WO2022107284A1 - Concealment device, concealment method, and program - Google Patents
Concealment device, concealment method, and program Download PDFInfo
- Publication number
- WO2022107284A1 WO2022107284A1 PCT/JP2020/043234 JP2020043234W WO2022107284A1 WO 2022107284 A1 WO2022107284 A1 WO 2022107284A1 JP 2020043234 W JP2020043234 W JP 2020043234W WO 2022107284 A1 WO2022107284 A1 WO 2022107284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- binary vector
- binary
- value
- concealment
- data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 28
- 239000013598 vector Substances 0.000 claims abstract description 69
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 238000004891 communication Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/002—Countermeasures against attacks on cryptographic mechanisms
Definitions
- the present invention relates to a concealment device, a concealment method, and a program.
- Non-Patent Documents 1 and 2 A technique for concealing individual data from a database by a probabilistic method is known (for example, Non-Patent Documents 1 and 2).
- the techniques described in Non-Patent Documents 1 and 2 randomize data according to a defined probability and have been shown to meet certain privacy criteria called local differential privacy.
- As a method of randomizing data there are cases where the input data set and the output data set are the same and different, and the techniques described in Non-Patent Documents 1 and 2 are cases where the input data set and the output data set are different. Corresponds to.
- Non-Patent Documents 1 and 2 a one-dimensional input is converted into a D-dimensional binary vector by one-hot notation, and randomization is performed for each value of each element of the vector. Therefore, the size of the output data set is 2D with respect to the size D of the input data set, and the amount of spatial complexity is not good.
- One embodiment of the present invention has been made in view of the above points, and an object thereof is to realize data concealment with a good amount of spatial calculation.
- the concealment device is a concealment device that conceals data by probabilistic randomization, and the humming distance between any two binary vectors is such that the data is concealed.
- ⁇ is a parameter representing privacy strength
- the input x is input to Encode: X ⁇ ⁇ 0,1 ⁇ D.
- the output is a D-dimensional binary vector in one-hot notation.
- the randomization process Perturb (b) b'performs a randomization (disturbance) process so as to follow the probability shown in the following equation (1) for each value of each element of the vector.
- b [i] is the value of the i-th element of the vector b.
- ⁇ is a parameter representing the privacy strength.
- Non-Patent Documents 1 and 2 are improved and extended, and any two vectors a among the D-dimensional vectors having the output of the Encode as ⁇ 0,1 ⁇ as elements a. It is assumed that the Hamming distance of, b is at most L or less. In addition, when performing randomization processing according to the probability shown in the above equation (1),
- L is an adjustable parameter
- the amount of spatial calculation can be reduced as compared with the techniques described in the above-mentioned Non-Patent Documents 1 and 2. Therefore, it is possible to increase the size of the input data set that can be handled. In addition, the strength of randomization can be freely manipulated.
- the local differential privacy is "when looking at the output obtained by inputting any two data into the mechanism M, it is difficult to distinguish which input the output was obtained from.” It is defined as follows for the mechanism M.
- FIG. 1 is a diagram showing an example of the hardware configuration of the concealment device 10 according to the present embodiment.
- the concealment device 10 is realized by a hardware configuration of a general computer or computer system, and includes an input device 11, a display device 12, an external I / F 13, and a communication I. It has / F14, a processor 15, and a memory device 16. Each of these hardware is connected so as to be communicable via the bus 17.
- the input device 11 is, for example, a keyboard, a mouse, a touch panel, or the like.
- the display device 12 is, for example, a display or the like.
- the concealment device 10 may not have, for example, at least one of the input device 11 and the display device 12.
- the external I / F 13 is an interface with an external device such as a recording medium 13a.
- the concealment device 10 can read or write the recording medium 13a via the external I / F 13.
- Examples of the recording medium 13a include a CD (Compact Disc), a DVD (Digital Versatile Disk), an SD memory card (Secure Digital memory card), a USB (Universal Serial Bus) memory card, and the like.
- the communication I / F 14 is an interface for connecting the concealment device 10 to the communication network.
- the processor 15 is, for example, various arithmetic units such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
- the memory device 16 is, for example, various storage devices such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory.
- the concealment device 10 By having the hardware configuration shown in FIG. 1, the concealment device 10 according to the present embodiment can realize various processes described later.
- the hardware configuration shown in FIG. 1 is an example, and the concealment device 10 may have another hardware configuration.
- the concealment device 10 may have a plurality of processors 15 or a plurality of memory devices 16.
- FIG. 2 is a diagram showing an example of the functional configuration of the concealment device 10 according to the present embodiment.
- the concealment device 10 has an encoding unit 101, a randomization unit 102, and a vector set creating unit 103. Each of these parts is realized, for example, by a process of causing the processor 15 to execute one or more programs installed in the concealment device 10.
- the concealment device 10 has a storage unit 104.
- the storage unit 104 is realized by, for example, a memory device 16.
- the storage unit 104 may be realized by, for example, a storage device (database server or the like) connected to the concealment device 10 via a communication network.
- the encoding unit 101 converts (encodes) the data x ⁇ X into a D-dimensional vector b having ⁇ 0, 1 ⁇ as an element by Encode: X ⁇ ⁇ 0, 1 ⁇ D.
- the Hamming distance of any two output vectors of Encode is L or less. That is, if R ⁇ ⁇ 0, 1 ⁇ D and the vector set R that satisfies the Hamming distance of a and b of L or less for any a, b ⁇ R is used, then Code: X ⁇ R.
- the vector set creation unit 103 creates a vector set R in which R ⁇ ⁇ 0,1 ⁇ D and the Hamming distance between a and b is L or less with respect to any a, b ⁇ R.
- FIG. 3 is a flowchart showing an example of the flow of data concealment processing.
- steps S101 to S102 may be repeated for each x ⁇ X, or after repeating step S101 for each x ⁇ X.
- Step S102 may be repeated for each b ⁇ R obtained in this step S101.
- the encoding unit 101 converts the data x ⁇ X into a D-dimensional vector b ⁇ R by Encode: X ⁇ R (step S101).
- R is an arbitrary vector set in which R ⁇ ⁇ 0, 1 ⁇ D and the Hamming distance of a and b satisfies L or less with respect to any a, b ⁇ R.
- the randomized data b' is stored in, for example, a storage unit 104.
- FIG. 4 is a flowchart showing an example of the flow of the process of creating a vector set in which the Hamming distance is at most L or less.
- the vector set R created in this creation process is an example, and R ⁇ ⁇ 0,1 ⁇ D , and the Hamming distance between a and b is L or less with respect to any a, b ⁇ R.
- the vector set R of may be created.
- the vector set creation unit 103 determines whether or not
- 0 (step S202).
- is the number of vectors included in the vector set C (the total number of elements included in C).
- step S202 If it is not determined in step S202 above that
- 0, the vector set creation unit 103 selects v ⁇ C and selects v ⁇ C.
- the vector set creation unit 103 sets a vector set having a Hamming distance different from v ⁇ C selected in step S203 above by 1 as E ⁇ ⁇ 0, 1 ⁇ D.
- the vector set creation unit 103 executes the following Step1 to Step2 for each of all u ⁇ E'(step S205).
- Step2 If all the Hamming distances calculated in Step1 above are L or less,
- step S205 the vector set creation unit 103 returns to the above step S202.
- steps S203 to S205 are repeatedly executed until
- 0.
- the vector set creation unit 103 When it is determined in step S202 above that
- 0, the vector set creation unit 103 outputs the vector set R (step S206).
- the output destination of the vector set R may be, for example, the storage unit 104.
- the concealment device 10 according to the present embodiment sets the output data set of the Encode to R ⁇ ⁇ 0, 1 ⁇ D , and the Hamming distance between a and b is L with respect to any a, b ⁇ R.
- R be a vector set that satisfies the following.
- the concealment device 10 by adjusting L, the amount of spatial calculation can be reduced as compared with the techniques described in the above-mentioned Non-Patent Documents 1 and 2. Therefore, it is possible to increase the size of the input data set that can be handled. In addition, the strength of randomization can be freely manipulated.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Complex Calculations (AREA)
Abstract
This concealment device according one embodiment of the present invention is for concealing data through stochastic randomization. The concealment device has: a conversion unit that converts the data to a member of a binary vector set in which a Hamming distance between any two binary vectors is predetermined L or less; and a randomization unit that randomizes elements of the member into 0 or 1 such that each of the elements is in compliance with p=(eε/L)/(eε/L+1) when the value of the element is 1 and q=1/(eε/L+1) (where ε represents a parameter indicating the intensity of privacy) when the value of the element is 0.
Description
本発明は、秘匿化装置、秘匿化方法及びプログラムに関する。
The present invention relates to a concealment device, a concealment method, and a program.
データベースに対して個別データを確率的手法により秘匿化する技術が知られている(例えば、非特許文献1及び2)。非特許文献1及び2に記載されている技術は定められた確率に従ってデータをランダム化するものであり、局所差分プライバシと呼ばれる一定のプライバシ基準を満たすことが示されている。なお、データのランダム化の方法としては入力データ集合と出力データ集合が同じ場合と異なる場合とがあり、非特許文献1及び2に記載されている技術は入力データ集合と出力データ集合が異なる場合に該当する。
A technique for concealing individual data from a database by a probabilistic method is known (for example, Non-Patent Documents 1 and 2). The techniques described in Non-Patent Documents 1 and 2 randomize data according to a defined probability and have been shown to meet certain privacy criteria called local differential privacy. As a method of randomizing data, there are cases where the input data set and the output data set are the same and different, and the techniques described in Non-Patent Documents 1 and 2 are cases where the input data set and the output data set are different. Corresponds to.
ここで、上記の非特許文献1及び2に記載されている技術では1次元の入力をone-hot表記によりD次元のバイナリベクトル化し、ベクトルの各要素の値ごとにランダム化を行っている。したがって、入力データ集合のサイズDに対して、出力データ集合のサイズが2Dとなり、空間計算量が良くない。
Here, in the techniques described in Non-Patent Documents 1 and 2 described above, a one-dimensional input is converted into a D-dimensional binary vector by one-hot notation, and randomization is performed for each value of each element of the vector. Therefore, the size of the output data set is 2D with respect to the size D of the input data set, and the amount of spatial complexity is not good.
本発明の一実施形態は、上記の点に鑑みてなされたもので、空間計算量が良いデータ秘匿化を実現することを目的とする。
One embodiment of the present invention has been made in view of the above points, and an object thereof is to realize data concealment with a good amount of spatial calculation.
上記目的を達成するため、一実施形態に係る秘匿化装置は、確率的なランダム化によってデータを秘匿化する秘匿化装置であって、前記データを、任意の2つのバイナリベクトル間のハミング距離が予め決められたL以下であるバイナリベクトル集合の元に変換する変換部と、前記元の各要素を、当該要素の値が1の場合はp=(eε/L)/(eε/L+1)、当該要素の値が0の場合はq=1/(eε/L+1)(ただし、εはプライバシ強度を表すパラメータ)に従うように0又は1にランダム化するランダム化部と、を有する。
In order to achieve the above object, the concealment device according to the embodiment is a concealment device that conceals data by probabilistic randomization, and the humming distance between any two binary vectors is such that the data is concealed. When the value of the element is 1, p = (e ε / L ) / (e ε / L) of the conversion unit that converts to the element of the binary vector set that is less than or equal to the predetermined L, and each element of the element. +1), a randomization unit that randomizes to 0 or 1 so as to follow q = 1 / (e ε / L +1) (where ε is a parameter representing privacy strength) when the value of the element is 0. Have.
空間計算量が良いデータ秘匿化を実現することができる。
It is possible to realize data concealment with a good amount of spatial complexity.
以下、本発明の一実施形態について説明する。本実施形態では、空間計算量が良いデータ秘匿化を実現する秘匿化装置10について説明する。
Hereinafter, an embodiment of the present invention will be described. In this embodiment, a concealment device 10 that realizes data concealment with a good spatial complexity will be described.
<理論的構成>
まず、本実施形態の理論的構成について説明する。 <Theoretical composition>
First, the theoretical configuration of this embodiment will be described.
まず、本実施形態の理論的構成について説明する。 <Theoretical composition>
First, the theoretical configuration of this embodiment will be described.
D種類の値を持つデータ集合X=[D]={0,・・・,D-1}に含まれるデータx∈Xを確率的メカニズムM:X→Zに入力し、出力z∈Zを得るものとする。なお、確率的メカニズムM:X→Zは入力x∈Xと出力z∈Zに対して条件付き確率Pr[z|x]が存在し、その条件付き確率に従ってランダム化処理を行うものとする。
The data x ∈ X contained in the data set X = [D] = {0, ..., D-1} having D kinds of values is input to the stochastic mechanism M: X → Z, and the output z ∈ Z is obtained. Shall get. It is assumed that the stochastic mechanism M: X → Z has a conditional probability Pr [z | x] for the input x ∈ X and the output z ∈ Z, and the randomization process is performed according to the conditional probability.
上記の非特許文献1及び2に記載されている技術では、入力xをD次元のバイナリベクトル化するため、Encode:X→{0,1}Dに入力している。ただし、出力はone-hot表記のD次元バイナリベクトルである。なお、one-hot表記のベクトルとは、1つの成分のみが1で、残りの成分がすべて0であるようなベクトルのことをいう。すなわち、入力xに対してEncode(x)=(0,・・・,0,1,0,・・・,0)=bである(或るi番目の要素のみが1、それ以外は0であるベクトル)。
In the techniques described in Non-Patent Documents 1 and 2 described above, in order to convert the input x into a D-dimensional binary vector, the input x is input to Encode: X → {0,1} D. However, the output is a D-dimensional binary vector in one-hot notation. The vector in one-hot notation means a vector in which only one component is 1 and the remaining components are all 0. That is, Vector (x) = (0, ..., 0, 1, 0, ..., 0) = b with respect to the input x (only a certain i-th element is 1, and the others are 0). Vector).
また、ランダム化処理Perturb(b)=b'は、ベクトルの各要素の値ごとに以下の式(1)に示す確率に従うようにランダム化(攪乱)処理を行う。
Further, the randomization process Perturb (b) = b'performs a randomization (disturbance) process so as to follow the probability shown in the following equation (1) for each value of each element of the vector.
つまり、b[i]=1のときは、確率pでPerturb(b[i])=b'[i]=1、確率1-pでPerturb(b[i])=b'[i]=0とランダム化する。一方で、b[i]=0のときは、確率qでPerturb(b[i])=b'[i]=1、確率1-qでPerturb(b[i])=b'[i]=0とランダム化する。
That is, when b [i] = 1, the probability p is Perturb (b [i]) = b'[i] = 1, and the probability 1-p is Perturb (b [i]) = b'[i] =. Randomize to 0. On the other hand, when b [i] = 0, the probability q is Perturb (b [i]) = b'[i] = 1, and the probability 1-q is Perturb (b [i]) = b'[i]. Randomize to = 0.
このとき、
At this time,
本実施形態では、上記の非特許文献1及び2に記載されている技術を改良及び拡張し、Encodeの出力を{0,1}を要素に持つD次元ベクトルのうち、任意の2つのベクトルa,bのハミング距離が高々L以下であるようなものとする。また、上記の式(1)に示す確率に従ってランダム化処理を行う際に、
In this embodiment, the techniques described in Non-Patent Documents 1 and 2 are improved and extended, and any two vectors a among the D-dimensional vectors having the output of the Encode as {0,1} as elements a. It is assumed that the Hamming distance of, b is at most L or less. In addition, when performing randomization processing according to the probability shown in the above equation (1),
これにより、本実施形態では、Lを調整することで、上記の非特許文献1及び2に記載されている技術と比べ、空間計算量を削減することができる。したがって、扱える入力データ集合のサイズも増やすことが可能となる。また、ランダム化の強度も自由に操作することが可能となる。
Thereby, in the present embodiment, by adjusting L, the amount of spatial calculation can be reduced as compared with the techniques described in the above-mentioned Non-Patent Documents 1 and 2. Therefore, it is possible to increase the size of the input data set that can be handled. In addition, the strength of randomization can be freely manipulated.
ここで、本実施形態の手法がε-局所差分プライバシを満たす理由について説明する。局所差分プライバシは、直感的には「任意の2つのデータをメカニズムMに入力して得られた出力を見た際に、その出力がどちらの入力から得られたものかの区別がつきにくい」という基準であり、メカニズムMに対して以下のように定義される。
Here, the reason why the method of this embodiment satisfies the ε-local differential privacy will be described. Intuitively, the local differential privacy is "when looking at the output obtained by inputting any two data into the mechanism M, it is difficult to distinguish which input the output was obtained from." It is defined as follows for the mechanism M.
(定義)確率的なメカニズムM:X→Zがε-局所差分プライバシを満たすとは、任意の2つの入力xa,xb∈Xに対して、以下の式(2)が成り立つことをいう。
(Definition) Stochastic mechanism M: X → Z satisfies ε-local differential privacy means that the following equation (2) holds for any two inputs x a and x b ∈ X. ..
∀z∈Z:Pr[M(xa)=z]≦eεPr[M(xb)=z] (2)
なお、上記の定義の詳細については、例えば、参考文献1「Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differentially private protocols for frequency estimation. In 26th USENIX Security Symposium, pp. 729-745, 2017.」等を参照されたい。 ∀z ∈ Z: Pr [M (x a ) = z] ≤ e ε Pr [M (x b ) = z] (2)
For details of the above definition, refer to Reference 1 "Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differentially private protocols for frequency estimation. In 26th USENIX Security Symposium, pp. 729-745, 2017. Please refer to "."
なお、上記の定義の詳細については、例えば、参考文献1「Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differentially private protocols for frequency estimation. In 26th USENIX Security Symposium, pp. 729-745, 2017.」等を参照されたい。 ∀z ∈ Z: Pr [M (x a ) = z] ≤ e ε Pr [M (x b ) = z] (2)
For details of the above definition, refer to Reference 1 "Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differentially private protocols for frequency estimation. In 26th USENIX Security Symposium, pp. 729-745, 2017. Please refer to "."
上記の定義でいうメカニズムMはPerturbに相当する。上記の式(1)によってベクトルの各要素の値ごとにランダム化が行われるが、上記の式(2)では任意の2つの入力のランダム化の結果が一致する確率の比がeεで抑えられなければならないことを表している。よって、Perturbに入力されるベクトル同士ができる限り近しいほうが、確率の比も抑えることができる。具体的には、Perturbに入力されるベクトル同士のハミング距離がL以下であれば、p=(eε/L)/(eε/L+1),q=1/(eε/L+1)とした際、ε-局所差分プライバシを満たすことができる。なお、上記の非特許文献1及び2に記載されている技術ではハミング距離が2以下となっている。
The mechanism M in the above definition corresponds to Perturb. Randomization is performed for each element value of the vector by the above equation (1), but in the above equation (2), the ratio of the probability that the randomization results of any two inputs match is suppressed by e ε . It represents what must be done. Therefore, the probability ratio can be suppressed when the vectors input to the Perturb are as close as possible to each other. Specifically, if the Hamming distance between the vectors input to Perturb is L or less, p = (e ε / L ) / (e ε / L +1), q = 1 / (e ε / L +1). When, ε-local differential privacy can be satisfied. In the techniques described in Non-Patent Documents 1 and 2 above, the Hamming distance is 2 or less.
<ハードウェア構成>
次に、本実施形態に係る秘匿化装置10のハードウェア構成について、図1を参照しながら説明する。図1は、本実施形態に係る秘匿化装置10のハードウェア構成の一例を示す図である。 <Hardware configuration>
Next, the hardware configuration of theconcealment device 10 according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of the hardware configuration of the concealment device 10 according to the present embodiment.
次に、本実施形態に係る秘匿化装置10のハードウェア構成について、図1を参照しながら説明する。図1は、本実施形態に係る秘匿化装置10のハードウェア構成の一例を示す図である。 <Hardware configuration>
Next, the hardware configuration of the
図1に示すように、本実施形態に係る秘匿化装置10は一般的なコンピュータ又はコンピュータシステムのハードウェア構成で実現され、入力装置11と、表示装置12と、外部I/F13と、通信I/F14と、プロセッサ15と、メモリ装置16とを有する。これら各ハードウェアは、それぞれがバス17を介して通信可能に接続されている。
As shown in FIG. 1, the concealment device 10 according to the present embodiment is realized by a hardware configuration of a general computer or computer system, and includes an input device 11, a display device 12, an external I / F 13, and a communication I. It has / F14, a processor 15, and a memory device 16. Each of these hardware is connected so as to be communicable via the bus 17.
入力装置11は、例えば、キーボードやマウス、タッチパネル等である。表示装置12は、例えば、ディスプレイ等である。なお、秘匿化装置10は、例えば、入力装置11及び表示装置12のうちの少なくとも一方を有していなくてもよい。
The input device 11 is, for example, a keyboard, a mouse, a touch panel, or the like. The display device 12 is, for example, a display or the like. The concealment device 10 may not have, for example, at least one of the input device 11 and the display device 12.
外部I/F13は、記録媒体13a等の外部装置とのインタフェースである。秘匿化装置10は、外部I/F13を介して、記録媒体13aの読み取りや書き込み等を行うことができる。なお、記録媒体13aとしては、例えば、CD(Compact Disc)、DVD(Digital Versatile Disk)、SDメモリカード(Secure Digital memory card)、USB(Universal Serial Bus)メモリカード等が挙げられる。
The external I / F 13 is an interface with an external device such as a recording medium 13a. The concealment device 10 can read or write the recording medium 13a via the external I / F 13. Examples of the recording medium 13a include a CD (Compact Disc), a DVD (Digital Versatile Disk), an SD memory card (Secure Digital memory card), a USB (Universal Serial Bus) memory card, and the like.
通信I/F14は、秘匿化装置10を通信ネットワークに接続するためのインタフェースである。プロセッサ15は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等の各種演算装置である。メモリ装置16は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等の各種記憶装置である。
The communication I / F 14 is an interface for connecting the concealment device 10 to the communication network. The processor 15 is, for example, various arithmetic units such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). The memory device 16 is, for example, various storage devices such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory.
本実施形態に係る秘匿化装置10は、図1に示すハードウェア構成を有することにより、後述する各種処理を実現することができる。なお、図1に示すハードウェア構成は一例であって、秘匿化装置10は、他のハードウェア構成を有していてもよい。例えば、秘匿化装置10は、複数のプロセッサ15を有していてもよいし、複数のメモリ装置16を有していてもよい。
By having the hardware configuration shown in FIG. 1, the concealment device 10 according to the present embodiment can realize various processes described later. The hardware configuration shown in FIG. 1 is an example, and the concealment device 10 may have another hardware configuration. For example, the concealment device 10 may have a plurality of processors 15 or a plurality of memory devices 16.
<機能構成>
次に、本実施形態に係る秘匿化装置10の機能構成について、図2を参照しながら説明する。図2は、本実施形態に係る秘匿化装置10の機能構成の一例を示す図である。 <Functional configuration>
Next, the functional configuration of theconcealment device 10 according to the present embodiment will be described with reference to FIG. FIG. 2 is a diagram showing an example of the functional configuration of the concealment device 10 according to the present embodiment.
次に、本実施形態に係る秘匿化装置10の機能構成について、図2を参照しながら説明する。図2は、本実施形態に係る秘匿化装置10の機能構成の一例を示す図である。 <Functional configuration>
Next, the functional configuration of the
図2に示すように、本実施形態に係る秘匿化装置10は、エンコード部101と、ランダム化部102と、ベクトル集合作成部103とを有する。これら各部は、例えば、秘匿化装置10にインストールされた1以上のプログラムがプロセッサ15に実行させる処理により実現される。
As shown in FIG. 2, the concealment device 10 according to the present embodiment has an encoding unit 101, a randomization unit 102, and a vector set creating unit 103. Each of these parts is realized, for example, by a process of causing the processor 15 to execute one or more programs installed in the concealment device 10.
また、本実施形態に係る秘匿化装置10は、記憶部104を有する。記憶部104は、例えば、メモリ装置16により実現される。ただし、記憶部104は、例えば、秘匿化装置10と通信ネットワークを介して接続される記憶装置(データベースサーバ等)により実現されていてもよい。
Further, the concealment device 10 according to the present embodiment has a storage unit 104. The storage unit 104 is realized by, for example, a memory device 16. However, the storage unit 104 may be realized by, for example, a storage device (database server or the like) connected to the concealment device 10 via a communication network.
記憶部104は、秘匿化対象のデータ集合X=[D]={0,・・・,D-1}等を記憶する。
The storage unit 104 stores the data set X = [D] = {0, ..., D-1} to be concealed.
エンコード部101は、データx∈XをEncode:X→{0,1}Dにより{0,1}を要素とするD次元ベクトルbに変換(エンコード)する。ただし、Encodeの任意の2つの出力ベクトルはハミング距離がL以下であるものとする。すなわち、R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下を満たすベクトル集合Rを用いれば、Encode:X→Rである。
The encoding unit 101 converts (encodes) the data x ∈ X into a D-dimensional vector b having {0, 1} as an element by Encode: X → {0, 1} D. However, it is assumed that the Hamming distance of any two output vectors of Encode is L or less. That is, if R ⊆ {0, 1} D and the vector set R that satisfies the Hamming distance of a and b of L or less for any a, b ∈ R is used, then Code: X → R.
ランダム化部102は、Encode(x)=bを上記の式(1)に示す確率に従うようにPerturbによりランダム化する。ただし、p=(eε/L)/(eε/L+1),q=1/(eε/L+1)とする。
The randomization unit 102 randomizes Encode (x) = b by Perturb so as to follow the probability shown in the above equation (1). However, p = (e ε / L ) / (e ε / L +1) and q = 1 / (e ε / L +1).
ベクトル集合作成部103は、R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下となるベクトル集合Rを作成する。
The vector set creation unit 103 creates a vector set R in which R ⊆ {0,1} D and the Hamming distance between a and b is L or less with respect to any a, b ∈ R.
<データ秘匿化処理>
次に、任意のデータx∈Xを秘匿化する処理の流れについて、図3を参照しながら説明する。図3は、データの秘匿化処理の流れの一例を示すフローチャートである。なお、データ集合Xのすべてのデータを秘匿化する場合は、各x∈Xに対して以下のステップS101~ステップS102を繰り返してもよいし、各x∈Xに対してステップS101を繰り返した後に、このステップS101で得られた各b∈Rに対してステップS102を繰り返してもよい。 <Data concealment processing>
Next, the flow of the process of concealing arbitrary data x ∈ X will be described with reference to FIG. FIG. 3 is a flowchart showing an example of the flow of data concealment processing. When concealing all the data in the data set X, the following steps S101 to S102 may be repeated for each x ∈ X, or after repeating step S101 for each x ∈ X. , Step S102 may be repeated for each b ∈ R obtained in this step S101.
次に、任意のデータx∈Xを秘匿化する処理の流れについて、図3を参照しながら説明する。図3は、データの秘匿化処理の流れの一例を示すフローチャートである。なお、データ集合Xのすべてのデータを秘匿化する場合は、各x∈Xに対して以下のステップS101~ステップS102を繰り返してもよいし、各x∈Xに対してステップS101を繰り返した後に、このステップS101で得られた各b∈Rに対してステップS102を繰り返してもよい。 <Data concealment processing>
Next, the flow of the process of concealing arbitrary data x ∈ X will be described with reference to FIG. FIG. 3 is a flowchart showing an example of the flow of data concealment processing. When concealing all the data in the data set X, the following steps S101 to S102 may be repeated for each x ∈ X, or after repeating step S101 for each x ∈ X. , Step S102 may be repeated for each b ∈ R obtained in this step S101.
エンコード部101は、データx∈XをEncode:X→RによりD次元ベクトルb∈Rに変換する(ステップS101)。なお、Rは、R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下を満たす任意のベクトル集合である。
The encoding unit 101 converts the data x ∈ X into a D-dimensional vector b ∈ R by Encode: X → R (step S101). Note that R is an arbitrary vector set in which R ⊆ {0, 1} D and the Hamming distance of a and b satisfies L or less with respect to any a, b ∈ R.
ランダム化部102は、Encode(x)=bを上記の式(1)に示す確率に従うようにPerturbによりランダム化して、Perturb(b)=b'を得る(ステップS102)。ただし、p=(eε/L)/(eε/L+1),q=1/(eε/L+1)とする。なお、ランダム化後のデータb'は、例えば、記憶部104に保存される。
The randomization unit 102 randomizes Encode (x) = b by Perturb so as to follow the probability shown in the above equation (1) to obtain Perturb (b) = b'(step S102). However, p = (e ε / L ) / (e ε / L +1) and q = 1 / (e ε / L +1). The randomized data b'is stored in, for example, a storage unit 104.
<ハミング距離が高々L以下となるベクトル集合の作成処理>
R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下となるベクトル集合Rを作成する処理の流れについて、図4を参照しながら説明する。図4は、ハミング距離が高々L以下となるベクトル集合の作成処理の流れの一例を示すフローチャートである。ただし、本作成処理で作成するベクトル集合Rは一例であって、R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下となる任意のベクトル集合Rが作成されてもよい。 <Process for creating a vector set whose Hamming distance is at most L or less>
The flow of processing for creating a vector set R in which R ⊆ {0, 1} D and the Hamming distance between a and b is L or less with respect to any a, b ∈ R will be described with reference to FIG. do. FIG. 4 is a flowchart showing an example of the flow of the process of creating a vector set in which the Hamming distance is at most L or less. However, the vector set R created in this creation process is an example, and R ⊆ {0,1} D , and the Hamming distance between a and b is L or less with respect to any a, b ∈ R. The vector set R of may be created.
R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下となるベクトル集合Rを作成する処理の流れについて、図4を参照しながら説明する。図4は、ハミング距離が高々L以下となるベクトル集合の作成処理の流れの一例を示すフローチャートである。ただし、本作成処理で作成するベクトル集合Rは一例であって、R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下となる任意のベクトル集合Rが作成されてもよい。 <Process for creating a vector set whose Hamming distance is at most L or less>
The flow of processing for creating a vector set R in which R ⊆ {0, 1} D and the Hamming distance between a and b is L or less with respect to any a, b ∈ R will be described with reference to FIG. do. FIG. 4 is a flowchart showing an example of the flow of the process of creating a vector set in which the Hamming distance is at most L or less. However, the vector set R created in this creation process is an example, and R ⊆ {0,1} D , and the Hamming distance between a and b is L or less with respect to any a, b ∈ R. The vector set R of may be created.
ベクトル集合作成部103は、すべての要素が0であるD次元ベクトルをzとして、C={z},R={z},C'={}とする(ステップS201)。
The vector set creation unit 103 sets C = {z}, R = {z}, and C'= {}, where z is a D-dimensional vector in which all elements are 0 (step S201).
次に、ベクトル集合作成部103は、|C|=0であるか否かを判定する(ステップS202)。なお、|C|はベクトル集合Cに含まれるベクトル数(Cに含まれる元の総数)である。
Next, the vector set creation unit 103 determines whether or not | C | = 0 (step S202). Note that | C | is the number of vectors included in the vector set C (the total number of elements included in C).
上記のステップS202で|C|=0であると判定されなかった場合、ベクトル集合作成部103は、v∈Cを選択し、
If it is not determined in step S202 above that | C | = 0, the vector set creation unit 103 selects v ∈ C and selects v ∈ C.
次に、ベクトル集合作成部103は、上記のステップS203で選択されたv∈Cとのハミング距離が1異なるベクトル集合をE⊆{0,1}Dとして、
Next, the vector set creation unit 103 sets a vector set having a Hamming distance different from v ∈ C selected in step S203 above by 1 as E ⊆ {0, 1} D.
次に、ベクトル集合作成部103は、すべてのu∈E'の各々に対して以下のStep1~Step2を実行する(ステップS205)。
Next, the vector set creation unit 103 executes the following Step1 to Step2 for each of all u ∈ E'(step S205).
Step1:uと、各c∈Rとのハミング距離をそれぞれ計算する。
Calculate the Hamming distance between Step1: u and each c ∈ R, respectively.
Step2:上記のStep1で計算されたすべてのハミング距離がL以下であれば、
Step2: If all the Hamming distances calculated in Step1 above are L or less,
上記のステップS205が実行された後、ベクトル集合作成部103は、上記のステップS202に戻る。これにより、|C|=0となるまで、ステップS203~ステップS205が繰り返し実行される。
After the above step S205 is executed, the vector set creation unit 103 returns to the above step S202. As a result, steps S203 to S205 are repeatedly executed until | C | = 0.
上記のステップS202で|C|=0であると判定された場合、ベクトル集合作成部103は、ベクトル集合Rを出力する(ステップS206)。なお、ベクトル集合Rの出力先は、例えば、記憶部104とすればよい。
When it is determined in step S202 above that | C | = 0, the vector set creation unit 103 outputs the vector set R (step S206). The output destination of the vector set R may be, for example, the storage unit 104.
<まとめ>
以上のように、本実施形態に係る秘匿化装置10は、秘匿化対象のデータ集合X=[D]に含まれる各データxをEncodeで変換した上で、Perturbによりランダム化することで秘匿化を行う。このとき、本実施形態に係る秘匿化装置10は、Encodeの出力データ集合を、R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下を満たすベクトル集合Rとする。また、Perturbによりランダム化する際は、p=(eε/L)/(eε/L+1),q=1-p=1/(eε/L+1)として上記の式(1)に示す確率に従うようにランダム化する。 <Summary>
As described above, theconcealment device 10 according to the present embodiment conceals by converting each data x included in the data set X = [D] to be concealed by Encode and then randomizing by Perturb. I do. At this time, the concealment device 10 according to the present embodiment sets the output data set of the Encode to R ⊆ {0, 1} D , and the Hamming distance between a and b is L with respect to any a, b ∈ R. Let R be a vector set that satisfies the following. Further, when randomizing by Perturb, p = (e ε / L ) / (e ε / L +1), q = 1-p = 1 / (e ε / L +1), and the above equation (1) is used. Randomize according to the probabilities shown.
以上のように、本実施形態に係る秘匿化装置10は、秘匿化対象のデータ集合X=[D]に含まれる各データxをEncodeで変換した上で、Perturbによりランダム化することで秘匿化を行う。このとき、本実施形態に係る秘匿化装置10は、Encodeの出力データ集合を、R⊆{0,1}D、かつ、任意のa,b∈Rに対してaとbのハミング距離がL以下を満たすベクトル集合Rとする。また、Perturbによりランダム化する際は、p=(eε/L)/(eε/L+1),q=1-p=1/(eε/L+1)として上記の式(1)に示す確率に従うようにランダム化する。 <Summary>
As described above, the
これにより、本実施形態に係る秘匿化装置10では、Lを調整することで、上記の非特許文献1及び2に記載されている技術と比べ、空間計算量を削減することができる。したがって、扱える入力データ集合のサイズも増やすことが可能となる。また、ランダム化の強度も自由に操作することが可能となる。
Thereby, in the concealment device 10 according to the present embodiment, by adjusting L, the amount of spatial calculation can be reduced as compared with the techniques described in the above-mentioned Non-Patent Documents 1 and 2. Therefore, it is possible to increase the size of the input data set that can be handled. In addition, the strength of randomization can be freely manipulated.
本発明は、具体的に開示された上記の実施形態に限定されるものではなく、請求の範囲の記載から逸脱することなく、種々の変形や変更、既知の技術との組み合わせ等が可能である。
The present invention is not limited to the above-described embodiment disclosed specifically, and various modifications and modifications, combinations with known techniques, and the like are possible without departing from the description of the claims. ..
10 秘匿化装置
11 入力装置
12 表示装置
13 外部I/F
13a 記録媒体
14 通信I/F
15 プロセッサ
16 メモリ装置
17 バス
101 エンコード部
102 ランダム化部
103 ベクトル集合作成部
104 記憶部 10Concealment device 11 Input device 12 Display device 13 External I / F
13a Recording medium 14 Communication I / F
15Processor 16 Memory device 17 Bus 101 Encoding unit 102 Randomization unit 103 Vector set creation unit 104 Storage unit
11 入力装置
12 表示装置
13 外部I/F
13a 記録媒体
14 通信I/F
15 プロセッサ
16 メモリ装置
17 バス
101 エンコード部
102 ランダム化部
103 ベクトル集合作成部
104 記憶部 10
13a Recording medium 14 Communication I / F
15
Claims (6)
- 確率的なランダム化によってデータを秘匿化する秘匿化装置であって、
前記データを、任意の2つのバイナリベクトル間のハミング距離が予め決められたL以下であるバイナリベクトル集合の元に変換する変換部と、
前記元の各要素を、当該要素の値が1の場合はp=(eε/L)/(eε/L+1)、当該要素の値が0の場合はq=1/(eε/L+1)(ただし、εはプライバシ強度を表すパラメータ)に従うように0又は1にランダム化するランダム化部と、
を有する秘匿化装置。 It is a concealment device that conceals data by stochastic randomization.
A conversion unit that converts the data into a binary vector set in which the Hamming distance between any two binary vectors is equal to or less than a predetermined L.
Each of the original elements is p = (e ε / L ) / (e ε / L +1) when the value of the element is 1, and q = 1 / (e ε / ) when the value of the element is 0. L + 1) (where ε is a parameter representing privacy strength), a randomization unit that randomizes to 0 or 1 and
Concealment device with. - 予め決められたLを用いて、任意の2つのバイナリベクトル間のハミング距離がL以下であるバイナリベクトル集合を作成する集合作成部を有し、
前記変換部は、
前記データを、前記集合作成部で作成されたバイナリベクトル集合の元に変換する、請求項1に記載の秘匿化装置。 It has a set creation unit that creates a binary vector set in which the Hamming distance between any two binary vectors is L or less using a predetermined L.
The conversion unit
The concealment device according to claim 1, wherein the data is converted into a binary vector set created by the set creation unit. - 前記集合作成部は、
すべての要素が0であるバイナリベクトルzを元とする集合C={z}及びR={z}と、集合C'={}とを準備した上で、
任意にバイナリベクトルv∈Cを選択し、選択したバイナリベクトルvを前記集合Cから削除すると共に前記バイナリベクトルvを前記集合C'に追加することと、
前記バイナリベクトルvとのハミング距離が1だけ異なるバイナリベクトルの集合Eから前記集合C'を除いた集合E'に含まれる各バイナリベクトルuと、前記集合Rに含まれる各バイナリベクトルcとのハミング距離を計算することと、
すべてのバイナリベクトルc∈Rとのハミング距離がL以下であるバイナリベクトルuを前記集合Rと前記集合Cに追加することと、
を、任意にバイナリベクトルv∈Cを選択する際に選択可能なバイナリベクトルvが無くなるまで繰り返すことで、任意の2つのバイナリベクトル間のハミング距離がL以下であるバイナリベクトルの集合Rを作成する、請求項2に記載の秘匿化装置。 The set creation unit is
After preparing the set C = {z} and R = {z} based on the binary vector z in which all the elements are 0, and the set C'= {},
Arbitrarily select the binary vector v ∈ C, delete the selected binary vector v from the set C, and add the binary vector v to the set C'.
Hamming between each binary vector u included in the set E'excluding the set C'from the set E of the binary vectors having a Hamming distance different from the binary vector v by 1, and each binary vector c included in the set R. Calculating the distance and
Adding a binary vector u whose Hamming distance to all binary vectors c ∈ R is L or less is added to the set R and the set C.
Is repeated until there are no more selectable binary vectors v when arbitrarily selecting the binary vector v ∈ C, thereby creating a set R of binary vectors in which the Hamming distance between any two binary vectors is L or less. , The concealment device according to claim 2. - 前記ランダム化部は、
前記要素の値が1の場合は、p=(eε/L)/(eε/L+1)の確率で1、1-pの確率で0となるように前記要素の値をランダム化し、
前記要素の値が0の場合は、q=1/(eε/L+1)の確率で1、1-qの確率で0となるように前記要素の値をランダム化する、請求項1乃至3の何れか一項に記載の秘匿化装置。 The randomized part is
When the value of the element is 1, the value of the element is randomized so that the probability of p = (e ε / L ) / (e ε / L +1) is 1 and the probability of 1-p is 0.
When the value of the element is 0, the value of the element is randomized so that the probability of q = 1 / (e ε / L + 1) is 1 and the probability of 1-q is 0. The concealment device according to any one of 3. - 確率的なランダム化によってデータを秘匿化するコンピュータが、
前記データを、任意の2つのバイナリベクトル間のハミング距離が予め決められたL以下であるバイナリベクトル集合の元に変換する変換手順と、
前記元の各要素を、当該要素の値が1の場合はp=(eε/L)/(eε/L+1)、当該要素の値が0の場合はq=1/(eε/L+1)(ただし、εはプライバシ強度を表すパラメータ)に従うように0又は1にランダム化するランダム化手順と、
を実行する秘匿化方法。 Computers that conceal data by stochastic randomization
A conversion procedure for converting the data into a binary vector set in which the Hamming distance between any two binary vectors is less than or equal to a predetermined L, and
Each of the original elements is p = (e ε / L ) / (e ε / L +1) when the value of the element is 1, and q = 1 / (e ε / ) when the value of the element is 0. A randomization procedure that randomizes to 0 or 1 to follow L + 1) (where ε is a parameter representing privacy strength), and
Concealment method to execute. - コンピュータを、請求項1乃至4の何れか一項に記載の秘匿化装置として機能させるプログラム。 A program that causes a computer to function as a concealment device according to any one of claims 1 to 4.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/043234 WO2022107284A1 (en) | 2020-11-19 | 2020-11-19 | Concealment device, concealment method, and program |
JP2022563502A JP7509232B2 (en) | 2020-11-19 | 2020-11-19 | Concealment device, concealment method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/043234 WO2022107284A1 (en) | 2020-11-19 | 2020-11-19 | Concealment device, concealment method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022107284A1 true WO2022107284A1 (en) | 2022-05-27 |
Family
ID=81708581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/043234 WO2022107284A1 (en) | 2020-11-19 | 2020-11-19 | Concealment device, concealment method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7509232B2 (en) |
WO (1) | WO2022107284A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109299436A (en) * | 2018-09-17 | 2019-02-01 | 北京邮电大学 | A kind of ordering of optimization preference method of data capture meeting local difference privacy |
CN110990876A (en) * | 2019-12-12 | 2020-04-10 | 安徽理工大学 | Database sensitivity correlation attribute desensitization method based on invariant random response technology |
-
2020
- 2020-11-19 JP JP2022563502A patent/JP7509232B2/en active Active
- 2020-11-19 WO PCT/JP2020/043234 patent/WO2022107284A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109299436A (en) * | 2018-09-17 | 2019-02-01 | 北京邮电大学 | A kind of ordering of optimization preference method of data capture meeting local difference privacy |
CN110990876A (en) * | 2019-12-12 | 2020-04-10 | 安徽理工大学 | Database sensitivity correlation attribute desensitization method based on invariant random response technology |
Non-Patent Citations (1)
Title |
---|
HASEGAWA, SATOSHI: "Proposal of anonymization method by generalization and randomizaiton and how much is explicit identification risk?", IPSJ COMPUTER SECURITY SYMPOSIUM 2019; OCTOBER 21-24, 2019, 14 October 2019 (2019-10-14) - 24 October 2019 (2019-10-24), pages 1520 - 1527, XP009537482 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022107284A1 (en) | 2022-05-27 |
JP7509232B2 (en) | 2024-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230068246A1 (en) | Database utilizing spatial probability models for data compression | |
US10846281B2 (en) | Electronic node and method for maintaining a distributed ledger | |
CN113011593B (en) | Method and system for eliminating quantum measurement noise, electronic device and medium | |
EP2387004B1 (en) | Lossless compression of a structured set of floating point numbers, particularly for CAD systems | |
US10153779B1 (en) | Content-aware compression of floating-point time-series data using multiple prediction functions and estimated bit-saving thresholds | |
CN113646780A (en) | Adaptive error correction in quantum computing | |
WO2022142001A1 (en) | Target object evaluation method based on multi-score card fusion, and related device therefor | |
US11722148B2 (en) | Systems and methods of data compression | |
CN112508199B (en) | Feature selection method and device for cross-feature federal learning and related equipment | |
Di et al. | Optimization of error-bounded lossy compression for hard-to-compress HPC data | |
JP2020053820A (en) | Quantization and encoder creation method, compressor creation method, compressor creation apparatus, and program | |
CN115587630A (en) | Cross-platform quantum device entanglement verification method and device, electronic device and medium | |
CN114185860B (en) | Collusion attack resistant data sharing method and device and electronic equipment | |
Parsonage et al. | Fast generation of spatially embedded random networks | |
Sasaki | Exactly solvable quantum mechanics | |
WO2022107284A1 (en) | Concealment device, concealment method, and program | |
US10553035B2 (en) | Valence based implicit traversal for improved compression of triangular meshes | |
Dranishnykov et al. | Advanced approach for simulation results saving from discrete element method | |
US11928232B1 (en) | Protecting sensitive data from being exposed in graph embedding vectors | |
JP7544274B2 (en) | Accumulation calculation device, accumulation calculation method, and program | |
JP2016170750A (en) | Data management program, information processor and data management method | |
Hajizadeh et al. | Predictive compression of animated 3D models by optimized weighted blending of key‐frames | |
JP7571428B2 (en) | Information processing device, information processing method, and information processing program | |
Chen et al. | Lossless Geometry Compression for Steady-State and Time-Varying Irregular Grids. | |
JP7125649B2 (en) | Encoding device, encoding method and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20962447 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022563502 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20962447 Country of ref document: EP Kind code of ref document: A1 |