WO2022107614A1 - Light deflection device - Google Patents

Light deflection device Download PDF

Info

Publication number
WO2022107614A1
WO2022107614A1 PCT/JP2021/040744 JP2021040744W WO2022107614A1 WO 2022107614 A1 WO2022107614 A1 WO 2022107614A1 JP 2021040744 W JP2021040744 W JP 2021040744W WO 2022107614 A1 WO2022107614 A1 WO 2022107614A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
vcsel structure
deflection device
vcsel
incident
Prior art date
Application number
PCT/JP2021/040744
Other languages
French (fr)
Japanese (ja)
Inventor
二三夫 小山
暁冬 顧
ルイシャオ リ
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2022107614A1 publication Critical patent/WO2022107614A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present disclosure relates to an optical deflection device that controls the direction of an optical beam.
  • Laser radar mounted on automobiles, drones, robots, etc.
  • 3D scanners mounted on personal computers and smartphones to easily capture the surrounding environment, near-infrared safety monitoring systems, automatic inspection equipment at manufacturing sites, etc.
  • a light deflection device is used.
  • Light deflection devices are broadly classified into mechanical and non-mechanical ones. As the former, a polygon mirror, a galvano mirror, or a machine using a mechanical drive system by a motor has been put into practical use (Non-Patent Document 1). Mechanical deflection devices have challenges in module size, deflection speed, and reliability.
  • Non-mechanical optical deflection device examples include a MEMS mirror using a micromachine (Non-Patent Document 2), a device using an electro-optical crystal (Non-Patent Document 3), and a device using a photonic crystal laser (Non-Patent Document 4). Those using a phase array antenna (Non-Patent Document 5) have been reported.
  • the conventional non-mechanical optical deflection device has a field of view, in other words, a deflection angle limited to about 10 °, which is not sufficient for some applications, and further expansion is desired.
  • the present disclosure has been made in such circumstances, and one of the exemplary purposes of that aspect is to provide an optical deflection device with increased deflection angle or increased resolution.
  • the light deflection device of one aspect of the present disclosure receives coherent incident light at the incident end, causes the incident light to be multiple-reflected in the vertical direction, propagates the slow light in the horizontal first direction, and exits from the outlet on the upper surface thereof. It includes a first VCSEL (vertical resonator surface emitting laser) structure configured to take out emitted light, and a diffractive optical element provided on the upper side of the first VCSEL structure.
  • VCSEL vertical resonator surface emitting laser
  • the deflection angle can be increased.
  • FIG. It is a perspective view of the light deflection device which concerns on Embodiment 1.
  • FIG. It is a figure explaining the propagation of a slow light mode wave in a light deflection device.
  • 3 (a) and 3 (b) are diagrams illustrating the structure and operation of the DOE. It is a figure explaining the operation of a light deflection device.
  • 5 (a) and 5 (b) are diagrams illustrating sweeping of the beam in a distant field of view with and without DOE.
  • 6 (a) to 6 (d) are views showing a far-field image of the light deflection device. It is a figure which shows the relationship between the number of divisions of a beam by DOE, a deflection angle and a resolution point.
  • FIG. 9 (a) to 9 (d) are views showing a far-field image of the light deflection device of FIG. 7. It is a perspective view of the light deflection device which concerns on Embodiment 3.
  • FIG. 11 (a) and 11 (b) are views showing a far-field image of the light deflection device of FIG. It is a perspective view of the modification of the light deflection device of FIG. It is a perspective view of the light deflection device which concerns on Embodiment 4.
  • FIG. 14 (a) and 14 (b) are views showing a far-field image of the light deflection device of FIG. 13.
  • FIG. 17 (a) to 17 (d) are diagrams showing lidar provided with a light deflection device.
  • the light deflection device receives coherent incident light at the incident end, propagates the incident light in the horizontal first direction while multiple-reflecting the incident light in the vertical direction, and emits light from the outlet on the upper surface thereof. It is provided with a first VCSEL (vertical resonator surface emitting laser) structure configured to take out the light, and a diffractive optical element provided on the upper side of the first VCSEL structure.
  • a first VCSEL vertical resonator surface emitting laser
  • a beam is emitted at an emission angle ⁇ r based on the relative relationship between the wavelength ⁇ S of the incident light (seed light) and the resonance wavelength ⁇ C of the first VCSEL structure, and ⁇ S.
  • the emission angle ⁇ r can be changed and the beam can be swept.
  • This beam is diffracted by a diffractive optical element and split into a plurality of beams to be emitted. This makes it possible to increase the deflection angle or increase the resolution.
  • the two wavelengths preferably satisfy ⁇ S ⁇ C.
  • the return light from the first VCSEL structure through the incident end can be suppressed, and the quality of the beam emitted from the first VCSEL structure can be improved.
  • the diffractive optical element may diffract the emitted light of the first VCSEL structure in the first direction.
  • the emission angle of each of the plurality of beams emitted from the diffractive optical element is represented by ⁇ r + m ⁇ ⁇ sep (m is 0, -1, +1, -2, +2 ).
  • the diffractive optical element may diffract the emitted light of the first VCSEL structure in a second direction perpendicular to the first direction.
  • a plurality of beams can be branched and radiated in the second direction, and they can be swept in the first direction, so that the resolution can be increased.
  • the diffractive optical element may diffract the emitted light of the first VCSEL structure in the first direction and the second direction perpendicular to the first direction.
  • the deflection angle can be increased and the resolution can be increased.
  • the light deflection device may further comprise a light source comprising a second VCSEL structure coupled in a first direction to the incident end of the first VCSEL structure.
  • the light source may be configured so that the oscillation wavelength can be controlled.
  • the emission angle of the beam can be controlled according to the oscillation wavelength of the light source.
  • the first VCSEL structure and the second VCSEL structure may be continuously formed with DBRs (Distributed Bragg Reflectors) and active layers.
  • DBRs Distributed Bragg Reflectors
  • the optical deflection device can be further reduced in size and cost.
  • the light source may be configured with a variable drive current to be injected into the second VCSEL structure.
  • the oscillation wavelength of the light source can be changed according to the drive current, and the emission angle ⁇ r can be controlled.
  • a drive current exceeding the oscillation threshold value may be injected into the first VCSEL structure (active operation).
  • a drive current exceeding the oscillation threshold value may be injected into the first VCSEL structure (active operation).
  • the emitted light becomes coherent light with a uniform wavefront, can be imaged in a minute spot, and can be made longer to achieve higher output at the same time.
  • the first VCSEL structure may be injected with a drive current equal to or less than the oscillation threshold value (passive operation). Even in this case, the beam can be swept.
  • At least one of the first VCSEL structure and the second VCSEL structure has an air gap layer, and the thickness of the air gap layer may be variably configured by the micromachine structure. Thereby, the cavity length of the first VCSEL structure or the second VCSEL structure can be changed, ⁇ C or ⁇ S can be controlled, and the emission angle ⁇ r can be controlled.
  • FIG. 1 is a perspective view of the optical deflection device 100A according to the first embodiment.
  • the light deflection device 100A emits a light beam (emitted light) 6 in the vertical direction, and sweeps the emitted light 6 in the first horizontal direction (x direction in the figure).
  • the optical deflection device 100A includes a first VCSEL structure 110 and a diffractive optical element (DOE) 130.
  • DOE diffractive optical element
  • the first VCSEL structure 110 is laminated on the substrate 102 in the vertical direction (z direction in the drawing), and includes an upper DBR layer 112, an active layer 114, and a lower DBR layer 116.
  • the first VCSEL structure 110 is configured with the horizontal first direction (x direction in the figure), which is the scanning direction of the beam, as the longitudinal direction.
  • the first VCSEL structure 110 has a unique resonance wavelength ⁇ C determined by the length of the resonator in the vertical direction.
  • the first VCSEL structure 110 can be characterized by comprising an oxidative stenosis layer 118, the size of the active region being determined according to the width of the oxidative stenosis.
  • the first VCSEL structure 110 receives coherent incident light (laser light) 2 at an incident port (also referred to as a coupling region) 120 provided on one end side in the first direction (x direction). Inside the first VCSEL structure 110, the laser beam 3 propagates slowly in the first direction while being multiple-reflected in the vertical direction (z direction). Light from the external light source 200 may be coupled to the incident port 120 by using an optical fiber.
  • An electrode 124 is formed on the surface of the first VCSEL structure 110, and a region surrounded by the electrode 124 serves as an exit port (emission aperture) 122. A part of the slow light mode wave 4 propagating inside the first VCSEL structure 110 is emitted as emitted light 6 from the exit port 122 on the upper surface of the first VCSEL structure 110.
  • the first VCSEL structure 110 may be inactive and operated as a mere waveguide without supplying a current to the electrode 124 (passive mode). However, in this case, since the laser beam 3 propagates in the x direction while being partially emitted inside the first VCSEL structure 110, the intensity of the emitted light 6 becomes weaker as the distance from the incident port 120 increases.
  • a current exceeding the threshold value may be injected into the electrode 124 to operate the first VCSEL structure 110 in an activated state (active mode).
  • a current exceeding the threshold value may be injected into the electrode 124 to operate the first VCSEL structure 110 in an activated state (active mode).
  • the intensity distribution of the emitted light 6 becomes substantially constant with respect to the first direction, and the intensity thereof becomes extremely large.
  • the emitted light 6 becomes coherent light having a uniform wavefront, can be imaged in a minute spot, and can be made long to achieve high output at the same time.
  • the light deflection device 100A emits the emitted light 6 at an emission angle ⁇ r determined according to the relative relationship between the wavelength ⁇ S of the incident light 2 and the resonance wavelength ⁇ C of the first VCSEL structure 110.
  • FIG. 2 is a diagram illustrating the propagation of the slow light mode wave 4 in the light deflection device 100A.
  • the incident light 2 having the wavelength ⁇ S propagates in the slow light to the right while being multiple-reflected in the vertical direction in the first VCSEL structure 110.
  • the wave vector k of the light 3 that is multiple-reflected in the vertical direction is represented by the equation (1).
  • n is the refractive index.
  • k 2 ⁇ n / ⁇ S ... (1)
  • the slow light propagation constant ⁇ SL corresponding to the wave vector can be conceived, and it is expressed by the equation (3) using the effective refractive index n eff .
  • ⁇ SL 2 ⁇ n eff / ⁇ S ... (3)
  • n eff n ⁇ ⁇ (1- ( ⁇ S / ⁇ C ) 2 )... (5) This is the effective refractive index for the slow light mode wave 4.
  • the emission angle ⁇ r satisfies the equation (8), and the emitted light 6 is emitted at an angle corresponding to the ratio of the two wavelengths ⁇ S and ⁇ C.
  • sin ⁇ r n ⁇ (1- ( ⁇ S / ⁇ C ) 2 )... (8)
  • a transmissive DOE 130 is provided on the upper side of the first VCSEL structure 110.
  • the DOE 130 is one-dimensional, and a diffracted beam that receives the emitted light 6 of the first VCSEL structure 110 on the lower surface, diffracts in the first direction (x direction), and splits into a plurality of (three in this example). It emits BM 0th , BM -1st , and BM + 1st .
  • FIGS. 3A and 3B are diagrams illustrating the structure and operation of the DOE130. As shown in FIG. 3 (a), the DOE 130 has a groove periodic in the x direction.
  • FIG. 3B shows the beam emitted from the single spot light source 10
  • the 0th-order light is transmitted as it is
  • the +1st-order light is -1 at an angle separated by + ⁇ sep in the x direction.
  • the secondary light is emitted at an angle separated by ⁇ sep in the x direction.
  • FIG. 3 (b) shows the intensity distribution on the virtual screen 12.
  • the DOE 130 When the wavelength ⁇ S of the incident light 2 is ⁇ 1 , the DOE 130 emits beams BM 0th , BM -1st , and BM + 1st in the three directions of ⁇ 1 , ⁇ 1 + ⁇ sep , and ⁇ 1 ⁇ ⁇ sep .
  • the DOE 130 When the wavelength ⁇ S of the incident light 2 is ⁇ 2 , the DOE 130 emits beams BM 0th , BM -1st , and BM + 1st in the three directions of ⁇ 2 , ⁇ 2 + ⁇ sep , and ⁇ 2 - ⁇ sep . ..
  • the three beams can be scanned in the x direction by sweeping the wavelength ⁇ S.
  • 5 (a) and 5 (b) are diagrams illustrating sweeping of the beam in a distant field of view with and without DOE.
  • the beam is scanned in the range ⁇ 1 to ⁇ 2 , and the deflection angle is ⁇ 2 ⁇ ⁇ 1 .
  • the scanning range is expanded to ( ⁇ 1 ⁇ ⁇ sep ) to ( ⁇ 2 + ⁇ sep ), and the deflection angle is ( ⁇ 2 ⁇ . ⁇ 1 ) + 2 ⁇ sep , which increases by 2 ⁇ sep .
  • the gap between the scanning range of the beam BM 0th and the scanning range of the beam BM -1st can be eliminated in the x direction, and the gap between the scanning range of the beam BM 0th and the scanning range of the beam BM + 1st can be eliminated.
  • the total deflection angle is 3 ⁇ sep .
  • the deflection angle can be magnified three times. This means that the deflection angle, which was conventionally about 10 °, can be expanded to 30 °.
  • the DOE130 diffracts the beam in three directions of 0th order, + 1st order, and -1st order, but the order of DOE130 is the number of diffraction beams arbitrarily according to the period and depth of the groove of DOE130. It is possible to design to increase. The polarization angle and the number of resolution points can be increased in proportion to the number of diffraction beams.
  • FIG. 6A shows a far-field image when the wavelength of the incident light 2 is fixed, when there is no DOE, and FIG. 6B shows a case where the DOE is present.
  • the spread angle of the beam in the x direction is 0.02 ° to 0.024 °.
  • FIG. 6 (c) shows a far-field image when the wavelength of the incident light 2 is swept in the absence of DOE.
  • the deflection angle in the absence of DOE is about 10 °.
  • FIG. 6D shows a far-field image when the wavelength of the incident light 2 is swept when DOE is added.
  • the deflection angle when the DOE is provided is expanded to about 40 °.
  • FIG. 7 is a diagram showing the relationship between the number of beam divisions by DOE, the deflection angle, and the resolution point. As the number of divisions by DOE130 is increased, the deflection angle and the resolution point can be increased.
  • the light from the external light source 200 is coupled to the light deflection device 100A, but in the second embodiment, the light deflection device 100B is integrated together with the light source.
  • FIG. 8 is a perspective view of the optical deflection device 100B according to the second embodiment.
  • the light deflection device 100B includes a second VCSEL structure 140.
  • the second VCSEL structure 140 is coupled in the first direction at the incident end 126 of the first VCSEL structure 110.
  • the second VCSEL structure 140 is a light source that replaces the external light source 200, and includes an upper DBR layer 142, an active layer 144, a lower DBR layer 146, and an oxidation narrowing layer 148.
  • the first VCSEL structure 110 and the second VCSEL structure 140 can be formed in such a manner that the DBR layers 116 and 146, 112 and 142, and the active layers 114 and 144, respectively, are continuous. That is, the first VCSEL structure 110 and the second VCSEL structure 140 can be simultaneously created on the same substrate 102 by the same semiconductor process.
  • the first VCSEL structure 110 and the second VCSEL structure 140 are electrically insulated from each other. For example, by injecting an ion into the region 128 at the boundary between the first VCSEL structure 110 and the second VCSEL structure 140, electrical insulation can be achieved without disturbing the optical bond.
  • the first VCSEL structure 110 and the second VCSEL structure 140 may be individually configured and the end faces may be joined to each other.
  • the drive circuit 210 injects a current IDRV into the electrode 154 of the second VCSEL structure 140 to oscillate the second VCSEL structure 140.
  • the second VCSEL structure 140 does not need to take out emitted light from its upper surface, so that the reflectance of the upper surface may be increased to around 100%. Therefore, the electrode 154 may be formed over the entire upper surface of the second VCSEL structure 140 and used as a metal reflective film.
  • the laser beam When the second VCSEL structure 140 oscillates, the laser beam exudes into the first VCSEL structure 110.
  • the exuded laser beam is coupled to the first VCSEL structure 110 as incident light 2.
  • the configuration and operation of the first VCSEL structure 110 side are the same as those in the first embodiment.
  • the oscillation wavelength ⁇ S of the second VCSEL structure 140 can be controlled according to the drive current IDRV injected by the drive circuit 210. That is, the temperature of the second VCSEL structure 140 changes due to self-heating corresponding to the drive current IDRV , and the second VCSEL structure oscillates at the wavelength ⁇ S corresponding to the temperature.
  • the wavelength ⁇ S of the incident light 2 can be changed in the range ⁇ 1 to ⁇ 2 according to the current amount.
  • the method for controlling the oscillation wavelength ⁇ S of the second VCSEL structure 140 is not limited to this.
  • the current IDRV injected from the drive circuit 210 may be constant, the temperature of the second VCSEL structure 140 may be controlled by a heater, and the oscillation wavelength ⁇ S may be changed. It can be said that the wavelength control by the drive current IDRV described above is simple and low cost because it does not require a heater.
  • 9 (a) to 9 (d) are views showing a far-field image of the light deflection device 100B of FIG. 7.
  • 9 (a) shows a far-field image of the injected current IDRV , that is, a fixed wavelength ⁇ s of the incident light 2 in the absence of DOE and FIG. 9 (b).
  • the spread angle of the beam in the x direction is 0.11 ° to 0.12 °, which is larger than that of the light deflection device 100A of the first embodiment.
  • FIG. 9 (c) shows a far-field image when the current amount of the drive current I DRV is swept in the absence of DOE.
  • the deflection angle in the absence of DOE is about 10 °.
  • FIG. 9 (d) shows a far-field image when the drive current I DRV is swept when DOE is added.
  • the deflection angle when the DOE is provided is expanded to about 40 °.
  • FIG. 10 is a perspective view of the light deflection device 100C according to the third embodiment.
  • the optical deflection device 100C includes two optical deflection devices 100_1 and 100_2 adjacent to each other in the second horizontal direction (y direction) perpendicular to the horizontal first direction (x direction).
  • the two light deflection devices 100_1 and 100_2 are configured so that the propagation directions of the slow light mode waves are opposite to each other.
  • the two optical deflection devices 100_1 and 100_2 have the configurations described in the first embodiment or the second embodiment.
  • the region 150 corresponds to the incident port 120 that receives the light from the external light source in the first embodiment, or corresponds to the second VCSEL structure 140 in the second embodiment.
  • the light deflection device 100_1 has a first VCSEL structure 110_1, and the light deflection device 100_1 has a third VCSEL structure 110_2.
  • the optical deflection devices 100_1 and 100_2 are integrated on the same substrate, and the corresponding layers of the respective VCSEL structures are continuous. Further, one DOE 130 is arranged so as to cover both the light deflection devices 100_1 and 100_1.
  • two individually configured optical deflection devices 100_1 and 100_2 may be arranged adjacent to each other in the second direction.
  • 11 (a) and 11 (b) are views showing a far-field image of the light deflection device 100C of FIG.
  • FIG. 11A shows a far-field image in the absence of DOE130.
  • FIG. 11B shows a far-field image of a plurality of beams split by the DOE 130.
  • the emitted beam BM1 of the light deflection device 100_1 is split and emitted at an angle separated by ⁇ ⁇ sep .
  • the emitted beam BM2 of the light deflection device 100_2 is also split and emitted at an angle separated by ⁇ ⁇ sep . This allows the beam to be scanned over a wide range of positive and negative angles.
  • FIG. 12 is a perspective view of a modified example of the light deflection device of FIG.
  • the ends of the two opposing optical deflection devices 100_1 and 100_2 may be coupled to each other by the folded structure 152 to form one optical deflection device.
  • FIG. 13 is a perspective view of the light deflection device 100D according to the fourth embodiment.
  • the DOE130D is a two-dimensional diffractive element and has a periodic structure in both the X direction and the Y direction.
  • the DOE130D splits the emitted beam of the first VCSEL structure 110 in both the X direction and the Y direction, and emits a plurality of beams. In the X direction, it is radiated at a distance of ⁇ ⁇ sepx, and in the Y direction, it is radiated at a distance of ⁇ ⁇ sepy.
  • the light source may be provided outside the first VCSEL structure 110 as described in the first embodiment, or may be integrated together with the first VCSEL structure 110 as described in the second embodiment.
  • FIG. 14 (a) and 14 (b) are views showing a far-field image of the light deflection device 100D of FIG.
  • FIG. 14 (a) shows a far-field image in the absence of DOE130D.
  • the emission beam of the light deflection device 100D has a relatively large spread angle in the y direction, while the spread angle of the beam in the x direction is very small.
  • FIG. 14B shows a far-field image when the DOE130D is present, and the irradiation area can be expanded by splitting the beam in the x-direction and the y-direction, respectively.
  • FIG. 15 is a perspective view of the light deflection device 100E according to the fifth embodiment.
  • the DOE130E is a one-dimensional diffractive element and has a structure periodic in the Y direction.
  • FIG. 16 is a diagram showing a far-field image of the light deflection device 100E of FIG. According to the fifth embodiment, the irradiation area can be expanded by splitting the beam in the y direction.
  • FIGS. 17 (a) to 17 (d) are diagrams showing LIDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing) including the light deflection device 100.
  • the LIDAR 300a of FIG. 17A includes a device chip 302 and an optical system 304.
  • the optical deflection device 100 is integrated on the device chip 302.
  • the light deflection device 100 scans the signal light 21.
  • the return light reflected by the object 400 is detected by a detector connected to the device chip 302 via the device chip 302.
  • the detector may be integrated on the same surface as the device chip 302.
  • the optical deflection device 100 and the detector are separately configured.
  • the LIDAR 300b includes two device chips 306, 308 and optical systems 310, 312.
  • One of the above-mentioned optical deflection devices 100 is integrated on the device chip 306.
  • the light deflection device 100 scans the signal light 21.
  • the return light 22 reflected by the object 400 is detected by a detector connected to the device chip 308 via the device chip 308.
  • CMOS Complementary Metal Oxide Semiconductor
  • the LIDAR 300c includes a device chip 314 in which the optical deflection device 100 is integrated and an optical system 316 on the beam deflector side thereof.
  • the light receiving side is provided with an optical system 320 and an array-shaped detector 318.
  • the array detector 318 may be a CMOS sensor or a CCD.
  • the light deflection device 100 scans the signal light 21.
  • the return light 22 reflected by the object 400 is detected by the array detector 318 via the optical system 320.
  • the LIDAR 300d of FIG. 17 (d) is provided with an optical deflection device 100 on the beam deflector side.
  • the light receiving side is provided with an optical system 322 and a detector array 324.
  • the detector array 324 may be a CMOS sensor or a CCD.
  • the light deflection device 100 can split the beam in the Y direction as described in the fourth and fifth embodiments.
  • the light deflection device 100 scans the signal light 21 in a one-dimensional direction. Since the beam itself splits in the direction orthogonal to it, a plurality of target objects 402 are simultaneously irradiated.
  • the return light 22 reflected by the target object here is detected by the detector array 324 via the optical system 322.
  • the individual positions of the plurality of target objects 402 can be detected simultaneously by using the detector array 324.
  • the light deflection device 100 As described above, according to the light deflection device 100 according to the embodiment, a wide range of beam scans can be realized. Therefore, by using it for LIDAR, it is possible to detect a wider range of three-dimensional position information of the object 400.
  • the emission angle ⁇ r of the emitted light 6 is controlled by fixing the resonance wavelength ⁇ C of the first VCSEL structure 110 and controlling the wavelength ⁇ S of the incident light 2.
  • the invention is not limited to that. Since the emission angle ⁇ r is determined based on the relative relationship between the two wavelengths ⁇ S and ⁇ C , the resonance wavelength ⁇ C may be controlled in place of or in addition to the wavelength ⁇ S.
  • the first VCSEL structure 110 may be configured with a variable resonance wavelength ⁇ C.
  • the first VCSEL structure 110 is provided with a MEMS structure and an air gap layer to control the thickness of the air gap layer. You may.
  • the present disclosure relates to an optical deflection device that controls the direction of an optical beam.

Abstract

In a light deflection device 100, a first VCSEL structure 110 is configured to receive coherent incident light 2 at an incident end, perform slow light propagation in a horizontal first direction while performing multiple reflection of the incident light 2 in a vertical direction, and extract emitted light 6 from an emission port 122 in the upper surface thereof. A DOE 130 is provided on the upper side of the first VCSEL structure 110. The DOE 130 diffracts the emitted light 6 of the first VCSEL structure 110 in the first direction.

Description

光偏向デバイスLight deflection device
 本開示は、光ビームの方向を制御する光偏向デバイスに関する。 The present disclosure relates to an optical deflection device that controls the direction of an optical beam.
 自動車、ドローン、ロボットなどに搭載されるレーザレーダ(LIDAR)、パソコンやスマートホンに搭載して周囲環境を手軽に取り込む3Dスキャナ、近赤外安全監視システム、製造現場での自動検査装置などで、光偏向デバイスが用いられている。 Laser radar (LIDAR) mounted on automobiles, drones, robots, etc., 3D scanners mounted on personal computers and smartphones to easily capture the surrounding environment, near-infrared safety monitoring systems, automatic inspection equipment at manufacturing sites, etc. A light deflection device is used.
 光偏向デバイスとしては、大きく、機械式のものと非機械式のものに分類される。前者としては、ポリゴンミラー、ガルバノミラー、あるいはモータによる機械的駆動系を用いたものが実用化されている(非特許文献1)。機械式の偏向デバイスは、モジュールサイズ、偏向スピード、信頼性に課題がある。 Light deflection devices are broadly classified into mechanical and non-mechanical ones. As the former, a polygon mirror, a galvano mirror, or a machine using a mechanical drive system by a motor has been put into practical use (Non-Patent Document 1). Mechanical deflection devices have challenges in module size, deflection speed, and reliability.
 非機械式の光偏向デバイスとしては、マイクロマシンによるMEMSミラー(非特許文献2)、電気光学結晶を用いたもの(非特許文献3)、フォトニック結晶レーザを用いたもの(非特許文献4)、フェーズアレイアンテナを用いたもの(非特許文献5)などが報告されている。 Examples of the non-mechanical optical deflection device include a MEMS mirror using a micromachine (Non-Patent Document 2), a device using an electro-optical crystal (Non-Patent Document 3), and a device using a photonic crystal laser (Non-Patent Document 4). Those using a phase array antenna (Non-Patent Document 5) have been reported.
 また本発明者らは、Bragg反射鏡から構成されるスローライト導波路を用いて、その巨大な構造分散により、光の波長を掃引することで高解像度のビーム偏向を提案している(特許文献1、非特許文献6,7)。 In addition, the present inventors have proposed high-resolution beam deflection by sweeping the wavelength of light by using a slow light waveguide composed of a Bragg reflector and using its huge structural dispersion (Patent Documents). 1. Non-patent documents 6, 7).
特開2013-016591号公報Japanese Unexamined Patent Publication No. 2013-016591
 従来の非機械式の光偏向デバイスは、視野、言い換えると偏向角度が10°程度に制限されており、いくつかのアプリケーションでは十分とはいえず、さらなる拡大が望まれている。 The conventional non-mechanical optical deflection device has a field of view, in other words, a deflection angle limited to about 10 °, which is not sufficient for some applications, and further expansion is desired.
 本開示はかかる状況においてなされたものであり、そのある態様の例示的な目的のひとつは、偏向角度を拡大し、あるいは分解能を高めた光偏向デバイスの提供にある。 The present disclosure has been made in such circumstances, and one of the exemplary purposes of that aspect is to provide an optical deflection device with increased deflection angle or increased resolution.
 本開示のある態様の光偏向デバイスは、入射端にコヒーレントな入射光を受け、入射光を垂直方向に多重反射させながら、水平な第1方向にスローライト伝搬させ、その上面の出射口から出射光を取り出すよう構成される第1VCSEL(垂直共振器面発光レーザ)構造体と、第1VCSEL構造体の上側に設けられた回折光学素子と、を備える。 The light deflection device of one aspect of the present disclosure receives coherent incident light at the incident end, causes the incident light to be multiple-reflected in the vertical direction, propagates the slow light in the horizontal first direction, and exits from the outlet on the upper surface thereof. It includes a first VCSEL (vertical resonator surface emitting laser) structure configured to take out emitted light, and a diffractive optical element provided on the upper side of the first VCSEL structure.
 なお、以上の構成要素を任意に組み合わせたもの、あるいは本発明の表現を、方法、装置などの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above components or a conversion of the expression of the present invention between methods, devices and the like is also effective as an aspect of the present invention.
 本開示のある態様によれば、偏向角度を拡大できる。 According to certain aspects of the present disclosure, the deflection angle can be increased.
実施形態1に係る光偏向デバイスの斜視図である。It is a perspective view of the light deflection device which concerns on Embodiment 1. FIG. 光偏向デバイスにおけるスローライトモード波の伝搬を説明する図である。It is a figure explaining the propagation of a slow light mode wave in a light deflection device. 図3(a)、(b)は、DOEの構造および動作を説明する図である。3 (a) and 3 (b) are diagrams illustrating the structure and operation of the DOE. 光偏向デバイスの動作を説明する図である。It is a figure explaining the operation of a light deflection device. 図5(a)、(b)は、DOEがない場合と、ある場合の、遠視野におけるビームの掃引を説明する図である。5 (a) and 5 (b) are diagrams illustrating sweeping of the beam in a distant field of view with and without DOE. 図6(a)~(d)は、光偏向デバイスの遠視野像を示す図である。6 (a) to 6 (d) are views showing a far-field image of the light deflection device. DOEによるビームの分割数と、偏向角度および解像点の関係を示す図である。It is a figure which shows the relationship between the number of divisions of a beam by DOE, a deflection angle and a resolution point. 実施形態2に係る光偏向デバイスの斜視図である。It is a perspective view of the light deflection device which concerns on Embodiment 2. FIG. 図9(a)~(d)は、図7の光偏向デバイスの遠視野像を示す図である。9 (a) to 9 (d) are views showing a far-field image of the light deflection device of FIG. 7. 実施形態3に係る光偏向デバイスの斜視図である。It is a perspective view of the light deflection device which concerns on Embodiment 3. FIG. 図11(a)、(b)は、図10の光偏向デバイスの遠視野像を示す図である。11 (a) and 11 (b) are views showing a far-field image of the light deflection device of FIG. 図10の光偏向デバイスの変形例の斜視図である。It is a perspective view of the modification of the light deflection device of FIG. 実施形態4に係る光偏向デバイスの斜視図である。It is a perspective view of the light deflection device which concerns on Embodiment 4. FIG. 図14(a)、(b)は、図13の光偏向デバイスの遠視野像を示す図である。14 (a) and 14 (b) are views showing a far-field image of the light deflection device of FIG. 13. 実施形態5に係る光偏向デバイスの斜視図である。It is a perspective view of the light deflection device which concerns on Embodiment 5. 図15の光偏向デバイスの遠視野像を示す図である。It is a figure which shows the far-field image of the light deflection device of FIG. 図17(a)~(d)は、光偏向デバイスを備えるLIDARを示す図である。17 (a) to 17 (d) are diagrams showing lidar provided with a light deflection device.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Outline of Embodiment)
Some exemplary embodiments of the present disclosure will be outlined. This overview simplifies and describes some concepts of one or more embodiments for the purpose of basic understanding of embodiments, as a prelude to the detailed description described below, and is an invention or disclosure. It does not limit the size. Also, this overview is not a comprehensive overview of all possible embodiments and does not limit the essential components of the embodiment. For convenience, "one embodiment" may be used to refer to one embodiment (examples or modifications) or a plurality of embodiments (examples or modifications) disclosed herein.
 一実施形態に係る光偏向デバイスは、入射端にコヒーレントな入射光を受け、入射光を垂直方向に多重反射させながら、水平な第1方向にスローライト伝搬させ、その上面の出射口から出射光を取り出すよう構成される第1VCSEL(垂直共振器面発光レーザ)構造体と、第1VCSEL構造体の上側に設けられた回折光学素子と、を備える。 The light deflection device according to one embodiment receives coherent incident light at the incident end, propagates the incident light in the horizontal first direction while multiple-reflecting the incident light in the vertical direction, and emits light from the outlet on the upper surface thereof. It is provided with a first VCSEL (vertical resonator surface emitting laser) structure configured to take out the light, and a diffractive optical element provided on the upper side of the first VCSEL structure.
 第1VCSEL構造体の出射口からは、入射光(シード光)の波長λと第1VCSEL構造体の共振波長λの相対的な関係にもとづく出射角θで、ビームが出射され、λとλを相対的に変化させることにより出射角θを変化させ、ビームを掃引することができる。このビームは、回折光学素子によって回折され、複数のビームにスプリットして放射される。これにより、偏向角度を拡大し、あるいは分解能を高めることができる。 From the outlet of the first VCSEL structure, a beam is emitted at an emission angle θ r based on the relative relationship between the wavelength λ S of the incident light (seed light) and the resonance wavelength λ C of the first VCSEL structure, and λ S. By changing λ C and λ C relatively, the emission angle θ r can be changed and the beam can be swept. This beam is diffracted by a diffractive optical element and split into a plurality of beams to be emitted. This makes it possible to increase the deflection angle or increase the resolution.
 2つの波長は、λ<λを満たすことが好ましい。第1VCSEL構造体から入射端を介しての戻り光を抑圧することができ、第1VCSEL構造体から出射されるビーム品質を改善できる。 The two wavelengths preferably satisfy λ SC. The return light from the first VCSEL structure through the incident end can be suppressed, and the quality of the beam emitted from the first VCSEL structure can be improved.
 一実施形態において、回折光学素子は、第1VCSEL構造体の出射光を、第1方向に回折してもよい。この場合、回折光学素子から放射される複数のビームそれぞれの出射角は、θ+m・θsep(mは0,-1,+1,-2,+2…)で表される。 In one embodiment, the diffractive optical element may diffract the emitted light of the first VCSEL structure in the first direction. In this case, the emission angle of each of the plurality of beams emitted from the diffractive optical element is represented by θ r + m · θ sep (m is 0, -1, +1, -2, +2 ...).
 θの掃引範囲をΔθとするとき、2θsep≦Δθを満たすことが好ましい。この場合、隣接するビーム同士を連続して掃引することができる。 When the sweep range of θ r is Δθ r , it is preferable to satisfy 2θ sep ≦ Δθ r . In this case, adjacent beams can be continuously swept.
 一実施形態において、回折光学素子は、第1VCSEL構造体の出射光を第1方向に垂直な第2方向に回折してもよい。この場合、第2方向に複数のビームを分岐して放射でき、それらを第1方向に掃引することができるため、解像度を高めることができる。 In one embodiment, the diffractive optical element may diffract the emitted light of the first VCSEL structure in a second direction perpendicular to the first direction. In this case, a plurality of beams can be branched and radiated in the second direction, and they can be swept in the first direction, so that the resolution can be increased.
 一実施形態において、回折光学素子は、第1VCSEL構造体の出射光を第1方向およびそれと垂直な第2方向に回折してもよい。これにより、偏向角度を拡大するとともに、解像度を高めることができる。 In one embodiment, the diffractive optical element may diffract the emitted light of the first VCSEL structure in the first direction and the second direction perpendicular to the first direction. As a result, the deflection angle can be increased and the resolution can be increased.
 一実施形態において、光偏向デバイスは、第1VCSEL構造体の入射端に第1方向に結合される第2VCSEL構造体を含む光源をさらに備えてもよい。光源は、発振波長が制御可能に構成されてもよい。光源の発振波長に応じて、ビームの出射角を制御することができる。 In one embodiment, the light deflection device may further comprise a light source comprising a second VCSEL structure coupled in a first direction to the incident end of the first VCSEL structure. The light source may be configured so that the oscillation wavelength can be controlled. The emission angle of the beam can be controlled according to the oscillation wavelength of the light source.
 一実施形態において、第1VCSEL構造体および第2VCSEL構造体は、それぞれのDBR(Distributed Bragg Reflector)同士、活性層同士が連続して形成されてもよい。第1VCSEL構造体と第2VCSEL構造体を集積化することで、光偏向デバイスを一層、小型化、低コスト化できる。 In one embodiment, the first VCSEL structure and the second VCSEL structure may be continuously formed with DBRs (Distributed Bragg Reflectors) and active layers. By integrating the first VCSEL structure and the second VCSEL structure, the optical deflection device can be further reduced in size and cost.
 一実施形態において光源は、第2VCSEL構造体に注入する駆動電流が可変に構成されてもよい。駆動電流に応じて光源の発振波長を変化させることができ、ひいては出射角θを制御できる。 In one embodiment, the light source may be configured with a variable drive current to be injected into the second VCSEL structure. The oscillation wavelength of the light source can be changed according to the drive current, and the emission angle θr can be controlled.
 一実施形態において、第1VCSEL構造体には発振しきい値を超える駆動電流が注入されてもよい(アクティブ動作)。これにより第1VCSEL構造体において、高効率に光を増幅することができる。出射光は、波面の揃ったコヒーレントな光となり、微小スポットに結像させることができ、長尺化させることで高出力化も同時に実現できる。 In one embodiment, a drive current exceeding the oscillation threshold value may be injected into the first VCSEL structure (active operation). As a result, light can be amplified with high efficiency in the first VCSEL structure. The emitted light becomes coherent light with a uniform wavefront, can be imaged in a minute spot, and can be made longer to achieve higher output at the same time.
 一実施形態において、第1VCSEL構造体は発振しきい値以下の駆動電流が注入されてもよい(パッシブ動作)。この場合でも、ビームを掃引することができる。 In one embodiment, the first VCSEL structure may be injected with a drive current equal to or less than the oscillation threshold value (passive operation). Even in this case, the beam can be swept.
 第1VCSEL構造体と第2VCSEL構造体の少なくとも一方は、エアギャップ層を有し、マイクロマシン構造により、エアギャップ層の厚みが可変に構成されてもよい。これにより、第1VCSEL構造体あるいは第2VCSEL構造体のキャビティ長を変化させることができ、λあるいはλを制御することができ、出射角θを制御できる。 At least one of the first VCSEL structure and the second VCSEL structure has an air gap layer, and the thickness of the air gap layer may be variably configured by the micromachine structure. Thereby, the cavity length of the first VCSEL structure or the second VCSEL structure can be changed, λ C or λ S can be controlled, and the emission angle θ r can be controlled.
(実施形態)
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, the present invention will be described with reference to the drawings based on the preferred embodiments. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and duplicate description thereof will be omitted as appropriate. Further, the embodiment is not limited to the invention, but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
 図1は、実施形態1に係る光偏向デバイス100Aの斜視図である。光偏向デバイス100Aは、光ビーム(出射光)6を垂直方向に放射し、出射光6を水平第1方向(図中、x方向)に掃引する。 FIG. 1 is a perspective view of the optical deflection device 100A according to the first embodiment. The light deflection device 100A emits a light beam (emitted light) 6 in the vertical direction, and sweeps the emitted light 6 in the first horizontal direction (x direction in the figure).
 光偏向デバイス100Aは、第1VCSEL構造体110および回折光学素子(DOE:Diffractive Optical Element)130を備える。 The optical deflection device 100A includes a first VCSEL structure 110 and a diffractive optical element (DOE) 130.
 第1VCSEL構造体110は、基板102上に垂直方向(図中、z方向)に積層されており、上部DBR層112、活性層114、下部DBR層116を含む。この第1VCSEL構造体110は、ビームのスキャン方向である水平第1方向(図中、x方向)を長手として構成される。第1VCSEL構造体110は、垂直方向の共振器長で定まる固有の共振波長λを有している。第1VCSEL構造体110は、酸化狭窄層118を含むことを特徴とするができ、酸化狭窄の幅に応じて、活性領域のサイズが定められる。 The first VCSEL structure 110 is laminated on the substrate 102 in the vertical direction (z direction in the drawing), and includes an upper DBR layer 112, an active layer 114, and a lower DBR layer 116. The first VCSEL structure 110 is configured with the horizontal first direction (x direction in the figure), which is the scanning direction of the beam, as the longitudinal direction. The first VCSEL structure 110 has a unique resonance wavelength λ C determined by the length of the resonator in the vertical direction. The first VCSEL structure 110 can be characterized by comprising an oxidative stenosis layer 118, the size of the active region being determined according to the width of the oxidative stenosis.
 第1VCSEL構造体110は、第1方向(x方向)の一端側に設けられた入射口(結合領域ともいう)120にコヒーレントな入射光(レーザ光)2を受ける。第1VCSEL構造体110の内部で、レーザ光3は垂直方向(z方向)に多重反射しながら、第1方向にスローライト伝搬する。入射口120には、光ファイバを用いて、外部光源200からの光を結合させてもよい。 The first VCSEL structure 110 receives coherent incident light (laser light) 2 at an incident port (also referred to as a coupling region) 120 provided on one end side in the first direction (x direction). Inside the first VCSEL structure 110, the laser beam 3 propagates slowly in the first direction while being multiple-reflected in the vertical direction (z direction). Light from the external light source 200 may be coupled to the incident port 120 by using an optical fiber.
 第1VCSEL構造体110の表面には、電極124が形成されており、電極124に囲まれる領域が、出射口(出射アパーチャ)122となる。第1VCSEL構造体110の内部を伝搬するスローライトモード波4の一部は、第1VCSEL構造体110の上面の出射口122から出射光6として放射される。 An electrode 124 is formed on the surface of the first VCSEL structure 110, and a region surrounded by the electrode 124 serves as an exit port (emission aperture) 122. A part of the slow light mode wave 4 propagating inside the first VCSEL structure 110 is emitted as emitted light 6 from the exit port 122 on the upper surface of the first VCSEL structure 110.
 電極124には電流を供給せず、第1VCSEL構造体110を不活性状態とし、単なる導波路として動作させてもよい(パッシブモード)。但しこの場合、第1VCSEL構造体110の内部においてレーザ光3は一部が放射されながら、x方向に伝搬していくため、入射口120から離れるに従って、出射光6の強度が弱くなる。 The first VCSEL structure 110 may be inactive and operated as a mere waveguide without supplying a current to the electrode 124 (passive mode). However, in this case, since the laser beam 3 propagates in the x direction while being partially emitted inside the first VCSEL structure 110, the intensity of the emitted light 6 becomes weaker as the distance from the incident port 120 increases.
 好ましくは電極124に、しきい値を超える電流を注入し、第1VCSEL構造体110を活性化した状態で動作させてもよい(アクティブモード)。これにより、出射光6の強度分布は、第1方向に関して、実質的に一定となり、その強度もきわめて大きくなる。また出射光6は,波面の揃ったコヒーレントな光となり、微小スポットに結像させることができ、長尺化させることで高出力化も同時に実現できる。 Preferably, a current exceeding the threshold value may be injected into the electrode 124 to operate the first VCSEL structure 110 in an activated state (active mode). As a result, the intensity distribution of the emitted light 6 becomes substantially constant with respect to the first direction, and the intensity thereof becomes extremely large. Further, the emitted light 6 becomes coherent light having a uniform wavefront, can be imaged in a minute spot, and can be made long to achieve high output at the same time.
 光偏向デバイス100Aは、入射光2の波長λと、第1VCSEL構造体110の共振波長λとの相対的な関係に応じて定まる出射角θで、出射光6を放射する。 The light deflection device 100A emits the emitted light 6 at an emission angle θ r determined according to the relative relationship between the wavelength λ S of the incident light 2 and the resonance wavelength λ C of the first VCSEL structure 110.
 図2は、光偏向デバイス100Aにおけるスローライトモード波4の伝搬を説明する図である。右向きのスローライトモード波4を考える。波長λの入射光2は、第1VCSEL構造体110内を垂直方向に多重反射しながら、右方向にスローライト伝搬する。垂直方向に多重反射する光3の波数ベクトルkは、式(1)で表される。nは屈折率である。
 k=2πn/λ  …(1)
FIG. 2 is a diagram illustrating the propagation of the slow light mode wave 4 in the light deflection device 100A. Consider the slow light mode wave 4 pointing to the right. The incident light 2 having the wavelength λ S propagates in the slow light to the right while being multiple-reflected in the vertical direction in the first VCSEL structure 110. The wave vector k of the light 3 that is multiple-reflected in the vertical direction is represented by the equation (1). n is the refractive index.
k = 2πn / λ S ... (1)
 また、第1VCSEL構造体110の垂直方向(z方向)に安定である共振波長(カットオフ波長ともいう)をλとするとき、共振波長λに関する波数ベクトルkcは、式(2)で表される。
 kc=2πn/λ …(2)
Further, when the resonance wavelength (also referred to as cutoff wavelength) stable in the vertical direction (z direction) of the first VCSEL structure 110 is λ C , the wave vector kc with respect to the resonance wavelength λ C is expressed by the equation (2). Will be done.
kc = 2πn / λ C ... (2)
 スローライトモード波4についても、波数ベクトルに相当するスローライト伝搬定数βSLを観念することができ、有効屈折率neffを用いて、式(3)で表される。
 βSL=2πneff/λ …(3)
For the slow light mode wave 4, the slow light propagation constant β SL corresponding to the wave vector can be conceived, and it is expressed by the equation (3) using the effective refractive index n eff .
β SL = 2πn eff / λ S … (3)
 また3つの波数ベクトルに関して、式(4)が成り立つ。
 k=kc+βSL    …(4)
Further, the equation (4) holds for the three wave vectors.
k 2 = kc 2 + β SL 2 … (4)
 式(1)~(3)を式(4)に代入して整理すると、式(5)を得る。
 neff=n×√(1-(λ/λ)  …(5)
 これがスローライトモード波4に対する有効屈折率である。
By substituting the equations (1) to (3) into the equation (4) and rearranging them, the equation (5) is obtained.
n eff = n × √ (1- (λ S / λ C ) 2 )… (5)
This is the effective refractive index for the slow light mode wave 4.
 レーザ光2の入射角をθ、出射角をθとすると、式(6)が成り立つ。
 sinθ=nsinθ   …(6)
Assuming that the incident angle of the laser beam 2 is θ i and the emission angle is θ r , the equation (6) holds.
sinθ r = nsinθ i … (6)
 また、式(7)が成り立つ。
 sinθ=βSL/k   …(7)
Further, the equation (7) holds.
sinθ i = β SL / k… (7)
 式(5)~(7)より、出射角θは式(8)を満たし、出射光6は、2つの波長λとλの比に応じた角度で出射する。
 sinθ=n√(1-(λ/λ)  …(8)
From the equations (5) to (7), the emission angle θ r satisfies the equation (8), and the emitted light 6 is emitted at an angle corresponding to the ratio of the two wavelengths λ S and λ C.
sinθ r = n√ (1- (λ S / λ C ) 2 )… (8)
 図1に戻る。第1VCSEL構造体110の上側には、透過型のDOE130が設けられる。本実施形態においてDOE130は一次元であり、下面に第1VCSEL構造体110の出射光6を受け、第1方向(x方向)に回折し、複数本(この例では3本)にスプリットした回折ビームBM0th、BM-1st,BM+1stを放射する。 Return to FIG. A transmissive DOE 130 is provided on the upper side of the first VCSEL structure 110. In the present embodiment, the DOE 130 is one-dimensional, and a diffracted beam that receives the emitted light 6 of the first VCSEL structure 110 on the lower surface, diffracts in the first direction (x direction), and splits into a plurality of (three in this example). It emits BM 0th , BM -1st , and BM + 1st .
 図3(a)、(b)は、DOE130の構造および動作を説明する図である。図3(a)に示すように、DOE130は、x方向に周期的な溝を有する。 FIGS. 3A and 3B are diagrams illustrating the structure and operation of the DOE130. As shown in FIG. 3 (a), the DOE 130 has a groove periodic in the x direction.
 図3(b)に示すように、シングルスポット光源10から出射したビームは、DOE130において回折され、0次光は、そのまま透過し、+1次光はx方向に+θsep離れた角度に、-1次光はx方向に-θsep離れた角度に放射される。図3(b)には仮想的なスクリーン12上の強度分布が示される。 As shown in FIG. 3B, the beam emitted from the single spot light source 10 is diffracted in the DOE 130, the 0th-order light is transmitted as it is, and the +1st-order light is -1 at an angle separated by + θ sep in the x direction. The secondary light is emitted at an angle separated by −θ sep in the x direction. FIG. 3 (b) shows the intensity distribution on the virtual screen 12.
 以上が光偏向デバイス100Aの構成である。続いてその動作を説明する。 The above is the configuration of the optical deflection device 100A. Next, the operation will be described.
 図4は、光偏向デバイス100Aの動作を説明する図である。外部光源200により、光偏向デバイス100の入射光2の波長λを、λからλに変化させたとする。実線は、λ=λのときの、破線はλ=λのときの光線を示す。 FIG. 4 is a diagram illustrating the operation of the light deflection device 100A. It is assumed that the wavelength λ S of the incident light 2 of the light deflection device 100 is changed from λ 1 to λ 2 by the external light source 200. The solid line shows the light beam when λ S = λ 1 , and the broken line shows the light ray when λ S = λ 2 .
 波長λの光を入射したときの放射角θは、
 θ=arcsin(n√(1-(λ/λ))
であり、波長λの光を入射したときの放射角θは、
 θ=arcsin(n√(1-(λ/λ))
となる。
The radiation angle θ r when light of wavelength λ 1 is incident is
θ 1 = arcsin (n√ (1- (λ 1 / λ C ) 2 ))
The radiation angle θ r when light of wavelength λ 2 is incident is
θ 2 = arcsin (n√ (1- (λ 2 / λ C ) 2 ))
Will be.
 入射光2の波長λがλであるとき、DOE130からは、θ,θ+θsep,θ-θsepの3方向にビームBM0th、BM-1st,BM+1stが放射される。また入射光2の波長λがλであるとき、DOE130からは、θ,θ+θsep,θ-θsepの3方向にビームBM0th、BM-1st,BM+1stが放射される。 When the wavelength λ S of the incident light 2 is λ 1 , the DOE 130 emits beams BM 0th , BM -1st , and BM + 1st in the three directions of θ 1 , θ 1 + θ sep , and θ 1 − θ sep . When the wavelength λ S of the incident light 2 is λ 2 , the DOE 130 emits beams BM 0th , BM -1st , and BM + 1st in the three directions of θ 2 , θ 2 + θ sep , and θ 2sep . ..
 入射光の波長λに応じて、3つのビームの照射位置を制御できるため、波長λを掃引することにより、3つのビームをx方向に走査することができる。 Since the irradiation positions of the three beams can be controlled according to the wavelength λ S of the incident light, the three beams can be scanned in the x direction by sweeping the wavelength λ S.
 図5(a)、(b)は、DOEがない場合と、ある場合の、遠視野におけるビームの掃引を説明する図である。図5(a)に示すように、DOEが無い場合には、ビームは、θ~θの範囲で走査され、偏向角度はθ-θである。 5 (a) and 5 (b) are diagrams illustrating sweeping of the beam in a distant field of view with and without DOE. As shown in FIG. 5A, in the absence of DOE, the beam is scanned in the range θ 1 to θ 2 , and the deflection angle is θ 2 − θ 1 .
 これに対してDOEを設けることで、図5(b)に示すように、走査範囲は、(θ-θsep)~(θ+θsep)に拡大され、偏向角度は、(θ-θ)+2θsepとなり、2θsep分、大きくなる。 On the other hand, by providing DOE, as shown in FIG. 5 (b), the scanning range is expanded to (θ 1 − θ sep ) to (θ 2 + θ sep ), and the deflection angle is (θ 2 −. θ 1 ) + 2θ sep , which increases by 2θ sep .
 1個のビームの掃引角Δθ=θ-θは、θsepと同程度にするとよく、波長λの掃引幅はその条件を満たすように定められる。これにより、x方向に関して、ビームBM0thの走査範囲とビームBM-1stの走査範囲の隙間がなくなり、ビームBM0thの走査範囲とビームBM+1stの走査範囲の隙間もなくすことができる。この場合には、トータルの偏向角度は、3θsepとなる。言い換えれば、偏向角度を3倍に拡大することができる。これは、従来において、10°程度であった偏向角度を、30°まで拡大できることを意味する。 The sweep angle Δθ = θ 2 − θ 1 of one beam should be about the same as θ sep , and the sweep width of the wavelength λ S is determined so as to satisfy the condition. As a result, the gap between the scanning range of the beam BM 0th and the scanning range of the beam BM -1st can be eliminated in the x direction, and the gap between the scanning range of the beam BM 0th and the scanning range of the beam BM + 1st can be eliminated. In this case, the total deflection angle is 3θ sep . In other words, the deflection angle can be magnified three times. This means that the deflection angle, which was conventionally about 10 °, can be expanded to 30 °.
 この例では、DOE130によって、0次、+1次、-1次の3方向にビームを回折させたが、DOE130の次数は、DOE130の溝の周期や深さなどに応じて任意に回折ビームの本数を増やすように設計することが可能である。回折ビームの本数に比例して、偏光角、解像点数を増やすことができる。 In this example, the DOE130 diffracts the beam in three directions of 0th order, + 1st order, and -1st order, but the order of DOE130 is the number of diffraction beams arbitrarily according to the period and depth of the groove of DOE130. It is possible to design to increase. The polarization angle and the number of resolution points can be increased in proportion to the number of diffraction beams.
 続いて、実際に作成したデバイスの評価結果を説明する。 Next, the evaluation results of the actually created device will be explained.
 図6(a)~(d)は、光偏向デバイス100Aの遠視野像を示す図である。図6(a)には、DOEがない場合、図6(b)にはDOEがある場合において、入射光2の波長を固定したときの遠視野像が示される。x方向のビームの広がり角は0.02°~0.024°である。 6 (a) to 6 (d) are views showing a far-field image of the light deflection device 100A. FIG. 6A shows a far-field image when the wavelength of the incident light 2 is fixed, when there is no DOE, and FIG. 6B shows a case where the DOE is present. The spread angle of the beam in the x direction is 0.02 ° to 0.024 °.
 図6(c)には、DOEがない場合に入射光2の波長を掃引したときの遠視野像が示される。DOEがない場合の偏向角度は約10°である。 FIG. 6 (c) shows a far-field image when the wavelength of the incident light 2 is swept in the absence of DOE. The deflection angle in the absence of DOE is about 10 °.
 図6(d)には、DOEを追加した場合に、入射光2の波長を掃引したときの遠視野像が示される。DOEを設けた場合の偏向角度は、約40°まで拡大されている。 FIG. 6D shows a far-field image when the wavelength of the incident light 2 is swept when DOE is added. The deflection angle when the DOE is provided is expanded to about 40 °.
 図7は、DOEによるビームの分割数と、偏向角度および解像点の関係を示す図である。DOE130による分割数を増やすに従い、偏向角度および解像点を増やすことができる。 FIG. 7 is a diagram showing the relationship between the number of beam divisions by DOE, the deflection angle, and the resolution point. As the number of divisions by DOE130 is increased, the deflection angle and the resolution point can be increased.
(実施形態2)
 実施形態1では、外部光源200からの光を光偏向デバイス100Aに結合したが、実施形態2では、光偏向デバイス100Bが、光源とともに集積化される。
(Embodiment 2)
In the first embodiment, the light from the external light source 200 is coupled to the light deflection device 100A, but in the second embodiment, the light deflection device 100B is integrated together with the light source.
 図8は、実施形態2に係る光偏向デバイス100Bの斜視図である。光偏向デバイス100Bは、第2VCSEL構造体140を備える。第2VCSEL構造体140は、第1VCSEL構造体110の入射端126において第1方向に結合される。 FIG. 8 is a perspective view of the optical deflection device 100B according to the second embodiment. The light deflection device 100B includes a second VCSEL structure 140. The second VCSEL structure 140 is coupled in the first direction at the incident end 126 of the first VCSEL structure 110.
 第2VCSEL構造体140は、外部光源200に代わる光源であり、上部DBR層142、活性層144、下部DBR層146、酸化狭窄層148を備える。 The second VCSEL structure 140 is a light source that replaces the external light source 200, and includes an upper DBR layer 142, an active layer 144, a lower DBR layer 146, and an oxidation narrowing layer 148.
 第1VCSEL構造体110と第2VCSEL構造体140は、それぞれのDBR層116と146同士、112と142同士、活性層114と144同士が連続する態様で形成することができる。すなわち同じ基板102に、同じ半導体プロセスで第1VCSEL構造体110と第2VCSEL構造体140を同時に作成できる。 The first VCSEL structure 110 and the second VCSEL structure 140 can be formed in such a manner that the DBR layers 116 and 146, 112 and 142, and the active layers 114 and 144, respectively, are continuous. That is, the first VCSEL structure 110 and the second VCSEL structure 140 can be simultaneously created on the same substrate 102 by the same semiconductor process.
 第1VCSEL構造体110と第2VCSEL構造体140の間は、電気的に絶縁されている。たとえば第1VCSEL構造体110と第2VCSEL構造体140の境界の領域128に、イオンを注入することにより、光学的な結合を阻害せずに、電気的な絶縁が可能となる。 The first VCSEL structure 110 and the second VCSEL structure 140 are electrically insulated from each other. For example, by injecting an ion into the region 128 at the boundary between the first VCSEL structure 110 and the second VCSEL structure 140, electrical insulation can be achieved without disturbing the optical bond.
 なお、第1VCSEL構造体110と第2VCSEL構造体140を個別に構成し、端面同士を接合してもよい。 The first VCSEL structure 110 and the second VCSEL structure 140 may be individually configured and the end faces may be joined to each other.
 駆動回路210は、第2VCSEL構造体140の電極154に電流IDRVを注入し、第2VCSEL構造体140を発振させる。なお、第2VCSEL構造体140は、一般的なVCSELとは異なり、その上面から出射光を取り出す必要がないため、上面の反射率は100%付近まで高めてよい。そのために電極154を第2VCSEL構造体140の上面全体にわたり形成し、金属反射膜として利用してもよい。 The drive circuit 210 injects a current IDRV into the electrode 154 of the second VCSEL structure 140 to oscillate the second VCSEL structure 140. Unlike a general VCSEL, the second VCSEL structure 140 does not need to take out emitted light from its upper surface, so that the reflectance of the upper surface may be increased to around 100%. Therefore, the electrode 154 may be formed over the entire upper surface of the second VCSEL structure 140 and used as a metal reflective film.
 第2VCSEL構造体140が発振すると、レーザ光が第1VCSEL構造体110に染み出す。この染み出したレーザ光は、入射光2として第1VCSEL構造体110に結合する。第1VCSEL構造体110側の構成および動作は実施形態1と同様である。 When the second VCSEL structure 140 oscillates, the laser beam exudes into the first VCSEL structure 110. The exuded laser beam is coupled to the first VCSEL structure 110 as incident light 2. The configuration and operation of the first VCSEL structure 110 side are the same as those in the first embodiment.
 第2VCSEL構造体140の発振波長λは、駆動回路210が注入する駆動電流IDRVに応じて制御することができる。すなわち、第2VCSEL構造体140は、駆動電流IDRVに応じた自己発熱により、その温度が変化し、温度に応じた波長λで発振する。駆動電流IDRVの電流量をIからIまで変化させると、入射光2の波長λを、電流量に応じた範囲λ~λの間で変化させることができる。 The oscillation wavelength λ S of the second VCSEL structure 140 can be controlled according to the drive current IDRV injected by the drive circuit 210. That is, the temperature of the second VCSEL structure 140 changes due to self-heating corresponding to the drive current IDRV , and the second VCSEL structure oscillates at the wavelength λ S corresponding to the temperature. By changing the current amount of the drive current I DRV from I 1 to I 2 , the wavelength λ S of the incident light 2 can be changed in the range λ 1 to λ 2 according to the current amount.
 第2VCSEL構造体140の発振波長λを制御する方法はこれに限定されない。駆動回路210から注入する電流IDRVを一定とし、ヒータによって第2VCSEL構造体140の温度を制御し、発振波長λを変化させてもよい。なお上述の駆動電流IDRVによる波長制御は、ヒータが不要であるため、簡易かつ低コストであると言える。 The method for controlling the oscillation wavelength λ S of the second VCSEL structure 140 is not limited to this. The current IDRV injected from the drive circuit 210 may be constant, the temperature of the second VCSEL structure 140 may be controlled by a heater, and the oscillation wavelength λ S may be changed. It can be said that the wavelength control by the drive current IDRV described above is simple and low cost because it does not require a heater.
 図9(a)~(d)は、図7の光偏向デバイス100Bの遠視野像を示す図である。図9(a)は、DOEがない場合、図9(b)はDOEがある場合において、注入する電流IDRV、すなわち入射光2の波長λsを固定したときの遠視野像が示される。x方向のビームの広がり角は0.11°~0.12°であり、実施形態1の光偏向デバイス100Aよりも広がり角は大きい。 9 (a) to 9 (d) are views showing a far-field image of the light deflection device 100B of FIG. 7. 9 (a) shows a far-field image of the injected current IDRV , that is, a fixed wavelength λs of the incident light 2 in the absence of DOE and FIG. 9 (b). The spread angle of the beam in the x direction is 0.11 ° to 0.12 °, which is larger than that of the light deflection device 100A of the first embodiment.
 図9(c)は、DOEがない場合に駆動電流IDRVの電流量を掃引したときの遠視野像が示される。DOEがない場合の偏向角度は約10°である。 FIG. 9 (c) shows a far-field image when the current amount of the drive current I DRV is swept in the absence of DOE. The deflection angle in the absence of DOE is about 10 °.
 図9(d)は、DOEを追加した場合に、駆動電流IDRVを掃引したときの遠視野像が示される。DOEを設けた場合の偏向角度は、約40°まで拡大されている。 FIG. 9 (d) shows a far-field image when the drive current I DRV is swept when DOE is added. The deflection angle when the DOE is provided is expanded to about 40 °.
(実施形態3)
 図10は、実施形態3に係る光偏向デバイス100Cの斜視図である。光偏向デバイス100Cは、水平第1方向(x方向)と垂直な第2方向(y方向)に隣接する2つの光偏向デバイス100_1,100_2を備える。2個の光偏向デバイス100_1,100_2は、スローライトモード波の伝搬方向が逆向きとなるように構成される。
(Embodiment 3)
FIG. 10 is a perspective view of the light deflection device 100C according to the third embodiment. The optical deflection device 100C includes two optical deflection devices 100_1 and 100_2 adjacent to each other in the second horizontal direction (y direction) perpendicular to the horizontal first direction (x direction). The two light deflection devices 100_1 and 100_2 are configured so that the propagation directions of the slow light mode waves are opposite to each other.
 2個の光偏向デバイス100_1,100_2は、実施形態1あるいは実施形態2で説明した構成を有する。領域150は、実施形態1における外部光源からの光を受ける入射口120に対応し、または実施形態2における第2VCSEL構造体140に対応する。光偏向デバイス100_1は、第1VCSEL構造体110_1を有し、光偏向デバイス100_2は、第3VCSEL構造体110_2を有する。本実施形態では、光偏向デバイス100_1と100_2は、同一基板上に集積化され、それぞれのVCSEL構造体の対応する層同士が連続している。また一枚のDOE130が、光偏向デバイス100_1と100_2の両方を覆うように配置される。 The two optical deflection devices 100_1 and 100_2 have the configurations described in the first embodiment or the second embodiment. The region 150 corresponds to the incident port 120 that receives the light from the external light source in the first embodiment, or corresponds to the second VCSEL structure 140 in the second embodiment. The light deflection device 100_1 has a first VCSEL structure 110_1, and the light deflection device 100_1 has a third VCSEL structure 110_2. In the present embodiment, the optical deflection devices 100_1 and 100_2 are integrated on the same substrate, and the corresponding layers of the respective VCSEL structures are continuous. Further, one DOE 130 is arranged so as to cover both the light deflection devices 100_1 and 100_1.
 なお、個別に構成された2個の光偏向デバイス100_1と100_2を、第2方向に隣接して配置してもよい。 It should be noted that two individually configured optical deflection devices 100_1 and 100_2 may be arranged adjacent to each other in the second direction.
 以上が光偏向デバイス100Cの構成である。続いてその動作を説明する。図11(a)、(b)は、図10の光偏向デバイス100Cの遠視野像を示す図である。 The above is the configuration of the optical deflection device 100C. Next, the operation will be described. 11 (a) and 11 (b) are views showing a far-field image of the light deflection device 100C of FIG.
 図11(a)は、DOE130がないときの遠視野像を示す。光偏向デバイス100_1の出射ビームBM1が、角度θ~θの範囲で変化するとき、光偏向デバイス100_2の出射ビームBM2は、角度-θ~-θの範囲で変化することとなる。 FIG. 11A shows a far-field image in the absence of DOE130. When the emission beam BM1 of the light deflection device 100_1 changes in the range of angles θ 1 to θ 2 , the emission beam BM 2 of the light deflection device 100_1 changes in the range of angles −θ 1 to −θ2.
 図11(b)は、DOE130によりスプリットされた複数のビームの遠視野像を示す。光偏向デバイス100_1の出射ビームBM1は、±θsep離れた角度にスプリットして放射される。同様に光偏向デバイス100_2の出射ビームBM2も、±θsep離れた角度にスプリットして放射される。これにより、正負の広い角度範囲にわたって、ビームを走査することができる。 FIG. 11B shows a far-field image of a plurality of beams split by the DOE 130. The emitted beam BM1 of the light deflection device 100_1 is split and emitted at an angle separated by ± θ sep . Similarly, the emitted beam BM2 of the light deflection device 100_2 is also split and emitted at an angle separated by ± θ sep . This allows the beam to be scanned over a wide range of positive and negative angles.
 図12は、図10の光偏向デバイスの変形例の斜視図である。対向する2個の光偏向デバイス100_1,100_2の端部同士を折り返し構造152により結合し、1個の光偏向デバイスとして構成してもよい。 FIG. 12 is a perspective view of a modified example of the light deflection device of FIG. The ends of the two opposing optical deflection devices 100_1 and 100_2 may be coupled to each other by the folded structure 152 to form one optical deflection device.
(実施形態4)
 図13は、実施形態4に係る光偏向デバイス100Dの斜視図である。実施形態4において、DOE130Dは、二次元回折素子であり、X方向とY方向の両方に周期的な構造を有している。
(Embodiment 4)
FIG. 13 is a perspective view of the light deflection device 100D according to the fourth embodiment. In the fourth embodiment, the DOE130D is a two-dimensional diffractive element and has a periodic structure in both the X direction and the Y direction.
 DOE130Dは、第1VCSEL構造体110の出射ビームを、X方向とY方向の両方にスプリットし、複数のビームを放射する。X方向に関しては±θsepx、離れた角度に放射され、Y方向に関しては±θsepy、離れた角度に放射される。 The DOE130D splits the emitted beam of the first VCSEL structure 110 in both the X direction and the Y direction, and emits a plurality of beams. In the X direction, it is radiated at a distance of ± θsepx, and in the Y direction, it is radiated at a distance of ± θsepy.
 光源は、実施形態1で説明したように第1VCSEL構造体110の外部に設けられてもよいし、実施形態2で説明したように、第1VCSEL構造体110とともに集積化されてもよい。 The light source may be provided outside the first VCSEL structure 110 as described in the first embodiment, or may be integrated together with the first VCSEL structure 110 as described in the second embodiment.
 図14(a)、(b)は、図13の光偏向デバイス100Dの遠視野像を示す図である。図14(a)には、DOE130Dがない場合の遠視野像が示される。光偏向デバイス100Dの出射ビームは、x方向のビームの広がり角が非常に小さいのに対して、y方向に関して、相対的に大きい広がり角を有している。 14 (a) and 14 (b) are views showing a far-field image of the light deflection device 100D of FIG. FIG. 14 (a) shows a far-field image in the absence of DOE130D. The emission beam of the light deflection device 100D has a relatively large spread angle in the y direction, while the spread angle of the beam in the x direction is very small.
 図14(b)にはDOE130Dがある場合の遠視野像が示されており、x方向とy方向にそれぞれに対して、ビームをスプリットさせることで、照射エリアを拡大できる。 FIG. 14B shows a far-field image when the DOE130D is present, and the irradiation area can be expanded by splitting the beam in the x-direction and the y-direction, respectively.
(実施形態5)
 図15は、実施形態5に係る光偏向デバイス100Eの斜視図である。実施形態5において、DOE130Eは、一次元回折素子であり、Y方向に周期的な構造を有している。
(Embodiment 5)
FIG. 15 is a perspective view of the light deflection device 100E according to the fifth embodiment. In the fifth embodiment, the DOE130E is a one-dimensional diffractive element and has a structure periodic in the Y direction.
 図16は、図15の光偏向デバイス100Eの遠視野像を示す図である。実施形態5によれば、y方向に対して、ビームをスプリットさせることで照射エリアを拡大できる。 FIG. 16 is a diagram showing a far-field image of the light deflection device 100E of FIG. According to the fifth embodiment, the irradiation area can be expanded by splitting the beam in the y direction.
 続いて光偏向デバイス100の用途の例を説明する。 Next, an example of the use of the light deflection device 100 will be described.
 図17(a)~(d)は、光偏向デバイス100を備えるLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)を示す図である。図17(a)のLIDAR300aは、デバイスチップ302と、光学系304を備える。デバイスチップ302には、光偏向デバイス100が集積化される。光偏向デバイス100は、信号光21を走査する。物体400で反射した戻り光は、デバイスチップ302を介してそれに接続されたディテクタによって検出される。ディテクタは、デバイスチップ302と同一面上に集積化されてもよい。 FIGS. 17 (a) to 17 (d) are diagrams showing LIDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing) including the light deflection device 100. The LIDAR 300a of FIG. 17A includes a device chip 302 and an optical system 304. The optical deflection device 100 is integrated on the device chip 302. The light deflection device 100 scans the signal light 21. The return light reflected by the object 400 is detected by a detector connected to the device chip 302 via the device chip 302. The detector may be integrated on the same surface as the device chip 302.
 図17(b)のLIDAR300bでは、光偏向デバイス100とディテクタが別々に構成される。LIDAR300bは、2つのデバイスチップ306,308と、光学系310,312を備える。デバイスチップ306上には上述のいずれかの光偏向デバイス100が集積化されている。光偏向デバイス100は、信号光21を走査する。物体400で反射した戻り光22は、デバイスチップ308を介してそれに接続されたディテクタによって検出される。 In the LIDAR 300b of FIG. 17B, the optical deflection device 100 and the detector are separately configured. The LIDAR 300b includes two device chips 306, 308 and optical systems 310, 312. One of the above-mentioned optical deflection devices 100 is integrated on the device chip 306. The light deflection device 100 scans the signal light 21. The return light 22 reflected by the object 400 is detected by a detector connected to the device chip 308 via the device chip 308.
 図17(c)のLIDAR300cでは、ディテクタとしてCMOS(Complementary Metal Oxide Semiconductor)センサが配置されている。LIDAR300cは、そのビーム偏向器側に、光偏向デバイス100が集積化されたデバイスチップ314と、光学系316を備える。受光側として、光学系320とアレイ状ディテクタ318を備える。アレイ状ディテクタ318は、CMOSセンサやCCDであってもよい。光偏向デバイス100は、信号光21を走査する。物体400で反射した戻り光22は、光学系320を介してアレイ状ディテクタ318によって検出される。 In the LIDAR 300c shown in FIG. 17 (c), a CMOS (Complementary Metal Oxide Semiconductor) sensor is arranged as a detector. The LIDAR 300c includes a device chip 314 in which the optical deflection device 100 is integrated and an optical system 316 on the beam deflector side thereof. The light receiving side is provided with an optical system 320 and an array-shaped detector 318. The array detector 318 may be a CMOS sensor or a CCD. The light deflection device 100 scans the signal light 21. The return light 22 reflected by the object 400 is detected by the array detector 318 via the optical system 320.
 図17(d)のLIDAR300dは、ビーム偏向器側に、光偏向デバイス100を備える。受光側として、光学系322とディテクタアレイ324を備える。ディテクタアレイ324は、CMOSセンサやCCDであってもよい。光偏向デバイス100は、実施形態4や実施形態5で説明したように、Y方向にビームをスプリット可能である。光偏向デバイス100は、信号光21を1次元方向に走査する。それと直交方向は、ビーム自身がスプリットするため、複数の対象物体402を同時に照射する。ここの対象物体で反射した戻り光22は、光学系322を介してディテクタアレイ324によって検出される。複数の対象物体402の個々の位置をディテクタアレイ324を用いて同時に検出することができる。 The LIDAR 300d of FIG. 17 (d) is provided with an optical deflection device 100 on the beam deflector side. The light receiving side is provided with an optical system 322 and a detector array 324. The detector array 324 may be a CMOS sensor or a CCD. The light deflection device 100 can split the beam in the Y direction as described in the fourth and fifth embodiments. The light deflection device 100 scans the signal light 21 in a one-dimensional direction. Since the beam itself splits in the direction orthogonal to it, a plurality of target objects 402 are simultaneously irradiated. The return light 22 reflected by the target object here is detected by the detector array 324 via the optical system 322. The individual positions of the plurality of target objects 402 can be detected simultaneously by using the detector array 324.
 上述のように、実施の形態に係る光偏向デバイス100によれば、広範囲のビームスキャンを実現できる。したがって、LIDARに用いることにより、より広範囲の物体400の3次元位置情報を検出できる。 As described above, according to the light deflection device 100 according to the embodiment, a wide range of beam scans can be realized. Therefore, by using it for LIDAR, it is possible to detect a wider range of three-dimensional position information of the object 400.
 上述したいくつかの実施の形態では、第1VCSEL構造体110の共振波長λを固定し、入射光2の波長λを制御することにより、出射光6の出射角θを制御したが本発明はそれに限定されない。出射角θは、2つの波長λとλの相対的な関係にもとづいて定まるため、波長λに代えて、あるいはそれに加えて、共振波長λを制御することとしてもよい。この場合、第1VCSEL構造体110を、共振波長λを可変に構成すればよく、具体的には、第1VCSEL構造体110にMEMS構造とエアギャップ層を設け、エアギャップ層の厚みを制御してもよい。 In some of the above-described embodiments, the emission angle θ r of the emitted light 6 is controlled by fixing the resonance wavelength λ C of the first VCSEL structure 110 and controlling the wavelength λ S of the incident light 2. The invention is not limited to that. Since the emission angle θ r is determined based on the relative relationship between the two wavelengths λ S and λ C , the resonance wavelength λ C may be controlled in place of or in addition to the wavelength λ S. In this case, the first VCSEL structure 110 may be configured with a variable resonance wavelength λ C. Specifically, the first VCSEL structure 110 is provided with a MEMS structure and an air gap layer to control the thickness of the air gap layer. You may.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 The present invention has been described using specific terms and phrases based on the embodiments, but the embodiments merely indicate the principles and applications of the present invention, and the embodiments are defined in the claims. Many modifications and arrangement changes are permitted within the scope of the above-mentioned idea of the present invention.
 本開示は、光ビームの方向を制御する光偏向デバイスに関する。 The present disclosure relates to an optical deflection device that controls the direction of an optical beam.
100…光偏向デバイス、110…第1VCSEL構造体、112…上部DBR、114…活性層、116…下部DBR、118…酸化狭窄層、120…入射口、122…出射口、124…電極、130…DOE、140…第2VCSEL構造体、142…上部DBR、144…活性層、146…下部DBR、148…酸化狭窄層、2…入射光、4…スローライトモード波、6…出射光、200…外部光源、210…駆動回路。 100 ... light deflection device, 110 ... first VCSEL structure, 112 ... upper DBR, 114 ... active layer, 116 ... lower DBR, 118 ... oxidative stenosis layer, 120 ... incident port, 122 ... exit port, 124 ... electrode, 130 ... DOE, 140 ... 2nd VCSEL structure, 142 ... upper DBR, 144 ... active layer, 146 ... lower DBR, 148 ... oxidative constriction layer, 2 ... incident light, 4 ... slow light mode wave, 6 ... emitted light, 200 ... external Light source, 210 ... Drive circuit.

Claims (8)

  1.  入射端にコヒーレントな入射光を受け、前記入射光を垂直方向に多重反射させながら、水平な第1方向にスローライト伝搬させ、その上面の出射口から出射光を取り出すよう構成される第1VCSEL(垂直共振器面発光レーザ)構造体と、
     前記第1VCSEL構造体の上側に設けられた回折光学素子と、
     を備えることを特徴とする光偏向デバイス。
    A first VCSEL configured to receive coherent incident light at the incident end, propagate the incident light in a horizontal first direction while multiple-reflecting the incident light in the vertical direction, and extract the emitted light from the outlet on the upper surface thereof. Vertical resonator surface emitting laser) structure and
    The diffractive optical element provided on the upper side of the first VCSEL structure and
    A light deflection device characterized by comprising.
  2.  前記回折光学素子は、前記第1VCSEL構造体の出射光を、前記第1方向に回折することを特徴とする請求項1に記載の光偏向デバイス。 The light deflection device according to claim 1, wherein the diffractive optical element diffracts the emitted light of the first VCSEL structure in the first direction.
  3.  前記回折光学素子は、前記第1VCSEL構造体の出射光を前記第1方向およびそれと垂直な第2方向に回折することを特徴とする請求項1に記載の光偏向デバイス。 The light deflection device according to claim 1, wherein the diffractive optical element diffracts the emitted light of the first VCSEL structure in the first direction and the second direction perpendicular to the first direction.
  4.  前記回折光学素子は、前記第1VCSEL構造体の出射光を前記第1方向に垂直な第2方向に回折することを特徴とする請求項1に記載の光偏向デバイス。 The light deflection device according to claim 1, wherein the diffractive optical element diffracts the emitted light of the first VCSEL structure in a second direction perpendicular to the first direction.
  5.  前記第1VCSEL構造体の入射端に前記第1方向に結合される第2VCSEL構造体を含む光源をさらに備え、
     前記光源は、発振波長が制御可能に構成されることを特徴とする請求項1から4のいずれかに記載の光偏向デバイス。
    Further provided at the incident end of the first VCSEL structure is a light source comprising the second VCSEL structure coupled in the first direction.
    The light deflection device according to any one of claims 1 to 4, wherein the light source is configured so that the oscillation wavelength can be controlled.
  6.  前記第1VCSEL構造体および前記第2VCSEL構造体は、それぞれのDBR(Distributed Bragg Reflector)同士、活性層同士が連続して形成されることを特徴とする請求項5に記載の光偏向デバイス。 The light deflection device according to claim 5, wherein the first VCSEL structure and the second VCSEL structure are continuously formed with DBRs (Distributed Bragg Reflectors) and active layers.
  7.  前記光源は、前記第2VCSEL構造体に注入する駆動電流が可変に構成されることを特徴とする請求項5または6に記載の光偏向デバイス。 The light deflection device according to claim 5 or 6, wherein the light source has a variable drive current to be injected into the second VCSEL structure.
  8.  前記第1VCSEL構造体に対して、前記第1方向と垂直な第2方向に配置されており、その入射端にコヒーレントな入射光を受け、前記入射光を垂直方向に多重反射させながら、前記第1方向と逆向きにスローライト伝搬させ、その上面の出射口から出射光を取り出すよう構成される第3VCSEL構造体をさらに備え、
     前記回折光学素子は、前記第1VCSEL構造体と前記第3VCSEL構造体の上側に設けられることを特徴とする請求項1から7のいずれかに記載の光偏向デバイス。
    The first VCSEL structure is arranged in a second direction perpendicular to the first direction, receives coherent incident light at its incident end, and multiple-reflects the incident light in the vertical direction. It further comprises a third VCSEL structure configured to propagate slow light in the opposite direction of one direction and extract the emitted light from the exit port on its upper surface.
    The light deflection device according to any one of claims 1 to 7, wherein the diffractive optical element is provided above the first VCSEL structure and the third VCSEL structure.
PCT/JP2021/040744 2020-11-20 2021-11-05 Light deflection device WO2022107614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-193462 2020-11-20
JP2020193462A JP2022082100A (en) 2020-11-20 2020-11-20 Light deflection device

Publications (1)

Publication Number Publication Date
WO2022107614A1 true WO2022107614A1 (en) 2022-05-27

Family

ID=81708773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040744 WO2022107614A1 (en) 2020-11-20 2021-11-05 Light deflection device

Country Status (2)

Country Link
JP (1) JP2022082100A (en)
WO (1) WO2022107614A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016591A (en) * 2011-07-01 2013-01-24 Denso Corp Optical deflection element and optical deflection module
US20160352074A1 (en) * 2015-05-28 2016-12-01 Vixar Vcsels and vcsel arrays designed for improved performance as illumination sources and sensors
JP2017157609A (en) * 2016-02-29 2017-09-07 国立大学法人東京工業大学 Beam deflection device
JP2019074361A (en) * 2017-10-13 2019-05-16 国立大学法人東京工業大学 Projector for three-dimensional measurement and three-dimensional measuring device
JP2019139116A (en) * 2018-02-14 2019-08-22 国立大学法人東京工業大学 Beam deflection device
JP2019536287A (en) * 2017-01-19 2019-12-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor laser and method for manufacturing such a semiconductor laser
JP2020512700A (en) * 2017-03-31 2020-04-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Intrinsically safe laser devices including vertical cavity surface emitting lasers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016591A (en) * 2011-07-01 2013-01-24 Denso Corp Optical deflection element and optical deflection module
US20160352074A1 (en) * 2015-05-28 2016-12-01 Vixar Vcsels and vcsel arrays designed for improved performance as illumination sources and sensors
JP2017157609A (en) * 2016-02-29 2017-09-07 国立大学法人東京工業大学 Beam deflection device
JP2019536287A (en) * 2017-01-19 2019-12-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor laser and method for manufacturing such a semiconductor laser
JP2020512700A (en) * 2017-03-31 2020-04-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Intrinsically safe laser devices including vertical cavity surface emitting lasers
JP2019074361A (en) * 2017-10-13 2019-05-16 国立大学法人東京工業大学 Projector for three-dimensional measurement and three-dimensional measuring device
JP2019139116A (en) * 2018-02-14 2019-08-22 国立大学法人東京工業大学 Beam deflection device

Also Published As

Publication number Publication date
JP2022082100A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP6732225B2 (en) Beam deflection device
JP6956964B2 (en) Light deflection device and rider device
CN110678774B (en) Distance measuring sensor
JP7140784B2 (en) Modular 3D optical detection system
Kossey et al. End-fire silicon optical phased array with half-wavelength spacing
CN108377344B (en) Image pickup system
US6327292B1 (en) External cavity laser source using spectral beam combining in two dimensions
JP6293675B2 (en) Wavelength tunable external cavity laser diode with GRSM for OCT
CN108700790A (en) Light deflector and laser radar apparatus
JPWO2018061514A1 (en) Optical scanning device, optical receiving device, and optical detection system
JP7011290B2 (en) 3D measurement projector and 3D measurement device
JP2019095218A (en) Distance measuring sensor
JPWO2019065975A1 (en) Circularly polarized polarization diversity element, scanning element using this, and lidar
CN111684346B (en) Beam deflection device
JP6942333B2 (en) Light deflection device and rider device
Yao et al. Scan-less 3D optical sensing/Lidar scheme enabled by wavelength division demultiplexing and position-to-angle conversion of a lens
JP4744895B2 (en) Terahertz wave generator
WO2022107614A1 (en) Light deflection device
JPWO2018037700A1 (en) Detection light generation element and detection light irradiation method
JP7088114B2 (en) Optical scanning device
EP1484625A1 (en) Optical device for coupling light of a laser array into an optical fibre
Li et al. Solid-state slow-light beam scanner with ultra-large field of view and high resolution
Li et al. High-resolution two-dimensional solid-state beam scanner module based on vertical-cavity-surface-emitting laser array
KR102223750B1 (en) Array Antenna Capable of Varying the Phase of Light
JP2022105229A (en) Light detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894488

Country of ref document: EP

Kind code of ref document: A1