WO2022107348A1 - Controller, control method for controller, control program, and recording medium - Google Patents

Controller, control method for controller, control program, and recording medium Download PDF

Info

Publication number
WO2022107348A1
WO2022107348A1 PCT/JP2021/008706 JP2021008706W WO2022107348A1 WO 2022107348 A1 WO2022107348 A1 WO 2022107348A1 JP 2021008706 W JP2021008706 W JP 2021008706W WO 2022107348 A1 WO2022107348 A1 WO 2022107348A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
unit
air cylinder
holding
controller
Prior art date
Application number
PCT/JP2021/008706
Other languages
French (fr)
Japanese (ja)
Inventor
佑気 坂元
克行 木村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022107348A1 publication Critical patent/WO2022107348A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a controller for detecting contact with a work by a gripping portion and detecting normal gripping in an air chuck system, a control program for operating a computer as the controller, and a recording medium on which the control program is recorded. And the integrated circuit that operates as the control program.
  • the air chuck has a configuration in which a gripping hand mechanism by a link mechanism is provided at the tip of an air cylinder.
  • a reed switch that reacts to the air cylinder provided at the air cylinder position assumed when the work is gripped is used. There is a method. In this method, the controller determines that the grip is completed when a predetermined stabilization time elapses after the reed switch reacts.
  • One aspect of the present invention is to realize a controller capable of preventing poor gripping.
  • the controller is a controller that controls a holding device having a movable portion and a holding portion for holding a work by the operation of the movable portion.
  • the position acquisition unit that acquires the position of the position
  • the position identification unit that specifies the speed or acceleration of the movable portion using the position
  • the holding unit that the holding portion abuts on the work due to the speed or acceleration.
  • a contact detection unit for detecting and a holding detection unit for detecting that the holding unit holds the work from the displacement of the movable portion after the contact is provided.
  • the control method of the controller is a controller for controlling a holding device having a movable portion, a holding portion for holding the work by the operation of the movable portion, and the like.
  • a position acquisition step for acquiring the position of the movable portion, a position specifying step for specifying the speed or acceleration of the movable portion using the position, and the holding portion abutting on the work due to the speed or the acceleration. It includes a contact detection step for detecting that the work has been made, and a holding detection step for detecting that the holding portion holds the work from the displacement of the movable portion after the contact.
  • the position of the air cylinder is acquired and the state of the air chuck is indirectly managed to realize normal gripping.
  • the transport operation can be started immediately after gripping.
  • FIG. 2 is an enlarged view of an air cylinder position at a specific time.
  • It is a block diagram which shows an example of the component of a chuck system. It is a schematic diagram which shows an example of the structure of the air chuck provided in the chuck system. It is a graph which shows the air cylinder pressure and the air cylinder acceleration in a good state and a bad state of an air pipe. It is a flowchart which shows the operation of a chuck system. It is a graph which shows the air cylinder pressure and the air cylinder speed in a good state and a bad state of an air pipe.
  • FIG. 1 is a graph showing the relationship between the air cylinder pressure in the air chuck and the input of the reed switch in a good state and a bad state of the air piping.
  • FIG. 2 is a graph showing the relationship between the air cylinder pressure and the air cylinder position in the air chuck in a good state and a bad state of the air piping.
  • the air pipe is a pipe for supplying high-pressure air from a pressure source such as an air compressor to an air cylinder.
  • a state in which the air pipe is in good condition means a state in which high pressure air is normally supplied to the air cylinder without any abnormality such as twisting in the air pipe.
  • the "defective state of the air pipe” means a state in which the air pipe has an abnormality such as a twist and the high pressure air is not normally supplied to the air cylinder.
  • FIG. 1 the air cylinder pressure in a good state of the air piping is shown by a solid line, and the input of the reed switch is shown by a alternate long and short dash line.
  • the air cylinder pressure when the air piping is defective is shown by a broken line, and the input of the reed switch is shown by a dotted line.
  • the horizontal axis of FIG. 1 is time, the first vertical axis represents the air cylinder pressure, and the second vertical axis represents the input of the reed switch.
  • the input of the reed switch is 1 when the reed switch is reacting to the air cylinder, and 0 when the reed switch is not reacting.
  • FIG. 2 the air cylinder pressure in a good state of the air piping is shown by a solid line, and the air cylinder position is shown by a alternate long and short dash line. Further, the air cylinder pressure in a state where the air piping is defective is shown by a broken line, and the air cylinder position is shown by a dotted line.
  • the horizontal axis of FIG. 2 represents time
  • the first vertical axis represents air cylinder pressure
  • the second vertical axis represents air cylinder position.
  • the time axis of FIG. 2 is the same as the time axis of FIG.
  • the reed switch reacts when the air cylinder moves to the predetermined position 101.
  • the reed switch reacts at time t11 when the air piping is in good condition.
  • the reed switch reacts at a time t21 after the time t11 when the state of the air pipe is poor.
  • the air cylinder position changes even after the reed switch reacts. As shown in FIG. 2, when the air piping is in a good state, the change in the air cylinder position becomes gradual at the time t12 after the reed switch reacts at the time t11. In a state where the air piping is defective, the change in the air cylinder position becomes gradual after the reed switch at time t12 reacts and at time t22 after time t12.
  • FIG. 3 is an enlarged view of the air cylinder position in the vicinity of time t12 and time t22 in FIG.
  • the change in the air cylinder position continues after the time t12 and the time t22. This is due to the following reasons. Since there was nothing that hindered the movement of the air cylinder from the start of movement of the air cylinder to time t12 and time t22, the position of the air cylinder changed at high speed due to the supply of air. At time t12 and time t22, the change in the air cylinder position was slowed down by the air cylinder coming into contact with the work.
  • the displacement ⁇ of the air cylinder position after the time t12 and the time t22 is the displacement of the air cylinder from the contact of the air chuck with the work to the sufficient gripping state.
  • the position displacement ⁇ , the rigidity (Young's modulus) of the air chuck, and the air cylinder pressure generate a force for the air chuck to grip the work.
  • the force with which the air chuck grips the work increases as the air cylinder pressure increases.
  • the pressure 111 indicates the air cylinder pressure at time t12 when the air piping is in a good condition.
  • the pressure 112 indicates the air cylinder pressure at time t22 when the air piping is in a defective state.
  • the pressure 112 is lower than the pressure 111. Therefore, it can be said that when the air pipe is in a bad state, the gripping force of the work is weaker than when the air pipe is in a good state.
  • the air cylinder pressure has not risen sufficiently at time t22, so that the force with which the air chuck grips the work is insufficient. Therefore, if the air chuck is moved by another actuator immediately after the time t22, the work may fall off.
  • the air cylinder pressure 121 at the time t12 and the time t30 after the time t22 is substantially the same regardless of whether the air pipe is in a good state or a bad state. It is greater than pressure 111 and pressure 112. That is, the air cylinder pressure continues to rise over time and eventually saturates near the pressure value at which the pressure source supplies high pressure air to the air cylinder.
  • whether or not the air cylinder pressure is saturated is often determined by the elapsed time after the reaction of the reed switch. That is, it is determined that the air cylinder pressure is saturated when the time considered to be sufficient for the air cylinder pressure to saturate has elapsed after the time t11 or the time t21.
  • the air cylinder pressure will eventually saturate even if the air piping is in a defective state. Therefore, if the time from the reaction of the reed switch to the determination that the air cylinder pressure is saturated is sufficiently long, it is possible to prevent poor gripping regardless of the state of the air piping. However, the time it takes for the air cylinder pressure to saturate depends on the degree of failure of the air piping. Therefore, it is difficult to set a sufficient time in advance, and even if the set time has elapsed, the air cylinder pressure may not be saturated and gripping failure may occur.
  • the chuck system includes an air chuck provided with an air cylinder driven by high-pressure air, and a controller for controlling the air chuck.
  • the controller can detect whether the gripping portion of the air chuck abuts on the work and grips the work with sufficient gripping force. Further, the controller has a function of starting the transfer without wasting time after the gripping is completed.
  • FIG. 4 is a block diagram showing an example of the configuration of the chuck system 1.
  • FIG. 5 is a schematic view showing an example of the configuration of the air chuck 20 included in the chuck system 1.
  • a configuration example of the chuck system 1 will be described with reference to FIGS. 4 and 5.
  • the chuck system 1 includes a controller 10, an air chuck (holding device) 20, a solenoid valve 30, a transport unit 40, and a temperature measurement unit 50. As shown in FIG. 5, the chuck system 1 grips the work 2 by the air chuck 20 controlled by the controller 10. Further, the chuck system 1 can convey the air chuck 20 that grips the work 2 while gripping the work 2 by the transport unit 40.
  • the work 2 is a target to be gripped and conveyed by the chuck system 1.
  • the work 2 may be a rigid body such as metal or an elastic body such as rubber.
  • the material of the work 2 it is desirable that the mechanical specifications such as Young's modulus according to the temperature are known, but this is not the case.
  • the air chuck 20 grips the work 2.
  • the air chuck 20 includes an air cylinder (moving portion) 21, a position detecting portion 22, a gripping portion (holding portion) 23, and a link mechanism 24.
  • the air cylinder 21 is an actuator that produces power.
  • the air cylinder 21 is operated by high pressure air supplied by the solenoid valve 30.
  • the air chuck 20 may include another actuator instead of the air cylinder 21. Examples of other actuators include hydraulic cylinders, robot cylinders and various motors.
  • the operation of the air cylinder 21 is not limited to linear motion, but may be rotary motion.
  • the position detection unit 22 is a sensor that detects the position of the air cylinder 21.
  • the position detection unit 22 may be built in the air cylinder 21 or may be attached to a component operated by the air cylinder 21.
  • Examples of the sensor include a sensor that detects a linear position, such as a linear encoder or a linear potentiometer. Further, a sensor that detects the rotation angle by converting the linear position into the rotation position via a belt or the like may be used.
  • the grip portion 23 is a grip mechanism operated by the link mechanism 24.
  • the link mechanism 24 is composed of a plurality of arms and pins operated by an air cylinder 21.
  • the link mechanism 24 converts the linear motion of the air cylinder 21 into the rotational motion of the arm with the pin as a fulcrum.
  • the grip portion 23 is pin-supported at the tip of the arm. Therefore, due to the linear motion of the air cylinder 21, the grip portion 23 sandwiches the work 2 from both sides.
  • the link mechanism 24 may be other than the link mechanism shown in FIG.
  • the air chuck 20 does not necessarily have to include the grip portion 23 and the link mechanism 24 described above, and is composed of a movable grip portion that moves linearly in accordance with the linear motion of the air cylinder 21 and a fixed grip portion that does not move. It may be provided with a grip portion to be operated. In this case, the movable grip portion presses the work 2 toward the fixed grip portion, so that the work 2 is gripped between the movable grip portion and the fixed grip portion.
  • the mechanism of the grip portion 23 is not limited to this, and may be configured by a wide variety of mechanisms.
  • the solenoid valve 30 is a solenoid valve that supplies high pressure air to the air cylinder 21.
  • the solenoid valve 30 may be a motor driver.
  • the transport unit 40 is an actuator that transports the air chuck 20.
  • the transport unit 40 can transport the air chuck 20 in a state where the work 2 is gripped.
  • any mechanism such as a motor and a cylinder may be adopted.
  • the temperature measuring unit 50 is a measuring instrument that measures the temperature of the work 2 or the environmental temperature.
  • the storage unit 60 stores information necessary for processing in the controller 10.
  • the storage unit 60 stores a mathematical formula or a table showing the relationship between the temperature and Young's modulus for a substance assumed to be the material of the work 2.
  • the chuck system 1 does not necessarily have to include the storage unit 60, and may be communicably connected to an external storage device that stores information necessary for processing in the controller 10.
  • the controller 10 controls the operation of the air chuck system 1.
  • the controller 10 includes a valve drive unit 11, a position acquisition unit 12, a position differentiation unit 13 (position identification unit), a contact detection unit 14, a grip detection unit 15 (holding detection unit), and a transfer command unit 16. , A temperature compensating unit 17.
  • the valve drive unit 11 outputs an operation command of the air cylinder 21 (movable part) to the solenoid valve 30 in order to operate the air chuck 20 (holding device).
  • the position acquisition unit 12 acquires the air cylinder position output from the position detection unit 22 and replaces it with a numerical value that can be processed by the controller 10.
  • the position acquisition unit 12 outputs the position of the air cylinder 21 and the time when the position is acquired to the position differentiation unit 13.
  • the position differentiation unit 13 differentiates the air cylinder position acquired from the position acquisition unit 12 and calculates the air cylinder speed and the air cylinder acceleration.
  • the position differential unit 13 outputs the air cylinder position, the air cylinder speed, and the air cylinder acceleration to the contact detection unit 14 and the grip detection unit 15.
  • the contact detection unit 14 detects when the grip portion 23 comes into contact with the work 2. Specifically, the contact detection unit 14 determines whether or not the input air cylinder acceleration (for example, the absolute value of the air cylinder acceleration) exceeds the first threshold value, and when it exceeds, the grip unit 23. Is in contact with the work 2.
  • the first threshold value is set to a value at which a change in air cylinder acceleration due to the grip portion 23 coming into contact with the work 2 can be detected.
  • the contact detection unit 14 detects that the grip unit 23 has contacted the work 2, it outputs a signal indicating that to the grip detection unit 15.
  • FIG. 6 is a graph showing the relationship between the air cylinder pressure and the air cylinder acceleration in a good state and a bad state of the air piping. The process of detecting that the grip portion 23 has come into contact with the work 2 by the contact detection unit 14 based on the air cylinder acceleration will be described with reference to FIG.
  • FIG. 6 the air cylinder pressure in a good state of the air piping is shown by a solid line, and the air cylinder acceleration is shown by a alternate long and short dash line. Further, the air cylinder pressure in a state where the air piping is defective is shown by a broken line, and the air cylinder acceleration is shown by a dotted line.
  • the horizontal axis of FIG. 6 represents time
  • the first vertical axis represents air cylinder pressure
  • the second vertical axis represents air cylinder acceleration.
  • the air cylinder acceleration is shown as a negative direction in which the grip portion 23 is directed toward the work 2.
  • a first threshold value 202 is shown for the contact detection unit 14 to detect that the grip portion 23 has come into contact with the work 2.
  • the valve drive unit 11 drives the solenoid valve 30 and supplies high-pressure air to the air cylinder 21 at time 201 regardless of whether the air piping is in a good state or a bad state. Immediately after the start of supply of high-pressure air, the air cylinder 21 does not move, and the air cylinder acceleration does not change from the vicinity of 0.
  • the air cylinder pressure will rise sharply after the high pressure air starts to be supplied. As a result, a phenomenon occurs in which the air cylinder acceleration drops in the section 211. This represents a section in which the air cylinder speed is increasing due to the start of movement of the air cylinder 21. After the end of the section, the air cylinder 21 reaches the air cylinder speed determined by the air cylinder pressure and moves toward the work 2.
  • the air cylinder acceleration exceeds the first threshold value 202 at the acceleration 213 in the section 212.
  • the air cylinder acceleration exceeds the first threshold value 202 at the acceleration 223 in the section 222.
  • the contact detection unit 14 detects that the grip unit 23 has contacted the work 2 when the air cylinder acceleration exceeds the first threshold value 202.
  • the detection that the air cylinder acceleration exceeds the first threshold value 202 is referred to as contact detection.
  • the contact detection unit 14 detects contact at the timings of acceleration 214 and acceleration 223.
  • the first threshold value 202 needs to be set in advance.
  • the first threshold value 202 is set based on an experimental value obtained by actually operating the air chuck system 1. Further, the acceleration monitoring process of the air cylinder 21 by the contact detection unit 14 is called a contact detection operation.
  • the grip detection unit 15 obtains the displacement amount of the air cylinder position with respect to the air cylinder position at the time when the signal indicating that the grip unit 23 has come into contact with the work 2 is input. This displacement amount is substantially equal to the deformation amount of the work 2 due to the gripping force applied to the work 2 from the grip portion 23. Then, when the displacement amount becomes larger than the third threshold value, it is detected that the gripping portion 23 has completed gripping the work 2. When it is detected that the gripping is completed, the gripping detection unit 15 notifies the transport command unit 16 that the gripping unit 23 has gripped the work 2. The above process by the grip detection unit 15 is referred to as a grip detection operation.
  • the third threshold value is a preset value or a value calculated by the temperature correction unit 17. When the third threshold value is set in advance, the theoretical value or the experimental value of the displacement amount of the air cylinder 21 when the gripping force by the gripping portion 23 is sufficient can be used.
  • the transport command unit 16 receives a notification from the grip detection unit 15 and outputs a transport start command to the transport unit 40.
  • the command may be issued immediately after receiving the notification from the grip detection unit 15, or the stability time may be further considered.
  • the temperature correction unit 17 calculates a third threshold value used by the grip detection unit 15 for grip detection based on the temperature output by the temperature measurement unit 50.
  • the processing in the temperature compensation unit 17 is as follows. First, the temperature correction unit 17 determines whether or not the Young's modulus of the work 2 has a large temperature dependence. As a specific example, in the chuck system 1, it is assumed that a list of materials having a large Young's modulus temperature dependence is stored in the storage unit 60 in advance. Further, when using the chuck system 1, the user shall input the material of the work 2. The temperature compensation unit 17 determines whether the input material of the work 2 is included in the list of materials having a large temperature dependence of Young's modulus.
  • the temperature compensation unit 17 When the temperature dependence of Young's modulus is large, the temperature compensation unit 17 further calculates the Young's modulus of the work 2 at the temperature measured by the temperature measuring unit 50. Further, the temperature compensating unit 17 has a deformation amount of the work 2 required to obtain the gripping force from the calculated Young's modulus and the gripping force of the gripping unit 23 when the work 2 is normally gripped. That is, the displacement amount of the air cylinder 21 is calculated. Specifically, the temperature compensation unit 17 calculates the displacement amount of the air cylinder when the gripping force is sufficient by the following equation (1).
  • D P ⁇ L / Y (1)
  • D is the displacement amount of the air cylinder 21
  • P is the magnitude (stress) of the gripping force applied to the work 2 from the gripping portion 23
  • L is the magnitude (stress) of the work 2 in the direction of the gripping force.
  • Length and Y are Young's modulus of work 2.
  • the displacement amount calculated by the equation (1) is used as the threshold value in the grip detection unit 15.
  • the grip detection unit 15 detects the grip of the work 2 using the third threshold value that changes depending on the temperature, so that a more reliable grip operation becomes possible. ..
  • the controller 10 does not necessarily have to include the temperature compensation unit 17.
  • the grip detection unit 15 detects the grip of the work 2 using the above-mentioned third preset threshold value.
  • the grip detection unit 15 may use the work 2 without correcting the third threshold value according to the temperature. Gripping can be detected accurately. In such a case, the temperature measuring unit 50 is also unnecessary.
  • the chuck system 1 may include a pressure detection unit (not shown).
  • the pressure detection unit may be a pressure sensor that detects the pressure of the high pressure air supplied to the air cylinder 21. In this case, the pressure detecting unit indirectly detects the stress from the work 2 to the gripping portion 23. Further, the pressure detection unit may be a pressure sensor installed in the grip unit 23. In this case, the pressure detection unit detects the stress from the work 2 to the grip portion 23. The detected stress may be used as an index for experimentally or quantitatively determining whether or not the gripping state is good when setting the threshold value of the gripping detection unit 15.
  • FIG. 7 is a flowchart showing the operation of the chuck system 1. An operation example of the chuck system 1 will be described with reference to FIG. 7.
  • the valve drive unit 11 drives the solenoid valve 30.
  • the air cylinder 21 operates so that the grip portion 23 comes into contact with the work 2.
  • the position acquisition unit 12 acquires the output value of the position detection unit 22 and detects it as an air cylinder position.
  • the position differentiation unit 13 differentiates the input air cylinder position twice and calculates the air cylinder speed and the air cylinder acceleration.
  • the contact detection unit 14 determines whether or not the air cylinder acceleration exceeds a predetermined first threshold value. When the air cylinder acceleration does not exceed the first threshold value (NO in S14), the contact detection unit 14 returns to S12 until the air cylinder acceleration exceeds the first threshold value, and repeats the contact detection operation. When the air cylinder acceleration exceeds the first threshold value (YES in S14), the contact detection unit 14 notifies that the grip unit 23 has detected that it has contacted the work 2, and proceeds to S15.
  • the temperature correction unit 17 determines whether or not the temperature dependence of the Young's modulus of the work 2 is large. When the temperature dependence of Young's modulus of the work 2 is small (NO in S15), the process of S16 is performed.
  • the grip detection unit 15 determines whether or not the displacement of the air cylinder position from the time of the contact detection exceeds the third threshold value. If the displacement of the air cylinder position does not exceed the third threshold value (NO in S16), S16 is repeated.
  • the grip detection unit 15 ends the grip detection operation (grip detection) and sends the transfer command unit 16. Notify the grip detection and perform the processing of S17.
  • the transport command unit 16 issues a transport command to the transport unit 40 to transport the air chuck 20.
  • the work 2 continues to be gripped by the grip portion 23.
  • the controller 10 waits for an instruction from the host device.
  • the higher-level device is a higher-level control device that controls the controller 10, and is, for example, a PLC (Programmable Logic Controller).
  • the temperature compensating unit 17 performs the processing of S18.
  • the temperature correction unit 17 measures the temperature of the work 2 or the environmental temperature by the temperature measurement unit 50, and calculates a third threshold value corrected according to the temperature.
  • the contact detection unit 14 detects that the grip unit 23 has contacted the work 2 based on the air cylinder acceleration, but this is not the case.
  • FIG. 8 is a graph showing the relationship between the air cylinder pressure and the air cylinder speed when the air piping is in a good state and in a bad state. The contact detection process of the work 2 by the air cylinder speed will be described with reference to FIG.
  • the air cylinder pressure in a good state of the air piping is shown by a solid line, and the air cylinder speed is shown by a alternate long and short dash line. Further, the air cylinder pressure in a state where the air piping is defective is shown by a broken line, and the air cylinder speed is shown by a dotted line.
  • the horizontal axis of FIG. 8 is time, the first vertical axis represents the air cylinder pressure, and the second vertical axis represents the air cylinder speed. Further, the air cylinder speed indicates the direction in which the grip portion 23 is directed toward the work 2 as positive. Further, a second threshold value 302 for the air cylinder speed is shown on the second vertical axis.
  • the solenoid valve 30 is driven to supply high-pressure air to the air cylinder 21.
  • the timing to start supplying high-pressure air is the same when the air piping is in good condition and in bad condition.
  • Sections 311 and 321 show sections from the start of movement of the air cylinder 21 by the high-pressure air supplied from the solenoid valve 30 to the air cylinder 21 until the air cylinder 21 comes into contact with the work 2.
  • the air cylinder speed (for example, the absolute value of the air cylinder speed) once exceeds the second threshold value 302, and then the second threshold value is reached.
  • Contact detection may be performed when the size becomes smaller than 302.
  • the grip portion 23 is not limited to the shape of sandwiching the work 2 described above from both sides.
  • a mechanism for holding the work 2 can be considered by inserting a member composed of a pair of protrusions into the hole, expanding the protrusion, and bringing the protrusion into contact with the inner surface of the hole.
  • the controller 10 can detect the contact of the grip portion 23 with the work 2 by using the air cylinder speed and the air cylinder acceleration obtained by differentiating the air cylinder position twice. Further, the controller 10 can detect whether the grip portion 23 is gripping the work 2 with a sufficient grip force by monitoring the amount of displacement after the grip portion 23 comes into contact with the work 2. By gripping the work 2 with a sufficient gripping force, the chuck system 1 can convey the work 2 without causing a gripping defect such as a drop of the work 2.
  • the air chuck was able to grip the work when the stable time elapsed after the reed switch reacted.
  • the stabilization time was determined so that the work could be gripped with sufficient gripping force even when the air piping was in a poor state. Therefore, in a good state of the air piping, even though the work 2 is actually gripped with a sufficient gripping force before the stabilization time elapses, it waits until the stabilization time elapses. It was supposed to be. That is, wasted time was generated when the air piping was in good condition.
  • gripping with a sufficient gripping force can be detected by monitoring the displacement after the contact detection. Therefore, since it is possible to detect the timing at which gripping is actually possible, which was difficult with the prior art, it is possible to transport the work without extra waiting time. That is, it becomes possible to start the transportation without wasting time after the gripping is completed.
  • the control block of the controller 10 (particularly the valve drive unit 11, the position acquisition unit 12, the position differentiation unit 13, the contact detection unit 14, the grip detection unit 15, the transfer command unit 16, and the temperature compensation unit 17) is an integrated circuit (IC). It may be realized by a logic circuit (hardware) formed in a chip) or the like, or it may be realized by software.
  • the controller 10 includes a computer that executes a program instruction, which is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM RandomAccessMemory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • the controller is a controller that controls a holding device having a movable portion and a holding portion for holding a work by the operation of the movable portion.
  • the position acquisition unit that acquires the position of the position, the position identification unit that specifies the speed or acceleration of the movable portion using the position, and the holding unit that the holding portion abuts on the work due to the speed or acceleration. It includes a contact detection unit for detecting, and a holding detection unit for detecting that the holding unit holds the work from the displacement of the movable portion after the contact.
  • the contact detection unit can detect that the holding unit has come into contact with the work by monitoring the acceleration or speed of the movable part. Further, the holding detection unit monitors the displacement of the movable portion after the holding portion comes into contact with the work, so that the controller can detect the holding of the work. Therefore, the controller can prevent the work from being held poorly by the holding portion.
  • the contact detection unit may detect contact with the work by the holding unit when the acceleration exceeds the first threshold value.
  • the holding portion is in contact with the work on condition that the acceleration of the moving portion becomes equal to or higher than the first threshold value. Therefore, by monitoring the acceleration of the movable portion, the contact with the work can be detected with high accuracy.
  • the contact detection unit may detect contact with the work by the holding unit when the speed exceeds the second threshold value once and then becomes smaller than the second threshold value.
  • the holding portion has come into contact with the work, provided that the speed of the movable portion once exceeds the second threshold value and then falls below the second threshold value again.
  • the work is an elastic object, sufficient deceleration (acceleration) cannot be obtained due to the elasticity, and even if the work decelerates gently, the contact is made with high accuracy in order to monitor the speed. It can be detected.
  • the holding detection unit may detect that the holding unit holds the work when the displacement amount of the movable portion after the contact becomes larger than the third threshold value.
  • the holding detection unit detects the holding of the work by the holding portion on condition that the displacement amount of the movable portion after the holding portion comes into contact with the work becomes larger than the third threshold value. .. Therefore, the controller can prevent the work from being held poorly by the holding portion.
  • the controller may further include a temperature compensating unit that measures the temperature of the work or the environmental temperature and corrects the third threshold value according to the temperature.
  • the controller further includes a transport command unit that commands the transport unit that moves the holding device to move the holding device after the holding detection unit detects that the holding unit holds the work. May be good.
  • the control method of the controller is a controller for controlling a holding device having a movable portion, a holding portion for holding the work by the operation of the movable portion, and the like.
  • a position acquisition step for acquiring the position of the movable portion, a position specifying step for specifying the speed or acceleration of the movable portion using the position, and the holding portion abutting on the work due to the speed or the acceleration. It includes a contact detection step for detecting that the work has been made, and a holding detection step for detecting that the holding portion holds the work from the displacement of the movable portion after the contact.
  • the controller according to each aspect of the present invention may be realized by a computer, and in this case, the controller that realizes the controller by the computer by operating the computer as each part (software element) included in the controller.
  • Contact detection programs, controller retention detection programs, and computer-readable recording media on which they are recorded also fall within the scope of the invention.

Abstract

The present invention realizes a controller capable of preventing gripping failure in an air chuck system. A controller (10) comprises: a contact detection unit (14) for detecting, from the velocity or acceleration of an air cylinder (21) of an air chuck (20), that a gripping part (23) has come into contact with a workpiece; and a grip detection unit (15) for detecting, from displacement of the air cylinder after the contact, that the gripping part is holding the workpiece.

Description

コントローラ、コントローラの制御方法、制御プログラム、および記録媒体Controllers, controller control methods, control programs, and recording media
 本発明は、エアチャックシステムにおける、把持部によるワークへの当接の検出および正常な把持の検出をするコントローラ、当該コントローラとしてコンピュータを機能させるための制御プログラム、当該制御プログラムを記録した記録媒体、および当該制御プログラムとして動作する集積回路に関する。 The present invention relates to a controller for detecting contact with a work by a gripping portion and detecting normal gripping in an air chuck system, a control program for operating a computer as the controller, and a recording medium on which the control program is recorded. And the integrated circuit that operates as the control program.
 生産現場でのワークのハンドリングには、ワークを把持する把持機構と、それを搬送する搬送機構とを組み合わせることが一般的である。把持機構の1つとして、エアチャックが挙げられる。エアチャックは、エアシリンダの先端に、リンク機構による把持用ハンド機構が設けられた構成を有する。 For the handling of the work at the production site, it is common to combine a gripping mechanism for gripping the work and a transport mechanism for transporting the work. An air chuck is mentioned as one of the gripping mechanisms. The air chuck has a configuration in which a gripping hand mechanism by a link mechanism is provided at the tip of an air cylinder.
 エアチャックによりワークを把持したかを、当該エアチャックのコントローラが判断する一般的な手法として、ワークを把持した場合に想定されるエアシリンダ位置に設けられた、エアシリンダに反応するリードスイッチを用いる手法がある。当該手法では、コントローラは、リードスイッチが反応してから所定の安定時間が経過したときに、把持が完了したと判断する。 As a general method for the controller of the air chuck to determine whether the work is gripped by the air chuck, a reed switch that reacts to the air cylinder provided at the air cylinder position assumed when the work is gripped is used. There is a method. In this method, the controller determines that the grip is completed when a predetermined stabilization time elapses after the reed switch reacts.
日本国特開2010-207829号公報Japanese Patent Application Laid-Open No. 2010-207829
 しかしながら、エアチャックにおいて、エアシリンダに動作用エアを供給するエア配管にねじれ等の異常がある場合、エアの供給が滞る。そのため、上記の判断手法では、リードスイッチが反応してから安定時間を経過した後でも把持が完了しない把持不良が生じ、ワークの落下などの問題を起こすことがある。 However, in the air chuck, if there is an abnormality such as twisting in the air piping that supplies the operating air to the air cylinder, the air supply will be delayed. Therefore, in the above-mentioned determination method, gripping failure may occur in which gripping is not completed even after a stable time has elapsed after the reed switch reacts, which may cause problems such as dropping of the work.
 本発明の一態様は、把持不良を防止可能なコントローラを実現することを目的とする。 One aspect of the present invention is to realize a controller capable of preventing poor gripping.
 上記の課題を解決するために、本発明の一態様に係るコントローラは、可動部と、前記可動部の動作によってワークを保持する保持部と、を有する保持装置を制御するコントローラにおいて、前記可動部の位置を取得する位置取得部と、前記位置を用いて、前記可動部の速度または加速度を特定する位置特定部と、前記速度または前記加速度により、前記保持部が前記ワークと当接したことを検出する当接検出部と、前記当接した後の前記可動部の変位から、前記保持部が前記ワークを保持したことを検出する保持検出部と、を備える。 In order to solve the above problems, the controller according to one aspect of the present invention is a controller that controls a holding device having a movable portion and a holding portion for holding a work by the operation of the movable portion. The position acquisition unit that acquires the position of the position, the position identification unit that specifies the speed or acceleration of the movable portion using the position, and the holding unit that the holding portion abuts on the work due to the speed or acceleration. A contact detection unit for detecting and a holding detection unit for detecting that the holding unit holds the work from the displacement of the movable portion after the contact is provided.
 上記の課題を解決するために、本発明の一態様に係るコントローラの制御方法は、可動部と、前記可動部の動作によってワークを保持する保持部と、を有する保持装置を制御するコントローラにおいて、前記可動部の位置を取得する位置取得ステップと、前記位置を用いて、前記可動部の速度または加速度を特定する位置特定ステップと、前記速度または前記加速度により、前記保持部が前記ワークと当接したことを検出する当接検出ステップと、前記当接した後の前記可動部の変位から、前記保持部が前記ワークを保持したことを検出する保持検出ステップと、を含む。 In order to solve the above problems, the control method of the controller according to one aspect of the present invention is a controller for controlling a holding device having a movable portion, a holding portion for holding the work by the operation of the movable portion, and the like. A position acquisition step for acquiring the position of the movable portion, a position specifying step for specifying the speed or acceleration of the movable portion using the position, and the holding portion abutting on the work due to the speed or the acceleration. It includes a contact detection step for detecting that the work has been made, and a holding detection step for detecting that the holding portion holds the work from the displacement of the movable portion after the contact.
 本発明の一態様によれば、エア配管の状態により流量が滞る状態であっても、エアシリンダの位置を取得し、間接的にエアチャックの状態を管理することで、正常な把持の実現と、把持後直ちに搬送動作を開始できる。 According to one aspect of the present invention, even if the flow rate is stagnant due to the state of the air piping, the position of the air cylinder is acquired and the state of the air chuck is indirectly managed to realize normal gripping. , The transport operation can be started immediately after gripping.
エア配管が良好な状態と不良な状態とでの、エアチャックにおけるエアシリンダ圧力とリードスイッチの入力との関係を示すグラフである。It is a graph which shows the relationship between the air cylinder pressure in an air chuck, and the input of a reed switch in a good state and a bad state of an air pipe. エア配管が良好な状態と不良な状態とでの、エアチャックにおけるエアシリンダ圧力とエアシリンダの位置との関係を示すグラフである。It is a graph which shows the relationship between the air cylinder pressure and the position of an air cylinder in an air chuck in a good state and a bad state of an air pipe. 図2において、特定時刻でのエアシリンダ位置を拡大した図である。FIG. 2 is an enlarged view of an air cylinder position at a specific time. チャックシステムの構成要素の一例を示すブロック図である。It is a block diagram which shows an example of the component of a chuck system. チャックシステムが備えるエアチャックの構成の一例を示す概略図である。It is a schematic diagram which shows an example of the structure of the air chuck provided in the chuck system. エア配管が良好な状態と不良な状態とでの、エアシリンダ圧力とエアシリンダ加速度を示すグラフである。It is a graph which shows the air cylinder pressure and the air cylinder acceleration in a good state and a bad state of an air pipe. チャックシステムの動作を示すフローチャートである。It is a flowchart which shows the operation of a chuck system. エア配管が良好な状態と不良な状態とでの、エアシリンダ圧力とエアシリンダ速度を示すグラフである。It is a graph which shows the air cylinder pressure and the air cylinder speed in a good state and a bad state of an air pipe.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings.
 〔参考形態〕
 実施形態の説明に先立ち、図1および図2を基にして、従来のエアシリンダの把持制御に関して説明する。
[Reference form]
Prior to the description of the embodiment, the gripping control of the conventional air cylinder will be described with reference to FIGS. 1 and 2.
 図1は、エア配管が良好な状態と不良な状態とでの、エアチャックにおけるエアシリンダ圧力とリードスイッチの入力との関係を示すグラフである。図2は、エア配管が良好な状態と不良な状態とでの、エアチャックにおけるエアシリンダ圧力とエアシリンダ位置との関係を示すグラフである。エア配管とは、エアコンプレッサーなどの圧力源からエアシリンダへ高圧エアを供給するための配管である。本明細書において、「エア配管が良好な状態」とは、エア配管にねじれ等の異常がなく、エアシリンダに高圧エアが正常に供給される状態を意味する。「エア配管が不良な状態」とは、エア配管にねじれ等の異常があり、エアシリンダに高圧エアが正常に供給されない状態を意味する。 FIG. 1 is a graph showing the relationship between the air cylinder pressure in the air chuck and the input of the reed switch in a good state and a bad state of the air piping. FIG. 2 is a graph showing the relationship between the air cylinder pressure and the air cylinder position in the air chuck in a good state and a bad state of the air piping. The air pipe is a pipe for supplying high-pressure air from a pressure source such as an air compressor to an air cylinder. In the present specification, "a state in which the air pipe is in good condition" means a state in which high pressure air is normally supplied to the air cylinder without any abnormality such as twisting in the air pipe. The "defective state of the air pipe" means a state in which the air pipe has an abnormality such as a twist and the high pressure air is not normally supplied to the air cylinder.
 図1においては、エア配管が良好な状態でのエアシリンダ圧力を実線で、リードスイッチの入力を一点鎖線で示している。また、エア配管が不良な状態でのエアシリンダ圧力を破線で、リードスイッチの入力を点線で示している。図1の横軸は、時間であり、第1縦軸はエアシリンダ圧力を、第2縦軸はリードスイッチの入力を表す。リードスイッチの入力は、リードスイッチがエアシリンダに反応している場合に1、反応していない場合に0である。 In FIG. 1, the air cylinder pressure in a good state of the air piping is shown by a solid line, and the input of the reed switch is shown by a alternate long and short dash line. In addition, the air cylinder pressure when the air piping is defective is shown by a broken line, and the input of the reed switch is shown by a dotted line. The horizontal axis of FIG. 1 is time, the first vertical axis represents the air cylinder pressure, and the second vertical axis represents the input of the reed switch. The input of the reed switch is 1 when the reed switch is reacting to the air cylinder, and 0 when the reed switch is not reacting.
 図2においては、エア配管が良好な状態でのエアシリンダ圧力を実線で、エアシリンダ位置を一点鎖線で示している。また、エア配管が不良な状態でのエアシリンダ圧力を破線で、エアシリンダ位置を点線で示している。図2の横軸は時間を、第1縦軸はエアシリンダ圧力を、第2縦軸はエアシリンダ位置を表す。図2の時間軸は、図1の時間軸と同一である。 In FIG. 2, the air cylinder pressure in a good state of the air piping is shown by a solid line, and the air cylinder position is shown by a alternate long and short dash line. Further, the air cylinder pressure in a state where the air piping is defective is shown by a broken line, and the air cylinder position is shown by a dotted line. The horizontal axis of FIG. 2 represents time, the first vertical axis represents air cylinder pressure, and the second vertical axis represents air cylinder position. The time axis of FIG. 2 is the same as the time axis of FIG.
 リードスイッチはエアシリンダが所定の位置101まで移動すると反応する。図1においては、リードスイッチは、エア配管が良好な状態では時刻t11で反応する。一方、リードスイッチは、エア配管の状態が不良な状態では時刻t11よりも後の時刻t21で反応する。 The reed switch reacts when the air cylinder moves to the predetermined position 101. In FIG. 1, the reed switch reacts at time t11 when the air piping is in good condition. On the other hand, the reed switch reacts at a time t21 after the time t11 when the state of the air pipe is poor.
 エアシリンダ位置は、リードスイッチが反応した後も変化する。図2に示すようにエア配管が良好な状態では、時刻t11におけるリードスイッチが反応した後の時刻t12において、エアシリンダ位置の変化が緩やかになる。エア配管が不良な状態では、時刻t12におけるリードスイッチが反応した後、かつ時刻t12よりも後の時刻t22において、エアシリンダ位置の変化が緩やかになる。 The air cylinder position changes even after the reed switch reacts. As shown in FIG. 2, when the air piping is in a good state, the change in the air cylinder position becomes gradual at the time t12 after the reed switch reacts at the time t11. In a state where the air piping is defective, the change in the air cylinder position becomes gradual after the reed switch at time t12 reacts and at time t22 after time t12.
 図3は、図2において、時刻t12および時刻t22の近傍でのエアシリンダ位置を拡大した図である。図3に示すように、エアシリンダ位置の変化は、時刻t12および時刻t22以降も継続している。これは、以下の理由によるものである。エアシリンダが動き始めてから、時刻t12および時刻t22までは、エアシリンダの動きを阻害するものが存在しなかったため、エアの供給によってエアシリンダ位置が高速で変化した。時刻t12および時刻t22において、エアシリンダがワークに当接したことで、エアシリンダ位置の変化が鈍化した。時刻t12および時刻t22以降のエアシリンダ位置の変位δは、ワークにエアチャックが接触してから、把持十分状態になるまでのエアシリンダの変位である。位置変位δ、エアチャックの剛性(ヤング率)およびエアシリンダ圧力によって、エアチャックがワークを把持する力が生じる。エアチャックがワークを把持する力は、エアシリンダ圧力が大きいほど大きくなる。 FIG. 3 is an enlarged view of the air cylinder position in the vicinity of time t12 and time t22 in FIG. As shown in FIG. 3, the change in the air cylinder position continues after the time t12 and the time t22. This is due to the following reasons. Since there was nothing that hindered the movement of the air cylinder from the start of movement of the air cylinder to time t12 and time t22, the position of the air cylinder changed at high speed due to the supply of air. At time t12 and time t22, the change in the air cylinder position was slowed down by the air cylinder coming into contact with the work. The displacement δ of the air cylinder position after the time t12 and the time t22 is the displacement of the air cylinder from the contact of the air chuck with the work to the sufficient gripping state. The position displacement δ, the rigidity (Young's modulus) of the air chuck, and the air cylinder pressure generate a force for the air chuck to grip the work. The force with which the air chuck grips the work increases as the air cylinder pressure increases.
 再度図2を参照する。図2において、圧力111は、エア配管が良好な状態である場合の、時刻t12におけるエアシリンダ圧力を示す。圧力112は、エア配管が不良な状態である場合の、時刻t22におけるエアシリンダ圧力を示す。圧力112は、圧力111と比較して低い。このため、エア配管が不良な状態である場合には、エア配管が良好な状態である場合と比較して、ワークの把持力が弱くなるといえる。 Refer to Fig. 2 again. In FIG. 2, the pressure 111 indicates the air cylinder pressure at time t12 when the air piping is in a good condition. The pressure 112 indicates the air cylinder pressure at time t22 when the air piping is in a defective state. The pressure 112 is lower than the pressure 111. Therefore, it can be said that when the air pipe is in a bad state, the gripping force of the work is weaker than when the air pipe is in a good state.
 エア配管が不良な状態である場合、時刻t22においては十分にエアシリンダ圧力が上昇していないため、エアチャックがワークを把持する力が不十分である。このため、時刻t22の直後に、エアチャックが他のアクチュエータによって可動した場合、ワークの脱落などが生じる可能性がある。 When the air piping is in a defective state, the air cylinder pressure has not risen sufficiently at time t22, so that the force with which the air chuck grips the work is insufficient. Therefore, if the air chuck is moved by another actuator immediately after the time t22, the work may fall off.
 ここで、図2において時刻t12および時刻t22より後の時刻t30でのエアシリンダ圧力121は、エア配管が良好な状態である場合および不良な状態である場合のいずれにおいても概ね同じであり、かつ圧力111および圧力112より大きくなっている。すなわち、エアシリンダ圧力は、時間が経過すれば上昇し続け、最終的には圧力源がエアシリンダに高圧エアを供給する圧力値の近傍で飽和する。 Here, in FIG. 2, the air cylinder pressure 121 at the time t12 and the time t30 after the time t22 is substantially the same regardless of whether the air pipe is in a good state or a bad state. It is greater than pressure 111 and pressure 112. That is, the air cylinder pressure continues to rise over time and eventually saturates near the pressure value at which the pressure source supplies high pressure air to the air cylinder.
 一般的にエアシリンダの把持制御では、エアシリンダ圧力が飽和したか否かを、リードスイッチの反応後の経過時間で判断することが多い。すなわち、時刻t11または時刻t21の後、エアシリンダ圧力が飽和するのに十分と考えられる時間が経過したときに、エアシリンダ圧力が飽和したと判定する。 Generally, in the grip control of an air cylinder, whether or not the air cylinder pressure is saturated is often determined by the elapsed time after the reaction of the reed switch. That is, it is determined that the air cylinder pressure is saturated when the time considered to be sufficient for the air cylinder pressure to saturate has elapsed after the time t11 or the time t21.
 上述したとおり、エアシリンダ圧力は、エア配管が不良な状態であっても、最終的には飽和する。したがって、リードスイッチの反応後、エアシリンダ圧力が飽和したと判定するまでの時間を十分に長くすれば、エア配管の状態によらず把持不良を防止することが可能である。しかしながら、エアシリンダ圧力が飽和するまでの時間は、エア配管の不良の度合いによって異なる。このため、十分な時間を予め設定することは困難であり、十分な時間として設定した時間が経過した場合でもエアシリンダ圧力が飽和せず、把持不良を起こす可能性がある。 As mentioned above, the air cylinder pressure will eventually saturate even if the air piping is in a defective state. Therefore, if the time from the reaction of the reed switch to the determination that the air cylinder pressure is saturated is sufficiently long, it is possible to prevent poor gripping regardless of the state of the air piping. However, the time it takes for the air cylinder pressure to saturate depends on the degree of failure of the air piping. Therefore, it is difficult to set a sufficient time in advance, and even if the set time has elapsed, the air cylinder pressure may not be saturated and gripping failure may occur.
 〔実施形態〕
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[Embodiment]
Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “the present embodiment”) will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 §1 適用例
 次に、本実施形態に係るエアシリンダの把持制御を行うチャックシステムについて説明する。本実施形態に係るチャックシステムは、高圧エアで駆動するエアシリンダを備えたエアチャックと、エアチャックを制御するコントローラとにより構成される。上記コントローラは、エアチャックのうちエアシリンダの位置を監視することで、エアチャックの把持部がワークへの当接およびワークを十分な把持力で把持したかを検出できる。更に、上記コントローラは、把持完了後に無駄時間なく搬送を開始できる機能をもつ。
§1 Application example Next, a chuck system that controls gripping of an air cylinder according to this embodiment will be described. The chuck system according to the present embodiment includes an air chuck provided with an air cylinder driven by high-pressure air, and a controller for controlling the air chuck. By monitoring the position of the air cylinder in the air chuck, the controller can detect whether the gripping portion of the air chuck abuts on the work and grips the work with sufficient gripping force. Further, the controller has a function of starting the transfer without wasting time after the gripping is completed.
 §2 構成例
 図4は、チャックシステム1の構成の一例を示すブロック図である。図5は、チャックシステム1が備えるエアチャック20の構成の一例を示す概略図である。図4および図5に基づいて、チャックシステム1の構成例を説明する。
§2 Configuration example FIG. 4 is a block diagram showing an example of the configuration of the chuck system 1. FIG. 5 is a schematic view showing an example of the configuration of the air chuck 20 included in the chuck system 1. A configuration example of the chuck system 1 will be described with reference to FIGS. 4 and 5.
 (チャックシステム1の構成)
 図4に示すように、チャックシステム1は、コントローラ10と、エアチャック(保持装置)20と、ソレノイドバルブ30と、搬送部40と、温度計測部50と、を備える。図5に示すように、チャックシステム1は、コントローラ10が制御するエアチャック20によってワーク2を把持する。また、チャックシステム1は、搬送部40によって、ワーク2を把持したエアチャック20を、ワーク2を把持したまま搬送することができる。
(Configuration of chuck system 1)
As shown in FIG. 4, the chuck system 1 includes a controller 10, an air chuck (holding device) 20, a solenoid valve 30, a transport unit 40, and a temperature measurement unit 50. As shown in FIG. 5, the chuck system 1 grips the work 2 by the air chuck 20 controlled by the controller 10. Further, the chuck system 1 can convey the air chuck 20 that grips the work 2 while gripping the work 2 by the transport unit 40.
 ワーク2は、チャックシステム1が把持し搬送する対象である。ワーク2は、金属などの剛体でもよいし、ゴムなどの弾性体でも構わない。ワーク2の材質については、温度に応じたヤング率などの機械的緒元が分かっていることが望ましいが、この限りではない。 The work 2 is a target to be gripped and conveyed by the chuck system 1. The work 2 may be a rigid body such as metal or an elastic body such as rubber. Regarding the material of the work 2, it is desirable that the mechanical specifications such as Young's modulus according to the temperature are known, but this is not the case.
 (エアチャック20の構成)
 エアチャック20はワーク2を把持する。エアチャック20は、エアシリンダ(可動部)21と、位置検出部22と、把持部(保持部)23と、リンク機構24と、を備える。
(Structure of air chuck 20)
The air chuck 20 grips the work 2. The air chuck 20 includes an air cylinder (moving portion) 21, a position detecting portion 22, a gripping portion (holding portion) 23, and a link mechanism 24.
 エアシリンダ21は、動力を生み出すアクチュエータである。エアシリンダ21は、ソレノイドバルブ30によって供給される高圧エアによって動作する。エアチャック20は、エアシリンダ21の代わりに、他のアクチュエータを備えていてもよい。他のアクチュエータの例としては、油圧シリンダ、ロボットシリンダおよび各種モータが挙げられる。エアシリンダ21の動作は、直線運動に限らず、回転運動でもよい。 The air cylinder 21 is an actuator that produces power. The air cylinder 21 is operated by high pressure air supplied by the solenoid valve 30. The air chuck 20 may include another actuator instead of the air cylinder 21. Examples of other actuators include hydraulic cylinders, robot cylinders and various motors. The operation of the air cylinder 21 is not limited to linear motion, but may be rotary motion.
 位置検出部22は、エアシリンダ21の位置を検出するセンサである。位置検出部22は、エアシリンダ21に内蔵されていてもよく、エアシリンダ21によって動作する部品に取り付けられていてもよい。センサの例としては、リニアエンコーダまたはリニアポテンショメータなどに代表される、直線位置を検出するセンサが挙げられる。また、ベルトなどを介して、直線位置を回転位置に変換し、回転角度を検出するセンサを使用しても構わない。 The position detection unit 22 is a sensor that detects the position of the air cylinder 21. The position detection unit 22 may be built in the air cylinder 21 or may be attached to a component operated by the air cylinder 21. Examples of the sensor include a sensor that detects a linear position, such as a linear encoder or a linear potentiometer. Further, a sensor that detects the rotation angle by converting the linear position into the rotation position via a belt or the like may be used.
 把持部23は、リンク機構24によって動作する把持機構である。リンク機構24は、エアシリンダ21によって動作する、複数のアームとピンとで構成されている。リンク機構24は、エアシリンダ21の直線運動を、ピンを支点としたアームの回転運動に変換する。アームの先に把持部23がピン支持されている。したがって、エアシリンダ21の直線運動により、把持部23はワーク2を両サイドから挟み込む。リンク機構24は図5に示すリンク機構以外であってもよい。 The grip portion 23 is a grip mechanism operated by the link mechanism 24. The link mechanism 24 is composed of a plurality of arms and pins operated by an air cylinder 21. The link mechanism 24 converts the linear motion of the air cylinder 21 into the rotational motion of the arm with the pin as a fulcrum. The grip portion 23 is pin-supported at the tip of the arm. Therefore, due to the linear motion of the air cylinder 21, the grip portion 23 sandwiches the work 2 from both sides. The link mechanism 24 may be other than the link mechanism shown in FIG.
 また、エアチャック20は、必ずしも上述した把持部23およびリンク機構24を備える必要はなく、エアシリンダ21の直線運動に併せて直線的に移動する可動把持部と、移動しない固定把持部とによって構成される把持部を備えていてもよい。この場合、可動把持部がワーク2を固定把持部に向けて押圧することで、可動把持部と固定把持部との間でワーク2が把持される。把持部23の機構はこの限りではなく、多種多様な機構によって構成されてもよい。 Further, the air chuck 20 does not necessarily have to include the grip portion 23 and the link mechanism 24 described above, and is composed of a movable grip portion that moves linearly in accordance with the linear motion of the air cylinder 21 and a fixed grip portion that does not move. It may be provided with a grip portion to be operated. In this case, the movable grip portion presses the work 2 toward the fixed grip portion, so that the work 2 is gripped between the movable grip portion and the fixed grip portion. The mechanism of the grip portion 23 is not limited to this, and may be configured by a wide variety of mechanisms.
 (チャックシステム1の機器)
 ソレノイドバルブ30は、エアシリンダ21に高圧エアを供給するソレノイドバルブである。エアチャック20がエアシリンダ21の代わりにモータを備える場合、ソレノイドバルブ30は、モータドライバでもよい。
(Equipment of chuck system 1)
The solenoid valve 30 is a solenoid valve that supplies high pressure air to the air cylinder 21. When the air chuck 20 includes a motor instead of the air cylinder 21, the solenoid valve 30 may be a motor driver.
 搬送部40は、エアチャック20を搬送させるアクチュエータである。搬送部40は、ワーク2を把持した状態のエアチャック20を搬送することができる。アクチュエータとしては、モータおよびシリンダなどの任意の機構を採用してよい。温度計測部50は、ワーク2の温度または環境温度を計測する計測器である。 The transport unit 40 is an actuator that transports the air chuck 20. The transport unit 40 can transport the air chuck 20 in a state where the work 2 is gripped. As the actuator, any mechanism such as a motor and a cylinder may be adopted. The temperature measuring unit 50 is a measuring instrument that measures the temperature of the work 2 or the environmental temperature.
 記憶部60は、コントローラ10における処理に必要な情報を記憶する。例えば記憶部60は、ワーク2の材質として想定される物質について、温度とヤング率との関係を示す数式またはテーブルを記憶する。ただし、チャックシステム1は必ずしも記憶部60を備える必要はなく、コントローラ10における処理に必要な情報を記憶した外部の記憶装置と通信可能に接続されていてもよい。 The storage unit 60 stores information necessary for processing in the controller 10. For example, the storage unit 60 stores a mathematical formula or a table showing the relationship between the temperature and Young's modulus for a substance assumed to be the material of the work 2. However, the chuck system 1 does not necessarily have to include the storage unit 60, and may be communicably connected to an external storage device that stores information necessary for processing in the controller 10.
 (コントローラ10の構成)
 コントローラ10は、エアチャックシステム1の動作を制御する。コントローラ10は、バルブ駆動部11と、位置取得部12と、位置微分部13(位置特定部)と、当接検出部14と、把持検出部15(保持検出部)と、搬送指令部16と、温度補正部17と、を備える。
(Configuration of controller 10)
The controller 10 controls the operation of the air chuck system 1. The controller 10 includes a valve drive unit 11, a position acquisition unit 12, a position differentiation unit 13 (position identification unit), a contact detection unit 14, a grip detection unit 15 (holding detection unit), and a transfer command unit 16. , A temperature compensating unit 17.
 バルブ駆動部11は、エアチャック20(保持装置)を動作させるために、エアシリンダ21(可動部)の動作指令をソレノイドバルブ30に出力する。 The valve drive unit 11 outputs an operation command of the air cylinder 21 (movable part) to the solenoid valve 30 in order to operate the air chuck 20 (holding device).
 位置取得部12は、位置検出部22から出力されたエアシリンダ位置を取得し、コントローラ10が処理できる数値に置き換える。位置取得部12は、エアシリンダ21の位置、および当該位置を取得した時刻を位置微分部13に出力する。 The position acquisition unit 12 acquires the air cylinder position output from the position detection unit 22 and replaces it with a numerical value that can be processed by the controller 10. The position acquisition unit 12 outputs the position of the air cylinder 21 and the time when the position is acquired to the position differentiation unit 13.
 位置微分部13は、位置取得部12から取得したエアシリンダ位置を微分し、エアシリンダ速度とエアシリンダ加速度を計算する。位置微分部13は、エアシリンダ位置、エアシリンダ速度、およびエアシリンダ加速度を当接検出部14と把持検出部15とに出力する。 The position differentiation unit 13 differentiates the air cylinder position acquired from the position acquisition unit 12 and calculates the air cylinder speed and the air cylinder acceleration. The position differential unit 13 outputs the air cylinder position, the air cylinder speed, and the air cylinder acceleration to the contact detection unit 14 and the grip detection unit 15.
 当接検出部14は、把持部23がワーク2に当接したときに、そのことを検出する。具体的には、当接検出部14は、入力されたエアシリンダ加速度(例えば、エアシリンダ加速度の絶対値)が第1の閾値を超えたか否かを判定し、超えたときに、把持部23がワーク2に当接したと検出する。第1の閾値は、把持部23がワーク2に当接することによるエアシリンダ加速度の変化を検出可能な値に設定される。当接検出部14は、把持部23がワーク2に当接したことを検出すると、そのことを示す信号を把持検出部15に出力する。 The contact detection unit 14 detects when the grip portion 23 comes into contact with the work 2. Specifically, the contact detection unit 14 determines whether or not the input air cylinder acceleration (for example, the absolute value of the air cylinder acceleration) exceeds the first threshold value, and when it exceeds, the grip unit 23. Is in contact with the work 2. The first threshold value is set to a value at which a change in air cylinder acceleration due to the grip portion 23 coming into contact with the work 2 can be detected. When the contact detection unit 14 detects that the grip unit 23 has contacted the work 2, it outputs a signal indicating that to the grip detection unit 15.
 図6は、エア配管が良好な状態および不良な状態での、エアシリンダ圧力とエアシリンダ加速度との関係を示すグラフである。把持部23がワーク2に当接したことを、エアシリンダ加速度に基づいて当接検出部14が検出する処理を、図6を参照して説明する。 FIG. 6 is a graph showing the relationship between the air cylinder pressure and the air cylinder acceleration in a good state and a bad state of the air piping. The process of detecting that the grip portion 23 has come into contact with the work 2 by the contact detection unit 14 based on the air cylinder acceleration will be described with reference to FIG.
 図6においては、エア配管が良好な状態でのエアシリンダ圧力を実線で、エアシリンダ加速度を一点鎖線で示している。また、エア配管が不良な状態でのエアシリンダ圧力を破線で、エアシリンダ加速度を点線で示している。図6の横軸は、時間を、第1縦軸はエアシリンダ圧力を、第2縦軸はエアシリンダ加速度を表す。また、エアシリンダ加速度は、把持部23をワーク2へ向かわせる方向を負として示している。また、第2縦軸には、把持部23がワーク2に当接したことを当接検出部14が検出するための、第1の閾値202が示されている。 In FIG. 6, the air cylinder pressure in a good state of the air piping is shown by a solid line, and the air cylinder acceleration is shown by a alternate long and short dash line. Further, the air cylinder pressure in a state where the air piping is defective is shown by a broken line, and the air cylinder acceleration is shown by a dotted line. The horizontal axis of FIG. 6 represents time, the first vertical axis represents air cylinder pressure, and the second vertical axis represents air cylinder acceleration. Further, the air cylinder acceleration is shown as a negative direction in which the grip portion 23 is directed toward the work 2. Further, on the second vertical axis, a first threshold value 202 is shown for the contact detection unit 14 to detect that the grip portion 23 has come into contact with the work 2.
 図6において、エア配管が良好な状態および不良な状態のいずれにおいても、時刻201にて、バルブ駆動部11がソレノイドバルブ30を駆動させ、エアシリンダ21に高圧エアを供給する。高圧エアの供給開始直後には、エアシリンダ21は移動せず、エアシリンダ加速度は0の近傍から変化しない。 In FIG. 6, the valve drive unit 11 drives the solenoid valve 30 and supplies high-pressure air to the air cylinder 21 at time 201 regardless of whether the air piping is in a good state or a bad state. Immediately after the start of supply of high-pressure air, the air cylinder 21 does not move, and the air cylinder acceleration does not change from the vicinity of 0.
 エア配管が良好な状態では、高圧エアが供給され始めてから、急激にエアシリンダ圧力が高くなる。その結果、区間211でエアシリンダ加速度が立ち下がる現象が起こる。これは、エアシリンダ21が移動を開始したことで、エアシリンダ速度が上昇している区間を表す。区間終了後に、エアシリンダ21はエアシリンダ圧力によって定まるエアシリンダ速度になり、ワーク2へ向かって移動する。 If the air piping is in good condition, the air cylinder pressure will rise sharply after the high pressure air starts to be supplied. As a result, a phenomenon occurs in which the air cylinder acceleration drops in the section 211. This represents a section in which the air cylinder speed is increasing due to the start of movement of the air cylinder 21. After the end of the section, the air cylinder 21 reaches the air cylinder speed determined by the air cylinder pressure and moves toward the work 2.
 区間211の後、区間212において、エアシリンダ加速度が急激に立ち上がっている。これは、エアシリンダ21によって動作された把持部23がワーク2に当接したため、エアシリンダ21が急減速したことを示す。 After the section 211, the air cylinder acceleration suddenly rises in the section 212. This indicates that the air cylinder 21 suddenly decelerated because the grip portion 23 operated by the air cylinder 21 came into contact with the work 2.
 一方、エア配管が不良な状態では、高圧エアが供給され始めてから、エア配管が良好な状態と比較してエアシリンダ圧力がなだらかに高くなる。このため、エア配管が不良な状態では、エアシリンダ21が移動を開始した時の加速度が緩やかであり、良好な場合での区間211のような、加速度が立ち下がる現象が見られない。 On the other hand, when the air piping is defective, the air cylinder pressure will gradually increase compared to when the air piping is in good condition after the high pressure air starts to be supplied. Therefore, when the air piping is defective, the acceleration when the air cylinder 21 starts moving is gradual, and the phenomenon of the acceleration falling as in the section 211 in the good case is not observed.
 エア配管が不良な状態では、区間222において加速度が急激に立ち上がっている。これは、エアシリンダ21によって動作された把持部23がワーク2に当接したため、エアシリンダ21が急減速したことを示す。この現象は、良好な場合での区間212に対応する。ただし、エア配管が不良な状態では、エア配管が良好な状態と比較してエアシリンダ21の移動速度が小さいため、把持部23がワーク2に当接したときの加速度も小さい。 When the air piping is defective, the acceleration suddenly rises in the section 222. This indicates that the air cylinder 21 suddenly decelerated because the grip portion 23 operated by the air cylinder 21 came into contact with the work 2. This phenomenon corresponds to the section 212 in the good case. However, in a state where the air piping is defective, the moving speed of the air cylinder 21 is smaller than in a state where the air piping is good, so that the acceleration when the grip portion 23 comes into contact with the work 2 is also small.
 エア配管が良好な状態では、区間212内の加速度213において、エアシリンダ加速度が第1の閾値202を超える。エア配管が不良な状態では、区間222内の加速度223において、エアシリンダ加速度が第1の閾値202を超える。当接検出部14は、エアシリンダ加速度が第1の閾値202を超えたときに、把持部23がワーク2に当接したことを検出する。以下では、エアシリンダ加速度が第1の閾値202を越えたことの検出を当接検出と称する。当接検出部14は、加速度214および加速度223のタイミングで当接検出している。第1の閾値202は、予め設定しておく必要がある。第1の閾値202は、エアチャックシステム1を実際に動作させて得た実験値に基づいて設定される。また、当接検出部14による、エアシリンダ21の加速度監視処理を当接検出動作と呼ぶ。 When the air piping is in good condition, the air cylinder acceleration exceeds the first threshold value 202 at the acceleration 213 in the section 212. When the air piping is defective, the air cylinder acceleration exceeds the first threshold value 202 at the acceleration 223 in the section 222. The contact detection unit 14 detects that the grip unit 23 has contacted the work 2 when the air cylinder acceleration exceeds the first threshold value 202. Hereinafter, the detection that the air cylinder acceleration exceeds the first threshold value 202 is referred to as contact detection. The contact detection unit 14 detects contact at the timings of acceleration 214 and acceleration 223. The first threshold value 202 needs to be set in advance. The first threshold value 202 is set based on an experimental value obtained by actually operating the air chuck system 1. Further, the acceleration monitoring process of the air cylinder 21 by the contact detection unit 14 is called a contact detection operation.
 把持検出部15は、把持部23がワーク2に当接したことを示す信号が入力された時刻におけるエアシリンダ位置に対する、エアシリンダ位置の変位量を求める。この変位量は、把持部23からワーク2に与えられる把持力による、ワーク2の変形量に略等しい。そして、当該変位量が第3の閾値より大きくなった時に、把持部23によるワーク2の把持が完了したことを検出する。把持が完了したことを検出すると、把持検出部15は、把持部23がワーク2を把持したことを搬送指令部16に通知する。把持検出部15による、上記処理を把持検出動作という。第3の閾値は、予め設定された値、または温度補正部17によって算出される値である。第3の閾値を予め設定する場合、把持部23による把持力が十分である場合における、エアシリンダ21の変位量の理論値または実験値を用いることができる。 The grip detection unit 15 obtains the displacement amount of the air cylinder position with respect to the air cylinder position at the time when the signal indicating that the grip unit 23 has come into contact with the work 2 is input. This displacement amount is substantially equal to the deformation amount of the work 2 due to the gripping force applied to the work 2 from the grip portion 23. Then, when the displacement amount becomes larger than the third threshold value, it is detected that the gripping portion 23 has completed gripping the work 2. When it is detected that the gripping is completed, the gripping detection unit 15 notifies the transport command unit 16 that the gripping unit 23 has gripped the work 2. The above process by the grip detection unit 15 is referred to as a grip detection operation. The third threshold value is a preset value or a value calculated by the temperature correction unit 17. When the third threshold value is set in advance, the theoretical value or the experimental value of the displacement amount of the air cylinder 21 when the gripping force by the gripping portion 23 is sufficient can be used.
 搬送指令部16は、把持検出部15からの通知を受けて、搬送部40に搬送開始指令を出力する。上記指令にあたっては、把持検出部15からの通知を受けた後、直ちに指令を出してもよいし、更に安定時間を考慮してもよい。 The transport command unit 16 receives a notification from the grip detection unit 15 and outputs a transport start command to the transport unit 40. In giving the above command, the command may be issued immediately after receiving the notification from the grip detection unit 15, or the stability time may be further considered.
 温度補正部17は、温度計測部50が出力した温度に基づき、把持検出部15が把持の検出に用いる第3の閾値を算出する。温度補正部17における処理は以下のとおりである。まず、温度補正部17は、ワーク2のヤング率の温度依存性が大きいか否かを判定する。具体例として、チャックシステム1においては、ヤング率の温度依存性が大きい材質のリストが予め記憶部60に記憶されているものとする。また、チャックシステム1の使用時には、ユーザがワーク2の材質を入力するものとする。温度補正部17は、入力されたワーク2の材質が、ヤング率の温度依存性が大きい材質のリストに含まれているか判定する。 The temperature correction unit 17 calculates a third threshold value used by the grip detection unit 15 for grip detection based on the temperature output by the temperature measurement unit 50. The processing in the temperature compensation unit 17 is as follows. First, the temperature correction unit 17 determines whether or not the Young's modulus of the work 2 has a large temperature dependence. As a specific example, in the chuck system 1, it is assumed that a list of materials having a large Young's modulus temperature dependence is stored in the storage unit 60 in advance. Further, when using the chuck system 1, the user shall input the material of the work 2. The temperature compensation unit 17 determines whether the input material of the work 2 is included in the list of materials having a large temperature dependence of Young's modulus.
 ヤング率の温度依存性が大きい場合、さらに温度補正部17は、温度計測部50により計測した温度における、ワーク2のヤング率を算出する。さらに温度補正部17は、算出したヤング率と、予め設定されているワーク2を正常に把持した場合の把持部23の把持力とから、当該把持力を得るために必要なワーク2の変形量、すなわちエアシリンダ21の変位量を算出する。具体的には、温度補正部17は、以下の式(1)により、把持力が十分である場合におけるエアシリンダの変位量を算出する。
D=P×L/Y   (1)
式(1)において、Dはエアシリンダ21の変位量、Pは把持部23からワーク2に与えられる把持力の、単位面積当たりの大きさ(応力)、Lは把持力の方向におけるワーク2の長さ、Yはワーク2のヤング率である。式(1)により算出した変位量を、把持検出部15での閾値とする。
When the temperature dependence of Young's modulus is large, the temperature compensation unit 17 further calculates the Young's modulus of the work 2 at the temperature measured by the temperature measuring unit 50. Further, the temperature compensating unit 17 has a deformation amount of the work 2 required to obtain the gripping force from the calculated Young's modulus and the gripping force of the gripping unit 23 when the work 2 is normally gripped. That is, the displacement amount of the air cylinder 21 is calculated. Specifically, the temperature compensation unit 17 calculates the displacement amount of the air cylinder when the gripping force is sufficient by the following equation (1).
D = P × L / Y (1)
In the formula (1), D is the displacement amount of the air cylinder 21, P is the magnitude (stress) of the gripping force applied to the work 2 from the gripping portion 23, and L is the magnitude (stress) of the work 2 in the direction of the gripping force. Length and Y are Young's modulus of work 2. The displacement amount calculated by the equation (1) is used as the threshold value in the grip detection unit 15.
 コントローラ10が温度補正部17を備える場合、把持検出部15は、温度によって変化する上記第3の閾値を用いてワーク2の把持を検出することで、より信頼性の高い把持動作が可能になる。ただし、コントローラ10は必ずしも温度補正部17を備える必要はない。コントローラ10が温度補正部17を備えない場合、把持検出部15は、上述した、予め設定された第3の閾値を用いてワーク2の把持を検出する。ワーク2の温度または環境温度の変化が小さい場合、あるいはワーク2のヤング率の温度依存性が小さい場合には、温度に応じて第3の閾値を補正しなくとも、把持検出部15はワーク2の把持を精度よく検出できる。このような場合には、温度計測部50も不要である。 When the controller 10 includes the temperature correction unit 17, the grip detection unit 15 detects the grip of the work 2 using the third threshold value that changes depending on the temperature, so that a more reliable grip operation becomes possible. .. However, the controller 10 does not necessarily have to include the temperature compensation unit 17. When the controller 10 does not include the temperature correction unit 17, the grip detection unit 15 detects the grip of the work 2 using the above-mentioned third preset threshold value. When the change in the temperature of the work 2 or the environmental temperature is small, or when the temperature dependence of the Young's modulus of the work 2 is small, the grip detection unit 15 may use the work 2 without correcting the third threshold value according to the temperature. Gripping can be detected accurately. In such a case, the temperature measuring unit 50 is also unnecessary.
 チャックシステム1は、図示しない圧力検出部を備えていてもよい。圧力検出部は、エアシリンダ21に供給される高圧エアの圧力を検出する圧力センサであってよい。この場合、圧力検出部は、ワーク2から把持部23への応力を間接的に検出する。また、圧力検出部は、把持部23に設置された圧力センサであってもよい。この場合、圧力検出部は、ワーク2から把持部23への応力を検出する。検出した応力は、把持検出部15の閾値を設定する際に、把持状態が良好かどうかを実験的に、または定量的に判断する指標として用いられてもよい。 The chuck system 1 may include a pressure detection unit (not shown). The pressure detection unit may be a pressure sensor that detects the pressure of the high pressure air supplied to the air cylinder 21. In this case, the pressure detecting unit indirectly detects the stress from the work 2 to the gripping portion 23. Further, the pressure detection unit may be a pressure sensor installed in the grip unit 23. In this case, the pressure detection unit detects the stress from the work 2 to the grip portion 23. The detected stress may be used as an index for experimentally or quantitatively determining whether or not the gripping state is good when setting the threshold value of the gripping detection unit 15.
 §3 動作例
 図7は、チャックシステム1の動作を示すフローチャートである。図7に基づいて、チャックシステム1の動作例を説明する。
§3 Operation example FIG. 7 is a flowchart showing the operation of the chuck system 1. An operation example of the chuck system 1 will be described with reference to FIG. 7.
 S11において、バルブ駆動部11は、ソレノイドバルブ30を駆動する。ソレノイドバルブ30の駆動によって、把持部23がワーク2に当接するように、エアシリンダ21が動作する。 In S11, the valve drive unit 11 drives the solenoid valve 30. By driving the solenoid valve 30, the air cylinder 21 operates so that the grip portion 23 comes into contact with the work 2.
 S12において、位置取得部12は、位置検出部22の出力値を取得し、エアシリンダ位置として検出する。S13において、位置微分部13は、入力されたエアシリンダ位置を2回微分し、エアシリンダ速度とエアシリンダ加速度を算出する。 In S12, the position acquisition unit 12 acquires the output value of the position detection unit 22 and detects it as an air cylinder position. In S13, the position differentiation unit 13 differentiates the input air cylinder position twice and calculates the air cylinder speed and the air cylinder acceleration.
 S14において、当接検出部14は、エアシリンダ加速度が所定の第1の閾値を超えたか否かを判定する。エアシリンダ加速度が第1の閾値を超えない場合(S14においてNO)、当接検出部14は、エアシリンダ加速度が第1の閾値を超えるまで、S12に戻り、上記当接検出動作を繰り返す。エアシリンダ加速度が第1の閾値を超えた場合(S14においてYES)、当接検出部14は、把持部23がワーク2に当接したことを検出したことを通知し、S15に処理を進める。 In S14, the contact detection unit 14 determines whether or not the air cylinder acceleration exceeds a predetermined first threshold value. When the air cylinder acceleration does not exceed the first threshold value (NO in S14), the contact detection unit 14 returns to S12 until the air cylinder acceleration exceeds the first threshold value, and repeats the contact detection operation. When the air cylinder acceleration exceeds the first threshold value (YES in S14), the contact detection unit 14 notifies that the grip unit 23 has detected that it has contacted the work 2, and proceeds to S15.
 S15において、温度補正部17は、ワーク2のヤング率の温度依存性が大きいか否かを判定する。ワーク2のヤング率の温度依存性が小さい場合(S15においてNO)、S16の処理を行う。 In S15, the temperature correction unit 17 determines whether or not the temperature dependence of the Young's modulus of the work 2 is large. When the temperature dependence of Young's modulus of the work 2 is small (NO in S15), the process of S16 is performed.
 S16において、把持検出部15は、上記当接検出の時点からのエアシリンダ位置の変位が第3の閾値を超えたか否かを判定する。エアシリンダ位置の変位が第3の閾値を超えてない場合(S16においてNO)、S16を繰り返す。 In S16, the grip detection unit 15 determines whether or not the displacement of the air cylinder position from the time of the contact detection exceeds the third threshold value. If the displacement of the air cylinder position does not exceed the third threshold value (NO in S16), S16 is repeated.
 把持検出部15は、上記当接検出の時点からのエアシリンダ位置の変位が第3の閾値を超えた場合(S16においてYES)、把持検出動作を終了(把持検出)し、搬送指令部16に把持検出を通知し、S17の処理を行う。 When the displacement of the air cylinder position from the time of the contact detection exceeds the third threshold value (YES in S16), the grip detection unit 15 ends the grip detection operation (grip detection) and sends the transfer command unit 16. Notify the grip detection and perform the processing of S17.
 S17において、搬送指令部16は、搬送部40に搬送指令を出し、エアチャック20を搬送させる。この搬送中、ワーク2は把持部23で把持され続ける。搬送後、コントローラ10は、上位装置からの指示を待機する。上位装置とは、コントローラ10を制御する上位の制御装置であり、例えば、PLC(Programmable Logic Controller)である。 In S17, the transport command unit 16 issues a transport command to the transport unit 40 to transport the air chuck 20. During this transfer, the work 2 continues to be gripped by the grip portion 23. After the transfer, the controller 10 waits for an instruction from the host device. The higher-level device is a higher-level control device that controls the controller 10, and is, for example, a PLC (Programmable Logic Controller).
 S15の処理において、ワークのヤング率の温度依存性が大きい場合(S15においてYES)、温度補正部17は、S18の処理を行う。S18において、温度補正部17は、温度計測部50によって、ワーク2の温度または環境温度を計測し、当該温度に応じて補正された第3の閾値を算出する。 In the processing of S15, when the temperature dependence of the Young's modulus of the work is large (YES in S15), the temperature compensating unit 17 performs the processing of S18. In S18, the temperature correction unit 17 measures the temperature of the work 2 or the environmental temperature by the temperature measurement unit 50, and calculates a third threshold value corrected according to the temperature.
 §4 変形例
 (変形例1)
 実施形態1において、当接検出部14は、エアシリンダ加速度に基づいて、把持部23がワーク2に当接したことを検出したが、この限りではない。
§4 Modification example (modification example 1)
In the first embodiment, the contact detection unit 14 detects that the grip unit 23 has contacted the work 2 based on the air cylinder acceleration, but this is not the case.
 図8は、エア配管が良好な状態と不良な状態での、エアシリンダ圧力とエアシリンダ速度との関係を示すグラフである。図8に基づいて、エアシリンダ速度によるワーク2の当接検出処理を説明する。 FIG. 8 is a graph showing the relationship between the air cylinder pressure and the air cylinder speed when the air piping is in a good state and in a bad state. The contact detection process of the work 2 by the air cylinder speed will be described with reference to FIG.
 図8においては、エア配管が良好な状態でのエアシリンダ圧力を実線で、エアシリンダ速度を一点鎖線で示している。また、エア配管が不良な状態でのエアシリンダ圧力を破線で、エアシリンダ速度を点線で示している。図8の横軸は、時間であり、第1縦軸はエアシリンダ圧力を、第2縦軸はエアシリンダ速度を表す。また、エアシリンダ速度は、把持部23をワーク2へ向かわせる方向を正として示している。また、第2縦軸には、エアシリンダ速度についての第2の閾値302が示されている。 In FIG. 8, the air cylinder pressure in a good state of the air piping is shown by a solid line, and the air cylinder speed is shown by a alternate long and short dash line. Further, the air cylinder pressure in a state where the air piping is defective is shown by a broken line, and the air cylinder speed is shown by a dotted line. The horizontal axis of FIG. 8 is time, the first vertical axis represents the air cylinder pressure, and the second vertical axis represents the air cylinder speed. Further, the air cylinder speed indicates the direction in which the grip portion 23 is directed toward the work 2 as positive. Further, a second threshold value 302 for the air cylinder speed is shown on the second vertical axis.
 図8において、時刻201にて、ソレノイドバルブ30が駆動し、エアシリンダ21に高圧エアを供給する。高圧エアの供給を開始するタイミングは、エア配管が良好な状態と不良な状態で同時である。 In FIG. 8, at time 201, the solenoid valve 30 is driven to supply high-pressure air to the air cylinder 21. The timing to start supplying high-pressure air is the same when the air piping is in good condition and in bad condition.
 エア配管が良好な状態におけるエアシリンダ速度は、区間311において上昇し、その後ゼロ近傍まで下降している。エア配管が不良な状態におけるエアシリンダ速度は、区間321において上昇し、その後ゼロ近傍まで下降している。区間311および321は、ソレノイドバルブ30からエアシリンダ21に供給された高圧エアによりエアシリンダ21が移動を開始し、ワーク2に当接するまでの区間を示している。当接検出部14は、上記区間311および321に示されているように、エアシリンダ速度(例えば、エアシリンダ速度の絶対値)は第2の閾値302を一度超えた後、当該第2の閾値302より小さくなったときに、当接検出してもよい。 The air cylinder speed in good condition of the air piping increased in section 311 and then decreased to near zero. The air cylinder speed in a defective air pipe state increases in section 321 and then decreases to near zero. Sections 311 and 321 show sections from the start of movement of the air cylinder 21 by the high-pressure air supplied from the solenoid valve 30 to the air cylinder 21 until the air cylinder 21 comes into contact with the work 2. As shown in the above sections 311 and 321 of the contact detection unit 14, the air cylinder speed (for example, the absolute value of the air cylinder speed) once exceeds the second threshold value 302, and then the second threshold value is reached. Contact detection may be performed when the size becomes smaller than 302.
 当接検出には、エアシリンダ21の加速度、速度によらず、当業者が想定しうるその他様々な状態量の変化を用いてもよい。例えば、上述した圧力検出部により検出される、ワーク2から把持部23への応力を用いることが考えられる。 For the contact detection, changes in various other state quantities that can be assumed by those skilled in the art may be used regardless of the acceleration and speed of the air cylinder 21. For example, it is conceivable to use the stress from the work 2 to the grip portion 23 detected by the pressure detecting portion described above.
 (変形例2)
 把持部23は、上述したワーク2を両サイドから挟み込む形には限られない。例えば、ワーク2に孔が開いている場合、該孔に一対の突起からなる部材を挿入し、突起を広げ該孔の内面に当接させることで、ワーク2を保持する機構などが考えられる。
(Modification 2)
The grip portion 23 is not limited to the shape of sandwiching the work 2 described above from both sides. For example, when the work 2 has a hole, a mechanism for holding the work 2 can be considered by inserting a member composed of a pair of protrusions into the hole, expanding the protrusion, and bringing the protrusion into contact with the inner surface of the hole.
 §5 作用・効果
 コントローラ10は、エアシリンダ位置を2回微分して得られるエアシリンダ速度およびエアシリンダ加速度を用いて、把持部23のワーク2との当接を検出できる。また、コントローラ10は、把持部23がワーク2と当接してからの変位量を監視することにより、把持部23が十分な把持力でワーク2を把持しているかを検出できる。十分な把持力でワーク2を把持することで、チャックシステム1は、ワーク2の落下などの把持不良を起こすことなく、ワーク2を搬送することができる。
§5 Action / Effect The controller 10 can detect the contact of the grip portion 23 with the work 2 by using the air cylinder speed and the air cylinder acceleration obtained by differentiating the air cylinder position twice. Further, the controller 10 can detect whether the grip portion 23 is gripping the work 2 with a sufficient grip force by monitoring the amount of displacement after the grip portion 23 comes into contact with the work 2. By gripping the work 2 with a sufficient gripping force, the chuck system 1 can convey the work 2 without causing a gripping defect such as a drop of the work 2.
 また、従来技術では、リードスイッチが反応してから安定時間が経過したときにエアチャックがワークを把持できたと判断した。安定時間は、エア配管が不良な状態であっても十分な把持力でワークが把持されるように決定されるものであった。このため、エア配管が良好な状態においては、実際には安定時間が経過するよりも前に十分な把持力でワーク2を把持しているにも関わらず、安定時間が経過するまでは待機することとなっていた。すなわち、エア配管が良好な状態においては無駄時間が発生していた。対して本願では、当接検出後に十分な把持力での把持を変位の監視により検出することができる。そのため、従来技術では、困難だった、実際に把持ができたタイミングを検出することができるため、余計な待機時間なくワークを搬送することができる。すなわち、把持完了後に無駄時間なく搬送を開始することができるようになる。 Also, in the conventional technique, it was determined that the air chuck was able to grip the work when the stable time elapsed after the reed switch reacted. The stabilization time was determined so that the work could be gripped with sufficient gripping force even when the air piping was in a poor state. Therefore, in a good state of the air piping, even though the work 2 is actually gripped with a sufficient gripping force before the stabilization time elapses, it waits until the stabilization time elapses. It was supposed to be. That is, wasted time was generated when the air piping was in good condition. On the other hand, in the present application, gripping with a sufficient gripping force can be detected by monitoring the displacement after the contact detection. Therefore, since it is possible to detect the timing at which gripping is actually possible, which was difficult with the prior art, it is possible to transport the work without extra waiting time. That is, it becomes possible to start the transportation without wasting time after the gripping is completed.
 〔ソフトウェアによる実現例〕
 コントローラ10の制御ブロック(特にバルブ駆動部11、位置取得部12、位置微分部13、当接検出部14、把持検出部15、搬送指令部16、および温度補正部17)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of implementation by software]
The control block of the controller 10 (particularly the valve drive unit 11, the position acquisition unit 12, the position differentiation unit 13, the contact detection unit 14, the grip detection unit 15, the transfer command unit 16, and the temperature compensation unit 17) is an integrated circuit (IC). It may be realized by a logic circuit (hardware) formed in a chip) or the like, or it may be realized by software.
 後者の場合、コントローラ10は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the controller 10 includes a computer that executes a program instruction, which is software that realizes each function. The computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) for expanding the above program may be further provided. Further, the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
 〔まとめ〕
 上記の課題を解決するために、本発明の一態様に係るコントローラは、可動部と、前記可動部の動作によってワークを保持する保持部と、を有する保持装置を制御するコントローラにおいて、前記可動部の位置を取得する位置取得部と、前記位置を用いて、前記可動部の速度または加速度を特定する位置特定部と、前記速度または前記加速度により、前記保持部が前記ワークと当接したことを検出する当接検出部と、前記当接した後の前記可動部の変位から、前記保持部が前記ワークを保持したことを検出する保持検出部と、を備える。
〔summary〕
In order to solve the above problems, the controller according to one aspect of the present invention is a controller that controls a holding device having a movable portion and a holding portion for holding a work by the operation of the movable portion. The position acquisition unit that acquires the position of the position, the position identification unit that specifies the speed or acceleration of the movable portion using the position, and the holding unit that the holding portion abuts on the work due to the speed or acceleration. It includes a contact detection unit for detecting, and a holding detection unit for detecting that the holding unit holds the work from the displacement of the movable portion after the contact.
 上記の構成によれば、当接検出部は、可動部の加速度または速度を監視することにより、保持部がワークと当接したことを検出できる。また、保持検出部は、保持部がワークと当接した後の可動部の変位を監視することにより、コントローラはワークの保持を検出できる。したがって、コントローラは、保持部によるワークの保持不良を防止できる。 According to the above configuration, the contact detection unit can detect that the holding unit has come into contact with the work by monitoring the acceleration or speed of the movable part. Further, the holding detection unit monitors the displacement of the movable portion after the holding portion comes into contact with the work, so that the controller can detect the holding of the work. Therefore, the controller can prevent the work from being held poorly by the holding portion.
 前記当接検出部は、前記加速度が第1の閾値を超えたときに、前記保持部による前記ワークとの当接を検出してもよい。 The contact detection unit may detect contact with the work by the holding unit when the acceleration exceeds the first threshold value.
 上記の構成によれば、可動部の加速度が第1の閾値以上になったことを条件として、保持部がワークと当接したことを検出できる。したがって、可動部の加速度を監視することで、ワークとの当接を精度よく検知できる。 According to the above configuration, it is possible to detect that the holding portion is in contact with the work on condition that the acceleration of the moving portion becomes equal to or higher than the first threshold value. Therefore, by monitoring the acceleration of the movable portion, the contact with the work can be detected with high accuracy.
 前記当接検出部は、前記速度が第2の閾値を一度超えた後、当該第2の閾値より小さくなったときに、前記保持部による前記ワークとの当接を検出してもよい。 The contact detection unit may detect contact with the work by the holding unit when the speed exceeds the second threshold value once and then becomes smaller than the second threshold value.
 上記の構成によれば、可動部の速度が一度第2の閾値以上になり、再度第2の閾値以下になったことを条件として、保持部がワークと当接したことを検出できる。特に、ワークが弾性を有する物体である場合、弾性があるために十分な減速(加速度)を得られず、なだらかに減速した場合であっても、速度を監視するため、高精度に当接を検知することができる。 According to the above configuration, it is possible to detect that the holding portion has come into contact with the work, provided that the speed of the movable portion once exceeds the second threshold value and then falls below the second threshold value again. In particular, when the work is an elastic object, sufficient deceleration (acceleration) cannot be obtained due to the elasticity, and even if the work decelerates gently, the contact is made with high accuracy in order to monitor the speed. It can be detected.
 前記保持検出部は、前記当接した後の前記可動部の変位量が第3の閾値より大きくなったときに、前記保持部が前記ワークを保持したことを検出してもよい。 The holding detection unit may detect that the holding unit holds the work when the displacement amount of the movable portion after the contact becomes larger than the third threshold value.
 上記の構成によれば、保持検出部は、保持部がワークと当接した後の可動部の変位量が第3の閾値より大きくなったことを条件として、保持部によるワークの保持を検出する。したがって、コントローラは、保持部によるワークの保持不良を防止できる。 According to the above configuration, the holding detection unit detects the holding of the work by the holding portion on condition that the displacement amount of the movable portion after the holding portion comes into contact with the work becomes larger than the third threshold value. .. Therefore, the controller can prevent the work from being held poorly by the holding portion.
 前記コントローラは、前記ワークの温度または環境温度を計測し、前記温度によって前記第3の閾値を補正する温度補正部をさらに備えてもよい。 The controller may further include a temperature compensating unit that measures the temperature of the work or the environmental temperature and corrects the third threshold value according to the temperature.
 上記の構成によれば、温度変化に対する変形量が大きい材質でワークが形成されている場合でも、正常にワークの保持検出が可能である。 According to the above configuration, even when the work is formed of a material having a large amount of deformation with respect to a temperature change, it is possible to normally hold and detect the work.
 前記コントローラは、前記保持部が前記ワークを保持したことを前記保持検出部が検出した後に、前記保持装置を移動させる搬送部に対して前記保持装置の移動を指令する搬送指令部をさらに備えてもよい。 The controller further includes a transport command unit that commands the transport unit that moves the holding device to move the holding device after the holding detection unit detects that the holding unit holds the work. May be good.
 上記の構成によれば、ワークを十分な保持力で保持した後、ワークを保持したまま、ワークの搬送が可能である。 According to the above configuration, after holding the work with sufficient holding force, it is possible to transport the work while holding the work.
 上記の課題を解決するために、本発明の一態様に係るコントローラの制御方法は、可動部と、前記可動部の動作によってワークを保持する保持部と、を有する保持装置を制御するコントローラにおいて、前記可動部の位置を取得する位置取得ステップと、前記位置を用いて、前記可動部の速度または加速度を特定する位置特定ステップと、前記速度または前記加速度により、前記保持部が前記ワークと当接したことを検出する当接検出ステップと、前記当接した後の前記可動部の変位から、前記保持部が前記ワークを保持したことを検出する保持検出ステップと、を含む。 In order to solve the above problems, the control method of the controller according to one aspect of the present invention is a controller for controlling a holding device having a movable portion, a holding portion for holding the work by the operation of the movable portion, and the like. A position acquisition step for acquiring the position of the movable portion, a position specifying step for specifying the speed or acceleration of the movable portion using the position, and the holding portion abutting on the work due to the speed or the acceleration. It includes a contact detection step for detecting that the work has been made, and a holding detection step for detecting that the holding portion holds the work from the displacement of the movable portion after the contact.
 本発明の各態様に係るコントローラは、コンピュータによって実現してもよく、この場合には、コンピュータを前記コントローラが備える各部(ソフトウェア要素)として動作させることにより前記コントローラをコンピュータにて実現させるコントローラの当接検出プログラム、コントローラの保持検出プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The controller according to each aspect of the present invention may be realized by a computer, and in this case, the controller that realizes the controller by the computer by operating the computer as each part (software element) included in the controller. Contact detection programs, controller retention detection programs, and computer-readable recording media on which they are recorded also fall within the scope of the invention.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 1 チャックシステム
 2 ワーク
 10 コントローラ
 11 バルブ駆動部
 12 位置取得部
 13 位置特定部(位置微分部)
 14 当接検出部
 15 把持検出部(保持検出部)
 16 搬送指令部
 17 温度補正部
 20 エアチャック(保持装置)
 21 エアシリンダ(可動部)
 22 位置検出部
 23 把持部(保持部)
 30 ソレノイドバルブ
 40 搬送部
 50 温度計測部
 60 記憶部
1 Chuck system 2 Work 10 Controller 11 Valve drive unit 12 Position acquisition unit 13 Position identification unit (position differentiation unit)
14 Contact detection unit 15 Grip detection unit (holding detection unit)
16 Transport command unit 17 Temperature compensation unit 20 Air chuck (holding device)
21 Air cylinder (moving part)
22 Position detection unit 23 Grip unit (holding unit)
30 Solenoid valve 40 Transport unit 50 Temperature measurement unit 60 Storage unit

Claims (9)

  1.  可動部と、前記可動部の動作によってワークを保持する保持部と、を有する保持装置を制御するコントローラにおいて、
     前記可動部の位置を取得する位置取得部と、
     前記位置を用いて、前記可動部の速度または加速度を特定する位置特定部と、
     前記速度または前記加速度により、前記保持部が前記ワークと当接したことを検出する当接検出部と、
     前記当接した後の前記可動部の変位から、前記保持部が前記ワークを保持したことを検出する保持検出部と、を備えるコントローラ。
    In a controller that controls a holding device having a movable portion and a holding portion that holds a work by the operation of the movable portion.
    A position acquisition unit that acquires the position of the movable unit, and
    A position specifying part that specifies the speed or acceleration of the moving part using the position, and
    A contact detection unit that detects that the holding unit has come into contact with the work due to the speed or acceleration.
    A controller including a holding detection unit that detects that the holding unit holds the work from the displacement of the movable portion after the contact.
  2.  前記当接検出部は、
     前記加速度が第1の閾値を超えたときに、前記保持部による前記ワークとの当接を検出する請求項1に記載のコントローラ。
    The contact detection unit is
    The controller according to claim 1, wherein when the acceleration exceeds the first threshold value, the contact of the holding portion with the work is detected.
  3.  前記当接検出部は、
     前記速度が第2の閾値を一度超えた後、当該第2の閾値より小さくなったときに、前記保持部による前記ワークとの当接を検出する請求項1に記載のコントローラ。
    The contact detection unit is
    The controller according to claim 1, wherein when the speed exceeds the second threshold value once and then becomes smaller than the second threshold value, the contact of the holding portion with the work is detected.
  4.  前記保持検出部は、
     前記当接した後の前記可動部の変位量が第3の閾値より大きくなったときに、前記保持部が前記ワークを保持したことを検出する請求項1から3のいずれか1項に記載のコントローラ。
    The holding detection unit is
    The invention according to any one of claims 1 to 3, wherein when the displacement amount of the movable portion after the contact becomes larger than the third threshold value, it is detected that the holding portion holds the work. controller.
  5.  前記コントローラは、
     前記ワークの温度または環境温度を取得し、前記温度によって前記第3の閾値を補正する温度補正部をさらに備える請求項4に記載のコントローラ。
    The controller
    The controller according to claim 4, further comprising a temperature compensating unit that acquires the temperature of the work or the environmental temperature and corrects the third threshold value according to the temperature.
  6.  前記コントローラは、
     前記保持部が前記ワークを保持したことを前記保持検出部が検出した後に、前記保持装置を移動させる搬送部に対して前記保持装置の移動を指令する搬送指令部をさらに備える請求項1から5のいずれか1項に記載のコントローラ。
    The controller
    Claims 1 to 5 further include a transport command unit that commands the transport unit that moves the holding device to move the holding device after the holding detection unit detects that the holding unit holds the work. The controller according to any one of the above.
  7.  可動部と、前記可動部の動作によってワークを保持する保持部と、を有する保持装置を制御するコントローラの制御方法であって、
     前記可動部の位置を取得する位置取得ステップと、
     前記位置を用いて、前記可動部の速度または加速度を特定する位置特定ステップと、
     前記速度または前記加速度により、前記保持部が前記ワークと当接したことを検出する当接検出ステップと、
     前記当接した後の前記可動部の変位から、前記保持部が前記ワークを保持したことを検出する保持検出ステップと、を含むコントローラの制御方法。
    It is a control method of a controller which controls a holding device having a movable part and a holding part which holds a work by the operation of the movable part.
    The position acquisition step for acquiring the position of the movable part and
    A position specifying step for specifying the speed or acceleration of the movable part using the position, and
    A contact detection step for detecting that the holding portion has come into contact with the work due to the speed or the acceleration.
    A controller control method comprising a holding detection step for detecting that the holding portion holds the work from the displacement of the movable portion after the contact.
  8.  請求項1に記載のコントローラとしてコンピュータを機能させるための制御プログラムであって、前記位置取得部、前記位置特定部、前記当接検出部および前記保持検出部としてコンピュータを機能させるための制御プログラム。 The control program for operating a computer as the controller according to claim 1, wherein the computer functions as the position acquisition unit, the position identification unit, the contact detection unit, and the holding detection unit.
  9.  請求項8に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the control program according to claim 8 is recorded.
PCT/JP2021/008706 2020-11-20 2021-03-05 Controller, control method for controller, control program, and recording medium WO2022107348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020193746A JP2022082275A (en) 2020-11-20 2020-11-20 Controller, control method of the same, control program, and recording medium
JP2020-193746 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107348A1 true WO2022107348A1 (en) 2022-05-27

Family

ID=81708694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008706 WO2022107348A1 (en) 2020-11-20 2021-03-05 Controller, control method for controller, control program, and recording medium

Country Status (2)

Country Link
JP (1) JP2022082275A (en)
WO (1) WO2022107348A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071183A (en) * 1983-09-29 1985-04-23 三洋機工株式会社 Method of detecting contact point of work gripping mechanism
JPH0655474A (en) * 1992-08-08 1994-03-01 Daihen Corp Work gripping control method of material handling robot
JPH10217172A (en) * 1997-01-30 1998-08-18 Kubota Corp Robot hand
JP2011131340A (en) * 2009-12-25 2011-07-07 Kaneka Corp Hand device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071183A (en) * 1983-09-29 1985-04-23 三洋機工株式会社 Method of detecting contact point of work gripping mechanism
JPH0655474A (en) * 1992-08-08 1994-03-01 Daihen Corp Work gripping control method of material handling robot
JPH10217172A (en) * 1997-01-30 1998-08-18 Kubota Corp Robot hand
JP2011131340A (en) * 2009-12-25 2011-07-07 Kaneka Corp Hand device

Also Published As

Publication number Publication date
JP2022082275A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
EP2363687B1 (en) Coordinate measuring machine
US20070210740A1 (en) Controller
US20200147787A1 (en) Working robot and control method for working robot
JP4477546B2 (en) Molding condition setting method
US20130090761A1 (en) Motor control device, robot hand, robot, and motor control method
JP2014108466A (en) Electric hand with force sensor
EP1069437B1 (en) Method for controlling ic handler and control system using the same
WO2010064353A1 (en) Method of controlling robot arm
JP5181954B2 (en) Robot system abnormality detection method, robot system, stage system abnormality detection method, stage system, and semiconductor manufacturing apparatus
KR102318346B1 (en) Condition monitoring systems and methods of condition monitoring
US20090146601A1 (en) Automation systems diagnostics and predictive failure detection
US20160201749A1 (en) Method and apparatus for adjusting spring characteristics of a spring
US20070229019A1 (en) Electric motor control unit
WO2022107348A1 (en) Controller, control method for controller, control program, and recording medium
JP3503359B2 (en) Method and apparatus for controlling pressure of welding gun
WO2022123849A1 (en) Robot, gripping force control device, gripping force control method, and gripping force control program
TW201825244A (en) Torque value setting system, torque value setting apparatus, and torque value setting method
US20220134549A1 (en) Method for driving hand, and hand
JP2016198861A (en) Robot hand device control method and robot hand device
US20060138904A1 (en) Closed-loop feedback control positioning stage
JP2019055455A (en) Robot hand, and control method of robot hand
JP2006288004A (en) Guiding apparatus and its drive control method
JP2000010635A (en) Friction compensating method and device therefor
US20220305651A1 (en) Robot System, Control Device, And Control Method
JP4665678B2 (en) Motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894225

Country of ref document: EP

Kind code of ref document: A1