WO2022107535A1 - Refrigerator and refrigerator control system - Google Patents

Refrigerator and refrigerator control system Download PDF

Info

Publication number
WO2022107535A1
WO2022107535A1 PCT/JP2021/038737 JP2021038737W WO2022107535A1 WO 2022107535 A1 WO2022107535 A1 WO 2022107535A1 JP 2021038737 W JP2021038737 W JP 2021038737W WO 2022107535 A1 WO2022107535 A1 WO 2022107535A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
mode
temperature
operation mode
control unit
Prior art date
Application number
PCT/JP2021/038737
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 中村
雅至 中川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180075108.5A priority Critical patent/CN116490738A/en
Publication of WO2022107535A1 publication Critical patent/WO2022107535A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • This disclosure relates to a refrigerator and a refrigerator control system.
  • Patent Document 1 discloses a building supply system capable of storing food in a refrigerator in the event of a power outage.
  • This building supply system includes a power supply vehicle that can be connected to a predetermined building and a refrigerator, and when a power failure occurs in the predetermined building, the power supply vehicle supplies power to the refrigerator.
  • the present disclosure provides a refrigerator and a refrigerator control system capable of maintaining the cooling capacity of the refrigerator in the event of a power failure for a long period of time without using an external power source.
  • the refrigerator in the present disclosure sets the operation mode of the refrigerator as the first mode when a forecast regarding the cause of the power failure is issued for the cooling unit for cooling the inside of the refrigerator and the area including the installation location of the refrigerator.
  • the refrigerator control unit is provided with a refrigerator control unit that shifts from the first mode to the second mode in which the temperature inside the refrigerator is lower than the first mode.
  • the refrigerator control unit is the refrigerator when the operation mode of the refrigerator is the second mode.
  • the refrigerator is cooled by the cooling unit so that the fluctuation of the refrigerator temperature in the refrigerator is smaller than the fluctuation of the refrigerator temperature in the first mode.
  • the refrigerator control system in the present disclosure is a refrigerator control system including a refrigerator and a server capable of communicating with the refrigerator, and the server causes a power failure in an area including a place where the refrigerator is installed.
  • transition instruction information for shifting the operation mode of the refrigerator from the first mode to the second mode in which the temperature inside the refrigerator is lower than that of the first mode is transmitted to the refrigerator, and the refrigerator is transmitted.
  • the refrigerator is transmitted.
  • shifts the operation mode from the first mode to the second mode, and in the second mode the fluctuation of the refrigerator internal temperature changes the refrigerator in the first mode. Cool the inside of the refrigerator so that it is smaller than the fluctuation of the temperature inside the refrigerator.
  • this specification shall include all the contents of the Japanese patent application / Japanese Patent Application No. 2020-191823 filed on November 18, 2020.
  • the refrigerator and the refrigerator control system in the present disclosure can lower the temperature inside the refrigerator before the power failure occurs, and depending on the timing when the power failure occurs by lowering the temperature inside the refrigerator while suppressing the fluctuation of the temperature inside the refrigerator. It is possible to suppress the difference in cooling capacity during a power failure. Therefore, the cooling capacity of the refrigerator in the event of a power failure can be maintained for a long period of time without using an external power source.
  • FIG. 1 is a diagram showing a configuration of a refrigerator control system.
  • FIG. 2 is a vertical sectional view of the refrigerator.
  • FIG. 3 is a diagram showing a refrigerating cycle of a refrigerator.
  • FIG. 4 is a block diagram showing the configurations of a refrigerator, a refrigerator control server, and a terminal device.
  • FIG. 5 is a timing chart showing the state of each part of the refrigerator.
  • FIG. 6 is a flowchart showing the operation of the refrigerator control system.
  • FIG. 7 is a diagram comparing fluctuations in the temperature inside the refrigerator and the freezer.
  • FIG. 8 is a diagram showing an example of a user interface displayed on the touch panel by the operation control unit.
  • FIG. 9 is a flowchart showing the operation of the refrigerator control system.
  • FIG. 1 is a diagram showing a configuration of a refrigerator control system.
  • FIG. 2 is a vertical sectional view of the refrigerator.
  • FIG. 3 is a diagram showing a refrigerating cycle of a refrigerator
  • FIG. 10 is a vertical sectional view of the refrigerator.
  • FIG. 11 is a diagram showing a refrigerating cycle of a refrigerator.
  • FIG. 12 is a block diagram showing the configurations of a refrigerator, a refrigerator control server, and a terminal device.
  • FIG. 13 is a timing chart showing the state of each part of the refrigerator.
  • FIG. 14 is a diagram comparing fluctuations in the temperature inside the refrigerator and the freezer.
  • the present disclosure provides a refrigerator and a refrigerator control system capable of maintaining the cooling capacity of the refrigerator for a long period of time even in the event of a power failure without using an external power source.
  • FIG. 1 is a diagram showing a configuration of a refrigerator control system 1000.
  • the refrigerator control system 1000 is a system in which a device connected to the global network GN controls the refrigerator 1 via the global network GN.
  • Global network GN includes the Internet, telephone networks and other communication networks.
  • the refrigerator control system 1000 includes a refrigerator 1.
  • the refrigerator 1 is installed at the home H of the user P.
  • the refrigerator 1 includes a main box body 10 having an open front surface, and the main box body 10 is formed with two storage chambers, a refrigerating chamber 11 and a freezing chamber 12.
  • a rotary door 11A is provided in the opening on the front surface of the refrigerator compartment 11.
  • the freezing chamber 12 is provided with a drawer 12A for accommodating food.
  • Home H corresponds to an example of "refrigerator installation location".
  • FIG. 2 is a vertical sectional view of the refrigerator 1 in the first embodiment.
  • FIG. 3 is a diagram showing a refrigerating cycle 157A of the refrigerator 1 in the first embodiment.
  • FIG. 2 illustrates the X-axis, Y-axis, and Z-axis.
  • the X-axis, Y-axis, and Z-axis are orthogonal to each other.
  • the Z axis indicates the vertical direction.
  • the X-axis and Y-axis are parallel to the horizontal direction.
  • the X-axis indicates the left-right direction.
  • the Y-axis indicates the front-back direction.
  • the positive direction of the X-axis indicates the right direction.
  • the positive direction of the Y-axis indicates the forward direction.
  • the positive direction of the Z axis indicates the upward direction.
  • a refrigerating chamber 11 and a freezing chamber 12 are formed in the main box body 10 of the refrigerator 1.
  • the refrigerating chamber 11 is formed above the freezing chamber 12.
  • the freezing chamber 12 is formed below the refrigerating chamber 11.
  • one cooler 154 generates cold air for cooling each storage chamber of the refrigerator 1. This method is called the 1-eva method.
  • the compressor 151, the condenser 152, the capillary tube 153, and the cooler 154 are connected in an annular shape, and the refrigerant compressed by the compressor 151 is circulated. Cool the inside of the refrigerator 1.
  • Refrigerator 1 is provided with a compressor 151 in the upper rear part of the refrigerator compartment 11. Further, the refrigerator 1 has a cooler 154 behind the freezer chamber 12, a cooling fan 155 that sends the cold air generated by the cooler 154 to the refrigerator compartment 11 and the freezer compartment 12, and the amount of cold air sent by the cooling fan 155. It is equipped with a damper 156 to be adjusted.
  • a first discharge port 111A, a second discharge port 111B, and a third discharge port 111C are formed behind the refrigerating chamber 11.
  • Each of the first discharge port 111A, the second discharge port 111B, and the third discharge port 111C is an opening for discharging the cold air generated by the cooler 154 into the space of the refrigerating chamber 11 in which the food is stored.
  • a refrigerating chamber cold air return port is formed behind the refrigerating chamber 11.
  • the refrigerating chamber cold air return port is an opening for returning the cold air discharged by the first discharge port 111A, the second discharge port 111B, and the third discharge port 111C to the cooler 154.
  • a fourth discharge port 111D and a fifth discharge port 111E are formed behind the freezing chamber 12.
  • Each of the fourth discharge port 111D and the fifth discharge port 111E is an opening for discharging the cold air generated by the cooler 154 into the space of the freezing chamber 12 in which the food is housed.
  • a freezing chamber cold air return port is formed behind the freezing chamber 12. The freezing chamber cold air return port is an opening for returning the cold air discharged by the fourth discharge port 111D and the fifth discharge port 111E to the cooler 154.
  • the refrigerator 1 communicates with the communication device 2 installed at the home H of the user P, and communicates with the refrigerator control server 3 via the communication device 2.
  • the refrigerator control server 3 corresponds to an example of a “server”.
  • the communication device 2 connects to the global network GN and communicates with the refrigerator control server 3 connected to the global network GN.
  • the communication device 2 functions as an interface device for connecting the refrigerator 1 to the global network GN. Further, when the terminal device 4 establishes a communication connection with the communication device 2, the communication device 2 functions as an interface device for connecting the terminal device 4 to the global network GN.
  • the communication device 2 has functions related to a modem, a router function, a NAT (Network Address Translation) function, and the like.
  • the communication device 2 transfers data transmitted / received between the refrigerator 1 and the refrigerator control server 3 connected to the global network GN. Further, the communication device 2 transfers data transmitted / received between the terminal device 4 for establishing a communication connection and the refrigerator control server 3 connected to the global network GN.
  • the refrigerator control system 1000 includes a terminal device 4 having a touch panel 42.
  • the terminal device 4 is composed of, for example, a smartphone or a tablet terminal, and is used by the user P of the refrigerator 1.
  • An application program for controlling the operation of the refrigerator 1 is installed in the terminal device 4.
  • the application program for controlling the operation of the refrigerator 1 is referred to as a "refrigerator control application” and is designated by "413".
  • the user P who is at home is shown by a dotted line
  • the user P who has gone out from home H is shown by a solid line.
  • the terminal device 4 is connected to the refrigerator control server 3 via the communication device 2 or without the communication device 2 by the function of the refrigerator control application 413. Communicate to control the operation of the refrigerator 1.
  • the function of the refrigerator control application 413 enables the global network GN without going through the communication device 2. It communicates with the refrigerator control server 3 connected to the refrigerator 1 to control the operation of the refrigerator 1.
  • the refrigerator control system 1000 includes a refrigerator control server 3.
  • the refrigerator control server 3 is a server device that controls the operation of the refrigerator 1, connects to the global network GN, and communicates with the refrigerator 1, the terminal device 4, and the weather warning server 5.
  • the refrigerator control server 3 is represented by one block, but this does not necessarily mean that the refrigerator control server 3 is composed of a single server device.
  • the refrigerator control server 3 may be configured to include a plurality of server devices having different processing contents.
  • the refrigerator control server 3 and the weather warning server 5 are illustrated as separate server devices, but the refrigerator control server 3 and the weather warning server 5 may be configured as the same server device. ..
  • the weather warning server 5 is a server device that provides weather warning issuance information.
  • the weather warning issuance information is information indicating whether or not a weather warning is issued for the area including the place where the refrigerator 1 is installed.
  • Meteorological warnings are warnings related to factors that cause power outages such as storms, blizzards, heavy rains, heavy snowfalls, storm surges, floods, and waves.
  • the alarm related to the cause of the power outage corresponds to an example of the forecast related to the cause of the power outage.
  • the area of the weather warning issuance information provided by the weather warning server 5 may be an area including the installation location of the refrigerator 1, and may be, for example, a primary subdivision area, a secondary subdivision area, or another area. Further, in each figure, the weather warning server 5 is represented by one block, but this does not necessarily mean that the weather warning server 5 is composed of a single server device. For example, the weather warning server 5 may be configured to include a plurality of server devices having different processing contents.
  • FIG. 4 is a block diagram showing the configurations of the refrigerator 1, the refrigerator control server 3, and the terminal device 4.
  • the refrigerator 1 includes a refrigerator control unit 13, a refrigerator communication unit 14, a cooling unit 15, and a sensor unit 16.
  • the refrigerator control unit 13 includes a refrigerator processor 130, which is a processor that executes programs such as a CPU and an MPU, and a refrigerator storage unit 131, and controls each part of the refrigerator 1.
  • the refrigerator processor 130 reads out the control program 1311 stored in the refrigerator storage unit 131, and executes various processes in cooperation with hardware and software.
  • the refrigerator storage unit 131 has a storage area for storing a program executed by the refrigerator processor 130 and data processed by the refrigerator processor 130.
  • the refrigerator storage unit 131 stores the control program 1311 executed by the refrigerator processor 130, the setting data 1312 related to the setting of the refrigerator 1, and various other data.
  • the refrigerator storage unit 131 has a non-volatile storage area. Further, the refrigerator storage unit 131 may include a volatile storage area and form a work area of the refrigerator processor 130.
  • the refrigerator communication unit 14 is equipped with communication hardware according to a predetermined communication standard, and under the control of the refrigerator control unit 13, communicates with a device connected to the global network GN according to a predetermined communication standard.
  • the refrigerator communication unit 14 communicates with the refrigerator control server 3 according to a predetermined communication standard.
  • the communication standard used by the refrigerator communication unit 14 may be a wireless communication standard (for example, IEEE802.11a / 11b / 11g / 11n / 11ac, Bluetooth®) or a wired communication standard.
  • the cooling unit 15 includes a mechanism for cooling each storage chamber of the refrigerator 1, such as a compressor 151, a condenser 152, a capillary tube 153, a cooler 154, a cooling fan 155, and a damper 156, and controls the refrigerator control unit 13. According to this, each storage room of the refrigerator 1 is cooled.
  • the sensor unit 16 includes various sensors such as a temperature sensor 161 for detecting the temperature inside the refrigerator 1 and an open / close sensor for detecting the opening / closing of doors and drawers provided in the refrigerator 1, and the detection value of the sensor is set for each sensor. Output to the refrigerator control unit 13. As shown in FIG. 4, the sensor unit 16 includes a refrigerating room temperature sensor 161A and a freezing room temperature sensor 161B as the temperature sensor 161.
  • the refrigerating room temperature sensor 161A is provided at a predetermined position of the refrigerating room 11 such as near the refrigerator cold air return port, and detects the temperature inside the refrigerating room 11.
  • the freezing room temperature sensor 161B is provided at a predetermined position of the freezing room 12 such as near the freezing room cold air return port, and detects the temperature inside the freezing room 12.
  • the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 to either a normal operation mode or a power failure precooling operation mode in which the temperature inside the refrigerator 1 is lower than the normal operation mode.
  • the normal operation mode is an operation mode in which the temperature inside the refrigerator 1 is higher than that in the power failure precooling operation mode.
  • the normal operation mode corresponds to an example of the "first mode”
  • the power failure precooling operation mode corresponds to an example of the "second mode”.
  • the refrigerator 1 can lower the temperature inside the refrigerator 1 compared to the normal operation mode before the power failure occurs. Therefore, the refrigerator 1 can maintain the temperature inside the refrigerator for a long period of time in the event of a power failure, and can suppress the deterioration of the freshness of the food contained in the refrigerator 1 in the event of a power failure.
  • the refrigerator control unit 13 When the refrigerator control unit 13 receives from the refrigerator control server 3 the transition instruction information for shifting the operation mode to the power failure precooling operation mode by the refrigerator communication unit 14, the operation mode of the refrigerator 1 is changed from the normal operation mode to the power failure precooling operation mode. Make the transition and start the power outage precooling operation.
  • the refrigerator control unit 13 receives the end instruction information for ending the power failure precooling operation mode from the refrigerator control server 3 by the refrigerator communication unit 14, the refrigerator control unit 13 ends the power failure precooling operation and changes the operation mode of the refrigerator 1 from the power failure precooling operation mode. Shift to normal operation mode.
  • the refrigerator control server 3 includes a server control unit 30 and a server communication unit 31.
  • the server control unit 30 includes a server processor 300, which is a processor that executes programs such as a CPU and an MPU, and a server storage unit 310, and controls each unit of the refrigerator control server 3.
  • the server processor 300 reads out the control program 311 stored in the server storage unit 310 and executes various processes in cooperation with hardware and software.
  • the server storage unit 310 has a storage area for storing a program executed by the server processor 300 and data processed by the server processor 300.
  • the server storage unit 310 stores the control program 311 executed by the server processor 300, the setting data 312 related to the setting of the refrigerator control server 3, the refrigerator control database 313, and various other data.
  • the server storage unit 310 has a non-volatile storage area. Further, the server storage unit 310 may include a volatile storage area and form a work area of the server processor 300.
  • the refrigerator control database 313 is a database that stores various information related to the operation control of the refrigerator 1.
  • One record R stored in the refrigerator control database 313 has a user ID 3131, a refrigerator communication information 3132, a terminal device communication information 3133, and an installation location information 3134.
  • one record R stored in the refrigerator control database 313 may further have one or a plurality of different types of information.
  • the user ID 3131 is identification information that identifies the user P who uses the refrigerator control application 413, and is appropriately assigned to the user P who uses the refrigerator control application 413.
  • Refrigerator communication information 3132 is information for communicating with the refrigerator 1.
  • Refrigerator communication information 3132 includes, for example, address information, security information, and the like of the refrigerator 1.
  • the terminal device communication information 3133 is information for communicating with the terminal device 4 in which the refrigerator control application 413 used by the user P of the user ID 3131 corresponding to the same record R is installed.
  • the terminal device communication information 3133 includes, for example, address information, security information, and the like of the terminal device 4.
  • Installation location information 3134 is information indicating the installation location of the refrigerator 1. In the present embodiment, since the installation location of the refrigerator 1 is the home H of the user P, the installation location information 3134 indicates the address, the zip code, and the like of the home H.
  • the server communication unit 31 is equipped with communication hardware according to a predetermined communication standard, and under the control of the server control unit 30, communicates with a device connected to the global network GN according to the predetermined communication standard.
  • the server communication unit 31 communicates with the refrigerator 1, the terminal device 4, and the weather warning server 5.
  • the terminal device 4 includes a terminal control unit 40, a terminal communication unit 41, and a touch panel 42.
  • the terminal control unit 40 includes a terminal processor 400, which is a processor that executes programs such as a CPU and an MPU, and a terminal storage unit 410, and controls each unit of the terminal device 4.
  • the terminal processor 400 reads out the control program 411 stored in the terminal storage unit 410 and executes various processes in cooperation with hardware and software.
  • the refrigerator control application 413 is installed in the terminal device 4 in advance.
  • the refrigerator control application 413 is read from the terminal storage unit 410 by the terminal processor 400 and executed, so that the terminal control unit 40 functions as a setting unit 401, a communication control unit 402, and an operation control unit 403. Details of these functional units will be described later.
  • the terminal storage unit 410 has a storage area for storing a program executed by the terminal processor 400 and data processed by the terminal processor 400.
  • the terminal storage unit 410 stores the control program 411 executed by the terminal processor 400, the setting data 412 related to the setting of the terminal device 4, the refrigerator control application 413, the user ID 3131, and various other data.
  • the terminal storage unit 410 has a non-volatile storage area. Further, the terminal storage unit 410 may include a volatile storage area and form a work area of the terminal processor 400.
  • the terminal communication unit 41 is equipped with communication hardware according to a predetermined communication standard, and under the control of the terminal control unit 40, communicates with a device connected to the global network GN according to the predetermined communication standard.
  • the terminal communication unit 41 communicates with the refrigerator control server 3 according to a predetermined communication standard by the function of the refrigerator control application 413.
  • the communication standard used by the terminal communication unit 41 is a wireless communication standard.
  • the touch panel 42 includes a display panel such as a liquid crystal display panel and a touch sensor that is overlapped with or integrally provided with the display panel.
  • the display panel displays various images under the control of the terminal control unit 40.
  • the touch sensor detects the touch operation and outputs it to the terminal control unit 40.
  • the terminal control unit 40 executes a process corresponding to the touch operation based on the input from the touch sensor.
  • the terminal control unit 40 functions as a setting unit 401, a communication control unit 402, and an operation control unit 403.
  • the setting unit 401 makes various settings related to the functions of the refrigerator control application 413.
  • the setting unit 401 sets various settings related to the functions of the refrigerator control application 413 by setting the setting values in the corresponding setting items in the application setting data stored in the predetermined storage area accessible to the refrigerator control application 413.
  • the application setting data is data related to the setting of the function of the refrigerator control application 413, and includes various setting items.
  • the setting unit 401 sets the installation location of the refrigerator 1.
  • the setting unit 401 causes the touch panel 42 to display a user interface for inputting the address and zip code of the home H to the user P, and sets the input address and zip code as the installation location of the refrigerator 1.
  • the installation location information 3134 indicating the installation location of the refrigerator 1 set by the setting unit 401 is output to the communication control unit 402.
  • the communication control unit 402 controls the terminal communication unit 41 to send and receive various information to and from the refrigerator control server 3.
  • the communication control unit 402 adds the user ID 3131 stored in the terminal storage unit 410 and outputs the output installation location information 3134 to the refrigerator control server by the terminal communication unit 41.
  • the refrigerator control server 3 receives the installation location information 3134 from the terminal device 4, it refers to the refrigerator control database 313 and receives the installation location information 3134 held by the record R of the user ID 3131 added to the received installation location information 3134. Update to the installation location information 3134.
  • the terminal communication unit 41 transmits the end instruction information to the refrigerator control server 3.
  • the communication control unit 402 transmits the end instruction information to the refrigerator control server 3
  • the user ID 3131 stored in the terminal storage unit 410 is added to the end instruction information.
  • the operation control unit 403 When the operation control unit 403 receives the end instruction of the power failure precooling operation mode from the user P, the operation control unit 403 generates the end instruction information and outputs it to the communication control unit 402.
  • the operation control unit 403 displays, for example, a user interface inquiring whether or not to terminate the power failure precooling operation mode on the touch panel 42, and when the user interface receives an instruction to end the power failure precooling operation mode, the end instruction information is displayed. Generate and output.
  • FIG. 5 is a timing chart showing the state of each part of the refrigerator 1.
  • the timing chart CA shows the state of the compressor 151.
  • the timing chart CB shows the state of the temperature inside the refrigerator compartment 11.
  • the timing chart CC shows the state of the temperature inside the freezing chamber 12.
  • the timing chart CD shows the open / closed state of the damper 156.
  • the period in which the operation mode of the refrigerator 1 is the normal operation mode is the period from the timing T1 to the timing T2.
  • the refrigerator control unit 13 sets the state of the compressor 151 to a state of repeating a stopped state and a low rotation state in the normal operation mode.
  • the stopped state is a state in which the compressor 151 is not rotationally driven.
  • the low rotation speed state is a state in which the rotation speed is lower than the high rotation speed state described later and the rotation speed is higher than the stopped state.
  • the refrigerator control unit 13 repeats the state of the damper 156 in the open state and the closed state based on the temperature inside the refrigerator compartment 11. do.
  • the refrigerator control unit 13 has a temperature difference of ⁇ (K: Kelvin) between when the damper 156 is opened and when the damper 156 is closed with respect to the temperature inside the refrigerator compartment 11.
  • ⁇ (K) Kelvin
  • the opening / closing frequency of the damper 156 is controlled so as to be used.
  • ⁇ (K) is, for example, 2 (K).
  • the refrigerator control unit 13 is a damper when the temperature rises by ⁇ (K) from the target temperature of the refrigerating room 11 (hereinafter referred to as the first target temperature of the refrigerating room) in the normal operation mode based on the temperature detected by the refrigerating room temperature sensor 161A.
  • the compressor 151 is set to the low rotation state.
  • the refrigerating chamber 11 and the freezing chamber 12 are cooled at the same time.
  • the temperature inside the refrigerator compartment 11 drops because the air is blown.
  • the amount of air blown to the freezing chamber 12 is lower than when the freezing chamber 12 is cooled alone, so that the temperature inside the freezing chamber 12 rises.
  • the refrigerator control unit 13 closes the damper 156 and finishes cooling the refrigerator compartment 11.
  • the freezing chamber 12 starts cooling independently.
  • the refrigerator control unit 13 puts the compressor 151 in a stopped state when the temperature inside the freezing chamber 12 drops to the target temperature of the freezing chamber 12 in the normal operation mode (hereinafter referred to as the first target temperature of the freezing chamber).
  • the refrigerator control unit 13 opens the damper 156 and at the same time puts the compressor 151 into a low rotation state. ..
  • the refrigerator control unit 13 controls the opening / closing frequency of the damper 156 so that the temperature difference between the open state and the closed state of the damper 156 becomes ⁇ (K) at the temperature inside the refrigerator compartment 11. do.
  • the period in which the operation mode of the refrigerator 1 is the power failure precooling operation mode is the period from the timing T2 to the timing T4.
  • the power failure precooling operation mode includes a temperature drop mode and a temperature maintenance mode.
  • the temperature lowering mode is a mode in which the temperature inside the refrigerator 1 is lowered from the normal operation mode.
  • the period in which the operation mode of the refrigerator 1 is the temperature drop mode is the period from the timing T2 to the timing T3.
  • the refrigerator control unit 13 puts the compressor 151 in a high rotation state in the temperature drop mode.
  • the high rotation speed state is a state in which the vehicle is driven at a rotation speed higher than the rotation speed in the low rotation speed state.
  • the refrigerator control unit 13 sets the state of the damper 156 in the power failure precooling operation mode based on the temperature inside the refrigerator compartment 11 and the temperature inside the freezer chamber 12. Put it in a state where it repeats opening and closing.
  • the refrigerator control unit 13 determines that the temperature inside the refrigerator compartment 11 is ⁇ K so that the temperature difference between the time when the damper 156 is opened and the time when the damper 156 is closed is ⁇ K. Control the opening and closing frequency.
  • ⁇ (K) is a temperature difference lower than ⁇ (K), for example 0.5 (K).
  • the refrigerator control unit 13 simultaneously cools the refrigerating chamber 11 and the freezing chamber 12 by setting the compressor 151 in a high rotation state at the same time as opening the damper 156. During this cooling, the temperature inside the refrigerator compartment 11 drops because the air is blown. On the other hand, during this cooling, the amount of air blown to the freezing chamber 12 is lower than when the freezing chamber 12 is cooled alone, so that the temperature inside the freezing chamber 12 rises.
  • the temperature inside the refrigerating room 11 is the target temperature of the refrigerating room 11 in the power failure precooling operation mode (hereinafter referred to as the second target temperature of the refrigerating room).
  • the damper 156 When it descends to, the damper 156 is closed and the cooling of the refrigerating chamber 11 is completed. By this end, the freezing chamber 12 starts cooling independently. As a result, the temperature inside the refrigerator compartment 11 rises, while the temperature inside the freezer chamber 12 falls.
  • the refrigerator control unit 13 lowers the temperature inside the freezing chamber 12 toward the target temperature of the freezing chamber 12 in the power failure precooling operation mode (hereinafter referred to as the second target temperature of the freezing chamber).
  • the temperature difference for controlling the opening and closing of the damper 156 is made smaller than that in the normal operation mode, the temperature inside the refrigerating chamber 11 is refrigerated before the temperature inside the freezing chamber 12 reaches the second target temperature of the freezing chamber.
  • the refrigerator control unit 13 uses this as a trigger to open the damper 156 again to cool the refrigerating chamber 11 and the freezing chamber 12 at the same time.
  • the refrigerator control unit 13 repeats this control in the temperature lowering mode until the temperature inside the freezing chamber 12 drops to the second target temperature in the freezing chamber.
  • the second target temperature of the refrigerating chamber is, for example, a temperature 3 (K) lower than the first target temperature of the refrigerating chamber.
  • the second target temperature of the freezing chamber is, for example, a temperature 5 (K) lower than the first target temperature of the freezing chamber.
  • the refrigerator control unit 13 determines the frequency of opening and closing the damper 156 so that the temperature difference between the open state and the closed state of the damper 156 is ⁇ (K) with respect to the temperature inside the refrigerator compartment 11. Control. Further, the refrigerator control unit 13 lowers the temperature inside the freezer chamber 12 to the second target temperature of the freezer chamber by frequently opening and closing the damper 156 in which the temperature difference in the refrigerator compartment 11 is ⁇ (K).
  • the refrigerator control unit 13 continues the temperature drop mode until a transition trigger for shifting to the temperature maintenance mode is generated.
  • the transition trigger is that a predetermined period has elapsed from the start of the temperature decrease mode, or that the refrigerating chamber 11 has reached the second target temperature of the refrigerating chamber and the freezing chamber 12 has reached the second target temperature of the freezing chamber. ..
  • the refrigerator control unit 13 starts timing for a predetermined period after starting the temperature drop mode, and shifts the operation mode of the refrigerator 1 to the temperature maintenance mode when the predetermined period elapses.
  • This predetermined period is a period during which the inside of the refrigerating chamber 11 and the freezing chamber 12 can reach the target temperature in the power failure precooling operation mode, and is predetermined.
  • the refrigerator control unit 13 determines the temperature inside the refrigerating chamber 11 and the inside of the freezing chamber 12 based on the temperature detected by the refrigerating chamber temperature sensor 161A and the temperature detected by the freezing chamber temperature sensor 161B. Monitor the temperature. Then, when the refrigerating chamber 11 reaches the second target temperature of the refrigerating chamber and the freezing chamber 12 reaches the second target temperature of the freezing chamber, the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 to the temperature maintenance mode. ..
  • the temperature maintenance mode is a mode for maintaining the temperature inside the refrigerator lowered in the temperature lowering mode.
  • the period in which the operation mode of the refrigerator 1 is the temperature maintenance mode is the period from the timing T3 to the timing T4.
  • the refrigerator control unit 13 puts the compressor 151 in a low rotation state in the temperature maintenance mode.
  • the following effects are obtained.
  • the compressor 151 repeats the stopped state and the rotating state, the fluctuations in the internal temperatures of the refrigerating chamber 11 and the freezing chamber 12 become large and the temperature cannot be maintained properly, and when the compressor 151 is in the high rotation state, the power consumption is large. Therefore, in the temperature maintenance mode, by maintaining the state of the compressor 151 in a low rotation state, it is possible to suppress an increase in power consumption while appropriately maintaining the internal temperatures of the refrigerating chamber 11 and the freezing chamber 12.
  • the refrigerator control unit 13 of the damper 156 is based on either the internal temperature of the refrigerating chamber 11 or the internal temperature of the freezing chamber 12 in the power failure precooling operation mode. The state is changed to a state in which the open / closed state is repeated.
  • the refrigerator control unit 13 opens the damper 156 when the temperature rises by ⁇ (K) from the second target temperature of the refrigerating room based on the temperature detected by the refrigerating room temperature sensor 161A, and opens the second refrigerating room.
  • the damper 156 is closed.
  • the refrigerator control unit 13 closes the damper 156 and closes the freezing chamber when the temperature rises by ⁇ (K) from the second target temperature of the freezing chamber based on the temperature detected by the freezing chamber temperature sensor 161B.
  • the damper 156 is opened.
  • FIG. 6 is a flowchart showing the operation of the refrigerator control system 1000.
  • the flowchart FA shows the operation of the refrigerator control server 3
  • the flowchart FB shows the operation of the refrigerator 1.
  • the operation mode of the refrigerator 1 is the normal operation mode. Further, in the flowchart FA shown in FIG. 6, the server control unit 30 of the refrigerator control server 3 targets one record R among the records R stored in the refrigerator control database 313.
  • the server control unit 30 determines whether or not a weather warning has been issued in the area including the installation location of the refrigerator 1 (step SA1).
  • step SA1 the server control unit 30 inquires whether or not a weather warning has been issued in the area including the installation location of the refrigerator 1 by transmitting information to the weather warning server 5 by the server communication unit 31.
  • This inquiry is executed every predetermined time (for example, every 10 minutes).
  • the information transmitted to the weather warning server 5 at the time of inquiry includes the installation location information 3134 possessed by the record R to be processed.
  • the weather warning server 5 correlates whether or not a weather warning is issued for an area including the installation location indicated by the installation location information 3134 included in the received information, for example, the area and whether or not the weather warning is issued. Judgment is made based on the given predetermined database.
  • the weather warning server 5 determines that the weather warning has been issued, the weather warning server 5 transmits the weather warning issuing information indicating that the weather warning has been issued to the refrigerator control server 3 as a response to the inquiry. Further, when the weather warning server 5 determines that the weather warning has not been issued, the weather warning server 5 transmits the weather warning issuing information indicating that the weather warning has not been issued to the refrigerator control server 3 as a response to the inquiry.
  • the server control unit 30 makes an affirmative determination in step SA1.
  • the server control unit 30 makes a negative determination in step SA1.
  • step SA1 NO
  • the server control unit 30 ends this process.
  • step SA1 when the server control unit 30 determines that the weather warning has been issued in the area including the installation location of the refrigerator 1 (step SA1: YES), the server control unit 30 shifts based on the refrigerator communication information 3132 included in the record R to be processed.
  • the instruction information is transmitted to the refrigerator 1 by the server communication unit 31 (step SA2).
  • the refrigerator control unit 13 determines whether or not the transition instruction information has been received from the refrigerator control server 3 by the refrigerator communication unit 14 (step SB1).
  • step SB1 NO
  • the refrigerator control unit 13 executes the process of step SB1 again.
  • step SB1 determines that the transition instruction information has been received (step SB1: YES)
  • the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 from the normal operation mode to the temperature drop mode of the power failure precooling operation mode (step SB2).
  • the refrigerator control unit 13 determines whether or not a transition trigger has occurred (step SB3).
  • step SB3 When the refrigerator control unit 13 determines that the transition trigger has occurred (step SB3: YES), the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 to the temperature maintenance mode of the power failure precooling operation mode (step SB4).
  • the refrigerator control unit 13 determines whether or not the end instruction information has been received from the refrigerator control server 3 by the refrigerator communication unit 14 (step SB5).
  • step SB6 when the refrigerator control unit 13 determines that the transition trigger has not occurred (step SB3: NO), whether or not the refrigerator communication unit 14 has received the end instruction information from the refrigerator control server 3. (Step SB6).
  • the server control unit 30 determines whether or not the issued weather warning has been canceled when the transition instruction information is transmitted to the refrigerator 1 (step SA3).
  • step SA3 the server control unit 30 inquires of the weather warning server 5 whether or not a weather warning has been issued in the area including the installation location of the refrigerator 1, as in step SA1.
  • the server control unit 30 makes a negative determination in step SA3, and the weather warning has not been issued. In the case of indicating, affirmative determination is made in step SA3.
  • step SA3 NO
  • the server control unit 30 executes the process of step SA3 again.
  • step SA3 when the server control unit 30 determines that the issued weather warning has been canceled (step SA3: YES), the server communication unit 30 outputs the end instruction information based on the refrigerator communication information 3132 included in the record R to be processed. It is transmitted by 31 (step SA4).
  • step SB5 of the flowchart FB when it is determined that the end instruction information has not been received (step SB5: NO), the refrigerator control unit 13 executes the process of step SB5 again.
  • step SB7 the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 from the power failure precooling operation mode to the normal operation mode.
  • step SB6 when the refrigerator control unit 13 determines that the end instruction information has not been received (step SB6: NO), the process of step SB3 is executed again.
  • step SB6 determines that the end instruction information has been received (step SB6: YES)
  • the refrigerator control unit 13 ends the power failure precooling operation mode (step SB7).
  • the refrigerator 1 shifts the operation mode from the normal operation mode to the power failure precooling operation mode.
  • the temperature inside the refrigerator 1 is lowered, so that the temperature inside the refrigerator 1 can be lowered before a power failure occurs. Therefore, the cooling capacity of the refrigerator 1 can be maintained for a long period of time even in the event of a power failure without using an external power source.
  • the refrigerator control unit 13 sets the damper so that the temperature difference between the refrigerator chamber 11 and the freezing chamber 12 when the damper 156 is open and when the damper 156 is closed is ⁇ K in the power failure precooling operation mode.
  • the opening / closing frequency of 156 is controlled. As a result, the cooling capacity of the refrigerator 1 can be maintained for a longer period of time in the event of a power failure.
  • FIG. 7 is a diagram comparing fluctuations in the temperature inside the refrigerator compartment 11 and fluctuations in the temperature inside the freezer compartment 12.
  • the timing chart CE shows the temperature inside the refrigerator compartment 11.
  • the timing chart CF shows the temperature inside the freezing chamber 12.
  • the period from timing T5 to timing T6 is the period in which the operation mode of the refrigerator 1 is the normal operation mode
  • the period from timing T6 to timing T7 is the period in which the operation mode of the refrigerator 1 is the temperature drop mode.
  • the period from timing T7 to timing T8 is the period in which the temperature is maintained.
  • the solid line shows the fluctuation of the temperature inside the refrigerator chamber 11 when the inside of the refrigerator is cooled by the conventional cooling method. Further, in the timing chart CE, the broken line indicates the fluctuation of the temperature inside the refrigerator chamber 11 when the inside of the refrigerator is cooled by the cooling method of the present disclosure.
  • the solid line shows the fluctuation of the temperature inside the freezer chamber 12 when the inside of the refrigerator is cooled by the conventional cooling method. Further, in the timing chart CF, the broken line indicates the fluctuation of the temperature inside the freezing chamber 12 when the inside of the refrigerator is cooled by the cooling method of the present disclosure.
  • the conventional cooling method is a method of controlling the open / closed state of the damper 156 to lower the temperature inside the refrigerator without considering the temperature difference between the time when the damper 156 is in the open state and the time when the damper 156 is in the closed state. Is.
  • the power failure precooling operation mode of the present disclosure can suppress a difference in the cooling capacity at the time of a power failure depending on the timing when the power failure occurs. Therefore, the cooling capacity of the refrigerator in the event of a power failure can be maintained for a longer period of time.
  • the case where the power failure occurs at the timing TA shown in FIG. 7 and the case where the power failure occurs at the timing T7 are compared.
  • the temperature inside the refrigerator chamber 11 is close to the second target temperature of the refrigerator chamber, so that the cooling capacity of the refrigerator chamber 11 can be maintained for a long period of time in the event of a power failure.
  • the temperature inside the refrigerator compartment 11 is close to the first target temperature of the refrigerator compartment 11, that is, the temperature inside the refrigerator compartment 11 is not sufficiently lowered.
  • the cooling capacity of the refrigerator compartment 11 cannot be maintained for a long period of time in the event of a power failure.
  • the cooling method of the present disclosure can suppress temperature fluctuations, even if a power failure occurs in the timing TA, the temperature inside the refrigerating room 11 is sufficiently lowered, so that the refrigerating room 11 is cooled in the event of a power failure. Capability can be maintained for a long time.
  • the end trigger for the refrigerator 1 to end the power failure precooling operation mode is the reception of the end instruction information of the refrigerator 1 by canceling the weather warning.
  • the end trigger for ending the power failure precooling operation mode is not limited to this.
  • a plurality of other termination triggers will be described.
  • the refrigerator 1 includes a refrigerator operating unit as a functional unit.
  • the refrigerator operation unit includes an operation means such as an operation switch provided at a predetermined position, detects an operation of the user P on the operation means, and outputs the detection result to the refrigerator control unit 13.
  • the refrigerator operation unit may be provided with a touch panel together with or in place of the operation switch.
  • the refrigerator control unit 13 executes a process corresponding to an operation on the operating means based on an input from the refrigerator operation unit.
  • the refrigerator control unit 13 determines that the end trigger has occurred and ends the power failure precooling operation mode.
  • the refrigerator 1 receives the termination instruction information from the terminal device 4 via the refrigerator control server 3.
  • the operation control unit 403 of the terminal device 4 receives the end instruction of the power failure precooling operation mode or the change instruction of the temperature inside the refrigerator from the user P
  • the operation control unit 403 outputs the end instruction information to the communication control unit 402.
  • the communication control unit 402 adds the user ID 3131 stored in the terminal storage unit 410, and transmits the end instruction information output by the operation control unit 403 to the refrigerator control server 3 by the terminal communication unit 41.
  • the server control unit 30 of the refrigerator control server 3 receives the end instruction information from the terminal device 4 by the server communication unit 31, the server control unit 30 refers to the refrigerator control database 313 and records the record R including the user ID 3131 added to the end instruction information. Identify. Next, the server control unit 30 transmits the end instruction information received from the terminal device 4 to the refrigerator 1 by the server communication unit 31 based on the refrigerator communication information 3132 included in the specified record R.
  • the refrigerator control unit 13 of the refrigerator 1 receives the end instruction information from the refrigerator control server 3 by the refrigerator communication unit 14, it determines that the end trigger has occurred and ends the power failure precooling operation mode.
  • the end trigger of the power failure precooling operation mode includes at least the end trigger shown in FIG. 6, that is, the reception of the end instruction information when the issued weather warning is canceled. This is because the refrigerator 1 can surely end the power failure precooling operation mode when the weather warning is canceled, and can suppress unnecessary cooling of the inside of the refrigerator and increase in power consumption.
  • the refrigerator control system 1000 is configured to automatically shift the operation mode of the refrigerator 1 to the power failure precooling operation mode when a weather warning is issued.
  • the refrigerator control system 1000 asks the user P whether to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode, and after the inquiry, the power failure precooling is performed.
  • the user P gives an instruction to shift to the operation mode, the operation mode of the refrigerator 1 is shifted to the power failure precooling operation mode.
  • the operation control unit 403 of this modification displays various user interfaces on the touch panel 42, inquires whether to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode, and changes the operation mode of the refrigerator 1 to the power failure precooling operation mode. Accepts instructions to shift to the operation mode.
  • FIG. 8 is a diagram showing an example of a user interface displayed on the touch panel 42 by the operation control unit 403.
  • the operation control unit 403 receives the inquiry instruction information from the refrigerator control server 3, if the display screen of the touch panel 42 is the non-application screen HAG, the first user interface UI 1 is displayed on the touch panel 42 in the form of a push notification.
  • the inquiry instruction information will be described later.
  • the non-app screen HAG refers to a screen other than the app screen AG related to the refrigerator control app 413, such as a home screen.
  • the first user interface UI 1 includes inquiry information J1 inquiring the user P whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode.
  • the operation control unit 403 shifts the display screen of the touch panel 42 from the non-application screen HAG to the application screen AG displaying the second user interface UI 2.
  • the operation control unit 403 receives the inquiry instruction information from the refrigerator control server 3, if the display screen of the touch panel 42 is the application screen AG, the touch panel 42 does not display the first user interface UI1. 2
  • the user interface UI2 is superimposed on the application screen AG and displayed.
  • the second user interface UI 2 includes inquiry information J1 inquiring the user P whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode. Further, the second user interface UI 2 includes a YES button B1 and a NO button B2.
  • the YES button B1 is a software button for receiving an instruction from the user P to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode.
  • the NO button B2 is a software button for receiving an instruction from the user P not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode.
  • the operation control unit 403 stops the display of the second user interface UI2 without shifting the operation mode of the refrigerator 1 to the power failure precooling operation mode.
  • the operation control unit 403 shifts the operation mode of the refrigerator 1 to the power failure precooling operation mode, and replaces the second user interface UI2 with the third user interface UI3. Is displayed on the touch panel 42.
  • the third user interface UI 3 includes the operation start information J2 indicating that the operation mode of the refrigerator 1 is shifted to the power failure precooling operation mode and the refrigerator 1 has started the power failure precooling operation.
  • FIG. 9 is a flowchart showing the operation of the refrigerator control system 1000 according to this modification.
  • the flowchart FC shows the operation of the terminal device 4
  • the flowchart FD shows the operation of the refrigerator control server 3
  • the flowchart FE shows the operation of the refrigerator 1.
  • step numbers as those in the flowchart shown in FIG. 6 are assigned the same step numbers, and detailed description thereof will be omitted.
  • the operation mode of the refrigerator 1 is the normal operation mode as in FIG. Further, in the flowchart FD shown in FIG. 9, the server control unit 30 of the refrigerator control server 3 targets a certain record R as a processing target.
  • step SA1 the server control unit 30 of the refrigerator control server 3 determines that the weather warning has been issued (step SA1: YES) with reference to the flowchart FD
  • the terminal device communication information 3133 included in the record R to be processed is displayed. Based on this, the server communication unit 31 transmits the inquiry instruction information for inquiring about the transition to the power failure precooling operation mode to the terminal device 4 (step SD1).
  • the communication control unit 402 of the terminal device 4 determines whether or not the inquiry instruction information has been received from the refrigerator control server 3 by the terminal communication unit 41 (step SC1).
  • step SC1 NO
  • the communication control unit 402 determines that the inquiry instruction information has not been received from the refrigerator control server 3 (step SC1: NO)
  • the communication control unit 402 performs the process of step SC1 again.
  • step SC1 determines that the inquiry instruction information has been received from the refrigerator control server 3 (step SC1: YES)
  • the operation control unit 403 has the first user interface UI1 or the second user interface UI2. Is displayed on the touch panel 42, and the user P is inquired whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode (step SC2).
  • the communication control unit 402 determines whether or not the terminal communication unit 41 has received the alarm cancellation information indicating that the weather warning has been canceled from the refrigerator control server 3 (step SC3).
  • step SC3 The case where the communication control unit 402 makes an affirmative determination in step SC3 will be described later.
  • the operation control unit 403 instructs the refrigerator 1 to shift the operation mode to the power failure precooling operation mode. Is determined from the user P (step SC4).
  • the operation control unit 403 determines affirmatively in step SC4 when the YES button B1 of the second user interface UI2 is touch-operated.
  • step SC4 NO
  • step SC6 the operation mode of the refrigerator 1 is changed to the power failure precooling operation mode. It is determined whether or not the instruction not to be transferred to is received from the user P (step SC6).
  • the operation control unit 403 determines affirmatively in step SC6 when the NO button B2 of the second user interface UI2 is touch-operated.
  • step SC6 NO
  • the process is returned to step SC3, and the process is returned to step SC3 again. Make a determination.
  • step SC6 determines from the user P that the instruction not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode is received from the user P (step SC6: YES)
  • step SC6 determines from the user P that the instruction not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode is received from the user P
  • step SC7 the display of the second user interface UI 2 is stopped and the refrigerator 1 is stopped.
  • step SC7 The inquiry as to whether or not to shift the operation mode to the power failure precooling operation mode is terminated.
  • step SC4 when the operation control unit 403 receives an instruction to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode (step SC4: YES), the shift instruction information is controlled by the terminal communication unit 41 in the refrigerator. It is transmitted to the server 3 (step SC5).
  • the server control unit 30 determines whether or not the migration instruction information has been received from the terminal device 4 by the server communication unit 31 (step SD2).
  • step SD2 NO
  • step SD3 the server control unit 30 determines whether or not the issued weather warning has been canceled
  • the server control unit 30 determines that the issued weather warning has been canceled (step SD3: YES)
  • the server communication unit 31 transmits the warning cancellation information based on the terminal device communication information 3133 possessed by the record R to be processed. It is transmitted to the terminal device 4 (step SG4).
  • step SC7 When it is determined that the communication control unit 402 has received the alarm release information by referring to the flowchart FC (step SF3: YES), the operation control unit 403 stops the display of the first user interface UI1 and the display of the second user interface UI2. , The inquiry as to whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode is completed (step SC7).
  • step SD3 when it is determined that the issued weather warning has not been canceled (step SD3: NO), the server control unit 30 performs the process of step SD2 again.
  • step SD2 when the server control unit 30 determines that the migration instruction information has been received from the terminal device 4 by the server communication unit 31 (step SD2: YES), the refrigerator communication information included in the record R to be processed. Based on 3132, the transition instruction information received from the terminal device 4 is transmitted to the refrigerator 1 by the server communication unit 31 (step SA2).
  • the end trigger for the refrigerator 1 to end the power failure precooling operation mode is not limited to the reception of the end instruction information from the refrigerator control server 3 by canceling the weather warning.
  • the refrigerator control unit 13 generated for the end trigger of any one of the end trigger shown in FIG. 6, the first other end trigger described above, and the second other end trigger described above. Whether or not it may be determined, or whether or not any of a plurality of arbitrary end triggers has occurred may be determined.
  • the end trigger of the power failure precooling operation mode includes at least the end trigger shown in FIG. 6, that is, the reception of the end instruction information by canceling the weather warning. ..
  • the refrigerator 1 when an alarm regarding the cause of a power failure is issued to the area including the cooling unit 15 for cooling the inside of the refrigerator 1 and the place where the refrigerator 1 is installed, the refrigerator 1 is used.
  • the refrigerator control unit 13 is provided to shift the operation mode of the refrigerator 1 from the normal operation mode to the power failure precooling operation mode in which the temperature inside the refrigerator 1 is lower than that of the normal operation mode.
  • the refrigerator control unit 13 has a cooling unit 15 so that the fluctuation of the refrigerator 1 internal temperature is smaller than the fluctuation of the refrigerator 1 internal temperature in the normal operation mode. Cool with.
  • the refrigerator 1 can lower the temperature inside the refrigerator 1 before the power failure occurs, and also reduces the temperature inside the refrigerator 1 while reducing the fluctuation of the temperature inside the refrigerator, thereby causing a power failure depending on the timing of the power failure. It is possible to suppress the difference in cooling capacity at times. Therefore, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a long period of time without using an external power source.
  • the cooling unit 15 includes a damper 156.
  • the refrigerator control unit 13 makes the fluctuation of the temperature inside the refrigerator 1 in the power failure precooling operation mode smaller than the fluctuation of the temperature inside the refrigerator 1 in the normal operation mode.
  • the damper 156 controls the damper 156, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a long period of time without using an external power source. Therefore, even when the refrigerator 1 is of the 1-eva system, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a long period of time without using an external power source.
  • the power failure precooling operation mode includes a temperature lowering mode in which the internal temperature of the refrigerator 1 is lowered from the internal temperature in the normal operation mode, and a temperature maintenance mode in which the internal temperature lowered in the temperature lowering mode is maintained.
  • the power outage does not always occur at a fixed timing. Therefore, it is desirable to maintain the temperature in the temperature maintenance mode after lowering the temperature inside the refrigerator in the temperature lowering mode. Therefore, by including the temperature drop mode and the temperature maintenance mode in the power failure precooling operation mode, it is possible to prepare for a power failure in which it is unknown when the power failure occurs.
  • the refrigerator control unit 13 raises the rotation speed of the compressor 151 in the temperature lowering mode to be higher than the rotation speed in the temperature maintenance mode.
  • the internal temperatures of the refrigerating chamber 11 and the freezing chamber 12 can be quickly lowered in the power failure precooling operation mode while suppressing fluctuations in the internal temperature. Therefore, the temperature can be quickly shifted to the temperature maintenance mode, and the cooling capacity of the refrigerator 1 in the event of a power failure can be more reliably maintained for a long period of time.
  • the refrigerator control system 1000 includes a refrigerator 1 and a refrigerator control server 3 capable of communicating with the refrigerator 1.
  • the refrigerator control server 3 changes the operation mode of the refrigerator 1 from the normal operation mode to the temperature inside the refrigerator 1 from the normal operation mode.
  • the transition instruction information for shifting to the power failure precooling operation mode is transmitted to the refrigerator 1.
  • the refrigerator 1 shifts the operation mode from the normal operation mode to the power failure precooling operation mode.
  • the refrigerator 1 cools the inside of the refrigerator 1 so that the fluctuation of the temperature inside the refrigerator 1 is smaller than the fluctuation of the temperature inside the refrigerator 1 in the normal operation mode in the power failure precooling operation mode.
  • the refrigerator control system 1000 includes a terminal device 4 capable of communicating with the refrigerator control server 3.
  • the terminal device 4 receives the transition instruction to the power failure precooling operation mode from the user P of the refrigerator 1, the terminal device 4 transmits the transition instruction information to the refrigerator control server 3.
  • the refrigerator control server 3 receives the migration instruction information
  • the refrigerator control server 3 transmits the received migration instruction information to the refrigerator 1.
  • Accepting the change in the temperature inside the refrigerator 1 may mean that the user P has terminated the power failure precooling operation mode and tried to change the temperature inside the refrigerator 1 from the temperature in the power failure precooling operation mode to another temperature. Is high. Therefore, according to this, the refrigerator 1 can end the power failure precooling operation mode at the timing desired by the user P. Further, since the user P can end the power failure precooling operation mode by operating the terminal device 4, even if the user P is not present at the installation location of the refrigerator 1 such as the home H, the user P can use the desired timing. The power failure precooling operation mode can be terminated with.
  • FIG. 10 is a vertical sectional view of the refrigerator 1 according to the second embodiment.
  • FIG. 11 is a diagram showing a refrigerating cycle 157B of the refrigerator 1 in the second embodiment.
  • FIG. 10 illustrates the same X-axis, Y-axis, and Z-axis as in FIG.
  • the main box body 10 of the refrigerator 1 of the second embodiment is formed with the refrigerating chamber 11 and the freezing chamber 12 as in the first embodiment.
  • the refrigerating chamber 11 and the freezing chamber 12 are vertically partitioned by a heat insulating partition wall 17 in the main box body 10.
  • the first cooler 154A generates cold air for cooling the refrigerating chamber 11
  • the second cooler 154B generates cold air for cooling the freezing chamber 12.
  • This method is called, for example, the 2-eva method.
  • the compressor 151, the condenser 152, the switching valve 158, the first capillary tube 153A, and the first cooler 154A are connected in an annular shape.
  • the switching valve 158 is in a state of supplying the refrigerant to the first cooler 154A
  • the compressor 151 circulates the compressed refrigerant to cool the refrigerating chamber 11.
  • the compressor 151, the condenser 152, the switching valve 158, the second capillary tube 153B, and the second cooler 154B are connected in an annular shape, and the switching valve 158 is a refrigerant. Is in a state of being supplied to the second cooler 154B, the compressor 151 circulates the compressed refrigerant to cool the freezer chamber 12.
  • Refrigerator 1 is provided with a compressor 151 in the upper rear part of the refrigerator compartment 11. Further, the refrigerator 1 includes a first cooler 154A and a first cooling fan 155A for sending the cold air generated by the first cooler 154A to the freezer chamber 12 behind the freezer chamber 12.
  • the first discharge port 111A, the second discharge port 111B, the third discharge port 111C, and the refrigerating chamber cold air are rearward in the refrigerating chamber 11.
  • a return port is formed.
  • the freezing chamber 12 of the second embodiment includes a second cooler 154B and a second cooling fan 155B that sends the cold air generated by the second cooler 154B to the freezing chamber 12 behind the freezing chamber 12. ..
  • a fourth discharge port 111D, a fifth discharge port 111E, and a freezing chamber cold air return port are formed behind the inside of the freezing chamber 12.
  • FIG. 12 is a block diagram showing the configurations of the refrigerator 1, the refrigerator control server 3, and the terminal device 4 in the second embodiment.
  • the cooling unit 15 of the second embodiment includes the compressor 151, the condenser 152, the first capillary tube 153A, the second capillary tube 153B, and the first cooler 154A. , A second cooler 154B, a first cooling fan 155A, a second cooling fan 155B, and a mechanism for cooling each storage chamber of the refrigerator 1 such as a switching valve 158.
  • the cooling unit 15 cools each storage chamber of the refrigerator 1 according to the control of the refrigerator control unit 13.
  • FIG. 13 is a timing chart showing the state of each part of the refrigerator 1.
  • the timing chart CG shows the state of the compressor 151.
  • the timing chart CH shows the state of the temperature inside the refrigerator compartment 11.
  • the timing chart CI shows the state of the temperature inside the freezing chamber 12.
  • the timing chart CJ shows the state of the switching valve 158.
  • the period in which the operation mode of the refrigerator 1 is the normal operation mode is the period from the timing T9 to the timing T10.
  • the refrigerator control unit 13 sets the state of the compressor 151 to a state of repeating a stopped state and a low rotation state in the normal operation mode.
  • the refrigerator control unit 13 changes the state of the switching valve 158 based on the temperature inside the refrigerator compartment 11 and the temperature inside the refrigerator compartment 12 in the normal operation mode. Switch to one of the refrigerating room supply state, the freezing room supply state, and the closed state.
  • the refrigerating chamber supply state is a state in which the refrigerant compressed by the compressor 151 is supplied to the first cooler 154A. In the refrigerating chamber supply state, the refrigerant compressed by the compressor 151 is not supplied to the second cooler 154B.
  • the freezer chamber supply state is a state in which the refrigerant compressed by the compressor 151 is supplied to the second cooler 154B.
  • the closed state is a state in which the refrigerant compressed by the compressor 151 is not supplied to the first cooler 154A and the second cooler 154B.
  • the refrigerator control unit 13 has a temperature difference of ⁇ between the state of the switching valve 158 when the state of the switching valve 158 is set to the state of being supplied to the refrigerating room and the state of the state other than the state of being supplied to the refrigerating room.
  • the state of the switching valve 158 is controlled so as to be (K).
  • the refrigerator control unit 13 changes the state of the switching valve 158 to the refrigerating room supply state when the temperature rises by ⁇ (K) from the refrigerating room first target temperature based on the temperature detected by the refrigerating room temperature sensor 161A.
  • the compressor 151 is put into a low rotation state.
  • the refrigerating chamber 11 is cooled and the temperature inside the refrigerator is lowered.
  • the temperature inside the refrigerator rises because the freezing chamber 12 is not cooled.
  • the refrigerator control unit 13 puts the switching valve 158 in the freezing chamber supply state and finishes cooling the refrigerator compartment 11.
  • the refrigerator control unit 13 lowers the temperature inside the refrigerator compartment 12 by putting the switching valve 158 in the freezing chamber supply state.
  • the refrigerator control unit 13 puts the compressor 151 in a stopped state when the temperature inside the freezing chamber 12 drops to the first target temperature in the freezing chamber.
  • ⁇ (K) the temperature inside the refrigerator compartment 11 rises by ⁇ (K) from the first target temperature in the refrigerator compartment 11
  • the refrigerator control unit 13 puts the switching valve 158 into the refrigerator compartment supply state and at the same time rotates the compressor 151 at a low speed. Put it in a state.
  • the period in which the operation mode of the refrigerator 1 is the power failure precooling operation mode is the period from the timing T10 to the timing T12. Further, in FIG. 13, the period in which the operation mode of the refrigerator 1 is the temperature drop mode is the period from the timing T10 to the timing T11.
  • the refrigerator control unit 13 puts the compressor 151 in a high rotation state in the temperature drop mode.
  • the refrigerator control unit 13 controls the state of the switching valve 158 based on the temperature inside the refrigerator compartment 11 in the temperature lowering mode.
  • the refrigerator control unit 13 cools the refrigerating chamber 11 by setting the compressor 151 to a high rotation state at the same time as putting the switching valve 158 into the refrigerating chamber supply state. During this cooling, the temperature inside the freezing chamber 12 rises.
  • the refrigerator control unit 13 puts the switching valve 158 in the freezer compartment supply state and refrigerates. The cooling of the chamber 11 is finished. By this end, the freezing chamber 12 starts cooling. As a result, the temperature inside the refrigerator compartment 11 rises, while the temperature inside the freezer chamber 12 falls.
  • the refrigerator control unit 13 lowers the temperature inside the freezing chamber 12 toward the second target temperature of the freezing chamber.
  • the temperature difference for controlling the switching valve 158 is made smaller than that in the normal operation mode, the temperature inside the refrigerating chamber 11 is refrigerated before the temperature inside the freezing chamber 12 reaches the second target temperature of the freezing chamber.
  • the refrigerator control unit 13 puts the switching valve 158 in the refrigerating chamber supply state again, and cools the refrigerating chamber 11 again.
  • the refrigerator control unit 13 repeats this control in the temperature lowering mode until the temperature inside the freezing chamber 12 drops to the second target temperature in the freezing chamber.
  • the refrigerator control unit 13 continues the temperature drop mode until the transition trigger described in the first embodiment occurs.
  • the refrigerator control unit 13 puts the compressor 151 in a low rotation state in the temperature lowering mode.
  • the refrigerator control unit 13 is in the state of the switching valve 158 based on either the temperature inside the refrigerator compartment 11 or the temperature inside the refrigerator compartment 12 in the power failure precooling operation mode. To control.
  • the refrigerator control unit 13 puts the switching valve 158 in the refrigerating room supply state and refrigerates when the temperature rises by ⁇ (K) from the second target temperature of the refrigerating room based on the temperature detected by the refrigerating room temperature sensor 161A.
  • the switching valve 158 is put into the freezer chamber supply state.
  • the refrigerator control unit 13 sets the switching valve 158 to the freezing room supply state when the temperature rises by ⁇ (K) from the freezing room second target temperature based on the temperature detected by the freezing room temperature sensor 161B.
  • the switching valve 158 is put into the refrigerating chamber supply state.
  • the operation of the refrigerator control system 1000 related to the transition of the operation mode of the refrigerator 1 is the operation shown in FIG. 6 described in the first embodiment.
  • the second embodiment can maintain the cooling capacity of the refrigerator 1 for a long period of time even in the event of a power failure, without using an external power source, as in the first embodiment.
  • the cooling capacity of the refrigerator 1 can be maintained for a longer period of time in the event of a power failure.
  • FIG. 14 is a diagram comparing fluctuations in the temperature inside the refrigerator compartment 11 and fluctuations in the temperature inside the freezer compartment 12.
  • the timing chart CK shows the temperature inside the refrigerator compartment 11.
  • the timing chart CL shows the temperature inside the freezing chamber 12.
  • the period in which the operation mode of the refrigerator 1 is the normal operation mode is the period from the timing T13 to the timing T14, and the period in which the temperature drop mode is the period from the timing T14 to the timing T15.
  • a certain period is a period from timing T15 to timing T16.
  • the solid line shows the fluctuation of the temperature inside the refrigerator chamber 11 when the inside of the refrigerator is cooled by the conventional cooling method. Further, in the timing chart CK, the broken line indicates the fluctuation of the temperature inside the refrigerator chamber 11 when the inside of the refrigerator is cooled by the cooling method of the present disclosure.
  • the solid line shows the fluctuation of the temperature of the freezing chamber 12 when the inside of the refrigerator is cooled by the conventional cooling method. Further, in the timing chart CL, the broken line indicates the fluctuation of the temperature inside the freezing chamber 12 when the inside of the refrigerator is cooled by the cooling method of the present disclosure.
  • the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a longer period of time.
  • the second embodiment described above is the same as the first embodiment described above, and is configured to automatically shift the operation mode of the refrigerator 1 to the power failure precooling operation mode when a weather warning is issued.
  • the user P when a weather warning is issued, the user P is inquired as to whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode. After the inquiry, when the user P gives an instruction to shift to the power failure precooling operation mode, the operation mode of the refrigerator 1 is shifted to the power failure precooling operation mode.
  • Each device of the refrigerator control system 1000 of this modification performs the same operation as the modification of the first embodiment described above.
  • the cooling unit 15 sets the supply destinations of the condenser 152, the first cooler 154A for generating cold air in the refrigerating chamber, the second cooler 154B for generating cold air in the freezer chamber, and the refrigerant generated by the condenser 152.
  • a switching valve 158 for switching to one cooler 154A or a second cooler 154B is provided. By controlling the switching valve, the refrigerator control unit 13 makes the fluctuation of the temperature inside the refrigerator 1 in the power failure precooling operation mode smaller than the fluctuation of the temperature inside the refrigerator 1 in the normal operation mode.
  • the cooling capacity of the refrigerator 1 in the event of a power failure can be effectively maintained for a long period of time without using an external power source. Therefore, even when the refrigerator 1 is of the 2-eva system, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a long period of time without using an external power source.
  • the refrigerator 1 is configured to start the power failure precooling operation mode by receiving the transition instruction information.
  • the trigger for starting the power failure precooling operation mode is not limited to this.
  • the refrigerator 1 may be provided with a button for starting the power failure precooling operation mode at a predetermined position, and may be configured to start the power failure precooling operation mode when the button is operated by the user P. In the case of this configuration, the refrigerator 1 continues for a predetermined period (for example, 24 hours) until the user P inputs an end instruction to the refrigerator 1 or after starting the power failure precooling operation mode.
  • the user P changes the operation mode of the refrigerator 1 to the power failure precooling operation mode at the timing when he / she thinks that a power failure may occur. Can be done.
  • the case where the refrigerator 1 shifts the operation mode from the normal operation mode to the power failure precooling operation mode is illustrated, but the operation mode of the shift source is not limited to the normal operation mode, and the power failure precooling is not limited to the normal operation mode. Any operation mode other than the operation mode may be used. Further, in each of the above-described embodiments, the case where the refrigerator 1 shifts the operation mode from the power failure precooling operation mode to the normal operation mode is illustrated. Any operation mode other than the operation mode may be used.
  • the operation mode other than the power failure precooling operation mode corresponds to an example of the "first mode".
  • the cooling fan 155, the first cooling fan 155A, and the second cooling fan 155B are rotated at a higher rotation speed than in other modes. May be good.
  • the fluctuation of the temperature inside the refrigerator is suppressed by controlling the frequency of the open / closed state of the damper 156, but the temperature inside the refrigerator is controlled by controlling the opening degree of the damper 156. It may be configured to suppress the fluctuation of.
  • the frequency of switching the state of the switching valve 158 is controlled to suppress the fluctuation of the temperature inside the refrigerator, but the opening degree of the switching valve 158 is controlled to control the temperature of the refrigerator. It may be configured to suppress fluctuations in the internal temperature.
  • the weather warning is exemplified as the warning related to the cause of the power failure, but the warning related to the cause of the power failure includes a seismic motion warning, a flood warning, a tsunami warning, an eruption warning, a fire warning, etc. It may be an alarm other than the weather warning of. In this case, the cause of the power outage is a factor other than the weather. Further, in this case, a server device that provides information indicating whether or not an alarm other than the weather warning is issued is connected to the global network GN in place of or together with the weather warning server 5, and the refrigerator control server 3 is the server. Inquire whether an alarm has been issued to the device.
  • the refrigerator 1 is configured to start the power failure precooling operation mode triggered by the issuance of an alarm, but the trigger is not limited to the alarm and is a warning regarding the cause of the power failure. But it may be. There are various warnings such as heavy rain warnings and flood warnings, and among them, a lightning warning that is likely to lead to a power outage may be used as a trigger. Further, the trigger is not limited to warnings and warnings, but may be forecasts related to other causes of power outages. In this case, a server device that provides information indicating whether or not a forecast is issued is connected to the global network GN on behalf of or together with the weather warning server 5, and the refrigerator control server 3 provides a forecast to the server device.
  • a server device that provides information indicating whether or not a forecast is issued is connected to the global network GN on behalf of or together with an alarm server other than the weather warning, and the refrigerator control server 3 is connected to the server device. Inquire whether the forecast has been issued.
  • the refrigerator control server 3 adds a refrigerator ID when transmitting the transition instruction information to the refrigerator 1, and the refrigerator 1 includes the refrigerator ID added to the transition instruction information and itself.
  • the operation mode may be shifted to the power failure precooling operation mode only when the refrigerator ID assigned to is the same.
  • the refrigerator ID is information that identifies the refrigerator 1, and is, for example, a serial number.
  • the type of room formed in the main box body 10 of the refrigerator 1 is not limited to the refrigerating room 11 and the freezing room 12, and another type of room such as an ice making room, a fresh freezing room, and a vegetable room is formed. May be done. Further, the number of doors provided in the opening on the front surface of the refrigerating chamber 11 may be plural.
  • the refrigerator control unit 13 controls each of the dampers 156 so as to suppress the temperature fluctuation of each accommodation chamber, as in the first embodiment.
  • the internal configurations such as the number of shelves and the number of storage boxes in the refrigerating room 11 and the freezing room 12 are not limited to FIGS. 2 and 10.
  • one or more temperature sensors 161 may be provided in each storage room of the refrigerator 1.
  • the functions of the refrigerator control unit 13, the server control unit 30, and the terminal control unit 40 may be realized by a plurality of processors or semiconductor chips.
  • FIGS. 4 and 12 are an example, and the specific mounting form is not particularly limited. That is, it is not always necessary to implement the hardware corresponding to each part individually, and it is of course possible to realize the function of each part by executing the program by one processor. Further, a part of the functions realized by the software in the above-described embodiment may be realized by the hardware, or a part of the functions realized by the hardware may be realized by the software. In addition, the specific detailed configurations of the refrigerator 1, the refrigerator control server 3, and the other parts of the terminal device 4 can be arbitrarily changed without departing from the spirit of the present disclosure.
  • the operation step units shown in FIGS. 6 and 9 are divided according to the main processing contents in order to facilitate understanding of the operation of each device of the refrigerator control system 1000, and are divided according to the processing contents. It may be divided into more step units. Further, one step unit may be divided so as to include more processes. Further, the order of the steps may be appropriately changed as long as it does not interfere with the purpose of the present disclosure.
  • the refrigerator and the refrigerator control system according to the present disclosure can be used for maintaining the cooling capacity of the refrigerator in the event of a power failure.
  • Refrigerator control server (server) 4 Terminal equipment 5 Weather alarm server 11 Refrigerator room 12 Refrigerator room 13 Refrigerator control unit 15 Cooler unit 151 Compressor 152 Condenser 154 Cooler 154A 1st cooler 154B 2nd cooler 156 Damper 158 Switching valve 1000 Refrigerator control system H Home (Installation location) P user

Abstract

Provided are a refrigerator and a refrigerator control system capable of maintaining cooling performance of the refrigerator for a long time during a power failure even without using an external power source. This refrigerator comprises: a cooling unit that cools the inside of the refrigerator; and a refrigerator control unit that changes an operation mode of the refrigerator from a first mode to a second mode in which the temperature in the refrigerator is lower than that of the first mode, when a forecast is issued regarding a cause of an occurrence of an electric failure in a region including an installation place of the refrigerator. When the operation mode of the refrigerator is the second mode, the refrigerator control unit performs cooling by the cooling unit so that fluctuation of the temperature in the refrigerator becomes smaller than that of the temperature in the refrigerator in the first mode.

Description

冷蔵庫、及び冷蔵庫制御システムRefrigerator and refrigerator control system
 本開示は、冷蔵庫、及び冷蔵庫制御システムに関する。 This disclosure relates to a refrigerator and a refrigerator control system.
 特許文献1は、停電時において冷蔵庫内の食品を保存できる建物供給システムを開示する。この建物供給システムは、所定の建物と接続可能な給電車両と、冷蔵庫と、を備え、所定の建物に停電が発生した場合、給電車両により冷蔵庫に給電を行う。 Patent Document 1 discloses a building supply system capable of storing food in a refrigerator in the event of a power outage. This building supply system includes a power supply vehicle that can be connected to a predetermined building and a refrigerator, and when a power failure occurs in the predetermined building, the power supply vehicle supplies power to the refrigerator.
特開2018-078689号公報Japanese Unexamined Patent Publication No. 2018-078689
 本開示は、外部電源を用いなくても、停電時における冷蔵庫の冷却能力を長期に亘って維持できる冷蔵庫及び冷蔵庫制御システムを提供する。 The present disclosure provides a refrigerator and a refrigerator control system capable of maintaining the cooling capacity of the refrigerator in the event of a power failure for a long period of time without using an external power source.
 本開示における冷蔵庫は、冷蔵庫の庫内を冷却する冷却部と、前記冷蔵庫の設置場所を含む区域に対して停電の発生要因に係わる予報が発令された場合、前記冷蔵庫の運転モードを第1モードから前記第1モードより前記冷蔵庫の庫内温度が低い第2モードに移行させる冷蔵庫制御部と、を備え、前記冷蔵庫制御部は、前記冷蔵庫の運転モードが前記第2モードである場合、前記冷蔵庫の庫内温度の変動が前記第1モードにおける前記冷蔵庫の庫内温度の変動より小さくなるように、前記冷却部により冷却する。 The refrigerator in the present disclosure sets the operation mode of the refrigerator as the first mode when a forecast regarding the cause of the power failure is issued for the cooling unit for cooling the inside of the refrigerator and the area including the installation location of the refrigerator. The refrigerator control unit is provided with a refrigerator control unit that shifts from the first mode to the second mode in which the temperature inside the refrigerator is lower than the first mode. The refrigerator control unit is the refrigerator when the operation mode of the refrigerator is the second mode. The refrigerator is cooled by the cooling unit so that the fluctuation of the refrigerator temperature in the refrigerator is smaller than the fluctuation of the refrigerator temperature in the first mode.
 また、本開示における冷蔵庫制御システムは、冷蔵庫と、前記冷蔵庫と通信可能なサーバーとを備える冷蔵庫制御システムであって、前記サーバーは、前記冷蔵庫の設置場所を含む区域に対して停電の発生要因に係る予報が発令された場合、前記冷蔵庫の運転モードを第1モードから前記第1モードより前記冷蔵庫の庫内温度が低い第2モードに移行させる移行指示情報を、前記冷蔵庫に送信し、前記冷蔵庫は、前記移行指示情報を受信すると、運転モードを前記第1モードから前記第2モードに移行させ、前記第2モードにおいては、前記冷蔵庫の庫内温度の変動が、前記第1モードにおける前記冷蔵庫の庫内温度の変動より小さくなるように庫内を冷却する。
 なお、この明細書には、2020年11月18日に出願された日本国特許出願・特願2020-191823号の全ての内容が含まれるものとする。
Further, the refrigerator control system in the present disclosure is a refrigerator control system including a refrigerator and a server capable of communicating with the refrigerator, and the server causes a power failure in an area including a place where the refrigerator is installed. When such a forecast is issued, transition instruction information for shifting the operation mode of the refrigerator from the first mode to the second mode in which the temperature inside the refrigerator is lower than that of the first mode is transmitted to the refrigerator, and the refrigerator is transmitted. Upon receiving the transition instruction information, shifts the operation mode from the first mode to the second mode, and in the second mode, the fluctuation of the refrigerator internal temperature changes the refrigerator in the first mode. Cool the inside of the refrigerator so that it is smaller than the fluctuation of the temperature inside the refrigerator.
In addition, this specification shall include all the contents of the Japanese patent application / Japanese Patent Application No. 2020-191823 filed on November 18, 2020.
 本開示における冷蔵庫及び冷蔵庫制御システムは、停電発生前に冷蔵庫の庫内温度を低下させることができ、また、庫内温度の変動を抑えつつ庫内温度を低下させることで停電が発生するタイミングによって停電時の冷却能力に差が生じることを抑制できる。そのため、外部電源を用いなくても、停電時における冷蔵庫の冷却能力を長期に亘って維持できる。 The refrigerator and the refrigerator control system in the present disclosure can lower the temperature inside the refrigerator before the power failure occurs, and depending on the timing when the power failure occurs by lowering the temperature inside the refrigerator while suppressing the fluctuation of the temperature inside the refrigerator. It is possible to suppress the difference in cooling capacity during a power failure. Therefore, the cooling capacity of the refrigerator in the event of a power failure can be maintained for a long period of time without using an external power source.
図1は、冷蔵庫制御システムの構成を示す図FIG. 1 is a diagram showing a configuration of a refrigerator control system. 図2は、冷蔵庫の縦断面図FIG. 2 is a vertical sectional view of the refrigerator. 図3は、冷蔵庫の冷凍サイクルを示す図FIG. 3 is a diagram showing a refrigerating cycle of a refrigerator. 図4は、冷蔵庫、冷蔵庫制御サーバー、及び端末装置の構成を示すブロック図FIG. 4 is a block diagram showing the configurations of a refrigerator, a refrigerator control server, and a terminal device. 図5は、冷蔵庫の各部の状態を示すタイミングチャートFIG. 5 is a timing chart showing the state of each part of the refrigerator. 図6は、冷蔵庫制御システムの動作を示すフローチャートFIG. 6 is a flowchart showing the operation of the refrigerator control system. 図7は、冷蔵室及び冷凍室の庫内温度の変動を比較した図FIG. 7 is a diagram comparing fluctuations in the temperature inside the refrigerator and the freezer. 図8は、運転制御部がタッチパネルに表示させるユーザーインターフェースの一例を示す図FIG. 8 is a diagram showing an example of a user interface displayed on the touch panel by the operation control unit. 図9は、冷蔵庫制御システムの動作を示すフローチャートFIG. 9 is a flowchart showing the operation of the refrigerator control system. 図10は、冷蔵庫の縦断面図FIG. 10 is a vertical sectional view of the refrigerator. 図11は、冷蔵庫の冷凍サイクルを示す図FIG. 11 is a diagram showing a refrigerating cycle of a refrigerator. 図12は、冷蔵庫、冷蔵庫制御サーバー、及び端末装置の構成を示すブロック図FIG. 12 is a block diagram showing the configurations of a refrigerator, a refrigerator control server, and a terminal device. 図13は、冷蔵庫の各部の状態を示すタイミングチャートFIG. 13 is a timing chart showing the state of each part of the refrigerator. 図14は、冷蔵室及び冷凍室の庫内温度の変動を比較した図FIG. 14 is a diagram comparing fluctuations in the temperature inside the refrigerator and the freezer.
 (本開示の基礎となった知見等)
 上記従来技術では、停電時において冷蔵庫の冷却能力を維持できる一方、給電車両のような外部電源を用いる必要がある。ここで、停電前に冷蔵庫の庫内温度を低下させることが考えられるが、庫内温度を低下させる際に庫内温度の変動が大きいと、停電が発生するタイミングによって停電時の冷却能力に差が生じるため、停電が発生するタイミングによっては停電時に冷却能力を長期に亘って維持できない虞がある。
 そこで、本開示は、外部電源を用いなくても、停電時において冷蔵庫の冷却能力を長期に亘って維持できる冷蔵庫及び冷蔵庫制御システムを提供する。
(Findings, etc. that form the basis of this disclosure)
In the above-mentioned conventional technique, it is necessary to use an external power source such as a power feeding vehicle while maintaining the cooling capacity of the refrigerator in the event of a power failure. Here, it is conceivable to lower the temperature inside the refrigerator before the power failure, but if the temperature inside the refrigerator fluctuates greatly when the temperature inside the refrigerator is lowered, the cooling capacity at the time of the power failure differs depending on the timing of the power failure. Therefore, depending on the timing at which a power outage occurs, there is a risk that the cooling capacity cannot be maintained for a long period of time during a power outage.
Therefore, the present disclosure provides a refrigerator and a refrigerator control system capable of maintaining the cooling capacity of the refrigerator for a long period of time even in the event of a power failure without using an external power source.
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明を省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanations may be omitted than necessary. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted.
It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、図1-図9を用いて、実施の形態1を説明する。
 [1-1.構成]
 図1は、冷蔵庫制御システム1000の構成を示す図である。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 9.
[1-1. Constitution]
FIG. 1 is a diagram showing a configuration of a refrigerator control system 1000.
 冷蔵庫制御システム1000は、グローバルネットワークGNに接続する機器がグローバルネットワークGNを介して冷蔵庫1を制御するシステムである。グローバルネットワークGNは、インターネット、電話網、その他の通信網を含む。 The refrigerator control system 1000 is a system in which a device connected to the global network GN controls the refrigerator 1 via the global network GN. Global network GN includes the Internet, telephone networks and other communication networks.
 冷蔵庫制御システム1000は、冷蔵庫1を備える。図1では、冷蔵庫1は、ユーザーPの自宅Hに設置されている。冷蔵庫1は、前面が開口した主箱体10を備え、主箱体10には、冷蔵室11及び冷凍室12の2つの収容室が形成されている。冷蔵室11の前面の開口部には、回転式のドア11Aが設けられている。冷凍室12には、食品を収容する引出12Aが設けられている。
 自宅Hは、「冷蔵庫の設置場所」の一例に対応する。
The refrigerator control system 1000 includes a refrigerator 1. In FIG. 1, the refrigerator 1 is installed at the home H of the user P. The refrigerator 1 includes a main box body 10 having an open front surface, and the main box body 10 is formed with two storage chambers, a refrigerating chamber 11 and a freezing chamber 12. A rotary door 11A is provided in the opening on the front surface of the refrigerator compartment 11. The freezing chamber 12 is provided with a drawer 12A for accommodating food.
Home H corresponds to an example of "refrigerator installation location".
 図2は、実施の形態1における冷蔵庫1の縦断面図である。図3は、実施の形態1における冷蔵庫1の冷凍サイクル157Aを示す図である。 FIG. 2 is a vertical sectional view of the refrigerator 1 in the first embodiment. FIG. 3 is a diagram showing a refrigerating cycle 157A of the refrigerator 1 in the first embodiment.
 図2では、X軸、Y軸、及びZ軸を図示している。X軸、Y軸、及びZ軸は互いに直交する。Z軸は、上下方向を示す。X軸及びY軸は、水平方向と平行である。X軸は左右方向を示す。Y軸は前後方向を示す。X軸の正方向は右方向を示す。Y軸の正方向は前方向を示す。Z軸の正方向は上方向を示す。 FIG. 2 illustrates the X-axis, Y-axis, and Z-axis. The X-axis, Y-axis, and Z-axis are orthogonal to each other. The Z axis indicates the vertical direction. The X-axis and Y-axis are parallel to the horizontal direction. The X-axis indicates the left-right direction. The Y-axis indicates the front-back direction. The positive direction of the X-axis indicates the right direction. The positive direction of the Y-axis indicates the forward direction. The positive direction of the Z axis indicates the upward direction.
 図2に示すように、冷蔵庫1の主箱体10には、冷蔵室11及び冷凍室12が形成されている。冷蔵室11は、冷凍室12の上方に形成されている。冷凍室12は、冷蔵室11の下方に形成されている。 As shown in FIG. 2, a refrigerating chamber 11 and a freezing chamber 12 are formed in the main box body 10 of the refrigerator 1. The refrigerating chamber 11 is formed above the freezing chamber 12. The freezing chamber 12 is formed below the refrigerating chamber 11.
 実施の形態1における冷蔵庫1の冷凍サイクル157Aは、1つの冷却器154が、冷蔵庫1の各収容室を冷却する冷気を生成する。この方式は、1エバ方式と呼ばれる。図3に示すように、実施の形態1の冷凍サイクル157Aでは、圧縮機151、凝縮器152、キャピラリーチューブ153、及び冷却器154が環状に接続し、圧縮機151が圧縮した冷媒を循環させて冷蔵庫1の庫内を冷却する。 In the refrigeration cycle 157A of the refrigerator 1 in the first embodiment, one cooler 154 generates cold air for cooling each storage chamber of the refrigerator 1. This method is called the 1-eva method. As shown in FIG. 3, in the refrigerating cycle 157A of the first embodiment, the compressor 151, the condenser 152, the capillary tube 153, and the cooler 154 are connected in an annular shape, and the refrigerant compressed by the compressor 151 is circulated. Cool the inside of the refrigerator 1.
 冷蔵庫1は、冷蔵室11の後方上部に圧縮機151を備える。また、冷蔵庫1は、冷凍室12の後方に、冷却器154と、冷却器154が生成した冷気を冷蔵室11及び冷凍室12に送る冷却ファン155と、冷却ファン155により送られる冷気の量を調整するダンパー156とを備える。 Refrigerator 1 is provided with a compressor 151 in the upper rear part of the refrigerator compartment 11. Further, the refrigerator 1 has a cooler 154 behind the freezer chamber 12, a cooling fan 155 that sends the cold air generated by the cooler 154 to the refrigerator compartment 11 and the freezer compartment 12, and the amount of cold air sent by the cooling fan 155. It is equipped with a damper 156 to be adjusted.
 冷蔵室11内には、冷蔵室11内の後方に、第1吐出口111A、第2吐出口111B、及び第3吐出口111Cが形成される。第1吐出口111A、第2吐出口111B、及び第3吐出口111Cの各々は、食品が収容される冷蔵室11の空間に、冷却器154が生成した冷気を吐出する開口である。また、冷蔵室11内には、冷蔵室11内の後方に、冷蔵室冷気戻り口が形成される。冷蔵室冷気戻り口は、第1吐出口111A、第2吐出口111B、及び第3吐出口111Cが吐出した冷気を冷却器154に戻すための開口である。 In the refrigerating chamber 11, a first discharge port 111A, a second discharge port 111B, and a third discharge port 111C are formed behind the refrigerating chamber 11. Each of the first discharge port 111A, the second discharge port 111B, and the third discharge port 111C is an opening for discharging the cold air generated by the cooler 154 into the space of the refrigerating chamber 11 in which the food is stored. Further, in the refrigerating chamber 11, a refrigerating chamber cold air return port is formed behind the refrigerating chamber 11. The refrigerating chamber cold air return port is an opening for returning the cold air discharged by the first discharge port 111A, the second discharge port 111B, and the third discharge port 111C to the cooler 154.
 冷凍室12内には、冷凍室12の後方に、第4吐出口111D、及び第5吐出口111Eが形成される。第4吐出口111D、及び第5吐出口111Eの各々は、食品が収容される冷凍室12の空間に、冷却器154が生成した冷気を吐出する開口である。また、冷凍室12内には、冷凍室12の後方に、冷凍室冷気戻り口が形成される。冷凍室冷気戻り口は、第4吐出口111D及び第5吐出口111Eが吐出した冷気を冷却器154に戻すための開口である。 In the freezing chamber 12, a fourth discharge port 111D and a fifth discharge port 111E are formed behind the freezing chamber 12. Each of the fourth discharge port 111D and the fifth discharge port 111E is an opening for discharging the cold air generated by the cooler 154 into the space of the freezing chamber 12 in which the food is housed. Further, in the freezing chamber 12, a freezing chamber cold air return port is formed behind the freezing chamber 12. The freezing chamber cold air return port is an opening for returning the cold air discharged by the fourth discharge port 111D and the fifth discharge port 111E to the cooler 154.
 図1の説明に戻り、冷蔵庫1は、ユーザーPの自宅Hに設置された通信装置2と通信接続し、通信装置2を介して冷蔵庫制御サーバー3と通信する。
 冷蔵庫制御サーバー3は、「サーバー」の一例に対応する。
Returning to the description of FIG. 1, the refrigerator 1 communicates with the communication device 2 installed at the home H of the user P, and communicates with the refrigerator control server 3 via the communication device 2.
The refrigerator control server 3 corresponds to an example of a “server”.
 通信装置2は、グローバルネットワークGNに接続し、グローバルネットワークGNに接続する冷蔵庫制御サーバー3と通信する。通信装置2は、冷蔵庫1をグローバルネットワークGNに接続するためのインターフェース装置として機能する。また、通信装置2は、端末装置4が通信装置2と通信接続を確立している場合、端末装置4をグローバルネットワークGNに接続するためのインターフェース装置として機能する。通信装置2は、モデムに係る機能や、ルーター機能、NAT(Network Address Translation)機能等の機能を有する。通信装置2は、冷蔵庫1と、グローバルネットワークGNに接続する冷蔵庫制御サーバー3との間で送受信されるデータを転送する。また、通信装置2は、通信接続を確立する端末装置4と、グローバルネットワークGNに接続する冷蔵庫制御サーバー3との間で送受信されるデータを転送する。 The communication device 2 connects to the global network GN and communicates with the refrigerator control server 3 connected to the global network GN. The communication device 2 functions as an interface device for connecting the refrigerator 1 to the global network GN. Further, when the terminal device 4 establishes a communication connection with the communication device 2, the communication device 2 functions as an interface device for connecting the terminal device 4 to the global network GN. The communication device 2 has functions related to a modem, a router function, a NAT (Network Address Translation) function, and the like. The communication device 2 transfers data transmitted / received between the refrigerator 1 and the refrigerator control server 3 connected to the global network GN. Further, the communication device 2 transfers data transmitted / received between the terminal device 4 for establishing a communication connection and the refrigerator control server 3 connected to the global network GN.
 冷蔵庫制御システム1000は、タッチパネル42を有する端末装置4を備える。端末装置4は、例えばスマートフォンやタブレット端末により構成され、冷蔵庫1のユーザーPに使用される。端末装置4は、冷蔵庫1の運転を制御するためのアプリケーションプログラムがインストールされている。以下の説明では、冷蔵庫1の運転を制御するためのアプリケーションプログラムを、「冷蔵庫制御アプリ」といい「413」の符号を付す。 The refrigerator control system 1000 includes a terminal device 4 having a touch panel 42. The terminal device 4 is composed of, for example, a smartphone or a tablet terminal, and is used by the user P of the refrigerator 1. An application program for controlling the operation of the refrigerator 1 is installed in the terminal device 4. In the following description, the application program for controlling the operation of the refrigerator 1 is referred to as a "refrigerator control application" and is designated by "413".
 図1では、在宅するユーザーPを点線で示し、自宅Hから外出したユーザーPを実線で示している。端末装置4は、在宅するユーザーPに使用される場合、冷蔵庫制御アプリ413の機能によって、通信装置2を介して、或いは通信装置2を介さずに、グローバルネットワークGNに接続する冷蔵庫制御サーバー3と通信して、冷蔵庫1の運転を制御する。また、端末装置4は、自宅Hから外出したユーザーPに使用され且つ通信装置2との通信接続を確立できない場合、冷蔵庫制御アプリ413の機能によって、通信装置2を介すことなく、グローバルネットワークGNに接続する冷蔵庫制御サーバー3と通信して、冷蔵庫1の運転を制御する。 In FIG. 1, the user P who is at home is shown by a dotted line, and the user P who has gone out from home H is shown by a solid line. When the terminal device 4 is used by the user P at home, the terminal device 4 is connected to the refrigerator control server 3 via the communication device 2 or without the communication device 2 by the function of the refrigerator control application 413. Communicate to control the operation of the refrigerator 1. Further, when the terminal device 4 is used by the user P who has gone out from the home H and the communication connection with the communication device 2 cannot be established, the function of the refrigerator control application 413 enables the global network GN without going through the communication device 2. It communicates with the refrigerator control server 3 connected to the refrigerator 1 to control the operation of the refrigerator 1.
 冷蔵庫制御システム1000は、冷蔵庫制御サーバー3を備える。冷蔵庫制御サーバー3は、冷蔵庫1の運転を制御するサーバー装置であり、グローバルネットワークGNに接続し、冷蔵庫1、端末装置4、及び気象警報サーバー5と通信する。 The refrigerator control system 1000 includes a refrigerator control server 3. The refrigerator control server 3 is a server device that controls the operation of the refrigerator 1, connects to the global network GN, and communicates with the refrigerator 1, the terminal device 4, and the weather warning server 5.
 なお、各図では、冷蔵庫制御サーバー3を、1つのブロックによって表現するが、これは必ずしも冷蔵庫制御サーバー3が単一のサーバー装置により構成されることを意味するものではない。例えば、冷蔵庫制御サーバー3は、処理内容が異なる複数のサーバー装置を含んで構成されたものでもよい。また、各図では、冷蔵庫制御サーバー3と気象警報サーバー5とを別体のサーバー装置として例示しているが、冷蔵庫制御サーバー3と気象警報サーバー5とは、同じサーバー装置として構成されてもよい。 In each figure, the refrigerator control server 3 is represented by one block, but this does not necessarily mean that the refrigerator control server 3 is composed of a single server device. For example, the refrigerator control server 3 may be configured to include a plurality of server devices having different processing contents. Further, in each figure, the refrigerator control server 3 and the weather warning server 5 are illustrated as separate server devices, but the refrigerator control server 3 and the weather warning server 5 may be configured as the same server device. ..
 気象警報サーバー5は、気象警報発令情報を提供するサーバー装置である。気象警報発令情報は、冷蔵庫1の設置場所を含む区域に対する気象警報の発令の有無を示す情報である。気象警報は、例えば、暴風、暴風雪、大雨、大雪、高潮、洪水、波浪等の停電の発生要因に係る警報である。停電の発生要因に係る警報は、停電の発生要因に係わる予報の一例に対応する。 The weather warning server 5 is a server device that provides weather warning issuance information. The weather warning issuance information is information indicating whether or not a weather warning is issued for the area including the place where the refrigerator 1 is installed. Meteorological warnings are warnings related to factors that cause power outages such as storms, blizzards, heavy rains, heavy snowfalls, storm surges, floods, and waves. The alarm related to the cause of the power outage corresponds to an example of the forecast related to the cause of the power outage.
 なお、気象警報サーバー5が提供する気象警報発令情報の区域は、冷蔵庫1の設置場所を含む区域であればよく、例えば一次細分区域でも二次細分区域でも他の区域でもよい。
 また、各図では、気象警報サーバー5を、1つのブロックによって表現するが、これは必ずしも気象警報サーバー5が単一のサーバー装置により構成されることを意味するものではない。例えば、気象警報サーバー5は、処理内容が異なる複数のサーバー装置を含んで構成されたものでもよい。
The area of the weather warning issuance information provided by the weather warning server 5 may be an area including the installation location of the refrigerator 1, and may be, for example, a primary subdivision area, a secondary subdivision area, or another area.
Further, in each figure, the weather warning server 5 is represented by one block, but this does not necessarily mean that the weather warning server 5 is composed of a single server device. For example, the weather warning server 5 may be configured to include a plurality of server devices having different processing contents.
 次に、冷蔵庫1、冷蔵庫制御サーバー3、及び端末装置4の構成について説明する。
 図4は、冷蔵庫1、冷蔵庫制御サーバー3、及び端末装置4の構成を示すブロック図である。
Next, the configurations of the refrigerator 1, the refrigerator control server 3, and the terminal device 4 will be described.
FIG. 4 is a block diagram showing the configurations of the refrigerator 1, the refrigerator control server 3, and the terminal device 4.
 まず、冷蔵庫1の構成について説明する。
 冷蔵庫1は、冷蔵庫制御部13、冷蔵庫通信部14、冷却部15、及びセンサー部16を備える。
First, the configuration of the refrigerator 1 will be described.
The refrigerator 1 includes a refrigerator control unit 13, a refrigerator communication unit 14, a cooling unit 15, and a sensor unit 16.
 冷蔵庫制御部13は、CPUやMPU等のプログラムを実行するプロセッサーである冷蔵庫プロセッサー130、及び冷蔵庫記憶部131を備え、冷蔵庫1の各部を制御する。冷蔵庫制御部13は、冷蔵庫プロセッサー130が、冷蔵庫記憶部131に記憶された制御プログラム1311を読み出して、ハードウェア及びソフトウェアの協働により各種処理を実行する。 The refrigerator control unit 13 includes a refrigerator processor 130, which is a processor that executes programs such as a CPU and an MPU, and a refrigerator storage unit 131, and controls each part of the refrigerator 1. In the refrigerator control unit 13, the refrigerator processor 130 reads out the control program 1311 stored in the refrigerator storage unit 131, and executes various processes in cooperation with hardware and software.
 冷蔵庫記憶部131は、冷蔵庫プロセッサー130が実行するプログラムや、冷蔵庫プロセッサー130により処理されるデータを記憶する記憶領域を有する。冷蔵庫記憶部131は、冷蔵庫プロセッサー130が実行する制御プログラム1311、冷蔵庫1の設定に係る設定データ1312、その他の各種データを記憶する。冷蔵庫記憶部131は、不揮発性の記憶領域を有する。また、冷蔵庫記憶部131は、揮発性の記憶領域を備え、冷蔵庫プロセッサー130のワークエリアを構成してもよい。 The refrigerator storage unit 131 has a storage area for storing a program executed by the refrigerator processor 130 and data processed by the refrigerator processor 130. The refrigerator storage unit 131 stores the control program 1311 executed by the refrigerator processor 130, the setting data 1312 related to the setting of the refrigerator 1, and various other data. The refrigerator storage unit 131 has a non-volatile storage area. Further, the refrigerator storage unit 131 may include a volatile storage area and form a work area of the refrigerator processor 130.
 冷蔵庫通信部14は、所定の通信規格に従った通信ハードウェアを備え、冷蔵庫制御部13の制御により、グローバルネットワークGNと接続する機器と所定の通信規格に従って通信する。冷蔵庫通信部14は、冷蔵庫制御サーバー3と所定の通信規格に従って通信する。冷蔵庫通信部14が使用する通信規格は、無線通信規格(例えばIEEE802.11a/11b/11g/11n/11ac、Bluetooth(登録商標))でもよいし有線通信規格でもよい。 The refrigerator communication unit 14 is equipped with communication hardware according to a predetermined communication standard, and under the control of the refrigerator control unit 13, communicates with a device connected to the global network GN according to a predetermined communication standard. The refrigerator communication unit 14 communicates with the refrigerator control server 3 according to a predetermined communication standard. The communication standard used by the refrigerator communication unit 14 may be a wireless communication standard (for example, IEEE802.11a / 11b / 11g / 11n / 11ac, Bluetooth®) or a wired communication standard.
 冷却部15は、圧縮機151や、凝縮器152、キャピラリーチューブ153、冷却器154、冷却ファン155、及びダンパー156等の冷蔵庫1の各収容室を冷却する機構を備え、冷蔵庫制御部13の制御に従って、冷蔵庫1の各収容室を冷却する。 The cooling unit 15 includes a mechanism for cooling each storage chamber of the refrigerator 1, such as a compressor 151, a condenser 152, a capillary tube 153, a cooler 154, a cooling fan 155, and a damper 156, and controls the refrigerator control unit 13. According to this, each storage room of the refrigerator 1 is cooled.
 センサー部16は、冷蔵庫1の庫内の温度を検出する温度センサー161や、冷蔵庫1に設けられるドア及び引出の開閉を検出する開閉センサー等の各種センサーを備え、センサーごとにセンサーの検出値を冷蔵庫制御部13に出力する。図4に示すように、センサー部16は、温度センサー161として、冷蔵室温度センサー161A及び冷凍室温度センサー161Bを備える。 The sensor unit 16 includes various sensors such as a temperature sensor 161 for detecting the temperature inside the refrigerator 1 and an open / close sensor for detecting the opening / closing of doors and drawers provided in the refrigerator 1, and the detection value of the sensor is set for each sensor. Output to the refrigerator control unit 13. As shown in FIG. 4, the sensor unit 16 includes a refrigerating room temperature sensor 161A and a freezing room temperature sensor 161B as the temperature sensor 161.
 冷蔵室温度センサー161Aは、例えば冷蔵庫冷気戻り口付近等の冷蔵室11の所定の位置に設けられ、冷蔵室11の庫内温度を検出する。
 冷凍室温度センサー161Bは、例えば冷凍室冷気戻り口付近等の冷凍室12の所定の位置に設けられ、冷凍室12の庫内温度を検出する。
The refrigerating room temperature sensor 161A is provided at a predetermined position of the refrigerating room 11 such as near the refrigerator cold air return port, and detects the temperature inside the refrigerating room 11.
The freezing room temperature sensor 161B is provided at a predetermined position of the freezing room 12 such as near the freezing room cold air return port, and detects the temperature inside the freezing room 12.
 冷蔵庫制御部13は、冷蔵庫1の運転モードを、通常運転モードと、通常運転モードより冷蔵庫1の庫内温度が低い停電予冷運転モードとのいずれかに移行させる。通常運転モードは、停電予冷運転モードより冷蔵庫1の庫内温度が高い運転モードである。
 通常運転モードは、「第1モード」の一例に対応し、停電予冷運転モードは、「第2モード」の一例に対応する。
The refrigerator control unit 13 shifts the operation mode of the refrigerator 1 to either a normal operation mode or a power failure precooling operation mode in which the temperature inside the refrigerator 1 is lower than the normal operation mode. The normal operation mode is an operation mode in which the temperature inside the refrigerator 1 is higher than that in the power failure precooling operation mode.
The normal operation mode corresponds to an example of the "first mode", and the power failure precooling operation mode corresponds to an example of the "second mode".
 冷蔵庫1は、停電発生前に停電予冷運転モードに移行することで、停電発生前に冷蔵庫1の庫内温度を通常運転モードより低くできる。よって、冷蔵庫1は、停電時において庫内温度を長期に亘って維持でき、停電時において冷蔵庫1に収容されている食品の鮮度が低下すること抑制できる。 By shifting to the power failure precooling operation mode before the power failure occurs, the refrigerator 1 can lower the temperature inside the refrigerator 1 compared to the normal operation mode before the power failure occurs. Therefore, the refrigerator 1 can maintain the temperature inside the refrigerator for a long period of time in the event of a power failure, and can suppress the deterioration of the freshness of the food contained in the refrigerator 1 in the event of a power failure.
 通常運転モードと停電予冷運転モードとにおける冷蔵庫1の動作については、図5を参照して後述する。 The operation of the refrigerator 1 in the normal operation mode and the power failure precooling operation mode will be described later with reference to FIG.
 冷蔵庫制御部13は、冷蔵庫通信部14によって、運転モードを停電予冷運転モードに移行させる移行指示情報を冷蔵庫制御サーバー3から受信した場合、冷蔵庫1の運転モードを通常運転モードから停電予冷運転モードに移行させ、停電予冷運転を開始する。冷蔵庫制御部13は、冷蔵庫通信部14により、停電予冷運転モードを終了させる終了指示情報を冷蔵庫制御サーバー3から受信した場合、停電予冷運転を終了し、冷蔵庫1の運転モードを停電予冷運転モードから通常運転モードに移行させる。 When the refrigerator control unit 13 receives from the refrigerator control server 3 the transition instruction information for shifting the operation mode to the power failure precooling operation mode by the refrigerator communication unit 14, the operation mode of the refrigerator 1 is changed from the normal operation mode to the power failure precooling operation mode. Make the transition and start the power outage precooling operation. When the refrigerator control unit 13 receives the end instruction information for ending the power failure precooling operation mode from the refrigerator control server 3 by the refrigerator communication unit 14, the refrigerator control unit 13 ends the power failure precooling operation and changes the operation mode of the refrigerator 1 from the power failure precooling operation mode. Shift to normal operation mode.
 次に、冷蔵庫制御サーバー3の構成について説明する。
 冷蔵庫制御サーバー3は、サーバー制御部30及びサーバー通信部31を備える。
Next, the configuration of the refrigerator control server 3 will be described.
The refrigerator control server 3 includes a server control unit 30 and a server communication unit 31.
 サーバー制御部30は、CPUやMPU等のプログラムを実行するプロセッサーであるサーバープロセッサー300、及びサーバー記憶部310を備え、冷蔵庫制御サーバー3の各部を制御する。サーバー制御部30は、サーバープロセッサー300が、サーバー記憶部310に記憶された制御プログラム311を読み出して、ハードウェア及びソフトウェアの協働により各種処理を実行する。 The server control unit 30 includes a server processor 300, which is a processor that executes programs such as a CPU and an MPU, and a server storage unit 310, and controls each unit of the refrigerator control server 3. In the server control unit 30, the server processor 300 reads out the control program 311 stored in the server storage unit 310 and executes various processes in cooperation with hardware and software.
 サーバー記憶部310は、サーバープロセッサー300が実行するプログラムや、サーバープロセッサー300により処理されるデータを記憶する記憶領域を有する。サーバー記憶部310は、サーバープロセッサー300が実行する制御プログラム311、冷蔵庫制御サーバー3の設定に係る設定データ312、冷蔵庫制御データベース313、その他の各種データを記憶する。サーバー記憶部310は、不揮発性の記憶領域を有する。また、サーバー記憶部310は、揮発性の記憶領域を備え、サーバープロセッサー300のワークエリアを構成してもよい。 The server storage unit 310 has a storage area for storing a program executed by the server processor 300 and data processed by the server processor 300. The server storage unit 310 stores the control program 311 executed by the server processor 300, the setting data 312 related to the setting of the refrigerator control server 3, the refrigerator control database 313, and various other data. The server storage unit 310 has a non-volatile storage area. Further, the server storage unit 310 may include a volatile storage area and form a work area of the server processor 300.
 冷蔵庫制御データベース313は、冷蔵庫1の運転制御に係る各種情報を格納するデータベースである。冷蔵庫制御データベース313が格納する1件のレコードRは、ユーザーID3131、冷蔵庫通信情報3132、端末装置通信情報3133、及び設置場所情報3134を有する。なお、冷蔵庫制御データベース313が格納する1件のレコードRは、さらに1又は複数の別種類の情報を有していてもよい。 The refrigerator control database 313 is a database that stores various information related to the operation control of the refrigerator 1. One record R stored in the refrigerator control database 313 has a user ID 3131, a refrigerator communication information 3132, a terminal device communication information 3133, and an installation location information 3134. In addition, one record R stored in the refrigerator control database 313 may further have one or a plurality of different types of information.
 ユーザーID3131は、冷蔵庫制御アプリ413を利用するユーザーPを識別する識別情報であり、冷蔵庫制御アプリ413を利用するユーザーPに対して適切に割り当てられる。 The user ID 3131 is identification information that identifies the user P who uses the refrigerator control application 413, and is appropriately assigned to the user P who uses the refrigerator control application 413.
 冷蔵庫通信情報3132は、冷蔵庫1と通信するための情報である。冷蔵庫通信情報3132は、例えば冷蔵庫1のアドレス情報やセキュリティ情報等を含む。 Refrigerator communication information 3132 is information for communicating with the refrigerator 1. Refrigerator communication information 3132 includes, for example, address information, security information, and the like of the refrigerator 1.
 端末装置通信情報3133は、同じレコードRで対応付くユーザーID3131のユーザーPが利用する冷蔵庫制御アプリ413がインストールされた端末装置4と通信するための情報である。端末装置通信情報3133は、例えば端末装置4のアドレス情報やセキュリティ情報等を含む。 The terminal device communication information 3133 is information for communicating with the terminal device 4 in which the refrigerator control application 413 used by the user P of the user ID 3131 corresponding to the same record R is installed. The terminal device communication information 3133 includes, for example, address information, security information, and the like of the terminal device 4.
 設置場所情報3134は、冷蔵庫1の設置場所を示す情報である。本実施の形態では、冷蔵庫1の設置場所はユーザーPの自宅Hであるため、設置場所情報3134は、自宅Hの住所や郵便番号等を示す。 Installation location information 3134 is information indicating the installation location of the refrigerator 1. In the present embodiment, since the installation location of the refrigerator 1 is the home H of the user P, the installation location information 3134 indicates the address, the zip code, and the like of the home H.
 サーバー通信部31は、所定の通信規格に従った通信ハードウェアを備え、サーバー制御部30の制御により、グローバルネットワークGNと接続する機器と所定の通信規格に従って通信する。本実施の形態においてサーバー通信部31は、冷蔵庫1、端末装置4、及び気象警報サーバー5と通信する。 The server communication unit 31 is equipped with communication hardware according to a predetermined communication standard, and under the control of the server control unit 30, communicates with a device connected to the global network GN according to the predetermined communication standard. In the present embodiment, the server communication unit 31 communicates with the refrigerator 1, the terminal device 4, and the weather warning server 5.
 次に、端末装置4の構成について説明する。
 端末装置4は、端末制御部40、端末通信部41、及びタッチパネル42を備える。
Next, the configuration of the terminal device 4 will be described.
The terminal device 4 includes a terminal control unit 40, a terminal communication unit 41, and a touch panel 42.
 端末制御部40は、CPUやMPU等のプログラムを実行するプロセッサーである端末プロセッサー400、及び端末記憶部410を備え、端末装置4の各部を制御する。端末制御部40は、端末プロセッサー400が、端末記憶部410に記憶された制御プログラム411を読み出して、ハードウェア及びソフトウェアの協働により各種処理を実行する。端末装置4には、冷蔵庫制御アプリ413が事前にインストールされる。冷蔵庫制御アプリ413は、端末プロセッサー400により端末記憶部410から読み出されて実行されることで、端末制御部40を、設定部401、通信制御部402、及び運転制御部403として機能させる。これら機能部の詳細については後述する。 The terminal control unit 40 includes a terminal processor 400, which is a processor that executes programs such as a CPU and an MPU, and a terminal storage unit 410, and controls each unit of the terminal device 4. In the terminal control unit 40, the terminal processor 400 reads out the control program 411 stored in the terminal storage unit 410 and executes various processes in cooperation with hardware and software. The refrigerator control application 413 is installed in the terminal device 4 in advance. The refrigerator control application 413 is read from the terminal storage unit 410 by the terminal processor 400 and executed, so that the terminal control unit 40 functions as a setting unit 401, a communication control unit 402, and an operation control unit 403. Details of these functional units will be described later.
 端末記憶部410は、端末プロセッサー400が実行するプログラムや、端末プロセッサー400により処理されるデータを記憶する記憶領域を有する。端末記憶部410は、端末プロセッサー400が実行する制御プログラム411、端末装置4の設定に係る設定データ412、冷蔵庫制御アプリ413、ユーザーID3131、その他の各種データを記憶する。端末記憶部410は、不揮発性の記憶領域を有する。また、端末記憶部410は、揮発性の記憶領域を備え、端末プロセッサー400のワークエリアを構成してもよい。 The terminal storage unit 410 has a storage area for storing a program executed by the terminal processor 400 and data processed by the terminal processor 400. The terminal storage unit 410 stores the control program 411 executed by the terminal processor 400, the setting data 412 related to the setting of the terminal device 4, the refrigerator control application 413, the user ID 3131, and various other data. The terminal storage unit 410 has a non-volatile storage area. Further, the terminal storage unit 410 may include a volatile storage area and form a work area of the terminal processor 400.
 端末通信部41は、所定の通信規格に従った通信ハードウェアを備え、端末制御部40の制御により、グローバルネットワークGNと接続する機器と所定の通信規格に従って通信する。端末通信部41は、冷蔵庫制御アプリ413の機能により、冷蔵庫制御サーバー3と所定の通信規格に従って通信する。端末通信部41が使用する通信規格は、無線通信規格である。 The terminal communication unit 41 is equipped with communication hardware according to a predetermined communication standard, and under the control of the terminal control unit 40, communicates with a device connected to the global network GN according to the predetermined communication standard. The terminal communication unit 41 communicates with the refrigerator control server 3 according to a predetermined communication standard by the function of the refrigerator control application 413. The communication standard used by the terminal communication unit 41 is a wireless communication standard.
 タッチパネル42は、液晶表示パネル等の表示パネルと、表示パネルに重ねて、或いは一体に設けられたタッチセンサーとを備える。表示パネルは、端末制御部40の制御で、各種画像を表示する。タッチセンサーは、タッチ操作を検出し、端末制御部40に出力する。端末制御部40は、タッチセンサーからの入力に基づいて、タッチ操作に対応する処理を実行する。 The touch panel 42 includes a display panel such as a liquid crystal display panel and a touch sensor that is overlapped with or integrally provided with the display panel. The display panel displays various images under the control of the terminal control unit 40. The touch sensor detects the touch operation and outputs it to the terminal control unit 40. The terminal control unit 40 executes a process corresponding to the touch operation based on the input from the touch sensor.
 上述した通り、端末制御部40は、設定部401、通信制御部402、及び運転制御部403として機能する。 As described above, the terminal control unit 40 functions as a setting unit 401, a communication control unit 402, and an operation control unit 403.
 設定部401は、冷蔵庫制御アプリ413の機能に関する各種設定を行う。例えば、設定部401は、冷蔵庫制御アプリ413がアクセス可能な所定の記憶領域に記憶されたアプリ設定データにおいて、設定値を対応する設定項目にセットすることで、冷蔵庫制御アプリ413の機能に関する各種設定を行う。なお、アプリ設定データは、冷蔵庫制御アプリ413の機能の設定に係るデータであり、各種の設定項目を含む。 The setting unit 401 makes various settings related to the functions of the refrigerator control application 413. For example, the setting unit 401 sets various settings related to the functions of the refrigerator control application 413 by setting the setting values in the corresponding setting items in the application setting data stored in the predetermined storage area accessible to the refrigerator control application 413. I do. The application setting data is data related to the setting of the function of the refrigerator control application 413, and includes various setting items.
 設定部401は、冷蔵庫1の設置場所を設定する。例えば、設定部401は、タッチパネル42に自宅Hの住所や郵便番号をユーザーPに入力させるためのユーザーインターフェースを表示させ、入力された住所や郵便番号を冷蔵庫1の設置場所として設定する。設定部401により設定された冷蔵庫1の設置場所を示す設置場所情報3134は、通信制御部402に出力される。 The setting unit 401 sets the installation location of the refrigerator 1. For example, the setting unit 401 causes the touch panel 42 to display a user interface for inputting the address and zip code of the home H to the user P, and sets the input address and zip code as the installation location of the refrigerator 1. The installation location information 3134 indicating the installation location of the refrigerator 1 set by the setting unit 401 is output to the communication control unit 402.
 通信制御部402は、端末通信部41を制御して冷蔵庫制御サーバー3と各種情報を送受信する。通信制御部402は、設定部401から設置場所情報3134が出力されると、端末記憶部410が記憶するユーザーID3131を付加して、出力された設置場所情報3134を端末通信部41により冷蔵庫制御サーバー3に送信する。冷蔵庫制御サーバー3は、端末装置4から設置場所情報3134を受信すると、冷蔵庫制御データベース313を参照し、受信した設置場所情報3134に付加されたユーザーID3131のレコードRが有する設置場所情報3134を、受信した設置場所情報3134に更新する。 The communication control unit 402 controls the terminal communication unit 41 to send and receive various information to and from the refrigerator control server 3. When the installation location information 3134 is output from the setting unit 401, the communication control unit 402 adds the user ID 3131 stored in the terminal storage unit 410 and outputs the output installation location information 3134 to the refrigerator control server by the terminal communication unit 41. Send to 3. When the refrigerator control server 3 receives the installation location information 3134 from the terminal device 4, it refers to the refrigerator control database 313 and receives the installation location information 3134 held by the record R of the user ID 3131 added to the received installation location information 3134. Update to the installation location information 3134.
 通信制御部402は、終了指示情報を運転制御部403から取得した場合、端末通信部41により終了指示情報を冷蔵庫制御サーバー3に送信する。通信制御部402は、終了指示情報を冷蔵庫制御サーバー3に送信する際、端末記憶部410に記憶されるユーザーID3131を終了指示情報に付加する。 When the communication control unit 402 acquires the end instruction information from the operation control unit 403, the terminal communication unit 41 transmits the end instruction information to the refrigerator control server 3. When the communication control unit 402 transmits the end instruction information to the refrigerator control server 3, the user ID 3131 stored in the terminal storage unit 410 is added to the end instruction information.
 運転制御部403は、停電予冷運転モードの終了指示をユーザーPから受け付けた場合、終了指示情報を生成し、通信制御部402に出力する。運転制御部403は、例えば、タッチパネル42に停電予冷運転モードを終了させるか否かを問い合せるユーザーインターフェースを表示させ、当該ユーザーインターフェースにおいて停電予冷運転モードを終了させる指示を受け付けた場合、終了指示情報の生成及び出力を行う。 When the operation control unit 403 receives the end instruction of the power failure precooling operation mode from the user P, the operation control unit 403 generates the end instruction information and outputs it to the communication control unit 402. The operation control unit 403 displays, for example, a user interface inquiring whether or not to terminate the power failure precooling operation mode on the touch panel 42, and when the user interface receives an instruction to end the power failure precooling operation mode, the end instruction information is displayed. Generate and output.
 [1-2.動作等]
 次に、実施の形態1における冷蔵庫1及び冷蔵庫制御システム1000の動作について説明する。
 まず、図5を参照し、通常運転モード及び停電予冷運転モードにおける冷蔵庫1の各部の動作について説明する。
[1-2. Operation, etc.]
Next, the operation of the refrigerator 1 and the refrigerator control system 1000 in the first embodiment will be described.
First, with reference to FIG. 5, the operation of each part of the refrigerator 1 in the normal operation mode and the power failure precooling operation mode will be described.
 図5は、冷蔵庫1の各部の状態を示すタイミングチャートである。
 図5において、タイミングチャートCAは、圧縮機151の状態を示す。また、タイミングチャートCBは、冷蔵室11の庫内温度の状態を示す。また、タイミングチャートCCは、冷凍室12の庫内温度の状態を示す。また、タイミングチャートCDは、ダンパー156の開閉状態を示す。
FIG. 5 is a timing chart showing the state of each part of the refrigerator 1.
In FIG. 5, the timing chart CA shows the state of the compressor 151. Further, the timing chart CB shows the state of the temperature inside the refrigerator compartment 11. Further, the timing chart CC shows the state of the temperature inside the freezing chamber 12. Further, the timing chart CD shows the open / closed state of the damper 156.
 まず、通常運転モードにおける冷蔵庫1の動作について説明する。
 図5において、冷蔵庫1の運転モードが通常運転モードである期間は、タイミングT1からタイミングT2までの期間である。
First, the operation of the refrigerator 1 in the normal operation mode will be described.
In FIG. 5, the period in which the operation mode of the refrigerator 1 is the normal operation mode is the period from the timing T1 to the timing T2.
 図5のタイミングチャートCAで示すように、冷蔵庫制御部13は、通常運転モードにおいて、圧縮機151の状態を、停止状態と低回転状態とを繰り返す状態にする。停止状態は、圧縮機151が回転駆動していない状態である。低回転状態は、後述する高回転状態より回転数が低く、停止状態より回転数が高い状態である。 As shown in the timing chart CA of FIG. 5, the refrigerator control unit 13 sets the state of the compressor 151 to a state of repeating a stopped state and a low rotation state in the normal operation mode. The stopped state is a state in which the compressor 151 is not rotationally driven. The low rotation speed state is a state in which the rotation speed is lower than the high rotation speed state described later and the rotation speed is higher than the stopped state.
 また、図5のタイミングチャートCDで示すように、冷蔵庫制御部13は、通常運転モードにおいて、冷蔵室11の庫内温度に基づいて、ダンパー156の状態を開状態と閉状態とを繰り返す状態にする。 Further, as shown in the timing chart CD of FIG. 5, in the normal operation mode, the refrigerator control unit 13 repeats the state of the damper 156 in the open state and the closed state based on the temperature inside the refrigerator compartment 11. do.
 具体的には、冷蔵庫制御部13は、冷蔵室11の庫内温度について、ダンパー156を開状態にしたときとダンパー156を閉状態にしたときとの温度差がα(K:ケルビン)となるようにダンパー156の開閉頻度を制御する。α(K)は例えば2(K)である。 Specifically, the refrigerator control unit 13 has a temperature difference of α (K: Kelvin) between when the damper 156 is opened and when the damper 156 is closed with respect to the temperature inside the refrigerator compartment 11. The opening / closing frequency of the damper 156 is controlled so as to be used. α (K) is, for example, 2 (K).
 冷蔵庫制御部13は、冷蔵室温度センサー161Aが検出する温度に基づいて、通常運転モードにおける冷蔵室11の目標温度(以下、冷蔵室第1目標温度という)からα(K)上昇した場合、ダンパー156を開状態にするのと同時に圧縮機151を低回転状態にする。これにより、冷蔵室11と冷凍室12とは、同時に冷却される。この冷却時では、送風がなされるため冷蔵室11の庫内温度が低下する。一方、この冷却時では、冷凍室12を単独で冷却する場合より冷凍室12に送風される風量が低下するため、冷凍室12の庫内温度が上昇する。冷蔵庫制御部13は、冷蔵室11の庫内温度が冷蔵室第1目標温度まで下降した場合、ダンパー156を閉状態にして、冷蔵室11の冷却を終了する。この終了によって、冷凍室12は、単独での冷却が開始される。これにより、冷蔵室11の庫内温度が上昇する一方で冷凍室12の庫内温度は下降する。冷蔵庫制御部13は、冷凍室12の庫内温度が、通常運転モードにおける冷凍室12の目標温度(以下、冷凍室第1目標温度という)まで下降すると、圧縮機151を停止状態にする。その後、冷蔵庫制御部13は、冷蔵室11の庫内温度が冷蔵室第1目標温度からα(K)上昇した場合、ダンパー156を開状態にするのと同時に圧縮機151を低回転状態にする。
 以上のようにして、冷蔵庫制御部13は、冷蔵室11の庫内温度にダンパー156を開状態と閉状態にしたときの温度差がα(K)になるようにダンパー156の開閉頻度を制御する。
The refrigerator control unit 13 is a damper when the temperature rises by α (K) from the target temperature of the refrigerating room 11 (hereinafter referred to as the first target temperature of the refrigerating room) in the normal operation mode based on the temperature detected by the refrigerating room temperature sensor 161A. At the same time as opening the 156 state, the compressor 151 is set to the low rotation state. As a result, the refrigerating chamber 11 and the freezing chamber 12 are cooled at the same time. During this cooling, the temperature inside the refrigerator compartment 11 drops because the air is blown. On the other hand, during this cooling, the amount of air blown to the freezing chamber 12 is lower than when the freezing chamber 12 is cooled alone, so that the temperature inside the freezing chamber 12 rises. When the temperature inside the refrigerator compartment 11 drops to the first target temperature in the refrigerator compartment 11, the refrigerator control unit 13 closes the damper 156 and finishes cooling the refrigerator compartment 11. By this end, the freezing chamber 12 starts cooling independently. As a result, the temperature inside the refrigerator compartment 11 rises, while the temperature inside the freezer chamber 12 falls. The refrigerator control unit 13 puts the compressor 151 in a stopped state when the temperature inside the freezing chamber 12 drops to the target temperature of the freezing chamber 12 in the normal operation mode (hereinafter referred to as the first target temperature of the freezing chamber). After that, when the temperature inside the refrigerator compartment 11 rises by α (K) from the first target temperature in the refrigerator compartment 11, the refrigerator control unit 13 opens the damper 156 and at the same time puts the compressor 151 into a low rotation state. ..
As described above, the refrigerator control unit 13 controls the opening / closing frequency of the damper 156 so that the temperature difference between the open state and the closed state of the damper 156 becomes α (K) at the temperature inside the refrigerator compartment 11. do.
 次に、停電予冷運転モードについて説明する。
 図5において、冷蔵庫1の運転モードが停電予冷運転モードである期間は、タイミングT2からタイミングT4までの期間である。
Next, the power failure precooling operation mode will be described.
In FIG. 5, the period in which the operation mode of the refrigerator 1 is the power failure precooling operation mode is the period from the timing T2 to the timing T4.
 上述した通り、停電予冷運転モードは、温度低下モードと温度維持モードとを含む。
 温度低下モードは、通常運転モードより冷蔵庫1の各収容室の庫内温度を下げるモードである。図5において、冷蔵庫1の運転モードが温度低下モードである期間は、タイミングT2からタイミングT3までの期間である。
As described above, the power failure precooling operation mode includes a temperature drop mode and a temperature maintenance mode.
The temperature lowering mode is a mode in which the temperature inside the refrigerator 1 is lowered from the normal operation mode. In FIG. 5, the period in which the operation mode of the refrigerator 1 is the temperature drop mode is the period from the timing T2 to the timing T3.
 図5のタイミングチャートCAで示すように、冷蔵庫制御部13は、温度低下モードにおいて、圧縮機151を高回転状態にする。高回転状態とは、低回転状態の回転数より高い回転数で駆動している状態である。 As shown in the timing chart CA of FIG. 5, the refrigerator control unit 13 puts the compressor 151 in a high rotation state in the temperature drop mode. The high rotation speed state is a state in which the vehicle is driven at a rotation speed higher than the rotation speed in the low rotation speed state.
 また、図5のタイミングチャートCDで示すように、冷蔵庫制御部13は、停電予冷運転モードにおいて、冷蔵室11の庫内温度及び冷凍室12の庫内温度に基づいて、ダンパー156の状態を、開閉状態を繰り返す状態にする。 Further, as shown in the timing chart CD of FIG. 5, the refrigerator control unit 13 sets the state of the damper 156 in the power failure precooling operation mode based on the temperature inside the refrigerator compartment 11 and the temperature inside the freezer chamber 12. Put it in a state where it repeats opening and closing.
 具体的には、冷蔵庫制御部13は、冷蔵室11の庫内温度について、ダンパー156を開状態にしたときとダンパー156を閉状態にしたときとの温度差がβKとなるようにダンパー156の開閉頻度を制御する。β(K)は、α(K)より低い温度差であり、例えば0.5(K)である。 Specifically, the refrigerator control unit 13 determines that the temperature inside the refrigerator compartment 11 is βK so that the temperature difference between the time when the damper 156 is opened and the time when the damper 156 is closed is βK. Control the opening and closing frequency. β (K) is a temperature difference lower than α (K), for example 0.5 (K).
 冷蔵庫制御部13は、ダンパー156を開状態にするのと同時に圧縮機151を高回転状態にして冷蔵室11と冷凍室12とを同時に冷却する。この冷却時では、送風がなされるため冷蔵室11の庫内温度が低下する。一方、この冷却時では、冷凍室12を単独で冷却する場合より冷凍室12に送風される風量が低下するため、冷凍室12の庫内温度が上昇する。冷蔵庫制御部13は、冷蔵室温度センサー161Aが検出する温度に基づいて、冷蔵室11の庫内温度が、停電予冷運転モードにおける冷蔵室11の目標温度(以下、冷蔵室第2目標温度という)まで下降すると、ダンパー156を閉状態にして、冷蔵室11の冷却を終了する。この終了によって、冷凍室12は、単独での冷却が開始される。これにより、冷蔵室11の庫内温度が上昇する一方で冷凍室12の庫内温度は下降する。冷蔵庫制御部13は、冷凍室12の庫内温度を、停電予冷運転モードにおける冷凍室12の目標温度(以下、冷凍室第2目標温度という)を目指して下降させる。ここで、ダンパー156を開閉制御する温度差を通常運転モードより小さくしているため、冷凍室12の庫内温度が冷凍室第2目標温度に到達する前に冷蔵室11の庫内温度が冷蔵室第2目標温度からβ(K)上昇する。冷蔵庫制御部13は、これをトリガーに、再度、ダンパー156を開状態にして、冷蔵室11及び冷凍室12を同時に冷却する。冷蔵庫制御部13は、温度低下モードにおいて、冷凍室12の庫内温度が冷凍室第2目標温度まで下降するまでこの制御をくり返す。
 なお、冷蔵室第2目標温度は、例えば、冷蔵室第1目標温度から3(K)低い温度である。冷凍室第2目標温度は、例えば、冷凍室第1目標温度から5(K)低い温度である。
The refrigerator control unit 13 simultaneously cools the refrigerating chamber 11 and the freezing chamber 12 by setting the compressor 151 in a high rotation state at the same time as opening the damper 156. During this cooling, the temperature inside the refrigerator compartment 11 drops because the air is blown. On the other hand, during this cooling, the amount of air blown to the freezing chamber 12 is lower than when the freezing chamber 12 is cooled alone, so that the temperature inside the freezing chamber 12 rises. In the refrigerator control unit 13, based on the temperature detected by the refrigerating room temperature sensor 161A, the temperature inside the refrigerating room 11 is the target temperature of the refrigerating room 11 in the power failure precooling operation mode (hereinafter referred to as the second target temperature of the refrigerating room). When it descends to, the damper 156 is closed and the cooling of the refrigerating chamber 11 is completed. By this end, the freezing chamber 12 starts cooling independently. As a result, the temperature inside the refrigerator compartment 11 rises, while the temperature inside the freezer chamber 12 falls. The refrigerator control unit 13 lowers the temperature inside the freezing chamber 12 toward the target temperature of the freezing chamber 12 in the power failure precooling operation mode (hereinafter referred to as the second target temperature of the freezing chamber). Here, since the temperature difference for controlling the opening and closing of the damper 156 is made smaller than that in the normal operation mode, the temperature inside the refrigerating chamber 11 is refrigerated before the temperature inside the freezing chamber 12 reaches the second target temperature of the freezing chamber. The temperature rises by β (K) from the second target temperature in the room. The refrigerator control unit 13 uses this as a trigger to open the damper 156 again to cool the refrigerating chamber 11 and the freezing chamber 12 at the same time. The refrigerator control unit 13 repeats this control in the temperature lowering mode until the temperature inside the freezing chamber 12 drops to the second target temperature in the freezing chamber.
The second target temperature of the refrigerating chamber is, for example, a temperature 3 (K) lower than the first target temperature of the refrigerating chamber. The second target temperature of the freezing chamber is, for example, a temperature 5 (K) lower than the first target temperature of the freezing chamber.
 以上のようにして、冷蔵庫制御部13は、冷蔵室11の庫内温度について、ダンパー156を開状態と閉状態にしたときの温度差がβ(K)となるようにダンパー156の開閉頻度を制御する。また、冷蔵庫制御部13は、冷蔵室11の庫内温度差がβ(K)となるダンパー156の高頻度の開閉によって、冷凍室12の庫内温度を冷凍室第2目標温度まで下降させる。 As described above, the refrigerator control unit 13 determines the frequency of opening and closing the damper 156 so that the temperature difference between the open state and the closed state of the damper 156 is β (K) with respect to the temperature inside the refrigerator compartment 11. Control. Further, the refrigerator control unit 13 lowers the temperature inside the freezer chamber 12 to the second target temperature of the freezer chamber by frequently opening and closing the damper 156 in which the temperature difference in the refrigerator compartment 11 is β (K).
 冷蔵庫制御部13は、温度維持モードに移行する移行トリガーが発生するまで、温度低下モードを継続する。移行トリガーは、温度低下モードを開始してから所定期間経過したこと、又は、冷蔵室11が冷蔵室第2目標温度に到達し且つ冷凍室12が冷凍室第2目標温度に到達したことである。 The refrigerator control unit 13 continues the temperature drop mode until a transition trigger for shifting to the temperature maintenance mode is generated. The transition trigger is that a predetermined period has elapsed from the start of the temperature decrease mode, or that the refrigerating chamber 11 has reached the second target temperature of the refrigerating chamber and the freezing chamber 12 has reached the second target temperature of the freezing chamber. ..
 前者の移行トリガーの場合、冷蔵庫制御部13は、温度低下モードを開始してから所定期間の計時を開始し、所定期間が経過した場合に冷蔵庫1の運転モードを温度維持モードに移行させる。この所定期間は、冷蔵室11及び冷凍室12の庫内が、停電予冷運転モードにおける目標温度に到達できる期間であり、予め定められている。 In the case of the former transition trigger, the refrigerator control unit 13 starts timing for a predetermined period after starting the temperature drop mode, and shifts the operation mode of the refrigerator 1 to the temperature maintenance mode when the predetermined period elapses. This predetermined period is a period during which the inside of the refrigerating chamber 11 and the freezing chamber 12 can reach the target temperature in the power failure precooling operation mode, and is predetermined.
 後者の移行トリガーの場合、冷蔵庫制御部13は、冷蔵室温度センサー161Aが検出する温度及び冷凍室温度センサー161Bが検出する温度に基づいて、冷蔵室11の庫内温度及び冷凍室12の庫内温度を監視する。そして、冷蔵庫制御部13は、冷蔵室11が冷蔵室第2目標温度に到達し且つ、冷凍室12が冷凍室第2目標温度に到達した場合、冷蔵庫1の運転モードを温度維持モードに移行させる。 In the case of the latter transition trigger, the refrigerator control unit 13 determines the temperature inside the refrigerating chamber 11 and the inside of the freezing chamber 12 based on the temperature detected by the refrigerating chamber temperature sensor 161A and the temperature detected by the freezing chamber temperature sensor 161B. Monitor the temperature. Then, when the refrigerating chamber 11 reaches the second target temperature of the refrigerating chamber and the freezing chamber 12 reaches the second target temperature of the freezing chamber, the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 to the temperature maintenance mode. ..
 次に、温度維持モードについて説明する。
 温度維持モードは、温度低下モードにおいて低下させた庫内温度を維持するモードである。図5において、冷蔵庫1の運転モードが温度維持モードである期間は、タイミングT3からタイミングT4までの期間である。
Next, the temperature maintenance mode will be described.
The temperature maintenance mode is a mode for maintaining the temperature inside the refrigerator lowered in the temperature lowering mode. In FIG. 5, the period in which the operation mode of the refrigerator 1 is the temperature maintenance mode is the period from the timing T3 to the timing T4.
 図5のタイミングチャートCAで示すように、冷蔵庫制御部13は、温度維持モードにおいて、圧縮機151を低回転状態にする。ここで、温度維持モードにおいて圧縮機151の低回転状態に維持することで、次の効果を奏する。圧縮機151が停止状態と回転状態とを繰り返すと冷蔵室11及び冷凍室12の庫内温度の変動が大きくなり適切に温度を維持できず、また、高回転状態であると消費電力が大きい。そこで、温度維持モードでは、圧縮機151の状態を低回転状態に維持することで、冷蔵室11及び冷凍室12の庫内温度を適切に維持しつつ、消費電力の増大を抑制できる。 As shown in the timing chart CA of FIG. 5, the refrigerator control unit 13 puts the compressor 151 in a low rotation state in the temperature maintenance mode. Here, by maintaining the low rotation state of the compressor 151 in the temperature maintenance mode, the following effects are obtained. When the compressor 151 repeats the stopped state and the rotating state, the fluctuations in the internal temperatures of the refrigerating chamber 11 and the freezing chamber 12 become large and the temperature cannot be maintained properly, and when the compressor 151 is in the high rotation state, the power consumption is large. Therefore, in the temperature maintenance mode, by maintaining the state of the compressor 151 in a low rotation state, it is possible to suppress an increase in power consumption while appropriately maintaining the internal temperatures of the refrigerating chamber 11 and the freezing chamber 12.
 また、図5のタイミングチャートCDで示すように、冷蔵庫制御部13は、停電予冷運転モードにおいて、冷蔵室11の庫内温度及び冷凍室12の庫内温度のいずれかに基づいて、ダンパー156の状態を、開閉状態を繰り返す状態にする。 Further, as shown in the timing chart CD of FIG. 5, the refrigerator control unit 13 of the damper 156 is based on either the internal temperature of the refrigerating chamber 11 or the internal temperature of the freezing chamber 12 in the power failure precooling operation mode. The state is changed to a state in which the open / closed state is repeated.
 具体的には、冷蔵庫制御部13は、冷蔵室温度センサー161Aが検出する温度に基づいて、冷蔵室第2目標温度からβ(K)上昇した場合、ダンパー156を開状態にし、冷蔵室第2目標温度まで到達した場合、ダンパー156を閉状態にする。 Specifically, the refrigerator control unit 13 opens the damper 156 when the temperature rises by β (K) from the second target temperature of the refrigerating room based on the temperature detected by the refrigerating room temperature sensor 161A, and opens the second refrigerating room. When the target temperature is reached, the damper 156 is closed.
 また、具体的には、冷蔵庫制御部13は、冷凍室温度センサー161Bが検出する温度に基づいて、冷凍室第2目標温度からβ(K)上昇した場合、ダンパー156を閉状態にし、冷凍室第2目標温度まで到達した場合、ダンパー156を開状態にする。 Specifically, the refrigerator control unit 13 closes the damper 156 and closes the freezing chamber when the temperature rises by β (K) from the second target temperature of the freezing chamber based on the temperature detected by the freezing chamber temperature sensor 161B. When the second target temperature is reached, the damper 156 is opened.
 次に、冷蔵庫1の運転モードの移行に係わる冷蔵庫制御システム1000の動作について説明する。 Next, the operation of the refrigerator control system 1000 related to the transition of the operation mode of the refrigerator 1 will be described.
 図6は、冷蔵庫制御システム1000の動作を示すフローチャートである。図6において、フローチャートFAは冷蔵庫制御サーバー3の動作を示し、フローチャートFBは冷蔵庫1の動作を示す。 FIG. 6 is a flowchart showing the operation of the refrigerator control system 1000. In FIG. 6, the flowchart FA shows the operation of the refrigerator control server 3, and the flowchart FB shows the operation of the refrigerator 1.
 図6に示すフローチャートFBの開始時点では、冷蔵庫1の運転モードが通常運転モードであるとする。また、図6に示すフローチャートFAでは、冷蔵庫制御サーバー3のサーバー制御部30が、冷蔵庫制御データベース313が格納するレコードRのうち1件のレコードRを処理対象としている。 At the start of the flowchart FB shown in FIG. 6, it is assumed that the operation mode of the refrigerator 1 is the normal operation mode. Further, in the flowchart FA shown in FIG. 6, the server control unit 30 of the refrigerator control server 3 targets one record R among the records R stored in the refrigerator control database 313.
 フローチャートFAを参照して、サーバー制御部30は、冷蔵庫1の設置場所を含む区域に気象警報が発令されたか否かを判別する(ステップSA1)。 With reference to the flowchart FA, the server control unit 30 determines whether or not a weather warning has been issued in the area including the installation location of the refrigerator 1 (step SA1).
 例えば、ステップSA1において、サーバー制御部30は、サーバー通信部31により気象警報サーバー5に情報送信を行うことで、冷蔵庫1の設置場所を含む区域に気象警報が発令されているか否かを問い合せる。この問い合わせは、所定時間毎(例えば10分毎)に実行される。問い合せに際して気象警報サーバー5に送信される情報には、処理対象のレコードRが有する設置場所情報3134が含まれる。気象警報サーバー5は、受信した情報に含まれる設置場所情報3134が示す設置場所を含む区域に対して気象警報が発令されているか否かを、例えば区域と気象警報の発令の有無とが対応付けられた所定のデータベースに基づき判定する。気象警報サーバー5は、気象警報が発令されていると判定した場合、問い合せに対する応答として、気象警報が発令されていることを示す気象警報発令情報を冷蔵庫制御サーバー3に送信する。また、気象警報サーバー5は、気象警報が発令されていないと判定した場合、問い合せに対する応答として、気象警報が発令されていないことを示す気象警報発令情報を冷蔵庫制御サーバー3に送信する。サーバー制御部30は、問い合せに対する応答として受信した気象警報発令情報が、気象警報が発令されていることを示す場合、ステップSA1で肯定判別する。一方、サーバー制御部30は、問い合せに対する応答として受信した気象警報発令情報が、気象警報が発令されていないことを示す場合、ステップSA1で否定判別する。 For example, in step SA1, the server control unit 30 inquires whether or not a weather warning has been issued in the area including the installation location of the refrigerator 1 by transmitting information to the weather warning server 5 by the server communication unit 31. This inquiry is executed every predetermined time (for example, every 10 minutes). The information transmitted to the weather warning server 5 at the time of inquiry includes the installation location information 3134 possessed by the record R to be processed. The weather warning server 5 correlates whether or not a weather warning is issued for an area including the installation location indicated by the installation location information 3134 included in the received information, for example, the area and whether or not the weather warning is issued. Judgment is made based on the given predetermined database. When the weather warning server 5 determines that the weather warning has been issued, the weather warning server 5 transmits the weather warning issuing information indicating that the weather warning has been issued to the refrigerator control server 3 as a response to the inquiry. Further, when the weather warning server 5 determines that the weather warning has not been issued, the weather warning server 5 transmits the weather warning issuing information indicating that the weather warning has not been issued to the refrigerator control server 3 as a response to the inquiry. When the weather warning issuance information received as a response to the inquiry indicates that the weather warning has been issued, the server control unit 30 makes an affirmative determination in step SA1. On the other hand, when the weather warning issuance information received as a response to the inquiry indicates that the weather warning has not been issued, the server control unit 30 makes a negative determination in step SA1.
 サーバー制御部30は、冷蔵庫1の設置場所を含む区域に気象警報が発令されていないと判別した場合(ステップSA1:NO)、本処理を終了する。 When the server control unit 30 determines that no weather warning has been issued in the area including the installation location of the refrigerator 1 (step SA1: NO), the server control unit 30 ends this process.
 一方、サーバー制御部30は、冷蔵庫1の設置場所を含む区域に気象警報が発令されたと判別した場合(ステップSA1:YES)、処理対象のレコードRに含まれる冷蔵庫通信情報3132に基づいて、移行指示情報をサーバー通信部31により冷蔵庫1に送信する(ステップSA2)。 On the other hand, when the server control unit 30 determines that the weather warning has been issued in the area including the installation location of the refrigerator 1 (step SA1: YES), the server control unit 30 shifts based on the refrigerator communication information 3132 included in the record R to be processed. The instruction information is transmitted to the refrigerator 1 by the server communication unit 31 (step SA2).
 フローチャートFBを参照して、冷蔵庫制御部13は、冷蔵庫通信部14により移行指示情報を冷蔵庫制御サーバー3から受信したか否かを判別する(ステップSB1)。 With reference to the flowchart FB, the refrigerator control unit 13 determines whether or not the transition instruction information has been received from the refrigerator control server 3 by the refrigerator communication unit 14 (step SB1).
 冷蔵庫制御部13は、移行指示情報を受信していないと判別した場合(ステップSB1:NO)、再度、ステップSB1の処理を実行する。 When the refrigerator control unit 13 determines that the transition instruction information has not been received (step SB1: NO), the refrigerator control unit 13 executes the process of step SB1 again.
 冷蔵庫制御部13は、移行指示情報を受信したと判別した場合(ステップSB1:YES)、冷蔵庫1の運転モードを通常運転モードから停電予冷運転モードの温度低下モードに移行させる(ステップSB2)。 When the refrigerator control unit 13 determines that the transition instruction information has been received (step SB1: YES), the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 from the normal operation mode to the temperature drop mode of the power failure precooling operation mode (step SB2).
 次いで、冷蔵庫制御部13は、移行トリガーが発生したか否かを判別する(ステップSB3)。 Next, the refrigerator control unit 13 determines whether or not a transition trigger has occurred (step SB3).
 冷蔵庫制御部13は、移行トリガーが発生したと判別した場合(ステップSB3:YES)、冷蔵庫1の運転モードを停電予冷運転モードの温度維持モードに移行させる(ステップSB4)。 When the refrigerator control unit 13 determines that the transition trigger has occurred (step SB3: YES), the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 to the temperature maintenance mode of the power failure precooling operation mode (step SB4).
 次いで、冷蔵庫制御部13は、冷蔵庫通信部14により冷蔵庫制御サーバー3から終了指示情報を受信したか否かを判別する(ステップSB5)。 Next, the refrigerator control unit 13 determines whether or not the end instruction information has been received from the refrigerator control server 3 by the refrigerator communication unit 14 (step SB5).
 ステップSB3の説明に戻り、冷蔵庫制御部13は、移行トリガーが発生していないと判別した場合(ステップSB3:NO)、冷蔵庫通信部14により冷蔵庫制御サーバー3から終了指示情報を受信したか否かを判別する(ステップSB6)。 Returning to the explanation of step SB3, when the refrigerator control unit 13 determines that the transition trigger has not occurred (step SB3: NO), whether or not the refrigerator communication unit 14 has received the end instruction information from the refrigerator control server 3. (Step SB6).
 フローチャートFAの説明に戻り、サーバー制御部30は、移行指示情報を冷蔵庫1に送信すると、発令された気象警報が解除されたか否かを判別する(ステップSA3)。 Returning to the explanation of the flowchart FA, the server control unit 30 determines whether or not the issued weather warning has been canceled when the transition instruction information is transmitted to the refrigerator 1 (step SA3).
 例えば、ステップSA3において、サーバー制御部30は、ステップSA1と同様に、冷蔵庫1の設置場所を含む区域に気象警報が発令されているか否かを、気象警報サーバー5に問い合せる。サーバー制御部30は、問い合せに対する応答として気象警報サーバー5から受信した気象警報発令情報が、気象警報が発令されていることを示す場合、ステップSA3で否定判別し、気象警報が発令されていないことを示す場合、ステップSA3で肯定判別する。 For example, in step SA3, the server control unit 30 inquires of the weather warning server 5 whether or not a weather warning has been issued in the area including the installation location of the refrigerator 1, as in step SA1. When the weather warning issuance information received from the weather warning server 5 as a response to the inquiry indicates that the weather warning has been issued, the server control unit 30 makes a negative determination in step SA3, and the weather warning has not been issued. In the case of indicating, affirmative determination is made in step SA3.
 サーバー制御部30は、発令された気象警報が解除されていないと判別した場合(ステップSA3:NO)、再度、ステップSA3の処理を実行する。 When the server control unit 30 determines that the issued weather warning has not been canceled (step SA3: NO), the server control unit 30 executes the process of step SA3 again.
 一方、サーバー制御部30は、発令された気象警報が解除されたと判別した場合(ステップSA3:YES)、処理対象のレコードRに含まれる冷蔵庫通信情報3132に基づいて、終了指示情報をサーバー通信部31により送信する(ステップSA4)。 On the other hand, when the server control unit 30 determines that the issued weather warning has been canceled (step SA3: YES), the server communication unit 30 outputs the end instruction information based on the refrigerator communication information 3132 included in the record R to be processed. It is transmitted by 31 (step SA4).
 フローチャートFBのステップSB5の説明に戻り、冷蔵庫制御部13は、終了指示情報を受信していないと判別した場合(ステップSB5:NO)、再度、ステップSB5の処理を実行する。 Returning to the explanation of step SB5 of the flowchart FB, when it is determined that the end instruction information has not been received (step SB5: NO), the refrigerator control unit 13 executes the process of step SB5 again.
 一方、冷蔵庫制御部13は、終了指示情報を受信したと判別した場合(ステップSB5:YES)、停電予冷運転モードを終了する(ステップSB7)。ステップSB7において、冷蔵庫制御部13は、冷蔵庫1の運転モードを停電予冷運転モードから通常運転モードに移行させる。 On the other hand, when the refrigerator control unit 13 determines that the end instruction information has been received (step SB5: YES), the refrigerator control unit 13 ends the power failure precooling operation mode (step SB7). In step SB7, the refrigerator control unit 13 shifts the operation mode of the refrigerator 1 from the power failure precooling operation mode to the normal operation mode.
 ステップSB6の説明に戻り、冷蔵庫制御部13は、終了指示情報を受信していないと判別した場合(ステップSB6:NO)、再度、ステップSB3の処理を実行する。 Returning to the explanation of step SB6, when the refrigerator control unit 13 determines that the end instruction information has not been received (step SB6: NO), the process of step SB3 is executed again.
 一方、冷蔵庫制御部13は、終了指示情報を受信したと判別した場合(ステップSB6:YES)、停電予冷運転モードを終了する(ステップSB7)。 On the other hand, when the refrigerator control unit 13 determines that the end instruction information has been received (step SB6: YES), the refrigerator control unit 13 ends the power failure precooling operation mode (step SB7).
 以上のように、冷蔵庫制御システム1000は、気象警報が発令された場合、冷蔵庫1が運転モードを通常運転モードから停電予冷運転モードに移行させる。これにより、気象警報が発令された場合に冷蔵庫1の庫内温度を低下させるため、停電発生前に冷蔵庫1の庫内温度を低下させることができる。そのため、外部電源を用いなくても、停電時において冷蔵庫1の冷却能力を長期に亘って維持できる。 As described above, in the refrigerator control system 1000, when a weather warning is issued, the refrigerator 1 shifts the operation mode from the normal operation mode to the power failure precooling operation mode. As a result, when a weather warning is issued, the temperature inside the refrigerator 1 is lowered, so that the temperature inside the refrigerator 1 can be lowered before a power failure occurs. Therefore, the cooling capacity of the refrigerator 1 can be maintained for a long period of time even in the event of a power failure without using an external power source.
 また、冷蔵庫制御部13は、停電予冷運転モードにおいて、ダンパー156が開状態のときと閉状態のときとの冷蔵室11及び冷凍室12の庫内温度の温度差がβKとなるように、ダンパー156の開閉頻度を制御する。これにより、停電時において冷蔵庫1の冷却能力をより長期に亘って維持できる。 Further, the refrigerator control unit 13 sets the damper so that the temperature difference between the refrigerator chamber 11 and the freezing chamber 12 when the damper 156 is open and when the damper 156 is closed is βK in the power failure precooling operation mode. The opening / closing frequency of 156 is controlled. As a result, the cooling capacity of the refrigerator 1 can be maintained for a longer period of time in the event of a power failure.
 図7を参照して、この効果について詳述する。
 図7は、冷蔵室11の庫内温度の変動、及び冷凍室12の庫内温度の変動を比較した図である。図7においてタイミングチャートCEは、冷蔵室11の庫内温度を示す。また、図7においてタイミングチャートCFは、冷凍室12の庫内温度を示す。
This effect will be described in detail with reference to FIG. 7.
FIG. 7 is a diagram comparing fluctuations in the temperature inside the refrigerator compartment 11 and fluctuations in the temperature inside the freezer compartment 12. In FIG. 7, the timing chart CE shows the temperature inside the refrigerator compartment 11. Further, in FIG. 7, the timing chart CF shows the temperature inside the freezing chamber 12.
 図7では、タイミングT5からタイミングT6までの期間が冷蔵庫1の運転モードが通常運転モードである期間であり、タイミングT6からタイミングT7までの期間が冷蔵庫1の運転モードが温度低下モードである期間であり、タイミングT7からタイミングT8までの期間が温度維持モードである期間である。 In FIG. 7, the period from timing T5 to timing T6 is the period in which the operation mode of the refrigerator 1 is the normal operation mode, and the period from timing T6 to timing T7 is the period in which the operation mode of the refrigerator 1 is the temperature drop mode. Yes, the period from timing T7 to timing T8 is the period in which the temperature is maintained.
 タイミングチャートCEにおいて、実線は、従来の冷却方法により庫内を冷却した場合の冷蔵室11の庫内温度の変動を示している。また、タイミングチャートCEにおいて、破線は、本開示の冷却方法により庫内を冷却した場合の冷蔵室11の庫内温度の変動を示している。 In the timing chart CE, the solid line shows the fluctuation of the temperature inside the refrigerator chamber 11 when the inside of the refrigerator is cooled by the conventional cooling method. Further, in the timing chart CE, the broken line indicates the fluctuation of the temperature inside the refrigerator chamber 11 when the inside of the refrigerator is cooled by the cooling method of the present disclosure.
 タイミングチャートCFにおいて、実線は、従来の冷却方法により庫内を冷却した場合の冷凍室12の庫内温度の変動を示している。また、タイミングチャートCFにおいて、破線は、本開示の冷却方式により庫内を冷却した場合の冷凍室12の庫内温度の変動を示している。 In the timing chart CF, the solid line shows the fluctuation of the temperature inside the freezer chamber 12 when the inside of the refrigerator is cooled by the conventional cooling method. Further, in the timing chart CF, the broken line indicates the fluctuation of the temperature inside the freezing chamber 12 when the inside of the refrigerator is cooled by the cooling method of the present disclosure.
 ここで、従来の冷却方法は、ダンパー156が開状態のときとダンパー156が閉状態のときとの温度差を考慮せずに、ダンパー156の開閉状態を制御して庫内温度を低下させる方法である。 Here, the conventional cooling method is a method of controlling the open / closed state of the damper 156 to lower the temperature inside the refrigerator without considering the temperature difference between the time when the damper 156 is in the open state and the time when the damper 156 is in the closed state. Is.
 実線と破線を比較して明らかな通り、本開示の停電予冷運転モードにおいては、従来の冷却方法と比べて、冷蔵室11の庫内温度及び冷凍室12の庫内温度の変動を抑制できる。 As is clear by comparing the solid line and the broken line, in the power failure precooling operation mode of the present disclosure, fluctuations in the temperature inside the refrigerator compartment 11 and the temperature inside the refrigerator compartment 12 can be suppressed as compared with the conventional cooling method.
 これにより、従来の冷却方法と比べて、本開示の停電予冷運転モードは、停電が発生したタイミングによって停電時の冷却能力に差が生じることを抑制できる。よって、停電時における冷蔵庫の冷却能力をより長期に亘って維持できる。 As a result, as compared with the conventional cooling method, the power failure precooling operation mode of the present disclosure can suppress a difference in the cooling capacity at the time of a power failure depending on the timing when the power failure occurs. Therefore, the cooling capacity of the refrigerator in the event of a power failure can be maintained for a longer period of time.
 詳述すると、従来の冷却方法において、図7で示すタイミングTAで停電が発生した場合とタイミングT7で停電が発生した場合とを比較する。タイミングT7で停電が発生した場合は、冷蔵室11の庫内温度が冷蔵室第2目標温度に近いため、停電時に冷蔵室11の冷却能力を長期で維持できる。一方、タイミングTAで停電が発生した場合は、冷蔵室11の庫内温度が冷蔵室第1目標温度に近い状態、すなわち十分に冷蔵室11の庫内温度が低下していない状態であるため、停電時に冷蔵室11の冷却能力を長期に維持できない。これは、従来の冷却方法では、温度低下時における冷蔵室11の庫内温度の変動が大きいためである。他方、本開示の冷却方法では、温度変動を抑制できるため、タイミングTAに停電が発生しても、十分に冷蔵室11の庫内温度が低下した状態であるため、停電時に冷蔵室11の冷却能力を長期に維持できる。 More specifically, in the conventional cooling method, the case where the power failure occurs at the timing TA shown in FIG. 7 and the case where the power failure occurs at the timing T7 are compared. When a power failure occurs at the timing T7, the temperature inside the refrigerator chamber 11 is close to the second target temperature of the refrigerator chamber, so that the cooling capacity of the refrigerator chamber 11 can be maintained for a long period of time in the event of a power failure. On the other hand, when a power failure occurs at the timing TA, the temperature inside the refrigerator compartment 11 is close to the first target temperature of the refrigerator compartment 11, that is, the temperature inside the refrigerator compartment 11 is not sufficiently lowered. The cooling capacity of the refrigerator compartment 11 cannot be maintained for a long period of time in the event of a power failure. This is because, in the conventional cooling method, the temperature inside the refrigerator compartment 11 fluctuates greatly when the temperature drops. On the other hand, since the cooling method of the present disclosure can suppress temperature fluctuations, even if a power failure occurs in the timing TA, the temperature inside the refrigerating room 11 is sufficiently lowered, so that the refrigerating room 11 is cooled in the event of a power failure. Capability can be maintained for a long time.
 また、庫内温度の変動を抑制できるため、庫内温度を低下させる際に、第1吐出口111A~第3吐出口111C付近が凍結することを抑制できる。 Further, since the fluctuation of the internal temperature can be suppressed, it is possible to suppress the vicinity of the first discharge port 111A to the third discharge port 111C from freezing when the internal temperature is lowered.
 さて、上述した冷蔵庫制御システム1000の動作では、冷蔵庫1が停電予冷運転モードを終了する終了トリガーが、気象警報の解除による冷蔵庫1の終了指示情報の受信である。しかしながら、停電予冷運転モードを終了する終了トリガーは、これに限定されない。
 ここで、他の終了トリガーについて複数説明する。
By the way, in the operation of the refrigerator control system 1000 described above, the end trigger for the refrigerator 1 to end the power failure precooling operation mode is the reception of the end instruction information of the refrigerator 1 by canceling the weather warning. However, the end trigger for ending the power failure precooling operation mode is not limited to this.
Here, a plurality of other termination triggers will be described.
 <第1の他の終了トリガー>
 第1の他の終了トリガーにより停電予冷運転モードを終了する構成では、冷蔵庫1は、機能部として冷蔵庫操作部を備える。冷蔵庫操作部は、所定の位置に設けられた操作スイッチ等の操作手段を備え、ユーザーPの操作手段に対する操作を検出し、検出結果を冷蔵庫制御部13に出力する。冷蔵庫操作部は、操作スイッチと共に或いは代えてタッチパネルを備えてもよい。冷蔵庫制御部13は、冷蔵庫操作部からの入力に基づいて、操作手段に対する操作に対応する処理を実行する。
 冷蔵庫制御部13は、冷蔵庫操作部が受け付けたユーザーPの操作が、停電予冷運転モードの終了指示を示す操作である場合、終了トリガーが発生したと判別し、停電予冷運転モードを終了する。
<First other end trigger>
In the configuration in which the power failure precooling operation mode is terminated by the first other termination trigger, the refrigerator 1 includes a refrigerator operating unit as a functional unit. The refrigerator operation unit includes an operation means such as an operation switch provided at a predetermined position, detects an operation of the user P on the operation means, and outputs the detection result to the refrigerator control unit 13. The refrigerator operation unit may be provided with a touch panel together with or in place of the operation switch. The refrigerator control unit 13 executes a process corresponding to an operation on the operating means based on an input from the refrigerator operation unit.
When the operation of the user P accepted by the refrigerator operation unit is an operation indicating the end instruction of the power failure precooling operation mode, the refrigerator control unit 13 determines that the end trigger has occurred and ends the power failure precooling operation mode.
 <第2の他の終了トリガー>
 第2の他の終了トリガーにより停電予冷運転モードを終了する構成では、冷蔵庫1は、冷蔵庫制御サーバー3を介して、端末装置4から終了指示情報を受信する。
 端末装置4の運転制御部403は、停電予冷運転モードの終了指示、或いは庫内温度の変更指示をユーザーPから受け付けた場合、通信制御部402に終了指示情報を出力する。通信制御部402は、端末記憶部410が記憶するユーザーID3131を付加して、運転制御部403が出力した終了指示情報を端末通信部41により冷蔵庫制御サーバー3に送信する。
 冷蔵庫制御サーバー3のサーバー制御部30は、サーバー通信部31により端末装置4から終了指示情報を受信すると、冷蔵庫制御データベース313を参照して、終了指示情報に付加されたユーザーID3131を含むレコードRを特定する。次いで、サーバー制御部30は、特定したレコードRに含まれる冷蔵庫通信情報3132に基づいて、端末装置4から受信した終了指示情報をサーバー通信部31により冷蔵庫1に送信する。
 冷蔵庫1の冷蔵庫制御部13は、冷蔵庫通信部14により冷蔵庫制御サーバー3から終了指示情報を受信すると、終了トリガーが発生したと判別し、停電予冷運転モードを終了する。
<Second other end trigger>
In the configuration in which the power failure precooling operation mode is terminated by the second other termination trigger, the refrigerator 1 receives the termination instruction information from the terminal device 4 via the refrigerator control server 3.
When the operation control unit 403 of the terminal device 4 receives the end instruction of the power failure precooling operation mode or the change instruction of the temperature inside the refrigerator from the user P, the operation control unit 403 outputs the end instruction information to the communication control unit 402. The communication control unit 402 adds the user ID 3131 stored in the terminal storage unit 410, and transmits the end instruction information output by the operation control unit 403 to the refrigerator control server 3 by the terminal communication unit 41.
When the server control unit 30 of the refrigerator control server 3 receives the end instruction information from the terminal device 4 by the server communication unit 31, the server control unit 30 refers to the refrigerator control database 313 and records the record R including the user ID 3131 added to the end instruction information. Identify. Next, the server control unit 30 transmits the end instruction information received from the terminal device 4 to the refrigerator 1 by the server communication unit 31 based on the refrigerator communication information 3132 included in the specified record R.
When the refrigerator control unit 13 of the refrigerator 1 receives the end instruction information from the refrigerator control server 3 by the refrigerator communication unit 14, it determines that the end trigger has occurred and ends the power failure precooling operation mode.
 冷蔵庫制御システム1000の動作では、図6に示す終了トリガー、第1の他の終了トリガー、及び第2の他の終了トリガーのいずれか1の終了トリガーについて発生したか否かを判別してもよし、任意の複数の終了トリガーのいずれかが発生したか否かについて判別してもよい。しかしながら、停電予冷運転モードの終了トリガーには、少なくとも、図6に示す終了トリガー、すなわち発令された気象警報が解除された場合に終了指示情報を受信することを含むのが好ましい。これは、気象警報が解除された場合に冷蔵庫1が確実に停電予冷運転モードを終了でき、不必要な庫内の冷却及び消費電力の増大を抑制できるためである。 In the operation of the refrigerator control system 1000, it may be determined whether or not the end trigger of any one of the end trigger, the first other end trigger, and the second other end trigger shown in FIG. 6 has occurred. , It may be determined whether or not any one of a plurality of arbitrary termination triggers has occurred. However, it is preferable that the end trigger of the power failure precooling operation mode includes at least the end trigger shown in FIG. 6, that is, the reception of the end instruction information when the issued weather warning is canceled. This is because the refrigerator 1 can surely end the power failure precooling operation mode when the weather warning is canceled, and can suppress unnecessary cooling of the inside of the refrigerator and increase in power consumption.
 [1-3.変形例]
 次に、実施の形態1の変形例について説明する。
 実施の形態1では、冷蔵庫制御システム1000は、気象警報が発令された場合に自動で冷蔵庫1の運転モードを停電予冷運転モードに移行させる構成である。実施の形態1の変形例では、冷蔵庫制御システム1000は、気象警報が発令された場合、冷蔵庫1の運転モードを停電予冷運転モードに移行させるか否かをユーザーPに問い合せ、問い合せ後、停電予冷運転モードに移行させる指示をユーザーPが行った場合に、冷蔵庫1の運転モードを停電予冷運転モードに移行させる構成である。
[1-3. Modification example]
Next, a modified example of the first embodiment will be described.
In the first embodiment, the refrigerator control system 1000 is configured to automatically shift the operation mode of the refrigerator 1 to the power failure precooling operation mode when a weather warning is issued. In the modified example of the first embodiment, when the weather warning is issued, the refrigerator control system 1000 asks the user P whether to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode, and after the inquiry, the power failure precooling is performed. When the user P gives an instruction to shift to the operation mode, the operation mode of the refrigerator 1 is shifted to the power failure precooling operation mode.
 本変形例の運転制御部403は、タッチパネル42に各種のユーザーインターフェースを表示させ、冷蔵庫1の運転モードを停電予冷運転モードに移行させるか否かの問い合せ、及び、冷蔵庫1の運転モードを停電予冷運転モードに移行させる指示の受け付けを行う。 The operation control unit 403 of this modification displays various user interfaces on the touch panel 42, inquires whether to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode, and changes the operation mode of the refrigerator 1 to the power failure precooling operation mode. Accepts instructions to shift to the operation mode.
 図8は、運転制御部403がタッチパネル42に表示させるユーザーインターフェースの一例を示す図である。 FIG. 8 is a diagram showing an example of a user interface displayed on the touch panel 42 by the operation control unit 403.
 運転制御部403は、問い合せ指示情報を冷蔵庫制御サーバー3から受信した場合、タッチパネル42の表示画面が非アプリ画面HAGであると、第1ユーザーインターフェースUI1をプッシュ通知の形式でタッチパネル42に表示させる。なお、問い合せ指示情報については、後述する。非アプリ画面HAGとは、例えばホーム画面等の冷蔵庫制御アプリ413に係るアプリ画面AG以外の画面を示す。 When the operation control unit 403 receives the inquiry instruction information from the refrigerator control server 3, if the display screen of the touch panel 42 is the non-application screen HAG, the first user interface UI 1 is displayed on the touch panel 42 in the form of a push notification. The inquiry instruction information will be described later. The non-app screen HAG refers to a screen other than the app screen AG related to the refrigerator control app 413, such as a home screen.
 第1ユーザーインターフェースUI1は、冷蔵庫1の運転モードを停電予冷運転モードに移行させるか否かをユーザーPに問い合せる問い合せ情報J1を含む。運転制御部403は、第1ユーザーインターフェースUI1がユーザーPによってタッチ操作されると、タッチパネル42の表示画面を非アプリ画面HAGから、第2ユーザーインターフェースUI2を表示するアプリ画面AGに遷移させる。なお、運転制御部403は、問い合せ指示情報を冷蔵庫制御サーバー3から受信したときに、タッチパネル42の表示画面がアプリ画面AGである場合、タッチパネル42に、第1ユーザーインターフェースUI1を表示させることなく第2ユーザーインターフェースUI2をアプリ画面AGに重畳して表示させる。 The first user interface UI 1 includes inquiry information J1 inquiring the user P whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode. When the first user interface UI 1 is touch-operated by the user P, the operation control unit 403 shifts the display screen of the touch panel 42 from the non-application screen HAG to the application screen AG displaying the second user interface UI 2. When the operation control unit 403 receives the inquiry instruction information from the refrigerator control server 3, if the display screen of the touch panel 42 is the application screen AG, the touch panel 42 does not display the first user interface UI1. 2 The user interface UI2 is superimposed on the application screen AG and displayed.
 第2ユーザーインターフェースUI2は、冷蔵庫1の運転モードを停電予冷運転モードに移行させるか否かをユーザーPに問い合せる問い合せ情報J1を含む。また、第2ユーザーインターフェースUI2は、YESボタンB1と、NOボタンB2とを含む。YESボタンB1は、冷蔵庫1の運転モードを停電予冷運転モードに移行させる指示をユーザーPから受け付けるためのソフトウェアボタンである。NOボタンB2は、冷蔵庫1の運転モードを停電予冷運転モードに移行させない指示をユーザーPから受け付けるためのソフトウェアボタンである。 The second user interface UI 2 includes inquiry information J1 inquiring the user P whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode. Further, the second user interface UI 2 includes a YES button B1 and a NO button B2. The YES button B1 is a software button for receiving an instruction from the user P to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode. The NO button B2 is a software button for receiving an instruction from the user P not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode.
 運転制御部403は、NOボタンB2がユーザーPにタッチ操作されると、冷蔵庫1の運転モードを停電予冷運転モードに移行させることなく、第2ユーザーインターフェースUI2の表示を止める。一方、運転制御部403は、YESボタンB1がユーザーPにタッチ操作されると、冷蔵庫1の運転モードを停電予冷運転モードに移行させ、且つ、第2ユーザーインターフェースUI2の代わりに第3ユーザーインターフェースUI3をタッチパネル42に表示させる。 When the NO button B2 is touch-operated by the user P, the operation control unit 403 stops the display of the second user interface UI2 without shifting the operation mode of the refrigerator 1 to the power failure precooling operation mode. On the other hand, when the YES button B1 is touch-operated by the user P, the operation control unit 403 shifts the operation mode of the refrigerator 1 to the power failure precooling operation mode, and replaces the second user interface UI2 with the third user interface UI3. Is displayed on the touch panel 42.
 第3ユーザーインターフェースUI3は、冷蔵庫1の運転モードを停電予冷運転モードに移行させ、冷蔵庫1が停電予冷運転を開始したことを示す運転開始情報J2を含む。 The third user interface UI 3 includes the operation start information J2 indicating that the operation mode of the refrigerator 1 is shifted to the power failure precooling operation mode and the refrigerator 1 has started the power failure precooling operation.
 次に、本変形例の冷蔵庫制御システム1000の動作について説明する。
 図9は、本変形例に係る冷蔵庫制御システム1000の動作を示すフローチャートである。図9においては、フローチャートFCは端末装置4の動作を示し、フローチャートFDは冷蔵庫制御サーバー3の動作を示し、フローチャートFEにおいては冷蔵庫1の動作を示す。
Next, the operation of the refrigerator control system 1000 of this modification will be described.
FIG. 9 is a flowchart showing the operation of the refrigerator control system 1000 according to this modification. In FIG. 9, the flowchart FC shows the operation of the terminal device 4, the flowchart FD shows the operation of the refrigerator control server 3, and the flowchart FE shows the operation of the refrigerator 1.
 図9においては、図6に示すフローチャートと同じステップについては同一のステップ番号を付し、その詳細な説明を省略する。 In FIG. 9, the same step numbers as those in the flowchart shown in FIG. 6 are assigned the same step numbers, and detailed description thereof will be omitted.
 図9が示す各フローチャートの開始時点は、図6と同様、冷蔵庫1の運転モードが通常運転モードである。また、図9に示すフローチャートFDでは、冷蔵庫制御サーバー3のサーバー制御部30が、ある1件のレコードRを処理対象としている。 At the start time of each flowchart shown in FIG. 9, the operation mode of the refrigerator 1 is the normal operation mode as in FIG. Further, in the flowchart FD shown in FIG. 9, the server control unit 30 of the refrigerator control server 3 targets a certain record R as a processing target.
 フローチャートFDを参照して、冷蔵庫制御サーバー3のサーバー制御部30は、気象警報が発令されていると判別した場合(ステップSA1:YES)、処理対象のレコードRに含まれる端末装置通信情報3133に基づいて、停電予冷運転モードへの移行を問い合せさせる問い合せ指示情報を、サーバー通信部31により端末装置4に送信する(ステップSD1)。 When the server control unit 30 of the refrigerator control server 3 determines that the weather warning has been issued (step SA1: YES) with reference to the flowchart FD, the terminal device communication information 3133 included in the record R to be processed is displayed. Based on this, the server communication unit 31 transmits the inquiry instruction information for inquiring about the transition to the power failure precooling operation mode to the terminal device 4 (step SD1).
 フローチャートFCを参照して、端末装置4の通信制御部402は、端末通信部41により、問い合せ指示情報を冷蔵庫制御サーバー3から受信したか否かを判別する(ステップSC1)。 With reference to the flowchart FC, the communication control unit 402 of the terminal device 4 determines whether or not the inquiry instruction information has been received from the refrigerator control server 3 by the terminal communication unit 41 (step SC1).
 通信制御部402は、問い合せ指示情報を冷蔵庫制御サーバー3から受信していないと判別した場合(ステップSC1:NO)、再度、ステップSC1の処理を行う。 When the communication control unit 402 determines that the inquiry instruction information has not been received from the refrigerator control server 3 (step SC1: NO), the communication control unit 402 performs the process of step SC1 again.
 通信制御部402が、冷蔵庫制御サーバー3から問い合せ指示情報を冷蔵庫制御サーバー3から受信したと判別した場合(ステップSC1:YES)、運転制御部403は、第1ユーザーインターフェースUI1又は第2ユーザーインターフェースUI2をタッチパネル42に表示させ、冷蔵庫1の運転モードを停電予冷運転モードに移行させるか否かをユーザーPに問い合せる(ステップSC2)。 When the communication control unit 402 determines that the inquiry instruction information has been received from the refrigerator control server 3 (step SC1: YES), the operation control unit 403 has the first user interface UI1 or the second user interface UI2. Is displayed on the touch panel 42, and the user P is inquired whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode (step SC2).
 次いで、通信制御部402は、端末通信部41により、冷蔵庫制御サーバー3から気象警報が解除されたことを示す警報解除情報を受信したか否かを判別する(ステップSC3)。 Next, the communication control unit 402 determines whether or not the terminal communication unit 41 has received the alarm cancellation information indicating that the weather warning has been canceled from the refrigerator control server 3 (step SC3).
 通信制御部402がステップSC3で肯定判別した場合については後述する。
 通信制御部402が、冷蔵庫制御サーバー3から警報解除情報を受信していないと判別した場合(ステップSC3:NO)、運転制御部403は、冷蔵庫1の運転モードを停電予冷運転モードに移行させる指示をユーザーPから受け付けたか否かを判別する(ステップSC4)。運転制御部403は、第2ユーザーインターフェースUI2のYESボタンB1がタッチ操作された場合に、ステップSC4において肯定判別する。
The case where the communication control unit 402 makes an affirmative determination in step SC3 will be described later.
When the communication control unit 402 determines that the alarm release information has not been received from the refrigerator control server 3 (step SC3: NO), the operation control unit 403 instructs the refrigerator 1 to shift the operation mode to the power failure precooling operation mode. Is determined from the user P (step SC4). The operation control unit 403 determines affirmatively in step SC4 when the YES button B1 of the second user interface UI2 is touch-operated.
 次いで、運転制御部403は、冷蔵庫1の運転モードを停電予冷運転モードに移行させる指示をユーザーPから受け付けていないと判別した場合(ステップSC4:NO)、冷蔵庫1の運転モードを停電予冷運転モードに移行させない指示をユーザーPから受け付けたか否かを判別する(ステップSC6)。運転制御部403は、第2ユーザーインターフェースUI2のNOボタンB2がタッチ操作された場合に、ステップSC6において肯定判別する。 Next, when the operation control unit 403 determines that the user P has not received an instruction to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode (step SC4: NO), the operation mode of the refrigerator 1 is changed to the power failure precooling operation mode. It is determined whether or not the instruction not to be transferred to is received from the user P (step SC6). The operation control unit 403 determines affirmatively in step SC6 when the NO button B2 of the second user interface UI2 is touch-operated.
 運転制御部403は、冷蔵庫1の運転モードを停電予冷運転モードに移行させない指示をユーザーPから受け付けていないと判別した場合(ステップSC6:NO)、処理をステップSC3に戻し、再度、ステップSC3の判別を行う。 When the operation control unit 403 determines that the user P has not received an instruction not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode (step SC6: NO), the process is returned to step SC3, and the process is returned to step SC3 again. Make a determination.
 一方、運転制御部403は、冷蔵庫1の運転モードを停電予冷運転モードに移行させない指示をユーザーPから受け付けたと判別した場合(ステップSC6:YES)、第2ユーザーインターフェースUI2の表示を止め、冷蔵庫1の運転モードを停電予冷運転モードに移行させるか否かの問い合せを終了する(ステップSC7)。 On the other hand, when the operation control unit 403 determines from the user P that the instruction not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode is received from the user P (step SC6: YES), the display of the second user interface UI 2 is stopped and the refrigerator 1 is stopped. The inquiry as to whether or not to shift the operation mode to the power failure precooling operation mode is terminated (step SC7).
 ステップSC4の説明に戻り、運転制御部403は、冷蔵庫1の運転モードを停電予冷運転モードに移行させる指示を受け付けた場合(ステップSC4:YES)、移行指示情報を、端末通信部41により冷蔵庫制御サーバー3に送信する(ステップSC5)。 Returning to the explanation of step SC4, when the operation control unit 403 receives an instruction to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode (step SC4: YES), the shift instruction information is controlled by the terminal communication unit 41 in the refrigerator. It is transmitted to the server 3 (step SC5).
 フローチャートFDを参照して、サーバー制御部30は、サーバー通信部31により移行指示情報を端末装置4から受信したか否か判別する(ステップSD2)。 With reference to the flowchart FD, the server control unit 30 determines whether or not the migration instruction information has been received from the terminal device 4 by the server communication unit 31 (step SD2).
 サーバー制御部30は、サーバー通信部31により移行指示情報を端末装置4から受信していないと判別した場合(ステップSD2:NO)、発令された気象警報が解除されたか否かを判別する(ステップSD3)。 When the server control unit 30 determines that the migration instruction information has not been received from the terminal device 4 by the server communication unit 31 (step SD2: NO), the server control unit 30 determines whether or not the issued weather warning has been canceled (step). SD3).
 サーバー制御部30は、発令された気象警報が解除されたと判別した場合(ステップSD3:YES)、処理対象のレコードRが有する端末装置通信情報3133に基づいて、警報解除情報をサーバー通信部31により端末装置4に送信する(ステップSG4)。 When the server control unit 30 determines that the issued weather warning has been canceled (step SD3: YES), the server communication unit 31 transmits the warning cancellation information based on the terminal device communication information 3133 possessed by the record R to be processed. It is transmitted to the terminal device 4 (step SG4).
 フローチャートFCを参照し、通信制御部402が警報解除情報を受信したと判別すると(ステップSF3:YES)、運転制御部403は、第1ユーザーインターフェースUI1の表示及び第2ユーザーインターフェースUI2の表示を止め、冷蔵庫1の運転モードを停電予冷運転モードに移行させるか否かの問い合せを終了する(ステップSC7)。 When it is determined that the communication control unit 402 has received the alarm release information by referring to the flowchart FC (step SF3: YES), the operation control unit 403 stops the display of the first user interface UI1 and the display of the second user interface UI2. , The inquiry as to whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode is completed (step SC7).
 フローチャートFDを参照してステップSD3の説明に戻り、サーバー制御部30は、発令された気象警報が解除されていないと判別した場合(ステップSD3:NO)、再度、ステップSD2の処理を行う。 Returning to the explanation of step SD3 with reference to the flowchart FD, when it is determined that the issued weather warning has not been canceled (step SD3: NO), the server control unit 30 performs the process of step SD2 again.
 ステップSD2の説明に戻り、サーバー制御部30は、サーバー通信部31により移行指示情報を端末装置4から受信したと判別した場合(ステップSD2:YES)、処理対象のレコードRに含まれる冷蔵庫通信情報3132に基づいて、端末装置4から受信した移行指示情報をサーバー通信部31により冷蔵庫1に送信する(ステップSA2)。 Returning to the explanation of step SD2, when the server control unit 30 determines that the migration instruction information has been received from the terminal device 4 by the server communication unit 31 (step SD2: YES), the refrigerator communication information included in the record R to be processed. Based on 3132, the transition instruction information received from the terminal device 4 is transmitted to the refrigerator 1 by the server communication unit 31 (step SA2).
 本変形例でも、冷蔵庫1が停電予冷運転モードを終了する終了トリガーは、気象警報の解除による冷蔵庫制御サーバー3からの終了指示情報の受信に限定されない。実施の形態1と同様に、冷蔵庫制御部13は、図6で示す終了トリガー、上述した第1の他の終了トリガー及び上述した第2の他の終了トリガーのいずれか1の終了トリガーについて発生したか否かを判別してもよし、任意の複数の終了トリガーのいずれかが発生したか否かについて判別してもよい。しかしながら、実施の形態1で説明した同じ理由により、停電予冷運転モードの終了トリガーには、少なくとも、図6に示す終了トリガー、すなわち気象警報の解除により終了指示情報を受信することを含むことが好ましい。 Even in this modification, the end trigger for the refrigerator 1 to end the power failure precooling operation mode is not limited to the reception of the end instruction information from the refrigerator control server 3 by canceling the weather warning. Similar to the first embodiment, the refrigerator control unit 13 generated for the end trigger of any one of the end trigger shown in FIG. 6, the first other end trigger described above, and the second other end trigger described above. Whether or not it may be determined, or whether or not any of a plurality of arbitrary end triggers has occurred may be determined. However, for the same reason described in the first embodiment, it is preferable that the end trigger of the power failure precooling operation mode includes at least the end trigger shown in FIG. 6, that is, the reception of the end instruction information by canceling the weather warning. ..
 [1-4.効果等]
 以上、説明したように、冷蔵庫1は、冷蔵庫1の庫内を冷却する冷却部15と、冷蔵庫1の設置場所を含む区域に対して停電の発生要因に係わる警報が発令された場合、冷蔵庫1の運転モードを通常運転モードから通常運転モードより冷蔵庫1の庫内温度が低い停電予冷運転モードに移行させる冷蔵庫制御部13と、を備える。冷蔵庫制御部13は、冷蔵庫1の運転モードが停電予冷運転モードである場合、冷蔵庫1の庫内温度の変動が通常運転モードにおける冷蔵庫1の庫内温度の変動より小さくなるように、冷却部15により冷却する。
[1-4. Effect, etc.]
As described above, in the refrigerator 1, when an alarm regarding the cause of a power failure is issued to the area including the cooling unit 15 for cooling the inside of the refrigerator 1 and the place where the refrigerator 1 is installed, the refrigerator 1 is used. The refrigerator control unit 13 is provided to shift the operation mode of the refrigerator 1 from the normal operation mode to the power failure precooling operation mode in which the temperature inside the refrigerator 1 is lower than that of the normal operation mode. When the operation mode of the refrigerator 1 is the power failure precooling operation mode, the refrigerator control unit 13 has a cooling unit 15 so that the fluctuation of the refrigerator 1 internal temperature is smaller than the fluctuation of the refrigerator 1 internal temperature in the normal operation mode. Cool with.
 これによれば、冷蔵庫1は、停電発生前に冷蔵庫1の庫内温度を低下させることができ、また、庫内温度の変動を小さくしつつ庫内温度を低下させることで停電のタイミングによって停電時における冷却能力に差が生じることを抑制できる。そのため、外部電源を用いなくても、停電時における冷蔵庫1の冷却能力を長期に亘って維持できる。 According to this, the refrigerator 1 can lower the temperature inside the refrigerator 1 before the power failure occurs, and also reduces the temperature inside the refrigerator 1 while reducing the fluctuation of the temperature inside the refrigerator, thereby causing a power failure depending on the timing of the power failure. It is possible to suppress the difference in cooling capacity at times. Therefore, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a long period of time without using an external power source.
 冷却部15は、ダンパー156を備える。冷蔵庫制御部13は、ダンパー156を制御することによって、停電予冷運転モードにおける冷蔵庫1の庫内温度の変動を、通常運転モードにおける冷蔵庫1の庫内温度の変動より小さくする。 The cooling unit 15 includes a damper 156. By controlling the damper 156, the refrigerator control unit 13 makes the fluctuation of the temperature inside the refrigerator 1 in the power failure precooling operation mode smaller than the fluctuation of the temperature inside the refrigerator 1 in the normal operation mode.
 これにより、ダンパー156を制御することで、外部電源を用いなくても、停電時における冷蔵庫1の冷却能力を長期に亘って維持できる。そのため、冷蔵庫1が1エバ方式である場合であっても、外部電源を用いずに、停電時における冷蔵庫1の冷却能力を長期に亘って維持できる。 Thereby, by controlling the damper 156, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a long period of time without using an external power source. Therefore, even when the refrigerator 1 is of the 1-eva system, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a long period of time without using an external power source.
 停電予冷運転モードは、冷蔵庫1の庫内温度を通常運転モードのときの庫内温度から低下させる温度低下モードと、温度低下モードにおいて低下させた庫内温度を維持する温度維持モードとを含む。 The power failure precooling operation mode includes a temperature lowering mode in which the internal temperature of the refrigerator 1 is lowered from the internal temperature in the normal operation mode, and a temperature maintenance mode in which the internal temperature lowered in the temperature lowering mode is maintained.
 停電の発生要因に係わる警報が発令された後では、停電が決まったタイミングで発生するとも限らない。そのため、温度低下モードで庫内温度を低下させた後、温度維持モードによって温度を維持することが望ましい。そこで、停電予冷運転モードに、温度低下モードと温度維持モードとを含ませることで、いつ発生するか不明な停電に対して備えることができる。 After an alarm related to the cause of a power outage was issued, the power outage does not always occur at a fixed timing. Therefore, it is desirable to maintain the temperature in the temperature maintenance mode after lowering the temperature inside the refrigerator in the temperature lowering mode. Therefore, by including the temperature drop mode and the temperature maintenance mode in the power failure precooling operation mode, it is possible to prepare for a power failure in which it is unknown when the power failure occurs.
 冷蔵庫制御部13は、温度低下モードにおいて、圧縮機151の回転数を温度維持モードのときの回転数より高くする。 The refrigerator control unit 13 raises the rotation speed of the compressor 151 in the temperature lowering mode to be higher than the rotation speed in the temperature maintenance mode.
 これにより、庫内温度の変動を抑制しつつ、停電予冷運転モードにおいて冷蔵室11及び冷凍室12の庫内温度を速やかに低下させることができる。よって、速やかに温度維持モードに移行させることができ、より確実に、停電時における冷蔵庫1の冷却能力を長期に亘って維持できるようになる。 As a result, the internal temperatures of the refrigerating chamber 11 and the freezing chamber 12 can be quickly lowered in the power failure precooling operation mode while suppressing fluctuations in the internal temperature. Therefore, the temperature can be quickly shifted to the temperature maintenance mode, and the cooling capacity of the refrigerator 1 in the event of a power failure can be more reliably maintained for a long period of time.
 冷蔵庫制御システム1000は、冷蔵庫1と、冷蔵庫1と通信可能な冷蔵庫制御サーバー3とを備える。冷蔵庫制御サーバー3は、冷蔵庫1の設置場所を含む区域に対して停電の発生要因に係る警報が発令された場合、冷蔵庫1の運転モードを通常運転モードから通常運転モードより冷蔵庫1の庫内温度が低い停電予冷運転モードに移行させる移行指示情報を、冷蔵庫1に送信する。冷蔵庫1は、移行指示情報を受信すると、運転モードを通常運転モードから停電予冷運転モードに移行させる。冷蔵庫1は、停電予冷運転モードにおいて、冷蔵庫1の庫内温度の変動が、通常運転モードにおける冷蔵庫1の庫内温度の変動より小さくなるように庫内を冷却する。 The refrigerator control system 1000 includes a refrigerator 1 and a refrigerator control server 3 capable of communicating with the refrigerator 1. When an alarm related to the cause of a power failure is issued to the area including the installation location of the refrigerator 1, the refrigerator control server 3 changes the operation mode of the refrigerator 1 from the normal operation mode to the temperature inside the refrigerator 1 from the normal operation mode. The transition instruction information for shifting to the power failure precooling operation mode is transmitted to the refrigerator 1. Upon receiving the transition instruction information, the refrigerator 1 shifts the operation mode from the normal operation mode to the power failure precooling operation mode. The refrigerator 1 cools the inside of the refrigerator 1 so that the fluctuation of the temperature inside the refrigerator 1 is smaller than the fluctuation of the temperature inside the refrigerator 1 in the normal operation mode in the power failure precooling operation mode.
 これによれば、冷蔵庫1と同様の効果を奏する。 According to this, it has the same effect as the refrigerator 1.
 冷蔵庫制御システム1000は、冷蔵庫制御サーバー3と通信可能な端末装置4を備える。端末装置4は、停電予冷運転モードへの移行指示を冷蔵庫1のユーザーPから受け付けた場合、移行指示情報を冷蔵庫制御サーバー3に送信する。冷蔵庫制御サーバー3は、移行指示情報を受信した場合に、受信した移行指示情報を冷蔵庫1に送信する。 The refrigerator control system 1000 includes a terminal device 4 capable of communicating with the refrigerator control server 3. When the terminal device 4 receives the transition instruction to the power failure precooling operation mode from the user P of the refrigerator 1, the terminal device 4 transmits the transition instruction information to the refrigerator control server 3. When the refrigerator control server 3 receives the migration instruction information, the refrigerator control server 3 transmits the received migration instruction information to the refrigerator 1.
 冷蔵庫1の庫内温度の変更を受け付けることは、ユーザーPが、停電予冷運転モードを終了して、冷蔵庫1の庫内温度を停電予冷運転モードの温度から他の温度に変更しようとした可能性が高い。よって、これによれば、ユーザーPが所望するタイミングで、冷蔵庫1が停電予冷運転モードを終了できる。また、ユーザーPは端末装置4を操作することで停電予冷運転モードを終了させることができるため、自宅H等の冷蔵庫1の設置場所にユーザーPが居ない場合でも、ユーザーPは、所望するタイミングで停電予冷運転モードを終了させることができる。 Accepting the change in the temperature inside the refrigerator 1 may mean that the user P has terminated the power failure precooling operation mode and tried to change the temperature inside the refrigerator 1 from the temperature in the power failure precooling operation mode to another temperature. Is high. Therefore, according to this, the refrigerator 1 can end the power failure precooling operation mode at the timing desired by the user P. Further, since the user P can end the power failure precooling operation mode by operating the terminal device 4, even if the user P is not present at the installation location of the refrigerator 1 such as the home H, the user P can use the desired timing. The power failure precooling operation mode can be terminated with.
 (実施の形態2)
 次に、図10-図14を用いて、実施の形態2について説明する。
 実施の形態2では、実施の形態1の構成要素と同じ構成要素については、同一の符号を付して詳細な説明を省略する。
(Embodiment 2)
Next, the second embodiment will be described with reference to FIGS. 10-14.
In the second embodiment, the same components as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 [2-1.構成]
 図10は、実施の形態2における冷蔵庫1の縦断面図である。図11は、実施の形態2における冷蔵庫1の冷凍サイクル157Bを示す図である。図10では、図2と同じX軸、Y軸、及びZ軸を図示している。
[2-1. Constitution]
FIG. 10 is a vertical sectional view of the refrigerator 1 according to the second embodiment. FIG. 11 is a diagram showing a refrigerating cycle 157B of the refrigerator 1 in the second embodiment. FIG. 10 illustrates the same X-axis, Y-axis, and Z-axis as in FIG.
 図10に示すように、実施の形態2の冷蔵庫1の主箱体10には、実施の形態1と同様に、冷蔵室11及び冷凍室12が形成されている。冷蔵室11と冷凍室12とは、主箱体10において断熱仕切壁17によって上下に仕切られている。 As shown in FIG. 10, the main box body 10 of the refrigerator 1 of the second embodiment is formed with the refrigerating chamber 11 and the freezing chamber 12 as in the first embodiment. The refrigerating chamber 11 and the freezing chamber 12 are vertically partitioned by a heat insulating partition wall 17 in the main box body 10.
 実施の形態2における冷蔵庫1の冷凍サイクル157Bは、第1冷却器154Aが冷蔵室11を冷却する冷気を生成し、第2冷却器154Bが冷凍室12を冷却する冷気を生成する。この方式は、例えば2エバ方式と呼ばれる。図11に示すように、実施の形態2における冷蔵庫1の冷凍サイクル157Bでは、圧縮機151、凝縮器152、切替弁158、第1キャピラリーチューブ153A、及び第1冷却器154Aが環状に接続し、切替弁158が冷媒を第1冷却器154Aに供給する状態である場合、圧縮機151が圧縮した冷媒を循環させて冷蔵室11を冷却する。また、実施の形態2における冷蔵庫1の冷凍サイクル157Bは、圧縮機151、凝縮器152、切替弁158、第2キャピラリーチューブ153B、及び第2冷却器154Bが環状に接続し、切替弁158が冷媒を第2冷却器154Bに供給する状態である場合、圧縮機151が圧縮した冷媒を循環させて冷凍室12を冷却する。 In the refrigerating cycle 157B of the refrigerator 1 in the second embodiment, the first cooler 154A generates cold air for cooling the refrigerating chamber 11, and the second cooler 154B generates cold air for cooling the freezing chamber 12. This method is called, for example, the 2-eva method. As shown in FIG. 11, in the refrigerating cycle 157B of the refrigerator 1 in the second embodiment, the compressor 151, the condenser 152, the switching valve 158, the first capillary tube 153A, and the first cooler 154A are connected in an annular shape. When the switching valve 158 is in a state of supplying the refrigerant to the first cooler 154A, the compressor 151 circulates the compressed refrigerant to cool the refrigerating chamber 11. Further, in the refrigerating cycle 157B of the refrigerator 1 in the second embodiment, the compressor 151, the condenser 152, the switching valve 158, the second capillary tube 153B, and the second cooler 154B are connected in an annular shape, and the switching valve 158 is a refrigerant. Is in a state of being supplied to the second cooler 154B, the compressor 151 circulates the compressed refrigerant to cool the freezer chamber 12.
 冷蔵庫1は、冷蔵室11の後方上部に圧縮機151を備える。また、冷蔵庫1は、冷凍室12の後方に、第1冷却器154Aと、第1冷却器154Aが生成した冷気を冷凍室12に送る第1冷却ファン155Aとを備える。 Refrigerator 1 is provided with a compressor 151 in the upper rear part of the refrigerator compartment 11. Further, the refrigerator 1 includes a first cooler 154A and a first cooling fan 155A for sending the cold air generated by the first cooler 154A to the freezer chamber 12 behind the freezer chamber 12.
 実施の形態2の冷蔵室11内には、実施の形態1と同様に、冷蔵室11内の後方に、第1吐出口111A、第2吐出口111B、第3吐出口111C、及び冷蔵室冷気戻り口が形成される。 In the refrigerating chamber 11 of the second embodiment, as in the first embodiment, the first discharge port 111A, the second discharge port 111B, the third discharge port 111C, and the refrigerating chamber cold air are rearward in the refrigerating chamber 11. A return port is formed.
 実施の形態2の冷凍室12内には、冷凍室12内の後方に、第2冷却器154Bと、第2冷却器154Bが生成した冷気を冷凍室12に送る第2冷却ファン155Bとを備える。 The freezing chamber 12 of the second embodiment includes a second cooler 154B and a second cooling fan 155B that sends the cold air generated by the second cooler 154B to the freezing chamber 12 behind the freezing chamber 12. ..
 実施の形態2の冷凍室12内には、冷凍室12内の後方に、第4吐出口111D、第5吐出口111E、及び冷凍室冷気戻り口が形成される。 In the freezing chamber 12 of the second embodiment, a fourth discharge port 111D, a fifth discharge port 111E, and a freezing chamber cold air return port are formed behind the inside of the freezing chamber 12.
 図12は、実施の形態2における冷蔵庫1、冷蔵庫制御サーバー3、及び端末装置4の構成を示すブロック図である。 FIG. 12 is a block diagram showing the configurations of the refrigerator 1, the refrigerator control server 3, and the terminal device 4 in the second embodiment.
 図4と図12とを比較して明らかな通り、実施の形態2の冷却部15は、圧縮機151や、凝縮器152、第1キャピラリーチューブ153A、第2キャピラリーチューブ153B、第1冷却器154A、第2冷却器154B、第1冷却ファン155A、第2冷却ファン155B、及び切替弁158等の冷蔵庫1の各収容室を冷却する機構を備える。冷却部15は、冷蔵庫制御部13の制御に従って、冷蔵庫1の各収容室を冷却する。 As is clear from the comparison between FIGS. 4 and 12, the cooling unit 15 of the second embodiment includes the compressor 151, the condenser 152, the first capillary tube 153A, the second capillary tube 153B, and the first cooler 154A. , A second cooler 154B, a first cooling fan 155A, a second cooling fan 155B, and a mechanism for cooling each storage chamber of the refrigerator 1 such as a switching valve 158. The cooling unit 15 cools each storage chamber of the refrigerator 1 according to the control of the refrigerator control unit 13.
 [2-2.動作]
 次に、実施の形態2における冷蔵庫1及び冷蔵庫制御システム1000の動作について説明する。
 まず、図13を参照し、実施の形態2における通常運転モード及び停電予冷運転モードにおける冷蔵庫1の各部の動作について説明する。
[2-2. motion]
Next, the operation of the refrigerator 1 and the refrigerator control system 1000 in the second embodiment will be described.
First, with reference to FIG. 13, the operation of each part of the refrigerator 1 in the normal operation mode and the power failure precooling operation mode in the second embodiment will be described.
 図13は、冷蔵庫1の各部の状態を示すタイミングチャートである。
 図13において、タイミングチャートCGは、圧縮機151の状態を示す。また、タイミングチャートCHは、冷蔵室11の庫内温度の状態を示す。また、タイミングチャートCIは、冷凍室12の庫内温度の状態を示す。また、タイミングチャートCJは、切替弁158の状態を示す。
FIG. 13 is a timing chart showing the state of each part of the refrigerator 1.
In FIG. 13, the timing chart CG shows the state of the compressor 151. Further, the timing chart CH shows the state of the temperature inside the refrigerator compartment 11. Further, the timing chart CI shows the state of the temperature inside the freezing chamber 12. Further, the timing chart CJ shows the state of the switching valve 158.
 まず、通常運転モードにおける冷蔵庫1の動作について説明する。
 図13において、冷蔵庫1の運転モードが通常運転モードである期間は、タイミングT9からタイミングT10までの期間である。
First, the operation of the refrigerator 1 in the normal operation mode will be described.
In FIG. 13, the period in which the operation mode of the refrigerator 1 is the normal operation mode is the period from the timing T9 to the timing T10.
 図13のタイミングチャートCGで示すように、冷蔵庫制御部13は、通常運転モードにおいて、圧縮機151の状態を、停止状態と低回転状態とを繰り返す状態にする。 As shown in the timing chart CG of FIG. 13, the refrigerator control unit 13 sets the state of the compressor 151 to a state of repeating a stopped state and a low rotation state in the normal operation mode.
 また、図13のタイミングチャートCGで示すように、冷蔵庫制御部13は、通常運転モードにおいて、冷蔵室11の庫内温度及び冷凍室12の庫内温度に基づいて、切替弁158の状態を、冷蔵室供給状態、冷凍室供給状態、及び閉状態のいずれかの状態に切り替える。
 冷蔵室供給状態とは、圧縮機151が圧縮した冷媒を第1冷却器154Aに供給する状態である。冷蔵室供給状態では、圧縮機151が圧縮した冷媒が第2冷却器154Bに供給されない。
 冷凍室供給状態とは、圧縮機151が圧縮した冷媒を第2冷却器154Bに供給する状態である。冷凍室供給状態では、圧縮機151が圧縮した冷媒が第1冷却器154Aに供給されない。
 閉状態とは、圧縮機151が圧縮した冷媒を第1冷却器154A及び第2冷却器154Bに供給しない状態である。
Further, as shown in the timing chart CG of FIG. 13, the refrigerator control unit 13 changes the state of the switching valve 158 based on the temperature inside the refrigerator compartment 11 and the temperature inside the refrigerator compartment 12 in the normal operation mode. Switch to one of the refrigerating room supply state, the freezing room supply state, and the closed state.
The refrigerating chamber supply state is a state in which the refrigerant compressed by the compressor 151 is supplied to the first cooler 154A. In the refrigerating chamber supply state, the refrigerant compressed by the compressor 151 is not supplied to the second cooler 154B.
The freezer chamber supply state is a state in which the refrigerant compressed by the compressor 151 is supplied to the second cooler 154B. In the freezing room supply state, the refrigerant compressed by the compressor 151 is not supplied to the first cooler 154A.
The closed state is a state in which the refrigerant compressed by the compressor 151 is not supplied to the first cooler 154A and the second cooler 154B.
 具体的には、冷蔵庫制御部13は、冷蔵室11の庫内温度について、切替弁158の状態を冷蔵室供給状態にしたときと冷蔵室供給状態以外の状態にしたときとの温度差がα(K)となるように切替弁158の状態を制御する。 Specifically, the refrigerator control unit 13 has a temperature difference of α between the state of the switching valve 158 when the state of the switching valve 158 is set to the state of being supplied to the refrigerating room and the state of the state other than the state of being supplied to the refrigerating room. The state of the switching valve 158 is controlled so as to be (K).
 具体的には、冷蔵庫制御部13は、冷蔵室温度センサー161Aが検出する温度に基づいて、冷蔵室第1目標温度からα(K)上昇した場合、切替弁158の状態を冷蔵室供給状態にするのと同時に圧縮機151を低回転状態にする。これにより、冷蔵室11は冷却され、庫内温度が低下する。一方、この冷却時では、冷凍室12が冷却されないため庫内温度が上昇する。冷蔵庫制御部13は、冷蔵室11の庫内温度が冷蔵室第1目標温度まで下降した場合、切替弁158を冷凍室供給状態にして、冷蔵室11の冷却を終了する。これにより、冷蔵室11の庫内温度が上昇する一方で、冷蔵庫制御部13は、切替弁158を冷凍室供給状態にすることで、冷凍室12の庫内温度を下降させる。冷蔵庫制御部13は、冷凍室12の庫内温度が、冷凍室第1目標温度まで下降すると、圧縮機151を停止状態にする。その後、冷蔵庫制御部13は、冷蔵室11の庫内温度が冷蔵室第1目標温度からα(K)上昇した場合、切替弁158を冷蔵室供給状態にするのと同時に圧縮機151を低回転状態にする。 Specifically, the refrigerator control unit 13 changes the state of the switching valve 158 to the refrigerating room supply state when the temperature rises by α (K) from the refrigerating room first target temperature based on the temperature detected by the refrigerating room temperature sensor 161A. At the same time, the compressor 151 is put into a low rotation state. As a result, the refrigerating chamber 11 is cooled and the temperature inside the refrigerator is lowered. On the other hand, at the time of this cooling, the temperature inside the refrigerator rises because the freezing chamber 12 is not cooled. When the temperature inside the refrigerator compartment 11 drops to the first target temperature in the refrigerator compartment 11, the refrigerator control unit 13 puts the switching valve 158 in the freezing chamber supply state and finishes cooling the refrigerator compartment 11. As a result, the temperature inside the refrigerator compartment 11 rises, while the refrigerator control unit 13 lowers the temperature inside the refrigerator compartment 12 by putting the switching valve 158 in the freezing chamber supply state. The refrigerator control unit 13 puts the compressor 151 in a stopped state when the temperature inside the freezing chamber 12 drops to the first target temperature in the freezing chamber. After that, when the temperature inside the refrigerator compartment 11 rises by α (K) from the first target temperature in the refrigerator compartment 11, the refrigerator control unit 13 puts the switching valve 158 into the refrigerator compartment supply state and at the same time rotates the compressor 151 at a low speed. Put it in a state.
 次に、停電予冷運転モードについて説明する。
 図13において、冷蔵庫1の運転モードが停電予冷運転モードである期間は、タイミングT10からタイミングT12までの期間である。そして、図13では、冷蔵庫1の運転モードが温度低下モードである期間は、タイミングT10からタイミングT11までの期間である。
Next, the power failure precooling operation mode will be described.
In FIG. 13, the period in which the operation mode of the refrigerator 1 is the power failure precooling operation mode is the period from the timing T10 to the timing T12. Further, in FIG. 13, the period in which the operation mode of the refrigerator 1 is the temperature drop mode is the period from the timing T10 to the timing T11.
 図13のタイミングチャートCGで示すように、温度低下モードにおいて、冷蔵庫制御部13は、圧縮機151を高回転状態にする。 As shown in the timing chart CG of FIG. 13, the refrigerator control unit 13 puts the compressor 151 in a high rotation state in the temperature drop mode.
 また、図13のタイミングチャートCGで示すように、冷蔵庫制御部13は、温度低下モードにおいて、冷蔵室11の庫内温度に基づいて、切替弁158の状態を制御する。 Further, as shown in the timing chart CG of FIG. 13, the refrigerator control unit 13 controls the state of the switching valve 158 based on the temperature inside the refrigerator compartment 11 in the temperature lowering mode.
 具体的には、冷蔵庫制御部13は、切替弁158を冷蔵室供給状態にするのと同時に圧縮機151を高回転状態にして冷蔵室11を冷却する。この冷却時では、冷凍室12の庫内温度が上昇する。冷蔵庫制御部13は、冷蔵室温度センサー161Aが検出する温度に基づいて、冷蔵室11の庫内温度が、冷蔵室第2目標温度まで下降すると、切替弁158を冷凍室供給状態にして、冷蔵室11の冷却を終了する。この終了によって、冷凍室12は、冷却が開始される。これにより、冷蔵室11の庫内温度が上昇する一方で冷凍室12の庫内温度は下降する。冷蔵庫制御部13は、冷凍室12の庫内温度を、冷凍室第2目標温度を目指して下降させる。ここで、切替弁158を制御する温度差を通常運転モードより小さくしているため、冷凍室12の庫内温度が冷凍室第2目標温度に到達する前に冷蔵室11の庫内温度が冷蔵室第2目標温度からβ(K)上昇する。冷蔵庫制御部13は、これをトリガーに、再度、切替弁158を冷蔵室供給状態にして、冷蔵室11を再度冷却する。冷蔵庫制御部13は、温度低下モードにおいて、冷凍室12の庫内温度が冷凍室第2目標温度まで下降するまでこの制御をくり返す。 Specifically, the refrigerator control unit 13 cools the refrigerating chamber 11 by setting the compressor 151 to a high rotation state at the same time as putting the switching valve 158 into the refrigerating chamber supply state. During this cooling, the temperature inside the freezing chamber 12 rises. When the temperature inside the refrigerator compartment 11 drops to the second target temperature in the refrigerator compartment 11 based on the temperature detected by the refrigerator compartment temperature sensor 161A, the refrigerator control unit 13 puts the switching valve 158 in the freezer compartment supply state and refrigerates. The cooling of the chamber 11 is finished. By this end, the freezing chamber 12 starts cooling. As a result, the temperature inside the refrigerator compartment 11 rises, while the temperature inside the freezer chamber 12 falls. The refrigerator control unit 13 lowers the temperature inside the freezing chamber 12 toward the second target temperature of the freezing chamber. Here, since the temperature difference for controlling the switching valve 158 is made smaller than that in the normal operation mode, the temperature inside the refrigerating chamber 11 is refrigerated before the temperature inside the freezing chamber 12 reaches the second target temperature of the freezing chamber. The temperature rises by β (K) from the second target temperature in the room. With this as a trigger, the refrigerator control unit 13 puts the switching valve 158 in the refrigerating chamber supply state again, and cools the refrigerating chamber 11 again. The refrigerator control unit 13 repeats this control in the temperature lowering mode until the temperature inside the freezing chamber 12 drops to the second target temperature in the freezing chamber.
 冷蔵庫制御部13は、実施の形態1で説明した移行トリガーが発生するまで、温度低下モードを継続する。 The refrigerator control unit 13 continues the temperature drop mode until the transition trigger described in the first embodiment occurs.
 次に、温度維持モードについて説明する。
 図13のタイミングチャートCGで示すように、冷蔵庫制御部13は、温度低下モードにおいて圧縮機151を低回転状態にする。
Next, the temperature maintenance mode will be described.
As shown in the timing chart CG of FIG. 13, the refrigerator control unit 13 puts the compressor 151 in a low rotation state in the temperature lowering mode.
 また、図13のタイミングチャートCJで示すように、冷蔵庫制御部13は、停電予冷運転モードにおいて、冷蔵室11の庫内温度及び冷凍室12の庫内温度のいずれか基づいて切替弁158の状態を制御する。 Further, as shown in the timing chart CJ of FIG. 13, the refrigerator control unit 13 is in the state of the switching valve 158 based on either the temperature inside the refrigerator compartment 11 or the temperature inside the refrigerator compartment 12 in the power failure precooling operation mode. To control.
 具体的には、冷蔵庫制御部13は、冷蔵室温度センサー161Aが検出する温度に基づいて、冷蔵室第2目標温度からβ(K)上昇した場合、切替弁158を冷蔵室供給状態にし、冷蔵室第2目標温度に到達した場合、切替弁158を冷凍室供給状態にする。 Specifically, the refrigerator control unit 13 puts the switching valve 158 in the refrigerating room supply state and refrigerates when the temperature rises by β (K) from the second target temperature of the refrigerating room based on the temperature detected by the refrigerating room temperature sensor 161A. When the second target temperature of the chamber is reached, the switching valve 158 is put into the freezer chamber supply state.
 また、具体的には、冷蔵庫制御部13は、冷凍室温度センサー161Bが検出する温度に基づいて、冷凍室第2目標温度からβ(K)上昇した場合、切替弁158を冷凍室供給状態にし、冷凍室第2目標温度に到達した場合、切替弁158を冷蔵室供給状態にする。 Specifically, the refrigerator control unit 13 sets the switching valve 158 to the freezing room supply state when the temperature rises by β (K) from the freezing room second target temperature based on the temperature detected by the freezing room temperature sensor 161B. When the second target temperature of the freezing chamber is reached, the switching valve 158 is put into the refrigerating chamber supply state.
 冷蔵庫1の運転モードの移行に係わる冷蔵庫制御システム1000の動作は、実施の形態1で説明した図6に示す動作を実行する。 The operation of the refrigerator control system 1000 related to the transition of the operation mode of the refrigerator 1 is the operation shown in FIG. 6 described in the first embodiment.
 以上のように、実施の形態2は、実施の形態1と同様に、外部電源を用いなくても、停電時において冷蔵庫1の冷却能力を長期に亘って維持できる。 As described above, the second embodiment can maintain the cooling capacity of the refrigerator 1 for a long period of time even in the event of a power failure, without using an external power source, as in the first embodiment.
 また、実施の形態2は、停電予冷運転モードにおいて、切替弁158を制御することで、停電時において冷蔵庫1の冷却能力をより長期に亘って維持できる。 Further, in the second embodiment, by controlling the switching valve 158 in the power failure precooling operation mode, the cooling capacity of the refrigerator 1 can be maintained for a longer period of time in the event of a power failure.
 図14を参照して、この効果について詳述する。
 図14は、冷蔵室11の庫内温度の変動、及び冷凍室12の庫内温度の変動を比較した図である。図14においてタイミングチャートCKは、冷蔵室11の庫内温度を示す。また、図14においてタイミングチャートCLは、冷凍室12の庫内温度を示す。
This effect will be described in detail with reference to FIG.
FIG. 14 is a diagram comparing fluctuations in the temperature inside the refrigerator compartment 11 and fluctuations in the temperature inside the freezer compartment 12. In FIG. 14, the timing chart CK shows the temperature inside the refrigerator compartment 11. Further, in FIG. 14, the timing chart CL shows the temperature inside the freezing chamber 12.
 図14では、冷蔵庫1の運転モードが通常運転モードである期間がタイミングT13からタイミングT14までの期間であり、温度低下モードである期間がタイミングT14からタイミングT15までの期間であり、温度維持モードである期間がタイミングT15からタイミングT16までの期間である。 In FIG. 14, the period in which the operation mode of the refrigerator 1 is the normal operation mode is the period from the timing T13 to the timing T14, and the period in which the temperature drop mode is the period from the timing T14 to the timing T15. A certain period is a period from timing T15 to timing T16.
 タイミングチャートCKにおいて、実線は、従来の冷却方法により庫内を冷却した場合の冷蔵室11の庫内温度の変動を示している。また、タイミングチャートCKにおいて、破線は、本開示の冷却方法により庫内を冷却した場合の冷蔵室11の庫内温度の変動を示している。 In the timing chart CK, the solid line shows the fluctuation of the temperature inside the refrigerator chamber 11 when the inside of the refrigerator is cooled by the conventional cooling method. Further, in the timing chart CK, the broken line indicates the fluctuation of the temperature inside the refrigerator chamber 11 when the inside of the refrigerator is cooled by the cooling method of the present disclosure.
 タイミングチャートCLおいて、実線は、従来の冷却方法により庫内を冷却した場合の冷凍室12の温度の変動を示している。また、タイミングチャートCLにおいて、破線は、本開示の冷却方法により庫内を冷却した場合の冷凍室12の庫内温度の変動を示している。 In the timing chart CL, the solid line shows the fluctuation of the temperature of the freezing chamber 12 when the inside of the refrigerator is cooled by the conventional cooling method. Further, in the timing chart CL, the broken line indicates the fluctuation of the temperature inside the freezing chamber 12 when the inside of the refrigerator is cooled by the cooling method of the present disclosure.
 実線と破線を比較して明らかな通り、本開示の停電予冷運転モードにおいては、従来の冷却方法と比べて、冷蔵室11の庫内温度及び冷凍室12の庫内温度の変動を抑制できる。 As is clear by comparing the solid line and the broken line, in the power failure precooling operation mode of the present disclosure, fluctuations in the temperature inside the refrigerator compartment 11 and the temperature inside the refrigerator compartment 12 can be suppressed as compared with the conventional cooling method.
 これにより、実施の形態1と同様に、停電時における冷蔵庫1の冷却能力をより長期に亘って維持できる。 Thereby, as in the first embodiment, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a longer period of time.
 [2-3.変形例]
 上述した実施の形態2は、上述した実施の形態1と同様、気象警報が発令された場合に自動で冷蔵庫1の運転モードを停電予冷運転モードに移行させる構成である。実施の形態2の変形例では、実施の形態1の変形例と同様に、気象警報が発令された場合、冷蔵庫1の運転モードを停電予冷運転モードに移行させるか否かをユーザーPに問い合せ、問い合せ後、停電予冷運転モードに移行させる指示をユーザーPが行った場合に、冷蔵庫1の運転モードを停電予冷運転モードに移行させる構成である。
[2-3. Modification example]
The second embodiment described above is the same as the first embodiment described above, and is configured to automatically shift the operation mode of the refrigerator 1 to the power failure precooling operation mode when a weather warning is issued. In the modified example of the second embodiment, as in the modified example of the first embodiment, when a weather warning is issued, the user P is inquired as to whether or not to shift the operation mode of the refrigerator 1 to the power failure precooling operation mode. After the inquiry, when the user P gives an instruction to shift to the power failure precooling operation mode, the operation mode of the refrigerator 1 is shifted to the power failure precooling operation mode.
 本変形例の冷蔵庫制御システム1000の各装置は、上述した実施の形態1の変形例と同様の動作を実行する。 Each device of the refrigerator control system 1000 of this modification performs the same operation as the modification of the first embodiment described above.
 [2-4.効果等]
 上述した実施の形態2及び実施の形態2の変形例によれば、上述した実施の形態1及び実施の形態1の変形例と同様の効果を奏する。
[2-4. Effect, etc.]
According to the above-mentioned modifications of the second embodiment and the second embodiment, the same effects as those of the first and first embodiments described above can be obtained.
 また、冷却部15は、凝縮器152、冷蔵室の冷気を生成する第1冷却器154A、冷凍室の冷気を生成する第2冷却器154B、及び凝縮器152が生成した冷媒の供給先を第1冷却器154A又は第2冷却器154Bに切り替える切替弁158を備える。冷蔵庫制御部13は、切替弁を制御することによって、停電予冷運転モードにおける冷蔵庫1の庫内温度の変動を、通常運転モードにおける冷蔵庫1の庫内温度の変動より小さくする。 Further, the cooling unit 15 sets the supply destinations of the condenser 152, the first cooler 154A for generating cold air in the refrigerating chamber, the second cooler 154B for generating cold air in the freezer chamber, and the refrigerant generated by the condenser 152. A switching valve 158 for switching to one cooler 154A or a second cooler 154B is provided. By controlling the switching valve, the refrigerator control unit 13 makes the fluctuation of the temperature inside the refrigerator 1 in the power failure precooling operation mode smaller than the fluctuation of the temperature inside the refrigerator 1 in the normal operation mode.
 これにより、切替弁158を制御することで、外部電源を用いなくても、停電時における冷蔵庫1の冷却能力を長期に亘って効果的に維持できる。そのため、冷蔵庫1が2エバ方式である場合であっても、外部電源を用いずに、停電時における冷蔵庫1の冷却能力を長期に亘って維持できる。 Thereby, by controlling the switching valve 158, the cooling capacity of the refrigerator 1 in the event of a power failure can be effectively maintained for a long period of time without using an external power source. Therefore, even when the refrigerator 1 is of the 2-eva system, the cooling capacity of the refrigerator 1 in the event of a power failure can be maintained for a long period of time without using an external power source.
 (他の実施の形態)
 以上のように、本出願において開示する例示として、上述の実施の形態及び変形例を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態及び変形例で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
(Other embodiments)
As described above, the above-described embodiments and modifications have been described as examples disclosed in the present application. However, the technique in the present disclosure is not limited to this, and can be applied to embodiments in which changes, replacements, additions, omissions, etc. have been made. Further, it is also possible to combine the components described in the above-described embodiments and modifications to form a new embodiment.
Therefore, other embodiments will be exemplified below.
 上述した実施の形態及び変形例では、移行指示情報を受信することをトリガーに、冷蔵庫1が停電予冷運転モードを開始する構成である。しかしながら、停電予冷運転モードを開始するトリガーは、これに限定されない。冷蔵庫1は、所定の位置に、停電予冷運転モードを開始させるためのボタンを具備していて、当該ボタンがユーザーPに操作された場合に、停電予冷運転モードを開始させる構成でもよい。この構成の場合、冷蔵庫1は、ユーザーPが終了指示を冷蔵庫1に対して入力するまで、或いは、停電予冷運転モードを開始してから所定期間(例えば、24時間)継続する。これにより、冷蔵庫1が冷蔵庫制御サーバー3や冷蔵庫制御アプリ413と連携していなくても、ユーザーPは、停電が発生する虞があると思ったタイミングで、冷蔵庫1の運転モードを停電予冷運転モードにできる。 In the above-described embodiment and modification, the refrigerator 1 is configured to start the power failure precooling operation mode by receiving the transition instruction information. However, the trigger for starting the power failure precooling operation mode is not limited to this. The refrigerator 1 may be provided with a button for starting the power failure precooling operation mode at a predetermined position, and may be configured to start the power failure precooling operation mode when the button is operated by the user P. In the case of this configuration, the refrigerator 1 continues for a predetermined period (for example, 24 hours) until the user P inputs an end instruction to the refrigerator 1 or after starting the power failure precooling operation mode. As a result, even if the refrigerator 1 is not linked with the refrigerator control server 3 or the refrigerator control application 413, the user P changes the operation mode of the refrigerator 1 to the power failure precooling operation mode at the timing when he / she thinks that a power failure may occur. Can be done.
 上述した実施の形態及び変形例では、冷蔵庫1が運転モードを通常運転モードから停電予冷運転モードに移行する場合を例示したが、移行元の運転モードは、通常運転モードに限定されず、停電予冷運転モード以外の運転モードであればよい。また、上述した各実施の形態では、冷蔵庫1が運転モードを停電予冷運転モードから通常運転モードに移行する場合を例示したが、移行先の運転モードは、通常運転モードに限定されず、停電予冷運転モード以外の運転モードであればよい。ここで、停電予冷運転モード以外の運転モードは、「第1モード」の一例に対応する。 In the above-described embodiments and modifications, the case where the refrigerator 1 shifts the operation mode from the normal operation mode to the power failure precooling operation mode is illustrated, but the operation mode of the shift source is not limited to the normal operation mode, and the power failure precooling is not limited to the normal operation mode. Any operation mode other than the operation mode may be used. Further, in each of the above-described embodiments, the case where the refrigerator 1 shifts the operation mode from the power failure precooling operation mode to the normal operation mode is illustrated. Any operation mode other than the operation mode may be used. Here, the operation mode other than the power failure precooling operation mode corresponds to an example of the "first mode".
 例えば、温度低下モードでは、圧縮機151を高回転状態にする構成に加えて、冷却ファン155、第1冷却ファン155A、第2冷却ファン155Bを他のモードと比べて高回転で回転させる構成としてもよい。 For example, in the temperature drop mode, in addition to the configuration in which the compressor 151 is in a high rotation state, the cooling fan 155, the first cooling fan 155A, and the second cooling fan 155B are rotated at a higher rotation speed than in other modes. May be good.
 例えば、実施の形態1の停電予冷運転モードでは、ダンパー156の開閉状態の頻度を制御することで庫内温度の変動を抑制する構成であるが、ダンパー156の開度を制御して庫内温度の変動を抑制する構成としてもよい。また、実施の形態2の停電予冷運転モードでは、切替弁158の状態を切り替える頻度を制御することで庫内温度の変動を抑制する構成であるが、切替弁158の開度を制御して庫内温度の変動を抑制する構成としてもよい。 For example, in the power failure precooling operation mode of the first embodiment, the fluctuation of the temperature inside the refrigerator is suppressed by controlling the frequency of the open / closed state of the damper 156, but the temperature inside the refrigerator is controlled by controlling the opening degree of the damper 156. It may be configured to suppress the fluctuation of. Further, in the power failure precooling operation mode of the second embodiment, the frequency of switching the state of the switching valve 158 is controlled to suppress the fluctuation of the temperature inside the refrigerator, but the opening degree of the switching valve 158 is controlled to control the temperature of the refrigerator. It may be configured to suppress fluctuations in the internal temperature.
 上述した実施の形態及び変形例では、停電の発生要因に係る警報として気象警報を例示したが、停電の発生要因に係る警報は、地震動警報や、浸水警報、津波警報、噴火警報、火災警報等の気象警報以外の警報でもよい。この場合、停電の発生要因は、気象以外の要因である。また、この場合、グローバルネットワークGNには、気象警報サーバー5に代わって或いは共に、気象警報以外の警報の発令の有無を示す情報を提供するサーバー装置が接続し、冷蔵庫制御サーバー3は、当該サーバー装置に対して警報が発令されたか否かを問い合せる。 In the above-described embodiments and modifications, the weather warning is exemplified as the warning related to the cause of the power failure, but the warning related to the cause of the power failure includes a seismic motion warning, a flood warning, a tsunami warning, an eruption warning, a fire warning, etc. It may be an alarm other than the weather warning of. In this case, the cause of the power outage is a factor other than the weather. Further, in this case, a server device that provides information indicating whether or not an alarm other than the weather warning is issued is connected to the global network GN in place of or together with the weather warning server 5, and the refrigerator control server 3 is the server. Inquire whether an alarm has been issued to the device.
 また、上述した実施の形態及び変形例は、警報の発令をトリガーに冷蔵庫1が停電予冷運転モードを開始する構成であるが、トリガーは、警報に限定されず、停電の発生要因に係わる注意報でもよい。注意報には、大雨注意報や洪水注意報等の種々の注意報があるが、そのうち停電発生につながる可能性の高い雷注意報をトリガーとしてもよい。また、当該トリガーは、警報及び注意報に限らず、その他の停電の発生要因に係わる予報でもよい。この場合、グローバルネットワークGNには、気象警報サーバー5に代わって或いは共に、予報の発令の有無を示す情報を提供するサーバー装置が接続し、冷蔵庫制御サーバー3は、当該サーバー装置に対して予報が発令されたか否かを問い合せる。また、この場合、グローバルネットワークGNには、気象警報以外の警報サーバーに代わって或いは共に、予報の発令の有無を示す情報を提供するサーバー装置が接続し、冷蔵庫制御サーバー3は、当該サーバー装置に対して予報が発令されたか否かを問い合せる。 Further, in the above-described embodiment and modification, the refrigerator 1 is configured to start the power failure precooling operation mode triggered by the issuance of an alarm, but the trigger is not limited to the alarm and is a warning regarding the cause of the power failure. But it may be. There are various warnings such as heavy rain warnings and flood warnings, and among them, a lightning warning that is likely to lead to a power outage may be used as a trigger. Further, the trigger is not limited to warnings and warnings, but may be forecasts related to other causes of power outages. In this case, a server device that provides information indicating whether or not a forecast is issued is connected to the global network GN on behalf of or together with the weather warning server 5, and the refrigerator control server 3 provides a forecast to the server device. Inquire whether it was announced or not. Further, in this case, a server device that provides information indicating whether or not a forecast is issued is connected to the global network GN on behalf of or together with an alarm server other than the weather warning, and the refrigerator control server 3 is connected to the server device. Inquire whether the forecast has been issued.
 例えば、上述した実施の形態及び変形例において、冷蔵庫制御サーバー3は、移行指示情報を冷蔵庫1に送信する際に冷蔵庫IDを付加し、冷蔵庫1は、移行指示情報に付加された冷蔵庫IDと自身に割り当てられた冷蔵庫IDとが一致する場合にのみ、運転モードを停電予冷運転モードに移行させる構成としてもよい。冷蔵庫IDは、冷蔵庫1を識別する情報であり、例えば製造番号である。 For example, in the above-described embodiments and modifications, the refrigerator control server 3 adds a refrigerator ID when transmitting the transition instruction information to the refrigerator 1, and the refrigerator 1 includes the refrigerator ID added to the transition instruction information and itself. The operation mode may be shifted to the power failure precooling operation mode only when the refrigerator ID assigned to is the same. The refrigerator ID is information that identifies the refrigerator 1, and is, for example, a serial number.
 例えば、冷蔵庫1の主箱体10に形成される部屋の種類は、冷蔵室11及び冷凍室12に限定されず、製氷室や、新鮮凍結室、野菜室等のさらに別の種類の部屋が形成されてもよい。また、冷蔵室11の前面の開口部に設けられるドアの数は、複数でもよい。ダンパー156が収容室ごとに設けられている場合、実施の形態1と同様に、各収容室の温度変動を抑制するように、冷蔵庫制御部13は、ダンパー156の各々を制御する。 For example, the type of room formed in the main box body 10 of the refrigerator 1 is not limited to the refrigerating room 11 and the freezing room 12, and another type of room such as an ice making room, a fresh freezing room, and a vegetable room is formed. May be done. Further, the number of doors provided in the opening on the front surface of the refrigerating chamber 11 may be plural. When the damper 156 is provided for each accommodation chamber, the refrigerator control unit 13 controls each of the dampers 156 so as to suppress the temperature fluctuation of each accommodation chamber, as in the first embodiment.
 例えば、冷蔵室11及び冷凍室12における棚数や収容箱の数等の内部構成は、図2及び図10に限定されない。 For example, the internal configurations such as the number of shelves and the number of storage boxes in the refrigerating room 11 and the freezing room 12 are not limited to FIGS. 2 and 10.
 例えば、冷蔵庫1の各収容室には1又は複数の温度センサー161が設けられてもよい。 For example, one or more temperature sensors 161 may be provided in each storage room of the refrigerator 1.
 例えば、冷蔵庫制御部13、サーバー制御部30、及び、端末制御部40の機能は、複数のプロセッサー、又は、半導体チップにより実現してもよい。 For example, the functions of the refrigerator control unit 13, the server control unit 30, and the terminal control unit 40 may be realized by a plurality of processors or semiconductor chips.
 図4及び図12に示した各部は一例であって、具体的な実装形態は特に限定されない。つまり、必ずしも各部に個別に対応するハードウェアが実装される必要はなく、一つのプロセッサーがプログラムを実行することで各部の機能を実現する構成とすることも勿論可能である。また、上述した実施形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。その他、冷蔵庫1、冷蔵庫制御サーバー3、及び、端末装置4の他の各部の具体的な細部構成についても、本開示の趣旨を逸脱しない範囲で任意に変更可能である。 Each part shown in FIGS. 4 and 12 is an example, and the specific mounting form is not particularly limited. That is, it is not always necessary to implement the hardware corresponding to each part individually, and it is of course possible to realize the function of each part by executing the program by one processor. Further, a part of the functions realized by the software in the above-described embodiment may be realized by the hardware, or a part of the functions realized by the hardware may be realized by the software. In addition, the specific detailed configurations of the refrigerator 1, the refrigerator control server 3, and the other parts of the terminal device 4 can be arbitrarily changed without departing from the spirit of the present disclosure.
 例えば、図6及び図9に示す動作のステップ単位は、冷蔵庫制御システム1000の各装置の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理内容に応じて、さらに多くのステップ単位に分割してもよい。また、1つのステップ単位がさらに多くの処理を含むように分割してもよい。また、そのステップの順番は、本開示の趣旨に支障のない範囲で適宜に入れ替えてもよい。 For example, the operation step units shown in FIGS. 6 and 9 are divided according to the main processing contents in order to facilitate understanding of the operation of each device of the refrigerator control system 1000, and are divided according to the processing contents. It may be divided into more step units. Further, one step unit may be divided so as to include more processes. Further, the order of the steps may be appropriately changed as long as it does not interfere with the purpose of the present disclosure.
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Since the above-described embodiment is for exemplifying the technique in the present disclosure, various changes, replacements, additions, omissions, etc. can be made within the scope of claims or the equivalent thereof.
 以上のように、本開示に係る冷蔵庫及び冷蔵庫制御システムは、停電時において冷蔵庫の冷却能力を維持する用途に利用可能である。 As described above, the refrigerator and the refrigerator control system according to the present disclosure can be used for maintaining the cooling capacity of the refrigerator in the event of a power failure.
 1 冷蔵庫
 3 冷蔵庫制御サーバー(サーバー)
 4 端末装置
 5 気象警報サーバー
 11 冷蔵室
 12 冷凍室
 13 冷蔵庫制御部
 15 冷却部
 151 圧縮機
 152 凝縮器
 154 冷却器
 154A 第1冷却器
 154B 第2冷却器
 156 ダンパー
 158 切替弁
 1000 冷蔵庫制御システム
 H 自宅(設置場所)
 P ユーザー
1 Refrigerator 3 Refrigerator control server (server)
4 Terminal equipment 5 Weather alarm server 11 Refrigerator room 12 Refrigerator room 13 Refrigerator control unit 15 Cooler unit 151 Compressor 152 Condenser 154 Cooler 154A 1st cooler 154B 2nd cooler 156 Damper 158 Switching valve 1000 Refrigerator control system H Home (Installation location)
P user

Claims (7)

  1.  冷蔵庫の庫内を冷却する冷却部と、
     前記冷蔵庫の設置場所を含む区域に対して停電の発生要因に係わる予報が発令された場合、前記冷蔵庫の運転モードを第1モードから前記第1モードより前記冷蔵庫の庫内温度が低い第2モードに移行させる冷蔵庫制御部と、を備え、
     前記冷蔵庫制御部は、
     前記冷蔵庫の運転モードが前記第2モードである場合、前記冷蔵庫の庫内温度の変動が前記第1モードにおける前記冷蔵庫の庫内温度の変動より小さくなるように、前記冷却部により冷却する、
     冷蔵庫。
    A cooling unit that cools the inside of the refrigerator,
    When a forecast related to the cause of a power outage is issued to the area including the place where the refrigerator is installed, the operation mode of the refrigerator is changed from the first mode to the second mode in which the temperature inside the refrigerator is lower than that of the first mode. Equipped with a refrigerator control unit to shift to
    The refrigerator control unit
    When the operation mode of the refrigerator is the second mode, the cooling unit cools the refrigerator so that the fluctuation of the temperature inside the refrigerator is smaller than the fluctuation of the temperature inside the refrigerator in the first mode.
    refrigerator.
  2.  前記冷却部は、ダンパーを備え、
     前記冷蔵庫制御部は、前記ダンパーを制御することによって、前記第2モードにおける前記冷蔵庫の庫内温度の変動を、前記第1モードにおける前記冷蔵庫の庫内温度の変動より小さくする、
     請求項1に記載の冷蔵庫。
    The cooling unit includes a damper and has a damper.
    By controlling the damper, the refrigerator control unit makes the fluctuation of the refrigerator temperature in the second mode smaller than the fluctuation of the refrigerator temperature in the first mode.
    The refrigerator according to claim 1.
  3.  前記冷却部は、凝縮器、冷蔵室の冷気を生成する第1冷却器、冷凍室の冷気を生成する第2冷却器、及び前記凝縮器が生成した冷媒の供給先を前記第1冷却器又は前記第2冷却器に切り替える切替弁を備え、
     前記冷蔵庫制御部は、前記切替弁を制御することによって、前記第2モードにおける前記冷蔵庫の庫内温度の変動を、前記第1モードにおける前記冷蔵庫の庫内温度の変動より小さくする、
     請求項1に記載の冷蔵庫。
    In the cooling unit, the condenser, the first cooler that generates the cold air in the refrigerator compartment, the second cooler that generates the cold air in the freezer chamber, and the supply destination of the refrigerant generated by the condenser are the first cooler or the first cooler. Equipped with a switching valve to switch to the second cooler
    By controlling the switching valve, the refrigerator control unit makes the fluctuation of the refrigerator temperature in the second mode smaller than the fluctuation of the refrigerator temperature in the first mode.
    The refrigerator according to claim 1.
  4.  前記第2モードは、前記冷蔵庫の庫内温度を前記第1モードのときの庫内温度から低下させる温度低下モードと、前記温度低下モードにおいて低下させた庫内温度を維持する温度維持モードとを含む、
     請求項1から3のいずれか一項に記載の冷蔵庫。
    The second mode includes a temperature lowering mode in which the temperature inside the refrigerator is lowered from the temperature inside the refrigerator in the first mode, and a temperature maintenance mode in which the temperature inside the refrigerator is maintained lowered in the temperature lowering mode. include,
    The refrigerator according to any one of claims 1 to 3.
  5.  前記冷蔵庫制御部は、
     前記温度低下モードにおいて、圧縮機の回転数を前記温度維持モードのときの回転数より高くする、
     請求項4に記載の冷蔵庫。
    The refrigerator control unit
    In the temperature lowering mode, the rotation speed of the compressor is made higher than the rotation speed in the temperature maintenance mode.
    The refrigerator according to claim 4.
  6.  冷蔵庫と、前記冷蔵庫と通信可能なサーバーとを備える冷蔵庫制御システムであって、
     前記サーバーは、
     前記冷蔵庫の設置場所を含む区域に対して停電の発生要因に係る予報が発令された場合、前記冷蔵庫の運転モードを第1モードから前記第1モードより前記冷蔵庫の庫内温度が低い第2モードに移行させる移行指示情報を、前記冷蔵庫に送信し、
     前記冷蔵庫は、
     前記移行指示情報を受信すると、運転モードを前記第1モードから前記第2モードに移行させ、
     前記第2モードにおいては、前記冷蔵庫の庫内温度の変動が、前記第1モードにおける前記冷蔵庫の庫内温度の変動より小さくなるように庫内を冷却する、
     冷蔵庫制御システム。
    A refrigerator control system including a refrigerator and a server capable of communicating with the refrigerator.
    The server
    When a forecast related to the cause of a power outage is issued to the area including the place where the refrigerator is installed, the operation mode of the refrigerator is changed from the first mode to the second mode in which the temperature inside the refrigerator is lower than that of the first mode. The transition instruction information to be transferred to the refrigerator is transmitted to the refrigerator.
    The refrigerator
    Upon receiving the transition instruction information, the operation mode is shifted from the first mode to the second mode.
    In the second mode, the inside of the refrigerator is cooled so that the fluctuation of the temperature inside the refrigerator is smaller than the fluctuation of the temperature inside the refrigerator in the first mode.
    Refrigerator control system.
  7.  前記サーバーと通信可能な端末装置を備え、
     前記端末装置は、前記第2モードへの移行指示を前記冷蔵庫のユーザーから受け付けた場合、前記移行指示情報を前記サーバーに送信し、
     前記サーバーは、前記移行指示情報を受信した場合に、受信した前記移行指示情報を前記冷蔵庫に送信する、
     請求項6に記載の冷蔵庫制御システム。
    Equipped with a terminal device capable of communicating with the server
    When the terminal device receives the transition instruction to the second mode from the user of the refrigerator, the terminal device transmits the transition instruction information to the server.
    When the server receives the migration instruction information, the server transmits the received migration instruction information to the refrigerator.
    The refrigerator control system according to claim 6.
PCT/JP2021/038737 2020-11-18 2021-10-20 Refrigerator and refrigerator control system WO2022107535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180075108.5A CN116490738A (en) 2020-11-18 2021-10-20 Refrigerator and refrigerator control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020191823A JP2022080636A (en) 2020-11-18 2020-11-18 Refrigerator, and refrigerator control system
JP2020-191823 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022107535A1 true WO2022107535A1 (en) 2022-05-27

Family

ID=81708945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038737 WO2022107535A1 (en) 2020-11-18 2021-10-20 Refrigerator and refrigerator control system

Country Status (3)

Country Link
JP (1) JP2022080636A (en)
CN (1) CN116490738A (en)
WO (1) WO2022107535A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213573A (en) * 1985-03-20 1986-09-22 松下冷機株式会社 Temperature regulator for inside of box of refrigerator
JPH04169768A (en) * 1990-10-31 1992-06-17 Sharp Corp Refrigerator-freezer
JP2003028553A (en) * 2001-05-11 2003-01-29 Toshiba Corp Refrigerator
JP2012229884A (en) * 2011-04-27 2012-11-22 Sanyo Electric Co Ltd Cooling storehouse
JP2014047929A (en) * 2012-08-29 2014-03-17 Panasonic Corp Refrigerator
JP2014105933A (en) * 2012-11-28 2014-06-09 Hitachi Appliances Inc Refrigerator
US20150198937A1 (en) * 2014-01-15 2015-07-16 General Electric Company Method for operating an appliance and a refrigerator appliance
JP2019143953A (en) * 2018-02-23 2019-08-29 東芝ライフスタイル株式会社 Refrigerator control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213573A (en) * 1985-03-20 1986-09-22 松下冷機株式会社 Temperature regulator for inside of box of refrigerator
JPH04169768A (en) * 1990-10-31 1992-06-17 Sharp Corp Refrigerator-freezer
JP2003028553A (en) * 2001-05-11 2003-01-29 Toshiba Corp Refrigerator
JP2012229884A (en) * 2011-04-27 2012-11-22 Sanyo Electric Co Ltd Cooling storehouse
JP2014047929A (en) * 2012-08-29 2014-03-17 Panasonic Corp Refrigerator
JP2014105933A (en) * 2012-11-28 2014-06-09 Hitachi Appliances Inc Refrigerator
US20150198937A1 (en) * 2014-01-15 2015-07-16 General Electric Company Method for operating an appliance and a refrigerator appliance
JP2019143953A (en) * 2018-02-23 2019-08-29 東芝ライフスタイル株式会社 Refrigerator control system

Also Published As

Publication number Publication date
CN116490738A (en) 2023-07-25
JP2022080636A (en) 2022-05-30

Similar Documents

Publication Publication Date Title
JP5027443B2 (en) Cooling storage
US20190137169A1 (en) Information terminal device, operating information provision system, and operating information provision program
CN103502745A (en) Refrigeration controller
US20180224191A1 (en) Dual mode air screen refrigerator
US20130327073A1 (en) Refrigerator
US20120216556A1 (en) Refrigeration managing apparatus
WO2022107535A1 (en) Refrigerator and refrigerator control system
WO2016113874A1 (en) Coordination system, centralized controller, and centralized control method
JP2024015398A (en) Refrigerator, program, terminal device, and refrigerator control system
JP2007010232A (en) Cooling system
JP4703299B2 (en) Air conditioner
CN115698610A (en) Refrigerator control system, refrigerator, program, and terminal device
JP4228231B2 (en) Control method and apparatus for refrigerator
CN109297230B (en) Refrigeration equipment working method and refrigeration equipment
JP2021096686A (en) Refrigerator management system, refrigerator, and server system
WO2021210562A1 (en) Program and terminal device
WO2023127411A1 (en) Refrigerator, refrigerator control system, and program
JP3197593B2 (en) Refrigerator temperature controller
JP2016065711A (en) refrigerator
JP3332801B2 (en) refrigerator
CN112577237B (en) Control method of refrigerating and freezing device and refrigerating and freezing device
CN115479446B (en) Temperature control method, electronic equipment and direct-cooling type refrigerating device
CN115335650B (en) Program and terminal device
JP7351735B2 (en) refrigerator
KR20150021764A (en) Method for controlling a damper heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180075108.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894409

Country of ref document: EP

Kind code of ref document: A1