WO2022107496A1 - Radiation diagnostic device - Google Patents

Radiation diagnostic device Download PDF

Info

Publication number
WO2022107496A1
WO2022107496A1 PCT/JP2021/037584 JP2021037584W WO2022107496A1 WO 2022107496 A1 WO2022107496 A1 WO 2022107496A1 JP 2021037584 W JP2021037584 W JP 2021037584W WO 2022107496 A1 WO2022107496 A1 WO 2022107496A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
power supply
supply unit
ultraviolet
diagnostic apparatus
Prior art date
Application number
PCT/JP2021/037584
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 北野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022563627A priority Critical patent/JPWO2022107496A1/ja
Publication of WO2022107496A1 publication Critical patent/WO2022107496A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the technique of this disclosure relates to a radiation diagnostic device.
  • an ultraviolet source in a lighting device in an operating room or the like (see, for example, International Publication No. 2019/186880).
  • the ultraviolet source irradiates the area to be sterilized with ultraviolet rays.
  • Japanese Patent Application Laid-Open No. 2013 Japanese Patent Application Laid-Open No. 2013
  • Japanese Unexamined Patent Publication No. 2013-248124 describes that, in a mobile radiation diagnostic apparatus, an ultraviolet source for emitting ultraviolet rays toward a radiation detector is provided inside a storage folder for accommodating the radiation detector. ..
  • the lighting device described in International Publication No. 2019/186880 is provided with a light source for lighting (for example, a halogen lamp) for illuminating the surgical field in addition to the ultraviolet source.
  • a light source for lighting for example, a halogen lamp
  • the power supply unit that supplies power to the ultraviolet source and the power supply unit that supplies power to the lighting light source are connected in parallel.
  • the noise generated in each power supply unit affects each other between the ultraviolet source and the lighting light source.
  • the influence of noise is not regarded as a problem.
  • a power supply unit for supplying power to the ultraviolet source and radiation detection.
  • the power supply unit that supplies power to the device is connected in parallel, the influence of noise becomes a problem. Since the radiation detector used in the radiation diagnostic equipment has extremely high radiation detection sensitivity, even if the noise generated by the power supply section of the ultraviolet source is very small, it affects the radiation image detected by the radiation detector. May occur.
  • the technique of the present disclosure is intended to provide a radiation diagnostic apparatus capable of reducing the influence of noise on a radiation detector.
  • the radiation diagnostic apparatus of the present disclosure is electrically separated from a radiation detector that detects radiation, an ultraviolet source that emits ultraviolet rays, a first power supply unit that supplies power to the radiation detector, and a first power supply unit. It also includes a second power supply unit that supplies power to the ultraviolet source.
  • the ultraviolet rays are preferably deep ultraviolet rays having a central wavelength in the range of 200 nm or more and 280 nm or less.
  • the ultraviolet source preferably emits ultraviolet rays toward the radiation detector.
  • the radiation detector inputs to the sensor board a sensor board in which a plurality of pixels that generate and accumulate electric charges according to the incident amount of radiation are formed, and a drive signal for outputting charges from each of the plurality of pixels.
  • the sensor substrate has a conversion layer that directly converts radiation into electric charges, and the first power supply unit supplies a bias voltage to the conversion layer.
  • the ultraviolet source is preferably an excimer lamp.
  • the second power supply unit includes an inverter circuit.
  • the ultraviolet source is preferably an LED.
  • the first power supply unit and / or the second power supply unit is preferably a power supply circuit including a converter circuit that converts an AC voltage into a DC voltage.
  • first power supply unit and the second power supply unit are electrically separated by a transformer having a secondary coil separately provided for the primary coil.
  • the reference electrode of the first power supply unit and the reference electrode of the second power supply unit are electrically separated.
  • the radiodiagnosis device is any one of a radiography device having a standing or recumbent radiography table, a mammography device, a radioscopic fluoroscopy device, a mobile radiography device, a mobile radioscopic radiography device, and a radiotomography device. Is preferable.
  • the mammography apparatus 10 performs radiography with the breast M of the subject H as a subject.
  • the mammography apparatus 10 irradiates the breast M with radiation R such as X-rays and ⁇ -rays to generate a radiographic image RI of the breast M.
  • the mammography apparatus 10 is an example of a "radiation diagnostic apparatus" according to the technique of the present disclosure.
  • the mammography apparatus 10 includes an apparatus main body 11 and a control device 12.
  • the device main body 11 is installed, for example, in a radiography room of a medical facility.
  • the control device 12 is installed in, for example, a control room next to the radiography room.
  • the control device 12 is, for example, a desktop personal computer.
  • the control device 12 is communicably connected to an image database (hereinafter abbreviated as image DB (Data Base)) server 14 via a network 13 such as a LAN (Local Area Network).
  • image DB server 14 is, for example, a PACS (Picture Archiving and Communication System) server, receives radiographic image RI from the mammography apparatus 10, and stores and manages the received radiographic image RI.
  • PACS Picture Archiving and Communication System
  • the terminal device 15 is connected to the network 13.
  • the terminal device 15 is, for example, a personal computer used by a doctor who performs a medical examination using a radiographic image RI.
  • the terminal device 15 receives the radiation image RI from the image DB server 14, and displays the received radiation image RI on the display.
  • the device main body 11 has a stand 20 and an arm 21.
  • the stand 20 is composed of a pedestal 20A installed on the floor of the radiography room and a support column 20B extending in the height direction from the pedestal 20A.
  • the arm 21 has a substantially C-shape when viewed from the side, and is connected to the support column 20B via the connecting portion 21A.
  • the connecting portion 21A allows the arm 21 to move in the height direction with respect to the support column 20B. Further, the arm 21 can rotate around a rotation axis perpendicular to the support column 20B, penetrating the connection portion 21A.
  • the arm 21 is composed of a radiation source accommodating portion 22, a photographing table 23, and a main body portion 24.
  • the radiation source 25 is accommodated in the radiation source accommodating portion 22.
  • Breast M is placed on the imaging table 23.
  • the radiation detector 26 is housed in the photographing table 23.
  • the main body portion 24 integrally connects the radiation source accommodating portion 22 and the photographing table 23.
  • the main body portion 24 holds the radiation source accommodating portion 22 and the photographing table 23 at positions facing each other.
  • Handrails 27 on both sides of the main body 24 are provided so that the hand of the subject H can be grasped.
  • the radiation source 25 includes a radiation tube 29 and a housing 30 that houses the radiation tube 29.
  • the inside of the housing 30 is filled with insulating oil.
  • the radiation tube 29 emits radiation R toward the breast M placed on the imaging table 23.
  • the radiation detector 26 detects the radiation R transmitted through the breast M and outputs a radiation image RI.
  • An irradiation field limiting device 31 is provided between the radiation source accommodating portion 22 and the photographing table 23.
  • the irradiation field limiting device 31 is also called a collimator, and defines the irradiation field of the radiation R to the photographing table 23.
  • a face guard 32 is attached to the radiation source accommodating portion 22.
  • the face guard 32 is formed or coated with a material that does not transmit radiation R, and protects the face of the subject H from radiation R.
  • a compression plate 33 is attached between the shooting table 23 and the irradiation field limiting device 31.
  • the compression plate 33 is made of a material that transmits radiation R.
  • the compression plate 33 is arranged at a position facing the photographing table 23.
  • the compression plate 33 can be moved in a direction toward the photographing table 23 and a direction away from the photographing table 23 according to the operation of the elevating switch (not shown).
  • the compression plate 33 moves toward the imaging table 23, sandwiches the breast M with the imaging table 23, and presses the breast M.
  • An ultraviolet source 34 is provided on the outer surface of the irradiation field limiting device 31 facing the compression plate 33. More specifically, the ultraviolet source 34 is provided on the outer surface of the irradiation field limiting device 31 on the back side of the face guard 32. The ultraviolet source 34 may be provided inside the irradiation field limiting device 31.
  • the ultraviolet source 34 emits ultraviolet UV toward the radiation detector 26.
  • the ultraviolet UV emitted from the ultraviolet source 34 irradiates the face guard 32, the compression plate 33, and the like.
  • Ultraviolet UV is, for example, deep ultraviolet having a center wavelength in the range of 200 nm or more and 280 nm or less.
  • an LED Light Emitting Diode
  • an LD Laser Diode
  • an excimer lamp which is a kind of ultraviolet lamp, is used as the ultraviolet source 34.
  • the face guard 32 and the compression plate 33 are made of a material that transmits ultraviolet rays and UV rays.
  • Examples of the material that transmits ultraviolet rays and UV rays include the product name “Cytop (registered trademark)” manufactured by AGC Inc. Therefore, the ultraviolet UV rays enter the face guard 32 from the back surface of the face guard 32 and irradiate the surface of the face guard 32 facing the face of the subject H. Further, the ultraviolet UV rays enter the compression plate 33 from the back surface of the compression plate 33 and irradiate the surface of the compression plate 33 in contact with the breast M. Further, the ultraviolet UV transmitted through the compression plate 33 irradiates the imaging table 23 on which the breast M is placed. That is, in this example, ultraviolet UV rays are mainly applied to the photographing table 23, the face guard 32, and the compression plate 33.
  • the photographing table 23, the face guard 32, and the compression plate 33 are sterilized by being irradiated with ultraviolet rays UV.
  • "sterilization" by ultraviolet UV means that bacteria, microorganisms, or viruses adhering to the irradiated object are made inactive by light energy.
  • the UV UV irradiation time required for sterilization varies depending on the UV UV irradiation energy, the distance from the UV source 34 to the UV UV irradiation site, the type of bacteria or virus to be sterilized, and the like, but it varies from several minutes to several tens. It's about a minute. For example, it has been reported that the new coronavirus is inactivated by irradiation with ultraviolet rays for several minutes.
  • a power supply device 40 for supplying electric power to each part in the device main body 11 is provided in the support column 20B.
  • a voltage cable (not shown) extending from the power supply device 40 is arranged in the support column 20B.
  • the voltage cable is further introduced from the connection portion 21A through the arm 21 into the radiation source accommodating portion 22, and is connected to the radiation tube 29, the radiation detector 26, the ultraviolet source 34, and the like.
  • the power supply device 40 supplies power to the radiation tube 29, the radiation detector 26, and the ultraviolet source 34, respectively, via a voltage cable.
  • a power cable 40A is connected to the power supply device 40.
  • One end of the power cable 40A is connected to the power supply device 40, and the other end extends to the outside of the device main body 11.
  • the other end of the power cable 40A is connected to an external power source 70 (see FIG. 5).
  • AC power is supplied to the power supply device 40 from the external power source 70 via the power cable 40A.
  • the power supply device 40 has a converter circuit that converts alternating current into direct current, a voltage stabilizing circuit that stabilizes the voltage value, and the like. It is an AC power supply for formulas, etc.
  • the radiation tube 29 generates radiation based on the electric power supplied from the electric power supply device 40.
  • the radiation detector 26 performs a radiation detection operation based on the electric power supplied from the electric power supply device 40.
  • the ultraviolet source 34 generates ultraviolet rays based on the electric power supplied from the electric power supply device 40.
  • the computer constituting the control device 12 has a storage 50, a memory 51, a CPU (Central Processing Unit) 52, a display 53, and an input device 54.
  • a storage 50 a storage 50
  • a memory 51 a main memory 51
  • a CPU (Central Processing Unit) 52 a CPU (Central Processing Unit) 52
  • a display 53 a display 54
  • an input device 54 a CPU (Central Processing Unit) 52
  • the storage 50 is a storage device such as a hard disk drive built in the computer constituting the control device 12 or connected via a cable or a network.
  • the storage 50 stores control programs such as an operating system, various application programs, and various data associated with these programs.
  • the memory 51 is a work memory for the CPU 52 to execute a process.
  • the CPU 52 comprehensively controls each part of the computer by loading the program stored in the storage 50 into the memory 51 and executing the processing according to the program.
  • the display 53 displays various screens. Operation functions by GUI (Graphical User Interface) are realized on various screens.
  • the computer constituting the control device 12 receives input of an operation instruction from the input device 54 through various screens.
  • the input device 54 is a keyboard, a mouse, a touch panel, or the like.
  • the operation program 55 is stored in the storage 50.
  • the operation program 55 is an application program for operating the computer as the control device 12.
  • the storage 50 stores the irradiation condition table 56, the irradiation condition information 57 for each order, and the like.
  • the CPU 57 of the control device 12 performs processing in cooperation with the memory 51 and the like based on the operation program 55, so that the reception unit 60, the read / write (RW: Read Write) control unit 61, the main control unit 62, and the image processing are performed. It functions as a unit 63 and a display control unit 64.
  • RW Read Write
  • the reception unit 60 receives various operation instructions input by the operator via the input device 54. For example, the reception unit 60 receives the shooting menu 65. The reception unit 60 outputs the shooting menu 65 to the RW control unit 61.
  • the RW control unit 61 receives the shooting menu 65 from the reception unit 60.
  • the RW control unit 61 reads out the irradiation condition 66 corresponding to the received photographing menu 65 from the irradiation condition table 56.
  • the RW control unit 61 writes the irradiation condition 66 read from the irradiation condition table 56 in the irradiation condition information 57 for each order.
  • the main control unit 62 controls the power supply device 40 and the radiation detector 26.
  • the radiation source 25 and the ultraviolet source 34 are controlled by the main control unit 62 via the power supply device 40.
  • the main control unit 62 reads out the irradiation condition 66 from the irradiation condition information 57 for each order.
  • the main control unit 62 operates the radiation tube 29 by controlling the power supply device 40 according to the irradiation condition 66, and emits radiation R from the radiation tube 29 toward the radiation detector 26.
  • the main control unit 62 outputs the radiation image RI detected by the radiation detector 26 by the irradiation of the radiation R from the radiation detector 26 to the image processing unit 63.
  • the image processing unit 63 receives the radiation image RI from the radiation detector 26.
  • the image processing unit 63 performs various image processing on the radiation image RI.
  • the image processing unit 63 outputs the radiographic image RI after image processing to the display control unit 64.
  • the display control unit 64 receives the radiographic image RI from the image processing unit 63.
  • the display control unit 64 displays the radiographic image RI on the display 53.
  • control device 12 executes an automatic calibration operation.
  • the control device 12 acquires an offset image by reading a signal from the radiation detector 26 in a state where the radiation R is not irradiated to the radiation detector 26, and stores the acquired offset image in the memory 51. do.
  • the image processing unit 63 reads an offset image from the memory 51 at the time of radiography, and performs offset correction by subtracting the offset image from the radiographic image RI detected by the radiation detector 26.
  • the automatic calibration operation is periodically performed at the time of starting the device main body 11 or every time a certain period of time elapses.
  • the irradiation of ultraviolet UV rays from the ultraviolet source 34 to the photographing table 23 may be performed during the automatic calibration operation.
  • the power supply device 40 includes a first power supply unit 41, a second power supply unit 42, a third power supply unit 43, and an isolation transformer 44.
  • the first power supply unit 41 converts the AC voltage supplied from the external power source 70 via the isolation transformer 44 into a DC voltage and supplies it to the radiation detector 26.
  • the second power supply unit 42 converts the AC voltage supplied from the external power source 70 via the isolation transformer 44 into a DC voltage and supplies it to the ultraviolet source 34.
  • the third power supply unit 43 converts the AC voltage supplied from the external power source 70 via the isolation transformer 44 into a DC voltage and supplies it to the radiation tube 29 included in the radiation source 25.
  • the isolation transformer 44 is a transformer having a function of preventing an abnormal current or the like from flowing into the power supply device 40 from the external power supply 70.
  • the isolation transformer 44 is composed of a primary side coil 45 connected to the external power supply 70 and three secondary side coils 46A, 46B, 46C individually provided for the primary side coil 45.
  • the primary coil 45 and the three secondary coils 46A, 46B, 46C are electrically separated from each other. Further, the three secondary coil 46A, 46B, and 46C are electrically separated from each other.
  • “electrically separated” means that they are electrically isolated from each other.
  • the isolation transformer 44 is an example of a "transformer" according to the technique of the present disclosure.
  • the first power supply unit 41 is connected to the secondary coil 46A.
  • the second power supply unit 42 is connected to the secondary coil 46B.
  • the third power supply unit 43 is connected to the secondary coil 46C.
  • the first power supply unit 41, the second power supply unit 42, and the third power supply unit 43 are provided with reference electrodes 41A, 42A, and 43A for applying a reference potential, respectively.
  • the reference electrode 41A of the first power supply unit 41 and the reference electrode 43A of the third power supply unit 43 are connected to, for example, a metal constituting the housing of the apparatus main body 11 (hereinafter, referred to as housing metal). As a result, a ground potential is applied.
  • the housing metal is a metal for determining a reference potential in the apparatus main body 11.
  • the reference electrode 42A of the second power supply unit 42 is not connected to the housing metal.
  • the reference electrode 42A of the second power supply unit 42 is not connected to any metal and is in a floating state.
  • the reference electrode 42A may be connected to another metal electrically separated from the housing metal to which the reference electrodes 41A and 43A are connected.
  • the second power supply unit 42 is electrically separated from the first power supply unit 41. Further, the second power supply unit 42 is electrically separated from the third power supply unit 43. Therefore, it is possible to prevent the electrical noise generated in the first power supply unit 41 or the third power supply unit 43 from being transmitted to the second power supply unit 42. As a result, the second power supply unit 42 can supply stable power to the radiation detector 26.
  • the first power supply unit 41 is, for example, a power supply circuit including a converter circuit 71.
  • the converter circuit 71 generates a DC voltage having various voltage values based on the AC voltage supplied from the external power supply 70 via the primary side coil 45 and the secondary side coil 46A, and inputs the DC voltage to the radiation detector 26. ..
  • the second power supply unit 42 is, for example, a power supply circuit including a converter circuit 72 and an inverter circuit 73.
  • the converter circuit 72 generates a DC voltage based on the AC voltage supplied from the external power supply 70 via the primary side coil 45 and the secondary side coil 46B, and supplies the generated DC voltage to the inverter circuit 73.
  • the inverter circuit 73 generates a pulse-shaped drive voltage with pulse width modulation based on the supplied DC voltage, and inputs the generated drive voltage to the ultraviolet source 34.
  • the third power supply unit 43 has, for example, a converter circuit 74 and a high voltage generation circuit 75.
  • the converter circuit 74 generates a DC voltage based on the AC voltage supplied from the external power supply 70 via the primary side coil 45 and the secondary side coil 46C, and supplies the generated DC voltage to the high voltage generation circuit 75.
  • the high voltage generation circuit 75 generates a high voltage pulse based on the supplied DC voltage, and applies the generated high voltage pulse to the radiation tube 29.
  • the operation of the inverter circuit 73 and the high voltage generation circuit 75 is controlled by the main control unit 62.
  • the main control unit 62 controls the irradiation energy of the ultraviolet UV generated by the ultraviolet source 34 by controlling the duty ratio of the pulsed drive voltage generated by the inverter circuit 73. Further, the main control unit 62 controls the irradiation time of ultraviolet UV by controlling the operation of the inverter circuit 73.
  • main control unit 62 controls the timing at which the high voltage generation circuit 75 generates a high voltage pulse. Further, the main control unit 62 controls the radiation detection operation by the radiation detector 26.
  • the radiation detector 26 has a sensor board 80, a drive unit 81, a signal processing unit 82, and a sensor control unit 83.
  • the radiation detector 26 of the present embodiment is an indirect conversion type radiation detector that converts radiation into light and then converts light into electric charges.
  • a scintillator 84 as a conversion layer is laminated on the sensor substrate 80.
  • the scintillator 84 is formed of, for example, GOS (Gd 2 O 2 : Tb) or CsI (CsI: TI).
  • the scintillator 84 converts the radiation R emitted from the radiation source 25 and transmitted through the breast M (see FIG. 2) into light.
  • photodiodes 85 as photoelectric conversion elements are arranged in a two-dimensional matrix.
  • the photodiode 85 generates an electric charge according to the light converted by the scintillator 84, and accumulates the generated electric charge.
  • a TFT (Thin Film Transistor) 86 as a switch element is connected to the cathode side of the photodiode 85.
  • the photodiode 85 is connected to the source electrode of the TFT 85.
  • the drain electrode of the TFT 86 is connected to the signal line 87.
  • the gate electrode of the TFT 86 is connected to the scanning line 88.
  • the anode side of the photodiode 85 is connected to the bias wire 89.
  • a reverse bias voltage is applied to the bias line 89 from the first power supply unit 41.
  • a plurality of scanning lines 88 are connected to the drive unit 81.
  • the drive unit 81 is, for example, a gate driver.
  • the drive unit 81 is supplied with an on voltage and an off voltage from the first power supply unit 41.
  • the drive unit 81 switches the voltage applied to the scanning line 88 between the on voltage and the off voltage based on the timing signal supplied from the sensor control unit 83. That is, the drive unit 81 inputs a drive signal for outputting electric charges from each of the plurality of pixels to the sensor board 80.
  • the pixel is composed of a photodiode 85 and a TFT 86.
  • the TFT 86 is turned on when an on-voltage is applied via the scanning line 88, and conducts the photodiode 85 and the signal line 87.
  • an electric signal corresponding to the electric charge stored in the photodiode 85 is output to the signal line 87.
  • the electric signal output to the signal line 87 is input to the signal processing unit 82.
  • the signal processing unit 82 generates image data corresponding to the electrical signals input from each of the signal lines 87, and outputs the image data as a radiographic image RI.
  • the signal processing unit 82 is a signal processing circuit including an amplifier circuit, a correlated double sampling circuit, a multiplexer, an A / D converter, and the like. An amplifier circuit and a correlated double sampling circuit are provided for each signal line 87.
  • the sensor control unit 83 controls the operations of the drive unit 81 and the signal processing unit 82.
  • the sensor control unit 83 is composed of, for example, a CPU, an FPGA (Field Programmable Gate Array), or the like. Power is supplied to the sensor control unit 83 and the signal processing unit 82 from the first power supply unit 41.
  • the sensor control unit 83 is an example of a “control unit” according to the technique of the present disclosure.
  • the drive unit 81 is formed on the drive board, and the signal processing unit 82 is formed on the signal processing board.
  • the first power supply unit 41 supplies power to the drive board and the signal processing board.
  • a part of the circuit constituting the drive unit 81 may be formed on the drive board.
  • the signal processing board may be configured with a part of the circuit constituting the signal processing unit 82.
  • the radiation detector 26 is an indirect conversion type, but a direct conversion type may be used.
  • a conversion layer such as amorphous selenium (a-Se) that directly converts radiation into electric charge is used.
  • a capacitor for accumulating the electric charge generated by the conversion layer is provided instead of the photodiode 85.
  • a bias voltage is applied to the conversion layer from the first power supply unit 41 in the power supply device 40. That is, in the direct conversion type, the first power supply unit 41 that supplies the bias voltage to the conversion layer is electrically separated from the second power supply unit 42 that supplies the voltage to the ultraviolet source.
  • Other configurations are the same as those of the indirect conversion type radiation detector 26. That is, the radiation detector 26 may have a plurality of pixels that generate and accumulate charges according to the incident amount of the radiation R.
  • the ultraviolet source 34 is an excimer lamp composed of a discharge container 90, an external electrode 91, and an internal electrode 92.
  • the discharge container 90 is a double quartz tube having a discharge space 93 formed inside.
  • the discharge space 93 is filled with, for example, xenon and chlorine as a discharge gas.
  • the external electrode 91 is formed of, for example, a metal net that transmits light.
  • a pulsed drive voltage is applied from the second power supply unit 42 between the external electrode 91 and the internal electrode 92.
  • a driving voltage between the external electrode 91 and the internal electrode 92, the discharge gas in the discharge space 93 is excited, and then ultraviolet UV is generated when the excimer state is reached and the ground state is returned.
  • the ultraviolet source 34 may be an LED that emits deep ultraviolet rays.
  • the second power supply unit 42 When the ultraviolet source 34 is an LED, the second power supply unit 42 generates ultraviolet UV by supplying a pulsed drive current to the ultraviolet source 34. That is, the LED is driven by the pulse width modulation method.
  • the radiation tube 29 has a cathode 101 and an anode 102 housed in a vacuum glass tube 100 having a substantially cylindrical shape.
  • the cathode 101 emits electrons.
  • the anode 102 emits radiation R when electrons collide with each other.
  • the cathode 101 is a cold cathode. More specifically, the cathode 101 emits an electron beam EB toward the anode 102 by utilizing the field emission phenomenon.
  • the anode 102 is a rotating anode that is rotated by a rotating mechanism. A fixed fixed anode may be used as the anode 102.
  • a high voltage pulse as a tube voltage is applied from the third power supply unit 43 between the cathode 101 and the anode 102.
  • the electron beam EB is emitted from the cathode 101 toward the anode 102.
  • the radiation R is generated from the focal point F where the electron beam EB collides. Radiation R is emitted to the outside through an irradiation window 103 provided in the glass tube 100.
  • the radiation R emission by the radiation source 25 and the radiation detection by the radiation detector 26 are, for example, operation signals generated by the operator operating the input device 54. It is executed in conjunction.
  • the emission of ultraviolet UV rays by the ultraviolet source 34 may be executed in conjunction with an operation signal generated by the operator operating the input device 54, or may be executed periodically regardless of the operation signal. good. Therefore, the operating period of the radiation detector 26 and the operating period of the ultraviolet source 34 may overlap.
  • the noise generated in the second power supply unit 42 that supplies power to the ultraviolet source 34 is transmitted to the first power supply unit 41 that supplies power to the radiation detector 26.
  • the radiation image RI detected by the radiation detector 26 may be affected. This is because the radiation detector 26 has a very high detection sensitivity.
  • the second power supply unit 42 since the second power supply unit 42 is electrically separated from the first power supply unit 41, the influence of noise from the first power supply unit 41 to the radiation detector 26 is reduced. can do.
  • the second power supply unit 42 is electrically separated from the third power supply unit 43, the influence of noise from the first power supply unit 41 to the radiation detector 26 can be reduced.
  • the ultraviolet source 34 may operate while the radiation detector 26 is performing the calibration operation.
  • the noise affects the offset image obtained from the radiation detector 26.
  • noise affects the radiation image RI after offset correction.
  • the second power supply unit 42 is electrically separated from the first power supply unit 41, it is possible to reduce the influence of noise on the offset image due to the operation of the ultraviolet source 34.
  • the ultraviolet UV emitted by the ultraviolet source 34 is deep ultraviolet having a central wavelength in the range of 200 nm or more and 280 nm or less.
  • the ultraviolet UV is particularly preferably deep ultraviolet having a center wavelength of 222 nm. Deep ultraviolet rays with a central wavelength of 222 nm have little effect on the human body. This is known, for example, in Japanese Patent No. 6306097. Since deep ultraviolet rays having a central wavelength of 222 nm have a small effect on the human body, it is possible to irradiate the subject with ultraviolet UV rays during radiography of the subject.
  • the technique of the present disclosure is useful in a radiological diagnostic apparatus configured to perform ultraviolet irradiation during radiography.
  • the technique of the present disclosure has been described by taking a mammography apparatus as an example as a radiological diagnostic apparatus.
  • the technique of the present disclosure is applied to a radiography apparatus having a standing or recumbent imaging table, a mobile radiography apparatus, a radioscopy imaging apparatus, a mobile radioscopy imaging apparatus, or a radiation tomography apparatus, in addition to the mammography apparatus. Is also applicable.
  • FIG. 9 shows an example of a radiological imaging apparatus having an imaging table.
  • the radiation photographing apparatus 10A shown in FIG. 9 includes a radiation source 25, an irradiation field limiting device 31, a radiation detector 26, an ultraviolet source 34, a power supply device 40, a lying position photographing table 110, and a standing position photographing table 120.
  • the radiation detector 26 is a portable so-called electronic cassette.
  • the recumbent position photographing table 110 is used when the subject H is photographed in the recumbent position.
  • the standing image pickup table 120 is used when the subject H is photographed in a standing position.
  • the radiation detector 26 is detachably set in the folder 111 of the recumbent position photographing table 110 or the folder 121 of the standing position photographing table 120.
  • the radiation source 25 is movable and is arranged at a position facing the radiation detector 26.
  • FIG. 9 shows a state in which the radiation source 25 is arranged at a position facing the radiation detector 26 set in the folder 111 of the recumbent imaging table 110.
  • the ultraviolet source 34 is attached to, for example, the outer surface of the irradiation field limiting device 31 so as to irradiate the lying-position imaging table 110 or the standing-position imaging table 120 on which the subject H is arranged with ultraviolet UV rays.
  • the power supply device 40 supplies power to the radiation source 25, the ultraviolet source 34, and the radiation detector 26, respectively, as in the first embodiment.
  • the radiological imaging device 10A may be provided with at least one of the recumbent imaging table 110 and the standing imaging table 120.
  • FIG. 10 shows an example of a mobile radiation device.
  • the mobile radiation device 10B shown in FIG. 10 is a so-called X-ray round-trip vehicle configured to be movable.
  • the mobile radiation device 10B includes a trolley 130, a radiation source 25, an irradiation field limiting device 31, a radiation detector 26, an ultraviolet source 34, and a power supply device 40.
  • the dolly 130 is provided with a plurality of wheels 131 for moving the dolly 130. Further, the dolly 130 is provided with a handle 132 for the operator to push or pull the dolly 130 to move the dolly 130. Further, the dolly 130 is provided with an operation panel 133 for the operator to perform various operations.
  • the trolley 130 has a built-in power supply device 40.
  • the dolly 130 is connected to an external power source, and power is supplied to the power supply device 40 from the external power source (not shown). Further, the dolly 130 has a built-in battery (not shown), and power is supplied from the battery to the power supply device 40 as needed.
  • a support 134 is erected at the front of the bogie 130.
  • the column 134 is rotatable about the vertical direction.
  • An arm 135 is attached to the support column 134 so as to be movable in the vertical direction.
  • the radiation source 25 is attached to the end of the arm 135.
  • the radiation detector 26 is a portable so-called electronic cassette.
  • the radiation detector 26 is arranged on the bed 136.
  • the subject H is placed in a recumbent position on the bed 136 so that the radiation detector 26 is located at the imaging site.
  • the radiation source 25 is movable by rotating the support column 134 and / or moving the arm 135 up and down, and is arranged at a position facing the radiation detector 26.
  • the ultraviolet source 34 is attached to, for example, the outer surface of the irradiation field limiting device 31 so as to irradiate the bed 136 on which the subject H is arranged with ultraviolet UV.
  • the power supply device 40 supplies power to the radiation source 25, the ultraviolet source 34, and the radiation detector 26, respectively, as in the first embodiment.
  • the trolley 130 is provided with a folder 137 for storing the radiation detector 26 when not in use.
  • the radiation detector 26 is charged, for example, in the folder 137.
  • the ultraviolet source 34 may be provided in the folder 137 so as to irradiate the radiation detector 26 housed in the folder 137 with ultraviolet UV. Further, the ultraviolet source 34 may be provided on the support column 134, the arm 135, the carriage 130, or the like.
  • FIG. 11 shows an example of a radioscopic fluoroscopy apparatus.
  • the radioscopic fluoroscopy apparatus 10C shown in FIG. 11 is a mobile radioscopic fluoroscopy apparatus configured to be movable. Further, FIG. 11 shows a C-arm type digital fluoroscopy apparatus as an example of the radioscopic fluoroscopy apparatus 10C.
  • the fluoroscopy apparatus 10C includes a carriage 140, a radiation source 25, an irradiation field limiting device 31, a radiation detector 26, an ultraviolet source 34, and a power supply device 40.
  • the dolly 140 is provided with a plurality of wheels 141 for moving the dolly 140. Further, the C arm 143 is connected to the carriage 140 via the support portion 142. The support portion 142 rotatably supports the C arm 143. A radiation source 25 is provided at one end of the C arm 143, and a radiation detector 26 is provided at the other end. The radiation detector 26 is arranged at a position facing the radiation source 25.
  • the trolley 140 has a built-in power supply device 40.
  • the dolly 140 is connected to an external power source, and power is supplied to the power supply device 40 from the external power source (not shown). Further, the dolly 140 has a built-in battery (not shown), and power is supplied from the battery to the power supply device 40 as needed.
  • the ultraviolet source 34 is attached to the outer surface of the irradiation field limiting device 31 and emits ultraviolet UV toward the radiation detector 26.
  • the radiation detector 26 is sterilized.
  • the radiation source 25 is placed above the subject (not shown) and radioscopic radiography (so-called overtube radioscopic radiography) is performed, the subject and the subject are subjected to radiation fluoroscopy.
  • the bed (not shown) to be placed can be sterilized.
  • the power supply device 40 supplies power to the radiation source 25, the ultraviolet source 34, and the radiation detector 26, respectively, as in the first embodiment.
  • FIG. 12 illustrates a state in which the subject H is subjected to radioscopic fluoroscopy by the undertube method using the radioscopic fluoroscopy apparatus 10C.
  • Subject H is placed on the bed 144.
  • the position of the C arm 143 is adjusted so that the radiation source 25 is located below the bed 144 and the radiation detector 26 is located above the bed 144.
  • the radiation detector 26 images the radiation transmitted through the bed 144 and the subject H.
  • the ultraviolet source 34 is attached to the C arm 143 and is directed from above the subject H toward the bed 144 arranged between the radiation source 25 and the radiation detector 26. Ultraviolet UV is emitted. As a result, the bed 144 and the subject H are sterilized.
  • the ultraviolet source 34 is not limited to the irradiation field limiting device 31 or the C arm 143, and may be attached to the radiation detector 26, the trolley 140, or the like.
  • the fluoroscopy apparatus shown in FIGS. 11 and 12 is a mobile type, but the fluoroscopy apparatus may be a stationary type.
  • FIG. 13 shows an example of a radiation tomography apparatus.
  • the radiation tomography apparatus 10D shown in FIG. 13 is a so-called CT (Computed Tomography) apparatus.
  • the radiation tomography apparatus 10D includes a gantry 150, an imaging table 151, a radiation source 25, an irradiation field limiting device 31, a radiation detector 26, an ultraviolet source 34, and a power supply device 40.
  • the gantry 150 has a gantry rotating portion 152.
  • the gantry rotating portion 152 has a cavity portion 153 and is rotatably supported by the gantry 150.
  • the subject (not shown) placed on the photographing table 151 is conveyed to the cavity 153.
  • the gantry rotating unit 152 has a built-in radiation source 25, an irradiation field limiting device 31, and a radiation detector 26.
  • the radiation source 25 and the radiation detector 26 are arranged at positions facing each other with the cavity 153 interposed therebetween.
  • the radiation source 25, the irradiation field limiter 31, and the radiation detector 26 rotate with the rotation of the gantry rotating unit 152.
  • a tomographic image is generated by reconstructing a plurality of images output from the radiation detector 26.
  • the ultraviolet source 34 is provided in the gantry rotating portion 152, and irradiates the hollow portion 153 with ultraviolet UV. Therefore, a part of the photographing table 151 inserted in the cavity portion 153 and a part of the subject H are irradiated with ultraviolet UV rays. In this example, the ultraviolet source 34 rotates with the rotation of the gantry rotating portion 152.
  • the ultraviolet source 34 may be provided at a location other than the gantry rotating portion 152 of the gantry 150, or at a photographing table 151 or the like.
  • the mammography apparatus 10 described in the above embodiment may have a tomosynthesis function capable of acquiring a tomographic image.
  • pre-imaging at a low dose is performed in order to determine the irradiation conditions of radiation in tomosynthesis imaging.
  • the ultraviolet UV may be irradiated by the ultraviolet source 34.
  • the noise generated in the second power supply unit 42 when irradiated with ultraviolet UV rays is the first. 1 It is prevented from being transmitted to the power supply unit 41. This reduces the influence of noise on the pre-shooting image obtained by pre-shooting.
  • a and / or B is synonymous with "at least one of A and B". That is, “A and / or B” means that it may be only A, it may be only B, or it may be a combination of A and B. Further, in the present specification, when three or more matters are connected and expressed by "and / or", the same concept as “A and / or B" is applied.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

This radiation diagnostic device comprises: a radiation detector that detects radiation; an ultraviolet source that emits ultraviolet rays; a first power provision unit that provides power to a radiation detector; and a second power provision unit that is electrically separated from the first power provision unit and that provides power to the ultraviolet source.

Description

放射線診断装置Radiation diagnostic equipment
 本開示の技術は、放射線診断装置に関する。 The technique of this disclosure relates to a radiation diagnostic device.
 近年の新型コロナウイルス(正式名称:SARS(Severe Acute Respiratory Syndrome)-Cov(Coronavirus)-2)の流行により、医療機関においてもクラスターと呼ばれる集団感染が発生している。このため、医療機関における各種検査及び診断には細心の感染予防対策が必要とされている。感染予防対策として、紫外線照射による殺菌が有効である。新型コロナウイルスについても、紫外線照射を数分間行うことで不活性化することが報告されている。 Due to the recent epidemic of the new coronavirus (official name: SARS (Severe Acute Respiratory Syndrome) -Cov (Coronavirus) -2), outbreaks called clusters are occurring in medical institutions as well. For this reason, meticulous infection prevention measures are required for various tests and diagnoses at medical institutions. Sterilization by ultraviolet irradiation is effective as an infection prevention measure. It has also been reported that the new coronavirus is inactivated by irradiation with ultraviolet rays for several minutes.
 医療機関における感染予防対策として、手術室等において、照明装置に紫外線源を設けることが知られている(例えば、国際公開第2019/186880号参照)。紫外線源は、殺菌対象領域に紫外線照射を行う。 As an infection prevention measure in medical institutions, it is known to provide an ultraviolet source in a lighting device in an operating room or the like (see, for example, International Publication No. 2019/186880). The ultraviolet source irradiates the area to be sterilized with ultraviolet rays.
 また、放射線画像を検出する放射線検出器を用いた放射線診断の分野においても、放射線検出器を除菌するために、放射線検出器に紫外線照射を行うことが知られている(例えば、特開2013-248124号公報参照)。特開2013-248124号公報には、移動式の放射線診断装置において、放射線検出器を収納する収納フォルダの内部に、放射線検出器に向けて紫外線を射出する紫外線源を設けることが記載されている。 Further, in the field of radiation diagnosis using a radiation detector that detects a radiation image, it is known that the radiation detector is irradiated with ultraviolet rays in order to eradicate the radiation detector (for example, Japanese Patent Application Laid-Open No. 2013). -Refer to JP-A-248124). Japanese Unexamined Patent Publication No. 2013-248124 describes that, in a mobile radiation diagnostic apparatus, an ultraviolet source for emitting ultraviolet rays toward a radiation detector is provided inside a storage folder for accommodating the radiation detector. ..
 国際公開第2019/186880号に記載の照明装置には、紫外線源に加えて、術野を照明するための照明用光源(例えば、ハロゲン灯)が設けられている。国際公開第2019/186880号に記載の照明装置では、紫外線源に電力を供給する電力供給部と、照明用光源に電力を供給する電力供給部とは、並列に接続されている。この場合、各電力供給部で発生するノイズが紫外線源と照明用光源との間で互いに影響することが考えられる。しかしながら、国際公開第2019/186880号では、ノイズの影響は問題視されていない。 The lighting device described in International Publication No. 2019/186880 is provided with a light source for lighting (for example, a halogen lamp) for illuminating the surgical field in addition to the ultraviolet source. In the lighting device described in International Publication No. 2019/186880, the power supply unit that supplies power to the ultraviolet source and the power supply unit that supplies power to the lighting light source are connected in parallel. In this case, it is conceivable that the noise generated in each power supply unit affects each other between the ultraviolet source and the lighting light source. However, in International Publication No. 2019/186880, the influence of noise is not regarded as a problem.
 特開2013-248124号公報に記載のように紫外線源が設けられた放射線診断装置において、国際公開第2019/186880号に記載のように、紫外線源に電力を供給する電力供給部と、放射線検出器に電力を供給する電力供給部とを並列に接続した場合には、ノイズの影響が問題となる。放射線診断装置に用いられる放射線検出器は、放射線の検出感度が非常に高いため、紫外線源の電力供給部が発生するノイズがたとえ微小であっても、放射線検出器により検出される放射線画像に影響が生じる可能性がある。 In a radiation diagnostic apparatus provided with an ultraviolet source as described in JP-A-2013-248124, as described in International Publication No. 2019/186880, a power supply unit for supplying power to the ultraviolet source and radiation detection. When the power supply unit that supplies power to the device is connected in parallel, the influence of noise becomes a problem. Since the radiation detector used in the radiation diagnostic equipment has extremely high radiation detection sensitivity, even if the noise generated by the power supply section of the ultraviolet source is very small, it affects the radiation image detected by the radiation detector. May occur.
 本開示の技術は、放射線検出器へのノイズの影響を低減することを可能とする放射線診断装置を提供することを目的とする。 The technique of the present disclosure is intended to provide a radiation diagnostic apparatus capable of reducing the influence of noise on a radiation detector.
 本開示の放射線診断装置は、放射線を検出する放射線検出器と、紫外線を発する紫外線源と、放射線検出器に電力を供給する第1電力供給部と、第1電力供給部と電気的に分離され、かつ紫外線源に電力を供給する第2電力供給部と、を備える。 The radiation diagnostic apparatus of the present disclosure is electrically separated from a radiation detector that detects radiation, an ultraviolet source that emits ultraviolet rays, a first power supply unit that supplies power to the radiation detector, and a first power supply unit. It also includes a second power supply unit that supplies power to the ultraviolet source.
 紫外線は、200nm以上かつ280nm以下の範囲に中心波長を有する深紫外線であることが好ましい。 The ultraviolet rays are preferably deep ultraviolet rays having a central wavelength in the range of 200 nm or more and 280 nm or less.
 紫外線源は、放射線検出器に向けて紫外線を発することが好ましい。 The ultraviolet source preferably emits ultraviolet rays toward the radiation detector.
 放射線検出器は、放射線の入射量に応じた電荷を発生して蓄積する複数の画素が形成されたセンサ基板と、複数の画素の各々から電荷を出力させるための駆動信号をセンサ基板に入力する駆動部と、センサ基板から出力される電荷に応じた電気信号が入力され、入力された電気信号に基づいて画像データを生成して出力する信号処理部と、センサ基板、駆動部、及び信号処理部を制御する制御部と、を有することが好ましい。 The radiation detector inputs to the sensor board a sensor board in which a plurality of pixels that generate and accumulate electric charges according to the incident amount of radiation are formed, and a drive signal for outputting charges from each of the plurality of pixels. A drive unit, a signal processing unit in which an electric signal corresponding to the electric charge output from the sensor board is input, and image data is generated and output based on the input electric signal, a sensor board, a drive unit, and signal processing. It is preferable to have a control unit for controlling the unit.
 センサ基板は、放射線を直接電荷に変換する変換層を有し、第1電力供給部は、変換層にバイアス電圧を供給することが好ましい。 It is preferable that the sensor substrate has a conversion layer that directly converts radiation into electric charges, and the first power supply unit supplies a bias voltage to the conversion layer.
 紫外線源は、エキシマランプであることが好ましい。 The ultraviolet source is preferably an excimer lamp.
 第2電力供給部は、インバータ回路を含むことが好ましい。 It is preferable that the second power supply unit includes an inverter circuit.
 紫外線源は、LEDであることが好ましい。 The ultraviolet source is preferably an LED.
 第2電力供給部からパルス状の駆動電流を供給することが好ましい。 It is preferable to supply a pulsed drive current from the second power supply unit.
 第1電力供給部及び/又は第2電力供給部は、交流電圧を直流電圧に変換するコンバータ回路を含む電源回路であることが好ましい。 The first power supply unit and / or the second power supply unit is preferably a power supply circuit including a converter circuit that converts an AC voltage into a DC voltage.
 第1電力供給部と第2電力供給部とは、1次側コイルに対して個別に設けられた2次側コイルを有するトランスにより電気的に分離されていることが好ましい。 It is preferable that the first power supply unit and the second power supply unit are electrically separated by a transformer having a secondary coil separately provided for the primary coil.
 第1電力供給部の基準電極と第2電力供給部の基準電極とは、電気的に分離されていることが好ましい。 It is preferable that the reference electrode of the first power supply unit and the reference electrode of the second power supply unit are electrically separated.
 放射線検出器に向けて放射線を射出する放射線源と、第1電力供給部及び第2電力供給部と電気的に分離され、かつ放射線源に電力を供給する第3電力供給部と、をさらに備えることが好ましい。 It further includes a radiation source that emits radiation toward the radiation detector, and a third power supply unit that is electrically separated from the first power supply unit and the second power supply unit and supplies power to the radiation source. Is preferable.
 放射線診断装置は、立位撮影台又は臥位撮影台を有する放射線撮影装置、乳房撮影装置、放射線透視撮影装置、移動型放射線装置、移動型放射線透視撮影装置、放射線断層撮影装置のうちのいずれかであることが好ましい。 The radiodiagnosis device is any one of a radiography device having a standing or recumbent radiography table, a mammography device, a radioscopic fluoroscopy device, a mobile radiography device, a mobile radioscopic radiography device, and a radiotomography device. Is preferable.
 本開示の技術によれば、放射線検出器へのノイズの影響を低減することを可能とする放射線診断装置を提供することができる。 According to the technique of the present disclosure, it is possible to provide a radiation diagnostic apparatus capable of reducing the influence of noise on a radiation detector.
放射線診断装置の一例である乳房撮影装置を示す図である。It is a figure which shows the mammography apparatus which is an example of a radiation diagnostic apparatus. 放射線の射出状態を示す乳房撮影装置の側面図である。It is a side view of the mammography apparatus which shows the radiation emission state. 紫外線の照射状態を示す乳房撮影装置の側面図である。It is a side view of the mammography apparatus which shows the irradiation state of ultraviolet rays. 制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a control device. 電力供給装置の構成を示すブロック図である。It is a block diagram which shows the structure of a power supply device. 放射線検出器の構成を示す図である。It is a figure which shows the structure of a radiation detector. 紫外線源の構成を示す図である。It is a figure which shows the structure of the ultraviolet ray source. 放射線管の構成を示す図である。It is a figure which shows the structure of a radiation tube. 撮影台を有する放射線撮影装置の一例を示す図である。It is a figure which shows an example of the radiological imaging apparatus which has an imaging table. 移動型放射線装置の一例を示す図である。It is a figure which shows an example of the mobile radiation apparatus. 放射線透視撮影装置の一例を示す図である。It is a figure which shows an example of the radioscopic fluoroscopy apparatus. 放射線透視撮影装置の他の一例を示す図である。It is a figure which shows another example of the radioscopic fluoroscopy apparatus. 放射線断層撮影装置の一例を示す図である。It is a figure which shows an example of a radiation tomography apparatus.
 一例として図1及び図2に示すように、乳房撮影装置10は、被検者Hの乳房Mを被写体として放射線撮影を行う。乳房撮影装置10は、乳房MにX線、γ線といった放射線Rを照射して、乳房Mの放射線画像RIを生成する。乳房撮影装置10は、本開示の技術に係る「放射線診断装置」の一例である。 As an example, as shown in FIGS. 1 and 2, the mammography apparatus 10 performs radiography with the breast M of the subject H as a subject. The mammography apparatus 10 irradiates the breast M with radiation R such as X-rays and γ-rays to generate a radiographic image RI of the breast M. The mammography apparatus 10 is an example of a "radiation diagnostic apparatus" according to the technique of the present disclosure.
 乳房撮影装置10は、装置本体11と制御装置12とを備える。装置本体11は、例えば医療施設の放射線撮影室に設置される。制御装置12は、例えば放射線撮影室の隣室の制御室に設置される。制御装置12は、例えばデスクトップ型のパーソナルコンピュータである。制御装置12は、LAN(Local Area Network)等のネットワーク13を介して、画像データベース(以下、画像DB(Data Base)と略す。)サーバ14と通信可能に接続されている。画像DBサーバ14は、例えば、PACS(Picture Archiving and Communication System)サーバであり、乳房撮影装置10から放射線画像RIを受信し、受信した放射線画像RIを蓄積管理する。 The mammography apparatus 10 includes an apparatus main body 11 and a control device 12. The device main body 11 is installed, for example, in a radiography room of a medical facility. The control device 12 is installed in, for example, a control room next to the radiography room. The control device 12 is, for example, a desktop personal computer. The control device 12 is communicably connected to an image database (hereinafter abbreviated as image DB (Data Base)) server 14 via a network 13 such as a LAN (Local Area Network). The image DB server 14 is, for example, a PACS (Picture Archiving and Communication System) server, receives radiographic image RI from the mammography apparatus 10, and stores and manages the received radiographic image RI.
 ネットワーク13には、端末装置15が接続されている。端末装置15は、例えば、放射線画像RIを用いて診察を行う医師が使用するパーソナルコンピュータである。端末装置15は、画像DBサーバ14から放射線画像RIを受信し、受信した放射線画像RIをディスプレイに表示する。 The terminal device 15 is connected to the network 13. The terminal device 15 is, for example, a personal computer used by a doctor who performs a medical examination using a radiographic image RI. The terminal device 15 receives the radiation image RI from the image DB server 14, and displays the received radiation image RI on the display.
 装置本体11は、スタンド20とアーム21とを有する。スタンド20は、放射線撮影室の床面に設置される台座20Aと、台座20Aから高さ方向に延びる支柱20Bとで構成される。アーム21は、横から見た形状が略C字状であり、接続部21Aを介して支柱20Bに接続されている。この接続部21Aにより、アーム21は支柱20Bに対して高さ方向に移動可能である。また、アーム21は、接続部21Aを貫く、支柱20Bに垂直な回転軸回りに回転可能である。 The device main body 11 has a stand 20 and an arm 21. The stand 20 is composed of a pedestal 20A installed on the floor of the radiography room and a support column 20B extending in the height direction from the pedestal 20A. The arm 21 has a substantially C-shape when viewed from the side, and is connected to the support column 20B via the connecting portion 21A. The connecting portion 21A allows the arm 21 to move in the height direction with respect to the support column 20B. Further, the arm 21 can rotate around a rotation axis perpendicular to the support column 20B, penetrating the connection portion 21A.
 アーム21は、線源収容部22、撮影台23、及び本体部24で構成される。線源収容部22には放射線源25が収容されている。撮影台23には乳房Mが載せられる。撮影台23には放射線検出器26が収容されている。本体部24は、線源収容部22と撮影台23とを一体的に接続する。本体部24は、線源収容部22と撮影台23とを対向する位置に保持する。本体部24の両サイドには、被検者Hの手が掴まれる手すり27が設けられている。 The arm 21 is composed of a radiation source accommodating portion 22, a photographing table 23, and a main body portion 24. The radiation source 25 is accommodated in the radiation source accommodating portion 22. Breast M is placed on the imaging table 23. The radiation detector 26 is housed in the photographing table 23. The main body portion 24 integrally connects the radiation source accommodating portion 22 and the photographing table 23. The main body portion 24 holds the radiation source accommodating portion 22 and the photographing table 23 at positions facing each other. Handrails 27 on both sides of the main body 24 are provided so that the hand of the subject H can be grasped.
 放射線源25は、放射線管29と、放射線管29を収容するハウジング30とで構成される。ハウジング30内は絶縁油で満たされている。放射線管29は、撮影台23に載せられた乳房Mに向けて放射線Rを射出する。放射線検出器26は、乳房Mを透過した放射線Rを検出して放射線画像RIを出力する。 The radiation source 25 includes a radiation tube 29 and a housing 30 that houses the radiation tube 29. The inside of the housing 30 is filled with insulating oil. The radiation tube 29 emits radiation R toward the breast M placed on the imaging table 23. The radiation detector 26 detects the radiation R transmitted through the breast M and outputs a radiation image RI.
 線源収容部22と撮影台23との間には、照射野限定器31が設けられている。照射野限定器31はコリメータとも呼ばれ、撮影台23への放射線Rの照射野を規定する。 An irradiation field limiting device 31 is provided between the radiation source accommodating portion 22 and the photographing table 23. The irradiation field limiting device 31 is also called a collimator, and defines the irradiation field of the radiation R to the photographing table 23.
 線源収容部22には、フェイスガード32が取り付けられている。フェイスガード32は、放射線Rを透過しない材料で形成又はコーティングされており、被検者Hの顔を放射線Rから防護する。 A face guard 32 is attached to the radiation source accommodating portion 22. The face guard 32 is formed or coated with a material that does not transmit radiation R, and protects the face of the subject H from radiation R.
 撮影台23と照射野限定器31との間には、圧迫板33が取り付けられている。圧迫板33は、放射線Rを透過する材料で形成されている。圧迫板33は、撮影台23と対向する位置に配置されている。圧迫板33は、図示省略した昇降スイッチの操作に応じて、撮影台23に向かう方向と撮影台23から離間する方向とに移動可能である。圧迫板33は、撮影台23に向かって移動して、撮影台23との間で乳房Mを挟み込んで圧迫する。 A compression plate 33 is attached between the shooting table 23 and the irradiation field limiting device 31. The compression plate 33 is made of a material that transmits radiation R. The compression plate 33 is arranged at a position facing the photographing table 23. The compression plate 33 can be moved in a direction toward the photographing table 23 and a direction away from the photographing table 23 according to the operation of the elevating switch (not shown). The compression plate 33 moves toward the imaging table 23, sandwiches the breast M with the imaging table 23, and presses the breast M.
 照射野限定器31の圧迫板33と対向する外面には、紫外線源34が設けられている。より詳しくは、紫外線源34は、フェイスガード32の裏側の照射野限定器31の外面に設けられている。なお、紫外線源34は、照射野限定器31の内部に設けられていてもよい。 An ultraviolet source 34 is provided on the outer surface of the irradiation field limiting device 31 facing the compression plate 33. More specifically, the ultraviolet source 34 is provided on the outer surface of the irradiation field limiting device 31 on the back side of the face guard 32. The ultraviolet source 34 may be provided inside the irradiation field limiting device 31.
一例として図3に示すように、紫外線源34は、放射線検出器26に向けて紫外線UVを発する。紫外線源34から発せられた紫外線UVは、フェイスガード32及び圧迫板33等に照射される。紫外線UVは、例えば、200nm以上かつ280nm以下の範囲に中心波長を有する深紫外線である。 As an example, as shown in FIG. 3, the ultraviolet source 34 emits ultraviolet UV toward the radiation detector 26. The ultraviolet UV emitted from the ultraviolet source 34 irradiates the face guard 32, the compression plate 33, and the like. Ultraviolet UV is, for example, deep ultraviolet having a center wavelength in the range of 200 nm or more and 280 nm or less.
 紫外線源34として、石英管を用いた紫外線ランプの他、LED(Light Emitting Diode)、又はLD(Laser Diode)等を用いることができる。本例においては、紫外線源34として、紫外線ランプの一種であるエキシマランプを用いる。 As the ultraviolet source 34, an LED (Light Emitting Diode), an LD (Laser Diode), or the like can be used in addition to an ultraviolet lamp using a quartz tube. In this example, an excimer lamp, which is a kind of ultraviolet lamp, is used as the ultraviolet source 34.
 フェイスガード32及び圧迫板33は、紫外線UVを透過する材料で形成されている。紫外線UVを透過する材料としては、例えばAGC株式会社製の製品名「サイトップ(登録商標)」が挙げられる。このため、紫外線UVは、フェイスガード32の裏面からフェイスガード32内に入射し、被検者Hの顔と対面するフェイスガード32の表面を照射する。また、紫外線UVは、圧迫板33の裏面から圧迫板33内に入射し、乳房Mが接する圧迫板33の表面を照射する。さらに、圧迫板33を透過した紫外線UVは、乳房Mが載せられる撮影台23を照射する。すなわち、本例においては、主として撮影台23、フェイスガード32、及び圧迫板33に紫外線UVが照射される。 The face guard 32 and the compression plate 33 are made of a material that transmits ultraviolet rays and UV rays. Examples of the material that transmits ultraviolet rays and UV rays include the product name “Cytop (registered trademark)” manufactured by AGC Inc. Therefore, the ultraviolet UV rays enter the face guard 32 from the back surface of the face guard 32 and irradiate the surface of the face guard 32 facing the face of the subject H. Further, the ultraviolet UV rays enter the compression plate 33 from the back surface of the compression plate 33 and irradiate the surface of the compression plate 33 in contact with the breast M. Further, the ultraviolet UV transmitted through the compression plate 33 irradiates the imaging table 23 on which the breast M is placed. That is, in this example, ultraviolet UV rays are mainly applied to the photographing table 23, the face guard 32, and the compression plate 33.
 撮影台23、フェイスガード32、及び圧迫板33は、紫外線UVが照射されることにより殺菌される。ここで、紫外線UVによる「殺菌」とは、照射対象物に付着した細菌、微生物類、又はウイルスを、光エネルギーにより不活性な状態にすることを意味する。殺菌に必要な紫外線UVの照射時間は、紫外線UVの照射エネルギー、紫外線源34から紫外線UVを照射する箇所までの距離、及び殺菌対象の細菌又はウイルスの種類等により異なるが、数分~数十分程度である。例えば新型コロナウイルスは、数分の紫外線UVの照射で不活性化するとの報告がある。 The photographing table 23, the face guard 32, and the compression plate 33 are sterilized by being irradiated with ultraviolet rays UV. Here, "sterilization" by ultraviolet UV means that bacteria, microorganisms, or viruses adhering to the irradiated object are made inactive by light energy. The UV UV irradiation time required for sterilization varies depending on the UV UV irradiation energy, the distance from the UV source 34 to the UV UV irradiation site, the type of bacteria or virus to be sterilized, and the like, but it varies from several minutes to several tens. It's about a minute. For example, it has been reported that the new coronavirus is inactivated by irradiation with ultraviolet rays for several minutes.
 支柱20B内には、装置本体11内の各部に電力を供給する電力供給装置40が設けられている。支柱20B内には、電力供給装置40から延びる電圧ケーブル(図示省略)が配設されている。電圧ケーブルは、さらに接続部21Aからアーム21を通って線源収容部22内に導入され、放射線管29、放射線検出器26、紫外線源34等に接続されている。電力供給装置40は、電圧ケーブルを介して、放射線管29、放射線検出器26、及び紫外線源34にそれぞれ電力を供給する。 A power supply device 40 for supplying electric power to each part in the device main body 11 is provided in the support column 20B. A voltage cable (not shown) extending from the power supply device 40 is arranged in the support column 20B. The voltage cable is further introduced from the connection portion 21A through the arm 21 into the radiation source accommodating portion 22, and is connected to the radiation tube 29, the radiation detector 26, the ultraviolet source 34, and the like. The power supply device 40 supplies power to the radiation tube 29, the radiation detector 26, and the ultraviolet source 34, respectively, via a voltage cable.
 電力供給装置40には、電源ケーブル40Aが接続されている。電源ケーブル40Aは、一端が電力供給装置40に接続され、他端が装置本体11の外部に延在している。電源ケーブル40Aの他端は、外部電源70(図5参照)に接続される。電力供給装置40には、電源ケーブル40Aを介して外部電源70から交流の電力が供給される。電力供給装置40は、交流を直流に変換するコンバータ回路、電圧の値を安定化させる電圧安定化回路等を有している外部電源70は、単相二線式、単相三線式、三相式等の交流電源である。 A power cable 40A is connected to the power supply device 40. One end of the power cable 40A is connected to the power supply device 40, and the other end extends to the outside of the device main body 11. The other end of the power cable 40A is connected to an external power source 70 (see FIG. 5). AC power is supplied to the power supply device 40 from the external power source 70 via the power cable 40A. The power supply device 40 has a converter circuit that converts alternating current into direct current, a voltage stabilizing circuit that stabilizes the voltage value, and the like. It is an AC power supply for formulas, etc.
 放射線管29は、電力供給装置40から供給された電力に基づいて、放射線を発生する。放射線検出器26は、電力供給装置40から供給された電力に基づいて、放射線検出動作を行う。紫外線源34は、電力供給装置40から供給された電力に基づいて、紫外線を発生する。 The radiation tube 29 generates radiation based on the electric power supplied from the electric power supply device 40. The radiation detector 26 performs a radiation detection operation based on the electric power supplied from the electric power supply device 40. The ultraviolet source 34 generates ultraviolet rays based on the electric power supplied from the electric power supply device 40.
 一例として図4に示すように、制御装置12を構成するコンピュータは、ストレージ50、メモリ51、CPU(Central Processing Unit)52、ディスプレイ53、及び入力デバイス54を有する。 As shown in FIG. 4, as an example, the computer constituting the control device 12 has a storage 50, a memory 51, a CPU (Central Processing Unit) 52, a display 53, and an input device 54.
 ストレージ50は、制御装置12を構成するコンピュータに内蔵、又はケーブル若しくはネットワークを通じて接続されたハードディスクドライブ等の記憶装置である。ストレージ50には、オペレーティングシステム等の制御プログラム、各種アプリケーションプログラム、及びこれらのプログラムに付随する各種データ等が記憶されている。 The storage 50 is a storage device such as a hard disk drive built in the computer constituting the control device 12 or connected via a cable or a network. The storage 50 stores control programs such as an operating system, various application programs, and various data associated with these programs.
 メモリ51は、CPU52が処理を実行するためのワークメモリである。CPU52は、ストレージ50に記憶されたプログラムをメモリ51へロードして、プログラムにしたがった処理を実行することにより、コンピュータの各部を統括的に制御する。 The memory 51 is a work memory for the CPU 52 to execute a process. The CPU 52 comprehensively controls each part of the computer by loading the program stored in the storage 50 into the memory 51 and executing the processing according to the program.
 ディスプレイ53は、各種画面を表示する。各種画面には、GUI(Graphical User Interface)による操作機能が実現される。制御装置12を構成するコンピュータは、各種画面を通じて、入力デバイス54からの操作指示の入力を受け付ける。入力デバイス54は、キーボード、マウス、タッチパネル等である。 The display 53 displays various screens. Operation functions by GUI (Graphical User Interface) are realized on various screens. The computer constituting the control device 12 receives input of an operation instruction from the input device 54 through various screens. The input device 54 is a keyboard, a mouse, a touch panel, or the like.
 ストレージ50には作動プログラム55が記憶されている。作動プログラム55は、コンピュータを制御装置12として機能させるためのアプリケーションプログラムである。ストレージ50には、作動プログラム55の他に、照射条件テーブル56及びオーダー別照射条件情報57等が記憶されている。 The operation program 55 is stored in the storage 50. The operation program 55 is an application program for operating the computer as the control device 12. In addition to the operation program 55, the storage 50 stores the irradiation condition table 56, the irradiation condition information 57 for each order, and the like.
 制御装置12のCPU57は、作動プログラム55に基づき、メモリ51等と協働して処理を行うことにより、受付部60、リードライト(RW:Read Write)制御部61、主制御部62、画像処理部63、及び表示制御部64として機能する。 The CPU 57 of the control device 12 performs processing in cooperation with the memory 51 and the like based on the operation program 55, so that the reception unit 60, the read / write (RW: Read Write) control unit 61, the main control unit 62, and the image processing are performed. It functions as a unit 63 and a display control unit 64.
 受付部60は、入力デバイス54を介してオペレータにより入力される様々な操作指示を受け付ける。例えば、受付部60は、撮影メニュー65を受け付ける。受付部60は、撮影メニュー65をRW制御部61に出力する。 The reception unit 60 receives various operation instructions input by the operator via the input device 54. For example, the reception unit 60 receives the shooting menu 65. The reception unit 60 outputs the shooting menu 65 to the RW control unit 61.
 RW制御部61は、受付部60から撮影メニュー65を受け取る。RW制御部61は、受け取った撮影メニュー65に対応する照射条件66を、照射条件テーブル56から読み出す。RW制御部61は、照射条件テーブル56から読み出した照射条件66を、オーダー別照射条件情報57に書き込む。 The RW control unit 61 receives the shooting menu 65 from the reception unit 60. The RW control unit 61 reads out the irradiation condition 66 corresponding to the received photographing menu 65 from the irradiation condition table 56. The RW control unit 61 writes the irradiation condition 66 read from the irradiation condition table 56 in the irradiation condition information 57 for each order.
 主制御部62は、電力供給装置40及び放射線検出器26を制御する。放射線源25及び紫外線源34は、主制御部62により電力供給装置40を介して制御される。主制御部62は、オーダー別照射条件情報57から照射条件66を読み出す。主制御部62は、照射条件66にしたがって電力供給装置40を制御することにより放射線管29を動作させ、放射線管29から放射線検出器26に向けて放射線Rを射出させる。主制御部62は、放射線Rの照射により放射線検出器26で検出された放射線画像RIを、放射線検出器26から画像処理部63に出力させる。 The main control unit 62 controls the power supply device 40 and the radiation detector 26. The radiation source 25 and the ultraviolet source 34 are controlled by the main control unit 62 via the power supply device 40. The main control unit 62 reads out the irradiation condition 66 from the irradiation condition information 57 for each order. The main control unit 62 operates the radiation tube 29 by controlling the power supply device 40 according to the irradiation condition 66, and emits radiation R from the radiation tube 29 toward the radiation detector 26. The main control unit 62 outputs the radiation image RI detected by the radiation detector 26 by the irradiation of the radiation R from the radiation detector 26 to the image processing unit 63.
 画像処理部63は、放射線検出器26から放射線画像RIを受け取る。画像処理部63は、放射線画像RIに対して各種画像処理を施す。画像処理部63は、画像処理後の放射線画像RIを表示制御部64に出力する。表示制御部64は、画像処理部63から放射線画像RIを受け取る。表示制御部64は、放射線画像RIをディスプレイ53に表示する。 The image processing unit 63 receives the radiation image RI from the radiation detector 26. The image processing unit 63 performs various image processing on the radiation image RI. The image processing unit 63 outputs the radiographic image RI after image processing to the display control unit 64. The display control unit 64 receives the radiographic image RI from the image processing unit 63. The display control unit 64 displays the radiographic image RI on the display 53.
 また、制御装置12は、自動キャリブレーション動作を実行する。自動キャリブレーション動作では、放射線Rが放射線検出器26に照射されていない状態で、制御装置12が放射線検出器26から信号を読み出すことによりオフセット画像を取得し、取得したオフセット画像をメモリ51に格納する。画像処理部63は、放射線撮影時に、メモリ51からオフセット画像を読み出し、放射線検出器26で検出された放射線画像RIからオフセット画像を減算するオフセット補正を行う。 Further, the control device 12 executes an automatic calibration operation. In the automatic calibration operation, the control device 12 acquires an offset image by reading a signal from the radiation detector 26 in a state where the radiation R is not irradiated to the radiation detector 26, and stores the acquired offset image in the memory 51. do. The image processing unit 63 reads an offset image from the memory 51 at the time of radiography, and performs offset correction by subtracting the offset image from the radiographic image RI detected by the radiation detector 26.
 自動キャリブレーション動作は、装置本体11の起動時、又は、一定時間が経過するたびに定期的に行われる。なお、紫外線源34から撮影台23への紫外線UVの照射は、自動キャリブレーション動作中に行われることがある。 The automatic calibration operation is periodically performed at the time of starting the device main body 11 or every time a certain period of time elapses. The irradiation of ultraviolet UV rays from the ultraviolet source 34 to the photographing table 23 may be performed during the automatic calibration operation.
 一例として図5に示すように、電力供給装置40は、第1電力供給部41、第2電力供給部42、第3電力供給部43、及び絶縁トランス44により構成されている。第1電力供給部41は、外部電源70から絶縁トランス44を介して供給される交流電圧を、直流電圧に変換して放射線検出器26に供給する。第2電力供給部42は、外部電源70から絶縁トランス44を介して供給される交流電圧を、直流電圧に変換して紫外線源34に供給する。第3電力供給部43は、外部電源70から絶縁トランス44を介して供給される交流電圧を、直流電圧に変換して放射線源25に含まれる放射線管29に供給する。 As an example, as shown in FIG. 5, the power supply device 40 includes a first power supply unit 41, a second power supply unit 42, a third power supply unit 43, and an isolation transformer 44. The first power supply unit 41 converts the AC voltage supplied from the external power source 70 via the isolation transformer 44 into a DC voltage and supplies it to the radiation detector 26. The second power supply unit 42 converts the AC voltage supplied from the external power source 70 via the isolation transformer 44 into a DC voltage and supplies it to the ultraviolet source 34. The third power supply unit 43 converts the AC voltage supplied from the external power source 70 via the isolation transformer 44 into a DC voltage and supplies it to the radiation tube 29 included in the radiation source 25.
 絶縁トランス44は、外部電源70から電力供給装置40への異常電流等の流入を防止する作用を有する変圧器である。絶縁トランス44は、外部電源70に接続される1次側コイル45と、1次側コイル45に対して個別に設けられた3つの2次側コイル46A,46B,46Cとで構成されている。1次側コイル45と3つの2次側コイル46A,46B,46Cとは、電気的に分離している。また、3つの2次側コイル46A,46B,46Cは、それぞれ電気的に分離している。なお、「電気的に分離している」とは、互いに電気的に絶縁されていることを意味する。絶縁トランス44は、本開示の技術に係る「トランス」の一例である。 The isolation transformer 44 is a transformer having a function of preventing an abnormal current or the like from flowing into the power supply device 40 from the external power supply 70. The isolation transformer 44 is composed of a primary side coil 45 connected to the external power supply 70 and three secondary side coils 46A, 46B, 46C individually provided for the primary side coil 45. The primary coil 45 and the three secondary coils 46A, 46B, 46C are electrically separated from each other. Further, the three secondary coil 46A, 46B, and 46C are electrically separated from each other. In addition, "electrically separated" means that they are electrically isolated from each other. The isolation transformer 44 is an example of a "transformer" according to the technique of the present disclosure.
 第1電力供給部41は、2次側コイル46Aに接続されている。第2電力供給部42は、2次側コイル46Bに接続されている。第3電力供給部43は、2次側コイル46Cに接続されている。第1電力供給部41、第2電力供給部42、及び第3電力供給部43には、それぞれ基準電位を付与するための基準電極41A,42A,43Aが設けられている。 The first power supply unit 41 is connected to the secondary coil 46A. The second power supply unit 42 is connected to the secondary coil 46B. The third power supply unit 43 is connected to the secondary coil 46C. The first power supply unit 41, the second power supply unit 42, and the third power supply unit 43 are provided with reference electrodes 41A, 42A, and 43A for applying a reference potential, respectively.
 第1電力供給部41の基準電極41Aと、第3電力供給部43の基準電極43Aとは、例えば、装置本体11の筐体を構成する金属(以下、筐体金属という。)に接続されることにより、グランド電位が付与されている。筐体金属は、装置本体11内の基準電位を決定するための金属である。 The reference electrode 41A of the first power supply unit 41 and the reference electrode 43A of the third power supply unit 43 are connected to, for example, a metal constituting the housing of the apparatus main body 11 (hereinafter, referred to as housing metal). As a result, a ground potential is applied. The housing metal is a metal for determining a reference potential in the apparatus main body 11.
 一方、第2電力供給部42の基準電極42Aは、筐体金属には接続されていない。本実施形態では、第2電力供給部42の基準電極42Aは、いずれの金属にも接続されず、フローティング状態とされている。なお、基準電極42Aは、基準電極41A,43Aが接続された筐体金属とは電気的に分離された別の金属に接続されていてもよい。 On the other hand, the reference electrode 42A of the second power supply unit 42 is not connected to the housing metal. In the present embodiment, the reference electrode 42A of the second power supply unit 42 is not connected to any metal and is in a floating state. The reference electrode 42A may be connected to another metal electrically separated from the housing metal to which the reference electrodes 41A and 43A are connected.
 このように、第2電力供給部42は、第1電力供給部41と電気的に分離されている。また、第2電力供給部42は、第3電力供給部43と電気的に分離されている。したがって、第1電力供給部41又は第3電力供給部43で発生した電気的なノイズが第2電力供給部42に伝達されることが防止される。これにより、第2電力供給部42は、安定した電力を放射線検出器26に供給することができる。 In this way, the second power supply unit 42 is electrically separated from the first power supply unit 41. Further, the second power supply unit 42 is electrically separated from the third power supply unit 43. Therefore, it is possible to prevent the electrical noise generated in the first power supply unit 41 or the third power supply unit 43 from being transmitted to the second power supply unit 42. As a result, the second power supply unit 42 can supply stable power to the radiation detector 26.
 第1電力供給部41は、例えば、コンバータ回路71を含む電源回路である。コンバータ回路71は、外部電源70から1次側コイル45及び2次側コイル46Aを介して供給される交流電圧に基づき、各種の電圧値を有する直流電圧を生成して放射線検出器26に入力する。 The first power supply unit 41 is, for example, a power supply circuit including a converter circuit 71. The converter circuit 71 generates a DC voltage having various voltage values based on the AC voltage supplied from the external power supply 70 via the primary side coil 45 and the secondary side coil 46A, and inputs the DC voltage to the radiation detector 26. ..
 第2電力供給部42は、例えば、コンバータ回路72及びインバータ回路73を含む電源回路である。コンバータ回路72は、外部電源70から1次側コイル45及び2次側コイル46Bを介して供給される交流電圧に基づき直流電圧を生成し、生成した直流電圧をインバータ回路73に供給する。インバータ回路73は、供給された直流電圧に基づき、パルス幅変調されたパルス状の駆動電圧を生成し、生成した駆動電圧を紫外線源34に入力する。 The second power supply unit 42 is, for example, a power supply circuit including a converter circuit 72 and an inverter circuit 73. The converter circuit 72 generates a DC voltage based on the AC voltage supplied from the external power supply 70 via the primary side coil 45 and the secondary side coil 46B, and supplies the generated DC voltage to the inverter circuit 73. The inverter circuit 73 generates a pulse-shaped drive voltage with pulse width modulation based on the supplied DC voltage, and inputs the generated drive voltage to the ultraviolet source 34.
 第3電力供給部43は、例えば、コンバータ回路74及び高電圧発生回路75を有する。コンバータ回路74は、外部電源70から1次側コイル45及び2次側コイル46Cを介して供給される交流電圧に基づき直流電圧を生成し、生成した直流電圧を高電圧発生回路75に供給する。高電圧発生回路75は、供給された直流電圧に基づいて高電圧パルスを生成し、生成した高電圧パルスを放射線管29に印加する。 The third power supply unit 43 has, for example, a converter circuit 74 and a high voltage generation circuit 75. The converter circuit 74 generates a DC voltage based on the AC voltage supplied from the external power supply 70 via the primary side coil 45 and the secondary side coil 46C, and supplies the generated DC voltage to the high voltage generation circuit 75. The high voltage generation circuit 75 generates a high voltage pulse based on the supplied DC voltage, and applies the generated high voltage pulse to the radiation tube 29.
 インバータ回路73及び高電圧発生回路75は、主制御部62により動作が制御される。主制御部62は、インバータ回路73が発生するパルス状の駆動電圧のデューティ比を制御することにより、紫外線源34が発生する紫外線UVの照射エネルギーを制御する。また、主制御部62は、インバータ回路73の動作を制御することにより、紫外線UVの照射時間を制御する。 The operation of the inverter circuit 73 and the high voltage generation circuit 75 is controlled by the main control unit 62. The main control unit 62 controls the irradiation energy of the ultraviolet UV generated by the ultraviolet source 34 by controlling the duty ratio of the pulsed drive voltage generated by the inverter circuit 73. Further, the main control unit 62 controls the irradiation time of ultraviolet UV by controlling the operation of the inverter circuit 73.
 また、主制御部62は、高電圧発生回路75が高電圧パルスを発生するタイミングを制御する。また、主制御部62は、放射線検出器26による放射線の検出動作を制御する。 Further, the main control unit 62 controls the timing at which the high voltage generation circuit 75 generates a high voltage pulse. Further, the main control unit 62 controls the radiation detection operation by the radiation detector 26.
 一例として図6に示すように、放射線検出器26は、センサ基板80、駆動部81、信号処理部82、及びセンサ制御部83を有する。本実施形態の放射線検出器26は、放射線を光に変換した後、光を電荷に変換する間接変換型の放射線検出器である。 As an example, as shown in FIG. 6, the radiation detector 26 has a sensor board 80, a drive unit 81, a signal processing unit 82, and a sensor control unit 83. The radiation detector 26 of the present embodiment is an indirect conversion type radiation detector that converts radiation into light and then converts light into electric charges.
 センサ基板80には、変換層としてのシンチレータ84が積層されている。シンチレータ84は、例えば、GOS(Gd:Tb)又はCsI(CsI:TI)により形成されている。シンチレータ84は、放射線源25から射出され、乳房M(図2参照)を透過した放射線Rを光に変換する。 A scintillator 84 as a conversion layer is laminated on the sensor substrate 80. The scintillator 84 is formed of, for example, GOS (Gd 2 O 2 : Tb) or CsI (CsI: TI). The scintillator 84 converts the radiation R emitted from the radiation source 25 and transmitted through the breast M (see FIG. 2) into light.
 センサ基板80には、光電変換素子としてのフォトダイオード85が二次元マトリクス状に配列されている。フォトダイオード85は、シンチレータ84によって変換された光に応じて電荷を発生し、発生した電荷を蓄積する。 On the sensor substrate 80, photodiodes 85 as photoelectric conversion elements are arranged in a two-dimensional matrix. The photodiode 85 generates an electric charge according to the light converted by the scintillator 84, and accumulates the generated electric charge.
 フォトダイオード85のカソード側には、スイッチ素子としてのTFT(Thin Film Transistor)86が接続されている。フォトダイオード85は、TFT85のソース電極に接続されている。TFT86のドレイン電極は、信号線87に接続されている。TFT86のゲート電極は、走査線88に接続されている。 A TFT (Thin Film Transistor) 86 as a switch element is connected to the cathode side of the photodiode 85. The photodiode 85 is connected to the source electrode of the TFT 85. The drain electrode of the TFT 86 is connected to the signal line 87. The gate electrode of the TFT 86 is connected to the scanning line 88.
 フォトダイオード85のアノード側は、バイアス線89に接続されている。バイアス線89には、第1電力供給部41から逆バイアス電圧が印加される。 The anode side of the photodiode 85 is connected to the bias wire 89. A reverse bias voltage is applied to the bias line 89 from the first power supply unit 41.
 駆動部81には、複数の走査線88が接続されている。駆動部81は、例えばゲートドライバである。駆動部81には、第1電力供給部41からオン電圧及びオフ電圧が供給される。駆動部81は、センサ制御部83から供給されるタイミング信号に基づいて、走査線88に印加する電圧をオン電圧とオフ電圧との間で切り替える。すなわち、駆動部81は、センサ基板80に、複数の画素の各々から電荷を出力させるための駆動信号を入力する。画素は、フォトダイオード85とTFT86とから構成される。 A plurality of scanning lines 88 are connected to the drive unit 81. The drive unit 81 is, for example, a gate driver. The drive unit 81 is supplied with an on voltage and an off voltage from the first power supply unit 41. The drive unit 81 switches the voltage applied to the scanning line 88 between the on voltage and the off voltage based on the timing signal supplied from the sensor control unit 83. That is, the drive unit 81 inputs a drive signal for outputting electric charges from each of the plurality of pixels to the sensor board 80. The pixel is composed of a photodiode 85 and a TFT 86.
 TFT86は、走査線88を介してオン電圧が印加されるとオン状態となり、フォトダイオード85と信号線87とを導通させる。フォトダイオード85と信号線87とが導通すると、フォトダイオード85に蓄積された電荷に応じた電気信号が信号線87に出力される。信号線87に出力された電気信号は、信号処理部82に入力される。 The TFT 86 is turned on when an on-voltage is applied via the scanning line 88, and conducts the photodiode 85 and the signal line 87. When the photodiode 85 and the signal line 87 are electrically connected, an electric signal corresponding to the electric charge stored in the photodiode 85 is output to the signal line 87. The electric signal output to the signal line 87 is input to the signal processing unit 82.
 信号処理部82は、信号線87の各々から入力された電気信号に応じた画像データを生成し、放射線画像RIとして出力する。信号処理部82は、増幅回路、相関二重サンプリング回路、マルチプレクサ、及びA/D変換器等を含む信号処理回路である。増幅回路及び相関二重サンプリング回路は、信号線87ごとに設けられている。 The signal processing unit 82 generates image data corresponding to the electrical signals input from each of the signal lines 87, and outputs the image data as a radiographic image RI. The signal processing unit 82 is a signal processing circuit including an amplifier circuit, a correlated double sampling circuit, a multiplexer, an A / D converter, and the like. An amplifier circuit and a correlated double sampling circuit are provided for each signal line 87.
 センサ制御部83は、駆動部81及び信号処理部82の動作を制御する。センサ制御部83は、例えば、CPU、FPGA(Field Programmable Gate Array)等で構成されている。センサ制御部83及び信号処理部82には、第1電力供給部41から電力が供給される。センサ制御部83は、本開示の技術に係る「制御部」の一例である。 The sensor control unit 83 controls the operations of the drive unit 81 and the signal processing unit 82. The sensor control unit 83 is composed of, for example, a CPU, an FPGA (Field Programmable Gate Array), or the like. Power is supplied to the sensor control unit 83 and the signal processing unit 82 from the first power supply unit 41. The sensor control unit 83 is an example of a “control unit” according to the technique of the present disclosure.
 駆動部81は駆動基板に形成されており、信号処理部82は信号処理基板に形成されている。第1電力供給部41は、駆動基板及び信号処理基板に電力を供給する。なお、駆動基板には、駆動部81を構成する回路の一部が形成されていてもよい。また、信号処理基板には、信号処理部82を構成する回路の一部が構成されていてもよい。 The drive unit 81 is formed on the drive board, and the signal processing unit 82 is formed on the signal processing board. The first power supply unit 41 supplies power to the drive board and the signal processing board. A part of the circuit constituting the drive unit 81 may be formed on the drive board. Further, the signal processing board may be configured with a part of the circuit constituting the signal processing unit 82.
 本実施形態では、放射線検出器26を間接変換型としているが、直接変換型としてもよい。直接変換型の放射線検出器では、放射線を直接電荷に変換するアモルファスセレン(a-Se)等の変換層が用いられる。また、直接変換型の放射線検出器では、フォトダイオード85に代えて、変換層により生成された電荷を蓄積するためのコンデンサが設けられる。直接変換型の放射線検出器では、電力供給装置40内の第1電力供給部41から変換層にバイアス電圧が印加される。すなわち、直接変換型において、変換層にバイアス電圧を供給する第1電力供給部41は、紫外線源に電圧を供給する第2電力供給部42とは、電気的に分離されている。その他の構成は、間接変換型の放射線検出器26と同様である。すなわち、放射線検出器26は、放射線Rの入射量に応じた電荷を発生して蓄積する複数の画素を有するものであればよい。 In the present embodiment, the radiation detector 26 is an indirect conversion type, but a direct conversion type may be used. In the direct conversion type radiation detector, a conversion layer such as amorphous selenium (a-Se) that directly converts radiation into electric charge is used. Further, in the direct conversion type radiation detector, a capacitor for accumulating the electric charge generated by the conversion layer is provided instead of the photodiode 85. In the direct conversion type radiation detector, a bias voltage is applied to the conversion layer from the first power supply unit 41 in the power supply device 40. That is, in the direct conversion type, the first power supply unit 41 that supplies the bias voltage to the conversion layer is electrically separated from the second power supply unit 42 that supplies the voltage to the ultraviolet source. Other configurations are the same as those of the indirect conversion type radiation detector 26. That is, the radiation detector 26 may have a plurality of pixels that generate and accumulate charges according to the incident amount of the radiation R.
 一例として図7に示すように、紫外線源34は、放電容器90、外部電極91、及び内部電極92により構成されたエキシマランプである。放電容器90は、内部に放電空間93が形成された二重石英管である。放電空間93には、放電用ガスとして、例えばキセノン及び塩素が充填されている。外部電極91は、例えば、光を透過させる金属網で形成されている。 As an example, as shown in FIG. 7, the ultraviolet source 34 is an excimer lamp composed of a discharge container 90, an external electrode 91, and an internal electrode 92. The discharge container 90 is a double quartz tube having a discharge space 93 formed inside. The discharge space 93 is filled with, for example, xenon and chlorine as a discharge gas. The external electrode 91 is formed of, for example, a metal net that transmits light.
 外部電極91と内部電極92との間には、第2電力供給部42からパルス状の駆動電圧が印加される。外部電極91と内部電極92との間に駆動電圧が印加されることにより、放電空間93内の放電用ガスが励起され、その後エキシマ状態となり基底状態へ戻る際に紫外線UVを発生する。 A pulsed drive voltage is applied from the second power supply unit 42 between the external electrode 91 and the internal electrode 92. By applying a driving voltage between the external electrode 91 and the internal electrode 92, the discharge gas in the discharge space 93 is excited, and then ultraviolet UV is generated when the excimer state is reached and the ground state is returned.
 なお、紫外線源34は、深紫外線を発するLEDであってもよい。紫外線源34がLEDである場合には、第2電力供給部42は、パルス状の駆動電流を紫外線源34に供給することにより、紫外線UVを発生させる。すなわち、LEDは、パルス幅変調方式で駆動される。 The ultraviolet source 34 may be an LED that emits deep ultraviolet rays. When the ultraviolet source 34 is an LED, the second power supply unit 42 generates ultraviolet UV by supplying a pulsed drive current to the ultraviolet source 34. That is, the LED is driven by the pulse width modulation method.
 一例として図8に示すように、放射線管29は、略円筒形状の真空のガラス管100に収容された陰極101と陽極102とを有している。陰極101は、電子を放出する。陽極102は、電子が衝突することで放射線Rを発する。陰極101は、冷陰極である。より詳しくは、陰極101は、電界放出現象を利用して、陽極102に向けて電子線EBを放出する。陽極102は、回転機構により回転する回転陽極である。なお、陽極102として、固定された固定陽極を用いてもよい。 As an example, as shown in FIG. 8, the radiation tube 29 has a cathode 101 and an anode 102 housed in a vacuum glass tube 100 having a substantially cylindrical shape. The cathode 101 emits electrons. The anode 102 emits radiation R when electrons collide with each other. The cathode 101 is a cold cathode. More specifically, the cathode 101 emits an electron beam EB toward the anode 102 by utilizing the field emission phenomenon. The anode 102 is a rotating anode that is rotated by a rotating mechanism. A fixed fixed anode may be used as the anode 102.
 陰極101と陽極102との間には、第3電力供給部43から管電圧としての高電圧パルスが印加される。高電圧パルスの印加に応じて、陰極101から陽極102に向けて電子線EBが放出される。そして、陽極102において、電子線EBが衝突した箇所である焦点Fから、放射線Rが発生する。放射線Rは、ガラス管100に設けられた照射窓103から外部に射出される。 A high voltage pulse as a tube voltage is applied from the third power supply unit 43 between the cathode 101 and the anode 102. In response to the application of the high voltage pulse, the electron beam EB is emitted from the cathode 101 toward the anode 102. Then, at the anode 102, the radiation R is generated from the focal point F where the electron beam EB collides. Radiation R is emitted to the outside through an irradiation window 103 provided in the glass tube 100.
 以上のように構成された乳房撮影装置10において、放射線源25による放射線Rの射出、及び放射線検出器26による放射線検出は、例えば、オペレータが入力デバイス54を操作することにより生成される操作信号に連動して実行される。紫外線源34による紫外線UVの射出は、オペレータが入力デバイス54を操作することにより生成される操作信号に連動して実行されてもよいし、当該操作信号とは無関係に定期的に実行されてもよい。したがって、放射線検出器26の動作期間と紫外線源34の動作期間とが重複する場合がある。 In the mammography apparatus 10 configured as described above, the radiation R emission by the radiation source 25 and the radiation detection by the radiation detector 26 are, for example, operation signals generated by the operator operating the input device 54. It is executed in conjunction. The emission of ultraviolet UV rays by the ultraviolet source 34 may be executed in conjunction with an operation signal generated by the operator operating the input device 54, or may be executed periodically regardless of the operation signal. good. Therefore, the operating period of the radiation detector 26 and the operating period of the ultraviolet source 34 may overlap.
 紫外線源34に電力を供給する第2電力供給部42で発生したノイズが、放射線検出器26に電力を供給する第1電力供給部41に伝達されると仮定する。この場合、ノイズがたとえ微小であっても、放射線検出器26により検出される放射線画像RIに影響が生じる可能性がある。これは、放射線検出器26は、検出感度が非常に高いためである。しかしながら、本開示の技術では、第2電力供給部42は、第1電力供給部41と電気的に分離されているので、第1電力供給部41から放射線検出器26へのノイズの影響を低減することができる。同様に、第2電力供給部42は、第3電力供給部43と電気的に分離されているので、第1電力供給部41から放射線検出器26へのノイズの影響を低減することができる。 It is assumed that the noise generated in the second power supply unit 42 that supplies power to the ultraviolet source 34 is transmitted to the first power supply unit 41 that supplies power to the radiation detector 26. In this case, even if the noise is minute, the radiation image RI detected by the radiation detector 26 may be affected. This is because the radiation detector 26 has a very high detection sensitivity. However, in the technique of the present disclosure, since the second power supply unit 42 is electrically separated from the first power supply unit 41, the influence of noise from the first power supply unit 41 to the radiation detector 26 is reduced. can do. Similarly, since the second power supply unit 42 is electrically separated from the third power supply unit 43, the influence of noise from the first power supply unit 41 to the radiation detector 26 can be reduced.
 また、放射線検出器26がキャリブレーション動作を実行している間に紫外線源34が動作することがある。この場合、仮に、第1電力供給部41から第2電力供給部42へノイズが伝達されるとすると、放射線検出器26から得られるオフセット画像にノイズの影響が生じる。この結果、オフセット補正後の放射線画像RIにノイズの影響が生じることになる。本開示の技術では、第2電力供給部42は、第1電力供給部41と電気的に分離されているので、紫外線源34の動作によるオフセット画像へのノイズの影響を低減することができる。 Further, the ultraviolet source 34 may operate while the radiation detector 26 is performing the calibration operation. In this case, if noise is transmitted from the first power supply unit 41 to the second power supply unit 42, the noise affects the offset image obtained from the radiation detector 26. As a result, noise affects the radiation image RI after offset correction. In the technique of the present disclosure, since the second power supply unit 42 is electrically separated from the first power supply unit 41, it is possible to reduce the influence of noise on the offset image due to the operation of the ultraviolet source 34.
 なお、上記実施形態では、紫外線源34が発する紫外線UVを、200nm以上かつ280nm以下の範囲に中心波長を有する深紫外線としている。紫外線UVは、特に、222nmに中心波長を有する深紫外線であることが好ましい。中心波長222nmの深紫外線は、人体への影響が小さい。このことは、例えば特許第6306097号により知られている。中心波長222nmの深紫外線は、人体への影響が小さいので、被検体の放射線撮影中に、被検体に対して紫外線UVを照射することができる。本開示の技術は、放射線撮影中に紫外線照射が行われるように構成された放射線診断装置において有用である。 In the above embodiment, the ultraviolet UV emitted by the ultraviolet source 34 is deep ultraviolet having a central wavelength in the range of 200 nm or more and 280 nm or less. The ultraviolet UV is particularly preferably deep ultraviolet having a center wavelength of 222 nm. Deep ultraviolet rays with a central wavelength of 222 nm have little effect on the human body. This is known, for example, in Japanese Patent No. 6306097. Since deep ultraviolet rays having a central wavelength of 222 nm have a small effect on the human body, it is possible to irradiate the subject with ultraviolet UV rays during radiography of the subject. The technique of the present disclosure is useful in a radiological diagnostic apparatus configured to perform ultraviolet irradiation during radiography.
 上記実施形態では、放射線診断装置として乳房撮影装置を例に挙げて本開示の技術を説明した。本開示の技術は、乳房撮影装置以外に、立位撮影台又は臥位撮影台を有する放射線撮影装置、移動型放射線装置、放射線透視撮影装置、移動型放射線透視撮影装置、又は放射線断層撮影装置にも適用可能である。 In the above embodiment, the technique of the present disclosure has been described by taking a mammography apparatus as an example as a radiological diagnostic apparatus. The technique of the present disclosure is applied to a radiography apparatus having a standing or recumbent imaging table, a mobile radiography apparatus, a radioscopy imaging apparatus, a mobile radioscopy imaging apparatus, or a radiation tomography apparatus, in addition to the mammography apparatus. Is also applicable.
 図9は、撮影台を有する放射線撮影装置の一例を示す。図9に示す放射線撮影装置10Aは、放射線源25、照射野限定器31、放射線検出器26、紫外線源34、電力供給装置40、臥位撮影台110、及び立位撮影台120を含む。本例では、放射線検出器26は、可搬型のいわゆる電子カセッテである。 FIG. 9 shows an example of a radiological imaging apparatus having an imaging table. The radiation photographing apparatus 10A shown in FIG. 9 includes a radiation source 25, an irradiation field limiting device 31, a radiation detector 26, an ultraviolet source 34, a power supply device 40, a lying position photographing table 110, and a standing position photographing table 120. In this example, the radiation detector 26 is a portable so-called electronic cassette.
 臥位撮影台110は、被検者Hを臥位姿勢で撮影する場合に用いられる。立位撮影台120は、被検者Hを立位姿勢で撮影する場合に用いられる。放射線検出器26は、臥位撮影台110のフォルダ111、又は立位撮影台120のフォルダ121には、放射線検出器26が着脱自在にセットされる。 The recumbent position photographing table 110 is used when the subject H is photographed in the recumbent position. The standing image pickup table 120 is used when the subject H is photographed in a standing position. In the radiation detector 26, the radiation detector 26 is detachably set in the folder 111 of the recumbent position photographing table 110 or the folder 121 of the standing position photographing table 120.
 放射線源25は、移動自在であり、放射線検出器26に対向する位置に配置される。図9は、放射線源25が、臥位撮影台110のフォルダ111にセットされた放射線検出器26に対向する位置に配置された状態を示している。 The radiation source 25 is movable and is arranged at a position facing the radiation detector 26. FIG. 9 shows a state in which the radiation source 25 is arranged at a position facing the radiation detector 26 set in the folder 111 of the recumbent imaging table 110.
 紫外線源34は、被検者Hが配置される臥位撮影台110又は立位撮影台120に紫外線UVを照射するように、例えば、照射野限定器31の外面に取り付けられている。 The ultraviolet source 34 is attached to, for example, the outer surface of the irradiation field limiting device 31 so as to irradiate the lying-position imaging table 110 or the standing-position imaging table 120 on which the subject H is arranged with ultraviolet UV rays.
 電力供給装置40は、第1実施形態と同様に、放射線源25、紫外線源34、及び放射線検出器26にそれぞれ電力を供給する。 The power supply device 40 supplies power to the radiation source 25, the ultraviolet source 34, and the radiation detector 26, respectively, as in the first embodiment.
 なお、放射線撮影装置10Aは、臥位撮影台110と立位撮影台120とのうち、少なくともいずれか一方を備えていればよい。 The radiological imaging device 10A may be provided with at least one of the recumbent imaging table 110 and the standing imaging table 120.
 図10は、移動型放射線装置の一例を示す。図10に示す移動型放射線装置10Bは、移動可能に構成されたいわゆるX線回診車である。移動型放射線装置10Bは、台車130、放射線源25、照射野限定器31、放射線検出器26、紫外線源34、及び電力供給装置40を含む。 FIG. 10 shows an example of a mobile radiation device. The mobile radiation device 10B shown in FIG. 10 is a so-called X-ray round-trip vehicle configured to be movable. The mobile radiation device 10B includes a trolley 130, a radiation source 25, an irradiation field limiting device 31, a radiation detector 26, an ultraviolet source 34, and a power supply device 40.
 台車130には、台車130を移動させるための複数の車輪131が設けられている。また、台車130には、オペレータが台車130を押したり引いたりして台車130を移動させるためのハンドル132が設けられている。また、台車130には、オペレータが各種の操作を行うための操作パネル133が設けられている。 The dolly 130 is provided with a plurality of wheels 131 for moving the dolly 130. Further, the dolly 130 is provided with a handle 132 for the operator to push or pull the dolly 130 to move the dolly 130. Further, the dolly 130 is provided with an operation panel 133 for the operator to perform various operations.
 また、台車130には、電力供給装置40が内蔵されている。台車130は、外部電源に接続され、外部電源(図示省略)から電力供給装置40に電力が供給される。また、台車130は、バッテリ(図示省略)を内蔵しており、必要に応じてバッテリから電力供給装置40に電力が供給される。 Further, the trolley 130 has a built-in power supply device 40. The dolly 130 is connected to an external power source, and power is supplied to the power supply device 40 from the external power source (not shown). Further, the dolly 130 has a built-in battery (not shown), and power is supplied from the battery to the power supply device 40 as needed.
 また、台車130の前部には、支柱134が立設されている。支柱134は、垂直方向を軸として回転可能である。支柱134には、上下方向に移動可能にアーム135が取り付けられている。放射線源25は、アーム135の端部に取り付けられている。 In addition, a support 134 is erected at the front of the bogie 130. The column 134 is rotatable about the vertical direction. An arm 135 is attached to the support column 134 so as to be movable in the vertical direction. The radiation source 25 is attached to the end of the arm 135.
 本例では、放射線検出器26は、可搬型のいわゆる電子カセッテである。例えば、放射線検出器26は、ベッド136上に配置される。被検者Hは、放射線検出器26が撮影部位に位置するように、ベッド136上に臥位の状態で配置される。放射線源25は、支柱134の回転、及び/又はアーム135の上下動させることにより移動自在であり、放射線検出器26に対向する位置に配置される。 In this example, the radiation detector 26 is a portable so-called electronic cassette. For example, the radiation detector 26 is arranged on the bed 136. The subject H is placed in a recumbent position on the bed 136 so that the radiation detector 26 is located at the imaging site. The radiation source 25 is movable by rotating the support column 134 and / or moving the arm 135 up and down, and is arranged at a position facing the radiation detector 26.
 紫外線源34は、被検者Hが配置されるベッド136に紫外線UVを照射するように、例えば、照射野限定器31の外面に取り付けられている。 The ultraviolet source 34 is attached to, for example, the outer surface of the irradiation field limiting device 31 so as to irradiate the bed 136 on which the subject H is arranged with ultraviolet UV.
 電力供給装置40は、第1実施形態と同様に、放射線源25、紫外線源34、及び放射線検出器26にそれぞれ電力を供給する。 The power supply device 40 supplies power to the radiation source 25, the ultraviolet source 34, and the radiation detector 26, respectively, as in the first embodiment.
 また、台車130には、放射線検出器26を非使用時に収納しておくためのフォルダ137が設けられている。放射線検出器26は、例えば、フォルダ137内で充電が行われる。紫外線源34は、フォルダ137内に収納された放射線検出器26に紫外線UVを照射するように、フォルダ137内に設けられていてもよい。また、紫外線源34は、支柱134、アーム135、又は台車130などに設けられていてもよい。 Further, the trolley 130 is provided with a folder 137 for storing the radiation detector 26 when not in use. The radiation detector 26 is charged, for example, in the folder 137. The ultraviolet source 34 may be provided in the folder 137 so as to irradiate the radiation detector 26 housed in the folder 137 with ultraviolet UV. Further, the ultraviolet source 34 may be provided on the support column 134, the arm 135, the carriage 130, or the like.
 図11は、放射線透視撮影装置の一例を示す。図11に示す放射線透視撮影装置10Cは、移動可能に構成された移動型放射線透視撮影装置である。また、図11には、放射線透視撮影装置10Cは、放射線透視撮影装置の一例として、Cアーム型デジタル透視撮影装置を示している。放射線透視撮影装置10Cは、台車140、放射線源25、照射野限定器31、放射線検出器26、紫外線源34、及び電力供給装置40を含む。 FIG. 11 shows an example of a radioscopic fluoroscopy apparatus. The radioscopic fluoroscopy apparatus 10C shown in FIG. 11 is a mobile radioscopic fluoroscopy apparatus configured to be movable. Further, FIG. 11 shows a C-arm type digital fluoroscopy apparatus as an example of the radioscopic fluoroscopy apparatus 10C. The fluoroscopy apparatus 10C includes a carriage 140, a radiation source 25, an irradiation field limiting device 31, a radiation detector 26, an ultraviolet source 34, and a power supply device 40.
 台車140には、台車140を移動させるための複数の車輪141が設けられている。また、台車140には、支持部142を介してCアーム143が接続されている。支持部142は、Cアーム143を回転自在に支持している。Cアーム143の一端には放射線源25が設けられており、他端には放射線検出器26が設けられている。放射線検出器26は、放射線源25に対向する位置に配置されている。 The dolly 140 is provided with a plurality of wheels 141 for moving the dolly 140. Further, the C arm 143 is connected to the carriage 140 via the support portion 142. The support portion 142 rotatably supports the C arm 143. A radiation source 25 is provided at one end of the C arm 143, and a radiation detector 26 is provided at the other end. The radiation detector 26 is arranged at a position facing the radiation source 25.
 また、台車140には、電力供給装置40が内蔵されている。台車140は、外部電源に接続され、外部電源(図示省略)から電力供給装置40に電力が供給される。また、台車140は、バッテリ(図示省略)を内蔵しており、必要に応じてバッテリから電力供給装置40に電力が供給される。 Further, the trolley 140 has a built-in power supply device 40. The dolly 140 is connected to an external power source, and power is supplied to the power supply device 40 from the external power source (not shown). Further, the dolly 140 has a built-in battery (not shown), and power is supplied from the battery to the power supply device 40 as needed.
 図11に示す例では、紫外線源34は、照射野限定器31の外面に取り付けられており、放射線検出器26に向けて紫外線UVを射出する。これにより、放射線検出器26が殺菌される。また、本例では、放射線源25を、被検者(図示省略)の上方に配置した状態で放射線透視撮影(いわゆるオーバーチューブ方式の放射線透視撮影)を行う場合に、被検者及び被検体が載置されるベッド(図示省略)を殺菌することができる。 In the example shown in FIG. 11, the ultraviolet source 34 is attached to the outer surface of the irradiation field limiting device 31 and emits ultraviolet UV toward the radiation detector 26. As a result, the radiation detector 26 is sterilized. Further, in this example, when the radiation source 25 is placed above the subject (not shown) and radioscopic radiography (so-called overtube radioscopic radiography) is performed, the subject and the subject are subjected to radiation fluoroscopy. The bed (not shown) to be placed can be sterilized.
 電力供給装置40は、第1実施形態と同様に、放射線源25、紫外線源34、及び放射線検出器26にそれぞれ電力を供給する。 The power supply device 40 supplies power to the radiation source 25, the ultraviolet source 34, and the radiation detector 26, respectively, as in the first embodiment.
 図12は、放射線透視撮影装置10Cにより、アンダーチューブ方式で被検者Hを放射線透視撮影する様子を例示している。被検者Hは、ベッド144の上に載置される。アンダーチューブ方式では、Cアーム143は、ベッド144の下方に放射線源25が位置し、かつベッド144の上方に放射線検出器26が位置するように位置調整が行われる。放射線検出器26が、ベッド144及び被検者Hを透過した放射線を画像化する。 FIG. 12 illustrates a state in which the subject H is subjected to radioscopic fluoroscopy by the undertube method using the radioscopic fluoroscopy apparatus 10C. Subject H is placed on the bed 144. In the undertube method, the position of the C arm 143 is adjusted so that the radiation source 25 is located below the bed 144 and the radiation detector 26 is located above the bed 144. The radiation detector 26 images the radiation transmitted through the bed 144 and the subject H.
 図12に示す例では、紫外線源34は、Cアーム143に取り付けられており、放射線源25と放射線検出器26との間に配置されたベッド144に向けて、被検者Hの上方側から紫外線UVを射出する。これにより、ベッド144及び被検者Hが殺菌される。 In the example shown in FIG. 12, the ultraviolet source 34 is attached to the C arm 143 and is directed from above the subject H toward the bed 144 arranged between the radiation source 25 and the radiation detector 26. Ultraviolet UV is emitted. As a result, the bed 144 and the subject H are sterilized.
 なお、紫外線源34は、照射野限定器31又はCアーム143に限られず、放射線検出器26又は台車140などに取り付けられていてもよい。 The ultraviolet source 34 is not limited to the irradiation field limiting device 31 or the C arm 143, and may be attached to the radiation detector 26, the trolley 140, or the like.
 図11及び図12に示す放射線透視撮影装置は移動型であるが、放射線透視撮影装置は据え置き型であってもよい。 The fluoroscopy apparatus shown in FIGS. 11 and 12 is a mobile type, but the fluoroscopy apparatus may be a stationary type.
 図13は、放射線断層撮影装置の一例を示す。図13に示す放射線断層撮影装置10Dは、いわゆるCT(Computed Tomography)装置である。放射線断層撮影装置10Dは、ガントリ150、撮影テーブル151、放射線源25、照射野限定器31、放射線検出器26、紫外線源34、及び電力供給装置40を含む。 FIG. 13 shows an example of a radiation tomography apparatus. The radiation tomography apparatus 10D shown in FIG. 13 is a so-called CT (Computed Tomography) apparatus. The radiation tomography apparatus 10D includes a gantry 150, an imaging table 151, a radiation source 25, an irradiation field limiting device 31, a radiation detector 26, an ultraviolet source 34, and a power supply device 40.
 ガントリ150は、ガントリ回転部152を有する。ガントリ回転部152は、空洞部153を有し、ガントリ150に回転可能に支持されている。空洞部153には、撮影テーブル151上に載置された被検者(図示省略)が搬送される。 The gantry 150 has a gantry rotating portion 152. The gantry rotating portion 152 has a cavity portion 153 and is rotatably supported by the gantry 150. The subject (not shown) placed on the photographing table 151 is conveyed to the cavity 153.
 ガントリ回転部152には、放射線源25、照射野限定器31、及び放射線検出器26が内蔵されている。放射線源25と放射線検出器26とは、空洞部153を挟んで対向する位置に配置されている。放射線源25、照射野限定器31、及び放射線検出器26は、ガントリ回転部152の回転と共に回転する。放射線検出器26から出力される複数の画像を再構成することにより断層画像が生成される。 The gantry rotating unit 152 has a built-in radiation source 25, an irradiation field limiting device 31, and a radiation detector 26. The radiation source 25 and the radiation detector 26 are arranged at positions facing each other with the cavity 153 interposed therebetween. The radiation source 25, the irradiation field limiter 31, and the radiation detector 26 rotate with the rotation of the gantry rotating unit 152. A tomographic image is generated by reconstructing a plurality of images output from the radiation detector 26.
 紫外線源34は、ガントリ回転部152に設けられており、空洞部153に紫外線UVを照射する。したがって、空洞部153に挿入される撮影テーブル151の一部及び被検者Hの一部に紫外線UVが照射される。本例では、紫外線源34は、ガントリ回転部152の回転と共に回転する。紫外線源34は、ガントリ150のガントリ回転部152以外の個所、又は撮影テーブル151などに設けられていてもよい。 The ultraviolet source 34 is provided in the gantry rotating portion 152, and irradiates the hollow portion 153 with ultraviolet UV. Therefore, a part of the photographing table 151 inserted in the cavity portion 153 and a part of the subject H are irradiated with ultraviolet UV rays. In this example, the ultraviolet source 34 rotates with the rotation of the gantry rotating portion 152. The ultraviolet source 34 may be provided at a location other than the gantry rotating portion 152 of the gantry 150, or at a photographing table 151 or the like.
 なお、上記実施形態で説明した乳房撮影装置10は、断層画像を取得可能とするトモシンセシス機能を有するものであってもよい。トモシンセシス機能を有する乳房撮影装置10では、トモシンセシス撮影での放射線の照射条件を決定するために、低線量でのプレ撮影が行われる。このプレ撮影時に、紫外線源34による紫外線UVの照射を行ってもよい。本開示の技術によれば、第1電力供給部41と第2電力供給部42とが電気的に分離されているので、紫外線UVの照射時に第2電力供給部42で発生するノイズが、第1電力供給部41に伝達されることが防止される。これによりプレ撮影により得られるプレ撮影画像へのノイズの影響が低減される。 The mammography apparatus 10 described in the above embodiment may have a tomosynthesis function capable of acquiring a tomographic image. In the mammography apparatus 10 having a tomosynthesis function, pre-imaging at a low dose is performed in order to determine the irradiation conditions of radiation in tomosynthesis imaging. At the time of this pre-shooting, the ultraviolet UV may be irradiated by the ultraviolet source 34. According to the technique of the present disclosure, since the first power supply unit 41 and the second power supply unit 42 are electrically separated, the noise generated in the second power supply unit 42 when irradiated with ultraviolet UV rays is the first. 1 It is prevented from being transmitted to the power supply unit 41. This reduces the influence of noise on the pre-shooting image obtained by pre-shooting.
 本開示の技術は、上述の種々の実施形態及び/又は種々の変形例を適宜組み合わせることも可能である。また、上記各実施形態に限らず、要旨を逸脱しない限り種々の構成を採用し得ることはもちろんである。 The techniques of the present disclosure can be appropriately combined with the various embodiments described above and / or various modifications. Further, it is of course not limited to each of the above embodiments, and various configurations can be adopted as long as they do not deviate from the gist.
 以上に示した記載内容及び図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、及び効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、及び効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容及び図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことはいうまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容及び図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識等に関する説明は省略されている。 The description and illustrations shown above are detailed explanations of the parts related to the technique of the present disclosure, and are merely an example of the technique of the present disclosure. For example, the description of the configuration, function, action, and effect described above is an example of the configuration, function, action, and effect of a portion of the art of the present disclosure. Therefore, unnecessary parts may be deleted, new elements may be added, or replacements may be made to the contents described above and the contents shown above within a range not deviating from the gist of the technique of the present disclosure. Needless to say. Further, in order to avoid confusion and facilitate understanding of the parts related to the technique of the present disclosure, the description contents and the illustrated contents shown above require special explanation in order to enable the implementation of the technique of the present disclosure. The explanation about the common technical knowledge that is not used is omitted.
 本明細書において、「A及び/又はB」は、「A及びBのうちの少なくとも1つ」と同義である。つまり、「A及び/又はB」は、Aだけであってもよいし、Bだけであってもよいし、A及びBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「及び/又は」で結び付けて表現する場合も、「A及び/又はB」と同様の考え方が適用される。 In the present specification, "A and / or B" is synonymous with "at least one of A and B". That is, "A and / or B" means that it may be only A, it may be only B, or it may be a combination of A and B. Further, in the present specification, when three or more matters are connected and expressed by "and / or", the same concept as "A and / or B" is applied.
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications and technical standards described herein are to the same extent as if it were specifically and individually stated that the individual documents, patent applications and technical standards are incorporated by reference. Incorporated by reference in the book.

Claims (14)

  1.  放射線を検出する放射線検出器と、
     紫外線を発する紫外線源と、
     前記放射線検出器に電力を供給する第1電力供給部と、
     前記第1電力供給部と電気的に分離され、かつ前記紫外線源に電力を供給する第2電力供給部と、
     を備える放射線診断装置。
    A radiation detector that detects radiation and
    An ultraviolet source that emits ultraviolet rays and
    The first power supply unit that supplies power to the radiation detector,
    A second power supply unit that is electrically separated from the first power supply unit and supplies power to the ultraviolet source,
    A radiation diagnostic device equipped with.
  2.  前記紫外線は、200nm以上かつ280nm以下の範囲に中心波長を有する深紫外線である、
     請求項1に記載の放射線診断装置。
    The ultraviolet rays are deep ultraviolet rays having a central wavelength in the range of 200 nm or more and 280 nm or less.
    The radiation diagnostic apparatus according to claim 1.
  3.  前記紫外線源は、前記放射線検出器に向けて前記紫外線を発する、
     請求項1又は請求項2に記載の放射線診断装置。
    The ultraviolet source emits the ultraviolet rays toward the radiation detector.
    The radiation diagnostic apparatus according to claim 1 or 2.
  4.  前記放射線検出器は、
     放射線の入射量に応じた電荷を発生して蓄積する複数の画素が形成されたセンサ基板と、
     前記複数の画素の各々から電荷を出力させるための駆動信号を前記センサ基板に入力する駆動部と、
     前記センサ基板から出力される電荷に応じた電気信号が入力され、入力された前記電気信号に基づいて画像データを生成して出力する信号処理部と、
     前記センサ基板、前記駆動部、及び前記信号処理部を制御する制御部と、を有する、
     請求項3に記載の放射線診断装置。
    The radiation detector is
    A sensor board on which multiple pixels are formed to generate and accumulate electric charges according to the amount of radiation incident,
    A drive unit that inputs a drive signal for outputting electric charges from each of the plurality of pixels to the sensor board, and a drive unit.
    An electric signal corresponding to the electric charge output from the sensor board is input, and a signal processing unit that generates and outputs image data based on the input electric signal, and a signal processing unit.
    It has the sensor board, the drive unit, and a control unit that controls the signal processing unit.
    The radiation diagnostic apparatus according to claim 3.
  5.  前記センサ基板は、放射線を直接電荷に変換する変換層を有し、
     前記第1電力供給部は、前記変換層にバイアス電圧を供給する、
     請求項4に記載の放射線診断装置。
    The sensor substrate has a conversion layer that directly converts radiation into electric charges.
    The first power supply unit supplies a bias voltage to the conversion layer.
    The radiation diagnostic apparatus according to claim 4.
  6.  前記紫外線源は、エキシマランプである、
     請求項1から請求項5のうちいずれか1項に記載の放射線診断装置。
    The ultraviolet source is an excimer lamp.
    The radiation diagnostic apparatus according to any one of claims 1 to 5.
  7.  前記第2電力供給部は、インバータ回路を含む、
     請求項6に記載の放射線診断装置。
    The second power supply unit includes an inverter circuit.
    The radiation diagnostic apparatus according to claim 6.
  8.  前記紫外線源は、LEDである、
     請求項1から請求項5のうちいずれか1項に記載の放射線診断装置。
    The ultraviolet source is an LED.
    The radiation diagnostic apparatus according to any one of claims 1 to 5.
  9.  前記第2電力供給部からパルス状の駆動電流を供給する、
     請求項8に記載の放射線診断装置。
    A pulsed drive current is supplied from the second power supply unit.
    The radiation diagnostic apparatus according to claim 8.
  10.  前記第1電力供給部及び/又は前記第2電力供給部は、交流電圧を直流電圧に変換するコンバータ回路を含む電源回路である、
     請求項1から請求項9のうちいずれか1項に記載の放射線診断装置。
    The first power supply unit and / or the second power supply unit is a power supply circuit including a converter circuit that converts an AC voltage into a DC voltage.
    The radiation diagnostic apparatus according to any one of claims 1 to 9.
  11.  前記第1電力供給部と前記第2電力供給部とは、1次側コイルに対して個別に設けられた2次側コイルを有するトランスにより電気的に分離されている、
     請求項1から請求項10のうちいずれか1項に記載の放射線診断装置。
    The first power supply unit and the second power supply unit are electrically separated by a transformer having a secondary coil separately provided for the primary coil.
    The radiation diagnostic apparatus according to any one of claims 1 to 10.
  12.  前記第1電力供給部の基準電極と前記第2電力供給部の基準電極とは、電気的に分離されている、
     請求項1から請求項11のうちいずれか1項に記載の放射線診断装置。
    The reference electrode of the first power supply unit and the reference electrode of the second power supply unit are electrically separated.
    The radiation diagnostic apparatus according to any one of claims 1 to 11.
  13.  前記放射線検出器に向けて放射線を射出する放射線源と、
     前記第1電力供給部及び前記第2電力供給部と電気的に分離され、かつ前記放射線源に電力を供給する第3電力供給部と、
     をさらに備える請求項1から請求項12のうちいずれか1項に記載の放射線診断装置。
    A radiation source that emits radiation toward the radiation detector,
    A third power supply unit that is electrically separated from the first power supply unit and the second power supply unit and that supplies power to the radiation source.
    The radiological diagnostic apparatus according to any one of claims 1 to 12, further comprising.
  14.  前記放射線診断装置は、立位撮影台又は臥位撮影台を有する放射線撮影装置、乳房撮影装置、放射線透視撮影装置、移動型放射線装置、移動型放射線透視撮影装置、放射線断層撮影装置のうちのいずれかである、
     請求項13に記載の放射線診断装置。
    The radiodiagnosis device is any one of a radiography device having a standing or lying position radiography table, a mammography device, a radioscopic fluoroscopy device, a mobile radiography device, a mobile radioscopic fluoroscopy device, and a radiotomography device. Is it,
    The radiation diagnostic apparatus according to claim 13.
PCT/JP2021/037584 2020-11-20 2021-10-11 Radiation diagnostic device WO2022107496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022563627A JPWO2022107496A1 (en) 2020-11-20 2021-10-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020193380 2020-11-20
JP2020-193380 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107496A1 true WO2022107496A1 (en) 2022-05-27

Family

ID=81708902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037584 WO2022107496A1 (en) 2020-11-20 2021-10-11 Radiation diagnostic device

Country Status (2)

Country Link
JP (1) JPWO2022107496A1 (en)
WO (1) WO2022107496A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772300A (en) * 1993-07-09 1995-03-17 Minnesota Mining & Mfg Co <3M> Method for secondary processing of pixel phosphor
JP2012213442A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Radiographic apparatus
US20140294142A1 (en) * 2013-03-28 2014-10-02 Samsung Electronics Co., Ltd. X-ray imaging device and method of controlling the same
JP2018524043A (en) * 2015-05-19 2018-08-30 プロトンブイディーエー インコーポレイテッド Proton imaging system for optimization of proton therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772300A (en) * 1993-07-09 1995-03-17 Minnesota Mining & Mfg Co <3M> Method for secondary processing of pixel phosphor
JP2012213442A (en) * 2011-03-31 2012-11-08 Fujifilm Corp Radiographic apparatus
US20140294142A1 (en) * 2013-03-28 2014-10-02 Samsung Electronics Co., Ltd. X-ray imaging device and method of controlling the same
JP2018524043A (en) * 2015-05-19 2018-08-30 プロトンブイディーエー インコーポレイテッド Proton imaging system for optimization of proton therapy

Also Published As

Publication number Publication date
JPWO2022107496A1 (en) 2022-05-27

Similar Documents

Publication Publication Date Title
US9931096B2 (en) Radiographic system, drive control method for radiographic system, recording medium for drive control program and radiological image detection device
US9967962B2 (en) Electronic radiography system and signal relay device
US9072440B2 (en) Radiographic system and control method thereof
US8550709B2 (en) Imaging area specifying apparatus, radiographic system, imaging area specifying method, radiographic apparatus, and imaging table
JP5666716B2 (en) Radiation moving image processing apparatus, radiation moving image capturing apparatus, radiation moving image capturing system, radiation moving image processing method, radiation moving image processing program, and storage medium
US8430563B2 (en) Dental fluoroscopic imaging system
EP2564783B1 (en) Radiographing system, method of controlling automatic exposure in radiographing system, and radiological image detection device
US9042519B2 (en) Radiographing system, method of controlling automatic exposure in radiographing system, and radiological image detection device
JPH11262485A (en) Device and method for image forming
US8021047B2 (en) Image capturing control apparatus
US12036053B2 (en) Radiodiagnostic apparatus and method of operating radiodiagnostic apparatus
WO2022107496A1 (en) Radiation diagnostic device
US11684263B2 (en) Radiodiagnostic apparatus and method of operating radiodiagnostic apparatus
JP2005296277A (en) X-ray diagnostic apparatus and diagnostic method using the same
WO2022113542A1 (en) Medical diagnostic device, method for controlling medical diagnostic device, and program
WO2022107556A1 (en) Radiation diagnostic device
WO2022107555A1 (en) Radiation diagnosis device and method for operating radiation diagnosis device
WO2022138657A1 (en) Medical instrument
JP7307042B2 (en) Radiological diagnostic apparatus and method of operating the diagnostic radiological apparatus
WO2022158151A1 (en) Portable radiation detector and housing device
JP7307041B2 (en) Radiological diagnostic apparatus and method of operating the diagnostic radiological apparatus
JP2013180050A (en) Radiographic imaging control device, radiation image photographing system, control method for radiographic apparatus and control program for radiation image photographing
JP2022082351A (en) Medical image diagnostic apparatus, x-ray ct apparatus, and program
JP2020162950A (en) Radiographic apparatus, operation method of radiographic apparatus, and operation program of radiographic apparatus
JP2024110558A (en) Radiation diagnostic device and radiation exposure prediction and notification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894370

Country of ref document: EP

Kind code of ref document: A1