WSL cells and 3D4 cells are arranged so that the number of PAM cells is 1 ⁇ 10 5 and the number of Vero cells and COS-1 cells is 1.5 ⁇ 10 4 per hole in a 96-well plate. / 21 cells were seeded to 2 ⁇ 10 4 or IPIM cells to be 3 ⁇ 10 4 .
  • the dilution limit (virus detection limit) at which the virus could be separated was evaluated for both PAM cells and IPIM cells.
  • the detection limit concentration of IPIM cells was 100 to 10,000 times lower than that of PAM cells.
  • the detection limit concentration of IPIM cells was 10 to 100 times lower than that of PAM cells (Table 3). That is, it was revealed that IPIM cells are more sensitive to ASFV than PAM cells.
  • the EDRD-1 strain which is a domestic isolate, was used for the pig breeding / respiratory disorder syndrome virus (PRRSV), and the Yamagata strain, which is a domestic isolate, was used for Porcine Circovirus Type 2 (PCV2).
  • PRRSV pig breeding / respiratory disorder syndrome virus
  • PCV2 Porcine Circovirus Type 2
  • IPIM cells were seeded on a 96-well suspension culture plate (manufactured by SUMILON) with 1 ⁇ 10 5 cells / 0.1 mL medium per hole. Three days later, after removing the cell culture solution by suction, 0.1 mL of the virus solution diluted 10-fold to 10,000-fold from 10-fold to 10,000-fold was infused per hole for virus antigen detection by the indirect fluorescent antibody method. A plate was made.
  • the cells were fixed with ice-cold 80% acetone, and the PRRS virus antigen was obtained by the indirect fluorescent antibody method using an anti-PRRS virus monoclonal antibody (clone: SR30-A). Was detected. The obtained results are shown in the upper part of FIG.
  • IPIM cells were inoculated on a 6-well suspension culture plate (manufactured by SUMILON) with 3 ⁇ 10 6 cells / 3 mL medium per hole. After 3 days, the cell culture solution was aspirated and removed, and then 0.5 mL of a virus solution obtained by diluting the storage stock solution 100 times was inoculated per hole to adsorb the virus to the cells for 1 hour. After 1 hour, the medium containing the virus was removed, the cells were washed with 2 mL of medium per hole, 5 mL of new medium was added, and the cells were cultured at 37 ° C. in the presence of 5% CO 2 .
  • CPE was observed on the 1st, 2nd, 3rd, 5th, and 7th days after inoculation, and 0.5 mL of the culture supernatant was collected.
  • the collected culture supernatant was diluted 10-fold stepwise from 10-fold to 10,000,000-fold, and then seeded in 1 ⁇ 10 5 cells / 0.1 mL medium per hole and cultured for 3 days per hole in IPIM cells.
  • CPE was observed by inoculating 0.1 mL (4 holes per dilution) and culturing at 37 ° C. in a 5% CO 2 environment for 7 days. The observation results on the 7th day of inoculation are shown at the bottom of FIG.
  • the 50% tissue culture infection amount (TCID 50 ) was calculated based on the Behrens-Carber method. The obtained results are shown in FIG.
  • PCV2 susceptibility test After suspending IPIM cells in 2 ⁇ 10 5 cells / 180 ⁇ L medium per hole, mix with 20 ⁇ L of virus storage stock solution, and mix 200 ⁇ L of cell / virus mixture per hole with 48-hole suspension culture plate (manufactured by SUMILON).
  • SUMILON 48-hole suspension culture plate
  • the medium containing the virus was removed, the cells were washed with 0.5 mL of medium per hole, 200 ⁇ L of new medium was added, and the cells were cultured at 37 ° C. in the presence of 5% carbon dioxide gas.
  • the culture supernatant and cells immediately after the addition of the medium were collected together and used as a sample 2 hours after inoculation.
  • PRRSV is sensitive to IPIM cells
  • the viral antigen can be detected in the cytoplasm on the 3rd day after inoculation, and the clear CPE is on the 7th day after inoculation.
  • the viral infectivity titer in the PRRSV-inoculated IPIM cell culture supernatant peaked 2-3 days after inoculation and increased nearly 100,000 times. The infection titer tended to be maintained without a significant decrease until the 7th day after inoculation.
  • IPIM cells are also sensitive to the field strains of PRRSV and PCV2.
  • the present invention it is possible to provide immortalized cells of porcine small intestine macrophages.
  • the immortalized cells have high infectivity to pig-infecting virus, various pig-infecting virus strains can be propagated, and vaccines against the virus can be produced and developed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Attempts have been made to isolate macrophages from the small intestine of approximately one-month-old pigs and immortalize the macrophages, but microbial contamination was severe and isolation of macrophages from the porcine small intestine was not successful even when medium containing antibiotics and antifungals was used. However, it was discovered that the contamination is suppressed and primary culture of macrophages is possible if the small intestine of a pig fetus is used. Furthermore, it was clarified that the small-intestinal macrophages of the primary culture can be immortalized by causing SV40 large T antigen and telomerase reverse transcriptase to be expressed, and it became possible to provide a cell line of subculturable porcine small-intestinal macrophages.

Description

不死化豚胎子小腸マクロファージImmortalized pig fetal small intestine macrophages
 本発明は、不死化豚小腸マクロファージ及び該マクロファージの製造方法に関する。本発明はまた、前記マクロファージを用いた、豚感染ウイルス又はワクチンの製造方法に関する。さらに本発明は、前記マクロファージを用いた、豚感染ウイルスを検出する方法又は豚感染ウイルスに対する中和抗体を検出する方法に関する。 The present invention relates to an immortalized pig small intestine macrophage and a method for producing the macrophage. The present invention also relates to a method for producing a pig infectious virus or a vaccine using the macrophages. Furthermore, the present invention relates to a method for detecting a pig infectious virus or a method for detecting a neutralizing antibody against a pig infectious virus using the macrophages.
 養豚において、下痢は家畜の死亡及び発育遅延要因の一つであり、安定かつ効率的な豚肉生産における重大な問題である。下痢は、病原体の感染、栄養、宿主のストレスなど様々な要因が単独あるいは相互に関連して発生する。自然免疫担当細胞である小腸マクロファージは、宿主免疫の作動と終息に大きな役割を担っており、その応答は下痢の重篤度や病原体の排泄量に大きな影響を及ぼす。また、栄養の変化やそれに伴う腸内細菌叢とその代謝産物の変化によっても下痢を伴う腸炎が発生し、その病態の一端を小腸マクロファージの応答が担うことも明らかにされつつある。 In pig farming, diarrhea is one of the causes of livestock mortality and growth retardation, and is a serious problem in stable and efficient pork production. Diarrhea occurs alone or in association with various factors such as pathogen infection, nutrition, and host stress. Small intestinal macrophages, which are cells responsible for innate immunity, play a major role in the activation and termination of host immunity, and their response greatly affects the severity of diarrhea and the excretion of pathogens. It is also becoming clear that enteritis accompanied by diarrhea occurs due to changes in nutrition and the accompanying changes in the intestinal flora and its metabolites, and that the response of small intestinal macrophages plays a part in the pathological condition.
 これらのことから、豚における下痢の病態解明と予防法開発の基盤ツールとして、in vitroでの小腸マクロファージの免疫学的応答解析系が必要であると考えられる。一方で、現在までに継代可能な豚小腸マクロファージの細胞株は樹立されておらず、前記解析系を構築する上でも、その作製が求められていた。 From these facts, it is considered that an in vitro immunological response analysis system for small intestinal macrophages is necessary as a basic tool for elucidating the pathophysiology of diarrhea in pigs and developing preventive methods. On the other hand, no cell line of porcine small intestine macrophages that can be passaged has been established so far, and its production has been required for constructing the analysis system.
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、継代可能な豚小腸マクロファージの細胞株を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a cell line of porcine small intestine macrophages that can be passaged.
 本発明者らは、従前、豚(6日齢)の腎臓からマクロファージを単離し、それを不死化することに成功している(非特許文献1)。そこで、豚(約1ヶ月齢)の小腸についても、マクロファージを単離し、それを不死化することを試みた。しかしながら、抗生物質及び抗真菌薬を含む培地を用いても、微生物のコンタミネーションが激しく、豚の小腸からマクロファージを単離することが叶わなかった。 The present inventors have previously succeeded in isolating macrophages from the kidneys of pigs (6 days old) and immortalizing them (Non-Patent Document 1). Therefore, we also tried to isolate macrophages and immortalize them in the small intestine of pigs (about 1 month old). However, even when a medium containing an antibiotic and an antifungal drug was used, the contamination of microorganisms was severe, and it was not possible to isolate macrophages from the small intestine of pigs.
 そこで、先ずは、豚小腸からのマクロファージ初代培養を可能にすべく、鋭意検討及び研究を重ねた。その結果、胎子の小腸であれば、前記のようなコンタミネーションを生じさせることはなく、小腸マクロファージの単離培養が可能であることを見出した。 Therefore, first of all, in order to enable the primary culture of macrophages from the small intestine of pigs, we repeated diligent studies and research. As a result, it was found that the small intestine of the fetus does not cause the contamination as described above, and the small intestine macrophages can be isolated and cultured.
 そして、このようにして得られた豚小腸マクロファージに、SV40ラージT抗原遺伝子及び豚由来のテロメラーゼ逆転写酵素遺伝子を導入し、形質転換したところ、得られた細胞は、少なくとも60回以上の分裂が可能であることが明らかになった。また、当該不死化細胞は、マーカー分子の発現及びマクロファージとしての機能(細菌由来成分に応答しての、細胞内シグナル伝達分子の活性化及び炎症性サイトカイン産生の誘導)を維持していることも明らかになった。 Then, when the SV40 large T antigen gene and the telomerase reverse transcriptase gene derived from pigs were introduced into the pig small intestine macrophages thus obtained and transformed, the obtained cells were divided at least 60 times or more. It became clear that it was possible. In addition, the immortalized cells may maintain the expression of marker molecules and the function as macrophages (activation of intracellular signal transduction molecules and induction of inflammatory cytokine production in response to bacterial-derived components). It was revealed.
 さらに、このようにして得られた不死化豚胎子小腸マクロファージについて、アフリカ豚熱ウイルス(ASFV)に対する感受性試験を行った。その結果、当該細胞は、細胞変性効果(CPE)試験、血球吸着(HAD)試験の両方においても、ASFVを検出できることが明らかになった。さらに、試験した全てのASFV株に対して感受性を有し、これらウイルス株の増殖も可能であることが明らかになった。また、その感受性は、驚くべきことに、初代培養豚肺胞マクロファージ(PAM)と比較して桁違いに高かった(CPE試験ではPAMに比べ100~10000倍、HAD試験ではPAMに比べ10~100倍高かった)。さらに、豚繁殖・呼吸障害症候群ウイルス及び豚サーコウイルス2型に関しても各々、感受性試験を行った。その結果、前記不死化豚胎子小腸マクロファージは、ASFV同様に、これらウイルスに対しても高い感受性を示すことが確認された。 Furthermore, the immortalized swine fever small intestine macrophages thus obtained were subjected to a susceptibility test against African swine fever virus (ASFV). As a result, it was revealed that the cells can detect ASFV in both the cytopathic effect (CPE) test and the blood cell adsorption (HAD) test. Furthermore, it was revealed that they are sensitive to all the ASFV strains tested and that these virus strains can also be propagated. The susceptibility was also surprisingly orders of magnitude higher than that of primary cultured pig alveolar macrophages (PAM) (100 to 10,000 times higher than PAM in the CPE test and 10 to 100 times higher than PAM in the HAD test). It was twice as expensive). Furthermore, susceptibility tests were also conducted for pig breeding / respiratory disorder syndrome virus and porcine circovirus type 2. As a result, it was confirmed that the immortalized pig fetal small intestinal macrophages show high susceptibility to these viruses as well as ASFV.
 本発明は、このように、不死化豚小腸マクロファージの作製に初めて成功したこと、及び作製された不死化豚胎子小腸マクロファージは、ウイルスに対して高い感染感受性を有していることを見出したことに基づくものであり、具体的には、以下のとおりである。
<1> 豚胎子の小腸マクロファージを不死化した細胞。
<2> 豚胎子の小腸マクロファージに、SV40ラージT抗原及びテロメラーゼ逆転写酵素からなる群から選択される少なくとも1のタンパク質を発現させて成る、<1>に記載の細胞。
<3> 前記発現は、前記タンパク質をコードするレンチウイルスからの発現である、<2>に記載の細胞。
<4> 前記テロメラーゼ逆転写酵素が豚由来のテロメラーゼ逆転写酵素である、<2>又は<3>に記載の細胞。
<5> 前記豚胎子は胎齢30~114日の豚胎子である、<1>~<4>のうちのいずれか一項に記載の細胞。
<6> 豚胎子の小腸マクロファージに、SV40ラージT抗原及びテロメラーゼ逆転写酵素からなる群から選択される少なくとも1のタンパク質を発現させる工程を含む、不死化豚小腸マクロファージの製造方法。
<7> 前記工程は、前記タンパク質をコードするレンチウイルスを、前記豚胎子の小腸マクロファージに導入し、当該タンパク質を発現させる工程である、<6>に記載の方法。
<8> 前記テロメラーゼ逆転写酵素が豚由来のテロメラーゼ逆転写酵素である、<6>又は<7>に記載の方法。
<9> 前記豚胎子は胎齢30~114日の豚胎子である、<6>~<8>のうちのいずれか一項に記載の方法。
<10> <1>~<5>のうちのいずれか一項に記載の細胞と、豚感染ウイルスとを接触させ、当該ウイルスを前記細胞において増殖する工程を含む、豚感染ウイルスの製造方法。
<11> <1>~<5>のうちのいずれか一項に記載の細胞と、豚感染ウイルスとを接触させ、当該ウイルスを前記細胞において増殖する工程、
 増殖した豚感染ウイルスを単離する工程、及び
 単離した豚感染ウイルスを薬理学上許容される担体又は媒体と混合する工程
を含む、豚感染ウイルスを含むワクチンの製造方法。
<12> 前記豚感染ウイルスが、アフリカ豚熱ウイルス、豚流行性下痢ウイルス、豚ロタウイルス、豚サーコウイルス、及び豚繁殖・呼吸障害症候群ウイルスからなる群から選択される少なくとも1のウイルスである、<10>又は<11>に記載の製造方法。
<13> 豚感染ウイルス由来遺伝子のプロモーター領域の下流にレポーター遺伝子が機能的に結合したDNAを有する、<1>~<5>のうちのいずれか一項に記載の細胞。
<14> 前記豚感染ウイルスが、アフリカ豚熱ウイルス、豚流行性下痢ウイルス、豚ロタウイルス、豚サーコウイルス、及び豚繁殖・呼吸障害症候群ウイルスからなる群から選択される少なくとも1のウイルスである、<13>に記載の細胞。
<15> 豚感染ウイルスを検出する方法であって、下記工程を含む方法
 被検試料存在下にて、<13>又は<14>に記載の細胞を培養する工程、
 当該細胞における前記レポーター遺伝子の発現を検出する工程、及び
 当該レポーター遺伝子の発現が検出された場合に、前記被検試料は豚感染ウイルスを含有していると判定する工程。
<16> 豚感染ウイルスに対する中和抗体を検出する方法であって、下記工程を含む方法
 被検豚から単離された生体試料の存在下、<1>~<5>のうちのいずれか一項に記載の細胞と豚感染ウイルスとを接触させ、当該ウイルスを前記細胞にて増殖させる工程、
 増殖した前記ウイルス数を検出する工程、及び
 前記工程にて検出されたウイルス数が、前記生体試料非存在下、<1>~<5>のうちのいずれか一項に記載の細胞にて増殖したウイルス数と比して、少ない場合、前記生体試料は前記ウイルスに対する中和抗体を含有していると判定する工程。
<17> 前記豚感染ウイルスが、アフリカ豚熱ウイルス、豚流行性下痢ウイルス、豚ロタウイルス、豚サーコウイルス、及び豚繁殖・呼吸障害症候群ウイルスからなる群から選択される少なくとも1のウイルスである、<15>又は<16>に記載の方法。
The present invention has thus found that the production of immortalized pig small intestine macrophages was successful for the first time, and that the produced immortalized pig fetal small intestine macrophages have high infection susceptibility to virus. It is based on the above, and specifically, it is as follows.
<1> Immortalized cells of small intestinal macrophages of porcine fetus.
<2> The cell according to <1>, wherein the small intestinal macrophage of a pig embryo expresses at least one protein selected from the group consisting of SV40 large T antigen and telomerase reverse transcriptase.
<3> The cell according to <2>, wherein the expression is an expression from a lentivirus encoding the protein.
<4> The cell according to <2> or <3>, wherein the telomerase reverse transcriptase is a pig-derived telomerase reverse transcriptase.
<5> The cell according to any one of <1> to <4>, wherein the pig fetus is a pig fetus having a fetal age of 30 to 114 days.
<6> A method for producing immortalized pig small intestine macrophages, which comprises a step of expressing at least one protein selected from the group consisting of SV40 large T antigen and telomerase reverse transcriptase in small intestine macrophages of pig embryo.
<7> The method according to <6>, wherein the step is a step of introducing a lentivirus encoding the protein into the small intestinal macrophages of the pig fetal body to express the protein.
<8> The method according to <6> or <7>, wherein the telomerase reverse transcriptase is a pig-derived telomerase reverse transcriptase.
<9> The method according to any one of <6> to <8>, wherein the pig fetus is a pig fetus with a fetal age of 30 to 114 days.
<10> A method for producing a pig-infecting virus, which comprises a step of contacting the cell according to any one of <1> to <5> with a pig-infecting virus and propagating the virus in the cell.
<11> A step of bringing the cell according to any one of <1> to <5> into contact with a pig-infecting virus and propagating the virus in the cell.
A method for producing a vaccine containing a pig infectious virus, which comprises a step of isolating the propagated pig infectious virus and a step of mixing the isolated pig infectious virus with a pharmacologically acceptable carrier or medium.
<12> The pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, pig epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus. The manufacturing method according to <10> or <11>.
<13> The cell according to any one of <1> to <5>, which has a DNA to which a reporter gene is functionally bound downstream of the promoter region of a gene derived from a pig infectious virus.
<14> The pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, pig epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus. The cell according to <13>.
<15> A method for detecting a pig infectious virus, which comprises the following steps, a step of culturing the cells according to <13> or <14> in the presence of a test sample.
A step of detecting the expression of the reporter gene in the cell, and a step of determining that the test sample contains a pig infectious virus when the expression of the reporter gene is detected.
<16> A method for detecting a neutralizing antibody against a pig infectious virus, which comprises the following steps. In the presence of a biological sample isolated from a test pig, any one of <1> to <5>. A step of contacting the cells described in the section with a pig infecting virus and propagating the virus in the cells.
The step of detecting the number of the propagated virus and the number of the virus detected in the step proliferate in the cell according to any one of <1> to <5> in the absence of the biological sample. A step of determining that the biological sample contains a neutralizing antibody against the virus when the number is small compared to the number of viruses.
<17> The pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, pig epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus. The method according to <15> or <16>.
 本発明によれば、継代可能な豚胎子小腸マクロファージの細胞株を提供することが可能となる。また、当該不死化豚胎子小腸マクロファージは、ウイルスに対して高い感染感受性を有するため、様々なウイルスを増殖させることが可能となり、当該ウイルスに対するワクチンの製造、開発が可能となる。また、感染感受性の高さから、前記ウイルスを検出(検査、診断)することも可能となる。 According to the present invention, it is possible to provide a cell line of a passageable pig fetal small intestine macrophage. In addition, since the immortalized pig fetal small intestine macrophages have high infectivity to viruses, various viruses can be propagated, and vaccines against the viruses can be produced and developed. In addition, it is possible to detect (test, diagnose) the virus because of its high infection susceptibility.
豚胎子の小腸組織片を、酵素処理して播種し、培養してから22日目に広がってきた接着性の初代培養細胞(豚胎子小腸初代培養細胞)を観察した結果を示す、顕微鏡写真である。図中のスケールバーは200μmを表す。A photomicrograph showing the results of observing the adhesive primary cultured cells (porcine fetal small intestine primary cultured cells) that spread on the 22nd day after the small intestinal tissue pieces of the pig fetal were seeded by enzyme treatment and seeded. be. The scale bar in the figure represents 200 μm. 豚胎子小腸初代培養細胞を剥がし播き直して形成された、細胞シート上に弱く接着して増殖する球状の細胞(マクロファージ、PIM)を観察した結果を示す、顕微鏡写真である。図中のスケールバーは100μmを表す。6 is a photomicrograph showing the results of observing spherical cells (macrophages, PIM) that are weakly adhered and proliferate on a cell sheet formed by peeling and reseeding primary cultured pig fetal small intestine cells. The scale bar in the figure represents 100 μm. 播き直して培養した後の豚胎子小腸初代培養細胞を、免疫染色にて分析した結果を示す写真である。図中、一番上の左側は、筋繊維芽細胞マーカーであるα平滑筋アクチン(αSMA)を染色した結果を示し、一番上の右側は、間充織細胞マーカーであるVimentinを染色した結果を示す。真ん中は上皮マーカーであるサイトケラチンを染色した結果を示す(左側はサイトケラチン18(CK18)、右側はサイトケラチン19(CK19)を染色した結果を各々示す)。一番下の左側は、マクロファージマーカーであるCD172aを染色した結果を示し、一番下の右側は、マクロファージマーカーであるCD204を染色した結果を示す。スケールバーは400μmを表す。また、カラー表示下、茶色は抗体染色を表し、青紫色は核染色を表す。It is a photograph showing the result of analysis of the primary cultured pig fetal small intestine cells after re-seeding and culturing by immunostaining. In the figure, the upper left side shows the result of staining the myofibroblast marker α-smooth muscle actin (αSMA), and the uppermost right side shows the result of staining the mesenchymal cell marker Vimentin. Is shown. The center shows the results of staining the epithelial marker cytokeratin (the left side shows the results of staining cytokeratin 18 (CK18), and the right side shows the results of staining cytokeratin 19 (CK19)). The lower left side shows the result of staining the macrophage marker CD172a, and the lowermost right side shows the result of staining the macrophage marker CD204. The scale bar represents 400 μm. In addition, under color display, brown represents antibody staining and bluish purple represents nuclear staining. PIMを、免疫染色にて分析した結果を示す写真である。一番上の左側は、マクロファージマーカーであるIba1を染色した結果を示し、一番上の右側は、マクロファージマーカーであるCD172aを染色した結果を示し、真ん中の左側は、マクロファージマーカーであるCD204を染色した結果を示す。真ん中の右側は、間充織細胞マーカーであるVimentinを染色した結果を示す。一番下は上皮マーカーであるサイトケラチンを染色した結果を示す(左側はCK18、右側はCK19を染色した結果を各々示す)。スケールバーは400μmを表す。また、カラー表示下、茶色は抗体染色を表し、青紫色は核染色を表す。It is a photograph which shows the result of the analysis of PIM by immunostaining. The upper left side shows the result of staining the macrophage marker Iba1, the upper right side shows the result of staining the macrophage marker CD172a, and the middle left side shows the result of staining the macrophage marker CD204. The result is shown. The right side in the middle shows the results of staining the mesenchymal cell marker Vimentin. The bottom shows the results of staining the epithelial marker cytokeratin (the left side shows the results of staining CK18, and the right side shows the results of staining CK19). The scale bar represents 400 μm. In addition, under color display, brown represents antibody staining and bluish purple represents nuclear staining. 豚胎子の小腸から単離して不死化したマクロファージ(IPIM)を観察した結果を示す、顕微鏡写真である。図中のスケールバーは100μmを表す。6 is a photomicrograph showing the results of observing macrophages (IPIM) isolated from the small intestine of a pig fetal and immortalized. The scale bar in the figure represents 100 μm. IPIMの細胞増殖性を試験した結果を示す、グラフである。It is a graph which shows the result of having tested the cell proliferation of IPIM. IPIMを、免疫染色にて分析した結果を示す写真である。上部は、左側より順に、マクロファージマーカーであるIba1を、マクロファージマーカーであるCD172aを、マクロファージマーカーであるCD204を、マクロファージを含む抗原提示細胞のマーカーであるMHC-IIを、各々染色した結果を示す。下部は、左側より順に、マクロファージマーカーであるCD16を、M2型マクロファージマーカーであるCD163を、M1型マクロファージマーカーであるCD169を、豚マクロファージマーカーであるCD203aを、各々染色した結果を示す。図中のスケールバーは200μmを表す。また、カラー表示下、茶色は抗体染色を表し、青紫色は核染色を表す。It is a photograph showing the result of analysis of IPIM by immunostaining. The upper part shows the results of staining the macrophage marker Iba1, the macrophage marker CD172a, the macrophage marker CD204, and the macrophage-containing antigen-presenting cell marker MHC-II, respectively, in order from the left side. The lower part shows the results of staining CD16, which is a macrophage marker, CD163, which is an M2 type macrophage marker, CD169, which is an M1 type macrophage marker, and CD203a, which is a pig macrophage marker, in order from the left side. The scale bar in the figure represents 200 μm. In addition, under color display, brown represents antibody staining and bluish purple represents nuclear staining. IPIMは、細菌由来成分(ムラミルジペプチド:MDP、リポ多糖:LPS)に応答して細胞内シグナル伝達分子を活性化(p38MAPキナーゼをリン酸化)させることを示す、写真である。IPIM is a photograph showing activation of intracellular signaling molecules (phosphorylation of p38MAP kinase) in response to bacterial-derived components (muramyl dipeptide: MDP, lipopolysaccharide: LPS). IPIMは、細菌由来成分(MDP、LPS)に応答して炎症性サイトカイン(IL-1β)の産生を誘導することを示す、写真である。IPIM is a photograph showing that it induces the production of inflammatory cytokines (IL-1β) in response to bacterially derived components (MDP, LPS). IPIMに、アフリカ豚熱ウイルス(Armenia07株)を接種して2日後に観察し、細胞変性効果(CPE)を検出した結果を示す顕微鏡写真である。図中、左側のパネル「非感染」は、ASFV株非接種の陰性対照の結果を示す。It is a micrograph showing the result of detecting the cytopathic effect (CPE) by inoculating IPIM with African swine fever virus (Armenia 07 strain) and observing it 2 days later. In the figure, the left panel "non-infected" shows the results of the negative control of the non-inoculated ASFV strain. 赤血球存在下、IPIMに、Armenia07株を接種して2日後に観察し、血球吸着(HAD)を検出した結果を示す顕微鏡写真である。図中、左側のパネル「非感染」は、ASFV株非接種の陰性対照の結果を示す。In the presence of erythrocytes, IPIM was inoculated with the Armenia 07 strain and observed 2 days later, and it is a micrograph showing the result of detecting blood cell adsorption (HAD). In the figure, the left panel "non-infected" shows the results of the negative control of the non-inoculated ASFV strain. IPIMに、豚繁殖・呼吸障害症候群ウイルス(PRRSV)を接種して、3日目に間接蛍光抗体法によりウイルス抗原を検出し、また7日目にCPEを検出した結果を示す顕微鏡写真である。図中、左側のパネル「非接種」は、PRRSV株非接種の陰性対照の結果を示す。It is a micrograph showing the result of inoculating IPIM with the pig breeding / respiratory disorder syndrome virus (PRRSV), detecting the virus antigen by the indirect immunofluorescence method on the 3rd day, and detecting CPE on the 7th day. In the figure, the left panel "Non-inoculation" shows the results of the negative control of PRRSV strain non-inoculation. IPIMにおけるPRRSV50%組織培養感染量(TCID50)の経時変化を解析した結果を示すグラフである。It is a graph which shows the result of having analyzed the time-dependent change of PRRSV 50% tissue culture infection amount (TCID 50 ) in IPIM. IPIMにおける豚サーコウイルス2型(PCV2)遺伝子量の経時変化を解析した結果を示すグラフである。It is a graph which shows the result of having analyzed the time course of the pig circovirus type 2 (PCV2) gene amount in IPIM.
 本発明は、豚胎子の小腸マクロファージを不死化した細胞(不死化豚胎子小腸マクロファージ)に関する。 The present invention relates to cells in which porcine fetal small intestine macrophages are immortalized (immortalized porcine fetal small intestine macrophages).
 本発明において、「不死化豚胎子小腸マクロファージ」は、豚(哺乳綱鯨偶蹄目イノシシ科の動物)の胎子の小腸に存在するマクロファージが不死化した細胞を意味する。「豚胎子」とは、豚母体中の出産前の個体を意味し、好ましくは胎齢30~114日の豚であり、小腸組織形成における成熟の観点から、より好ましくは90~114日の豚である。 In the present invention, "immortalized pig fetal small intestine macrophages" means cells in which macrophages present in the small intestine of a pig (an animal of the family Cetartiodactyla, Mammalia) are immortalized. "Pig fetal" means a prenatal individual in a pig mother, preferably a pig with a fetal age of 30 to 114 days, and more preferably a pig with a fetal age of 90 to 114 days from the viewpoint of maturation in small intestinal tissue formation. be.
 マクロファージを採取する「小腸」としては、特に制限はなく、例えば、回腸、空腸、十二指腸が挙げられるが、免疫細胞が集中するリンパ組織の発達の観点から、好ましくは回腸である。 The "small intestine" from which macrophages are collected is not particularly limited, and examples thereof include the ileum, jejunum, and duodenum, but the ileum is preferable from the viewpoint of the development of lymphatic tissue in which immune cells are concentrated.
 不死化される「豚小腸マクロファージ」は、豚小腸に存在する、卵黄嚢、胎子肝由来のマクロファージあるいは単球から分化して成るマクロファージであり、活性型マクロファージ(炎症性のM1型マクロファージ、抗炎症性のM2型マクロファージ)であってもよく、休止型マクロファージであってもよい。かかるマクロファージは、例えば、後述の実施例に示すとおり、豚胎子から採取した小腸から、被膜を除去する。次いで、単離した小腸組織を細切りにし、緩衝液で洗浄し、酵素処理に供した後、培養する。その培養過程において生じる、単層の細胞シートに緩く接着しているマクロファージ様細胞を、単離することによって調製することができる。 Immortalized "porcine small intestinal macrophages" are macrophages that are present in the pig small intestine and are differentiated from oval sac, fetal liver-derived macrophages or monospheres, and are active macrophages (inflammatory M1 type macrophages, anti-inflammatory). It may be a sex M2 type macrophage) or a resting type macrophage. Such macrophages remove the capsule from the small intestine collected from pig embryos, for example, as shown in Examples below. The isolated small intestinal tissue is then chopped, washed with buffer, subjected to enzymatic treatment and then cultured. Macrophage-like cells that are loosely adhered to a monolayer of cell sheets that occur during the culture process can be prepared by isolation.
 なお、細切りにした小腸組織の洗浄に用いる緩衝液としては、特に制限はなく、例えば、ダルベッコりん酸緩衝生理食塩水(DPBS)、りん酸緩衝食塩水(PBS)、トリス塩酸緩衝液(TBS)、HEPES緩衝液が挙げられる。 The buffer solution used for washing the shredded small intestinal tissue is not particularly limited, and for example, dalbecco phosphate buffered saline (DPBS), phosphate buffered saline (PBS), and Tris hydrochloric acid buffer (TBS). , HEPES buffer.
 前記酵素処理は、組織から細胞を分離、分散し得る限り、用いる酵素については、特に制限はなく、例えば、コラゲナーゼ、ディスパーゼ、DNase(DNase I等)、トリプシン、ヒアルロニダーゼ、エラスターゼ又はプロナーゼが挙げられるが、好ましくは、コラゲナーゼ、ディスパーゼ及びDNase Iの組み合わせである。また、処理する温度、時間としても制限はなく、用いる酵素の種類、細胞の分離・分散の程度に応じて、適宜調整し得る。 The enzyme treatment is not particularly limited as long as cells can be separated and dispersed from the tissue, and examples thereof include collagenase, dispase, DNase (DNase I, etc.), trypsin, hyaluronidase, elastase, and pronase. , Preferably a combination of collagenase, dispase and DNase I. Further, the treatment temperature and time are not limited, and can be appropriately adjusted according to the type of enzyme used and the degree of cell separation / dispersion.
 酵素処理によって分散した細胞の培養に用いる培地としては、小腸マクロファージを維持できる限り、特に制限はないが、公知の基礎培地を基に周知慣用の培地添加物を適宜添加することによって調製することができる。「基礎培地」としては、DMEM培地、DMEM培地(高グルコース)、DMEM培地(低グルコース)、RPMI 160培地、RPMI 1640培地、ハムF12培地、KSOM培地、イーグルMEM培地、グラスゴーMEM培地、αMEM培地、ハム培地、フィッシャーズ培地、BME培地、BGJb培地、CMRL 1066培地、MEM Zincオプション改善培地、IMDM培地、メヂィウム199培地、及びこれら任意の混合培地が挙げられる。「培地添加物」としては、例えば、抗生物質(ペニシリン、ストレプトマイシン、ゲンタマイシン、バンコマイシン等)、抗真菌薬(ピマリシン、アンホテリシンB等)、機能性タンパク質(インスリン、トランスフェリン、ラクトフェリン等)、還元剤(モノチオグリセロール、2-メルカプトエタノール、カタラーゼ、スーパーオキシドジスムターゼ、N-アセチルシステイン等)、脂肪酸以外の脂質(コレステロール等)、アミノ酸(アラニン、L-グルタミン、非必須アミノ酸等)、ペプチド(グルタチオン、還元型グルタチオン等)、ヌクレオチド等(ヌクレオシド、シチジン、アデノシン5’-一リン酸、ヒポキサンチン、チミジン等)、金属塩(硝酸鉄(III)、硫酸鉄(II)、硫酸銅、硫酸亜鉛等)、無機塩類(ナトリウム、カリウム、カルシウム、マグネシウム、リン、塩素等)、炭素源(グルコース、ガラクトース、フルクトース、スクロース等)、ビタミン、無機化合物(亜セレン酸)、有機化合物(パラアミノ安息香酸、エタノールアミン、コルチコステロン、プロゲステロン、リポ酸、プトレシン、ピルビン酸、乳酸、トリヨードチロニン等)、緩衝化合物(HEPES、重炭酸ナトリウム等)、pH指示薬(フェノールレッド等)が挙げられるが、これらに限定されるものではない。 The medium used for culturing the cells dispersed by the enzyme treatment is not particularly limited as long as the small intestinal macrophages can be maintained, but it can be prepared by appropriately adding a well-known and conventional medium additive based on a known basal medium. can. Examples of the "basal medium" include DMEM medium, DMEM medium (high glucose), DMEM medium (low glucose), RPMI 160 medium, RPMI 1640 medium, ham F12 medium, KSOM medium, Eagle MEM medium, Glasgow MEM medium, αMEM medium, and the like. Examples include ham medium, Fishers medium, BME medium, BGJb medium, CMRL 1066 medium, MEM Zinc option improvement medium, IMDM medium, medium 199 medium, and any mixed medium thereof. Examples of the "medium additive" include antibiotics (penicillin, streptomycin, gentamycin, bancomycin, etc.), antifungal agents (pimaricin, amphotericin B, etc.), functional proteins (insulin, transferase, lactoferrin, etc.), reducing agents (mono). Thioglycerol, 2-mercaptoethanol, catalase, superoxide dismutase, N-acetylcysteine, etc.), lipids other than fatty acids (cholesterol, etc.), amino acids (alanine, L-glutamine, non-essential amino acids, etc.), peptides (glutathione, reduced form) Glutathion, etc.), nucleotides, etc. (nucleoside, citidine, adenosine 5'-monophosphate, hypoxanthin, thymidin, etc.), metal salts (iron (III) nitrate, iron (II) sulfate, copper sulfate, zinc sulfate, etc.), inorganic Salts (sodium, potassium, calcium, magnesium, phosphorus, chlorine, etc.), carbon sources (glucose, galactose, fructose, sucrose, etc.), vitamins, inorganic compounds (selenic acid), organic compounds (paraaminobenzoic acid, ethanolamine, corti) Examples include, but are limited to, costerone, progesterone, lipoic acid, putresin, pyruvate, lactic acid, triiodotyronin, etc.), buffer compounds (HEPES, sodium bicarbonate, etc.), pH indicators (phenol red, etc.). It's not a thing.
 また、かかる培地を用いた培養条件は、特に制限はないが、培養温度としては、通常30~40℃、好ましくは37℃である。培地に接触する気体中の二酸化炭素の濃度としては、通常1~10体積%であり、好ましくは2~5体積%である。 The culture conditions using such a medium are not particularly limited, but the culture temperature is usually 30 to 40 ° C, preferably 37 ° C. The concentration of carbon dioxide in the gas in contact with the medium is usually 1 to 10% by volume, preferably 2 to 5% by volume.
 そして、このような培養条件下で、酵素処理によって分散した小腸組織由来の細胞を培養することにより、先ず小腸初代培養細胞を得ることができる。当該細胞が得られる培養時間としては特に制限はないが、通常1週間~1ヶ月間、好ましくは2~3週間である。 Then, by culturing the cells derived from the small intestine tissue dispersed by the enzyme treatment under such culture conditions, first, the primary cultured cells of the small intestine can be obtained. The culture time for obtaining the cells is not particularly limited, but is usually 1 week to 1 month, preferably 2 to 3 weeks.
 次いで、得られた小腸初代培養細胞を、酵素処理に供し、培養器から剥がし、分散させ、播き直す。ここでの酵素処理も上述の酵素を用いて行なうことができるが、好ましくは、プロテアーゼ(非コラーゲン性タンパク質に対する分解活性を少なくとも有する酵素)、コラゲナーゼ及びDNaseの組み合わせ(例えば、製品名:Accumax(登録商標)、Sigma-Aldrich社製)である。 Next, the obtained primary cultured cells of the small intestine are subjected to enzyme treatment, peeled from the incubator, dispersed, and re-sown. The enzyme treatment here can also be carried out using the above-mentioned enzyme, but preferably a combination of protease (enzyme having at least degrading activity for non-collagen protein), collagenase and DNase (for example, product name: Accumax (registered)). Trademark), manufactured by Sigma-Aldrich).
 そして、播き直し後の培養にて、筋繊維芽細胞様細胞から構成される細胞シートと、その上に弱く接着し増殖する球状の細胞(豚小腸マクロファージ)とからなる、混合培養系が構築される。当該培養系が構築される培養時間としては特に制限はないが、通常数日(2~4日)~数週(2~3週)間であり、好ましくは1~2週間である。 Then, in the culture after re-seed, a mixed culture system consisting of a cell sheet composed of myofibroblast-like cells and spherical cells (pork small intestine macrophages) that weakly adhere and proliferate on the cell sheet is constructed. To. The culture time for constructing the culture system is not particularly limited, but is usually between several days (2 to 4 days) and several weeks (2 to 3 weeks), preferably 1 to 2 weeks.
 このようにして得られる豚胎子の小腸マクロファージを、不死化する方法については特に制限はないが、不死化遺伝子を少なくとも1種導入することにより行うことができる。不死化遺伝子としては、例えば、SV40ラージT抗原(SV40T抗原)、テロメラーゼ逆転写酵素(TERT)、Myc、Rasが挙げられるが、SV40T抗原及びTERTを導入することが好ましく、豚マクロファージの不死化効率を高めるという観点から、SV40T抗原及び豚由来のTERTを導入することがより好ましい。 The method for immortalizing the small intestinal macrophages of the pig fetus thus obtained is not particularly limited, but it can be carried out by introducing at least one immortalizing gene. Examples of the immortalizing gene include SV40 large T antigen (SV40T antigen), telomerase reverse transcriptase (TERT), Myc, and Ras, and it is preferable to introduce SV40T antigen and TERT, and the immortalization efficiency of pig macrophages is preferable. From the viewpoint of enhancing the above, it is more preferable to introduce SV40T antigen and TERT derived from pig.
 不死化遺伝子の導入は、当該遺伝子をコードするベクターを用いることによって行うことができる。ベクターとしては直鎖状でも環状でもよく、例えば、ウイルスベクター、プラスミドベクター、エピソーマルベクター、人工染色体ベクター、トランスポゾンベクターが挙げられる。 The immortalization gene can be introduced by using a vector encoding the gene. The vector may be linear or circular, and examples thereof include a viral vector, a plasmid vector, an episomal vector, an artificial chromosomal vector, and a transposon vector.
 ウイルスベクターとしては、例えば、レンチウイルス等のレトロウイルスベクター、センダイウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、ヘルペスウイルスベクター、ワクシニアウイルスベクター、ポックスウイルスベクター、ポリオウイルスベクター、シルビスウイルスベクター、ラブドウイルスベクター、パラミクソウイルスベクター、オルソミクソウイルスベクターが挙げられる。プラスミドベクターとしては、例えば、pcDNA3.1、pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo等の、動物細胞発現用プラスミドベクターが挙げられる。これらベクターにおいて、豚マクロファージへの遺伝子導入効率を高めるという観点から、レトロウイルスベクターが好ましく、レンチウイルスがより好ましい。 Examples of the virus vector include retrovirus vectors such as lentivirus, Sendai virus vector, adenovirus vector, adeno-associated virus vector, herpesvirus vector, vaccinia virus vector, poxvirus vector, poliovirus vector, sylvis virus vector, and labd. Examples include virus vectors, paramixovirus vectors, and orthomixovirus vectors. Examples of the plasmid vector include plasmid vectors for animal cell expression such as pcDNA3.1, pA1-11, pXT1, pRc / CMV, pRc / RSV, and pcDNAI / Neo. Among these vectors, retroviral vectors are preferable, and lentiviruses are more preferable, from the viewpoint of increasing the efficiency of gene transfer into porcine macrophages.
 本発明に係るベクターには、不死化遺伝子の他に、プロモーター、エンハンサー、ポリA付加シグナル、ターミネーター等の発現制御配列、複製開始点や複製開始点に結合して複製を制御するタンパク質をコードするヌクレオチド配列、5’キャップ構造、シャイン・ダルガノ配列、コザック配列等を含む5’非翻訳領域、ポリアデニレーションシグナル、AUリッチエレメント、GUリッチエレメント等を含む3’非翻訳領域、他のタンパク質をコードするヌクレオチド等を含んでいてもよい。 In addition to the immortalizing gene, the vector according to the present invention encodes an expression control sequence such as a promoter, enhancer, poly-A addition signal, terminator, etc., and a protein that binds to a replication initiation site or a replication initiation site to control replication. Nucleotide sequence, 5'cap structure, Shine-Dalgarno sequence, 5'untranslated region including Kozak sequence, 3'untranslated region including polyadenylation signal, AU rich element, GU rich element, etc., encoding other proteins It may contain nucleotides and the like.
 不死化遺伝子は、プロモーターの下流に作動可能に配置することで、各ポリヌクレオチドを効率よく転写することが可能となる。かかる「プロモーター」としては、例えば、EF1αプロモーター、CMVプロモーター、SRαプロモーター、SV40初期プロモーター、LTRプロモーター、RSVプロモーター、HSV-TKプロモーター、MSCVプロモーター、hTERTプロモーター、βアクチンプロモーター、CAGプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター等が挙げられる。 By operably arranging the immortalizing gene downstream of the promoter, each polynucleotide can be efficiently transcribed. Examples of such "promoters" include EF1α promoter, CMV promoter, SRα promoter, SV40 initial promoter, LTR promoter, RSV promoter, HSV-TK promoter, MSCV promoter, hTERT promoter, β-actin promoter, CAG promoter, metallothioneine promoter, and heat. Examples include shock promoters.
 「他のタンパク質をコードするヌクレオチド」としては、例えば、レポーター遺伝子、薬剤耐性遺伝子等のマーカー遺伝子を挙げることができる。 Examples of the "nucleotide encoding other proteins" include marker genes such as reporter genes and drug resistance genes.
 また、複数種の不死化遺伝子を導入する場合には、これら遺伝子を、単一のベクターに組み込んでもよく、各々別々のベクターに組み込んでもよいが、発現効率を高めるという観点から、別々のベクターに組み込むことが望ましい。また、単一のベクターに組み込む際には、例えば、IRES、2Aペプチド配列等を該ベクターに挿入することにより、ポリシストロニックに複数種の不死化遺伝子を発現させることが可能となる。 In addition, when introducing a plurality of immortalizing genes, these genes may be integrated into a single vector or may be integrated into separate vectors, but from the viewpoint of increasing expression efficiency, they may be integrated into separate vectors. It is desirable to incorporate it. Further, when incorporating into a single vector, for example, by inserting an IRES, 2A peptide sequence or the like into the vector, it becomes possible to express a plurality of immortalizing genes polycistronically.
 前記ベクターを細胞に導入する方法としては、リポフェクション法、マイクロインジェクション法、リン酸カルシウム法、DEAE-デキストラン法、エレクトロポーレーション法、パーティクルガン法等を挙げることができる。また、本発明のベクターがレトロウイルスベクターである場合、ベクターが有しているLTR配列及びパッケージングシグナル配列に基づいて適切なパッケージング細胞を選択し、これを使用してレトロウイルス粒子を調製してもよい。パッケージング細胞としては、例えば、PG13、PA317、GP+E-86、GP+envAm-12、Psi-Cripが挙げられる。さらに、トランスフェクション効率の高い293細胞や293T細胞をパッケージング細胞として用いることもできる。また、このようにして調製されたウイルス粒子は、Polybrene法、Protamine法、RetroNectin法等によって細胞に導入することができる。 Examples of the method for introducing the vector into cells include a lipofection method, a microinjection method, a calcium phosphate method, a DEAE-dextran method, an electroporation method, a particle gun method and the like. When the vector of the present invention is a retrovirus vector, appropriate packaging cells are selected based on the LTR sequence and packaging signal sequence possessed by the vector, and retrovirus particles are prepared using this. You may. Examples of the packaging cells include PG13, PA317, GP + E-86, GP + envelopeAm-12, and Psi-Crip. Furthermore, 293 cells and 293T cells having high transfection efficiency can also be used as packaging cells. Further, the virus particles thus prepared can be introduced into cells by the Polybrene method, Protamine method, RetroNectin method and the like.
 なお、かかる遺伝子導入及びその後の維持培養は、上述の豚胎子小腸の初代培養のための培地及びそれを用いた培養条件によって行なうことが出来る。また、このように不死化遺伝子を導入して樹立される不死化豚胎子小腸マクロファージは、少なくとも1カ月以上の増殖性を示し、好ましくは2カ月以上の増殖性を示し、より好ましくは3カ月以上の増殖性を示す。不死化豚腎臓マクロファージの倍加時間は、少なくとも4日間であり、好ましくは2日間であり、より好ましくは1日間である。また、不死化豚胎子小腸マクロファージはマクロファージの特性を維持していることが好ましく、例えば、マクロファージ特異的遺伝子である、CD172a、CD16、Iba-1、CD204(MSR-A)及びCD203aのうちの少なくとも1の遺伝子が発現しており、好ましくは2以上の遺伝子が発現しており、より好ましくは3以上の遺伝子が発現しており、さらに好ましくは4以上の遺伝子が発現しており、特に好ましくはこれら全ての遺伝子が発現している。さらに、不死化豚胎子小腸マクロファージは、特定のマクロファージ亜集団のマーカー遺伝子であるCD163及びCD169、並びに抗原提示細胞マーカー遺伝子であるMHC-IIのうちの少なくとも1の遺伝子が発現していてもよい。また、本発明に係る不死化豚胎子小腸マクロファージは、マクロファージの特性として、貪食作用、LPS刺激による炎症性サイトカインの産生及びインフラマソーム活性に伴うIL-1β成熟化のうちの少なくとも1の機能を保持しており、好ましくは2以上の機能を保持している。 The gene transfer and subsequent maintenance culture can be performed by the above-mentioned medium for primary culture of the fetal small intestine of pigs and the culture conditions using the same. In addition, the immortalized pig fetal small intestinal macrophages established by introducing the immortalizing gene in this way show proliferative properties of at least 1 month or longer, preferably 2 months or longer, and more preferably 3 months or longer. Shows the proliferative nature of. The doubling time for immortalized pig kidney macrophages is at least 4 days, preferably 2 days, more preferably 1 day. In addition, the immortalized pig fetal small intestine macrophages preferably maintain the characteristics of the macrophages, for example, at least among the macrophage-specific genes CD172a, CD16, Iba-1, CD204 (MSR-A) and CD203a. 1 gene is expressed, preferably 2 or more genes are expressed, more preferably 3 or more genes are expressed, still more preferably 4 or more genes are expressed, and particularly preferably. All these genes are expressed. Further, the immortalized pig fetal small intestinal macrophages may express at least one gene of CD163 and CD169, which are marker genes of a specific macrophage subpopulation, and MHC-II, which is an antigen-presenting cell marker gene. In addition, the immortalized pig fetal small intestinal macrophages according to the present invention have at least one of the functions of phagocytosis, LPS-stimulated inflammatory cytokine production, and IL-1β maturation associated with inflammasome activity. It retains, preferably two or more functions.
 なお、初代培養の豚マクロファージとは異なり、密に展開して(シート状になって)増殖する。したがって、当該マクロファージは、形態の変化を検出し易いため、後述の感染細胞の変性を指標とするアフリカ豚熱ウイルスの感染試験(CPE試験、HAD試験等)においても、有用である。 Unlike primary cultured pig macrophages, they develop densely (in sheet form) and proliferate. Therefore, since the macrophage can easily detect a change in morphology, it is also useful in an infection test (CPE test, HAD test, etc.) of African swine fever virus using degeneration of infected cells as an index, which will be described later.
 (豚感染ウイルス)
 本発明において、「豚感染ウイルス(豚に感染するウイルス)」は、少なくとも豚に感染し得るウイルスであればよく、DNAウイルス(二本鎖(ds)DNAウイルス、一本鎖(ss)DNAウイルス、ss及びdsDNA領域の両方を含有するDNAウイルス)であってもよく、RNAウイルス(一本鎖(ss)RNAウイルス(プラス鎖RNAウイルス又はマイナス鎖RNAウイルス)、二本鎖(ds)RNAウイルス)であってもよい。
(Pig infectious virus)
In the present invention, the "pig infectious virus (virus that infects pigs)" may be at least a virus that can infect pigs, and is a DNA virus (double-stranded (ds) DNA virus, single-stranded (ss) DNA virus. , A DNA virus containing both ss and dsDNA regions), RNA virus (single-stranded (ss) RNA virus (plus-stranded RNA virus or minus-stranded RNA virus), double-stranded (ds) RNA virus. ) May be.
 豚感染ウイルスとしては、例えば、アフリカ豚熱ウイルス(ASFV)、豚流行性下痢(PED)ウイルス、豚ロタウイルス、豚サーコウイルス(PCV2)、豚繁殖・呼吸障害症候群(PRRS)ウイルスが挙げられる。なお、日本において、2020年2月5日に、家畜伝染病予防法で定める「アフリカ豚コレラ」の名称は「アフリカ豚熱」に改正されている。 Examples of the pig infectious virus include African pig fever virus (ASFV), pig epidemic diarrhea (PED) virus, pig rotavirus, pig circovirus (PCV2), and pig breeding / respiratory disorder syndrome (PRRS) virus. In Japan, on February 5, 2020, the name of "African swine fever" stipulated in the Domestic Animal Infectious Diseases Control Law was revised to "African swine fever".
 (豚感染ウイルスの製造方法)
 本発明の豚感染ウイルスの製造方法(増殖方法、増幅方法)は、不死化豚胎子小腸マクロファージと、豚感染ウイルスとを接触させ、当該ウイルスを前記不死化豚胎子小腸マクロファージにおいて増殖する工程を含む、方法である。
(Manufacturing method of pig infectious virus)
The method for producing a pig infectious virus (proliferation method, amplification method) of the present invention comprises a step of contacting an immortalized pig fetal small intestine macrophage with a pig infectious virus and propagating the virus in the immortalized pig fetal small intestine macrophage. , The method.
 不死化豚胎子小腸マクロファージに接触させる豚感染ウイルスについては、上述のとおりであるが、単離された当該ウイルス自体のみならず、前記ウイルスを含み得る試料であってもよい。かかる「試料」としては、豚由来の組織、細胞、それらの培養物、洗浄液、若しくは抽出物、又は豚の飼育環境(飼育施設等)の採取物、洗浄液若しくはそれらの培養物が挙げられる。 The pig infectious virus to be brought into contact with immortalized pig fetal small intestine macrophages is as described above, but it may be a sample containing not only the isolated virus itself but also the virus. Examples of such "samples" include tissues and cells derived from pigs, their cultures, lavage fluids or extracts, or samples from pig breeding environments (breeding facilities, etc.), lavage fluids or their cultures.
 「接触」は、不死化豚胎子小腸マクロファージを培養する培地に、豚感染ウイルスを添加することによって、通常行われる。かかる「培地」としては、特に制限はないが、上述の豚胎子小腸の初代培養のための培地が挙げられる。 "Contact" is usually performed by adding a pig-infecting virus to a medium for culturing immortalized pig fetal small intestinal macrophages. The "medium" is not particularly limited, and examples thereof include the above-mentioned medium for primary culture of the fetal small intestine of pigs.
 豚感染ウイルスの「増殖」は、当該ウイルスが接触し、感染した不死化豚胎子小腸マクロファージを培養することによって行うことができる。培養温度としては、特に限定されるものではないが、通常30~40℃、好ましくは37℃である。培地に接触する気体中の二酸化炭素の濃度としては、特に限定されるものではないが、通常1~10体積%であり、好ましくは2~5体積%である。豚感染ウイルスと接触させてからの培養期間としては、特に限定されるものではないが、通常1~10日間、好ましくは2~7日間、より好ましくは3~5日間である。 "Proliferation" of a pig-infecting virus can be performed by culturing immortalized pig fetal small intestinal macrophages that the virus has come into contact with and infected. The culture temperature is not particularly limited, but is usually 30 to 40 ° C, preferably 37 ° C. The concentration of carbon dioxide in the gas in contact with the medium is not particularly limited, but is usually 1 to 10% by volume, preferably 2 to 5% by volume. The culture period after contact with the pig-infecting virus is not particularly limited, but is usually 1 to 10 days, preferably 2 to 7 days, and more preferably 3 to 5 days.
 豚感染ウイルスが増殖したかどうかは、当業者であれば公知の方法により判断することができる。かかる方法としては、例えば、後述の実施例に示すような、細胞変性効果(CPE)を指標とするCPE試験、さらには、CPEに伴う細胞内ATP枯渇の程度を検出する方法(例えば、プロメガ社が提供するViral ToxGloアッセイ)が挙げられる。また、豚感染ウイルスに由来する遺伝子又はその発現を検出する方法も利用することができる。ここで、遺伝子の発現は、転写レベル(RNAレベル)であっても翻訳レベル(タンパク質レベル)であってもよい。遺伝子(ゲノムDNA、ゲノムRNA)又はRNAを検出する方法としては、例えば、PCR(RT-PCR、リアルタイムPCR、定量PCR)、シーケンシング、DNAマイクロアレイ解析法、ノーザンブロッティング又はサザンブロッティング、in situ ハイブリダイゼーション、ドットブロット、RNaseプロテクションアッセイ法、質量分析法が挙げられる。また、所謂次世代シークエンシング法においてリード数をカウントすることにより、遺伝子又はRNAレベルを定量的に検出することができる。また、タンパク質を検出する方法としては、例えば、ELISA法、抗体アレイ、イムノブロッティング、イメージングサイトメトリー、フローサイトメトリー、ラジオイムノアッセイ、免疫沈降法、免疫組織化学的染色法等の抗体を用いて検出する方法(免疫学的手法)や、質量分析法が挙げられる。 Whether or not the pig infectious virus has propagated can be determined by a person skilled in the art by a known method. Examples of such a method include a CPE test using the cytopathic effect (CPE) as an index, as shown in Examples described later, and a method for detecting the degree of intracellular ATP depletion associated with CPE (for example, Promega). (Viral ToxGlo assay) provided by. In addition, a method for detecting a gene derived from a pig infectious virus or its expression can also be used. Here, the expression of the gene may be at the transcription level (RNA level) or the translation level (protein level). As a method for detecting a gene (genomic DNA, genomic RNA) or RNA, for example, PCR (RT-PCR, real-time PCR, quantitative PCR), sequencing, DNA microarray analysis method, Northern blotting or Southern blotting, in situ hybridization. , Dot blot, RNA protection assay, mass analysis. In addition, the gene or RNA level can be quantitatively detected by counting the number of reads in the so-called next-generation sequencing method. As a method for detecting a protein, for example, an antibody such as an ELISA method, an antibody array, immunoblotting, imaging cytometry, flow cytometry, radioimmunoassay, immunoprecipitation method, or immunohistochemical staining method is used for detection. Methods (immunological methods) and mass analysis methods can be mentioned.
 (ワクチンの製造方法)
 本発明の豚感染ウイルスを含むワクチンの製造方法は、不死化豚胎子小腸マクロファージと、豚感染ウイルスとを接触させ、当該ウイルスを前記不死化豚胎子小腸マクロファージにおいて増殖する工程、
 増殖した豚感染ウイルスを単離する工程、及び
 単離した豚感染ウイルスを薬理学上許容される担体又は媒体と混合する工程
を含む、方法である。
(Vaccine manufacturing method)
The method for producing a vaccine containing a pig infectious virus of the present invention is a step of contacting an immortalized pig fetal small intestine macrophage with a pig infectious virus and propagating the virus in the immortalized pig fetal small intestine macrophage.
A method comprising the step of isolating the propagated porcine infectious virus and the step of mixing the isolated porcine infectious virus with a pharmacologically acceptable carrier or vehicle.
 当該ウイルスを前記不死化豚胎子小腸マクロファージにおいて増殖する工程については上述のとおりである。増殖した豚感染ウイルスの「単離」とは、前記不死化豚胎子小腸マクロファージ及び/又は当該細胞の培養培地からの分離、精製及び/又は濃縮を意味する。前記ウイルスの単離方法としては、例えば、培養培地のろ過、細胞の破砕(超音波処理、低張液処理、凍結融解等)、遠心分離(超遠心法、密度勾配遠心法等)、濃縮(硫酸アンモニウム、樹脂カラム、ポリエチレングリコール塩析等)が挙げられる。 The step of multiplying the virus in the immortalized pig fetal small intestine macrophages is as described above. "Isolation" of the propagated porcine infectious virus means separation, purification and / or concentration of the immortalized porcine fetal small intestinal macrophages and / or the cells from the culture medium. Examples of the virus isolation method include filtration of culture medium, cell disruption (ultrasonic treatment, hypotonic solution treatment, freeze-thaw, etc.), centrifugation (ultracentrifugation method, density gradient centrifugation, etc.), and concentration (concentration (ultracentrifugation method, density gradient centrifugation, etc.)). Ammonium sulfate, resin column, polyethylene glycol salting out, etc.).
 このようにして単離された豚感染ウイルスは、そのままワクチン(所謂、生ワクチン)として用いてもよく、弱毒化生形態(所謂、生弱毒化ウイルス)で用いてよく、不活化形態でワクチンとして用いてもよい。さらに、免疫原性を有する限り、これら単離された豚感染ウイルスの一部(タンパク質、ポリペプチド、糖、糖タンパク質、脂質、核酸等)をワクチンとして用いてもよい。 The pig infectious virus thus isolated may be used as it is as a vaccine (so-called live vaccine), may be used in an attenuated live form (so-called live attenuated virus), or may be used as a vaccine in an inactivated form. You may use it. Furthermore, as long as it has immunogenicity, some of these isolated pig infectious viruses (proteins, polypeptides, sugars, glycoproteins, lipids, nucleic acids, etc.) may be used as vaccines.
 生弱毒化ウイルスは、野外から分離されたウイルスと比較して低減した毒性レベルを有するウイルスである。弱毒化ウイルスは、公知の方法、例えば、突然変異誘発物質の存在下での増殖、インビトロでの連続(長期間)継代による培養細胞への馴化、自然生育環境から逸脱した条件下(例えば、高温条件下)での増殖に豚感染ウイルスを供することによって得ることができる。また、ゲノム編集、遺伝子改変技術等を用いて、ウイルスの特定遺伝子を欠損又は組み換えることによっても、生弱毒化ウイルスを得ることができる。 A live attenuated virus is a virus with a reduced virulence level compared to a virus isolated from the field. Attenuated virus can be propagated in known methods, such as in the presence of mutagens, acclimatization to cultured cells by continuous (long-term) passage in vitro, and conditions deviating from the natural growth environment (eg,). It can be obtained by feeding the pig infectious virus to the growth under high temperature conditions). In addition, a live attenuated virus can also be obtained by deleting or recombining a specific gene of a virus by using genome editing, gene modification technology, or the like.
 ウイルスの不活化も、当業者であれば、公知の方法を用いて行うことができる。かかる不活化の方法としては、ホルムアルデヒド処理、UV照射、X線照射、電子線照射、ガンマ線照射、アルキル化処理、エチレン-イミン処理、チメロサール処理、β-プロピオラクトン処理、グルタルアルデヒド処理が挙げられる。 A person skilled in the art can also inactivate the virus by using a known method. Examples of such inactivation methods include formaldehyde treatment, UV irradiation, X-ray irradiation, electron beam irradiation, gamma ray irradiation, alkylation treatment, ethylene-imine treatment, thimerosal treatment, β-propiolactone treatment, and glutaraldehyde treatment. ..
 単離した豚感染ウイルスに混合する「薬理学上許容される担体」としては、例えば、安定剤、賦形剤、防腐剤、界面活性剤、キレート剤、結合剤が挙げられる。「薬理学上許容される媒体」としては、例えば、水、生理食塩水、リン酸緩衝液、Tris-HCl緩衝液が挙げられる。これら担体及び媒体は、当業者であれば、ワクチンの剤型、使用方法に応じて、当該分野に用いられる公知の物を適宜又は組み合わせて選択して用いることができる。また、ワクチンの形態としては、特に制限はなく、例えば、懸濁液の形態であってもよく、凍結乾燥された形態であってもよい。 Examples of the "pharmacologically acceptable carrier" to be mixed with the isolated pig infectious virus include stabilizers, excipients, preservatives, surfactants, chelating agents, and binders. Examples of the "pharmacologically acceptable medium" include water, physiological saline, phosphate buffer, and Tris-HCl buffer. Those skilled in the art can select and use these carriers and vehicles as appropriate or in combination with known substances used in the art, depending on the dosage form and method of use of the vaccine. The form of the vaccine is not particularly limited, and may be, for example, a suspension form or a freeze-dried form.
 ワクチン効果を増強するという観点から、更にアジュバントを混合してもよい。アジュバントとしては、例えば、アルミニウムゲルアジュバント等の無機物質、微生物若しくは微生物由来物質(BCG、ムラミルジペプチド、百日せき菌、百日せきトキシン、コレラトキシン等)、界面活性作用物質(サポニン、デオキシコール酸等)、油性物質(鉱油、植物油、動物油等)のエマルジョン、ミョウバン等が挙げられる。 From the viewpoint of enhancing the vaccine effect, an adjuvant may be further mixed. Examples of the adjuvant include inorganic substances such as aluminum gel adjuvants, microorganisms or substances derived from microorganisms (BCG, alum dipeptide, alum, pertussis toxin, cholera toxin, etc.), and surfactant substances (saponin, deoxycol). Acids, etc.), emulsions of oily substances (mineral oil, vegetable oil, animal oil, etc.), alum, etc. may be mentioned.
 (豚感染ウイルスの検出方法)
 本発明は、豚感染ウイルス由来遺伝子のプロモーター領域の下流にレポーター遺伝子が機能的に結合したDNAを有する、不死化豚胎子小腸マクロファージを提供する。
(How to detect pig infectious virus)
The present invention provides immortalized pig fetal small intestinal macrophages having DNA functionally bound to a reporter gene downstream of the promoter region of a pig infectious virus-derived gene.
 また、被検試料存在下にて、前記DNAを有する不死化豚胎子小腸マクロファージを培養する工程、当該不死化豚胎子小腸マクロファージにおける前記レポーター遺伝子の発現を検出する工程、及び当該レポーター遺伝子の発現が検出された場合に、前記被検試料は豚感染ウイルスを含有していると判定する工程を含む、豚感染ウイルスを検出する方法をも提供する。 Further, in the presence of the test sample, the step of culturing the immortalized pig fetal small intestine macrophages having the DNA, the step of detecting the expression of the reporter gene in the immortalized pig fetal small intestine macrophages, and the expression of the reporter gene Also provided is a method for detecting a pig infectious virus, which comprises a step of determining that the test sample contains a pig infectious virus when detected.
 前記DNAが導入される「不死化豚胎子小腸マクロファージ」については上述のとおりである。また、前記DNAは、上述の「不死化遺伝子」において説明したベクターの形態であってもよい。さらに、前記DNAの不死化豚胎子小腸マクロファージへの導入も、上述の「不死化遺伝子」に関する説明において列挙した方法を用い、当業者であれば行なうことができる。 The "immortalized pig fetal small intestine macrophages" into which the DNA is introduced are as described above. Further, the DNA may be in the form of the vector described in the above-mentioned "immortalization gene". Further, the introduction of the DNA into the immortalized pig fetal small intestine macrophage can also be carried out by those skilled in the art using the methods listed in the above description regarding the "immortalization gene".
 前記DNAにおける「豚感染ウイルス由来遺伝子のプロモーター領域」としては、豚感染ウイルスに由来し、当該ウイルスの感染・増殖に応じてその下流にある遺伝子の発現を活性化できる領域であれば特に制限はなく、最初期遺伝子(immediate-early)、初期遺伝子(early)、後初期遺伝子(late)、後期遺伝子(very-late)のいずれの遺伝子であってもよい。 The "promoter region of a gene derived from a pig infectious virus" in the DNA is particularly limited as long as it is a region derived from a pig infectious virus and capable of activating the expression of a gene downstream thereof according to the infection / proliferation of the virus. It may be any of the earliest gene (immediate-early), the early stage gene (early), the late early stage gene (late), and the late stage gene (very-late).
 用いる豚感染ウイルス由来遺伝子については、当業者であれば適宜公知の情報を参照しながら選択することができる。例えば、ASFV由来遺伝子については、Virus Taxnomy 国際ウイルス分類委員会(ICTV)第9版、2012年、155~157ページ 表1に記載の「ASFVがコードするタンパク質の機能」リスト等を参照しながら選択することができるが、p72、U104L、CD2v、DNAポリメラーゼ又はp30遺伝子のプロモーター領域が好適に用いられる(Portugal RS.ら、Virology、2017年8月、508巻、70~80ページ 参照のほど)。 The gene derived from the pig infectious virus to be used can be selected by a person skilled in the art with reference to known information as appropriate. For example, genes derived from ASFV are selected by referring to the list of "functions of proteins encoded by ASFV" in Table 1 of Virus Taxonomy International Committee on Taxonomy (ICTV) 9th Edition, 2012, pp. 155-157. However, the promoter region of p72, U104L, CD2v, DNA polymerase or p30 gene is preferably used (see Portal RS. et al., Virus, August 2017, Vol. 508, pp. 70-80).
 前記プロモーター領域の下流に機能的(作動可能的)に結合される「レポーター遺伝子」としては特に制限はなく、公知のものが適宜用いられる。例えば、蛍光タンパク質遺伝子、発光酵素遺伝子、発色酵素遺伝子が挙げられる。蛍光タンパク質遺伝子としては、具体的には、GFP(緑色蛍光タンパク質)遺伝子、YFP(黄色蛍光タンパク質)遺伝子、RFP(赤色蛍光タンパク質)遺伝子等が挙げられる。発光タンパク質・酵素遺伝子としては、具体的には、エクオリン遺伝子、ルシフェラーゼ遺伝子等が挙げられる。発色酵素遺伝子としては、具体的には、クロラムフェニコールアセチル転移酵素(CAT)遺伝子、βグルクロニダーゼ(GUS)遺伝子、βガラクトシダーゼ遺伝子、アルカリフォスファターゼ遺伝子、SEAP遺伝子等が挙げられる。 The "reporter gene" that is functionally (operably) bound downstream of the promoter region is not particularly limited, and known ones are appropriately used. For example, a fluorescent protein gene, a luciferase gene, and a color-developing enzyme gene can be mentioned. Specific examples of the fluorescent protein gene include GFP (green fluorescent protein) gene, YFP (yellow fluorescent protein) gene, RFP (red fluorescent protein) gene and the like. Specific examples of the photoprotein / enzyme gene include an aequorin gene and a luciferase gene. Specific examples of the color-developing enzyme gene include a chloramphenicole acetyltransferase (CAT) gene, a β-glucuronidase (GUS) gene, a β-galactosidase gene, an alkaline phosphatase gene, and a SEAP gene.
 そして、本発明の検出方法においては、これらレポーター遺伝子の発現に応じて生じる、蛍光、発光、発色等を指標として、不死化豚胎子小腸マクロファージの豚感染ウイルスの感染の有無、ひいては被検試料における豚感染ウイルスの存在を検出することができる。 Then, in the detection method of the present invention, the presence or absence of infection with the pig-infecting virus of the immortalized pig fetal small intestine macrophages, and eventually in the test sample, using the fluorescence, luminescence, color development, etc. generated in response to the expression of these reporter genes as indicators. The presence of swine infectious virus can be detected.
 なお、被検試料としては、豚感染ウイルスが存在し得る試料であれば特に制限はなく、例えば、豚由来の組織、細胞、それらの培養物、洗浄液、若しくは抽出物、又は豚の飼育環境(飼育施設等)の洗浄液若しくはその培養物が挙げられる。 The test sample is not particularly limited as long as it is a sample in which a pig infectious virus can be present. For example, a pig-derived tissue, cells, their culture, a washing solution, or an extract, or a pig breeding environment ( A cleaning solution of a breeding facility, etc.) or a culture thereof can be mentioned.
 また、本発明の検出方法における培養に用いられる「培地」としては、特に制限はないが、上述の豚胎子小腸の初代培養のための培地が挙げられる。培養の温度としては、特に限定されるものではないが、通常30~42℃、好ましくは37℃である。培地に接触する気体中の二酸化炭素の濃度としては、特に限定されるものではないが、通常1~10体積%であり、好ましくは2~5体積%である。被検試料存在下、レポーター遺伝子の発現を検出する迄の培養期間としては、特に限定されるものではないが、通常1~10日間、好ましくは2~7日間、より好ましくは2~5日間である。 The "medium" used for culturing in the detection method of the present invention is not particularly limited, and examples thereof include the above-mentioned medium for primary culturing of pig fetal small intestine. The temperature of the culture is not particularly limited, but is usually 30 to 42 ° C, preferably 37 ° C. The concentration of carbon dioxide in the gas in contact with the medium is not particularly limited, but is usually 1 to 10% by volume, preferably 2 to 5% by volume. The culture period until the expression of the reporter gene is detected in the presence of the test sample is not particularly limited, but is usually 1 to 10 days, preferably 2 to 7 days, and more preferably 2 to 5 days. be.
 (中和抗体の検出方法)
 本発明の豚に感染するウイルスに対する中和抗体を検出する方法は、
 被検豚から単離された生体試料の存在下、不死化豚胎子小腸マクロファージと豚に感染するウイルスとを接触させ、当該ウイルスを前記不死化豚胎子小腸マクロファージにて増殖させる工程、
 増殖した前記ウイルス数を検出する工程、及び
 前記工程にて検出されたウイルス数が、前記生体試料非存在下、不死化豚胎子小腸マクロファージにて増殖したウイルス数と比して、少ない場合、前記生体試料は前記ウイルスに対する中和抗体を含有していると判定する工程を、含む方法である。
(Detection method of neutralizing antibody)
The method for detecting a neutralizing antibody against a virus that infects pigs of the present invention is
A step of contacting an immortalized pig fetal small intestine macrophage with a virus that infects a pig and propagating the virus on the immortalized pig fetal small intestine macrophage in the presence of a biological sample isolated from a test pig.
When the step of detecting the number of propagated viruses and the number of viruses detected in the steps are smaller than the number of viruses propagated in the immortalized pig fetal small intestine macrophages in the absence of the biological sample, the above-mentioned It is a method including a step of determining that the biological sample contains a neutralizing antibody against the virus.
 本発明にかかる「中和抗体」とは、豚感染ウイルスの感染又は増殖を抑制する抗体を意味する。また、かかる抗体は、免疫グロブリンの全てのクラス及びサブクラスを含む。また、「被検豚」については、豚感染ウイルスの感染経験を問わず、豚であれば特に制限はない。被検豚から単離された「生体試料」としては、豚由来の試料(例えば、血液(血清、血漿等)、粘液(唾液、鼻汁、乳汁、消化管分泌液等)、及びそれらから精製された抗体)が挙げられる。 The "neutralizing antibody" according to the present invention means an antibody that suppresses infection or proliferation of a pig infectious virus. Such antibodies also include all classes and subclasses of immunoglobulins. In addition, there are no particular restrictions on the "tested pig" as long as it is a pig, regardless of the experience of infection with the pig-infecting virus. The "biological sample" isolated from the test pig includes a sample derived from pig (for example, blood (serum, plasma, etc.), mucus (saliva, nasal juice, milk, gastrointestinal secretion, etc.), and purified from them. Antibodies).
 「接触」については上述のとおりである。増殖の条件に関し、培養温度としては、特に限定されるものではないが、通常30~40℃、好ましくは37℃である。培地に接触する気体中の二酸化炭素の濃度としては、特に限定されるものではないが、通常1~10体積%であり、好ましくは2~5体積%である。生体試料存在下又は非存在下における培養期間としては、特に限定されるものではないが、通常1~10日間、好ましくは2~7日間、より好ましくは3~5日間である。また、増殖したウイルスは、上述のとおり、CPE試験等や、豚感染ウイルスに由来する遺伝子又はその発現を検出することにより、検出することができる。このように、本発明の検出方法においては、ウイルス数自体のみならず、ウイルス数を反映する前記遺伝子(ゲノムDNA量等)又はその発現レベルを指標として、中和抗体の存在の有無を判定してもよい。 "Contact" is as described above. Regarding the growth conditions, the culture temperature is not particularly limited, but is usually 30 to 40 ° C, preferably 37 ° C. The concentration of carbon dioxide in the gas in contact with the medium is not particularly limited, but is usually 1 to 10% by volume, preferably 2 to 5% by volume. The culture period in the presence or absence of the biological sample is not particularly limited, but is usually 1 to 10 days, preferably 2 to 7 days, and more preferably 3 to 5 days. In addition, the propagated virus can be detected by CPE test or the like, or by detecting a gene derived from a pig-infecting virus or its expression, as described above. As described above, in the detection method of the present invention, the presence or absence of a neutralizing antibody is determined using not only the number of viruses themselves but also the gene (genome DNA amount, etc.) reflecting the number of viruses or the expression level thereof as an index. May be.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.
 <豚胎子からの豚小腸マクロファージの単離>
 豚胎子(胎齢108日程度)より小腸(回腸部位)を約5cm採取し、癒着している皮膜を切除後、縦方向に切り半分に開いた。小腸組織をハサミで十分に細切し、コニカルチューブに移してダルベッコりん酸緩衝生理食塩水(DPBS)で洗浄した後、コラゲナーゼ/ディスパーゼ/DNase Iを含むDPBSに浸し37℃で1時間酵素処理した。ピペッティングで組織を分散し、DPBSで洗浄した後、増殖培地(DMEM High glucose:10% 牛胎子血清、10μg/mL インスリン、25μM モノチオグリセロール、100U/ml ペニシリン、100μg/mL ストレプトマイシン、5μg/mL ピマリシン(製品名:Fungin、InvivoGen社製)を含む)に懸濁し、T75フラスコに播種した。
<Isolation of pig small intestine macrophages from pig fetus>
About 5 cm of the small intestine (ileum site) was collected from a pig fetus (about 108 days old), and after excision of the adhered film, it was cut in the vertical direction and opened in half. The small intestinal tissue was sufficiently shredded with scissors, transferred to a conical tube, washed with Dulbecco phosphate buffered saline (DPBS), and then immersed in DPBS containing collagenase / dispase / DNase I and enzymatically treated at 37 ° C. for 1 hour. .. Tissues are dispersed by pipetting, washed with DPBS, and then grown medium (DMEM High glucose: 10% bovine fetal serum, 10 μg / mL insulin, 25 μM monothioglycerol, 100 U / ml penicillin, 100 μg / mL streptomycin, 5 μg / mL. It was suspended in penicillin (product name: Fungin, manufactured by InvivoGen) and seeded in a T75 flask.
 なお、当初、豚(約1ヶ月齢)より採取した小腸を、前記同様に処理して、初代培養を試みた。しかしながら、前記のような抗生物質(ペニシリン、ストレプトマイシン)及び抗真菌薬(ピマリシン)を含む培地を用いても、培養を開始してから2~3日後には、激しい微生物のコンタミネーションが生じ、初代培養を行なうことができなかった。 Initially, the small intestine collected from a pig (about 1 month old) was treated in the same manner as described above, and a primary culture was attempted. However, even if a medium containing the above-mentioned antibiotics (penicillin, streptomycin) and antifungal drug (pimaricin) is used, severe microbial contamination occurs 2-3 days after the start of culturing, and the first generation. The culture could not be performed.
 一方、豚胎子より採取した小腸に関しては、そのようなコンタミネーションを抑制することができ、初代培養を行なうことが出来た。そして、約3週間後に接着し広がってきた初代培養細胞(図1A)を、細胞分離/分散用溶液(製品名:Accumax(登録商標)、Sigma-Aldrich社製)で剥がして回収し、100mm組織培養ディッシュに播き直した。 On the other hand, for the small intestine collected from pig fetuses, such contamination could be suppressed and primary culture could be performed. Then, the primary cultured cells (FIG. 1A) that had adhered and spread after about 3 weeks were peeled off with a cell separation / dispersion solution (product name: Accumax (registered trademark), manufactured by Sigma-Aldrich) and collected, and a 100 mm tissue was collected. It was re-sown in the culture dish.
 約1週間で細胞シートが形成され、その上に弱く接着し増殖する球状の細胞が出現した(図1B)。免疫染色の結果、細胞シートはα平滑筋アクチン(αSMA)陽性の筋繊維芽細胞様細胞で構成されており、その上にマクロファージマーカー(CD172a、CD204)陽性細胞が増殖する混合培養系が構築されていることが確認された。なお、上皮細胞マーカー(サイトケラチン18及び19(CK18、CK19))は陰性であった。(図2A)。 A cell sheet was formed in about one week, and spherical cells that weakly adhered and proliferated appeared on it (Fig. 1B). As a result of immunostaining, the cell sheet was composed of α-smooth muscle actin (αSMA) -positive myofibroblast-like cells, on which a mixed culture system in which macrophage marker (CD172a, CD204) -positive cells proliferated was constructed. It was confirmed that The epithelial cell markers (cytokeratin 18 and 19 (CK18, CK19)) were negative. (Fig. 2A).
 また、培養上清から細胞を回収し、スミロン浮遊培養用シャーレに付着する細胞を分離して免疫染色した結果、マクロファージマーカー(Iba1、CD172a、CD204)陽性細胞が単離されていることがわかった。なお、上皮細胞マーカー(CK18、CK19)は陰性であった(図2B)。さらに、回収した細胞では、初代培養マクロファージの特徴として知られる多核巨細胞の形成も確認された(図2B)。よって、この手法により豚小腸マクロファージ(Porcine intestinal macrophages:PIM)を得ることができた。なお、前記マーカーの検出は、下記免疫染色にて行った。 In addition, as a result of collecting cells from the culture supernatant and isolating and immunostaining the cells adhering to the petri dish for suspension of Smilon culture, it was found that macrophage marker (Iba1, CD172a, CD204) -positive cells were isolated. .. The epithelial cell markers (CK18, CK19) were negative (FIG. 2B). Furthermore, in the recovered cells, the formation of multinucleated giant cells, which is a characteristic of primary cultured macrophages, was also confirmed (Fig. 2B). Therefore, pig small intestinal macrophages (Porcine integral macrophages: PIM) could be obtained by this method. The marker was detected by the following immunostaining.
 (免疫染色)
 細胞を8ウエルチャンバースライドに播種し一定期間培養後、4%パラホルムアルデヒドリン酸緩衝液(Nacalai社製)に浸し固定した。PBSTで洗浄後1% Triton X-100/PBS溶液で処理し、過酸化水素溶液(DAKO社製)及びブロッキング剤(製品名:ブロッキングワンヒスト、Nacalai社製)でブロッキングしたのち、一次抗体[anti-αSMA(Progen社製)、anti-Vimentin(Progen社製)、anti-CK18(Millipore社製)、anti-CK19(Progen社製)、anti-CD172a(VMRD社製)、anti-CD204(TransGenic,Inc.製)、Iba1(Wako社製)、anti-MHC-II(Kingfisher Biotech社製)、anti-CD163(Bio-Rad社製)、anti-CD169(Bio-Rad社製)、anti-CD203a(Bio-Rad社製)]を1時間反応させた。PBSTで洗浄後、免疫組織染色用検出システム(製品名:EnVision(登録商標)システム、DAKO社製)を用いてジアミノベンジジン染色した。さらに、マイヤーヘマトキシリン溶液(Wako社製)で核を染色した。
(Immunostaining)
The cells were seeded on an 8-well chamber slide, cultured for a certain period of time, and then immersed in 4% paraformaldehyde phosphate buffer (manufactured by Nakarai) and fixed. After washing with PBST, it is treated with 1% Triton X-100 / PBS solution, blocked with a hydrogen peroxide solution (manufactured by DAKO) and a blocking agent (product name: Blocking Onehist, manufactured by Nacalai), and then the primary antibody [anti]. -ΑSMA (manufactured by Progen), antibody-Vimentin (manufactured by Progen), anti-CK18 (manufactured by Millipore), anti-CK19 (manufactured by Progen), anti-CD172a (manufactured by VMRD), anti-CD204 (TransGenic, Inc.), Iba1 (Wako), anti-MHC-II (Kingfiser Biotech), anti-CD163 (Bio-Rad), anti-CD169 (Bio-Rad), anti-CD203a ( Bio-Rad (manufactured by Bio-Rad)] was reacted for 1 hour. After washing with PBST, it was stained with diaminobenzidine using a detection system for immunohistochemical staining (product name: EnVision® system, manufactured by DAKO). In addition, the nuclei were stained with Meyer's hematoxylin solution (manufactured by Wako).
 <豚胎子小腸マクロファージ不死化細胞の作製>
 単離したPIMは増殖しない。そこで、増殖能を付与するためにPIMの不死化を試みた。具体的には先ず、PIMをスミロン浮遊培養用シャーレに播種し、翌日に2種類の不死化遺伝子(SV40 Large T抗原(SV40LT)遺伝子と豚テロメラーゼ逆転写酵素(pTERT)遺伝子)を個別に導入した組換えレンチウイルス粒子を含む溶液に2時間暴露した。なお、組換えレンチウイルス粒子は、非特許文献1に記載のとおり、SV40LT遺伝子及びpTERT遺伝子を各々コードするpLVSIN-EF1α neoベクターを、パッケージングベクターと共に、レンチウイルスパッケージング用細胞株(製品名:Lenti-X 293T細胞、Takara Bio,Inc.)に導入することにより、調製した。そして、約1週間後に再度同じレンチウイルス粒子にPIMを暴露し、培養を継続した。
<Preparation of pig fetal small intestine macrophage immortalized cells>
Isolated PIMs do not grow. Therefore, we tried to immortalize PIM in order to impart proliferative ability. Specifically, first, PIM was inoculated into a petri dish for suspension culture of Smilon, and two types of immortalization genes (SV40 Large T antigen (SV40LT) gene and pig telomerase reverse transcriptase (pTERT) gene) were individually introduced the next day. It was exposed to a solution containing recombinant lentivirus particles for 2 hours. As described in Non-Patent Document 1, the recombinant lentivirus particles include a pLVSIN-EF1α neo vector encoding the SV40LT gene and the pTERT gene, respectively, together with the packaging vector, and a cell line for lentivirus packaging (product name:: It was prepared by introduction into Lenti-X 293T cells, Takara Bio, Inc.). Then, about one week later, PIM was exposed to the same lentivirus particles again, and the culture was continued.
 その結果、約1ヶ月後に、継代培養可能な不死化PIM(Immmortalized PIM:IPIM)の獲得に成功し、凍結保存した(図3A)。また、このIPIM細胞についての増殖能を、下記に示す試験にて評価した結果、図3Bに示すとおり、少なくとも60回以上分裂可能であることが明らかになった。 As a result, about one month later, we succeeded in acquiring an immortalized PIM (Immortalized PIM: IPIM) that can be subcultured, and stored it frozen (Fig. 3A). Moreover, as a result of evaluating the proliferative ability of the IPIM cells by the test shown below, it was revealed that they can divide at least 60 times or more as shown in FIG. 3B.
 (細胞増殖試験)
 IPIM細胞(1×10個)を90mm浮遊培養用ディッシュ(SUMILON社製)に播種し、3~5日ごとにTrypLE Express試薬(ThermoFisher社製)ではがして継代培養した。細胞を回収した際に、TC10全自動セルカウンター(Bio-Rad社製)を用いて細胞数を計測した。
(Cell proliferation test)
IPIM cells (1 × 10 6 cells) were seeded in a 90 mm suspension culture dish (manufactured by SUMILON), peeled off with a TrypLE Express reagent (manufactured by Thermo Fisher) every 3 to 5 days, and subcultured. When the cells were collected, the number of cells was counted using a TC10 fully automatic cell counter (manufactured by Bio-Rad).
 さらに、PIM同様に、上述の免疫染色によって解析した結果、IPIM細胞における各種マクロファージマーカーは陽性であった(図4)。具体的には、M1型及びM2型に共通するマクロファージマーカーである、Iba1、CD172a、CD204、CD16及びCD203aは、ほぼ100%のIPIM細胞にて陽性であった。また、特定のマクロファージ亜集団のマーカー(M2型マクロファージマーカー:CD163、M1型マクロファージマーカー:CD169)や抗原提示細胞マーカー(MHC-II)に関しては、個々の細胞の状態に応じて、ある程度の割合で陽性となるIPIM細胞が認められた。 Furthermore, as with PIM, as a result of analysis by the above-mentioned immunostaining, various macrophage markers in IPIM cells were positive (Fig. 4). Specifically, Iba1, CD172a, CD204, CD16 and CD203a, which are macrophage markers common to M1 and M2 types, were positive in almost 100% of IPIM cells. In addition, regarding markers of specific macrophage subpopulations (M2-type macrophage marker: CD163, M1-type macrophage marker: CD169) and antigen-presenting cell markers (MHC-II), at a certain ratio depending on the state of individual cells. Positive IPIM cells were found.
 また、下記に示す方法にて、マクロファージとしての機能を評価した結果、IPIM細胞は、細菌由来成分(ムラミルジペプチド:MDP、リポ多糖:LPS)に応答して細胞内シグナル伝達分子を活性化(p38MAPキナーゼのリン酸化)し(図5A)、さらに炎症性サイトカイン(IL-1β)の産生を誘導することができた(図5B)。 In addition, as a result of evaluating the function as a macrophage by the method shown below, IPIM cells activate intracellular signal transduction molecules in response to bacterial-derived components (muramildipeptide: MDP, lipopolysaccharide: LPS) (Muramildipeptide: MDP, lipopolysaccharide: LPS). It was able to phosphorylate p38MAP kinase (FIG. 5A) and further induce the production of inflammatory cytokine (IL-1β) (FIG. 5B).
 (マクロファージ機能評価試験)
 IPIM細胞を24穴浮遊培養用プレート(SUMILON社製)に1穴あたり3×105個播種した。翌日、培地を、細菌由来成分(MDP又はLPS)を図5A及び5Bに示す各濃度にて含む無血清DMEM(400μL)に置換し細胞を刺激した。さらに24時間後、培養上清を回収するとともに、溶解緩衝液(150mM塩化ナトリウム、0.5%Triton X-100、0.5%デオキシコール酸ナトリウム、プロテアーゼ阻害剤、ホスファターゼ阻害剤を含む50mMTris-HCl緩衝液 pH7.5)を用いて細胞の溶解液を調製した。培養上清(300μL)はトリクロロ酢酸/アセトン沈殿法でタンパク質成分を濃縮した。培養上清及び細胞溶解液に含まれるタンパク質をドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動で分離し、ポリフッ化ビニリデン(PVDF)膜(メルク社製)に電気的に転写した。転写されたPVDF膜については、一次抗体[anti-リン酸化p38MAPキナーゼ(Cell Signaling Technology社製)、anti-p38MAPキナーゼ(Cell Signaling Technology社製)、anti-IL-1β(R&D Systems社製)]を用いたウエスタンブロット法により目的タンパク質を検出した。
(Macrophage function evaluation test)
IPIM cells were seeded on a 24-well suspension culture plate (manufactured by SUMILON) at 3 × 10 5 cells per hole. The next day, the medium was replaced with serum-free DMEM (400 μL) containing bacterial-derived components (MDP or LPS) at the respective concentrations shown in FIGS. 5A and 5B, and the cells were stimulated. After an additional 24 hours, the culture supernatant was collected and 50 mM Tris- containing lysis buffer (150 mM sodium chloride, 0.5% Triton X-100, 0.5% sodium deoxycholate, protease inhibitor, phosphatase inhibitor). Cell lysates were prepared using HCl buffer pH 7.5). The culture supernatant (300 μL) was enriched with protein components by the trichloroacetic acid / acetone precipitation method. The proteins contained in the culture supernatant and cell lysate were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrically transferred to a polyvinylidene fluoride (PVDF) membrane (manufactured by Merck). For the transcribed PVDF membrane, primary antibody [anti-phosphorylated p38MAP kinase (manufactured by Cell Signaling Technology), anti-p38MAP kinase (manufactured by Cell Signaling Technology), anti-IL-1β (manufactured by R & D Systems)) The target protein was detected by the Western blot method used.
 このように、SV40ラージT抗原遺伝子及びテロメラーゼ逆転写酵素遺伝子を導入し、不死化した豚胎子の小腸マクロファージ(IPIM細胞)は、高い増殖性を示す一方で、マーカータンパク質の発現のみならず、その機能も維持していることが明らかとなった。 Thus, the small intestinal macrophages (IPIM cells) of pig embryos that have been immortalized by introducing the SV40 large T antigen gene and the telomerase reverse transcriptase gene show high proliferative properties, while not only expressing the marker protein but also the expression thereof. It became clear that the function was also maintained.
 <アフリカ豚熱ウイルス感受性試験>
 次に、IPIM細胞のウイルス感受性を、アフリカ豚熱ウイルス(ASFV)を対象とし、以下に示す方法にて評価した。
<African swine fever virus susceptibility test>
Next, the virus susceptibility of IPIM cells was evaluated for African swine fever virus (ASFV) by the method shown below.
 (用いたASFV株について)
 欧州・中国流行株Armenia07(遺伝子型:II型)、軟ダニより分離された株Kenya05/Tk-1(遺伝子型:I型)及びASFV標準株Espana75(遺伝子型:I型)の3つのASFV野外発生分離株は、国際獣疫局(OIE)のASFリファレンスラボラトリーであるComplutense University of Madrid,Spainより導入した。各ウイルス株の発生年号及び発生地等の情報は、Fernandez-Pinero J, et al.(2013)(Transboundary and Emerging Diseases.60(2013)48~58)を参照のほど。Vero細胞馴化株 Lisbon60/Vは、Plum Island Animal Disease Center(PIADC),Americaより導入した。Armenia07、Kenya05/Tk-1及びEspana75株はPAM細胞を用い、Lisbon60/V株はVero細胞を用いて増殖培養し、これを接種ウイルス試料とした。接種ウイルス試料は分注し、-80℃で保存した。
(About the ASFV strain used)
Three ASFV fields: European / Chinese epidemic strain Armenia07 (genotype: type II), strain Kenya05 / Tk-1 (genotype: type I) isolated from soft mites, and ASFV standard strain Espana75 (genotype: type I). Outbreak isolates were introduced from the World Organization for Animal Health of Madrid, Spin, ASF Reference Laboratory of the World Organization for Animal Health (OIE). Information such as the year of occurrence and the place of occurrence of each virus strain can be found in Fernandez-Pinero J, et al. (2013) (Transboundary and Emerging Diseases. 60 (2013) 48-58). The Vero cell-conditioned strain Lisbon60 / V was introduced from Plum Island Animal Disease Center (PIADC), USA. Armenia07, Kenya05 / Tk-1 and Espana75 strains were grown and cultured using PAM cells, and Lisbon60 / V strains were grown and cultured using Vero cells, which were used as inoculated virus samples. Inoculated virus samples were dispensed and stored at -80 ° C.
 (用いた細胞について)
 豚肺胞マクロファージ(PAM)細胞は、既報(Carrascosa AL.ら、Curr Protoc Cell Biol、2011年12月、Chapter 26、UNIT 26.14、1~26ページ)に従い、豚の肺より回収した。アフリカミドリザルの腎臓由来不死化細胞株であるVero(CCL-81)細胞、COS-1(CRL-1650)細胞及び豚肺胞マクロファージ由来不死化細胞株3D4/21(CRL-2843)細胞は、アメリカンタイプカルチャーコレクション(ATCC)より導入した。イノシシの肺由来株化細胞 WSL細胞は、フリードリヒ・レフラー研究所(FLI、ドイツ)より譲り受けたものを用いた。
(About the cells used)
Pig alveolar macrophage (PAM) cells were recovered from pig lungs according to previously reported (Carrascosa AL. et al., Curr Protocol Cell Biol, December 2011, Chapter 26, UNIT 26.14, pp. 1-26). Vero (CCL-81) cells, COS-1 (CRL-1650) cells and pig alveolar macrophage-derived immortalized cell lines 3D4 / 21 (CRL-2843) cells, which are kidney-derived immortalized cell lines of African green monkeys, are American. Introduced from the Type Culture Collection (ATCC). Wild boar lung-derived cell line WSL cells used were those obtained from the Friedrich-Leffler Institute (FLI, Germany).
 (ウイルス感受性試験)
 細胞のウイルスに対する感受性は、細胞変性効果(CPE)を指標としたCPE試験又はASFV感染細胞で特異に認められる血球吸着(HAD)反応を指標としたHAD試験により判断した。具体的には先ず、96穴プレートに1穴あたり、PAM細胞を1×10個になるよう、Vero細胞及びCOS-1細胞を各々1.5×10個になるよう、WSL細胞及び3D4/21細胞を2×10個になるよう、又は、IPIM細胞を3×10個になるよう播種した。そして、各々の培地中で1~2日間前培養した後、同培地で10倍(10-1)から100億倍(10-10)まで10倍段階希釈したウイルス液25μLをそれぞれ8穴ずつ接種し、CPE検出用プレートを調製した。さらに、当該プレートに、PBSに懸濁した0.75%豚赤血球懸濁液20μLを添加し、HAD検出用プレートとして調製した。そして、CPE検出用プレート、HAD検出用プレート共に37℃、5%CO環境下で7日間培養し、観察した。
(Virus susceptibility test)
The susceptibility of cells to virus was determined by a CPE test using the cytopathic effect (CPE) as an index or a HAD test using a hemad adsorption (HAD) reaction specifically observed in ASFV-infected cells as an index. Specifically, first, WSL cells and 3D4 cells are arranged so that the number of PAM cells is 1 × 10 5 and the number of Vero cells and COS-1 cells is 1.5 × 10 4 per hole in a 96-well plate. / 21 cells were seeded to 2 × 10 4 or IPIM cells to be 3 × 10 4 . Then, after pre-culturing in each medium for 1 to 2 days, inoculate 8 holes of 25 μL of the virus solution diluted 10 - fold ( 10-1 ) to 10 billion-fold (10-10) in the same medium. Then, a plate for detecting CPE was prepared. Further, 20 μL of 0.75% pig erythrocyte suspension suspended in PBS was added to the plate to prepare a plate for HAD detection. Then, both the CPE detection plate and the HAD detection plate were cultured at 37 ° C. in a 5% CO 2 environment for 7 days and observed.
 その結果、表1に示すとおり、PAM細胞及びIPIM細胞においては、接種した全てのウイルス株でCPEが検出された。一方、Vero細胞、COS-1細胞、WSL細胞及び3D4/21細胞では、野外株3株にCPEは認められず、細胞馴化株のLisbon60/Vのみに認められた(表1)。このように、IPIM細胞は、PAM細胞と同様にCPE試験(図6A)だけではなく、HAD試験(図6B)にも利用できることが明らかになった。 As a result, as shown in Table 1, CPE was detected in all the inoculated virus strains in PAM cells and IPIM cells. On the other hand, in Vero cells, COS-1 cells, WSL cells and 3D4 / 21 cells, CPE was not observed in the three field strains, but only in the cell-conditioned strain Lisbon60 / V (Table 1). As described above, it was clarified that the IPIM cells can be used not only for the CPE test (FIG. 6A) but also for the HAD test (FIG. 6B) like the PAM cells.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、PAM細胞とIPIM細胞の両細胞についてウイルスが分離できる希釈限界(ウイルス検出限界)を評価した。その結果、表2に示すとおり、CPE試験では、PAM細胞に比べIPIM細胞の検出限界濃度は100~10000倍低かった。HAD試験でも、PAM細胞に比べIPIM細胞の検出限界濃度は10~100倍低かった(表3)。すなわち、IPIM細胞は、ASFVに対する感受性が、PAM細胞に比べ高いことが明らかになった。 Next, the dilution limit (virus detection limit) at which the virus could be separated was evaluated for both PAM cells and IPIM cells. As a result, as shown in Table 2, in the CPE test, the detection limit concentration of IPIM cells was 100 to 10,000 times lower than that of PAM cells. In the HAD test, the detection limit concentration of IPIM cells was 10 to 100 times lower than that of PAM cells (Table 3). That is, it was revealed that IPIM cells are more sensitive to ASFV than PAM cells.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <豚繁殖・呼吸障害症候群ウイルス又は豚サーコウイルスについての感受性試験>
 次に、IPIM細胞のウイルス感受性を、豚繁殖・呼吸障害症候群ウイルス(PRRSV)又は豚サーコウイルス2型(PCV2)を対象とし、以下に示す方法にて評価した。
<Sensitivity test for pig breeding / respiratory disorder syndrome virus or porcine circovirus>
Next, the virus susceptibility of IPIM cells was evaluated for pig breeding / respiratory disorder syndrome virus (PRRSV) or porcine circovirus type 2 (PCV2) by the method shown below.
 (用いたウイルス株について)
 豚繁殖・呼吸障害症候群ウイルス(PRRSV)は国内分離株であるEDRD-1株を用い、豚サーコウイルス2型(PCV2)は国内分離株であるYamagata株を用いた。
(About the virus strain used)
The EDRD-1 strain, which is a domestic isolate, was used for the pig breeding / respiratory disorder syndrome virus (PRRSV), and the Yamagata strain, which is a domestic isolate, was used for Porcine Circovirus Type 2 (PCV2).
 (PRRSV感受性試験)
 IPIM細胞を96穴浮遊培養用プレート(SUMILON社製)に1穴あたり1×10個/0.1mL培地で播種した。3日後、細胞培養液を吸引除去した後、ウイルス保存原液を10倍から10,000倍まで10倍階段希釈したウイルス液を1穴あたり0.1mL接種し、間接蛍光抗体法によるウイルス抗原検出用プレートを作製した。ウイルス接種後3日目に細胞培養液を吸引除去した後、氷冷80%アセトンで細胞を固定し、抗PRRSウイルスモノクローナル抗体(クローン:SR30-A)を用いた間接蛍光抗体法によりPRRSウイルス抗原の検出を行った。得られた結果を図7の上部に示す。
(PRRSV susceptibility test)
IPIM cells were seeded on a 96-well suspension culture plate (manufactured by SUMILON) with 1 × 10 5 cells / 0.1 mL medium per hole. Three days later, after removing the cell culture solution by suction, 0.1 mL of the virus solution diluted 10-fold to 10,000-fold from 10-fold to 10,000-fold was infused per hole for virus antigen detection by the indirect fluorescent antibody method. A plate was made. After removing the cell culture by suction on the 3rd day after virus inoculation, the cells were fixed with ice-cold 80% acetone, and the PRRS virus antigen was obtained by the indirect fluorescent antibody method using an anti-PRRS virus monoclonal antibody (clone: SR30-A). Was detected. The obtained results are shown in the upper part of FIG.
 また、ウイルス増殖を観察するため、IPIM細胞を6穴浮遊培養用プレート(SUMILON社製)に1穴あたり3×10個/3mL培地で播種した。3日後、細胞培養液を吸引除去した後、保存原液を100倍希釈したウイルス液を1穴あたり0.5mL接種しウイルスを細胞に1時間吸着させた。1時間後にウイルスを含む培地を除去し、1穴あたり2mLの培地で細胞を洗浄後、5mLの新しい培地を添加し5%CO存在下37℃で培養した。接種後1、2、3、5、7日目にCPEを観察するとともに培養上清を0.5mL回収した。回収した培養上清は10倍から10,000,000倍まで10倍階段希釈した後、1穴あたり1×10個/0.1mL培地で播種して3日間培養したIPIM細胞に1穴あたり0.1mL(1希釈当たり4穴ずつ)接種し、37℃、5%CO環境下で7日間培養してCPEを観察した。接種7日目の観察結果を図7の下部に示す。さらに、50%組織培養感染量(TCID50)はBehrens-Karber法に基づき計算した。得られた結果を図8に示す。 In addition, in order to observe virus growth, IPIM cells were inoculated on a 6-well suspension culture plate (manufactured by SUMILON) with 3 × 10 6 cells / 3 mL medium per hole. After 3 days, the cell culture solution was aspirated and removed, and then 0.5 mL of a virus solution obtained by diluting the storage stock solution 100 times was inoculated per hole to adsorb the virus to the cells for 1 hour. After 1 hour, the medium containing the virus was removed, the cells were washed with 2 mL of medium per hole, 5 mL of new medium was added, and the cells were cultured at 37 ° C. in the presence of 5% CO 2 . CPE was observed on the 1st, 2nd, 3rd, 5th, and 7th days after inoculation, and 0.5 mL of the culture supernatant was collected. The collected culture supernatant was diluted 10-fold stepwise from 10-fold to 10,000,000-fold, and then seeded in 1 × 10 5 cells / 0.1 mL medium per hole and cultured for 3 days per hole in IPIM cells. CPE was observed by inoculating 0.1 mL (4 holes per dilution) and culturing at 37 ° C. in a 5% CO 2 environment for 7 days. The observation results on the 7th day of inoculation are shown at the bottom of FIG. Furthermore, the 50% tissue culture infection amount (TCID 50 ) was calculated based on the Behrens-Carber method. The obtained results are shown in FIG.
 (PCV2感受性試験)
 IPIM細胞を1穴あたり2×10個/180μL培地で懸濁したのち20μLのウイルス保存原液と混和し、1穴あたり200μLの細胞・ウイルス混和液を48穴浮遊培養用プレート(SUMILON社製)に播種した。播種後2時間目にウイルスを含む培地を除去し、1穴あたり0.5mLの培地で細胞を洗浄後、200μLの新しい培地を添加し5%炭酸ガス存在下37℃で培養した。培地添加直後の培養上清と細胞をまとめて回収し、接種後2時間目のサンプルとした。その後、2日目、4日目及び6日目にも培養上清と細胞をまとめて回収した。回収したサンプルから、DNeasy Blood&Tissue Kit(QIAGEN社製)を用いて全DNAを最終50μL溶液として抽出し、その内2μL分のDNAを用いて、PCV2カプシド遺伝子を標的とした定量的PCRを実施した。得られた結果は、ウイルス接種後2時間目のウイルス遺伝子量を1とした相対値にて、図9に示す。
(PCV2 susceptibility test)
After suspending IPIM cells in 2 × 10 5 cells / 180 μL medium per hole, mix with 20 μL of virus storage stock solution, and mix 200 μL of cell / virus mixture per hole with 48-hole suspension culture plate (manufactured by SUMILON). Was sown in. 2 hours after seeding, the medium containing the virus was removed, the cells were washed with 0.5 mL of medium per hole, 200 μL of new medium was added, and the cells were cultured at 37 ° C. in the presence of 5% carbon dioxide gas. The culture supernatant and cells immediately after the addition of the medium were collected together and used as a sample 2 hours after inoculation. Then, on the 2nd, 4th, and 6th days, the culture supernatant and the cells were collected together. From the collected sample, all DNA was extracted as a final 50 μL solution using DNeasy Blood & Tissue Kit (manufactured by QIAGEN), and 2 μL of the DNA was used for quantitative PCR targeting the PCV2 capsid gene. The obtained results are shown in FIG. 9 as relative values with the amount of virus gene 2 hours after virus inoculation as 1.
 IPIM細胞のPRRSV感受性に関しては、図7に示すとおり、PRRSVはIPIM細胞に感受性を示し、接種後3日目にはウイルス抗原が細胞質内で検出可能となり、接種後7日目には明確なCPEが観察された。さらに、図8に示すとおり、PRRSV接種IPIM細胞培養上清中のウイルス感染価は接種後2~3日でピークに達し、約10万倍近く増加した。感染価は接種後7日目まで大幅に低下することなく維持される傾向が認められた。 Regarding the PRRSV sensitivity of IPIM cells, as shown in FIG. 7, PRRSV is sensitive to IPIM cells, the viral antigen can be detected in the cytoplasm on the 3rd day after inoculation, and the clear CPE is on the 7th day after inoculation. Was observed. Furthermore, as shown in FIG. 8, the viral infectivity titer in the PRRSV-inoculated IPIM cell culture supernatant peaked 2-3 days after inoculation and increased nearly 100,000 times. The infection titer tended to be maintained without a significant decrease until the 7th day after inoculation.
 また、IPIM細胞のPCV2感受性に関しては、図9に示すとおり、ウイルス接種後のIPIM細胞の倍加に伴い、PCV2遺伝子量も倍加する傾向が認められた。 Regarding the PCV2 sensitivity of IPIM cells, as shown in FIG. 9, it was observed that the amount of PCV2 gene tended to double with the doubling of IPIM cells after virus inoculation.
 これらのことから、IPIM細胞は、PRRSVとPCV2の野外株に対しても感受性を有することが確認された。 From these facts, it was confirmed that IPIM cells are also sensitive to the field strains of PRRSV and PCV2.
 以上説明したように、本発明によれば、豚小腸マクロファージの不死化細胞を提供することが可能となる。また、当該不死化細胞は、豚感染ウイルスに対して高い感染感受性を有するため、様々な豚感染ウイルス株を増殖させることが可能となり、当該ウイルスに対するワクチンの製造、開発が可能となる。また、感染感受性の高さから、豚感染ウイルスを検出(検査、診断)することも可能となる。 As described above, according to the present invention, it is possible to provide immortalized cells of porcine small intestine macrophages. In addition, since the immortalized cells have high infectivity to pig-infecting virus, various pig-infecting virus strains can be propagated, and vaccines against the virus can be produced and developed. In addition, it is possible to detect (test, diagnose) pig infectious virus because of its high susceptibility to infection.

Claims (17)

  1.  豚胎子の小腸マクロファージを不死化した細胞。 Immortalized cells of small intestinal macrophages in pig fetuses.
  2.  豚胎子の小腸マクロファージに、SV40ラージT抗原及びテロメラーゼ逆転写酵素からなる群から選択される少なくとも1のタンパク質を発現させて成る、請求項1に記載の細胞。 The cell according to claim 1, wherein the small intestinal macrophages of pig embryos express at least one protein selected from the group consisting of SV40 large T antigen and telomerase reverse transcriptase.
  3.  前記発現は、前記タンパク質をコードするレンチウイルスからの発現である、請求項2に記載の細胞。 The cell according to claim 2, wherein the expression is an expression from a lentivirus encoding the protein.
  4.  前記テロメラーゼ逆転写酵素が豚由来のテロメラーゼ逆転写酵素である、請求項2又は3に記載の細胞。 The cell according to claim 2 or 3, wherein the telomerase reverse transcriptase is a pig-derived telomerase reverse transcriptase.
  5.  前記豚胎子は胎齢30~114日の豚胎子である、請求項1~4のうちのいずれか一項に記載の細胞。 The cell according to any one of claims 1 to 4, wherein the pig fetus is a pig fetus having a fetal age of 30 to 114 days.
  6.  豚胎子の小腸マクロファージに、SV40ラージT抗原及びテロメラーゼ逆転写酵素からなる群から選択される少なくとも1のタンパク質を発現させる工程を含む、不死化豚小腸マクロファージの製造方法。 A method for producing immortalized pig small intestine macrophages, which comprises a step of expressing at least one protein selected from the group consisting of SV40 large T antigen and telomerase reverse transcriptase in small intestine macrophages of pig fetal.
  7.  前記工程は、前記タンパク質をコードするレンチウイルスを、前記豚胎子の小腸マクロファージに導入し、当該タンパク質を発現させる工程である、請求項6に記載の方法。 The method according to claim 6, wherein the step is a step of introducing a lentivirus encoding the protein into the small intestinal macrophages of the fetal pig and expressing the protein.
  8.  前記テロメラーゼ逆転写酵素が豚由来のテロメラーゼ逆転写酵素である、請求項6又は7に記載の方法。 The method according to claim 6 or 7, wherein the telomerase reverse transcriptase is a pig-derived telomerase reverse transcriptase.
  9.  前記豚胎子は胎齢30~114日の豚胎子である、請求項6~8のうちのいずれか一項に記載の方法。 The method according to any one of claims 6 to 8, wherein the pig fetus is a pig fetus with a fetal age of 30 to 114 days.
  10.  請求項1~5のうちのいずれか一項に記載の細胞と、豚感染ウイルスとを接触させ、当該ウイルスを前記細胞において増殖する工程を含む、豚感染ウイルスの製造方法。 A method for producing a pig-infecting virus, which comprises a step of contacting the cell according to any one of claims 1 to 5 with a pig-infecting virus and propagating the virus in the cell.
  11.  請求項1~5のうちのいずれか一項に記載の細胞と、豚感染ウイルスとを接触させ、当該ウイルスを前記細胞において増殖する工程、
     増殖した豚感染ウイルスを単離する工程、及び
     単離した豚感染ウイルスを薬理学上許容される担体又は媒体と混合する工程
    を含む、豚感染ウイルスを含むワクチンの製造方法。
    A step of bringing the cell according to any one of claims 1 to 5 into contact with a pig-infecting virus and propagating the virus in the cell.
    A method for producing a vaccine containing a pig infectious virus, which comprises a step of isolating the propagated pig infectious virus and a step of mixing the isolated pig infectious virus with a pharmacologically acceptable carrier or medium.
  12.  前記豚感染ウイルスが、アフリカ豚熱ウイルス、豚流行性下痢ウイルス、豚ロタウイルス、豚サーコウイルス、及び豚繁殖・呼吸障害症候群ウイルスからなる群から選択される少なくとも1のウイルスである、請求項10又は11に記載の製造方法。 10. The virus according to claim 10, wherein the pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, porcine epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus. Or the manufacturing method according to 11.
  13.  豚感染ウイルス由来遺伝子のプロモーター領域の下流にレポーター遺伝子が機能的に結合したDNAを有する、請求項1~5のうちのいずれか一項に記載の細胞。 The cell according to any one of claims 1 to 5, which has a DNA to which a reporter gene is functionally bound downstream of the promoter region of a gene derived from a pig infectious virus.
  14.  前記豚感染ウイルスが、アフリカ豚熱ウイルス、豚流行性下痢ウイルス、豚ロタウイルス、豚サーコウイルス、及び豚繁殖・呼吸障害症候群ウイルスからなる群から選択される少なくとも1のウイルスである、請求項13に記載の細胞。 13. Claim 13 that the pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, pig epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus. The cells described in.
  15.  豚感染ウイルスを検出する方法であって、下記工程を含む方法
     被検試料存在下にて、請求項13又は14に記載の細胞を培養する工程、
     当該細胞における前記レポーター遺伝子の発現を検出する工程、及び
     当該レポーター遺伝子の発現が検出された場合に、前記被検試料は豚感染ウイルスを含有していると判定する工程。
    A method for detecting a pig infectious virus, which comprises the following steps, a step of culturing the cells according to claim 13 or 14 in the presence of a test sample.
    A step of detecting the expression of the reporter gene in the cell, and a step of determining that the test sample contains a pig infectious virus when the expression of the reporter gene is detected.
  16.  豚感染ウイルスに対する中和抗体を検出する方法であって、下記工程を含む方法
     被検豚から単離された生体試料の存在下、請求項1~5のうちのいずれか一項に記載の細胞と豚感染ウイルスとを接触させ、当該ウイルスを前記細胞にて増殖させる工程、
     増殖した前記ウイルス数を検出する工程、及び
     前記工程にて検出されたウイルス数が、前記生体試料非存在下、請求項1~5のうちのいずれか一項に記載の細胞にて増殖したウイルス数と比して、少ない場合、前記生体試料は前記ウイルスに対する中和抗体を含有していると判定する工程。
    A method for detecting a neutralizing antibody against a pig infectious virus, which comprises the following steps. The cell according to any one of claims 1 to 5 in the presence of a biological sample isolated from a test pig. The step of bringing the virus into contact with the pig-infecting virus and propagating the virus in the cells,
    The step of detecting the number of propagated viruses and the number of viruses detected in the steps are the viruses propagated in the cells according to any one of claims 1 to 5 in the absence of the biological sample. A step of determining that the biological sample contains a neutralizing antibody against the virus when the number is small compared to the number.
  17.  前記豚感染ウイルスが、アフリカ豚熱ウイルス、豚流行性下痢ウイルス、豚ロタウイルス、豚サーコウイルス、及び豚繁殖・呼吸障害症候群ウイルスからなる群から選択される少なくとも1のウイルスである、請求項15又は16に記載の方法。 15. The pig infectious virus is at least one virus selected from the group consisting of African pig fever virus, pig epidemic diarrhea virus, pig rotavirus, pig circovirus, and pig breeding / respiratory disorder syndrome virus. Or the method according to 16.
PCT/JP2021/042171 2020-11-20 2021-11-17 Immortalized pig-fetus small-intestinal macrophages WO2022107793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022563788A JP7477914B2 (en) 2020-11-20 2021-11-17 Immortalized fetal porcine small intestinal macrophages

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063116394P 2020-11-20 2020-11-20
US63/116,394 2020-11-20
JP2021-065908 2021-04-08
JP2021065908 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022107793A1 true WO2022107793A1 (en) 2022-05-27

Family

ID=81708984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042171 WO2022107793A1 (en) 2020-11-20 2021-11-17 Immortalized pig-fetus small-intestinal macrophages

Country Status (2)

Country Link
JP (1) JP7477914B2 (en)
WO (1) WO2022107793A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019520827A (en) * 2016-07-01 2019-07-25 ザ ユナイテッド ステイツ オブ アメリカ, アズ レプレゼンテッド バイ ザ セクレタリー オブ アグリカルチャー Protection against attack of the parent virus of the Georgia 2007 isolate by the rationally developed African swine fever attenuated virus strain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019520827A (en) * 2016-07-01 2019-07-25 ザ ユナイテッド ステイツ オブ アメリカ, アズ レプレゼンテッド バイ ザ セクレタリー オブ アグリカルチャー Protection against attack of the parent virus of the Georgia 2007 isolate by the rationally developed African swine fever attenuated virus strain

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PARK JUNG-EUN; SHIN HYUN-JIN: "Porcine epidemic diarrhea virus infects and replicates in porcine alveolar macrophages", VIRUS RESEARCH, AMSTERDAM, NL, vol. 191, 10 August 2014 (2014-08-10), NL , pages 143 - 152, XP029060936, ISSN: 0168-1702, DOI: 10.1016/j.virusres.2014.07.038 *
TAKENOUCHI TAKATO, KITANI HIROSHI, SUZUKI SHUNICHI, NAKAI MICHIKO, FUCHIMOTO DAI-ICHIRO, TSUKIMOTO MITSUTOSHI, SHINKAI HIROKI, SAT: "Immortalization and Characterization of Porcine Macrophages That Had Been Transduced with Lentiviral Vectors Encoding the SV40 Large T Antigen and Porcine Telomerase Reverse Transcriptase", FRONTIERS IN VETERINARY SCIENCE, vol. 4, XP055815837, DOI: 10.3389/fvets.2017.00132 *
TAKENOUCHI, TAKATO; KITANI, HIROSHI; SUZUKI, SHUNICHI; NAKAI, MICHIKO; FUCHIMOTO, DAIICHIRO; TSUKIMOTO, MITSUTOSHI; SHINKAI, HIROK: "2A24a02 Establishment and characteristic analysis of porcine macrophage immortalized cell lines", ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2018 (JSBBA 2018), vol. 2018, 5 March 2018 (2018-03-05), pages 768, XP009536796 *

Also Published As

Publication number Publication date
JP7477914B2 (en) 2024-05-02
JPWO2022107793A1 (en) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2021070407A1 (en) Production method and detection method of african swine fever virus
CN101668846B (en) Non-simian cells for growth of porcine reproductive and respiratory syndrome (PRRS) virus
US9872896B2 (en) Immortalized porcine alveolar macrophage
WO2022110962A1 (en) Neutralizing antibody against severe acute respiratory syndrome type ii coronavirus (sars-cov-2)
CN111450244B (en) Cell combination for preventing and treating coronavirus infection and application thereof
Guo et al. Infection of porcine small intestinal enteroids with human and pig rotavirus A strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids
US9701943B2 (en) Genetic variant of cytomegalovirus (CMV)
Khatun et al. Effect of polymorphisms in porcine guanylate-binding proteins on host resistance to PRRSV infection in experimentally challenged pigs
WO2021070785A1 (en) Method for producing pig infectious virus
Furtado Araujo et al. Vertical transmissibility of small ruminant lentivirus
Shabir et al. In vitro immune responses of porcine alveolar macrophages reflect host immune responses against porcine reproductive and respiratory syndrome viruses
Oh et al. The isolation and replication of African swine fever virus in primary renal-derived swine macrophages
Malacari et al. In vitro and in vivo characterization of a typical and a high pathogenic bovine viral diarrhea virus type II strains
KR20220042369A (en) Method for Growing African Swine Fever Virus in Fetal Pig Lung Alveolar Macrophage Cells
Takenouchi et al. Isolation and immortalization of macrophages derived from fetal porcine small intestine and their susceptibility to porcine viral pathogen infections
WO2022107793A1 (en) Immortalized pig-fetus small-intestinal macrophages
Alpay et al. Seroepidemiology and molecular investigation of pestiviruses among sheep and goats in Northwest Anatolia
Muhsen et al. Biological properties of bovine viral diarrhea virus quasispecies detected in the RK13 cell line
Schmiedeke et al. Establishment of adequate functional cellular immune response in chicks is age dependent
US20170088821A1 (en) Methods and compositions for caliciviridae
US20200032222A1 (en) Stable production of virulent enterovirus 71 and use thereof
Freeman et al. Prevalence of endogenous type-C virus in normal hamster tissues and hamster tumors induced by chemical carcinogens, simian virus 40, and polyoma virus
GÖKTUNA et al. Co-existence of bovine viral diarrhea and border disease viruses in a sheep flock suffering from abortus and diarrhea
Perelygina et al. Differences in establishment of persistence of vaccine and wild type rubella viruses in fetal endothelial cells
Panneum et al. Cocultivation of caprine arthritis encephalitis virus-infected macrophages with primarygoat synovial cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894667

Country of ref document: EP

Kind code of ref document: A1