WO2022106768A1 - Method for cryogenic separation of a biomethane-based feed stream, method for producing biomethane that includes said cryogenic separation and associated facility - Google Patents

Method for cryogenic separation of a biomethane-based feed stream, method for producing biomethane that includes said cryogenic separation and associated facility Download PDF

Info

Publication number
WO2022106768A1
WO2022106768A1 PCT/FR2021/051967 FR2021051967W WO2022106768A1 WO 2022106768 A1 WO2022106768 A1 WO 2022106768A1 FR 2021051967 W FR2021051967 W FR 2021051967W WO 2022106768 A1 WO2022106768 A1 WO 2022106768A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
methane
enriched
cooled
tank
Prior art date
Application number
PCT/FR2021/051967
Other languages
French (fr)
Inventor
Guénaël PRINCE
Antonio TRUEBA
Original Assignee
Waga Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waga Energy filed Critical Waga Energy
Publication of WO2022106768A1 publication Critical patent/WO2022106768A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/105Removal of contaminants of nitrogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/18Gas cleaning, e.g. scrubbers; Separation of different gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/26Composting, fermenting or anaerobic digestion fuel components or materials from which fuels are prepared
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/48Expanders, e.g. throttles or flash tanks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/543Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/66Landfill or fermentation off-gas, e.g. "Bio-gas"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to the field of biomethane production.
  • the invention relates to a process for the cryogenic separation of a feed stream containing methane, dinitrogen and/or dioxygen.
  • the invention also relates to a method for producing a flow enriched in methane as well as the associated installation.
  • the method of the invention finds a particularly advantageous application in the context of the production of biomethane by purification of biogas from non-hazardous waste storage facilities (ISDND).
  • ISDND non-hazardous waste storage facilities
  • Biogas is recovered in the same way as natural gas; it can, for example, undergo combustion in a boiler to produce heat or be used as fuel in vehicles. Biogas is particularly interesting because it belongs to the category of renewable energies.
  • Biomethane is a biogas produced by a biological process of degradation of organic matter in an anaerobic environment. During its production, biomethane is mixed with carbon dioxide, water vapor and other impurities in varying amounts depending on the organic matter of origin. The main impurities found are hydrogen sulphide, and when the organic matter comes from household or industrial waste, volatile organic compounds (VOCs).
  • VOCs volatile organic compounds
  • Biomethane can be produced in dedicated reactors (otherwise called “digesters”) where the biological reaction takes place, in a perfectly anaerobic medium and with a controlled temperature. It can also be produced naturally and in large quantities in non-hazardous waste storage facilities (ISDND), in which household waste is stored in cells, covered with a membrane when they are full. When the cell is closed, the organic matter methanation process can begin. The biogas thus produced is then withdrawn by suction into a booster via collection pipes introduced into the alveoli, thus creating a slight depression in said alveoli. As these are not perfectly sealed, air is sucked in and ends up in the biogas in varying proportions. The gases in the air are therefore added to the impurities mentioned above and must be removed to purify the biomethane.
  • DND non-hazardous waste storage facilities
  • the level of impurity required may vary. Nevertheless, a typical target for these impurities in the methane-enriched stream is: less than 2% molar carbon dioxide, less than 1% oxygen, and less than 1% nitrogen. When the methane-enriched flow no longer contains carbon dioxide, the level of impurity required is: less than 2.5% molar nitrogen, and less than 1% oxygen.
  • a process making it possible to obtain a good separating power between methane on the one hand and oxygen and nitrogen on the other hand is cryogenic distillation.
  • a distillation column makes it possible to separate the methane at the bottom of the column from the dioxygen and the dinitrogen at the top of the column, thanks to the differences in volatility between these molecules.
  • Document FR 3,051,892 describes a cryogenic separation process by distillation of a mixture of CH, N2 and O2 at low pressure. The yield obtained by this process is limited. Indeed, part of the methane is lost at the level of the vent gas of the column.
  • a solution to improve the yield could be that of recondensing the gas phase obtained after expansion of the flow cooled at the top of the column by means of a condenser.
  • this solution has the disadvantage of requiring a large amount of energy to produce the cold necessary for condensation, which makes it an economically unviable solution.
  • SKIBOROWSKI MIRKO ET AL presents different methodologies for calculating a hybrid process combining distillation and pervaporation membranes in order to optimize its design. Examples of these methodologies relate to the azeotropic distillation for the dehydration of ethanol, the production of MTBE (Methyl tert-butyl ether) and the separation of MTBE from butene and MeOH (methanol), or even the separation of a ternary mixture of acetone, water and IPA (isopropyl booze). None of the cited examples relates specifically to the cryogenic distillation of a ternary oxygen, nitrogen and methane, and its specific difficulties.
  • MTBE Metal tert-butyl ether
  • MeOH MeOH
  • None of the cited examples relates specifically to the cryogenic distillation of a ternary oxygen, nitrogen and methane, and its specific difficulties.
  • the technical problem that the invention proposes to solve is to obtain a higher methane recovery rate than that obtained with existing cryogenic separation techniques, in particular those described in the aforementioned documents, and this, by means of an economically more attractive process.
  • the Applicant has developed a process for the cryogenic separation of a feed stream containing methane, dinitrogen and dioxygen in which:
  • the at least partially condensed cooled feed stream is expanded, which then contains a liquid fraction and a vapor fraction
  • the first vaporized part of the tank flow is introduced at a lower level of the distillation column then it is brought into contact with the liquid fraction of the cooled feed flow at least partially condensed, introduced at an upper level of the distillation column distillation.
  • a flow of vent gas enriched in oxygen and nitrogen compared to the feed flow is withdrawn from the distillation column and heated in the recuperator exchanger.
  • the process is characterized in that: - the heated flow of vent gas is compressed,
  • the flow of compressed vent gas is cooled to ambient temperature, in practice a temperature between -40°C and 45°C,
  • the flow of cooled compressed vent gas is subjected to at least one membrane separation to partially separate the methane from the oxygen and the nitrogen.
  • the membrane separation of the vent gas can be carried out under conditions of temperature but also of pressure similar to those of the feed flow before cooling in the recuperator exchanger, which allows, if necessary, the reinjection of the flow enriched in methane directly into this feed gas, without any additional form of treatment.
  • At least one non-combustible dilution flow and more volatile than oxygen is introduced into the distillation column at at least a level lower than that at which the liquid fraction of the expanded flow is introduced, cooled at least partially condensed, after separation, and a level higher than that at which the first vaporized part of the tank flow is introduced, the dilution flow being formed by the vapor fraction of the expanded flow after separation.
  • the feed flow cooled by heat exchange is at least partially condensed with the first part of the flow of tank, said first part of the tank flow being vaporized in contact with the cooled feed flow.
  • This embodiment makes it possible to transfer the calories from the cooled supply flow to the tank flow. Thus, it is not necessary to provide an external cold source to condense the cooled feed flow or an external heat source to vaporize the tank flow. This embodiment therefore allows a non-negligible energy saving of the process.
  • a membrane system is composed of two compartments separated by at least one membrane.
  • the two compartments are under different pressures to allow molecules to cross the membrane.
  • the flow of compressed vent gas is cooled to a temperature between -40 and 45°C.
  • a membrane suitable for separating at room temperature is selected. Indeed, the temperature of the vent gas flow is adapted to the type of membrane used for the separation. An optimal temperature maximizes the rate of methane recovery by the membrane. Some membranes have maximum efficiency for negative fluid temperatures.
  • the a(N2-CH4) selectivity of the membrane is greater than 1.
  • the affinity of dinitrogen with the membrane is greater than the affinity of the membrane with methane.
  • the dinitrogen molecules will then find it easier to cross the membrane.
  • the flow having crossed the membrane also called permeate, will therefore be rich in nitrogen.
  • the flow that has not crossed the membrane also called retentate, will be rich in methane.
  • This type of membrane is called positive selectivity membrane, as opposed to another type of membrane, called reverse selectivity, whose selectivity a(N2-CH4) is less than 1.
  • the flow having crossed the membrane also called permeate
  • the flow that has not crossed the membrane also called retentate
  • nitrogen will be rich in nitrogen.
  • the membrane can be used to separate several chemical species.
  • the membrane has both an a(N2-CH4) selectivity greater than 1 and an a(C>2-CH4) selectivity greater than 1.
  • the invention also relates to a process for producing biomethane by purification of a feed stream containing methane, dinitrogen and dioxygen implementing the cryogenic separation process described above, in which:
  • a second part of the tank flow is recovered as well as the flow enriched in methane resulting from the membrane separation.
  • liquid methane is produced.
  • the refrigerant is typically liquid nitrogen. It can be in the form of a sacrificial fluid or circulate within a thermodynamic cycle comprising a stage of compression, cooling and expansion of the refrigerant.
  • methane gas is produced.
  • the second part of the tank flow is vaporized in the recovery exchanger so as to recover a flow of gas enriched in methane.
  • the methane-enriched flow from the membrane separation is introduced into the feed flow.
  • the second part of the tank flow circulating in the recovery exchanger absorbs the calories from the feed flow and thus allows it to be cooled. Furthermore, the introduction of the flow enriched in methane resulting from the membrane separation into the flow of the feed gas modifies the composition and the flow of the feed gas of the distillation column, which has the consequence of increasing the methane yield of the process.
  • the membrane is adapted to allow a sufficient quantity of oxygen to pass, preventing the reinjection of the stream enriched in methane in the column feed gas, and containing oxygen, leads to the accumulation of this oxygen in the distillation column.
  • the second part of the tank flow is vaporized in the recovery exchanger so as to recover a flow of gas enriched in methane
  • the flow from the methane-rich tank obtained at the end of the distillation is conditioned to be injected into the town gas network. Then, the methane recovered during the membrane separation is injected into the conditioned tank flow.
  • This second option also makes it possible to increase the overall yield of the distillation.
  • the invention relates to an installation for the production of biomethane by purification of a feed stream containing methane, dinitrogen and dioxygen implementing the method according to the first embodiment of the invention and/or the first option of the second embodiment and comprising:
  • a heat exchanger capable of cooling a supply flow; heating the vent gas flow and vaporizing the second part of the tank flow,
  • the heat exchanger capable of cooling the feed flow also makes it possible to vaporize the second part of the tank flow and said installation further comprises :
  • the installation may also comprise a reboiler, said reboiler being capable of at least partially condensing the cooled flow and of vaporizing the first part of the vessel flow.
  • the reboiler is a heat exchanger which makes it possible to achieve thermal integration by the transfer of calories from the cooled feed flow to the tank flow. Thus, it is no longer necessary to provide an external cold source to condense the cooled feed flow or an external heat source to vaporize the tank flow.
  • the reboiler can take the form of an exchanger independent of the distillation column. In this case, the cooled flow and the first part of the bottom flow circulate countercurrently in pipes within the reboiler. Alternatively, the reboiler is integrated into the bottom of the distillation column. In this case, the cooled flow and the liquid methane coming from the bath located in the column vessel circulate in an exchanger integrated in the column vessel.
  • the installation comprises a pipe capable of transporting the vapor fraction from the separator drum into the column at at least one level lower than that at which the liquid fraction is introduced.
  • the separating membranes are made of a material included in the group including polyimides, cellulose acetate, polycarbonates, polysulfone, poly(dimethylsiloxane-dimethylstyrene), poly(dimethylsiloxane), poly(siloctylene-siloxane), poly(p- silphenylene-siloxane), polyamide-polyester copolymer.
  • the methane recovery means include a valve capable of varying the pressure in the membrane system.
  • the means for evacuating the nitrogen and the oxygen include a valve capable of adjusting the back pressure of the membrane system.
  • FIG. 1 is a diagram of a cryogenic separation unit integrated into a plant for the production of bio methane by biogas purification comprising a membrane system according to a first embodiment.
  • FIG.2 is a diagram of a cryogenic separation unit integrated into an installation for the production of bio methane by biogas purification comprising a membrane system according to a second embodiment.
  • FIGS 1 and 2 schematically illustrate a cryogenic separation unit integrated into a bio methane production facility by purification of a feed stream containing methane, dinitrogen and/or dioxygen, comprising a membrane system according to one of two embodiments.
  • the installation essentially comprises an exchanger (2), a distillation column (26), a compressor and its cooler (13 and 14), and a membrane system (15).
  • the exchanger (2) is fed by a supply gas flow (1).
  • This has a pressure between 5 and 25 bar absolute, preferably a pressure between 8 and 15 bar absolute, a temperature between 273 and 313K, typically 288K, and comprises between 50 and 100% methane, up to 50 % nitrogen and up to 4% oxygen.
  • the feed gas flow (1) is for example obtained at the outlet of a purification unit by adsorption and/or membrane separation, not shown in FIGS. 1 and 2, making it possible to lower the content of organic compounds volatiles (VOC) and CO2 at a value less than or equal to 50 ppmv.
  • the feed gas flow (1) is cooled and partially liquefied to a temperature of between 100 and 200 K, in a heat exchanger (2) by exchange with the tank flow (9), liquid and enriched in methane, and the vent flow (11), enriched in O2 and N2 and depleted in methane, resulting from the distillation.
  • This embodiment is a thermal integration which makes it possible to transfer the calories from the supply flow (1) to the tank flow (9) and the vent flow (11).
  • the supply gas flow (1) may also or alternatively be cooled by heat exchange with a refrigerant.
  • the cooled flow (8) is then partially condensed.
  • the cooled flow (8) is sent to a reboiler (3) where it is cooled to a lower temperature and partially or totally liquefied by heat exchange with part (34) of the vessel flow ( 24), up to a temperature slightly higher than that of the tank flow (24).
  • the temperature of the cooled flow is between 90 and 130K.
  • This embodiment is also a thermal integration which at the same time allows the vessel flow (24) to heat up and boil in order to generate methane-rich vapor which will be used for distillation.
  • the reboiler (3) can take the form of an exchanger independent of the distillation column (26), as illustrated in FIGS. 1 and 2.
  • the cooled flow (8) and the part (34) of the tank flow (24) circulate in countercurrent in pipes within the reboiler (3).
  • the reboiler (3) is integrated into the tank (24) of the distillation column (26).
  • the partially or totally liquid flow (25) is then expanded in an expansion device (4) to the operating pressure of the distillation column (26), between 1 and 5 bars absolute.
  • the expansion device (4) is generally a valve producing a pronounced cooling of the expanded fluid (Joule-Thomson effect). In practice, the temperature of the expanded fluid is between 90K and 130K.
  • the expanded flow (27) contains 2 fractions, respectively a predominantly liquid fraction, and a vapor fraction. The liquid phase is then separated from the vapor fraction.
  • the expanded flow (27) is injected into a vessel for separating liquid and vapor fractions (5) located at the top of the distillation column (26).
  • a flow of liquid nitrogen from a liquid nitrogen storage not shown in Figures 1 and 2 is mixed with the expanded flow (27), before introduction into the separation drum (5).
  • the liquid nitrogen is injected directly into the separation drum (5).
  • the liquid nitrogen makes it possible to dilute the expanded flow (27) and also acts as a cold source making it possible to condense the vapor at the top of the column (26).
  • the liquid fraction (7) coming from the separation drum (5) is then introduced into at one level of the distillation column (26), in practice in the upper part so as to run off the packing of the column (26).
  • the vapor fraction (6) is introduced into the lower part of the packing of the distillation column (26), more precisely at a level below which the liquid fraction (7) is introduced to constitute the sweep gas avoiding the concentration of C>2, problematic in the packing because it can lead to the formation of mixtures of methane and oxygen at explosive concentrations in the distillation column.
  • Distillation thus produces two flows: a flow in liquid form enriched in methane (24), located in the column tank (26) and a flow depleted in methane (11), but rich in O2 and N2, at the top of the column. distillation column (26).
  • a fraction of the liquid flow enriched in methane (24) whose temperature is between 90K and 130K is sent to the exchanger (2) to be vaporized and form a gas flow (10).
  • This gas flow (10) comprises between 95 and 100% methane and is at a pressure of between 1 and 5 bars absolute, and at ambient temperature, typically between 273K and 313K, advantageously 288K.
  • This gas flow (10) is recovered to be stored, as shown in Figure 1 or it can be injected directly into the natural gas network, as shown in Figure 2, via compression by the compressor (27 ) and cooling by the exchanger (28).
  • This gas at the column outlet has a temperature of between 90K and 130K and a pressure of between 1 and 5 bar absolute.
  • This vent gas (11) circulates against the current in the exchanger (2) and heats up.
  • the gas has a temperature between 273K and 313K then it is compressed in a compressor (13) to a pressure between 5 and 20 bars absolute and advantageously between 8 and 15 bars absolute, i.e. the same pressure as the supply flow (1).
  • This stream is cooled in an exchanger (14) to a temperature between -40 and 45° C. to then be sent to a membrane system (15).
  • the cooling temperature in the exchanger (14) is chosen according to the nature of the membrane so as to optimize its separating properties.
  • the membrane system (15) is composed of two compartments (30, 31) subjected to different pressures, separated by at least one gas permeation membrane (33).
  • the gas molecules dissolve on the membranes (33) then cross them by diffusion.
  • the membranes (33) making up the membrane system (15) are chosen according to their affinity with the gaseous species considered.
  • the flow having crossed the membrane (33) constitutes the permeate (30), and the flow which has not crossed the membrane (33) constitutes the retentate (31).
  • the first parameter is the pressure difference applied between the two compartments (30, 31) of the membrane system (15). Indeed, the higher the pressure difference (APi) between the two compartments (30, 31), the higher the flow rate (Qi).
  • the second parameter is the permeability coefficient (Permi), ie the ability of a species (i) to easily cross the membrane (33).
  • the choice of membranes meets a criterion of good separation between the CP and the O2 and the N2 present in the vent flow (29).
  • membranes (33) There are two types of membranes (33) which correspond to these criteria: membranes (33) with positive selectivity and membranes (33) with negative or inverse selectivity.
  • the membranes (33) with positive selectivity have a selectivity coefficient a(O 2 -CH 4 ) and a(N2-CH4) greater than unity.
  • the affinity of the gaseous species of dioxygen and dinitrogen with the membrane (33) is much better than that of methane. Dinitrogen and oxygen will therefore find it easier to cross the membrane (33).
  • the permeate (30) will be enriched in O2 and N2 while the retentate (31) will be enriched in CP.
  • the membranes (33) with negative selectivity have a selectivity coefficient a(C>2-CP14) and a(N2-CP) of less than unity.
  • the affinity of methane with the membrane (33) is much better than that of oxygen and nitrogen. Methane will therefore find it easier to cross the membrane (33).
  • the permeate (30) will be enriched in methane while the retentate (31) will be enriched in O2 and N2.
  • the membranes (33) made of polyimide (6FDA-BAPIF) have an a(N2-CH4) selectivity of 2.3.
  • the membranes (33) can be made of a material included in the group including polyimides, cellulose acetate, polycarbonates, polysulfone, poly(dimethylsiloxane-dimethylstyrene), poly(dimethylsiloxane), poly(siloctylene-siloxane), poly( p-silphenylene-siloxane), polyamide-polyester copolymer...
  • the membrane (33) used is of positive selectivity, it is the retentate (31) which is enriched in CP and which is recovered.
  • the permeate (30) which is enriched in CP and which is recovered.
  • the stream enriched in CH4 (16) is reinjected into the feed flow (1), thus forming a recycling loop making it possible to recover part of the methane flow. contained in the vent gas (12) and to reinject it into the supply flow (1) of methane.
  • the stream enriched in CH4 (16) is injected into the flow of purified methane (10) from the distillation.
  • the flow enriched in O2 and N2 and also comprising the loss of CH4 from the process is sent to a second control valve (20) making it possible to adjust the back pressure of the membrane system (15).
  • the expanded stream (21) is then vented (23) to the atmosphere or to an oxidizer to oxidize the lost methane before venting the stream to the atmosphere.
  • a bypass line comprising a valve (22) makes it possible to evacuate an excess of vent gas which could not be treated by the membrane system (15).
  • the liquid methane (24) is recovered directly from the tank outlet.
  • the installation further comprises means for cooling the feed flow (1), in the exchanger (2), which are for example in the form of a refrigerant flowing counter-current to the feed stream (1) or a refrigerant bath in which the feed stream (1) circulates.
  • the refrigerant is preferably colder than the supply flow (1) to recover the calories.
  • the refrigerant can be in the form of a sacrificial fluid or be cooled in a closed thermodynamic cycle comprising a stage of compression, cooling and expansion of the refrigerant.
  • the following material balance is given as an indication for the overall system coupling a distillation and a membrane system (15) as illustrated in FIG. 1.
  • the waste gas is the evacuated stream (23), which contains 7.2% CH4.
  • the methane recovery rate is then 96.75%.
  • the formula for calculating the methane yield is given below, for a system comprising an inlet F (1), and two outputs: a vent V (19) and a product P (10).
  • the waste gas is the vent gas (11), which contains 12% CPU, therefore a higher concentration of CP than the system coupling the distillation and the membranes.
  • the methane recovery rate is therefore 92%.
  • the formula for calculating the methane yield is identical, for a system comprising an inlet F (1), and two outlets: a vent V (12) and a product P (10).
  • the invention makes it possible to obtain a higher methane recovery rate than existing cryogenic separation techniques, while avoiding the generation of an explosive mixture in the distillation.

Abstract

Method for cryogenic separation of a feed stream containing methane, nitrogen and/or oxygen, characterised in that the heated stream of vent gas (11) is compressed, the stream of compressed vent gas is cooled, the stream of cooled compressed vent gas (29) is subjected to at least one membrane separation (15) to partially separate the methane from the oxygen and the nitrogen.

Description

Description Description
Titre de l'invention : Procédé de séparation cryogénique d'un débit d'alimentation à base de biométhane, procédé de production de biométhane intégrant ladite séparation cryogénique et installation associée.Title of the invention: Process for cryogenic separation of a feed stream based on biomethane, process for producing biomethane integrating said cryogenic separation and associated installation.
Domaine technique Technical area
[0001] La présente invention se rapporte au domaine de la production de biométhane. The present invention relates to the field of biomethane production.
[0002] En particulier, l’invention concerne un procédé de séparation cryogénique d’un débit d’alimentation contenant du méthane, du diazote et/ou du dioxygène. L’invention concerne également un procédé de production d’un débit enrichi en méthane ainsi que l’installation associée. [0002] In particular, the invention relates to a process for the cryogenic separation of a feed stream containing methane, dinitrogen and/or dioxygen. The invention also relates to a method for producing a flow enriched in methane as well as the associated installation.
[0003] Le procédé de l’invention trouve une application particulièrement avantageuse dans le cadre de la production de biométhane par épuration de biogaz issu d’installations de stockage de déchets non-dangereux (ISDND). The method of the invention finds a particularly advantageous application in the context of the production of biomethane by purification of biogas from non-hazardous waste storage facilities (ISDND).
Technique antérieure Prior technique
[0004] Les biogaz sont valorisés de la même manière que le gaz naturel, ils peuvent par exemple subir une combustion dans une chaudière pour produire de la chaleur ou être utilisés comme carburants dans les véhicules. Les biogaz sont particulièrement intéressants car ils appartiennent à la catégorie des énergies renouvelables. [0004] Biogas is recovered in the same way as natural gas; it can, for example, undergo combustion in a boiler to produce heat or be used as fuel in vehicles. Biogas is particularly interesting because it belongs to the category of renewable energies.
[0005] Le biométhane est un biogaz produit par un processus biologique de dégradation de la matière organique en milieu anaérobie. Lors de sa production, le biométhane est mélangé à du dioxyde de carbone, de la vapeur d’eau et d’autres impuretés en quantités variables selon la matière organique d’origine. Les impuretés que l’on retrouve principalement sont le sulfure d’hydrogène, et lorsque la matière organique provient de déchets ménagers ou industriels, des composés organiques volatiles (COV). [0005] Biomethane is a biogas produced by a biological process of degradation of organic matter in an anaerobic environment. During its production, biomethane is mixed with carbon dioxide, water vapor and other impurities in varying amounts depending on the organic matter of origin. The main impurities found are hydrogen sulphide, and when the organic matter comes from household or industrial waste, volatile organic compounds (VOCs).
[0006] Le biométhane peut être produit dans des réacteurs dédiés (autrement appelés « digesteurs ») où s’opère la réaction biologique, en milieu parfaitement anaérobie et avec une température contrôlée. Il peut aussi être produit naturellement et en quantités importantes dans les installations de stockage de déchets non dangereux (ISDND), dans lesquelles les déchets ménagers sont stockés dans des alvéoles, recouvertes d’une membrane lorsque celles-ci sont pleines. Avec la fermeture de l’alvéole, peut débuter le processus de méthanisation de la matière organique. Le biogaz ainsi produit est ensuite prélevé par aspiration dans un surpresseur via des tuyaux de collecte introduits dans les alvéoles, créant ainsi une légère dépression dans lesdites alvéoles. Celles-ci n’étant pas parfaitement étanches, de l’air est aspiré et se retrouve dans le biogaz en proportion variable. Les gaz de l’air s’ajoutent donc aux impuretés précédemment citées et doivent être enlevés pour purifier le biométhane. [0006] Biomethane can be produced in dedicated reactors (otherwise called "digesters") where the biological reaction takes place, in a perfectly anaerobic medium and with a controlled temperature. It can also be produced naturally and in large quantities in non-hazardous waste storage facilities (ISDND), in which household waste is stored in cells, covered with a membrane when they are full. When the cell is closed, the organic matter methanation process can begin. The biogas thus produced is then withdrawn by suction into a booster via collection pipes introduced into the alveoli, thus creating a slight depression in said alveoli. As these are not perfectly sealed, air is sucked in and ends up in the biogas in varying proportions. The gases in the air are therefore added to the impurities mentioned above and must be removed to purify the biomethane.
[0007] Il existe cependant d’autres sources de gaz, d’origine non renouvelable, contenant du méthane, comme le gaz de mines. Ce dernier est produit par dégazage des couches de charbon dans des mines abandonnées, et se mélangeant également à l’air lorsqu’il s’accumule dans les vides miniers. Dans l’objectif de valoriser ce gaz, les impuretés qu’il contient doivent également être éliminées. [0007] There are, however, other sources of gas, of non-renewable origin, containing methane, such as mine gas. The latter is produced by outgassing coal seams in abandoned mines, and also mixing with air as it accumulates in mine voids. In order to recover this gas, the impurities it contains must also be eliminated.
[0008] Dans tous les cas, afin d’obtenir un débit enrichi en méthane, il est nécessaire d’enlever les impuretés que sont le dioxyde de carbone, le diazote et le dioxygène, à un niveau tel que le débit enrichi en méthane ainsi produit puisse être valorisé sous forme de gaz naturel, de gaz naturel liquéfié, ou de carburant véhicule. Selon les utilisations mentionnées plus haut, le niveau d’impureté requis peut varier. Néanmoins, une cible typique pour ces impuretés dans le débit enrichi en méthane est : moins de 2% molaire de dioxyde de carbone, moins de 1 % d’oxygène, et moins de 1% d’azote. Lorsque le débit enrichi en méthane ne contient plus de dioxyde de carbone, le niveau d’impureté requis est : moins de 2,5% molaire d’azote, et moins de 1% d’oxygène. [0008] In all cases, in order to obtain a flow enriched in methane, it is necessary to remove the impurities which are carbon dioxide, nitrogen and oxygen, to a level such that the flow enriched in methane as well product can be recovered in the form of natural gas, liquefied natural gas, or vehicle fuel. Depending on the uses mentioned above, the level of impurity required may vary. Nevertheless, a typical target for these impurities in the methane-enriched stream is: less than 2% molar carbon dioxide, less than 1% oxygen, and less than 1% nitrogen. When the methane-enriched flow no longer contains carbon dioxide, the level of impurity required is: less than 2.5% molar nitrogen, and less than 1% oxygen.
[0009] Un procédé permettant d’obtenir un bon pouvoir séparateur entre le méthane d’une part et le dioxygène et le diazote d’autre part est la distillation cryogénique. Une colonne de distillation permet de séparer le méthane en cuve de colonne du dioxygène et du diazote en tête de colonne, grâce aux différences de volatilité entre ces molécules. [0009] A process making it possible to obtain a good separating power between methane on the one hand and oxygen and nitrogen on the other hand is cryogenic distillation. A distillation column makes it possible to separate the methane at the bottom of the column from the dioxygen and the dinitrogen at the top of the column, thanks to the differences in volatility between these molecules.
[0010] Le document FR 3,051 ,892 décrit un procédé de séparation cryogénique par distillation d’un mélange de CH , N2 et O2 à basse pression. Le rendement obtenu par ce procédé est limité. En effet, une partie du méthane est perdue au niveau du gaz d’évent de la colonne. [0010] Document FR 3,051,892 describes a cryogenic separation process by distillation of a mixture of CH, N2 and O2 at low pressure. The yield obtained by this process is limited. Indeed, part of the methane is lost at the level of the vent gas of the column.
[0011] Une solution pour améliorer le rendement pourrait être celle de recondenser la phase gazeuse obtenue après détente du débit refroidi en tête de colonne au moyen d'un condenseur. Cette solution présente toutefois l’inconvénient de nécessiter une quantité importante d'énergie pour produire le froid nécessaire à la condensation, ce qui en fait une solution économiquement pas viable. [0011] A solution to improve the yield could be that of recondensing the gas phase obtained after expansion of the flow cooled at the top of the column by means of a condenser. However, this solution has the disadvantage of requiring a large amount of energy to produce the cold necessary for condensation, which makes it an economically unviable solution.
[0012] SKIBOROWSKI MIRKO ET AL (XP55822279A) présente différentes méthodologies de calcul d’un procédé hybride combinant distillation et membranes de pervaporation afin d’en optimiser le design. Les exemples de ces méthodologies portent sur la distillation azéotropique de déshydratation de l’éthanol, la production de MTBE (Methyl tert-butyl ether) et la séparation du MTBE du butène et du MeOH (méthanol), ou encore la séparation d’un mélange ternaire acétone, eau et IPA (isopropyl alcohol). Aucun des exemples cités ne concerne spécifiquement la distillation cryogénique d’un ternaire oxygène, azote et méthane, et ses difficultés spécifiques. [0012] SKIBOROWSKI MIRKO ET AL (XP55822279A) presents different methodologies for calculating a hybrid process combining distillation and pervaporation membranes in order to optimize its design. Examples of these methodologies relate to the azeotropic distillation for the dehydration of ethanol, the production of MTBE (Methyl tert-butyl ether) and the separation of MTBE from butene and MeOH (methanol), or even the separation of a ternary mixture of acetone, water and IPA (isopropyl booze). None of the cited examples relates specifically to the cryogenic distillation of a ternary oxygen, nitrogen and methane, and its specific difficulties.
[0013] Le document US 6 035 641 invite à substituer la distillation cryogénique par des membranes de séparation dans un procédé de séparation du méthane et de l’azote, sans présence d’oxygène et sans donc prendre considération les difficultés spécifiques que celui-ci apporte à la séparation. [0013] Document US Pat. No. 6,035,641 suggests replacing cryogenic distillation with separation membranes in a process for separating methane and nitrogen, without the presence of oxygen and therefore without taking into consideration the specific difficulties that this brings to separation.
[0014] Le problème technique que se propose de résoudre l’invention est d’obtenir un taux de récupération du méthane plus élevé que celui obtenu avec les techniques de séparation cryogéniques existantes, en particulier celles décrites dans les documents précités, et ce, moyennant un procédé économiquement plus intéressant. The technical problem that the invention proposes to solve is to obtain a higher methane recovery rate than that obtained with existing cryogenic separation techniques, in particular those described in the aforementioned documents, and this, by means of an economically more attractive process.
Solution technique Technical solution
[0015] Pour répondre à ce problème, le Demandeur a mis au point un procédé de séparation cryogénique d'un débit d'alimentation contenant du méthane, du diazote et du dioxygène dans lequel : To address this problem, the Applicant has developed a process for the cryogenic separation of a feed stream containing methane, dinitrogen and dioxygen in which:
- on refroidit le débit d'alimentation dans un échangeur récupérateur, - the feed flow is cooled in a recuperator exchanger,
- on condense au moins partiellement le débit d’alimentation refroidi, - the cooled feed flow is at least partially condensed,
- on détend le débit d’alimentation refroidi au moins partiellement condensé, lequel contient alors une fraction liquide et une fraction vapeur, - the at least partially condensed cooled feed stream is expanded, which then contains a liquid fraction and a vapor fraction,
- on sépare la fraction liquide de la fraction vapeur du débit détendu, - the liquid fraction is separated from the vapor fraction of the expanded flow,
- on envoie la fraction liquide du débit d’alimentation refroidi au moins partiellement condensé à un niveau supérieur d'une colonne de distillation, - the liquid fraction of the cooled at least partially condensed feed stream is sent to an upper level of a distillation column,
- on soutire de la colonne de distillation un débit de cuve, le débit de cuve étant enrichi en méthane par rapport au débit d'alimentation, - a tank flow is withdrawn from the distillation column, the tank flow being enriched in methane with respect to the feed flow,
- on vaporise une première partie du débit de cuve, - a first part of the tank flow is vaporized,
- on introduit la première partie vaporisée du débit de cuve à un niveau inférieur de la colonne de distillation puis on la met en contact avec la fraction liquide du débit d’alimentation refroidi au moins partiellement condensé, introduite à un niveau supérieur de la colonne de distillation. - the first vaporized part of the tank flow is introduced at a lower level of the distillation column then it is brought into contact with the liquid fraction of the cooled feed flow at least partially condensed, introduced at an upper level of the distillation column distillation.
- on soutire de la colonne de distillation et on réchauffe dans l’échangeur récupérateur un débit de gaz d’évent enrichi en oxygène et en azote par rapport au débit d'alimentation. - a flow of vent gas enriched in oxygen and nitrogen compared to the feed flow is withdrawn from the distillation column and heated in the recuperator exchanger.
Le procédé se caractérise en ce que : - on comprime le débit réchauffé de gaz d’évent, The process is characterized in that: - the heated flow of vent gas is compressed,
- on refroidit le débit de gaz d’évent comprimé à température ambiante, en pratique une température comprise entre -40°C et 45°C, - the flow of compressed vent gas is cooled to ambient temperature, in practice a temperature between -40°C and 45°C,
- on soumet le débit de gaz d’évent comprimé refroidi à au moins une séparation membranaire pour séparer partiellement le méthane du dioxygène et du diazote. - the flow of cooled compressed vent gas is subjected to at least one membrane separation to partially separate the methane from the oxygen and the nitrogen.
[0016] En d’autres termes, il a été trouvé que la compression du gaz d’évent en sortie de colonne, son refroidissement à température ambiante, sa filtration par un système membranaire et enfin la réinjection du débit enrichi en méthane issu de la séparation membranaire dans le débit d’alimentation ou le débit de gaz enrichi en méthane issu de la distillation permet d’accroître notablement le taux de récupération en méthane du procédé global, c’est-à-dire de diminuer les pertes en méthane du procédé. En outre et surtout, l’augmentation de consommation énergétique du procédé liée au compresseur de gaz de la séparation membranaire est plus faible que si on avait ajouté un condenseur en tête de colonne pour recondenser le méthane, le condenseur fonctionnant avec un système de production de froid cryogénique très énergivore. Enfin, la séparation membranaire du gaz d’évent peut être effectuée dans des conditions de température mais également de pression similaires à celles du débit d’alimentation avant refroidissement dans l’échangeur récupérateur, ce qui permet le cas échéant la réinjection du flux enrichi en méthane directement dans ce gaz d’alimentation, sans autre forme de traitement supplémentaire. [0016] In other words, it has been found that the compression of the vent gas at the column outlet, its cooling to ambient temperature, its filtration by a membrane system and finally the reinjection of the methane-enriched flow from the membrane separation in the feed flow or the flow of methane-enriched gas from the distillation makes it possible to significantly increase the methane recovery rate of the overall process, that is to say to reduce the methane losses of the process . In addition and above all, the increase in energy consumption of the process linked to the membrane separation gas compressor is lower than if a condenser had been added at the top of the column to recondense the methane, the condenser operating with a system for producing energy-intensive cryogenic cold. Finally, the membrane separation of the vent gas can be carried out under conditions of temperature but also of pressure similar to those of the feed flow before cooling in the recuperator exchanger, which allows, if necessary, the reinjection of the flow enriched in methane directly into this feed gas, without any additional form of treatment.
[0017] Dans la suite de la description, par température ambiante, lorsqu'on parle d'une installation du type de celle de l'invention, on désigne une température comprise entre - 40°C et +45°C, soit entre 233K et 318K. In the rest of the description, by ambient temperature, when we speak of an installation of the type of that of the invention, we designate a temperature between - 40 ° C and + 45 ° C, i.e. between 233K and 318K.
[0018] Dans un mode de réalisation spécifique, on introduit dans la colonne de distillation au moins un débit de dilution non combustible et plus volatil que l'oxygène à au moins un niveau inférieur à celui auquel est introduit la fraction liquide du débit détendu, refroidi au moins partiellement condensé, après séparation, et un niveau supérieur à celui auquel on introduit la première partie vaporisée du débit de cuve, le débit de dilution étant formé par la fraction vapeur du débit détendu après séparation. In a specific embodiment, at least one non-combustible dilution flow and more volatile than oxygen is introduced into the distillation column at at least a level lower than that at which the liquid fraction of the expanded flow is introduced, cooled at least partially condensed, after separation, and a level higher than that at which the first vaporized part of the tank flow is introduced, the dilution flow being formed by the vapor fraction of the expanded flow after separation.
[0019] Ce débit de dilution permet d’éviter la concentration en O2 dans le garnissage, car ce dernier peut conduire à la formation de mélanges de gaz aux concentrations explosives dans la colonne de distillation. [0019] This dilution flow makes it possible to avoid the concentration of O2 in the packing, because the latter can lead to the formation of gas mixtures with explosive concentrations in the distillation column.
[0020] Selon un mode de réalisation préférentiel, on condense au moins partiellement le débit d'alimentation refroidi par échange de chaleur avec la première partie du débit de cuve, ladite première partie du débit de cuve étant vaporisée au contact du débit d'alimentation refroidi. According to a preferred embodiment, the feed flow cooled by heat exchange is at least partially condensed with the first part of the flow of tank, said first part of the tank flow being vaporized in contact with the cooled feed flow.
[0021] Ce mode de réalisation permet de transférer les calories du débit d'alimentation refroidi vers le débit de cuve. Ainsi, il n’est pas nécessaire d’apporter une source de froid externe pour condenser le débit d'alimentation refroidi ou une source de chaleur externe pour vaporiser le débit de cuve. Ce mode de réalisation permet donc une économie d’énergie non négligeable du procédé. This embodiment makes it possible to transfer the calories from the cooled supply flow to the tank flow. Thus, it is not necessary to provide an external cold source to condense the cooled feed flow or an external heat source to vaporize the tank flow. This embodiment therefore allows a non-negligible energy saving of the process.
[0022] Selon l’invention, un système membranaire est composé de deux compartiments séparés par au moins une membrane. Les deux compartiments sont soumis à des pressions différentes pour permettre aux molécules de traverser la membrane. According to the invention, a membrane system is composed of two compartments separated by at least one membrane. The two compartments are under different pressures to allow molecules to cross the membrane.
[0023] En pratique, on refroidit le débit de gaz d’évent comprimé à une température comprise entre -40 et 45°C. In practice, the flow of compressed vent gas is cooled to a temperature between -40 and 45°C.
[0024] Pour être en mesure de séparer au moins partiellement le méthane du dioxygène et du diazote du débit de gaz d’évent à température ambiante, on sélectionne une membrane adaptée pour séparer à température ambiante. En effet, la température du débit de gaz d’évent est adaptée au type de membrane utilisé pour la séparation. Une température optimale permet de maximiser le taux de récupération du méthane par la membrane. Certaines membranes ont une efficacité maximale pour des températures de fluide négatives. [0024] To be able to at least partially separate the methane from the oxygen and nitrogen from the vent gas flow at room temperature, a membrane suitable for separating at room temperature is selected. Indeed, the temperature of the vent gas flow is adapted to the type of membrane used for the separation. An optimal temperature maximizes the rate of methane recovery by the membrane. Some membranes have maximum efficiency for negative fluid temperatures.
[0025] Selon un mode de réalisation préférentiel, la sélectivité a(N2-CH4) de la membrane est supérieure à 1. According to a preferred embodiment, the a(N2-CH4) selectivity of the membrane is greater than 1.
[0026] Ainsi, l’affinité du diazote avec la membrane est plus grande que l’affinité de la membrane avec le méthane. Les molécules de diazote auront alors plus de facilités à traverser la membrane. Le flux ayant traversé la membrane, aussi appelé perméat, sera donc riche en diazote. Le flux n’ayant pas traversé la membrane, aussi appelé rétentat, sera, quant à lui, riche en méthane. Thus, the affinity of dinitrogen with the membrane is greater than the affinity of the membrane with methane. The dinitrogen molecules will then find it easier to cross the membrane. The flow having crossed the membrane, also called permeate, will therefore be rich in nitrogen. The flow that has not crossed the membrane, also called retentate, will be rich in methane.
[0027] Ce type de membrane est appelé membrane à sélectivité positive, par opposition à un autre type de membrane, dite à sélectivité inverse, dont la sélectivité a(N2-CH4) est inférieure à 1. Dans ce cas, le flux ayant traversé la membrane, aussi appelé perméat, sera riche en méthane et le flux n’ayant pas traversé la membrane, aussi appelé rétentat, sera riche en diazote. This type of membrane is called positive selectivity membrane, as opposed to another type of membrane, called reverse selectivity, whose selectivity a(N2-CH4) is less than 1. In this case, the flow having crossed the membrane, also called permeate, will be rich in methane and the flow that has not crossed the membrane, also called retentate, will be rich in nitrogen.
[0028] En variante, la membrane peut être utilisée pour séparer plusieurs espèces chimiques. Dans un mode de réalisation préférentiel, la membrane possède à la fois une sélectivité a(N2-CH4) supérieure à 1 et une sélectivité a(C>2-CH4) supérieure à 1. [0029] L’invention concerne également un procédé de production de biométhane par épuration d’un débit d’alimentation contenant du méthane, du diazote et du dioxygène mettant en oeuvre le procédé de séparation cryogénique précédemment décrit, dans lequel : [0028] As a variant, the membrane can be used to separate several chemical species. In a preferred embodiment, the membrane has both an a(N2-CH4) selectivity greater than 1 and an a(C>2-CH4) selectivity greater than 1. The invention also relates to a process for producing biomethane by purification of a feed stream containing methane, dinitrogen and dioxygen implementing the cryogenic separation process described above, in which:
- on soumet ledit débit d’alimentation contenant du méthane, du diazote et du dioxygène à épurer audit procédé de séparation cryogénique, et - subjecting said feed stream containing methane, nitrogen and oxygen to be purified to said cryogenic separation process, and
- on récupère une seconde partie du débit de cuve ainsi que le débit enrichi en méthane issu de la séparation membranaire. - A second part of the tank flow is recovered as well as the flow enriched in methane resulting from the membrane separation.
[0030] Ce procédé permet d’augmenter le taux de récupération du méthane. Ainsi, le méthane récupéré peut être utilisé de plusieurs manières. [0030] This process makes it possible to increase the methane recovery rate. Thus, the recovered methane can be used in several ways.
Dans un premier mode de réalisation, on produit du méthane liquide. In a first embodiment, liquid methane is produced.
Pour ce faire, To do this,
- on récupère la seconde partie du débit de cuve sous forme liquide, - the second part of the tank flow is recovered in liquid form,
- on refroidit le débit d'alimentation dans l’échangeur récupérateur avec un fluide frigorigène provenant d’une source extérieure, et - the feed flow in the recuperator exchanger is cooled with a refrigerant coming from an external source, and
- on introduit le débit enrichi en méthane issu de la séparation membranaire dans le débit d’alimentation. - the flow enriched in methane resulting from the membrane separation is introduced into the feed flow.
[0031] Le fluide frigorigène est typiquement de l’azote liquide. Il peut se présenter sous la forme d’un fluide sacrificiel ou circuler au sein d’un cycle thermodynamique comprenant une étape de compression, de refroidissement et de détente du fluide frigorigène. The refrigerant is typically liquid nitrogen. It can be in the form of a sacrificial fluid or circulate within a thermodynamic cycle comprising a stage of compression, cooling and expansion of the refrigerant.
[0032] Dans un deuxième mode de réalisation, on produit du méthane gazeux. In a second embodiment, methane gas is produced.
[0033] Selon une première option, on vaporise la seconde partie du débit de cuve dans l’échangeur récupérateur de sorte à récupérer un débit de gaz enrichi en méthane. Parallèlement, on introduit le débit enrichi en méthane issu de la séparation membranaire dans le débit d’alimentation. According to a first option, the second part of the tank flow is vaporized in the recovery exchanger so as to recover a flow of gas enriched in methane. At the same time, the methane-enriched flow from the membrane separation is introduced into the feed flow.
[0034] Dans cette première option, la seconde partie du débit de cuve circulant dans l’échangeur récupérateur absorbe les calories du débit d’alimentation et permet ainsi de le refroidir. Par ailleurs, l’introduction du débit enrichi en méthane issu de la séparation membranaire dans le débit du gaz d’alimentation modifie la composition et le débit du gaz d’alimentation de la colonne à distiller, ce qui a pour conséquence d’accroître le rendement en méthane du procédé. In this first option, the second part of the tank flow circulating in the recovery exchanger absorbs the calories from the feed flow and thus allows it to be cooled. Furthermore, the introduction of the flow enriched in methane resulting from the membrane separation into the flow of the feed gas modifies the composition and the flow of the feed gas of the distillation column, which has the consequence of increasing the methane yield of the process.
[0035] Néanmoins, pour éviter le risque d’explosion dans la colonne de distillation qui pourrait survenir suite à un enrichissement en O2, la membrane est adaptée pour laisser passer une quantité d’oxygène suffisante évitant que la réinjection du flux enrichi en méthane dans le gaz d’alimentation de la colonne, et contenant de l’oxygène, conduise à l’accumulation de cet oxygène dans la colonne de distillation. [0035] Nevertheless, to avoid the risk of explosion in the distillation column which could occur following an enrichment in O2, the membrane is adapted to allow a sufficient quantity of oxygen to pass, preventing the reinjection of the stream enriched in methane in the column feed gas, and containing oxygen, leads to the accumulation of this oxygen in the distillation column.
[0036] Selon une seconde option, [0036] According to a second option,
- on vaporise la seconde partie du débit de cuve dans l’échangeur récupérateur de sorte à récupérer un débit de gaz enrichi en méthane, - the second part of the tank flow is vaporized in the recovery exchanger so as to recover a flow of gas enriched in methane,
- on comprime le débit de gaz enrichi en méthane, - the flow of gas enriched in methane is compressed,
- on refroidit le débit de gaz comprimé enrichi en méthane, - the flow of compressed gas enriched in methane is cooled,
- on introduit le débit enrichi en méthane issu de la séparation membranaire dans le débit de gaz comprimé refroidi, pour former un débit de méthane final, et - the flow enriched in methane resulting from the membrane separation is introduced into the flow of cooled compressed gas, to form a final flow of methane, and
- on récupère le débit de méthane final. - the final methane flow is recovered.
[0037] En d’autres termes, le débit de cuve riche en méthane obtenu à l’issue de la distillation est conditionné pour être injecté dans le réseau de gaz de ville. Ensuite, le méthane récupéré lors de la séparation membranaire est injecté dans le débit de cuve conditionné. Cette seconde option permet également d’augmenter le rendement global de la distillation. In other words, the flow from the methane-rich tank obtained at the end of the distillation is conditioned to be injected into the town gas network. Then, the methane recovered during the membrane separation is injected into the conditioned tank flow. This second option also makes it possible to increase the overall yield of the distillation.
[0038] Selon un autre aspect, l’invention porte sur une installation pour la production de biométhane par épuration d’un débit d’alimentation contenant du méthane, du diazote et du dioxygène mettant en oeuvre le procédé selon le premier mode de réalisation de l’invention et/ou la première option du second mode de réalisation et comprenant : According to another aspect, the invention relates to an installation for the production of biomethane by purification of a feed stream containing methane, dinitrogen and dioxygen implementing the method according to the first embodiment of the invention and/or the first option of the second embodiment and comprising:
- un échangeur de chaleur apte à refroidir un débit d’alimentation; à réchauffer le débit de gaz d’évent et à vaporiser la seconde partie du débit de cuve, - a heat exchanger capable of cooling a supply flow; heating the vent gas flow and vaporizing the second part of the tank flow,
- des moyens de condensation au moins partielle du débit d’alimentation refroidi,- means of at least partial condensation of the cooled feed flow,
- des moyens de vaporisation de la première partie du débit de cuve, - means for vaporizing the first part of the tank flow,
- une conduite apte à transporter la première partie du débit de cuve vaporisée à un niveau inférieur de la colonne de distillation (26), - a pipe capable of transporting the first part of the vaporized tank flow to a lower level of the distillation column (26),
- un moyen de détente du débit au moins partiellement condensé, - a flow expansion means at least partially condensed,
- un ballon séparateur des fractions liquide et vapeur du débit au moins partiellement condensé après détente, - a separation tank for the liquid and vapor fractions of the flow at least partially condensed after expansion,
- une colonne de distillation, - a distillation column,
- une conduite apte à transporter la fraction liquide du ballon séparateur à un niveau supérieur d’une colonne de distillation, - a pipe capable of transporting the liquid fraction from the separator flask to a higher level of a distillation column,
- des moyens de compression du débit de gaz d’évent soutiré de la colonne, - means for compressing the flow of vent gas withdrawn from the column,
- un échangeur de chaleur apte à refroidir le débit de gaz d’évent une fois comprimé,- a heat exchanger capable of cooling the flow of vent gas once compressed,
- au moins une membrane séparatrice apte à séparer partiellement le méthane de 1’02 et du N2, - un moyen de récupération du débit enrichi en méthane issu de la séparation membranaire, - at least one separating membrane capable of partially separating methane from 1'02 and from N2, - a means of recovering the flow enriched in methane resulting from the membrane separation,
- un moyen d’évacuation du débit enrichi en dioxygène et en diazote issu de la séparation membranaire, et - a means of evacuating the flow enriched in oxygen and nitrogen resulting from the membrane separation, and
- un moyen d’introduction du débit enrichi en méthane issu de la séparation membranaire dans le débit d’alimentation. - a means of introducing the flow enriched in methane resulting from the membrane separation into the feed flow.
[0039] Dans la seconde option du second mode de réalisation de l’installation décrite précédemment, l’échangeur de chaleur apte à refroidir le débit d’alimentation permet en outre de vaporiser la seconde partie du débit de cuve et ladite installation comprend en outre : In the second option of the second embodiment of the installation described above, the heat exchanger capable of cooling the feed flow also makes it possible to vaporize the second part of the tank flow and said installation further comprises :
- des moyens de compression du débit vaporisé, - vaporized flow compression means,
- un échangeur de chaleur apte à refroidir le débit comprimé, et - a heat exchanger capable of cooling the compressed flow, and
-un moyen d’introduction du débit enrichi en méthane dans le débit de gaz comprimé refroidi. -a means of introducing the methane-enriched flow into the cooled compressed gas flow.
[0040] Optionnellement, pour tous les modes de réalisation, l’installation peut en outre comprendre un rebouilleur, ledit rebouilleur étant apte à condenser au moins partiellement le débit refroidi et à vaporiser la première partie du débit de cuve. [0040] Optionally, for all the embodiments, the installation may also comprise a reboiler, said reboiler being capable of at least partially condensing the cooled flow and of vaporizing the first part of the vessel flow.
[0041] Le rebouilleur est un échangeur de chaleur qui permet de réaliser une intégration thermique par le transfert des calories du débit d'alimentation refroidi vers le débit de cuve. Ainsi, il n’est plus nécessaire d’apporter une source de froid externe pour condenser le débit d'alimentation refroidi ou une source de chaleur externe pour vaporiser le débit de cuve. Le rebouilleur peut se présenter sous la forme d’un échangeur indépendant de la colonne de distillation. Dans ce cas, le débit refroidi et la première partie du débit de cuve circulent à contrecourant dans des conduites au sein du rebouilleur. Alternativement, le rebouilleur est intégré dans la cuve de la colonne de distillation. Dans ce cas, le débit refroidi et le méthane liquide provenant du bain situé en cuve de colonne circulent dans un échangeur intégré dans la cuve de la colonne. The reboiler is a heat exchanger which makes it possible to achieve thermal integration by the transfer of calories from the cooled feed flow to the tank flow. Thus, it is no longer necessary to provide an external cold source to condense the cooled feed flow or an external heat source to vaporize the tank flow. The reboiler can take the form of an exchanger independent of the distillation column. In this case, the cooled flow and the first part of the bottom flow circulate countercurrently in pipes within the reboiler. Alternatively, the reboiler is integrated into the bottom of the distillation column. In this case, the cooled flow and the liquid methane coming from the bath located in the column vessel circulate in an exchanger integrated in the column vessel.
[0042] Selon une caractéristique de l’invention, l’installation comprend une conduite apte à transporter la fraction vapeur du ballon séparateur dans la colonne à au moins un niveau inférieur à celui auquel est introduite la fraction liquide. According to one characteristic of the invention, the installation comprises a pipe capable of transporting the vapor fraction from the separator drum into the column at at least one level lower than that at which the liquid fraction is introduced.
[0043] Cette conduite permet d’éviter la concentration en O2 dans le garnissage, car ce dernier peut conduire à la formation de mélanges de gaz aux concentrations explosives dans la colonne de distillation. [0044] Les membranes séparatrices sont réalisées dans un matériau compris dans le groupe incluant les polyimides, acétate de cellulose, polycarbonates, polysulfone, poly(dimethylsiloxane-dimethylstyrene), poly(dimethylsiloxane), poly(siloctylene- siloxane), poly(p-silphenylene-siloxane), copolymère de polyamide-polyester. This line avoids the concentration of O2 in the packing, because the latter can lead to the formation of gas mixtures at explosive concentrations in the distillation column. The separating membranes are made of a material included in the group including polyimides, cellulose acetate, polycarbonates, polysulfone, poly(dimethylsiloxane-dimethylstyrene), poly(dimethylsiloxane), poly(siloctylene-siloxane), poly(p- silphenylene-siloxane), polyamide-polyester copolymer.
[0045] Selon un premier mode de réalisation, les moyens de récupération du méthane incluent une vanne apte à faire varier la pression dans le système membranaire. According to a first embodiment, the methane recovery means include a valve capable of varying the pressure in the membrane system.
[0046] Par ailleurs, les moyens d’évacuation du diazote et du dioxygène incluent une vanne apte à ajuster la contre-pression du système membranaire. [0046] Furthermore, the means for evacuating the nitrogen and the oxygen include a valve capable of adjusting the back pressure of the membrane system.
[0047] Pour agir sur la vitesse à laquelle les molécules traversent la membrane, il est possible de soit modifier la membrane, soit de mettre plusieurs membranes en parallèle, soit de faire varier la différence de pression entre les compartiments. Les deux vannes citées précédemment permettent de moduler la pression dans les deux compartiments du système membranaire. Ainsi, par exemple, si on estime que la membrane laisse passer trop de molécules de méthane, il est possible d’agit sur la contre-pression du système membranaire pour réduire ce flux. To act on the speed at which the molecules cross the membrane, it is possible either to modify the membrane, or to place several membranes in parallel, or to vary the pressure difference between the compartments. The two valves mentioned above make it possible to modulate the pressure in the two compartments of the membrane system. Thus, for example, if it is estimated that the membrane lets through too many methane molecules, it is possible to act on the back pressure of the membrane system to reduce this flow.
Brève description des dessins Brief description of the drawings
[0048] Les différents aspects de la présente invention sont décrits en référence aux figures indexées, illustrant les différents exemples de réalisation de l’invention. Les figures sont fournies à titre d’illustration et non dans un but limitatif. Les dessins sont une représentation schématique et ne sont de ce fait, pas à l’échelle. The various aspects of the present invention are described with reference to the indexed figures, illustrating the various embodiments of the invention. The figures are provided by way of illustration and not for the purpose of limitation. The drawings are a schematic representation and are therefore not to scale.
Fig.1 Fig.1
[0049] [fig.1 ] La figure 1 est un schéma d’une unité de séparation cryogénique intégrée dans une installation de production de bio méthane par épuration de biogaz comportant un système membranaire selon un premier mode de réalisation. [0049] [fig.1] Figure 1 is a diagram of a cryogenic separation unit integrated into a plant for the production of bio methane by biogas purification comprising a membrane system according to a first embodiment.
Fig.2 Fig.2
[0050] [fig.2] La figure 2 est un schéma d’une unité de séparation cryogénique intégrée dans une installation de production de bio méthane par épuration de biogaz comportant un système membranaire selon un deuxième mode de réalisation. [0050] [fig.2] Figure 2 is a diagram of a cryogenic separation unit integrated into an installation for the production of bio methane by biogas purification comprising a membrane system according to a second embodiment.
Description des modes de réalisation Description of embodiments
[0051] Comme mentionné, les figures 1 et 2 illustrent schématiquement une unité de séparation cryogénique intégrée dans une installation de production de bio méthane par épuration d’un débit d’alimentation contenant du méthane, du diazote et/ou du dioxygène, comportant un système membranaire selon un deux modes de réalisation. As mentioned, Figures 1 and 2 schematically illustrate a cryogenic separation unit integrated into a bio methane production facility by purification of a feed stream containing methane, dinitrogen and/or dioxygen, comprising a membrane system according to one of two embodiments.
[0052] Dans les deux cas, l’installation comprend essentiellement un échangeur (2), une colonne de distillation (26), un compresseur et son refroidisseur (13 et 14), et un système membranaire (15). In both cases, the installation essentially comprises an exchanger (2), a distillation column (26), a compressor and its cooler (13 and 14), and a membrane system (15).
[0053] L’échangeur (2) est alimenté par un débit de gaz d’alimentation (1 ). Celui-ci présente une pression comprise entre 5 et 25 bars absolu, préférentiellement une pression comprise entre 8 et 15 bars absolu, une température comprise entre 273 et 313K, typiquement 288K, et comprend entre 50 et 100% de méthane, jusqu’à 50% de diazote et jusqu’à 4% de dioxygène. Le débit de gaz d’alimentation (1 ) est par exemple obtenu en sortie d’une unité d’épuration par adsorption et/ou de séparation membranaire, non représentée sur les figures 1 et 2, permettant d’abaisser la teneur en composés organiques volatiles (COV) et en CO2 à une valeur inférieure ou égale à 50 ppmv. The exchanger (2) is fed by a supply gas flow (1). This has a pressure between 5 and 25 bar absolute, preferably a pressure between 8 and 15 bar absolute, a temperature between 273 and 313K, typically 288K, and comprises between 50 and 100% methane, up to 50 % nitrogen and up to 4% oxygen. The feed gas flow (1) is for example obtained at the outlet of a purification unit by adsorption and/or membrane separation, not shown in FIGS. 1 and 2, making it possible to lower the content of organic compounds volatiles (VOC) and CO2 at a value less than or equal to 50 ppmv.
[0054] Le débit de gaz d’alimentation (1 ) est refroidi et partiellement liquéfié jusqu’à une température comprise entre 100 et 200 K, dans un échangeur de chaleur (2) par échange avec le débit de cuve (9), liquide et enrichi en méthane, et le débit d’évent (11 ), enrichi en O2 et N2 et appauvri en méthane, issus de la distillation. Ce mode de réalisation est une intégration thermique qui permet de transférer les calories du débit d'alimentation (1 ) vers le débit de cuve (9) et le débit d’évent (11 ). Dans un mode de réalisation non représenté sur les figures, le débit de gaz d’alimentation (1 ) peut-être également ou alternativement refroidi par échange thermique avec un fluide frigorigène. The feed gas flow (1) is cooled and partially liquefied to a temperature of between 100 and 200 K, in a heat exchanger (2) by exchange with the tank flow (9), liquid and enriched in methane, and the vent flow (11), enriched in O2 and N2 and depleted in methane, resulting from the distillation. This embodiment is a thermal integration which makes it possible to transfer the calories from the supply flow (1) to the tank flow (9) and the vent flow (11). In an embodiment not shown in the figures, the supply gas flow (1) may also or alternatively be cooled by heat exchange with a refrigerant.
[0055] Le débit refroidi (8) est ensuite partiellement condensé. Sur les figures 1 et 2, on envoie le débit refroidi (8) dans un rebouilleur (3) où il est refroidi à une température plus basse et partiellement ou totalement liquéfié par échange de chaleur avec une partie (34) du débit de cuve (24), jusqu’à une température légèrement supérieure à celle du débit de cuve (24). En pratique, la température du débit refroidi est comprise entre 90 et 130K. Ce mode de réalisation est également une intégration thermique qui permet dans le même temps au débit de cuve (24) de se réchauffer et de bouillir afin de générer de la vapeur riche en méthane qui servira à la distillation. De manière alternative, il est possible de vaporiser le débit de cuve (24) grâce à une épingle électrique ou tout autre dispositif permettant d’apporter de la chaleur. The cooled flow (8) is then partially condensed. In FIGS. 1 and 2, the cooled flow (8) is sent to a reboiler (3) where it is cooled to a lower temperature and partially or totally liquefied by heat exchange with part (34) of the vessel flow ( 24), up to a temperature slightly higher than that of the tank flow (24). In practice, the temperature of the cooled flow is between 90 and 130K. This embodiment is also a thermal integration which at the same time allows the vessel flow (24) to heat up and boil in order to generate methane-rich vapor which will be used for distillation. Alternatively, it is possible to vaporize the tank flow (24) using an electric pin or any other device providing heat.
[0056] Par la suite, la partie vaporisée (34) du débit de cuve (24) est introduite à un niveau inférieur de la colonne de distillation (26). [0057] Selon les modes de réalisation, le rebouilleur (3) peut se présenter sous la forme d’un échangeur indépendant de la colonne de distillation (26), tel qu’illustré sur les figures 1 et 2. Dans ce cas, le débit refroidi (8) et la partie (34) du débit de cuve (24) circulent à contrecourant dans des conduites au sein du rebouilleur (3). Dans un mode de réalisation non présenté sur les figures, le rebouilleur (3) est intégré dans la cuve (24) de la colonne de distillation (26). Subsequently, the vaporized part (34) of the tank flow (24) is introduced at a lower level of the distillation column (26). According to the embodiments, the reboiler (3) can take the form of an exchanger independent of the distillation column (26), as illustrated in FIGS. 1 and 2. In this case, the cooled flow (8) and the part (34) of the tank flow (24) circulate in countercurrent in pipes within the reboiler (3). In an embodiment not shown in the figures, the reboiler (3) is integrated into the tank (24) of the distillation column (26).
[0058] Le débit partiellement ou totalement liquide (25) est ensuite détendu dans un organe de détente (4) jusqu’à la pression opératoire de la colonne de distillation (26), comprise entre 1 et 5 bars absolu. L’organe de détente (4) est généralement une vanne produisant un refroidissement prononcé du fluide détendu (effet Joule-Thomson). En pratique, la température du fluide détendu est comprise entre 90K et 130K. The partially or totally liquid flow (25) is then expanded in an expansion device (4) to the operating pressure of the distillation column (26), between 1 and 5 bars absolute. The expansion device (4) is generally a valve producing a pronounced cooling of the expanded fluid (Joule-Thomson effect). In practice, the temperature of the expanded fluid is between 90K and 130K.
[0059] En sortie de l’organe de détente (4), le débit détendu (27) contient 2 fractions respectivement une fraction majoritairement liquide, et une fraction vapeur. On sépare alors la phase liquide de la fraction vapeur. En pratique, le débit détendu (27) est injecté dans un ballon de séparation de fractions liquide et vapeur (5) situé en tête de la colonne de distillation (26). At the outlet of the expansion device (4), the expanded flow (27) contains 2 fractions, respectively a predominantly liquid fraction, and a vapor fraction. The liquid phase is then separated from the vapor fraction. In practice, the expanded flow (27) is injected into a vessel for separating liquid and vapor fractions (5) located at the top of the distillation column (26).
[0060] Dans un mode de réalisation non représenté, un débit d’azote liquide provenant d’un stockage d’azote liquide non représenté sur les figures 1 et 2 est mélangé au débit détendu (27), avant introduction dans le ballon de séparation (5). Dans un second mode de réalisation non représenté, l’azote liquide est injecté directement dans le ballon de séparation (5). L’azote liquide permet de diluer le débit détendu (27) et agit également comme source de froid permettant de condenser la vapeur en tête de colonne (26). In one embodiment not shown, a flow of liquid nitrogen from a liquid nitrogen storage not shown in Figures 1 and 2 is mixed with the expanded flow (27), before introduction into the separation drum (5). In a second embodiment, not shown, the liquid nitrogen is injected directly into the separation drum (5). The liquid nitrogen makes it possible to dilute the expanded flow (27) and also acts as a cold source making it possible to condense the vapor at the top of the column (26).
[0061] Pour tous les modes de réalisation mentionnés ci-dessus, la fraction liquide (7) provenant du ballon de séparation (5) est ensuite introduite dans à un niveau de la colonne de distillation (26), en pratique dans la partie supérieure de sorte à ruisseler sur le garnissage de la colonne (26). La fraction vapeur (6) est introduite dans la partie inférieure du garnissage de la colonne de distillation (26), plus précisément à un niveau en dessous duquel la fraction liquide (7) est introduite pour constituer le gaz de balayage évitant la concentration d’C>2, problématique dans le garnissage car pouvant conduire à la formation de mélanges de méthane et d’oxygène aux concentrations explosives dans la colonne de distillation. For all the embodiments mentioned above, the liquid fraction (7) coming from the separation drum (5) is then introduced into at one level of the distillation column (26), in practice in the upper part so as to run off the packing of the column (26). The vapor fraction (6) is introduced into the lower part of the packing of the distillation column (26), more precisely at a level below which the liquid fraction (7) is introduced to constitute the sweep gas avoiding the concentration of C>2, problematic in the packing because it can lead to the formation of mixtures of methane and oxygen at explosive concentrations in the distillation column.
[0062] La distillation produit ainsi deux débits : un débit sous forme liquide enrichi en méthane (24), situé en cuve de colonne (26) et un débit appauvri en méthane (11), mais riche en O2 et N2, en tête de colonne à distiller (26). [0063] Une fraction du débit liquide enrichi en méthane (24) dont la température est comprise entre 90K et 130K est envoyée dans l’échangeur (2) pour être vaporisée et former un débit gazeux (10). Ce débit gazeux (10) comprend entre 95 et 100% de méthane et est à une pression comprise entre 1 et 5 bars absolu, et à température ambiante, typiquement comprise entre 273K et 313K, avantageusement 288K. Ce débit gazeux (10) est récupéré pour être stocké, tel qu’illustré sur la figure 1 ou il peut être injecté directement dans le réseau de gaz naturel, tel qu’illustré sur la figure 2, via une compression par le compresseur (27) et un refroidissement par l’échangeur (28). Distillation thus produces two flows: a flow in liquid form enriched in methane (24), located in the column tank (26) and a flow depleted in methane (11), but rich in O2 and N2, at the top of the column. distillation column (26). A fraction of the liquid flow enriched in methane (24) whose temperature is between 90K and 130K is sent to the exchanger (2) to be vaporized and form a gas flow (10). This gas flow (10) comprises between 95 and 100% methane and is at a pressure of between 1 and 5 bars absolute, and at ambient temperature, typically between 273K and 313K, advantageously 288K. This gas flow (10) is recovered to be stored, as shown in Figure 1 or it can be injected directly into the natural gas network, as shown in Figure 2, via compression by the compressor (27 ) and cooling by the exchanger (28).
[0064] Le débit appauvri en méthane (11), aussi appelé gaz d’évent de la colonne, contient une fraction variable en méthane, typiquement comprise entre 2 et 50%, en pratique de l’ordre de 25%. Ce gaz en sortie de colonne a une température comprise entre 90K et 130K et une pression comprise entre 1 et 5 bar absolu. Ce gaz d’évent (11) circule à contre-courant dans l’échangeur (2) et se réchauffe. A la sortie de l’échangeur (2), le gaz a une température comprise entre 273K et 313K puis il est comprimé dans un compresseur (13) jusqu’à une pression comprise entre 5 et 20 bars absolu et avantageusement entre 8 et 15 bars absolu, soit la même pression que le débit d’alimentation (1). Ce flux est refroidi dans un échangeur (14) à une température comprise entre -40 et 45°C pour être ensuite envoyé dans un système membranaire (15). La température de refroidissement dans l’échangeur (14) est choisie en fonction de la nature de la membrane de sorte à en optimiser les propriétés séparatrices. The flow depleted in methane (11), also called vent gas from the column, contains a variable fraction of methane, typically between 2 and 50%, in practice around 25%. This gas at the column outlet has a temperature of between 90K and 130K and a pressure of between 1 and 5 bar absolute. This vent gas (11) circulates against the current in the exchanger (2) and heats up. At the outlet of the exchanger (2), the gas has a temperature between 273K and 313K then it is compressed in a compressor (13) to a pressure between 5 and 20 bars absolute and advantageously between 8 and 15 bars absolute, i.e. the same pressure as the supply flow (1). This stream is cooled in an exchanger (14) to a temperature between -40 and 45° C. to then be sent to a membrane system (15). The cooling temperature in the exchanger (14) is chosen according to the nature of the membrane so as to optimize its separating properties.
[0065] Le système membranaire (15) est composé de deux compartiments (30, 31 ) soumis à des pressions différentes, séparés par au moins une membrane de perméation gazeuse (33). Les molécules de gaz se solubilisent sur les membranes (33) puis les traversent par diffusion. Les membranes (33) composant le système membranaire (15) sont choisies en fonction de leur affinité avec les espèces gazeuses considérées. The membrane system (15) is composed of two compartments (30, 31) subjected to different pressures, separated by at least one gas permeation membrane (33). The gas molecules dissolve on the membranes (33) then cross them by diffusion. The membranes (33) making up the membrane system (15) are chosen according to their affinity with the gaseous species considered.
[0066] En pratique, le débit de passage d’une espèce (i) à travers une membrane (33) est calculé de la manière suivante : In practice, the passage rate of a species (i) through a membrane (33) is calculated as follows:
[0067] [Math 1] Qi = Permi * A * APi [0067] [Math 1] Qi = Permi * A * APi
[0068] Avec (Qi) le débit de passage de l’espèce (i) à travers la membrane (33), (Permi) le coefficient de perméance de l’espèce (i) à travers la membrane (33), et (APi) la différence de pression partielle de l’espèce (i) entre les deux compartiments (30, 31 ). Le flux ayant traversé la membrane (33) constitue le perméat (30), et le flux n’ayant pas traversé la membrane (33) constitue le rétentat (31 ). [0069] Deux paramètres permettent de jouer sur la vitesse de traversée de la membrane d’une espèce (I). Le premier paramètre est la différence de pression appliquée entre les deux compartiments (30, 31 ) du système membranaire (15). En effet, plus la différence de pression (APi) entre les deux compartiments (30, 31 ) est élevée, plus le débit de passage (Qi) est élevé. Le deuxième paramètre est le coefficient de perméabilité (Permi), c’est-à-dire la capacité d’une espèce (i) à traverser facilement la membrane (33). With (Qi) the passage rate of the species (i) through the membrane (33), (Permi) the permeance coefficient of the species (i) through the membrane (33), and ( APi) the partial pressure difference of species (i) between the two compartments (30, 31). The flow having crossed the membrane (33) constitutes the permeate (30), and the flow which has not crossed the membrane (33) constitutes the retentate (31). [0069] Two parameters make it possible to play on the rate at which a species (I) passes through the membrane. The first parameter is the pressure difference applied between the two compartments (30, 31) of the membrane system (15). Indeed, the higher the pressure difference (APi) between the two compartments (30, 31), the higher the flow rate (Qi). The second parameter is the permeability coefficient (Permi), ie the ability of a species (i) to easily cross the membrane (33).
[0070] Pour répondre aux besoins de l’invention, le choix des membranes répond à un critère de bonne séparation entre le CP et l’O2 et l’N2 présents dans le flux d’évent (29). Pour ce faire, les membranes (33) mises en oeuvre doivent présenter une sélectivité élevée, c’est-à-dire que le rapport entre le coefficient de perméance de l’espèce (i) par celui de l’espèce (j) : a(ij) = Permi / Permj a une valeur supérieure à 1 . To meet the needs of the invention, the choice of membranes meets a criterion of good separation between the CP and the O2 and the N2 present in the vent flow (29). To do this, the membranes (33) used must have high selectivity, that is to say that the ratio between the permeance coefficient of the species (i) by that of the species (j): a(ij) = Permi / Permj has a value greater than 1 .
[0071] Il existe deux types de membranes (33) qui correspondent à ces critères : les membranes (33) à sélectivité positive et les membranes (33) à sélectivité négative ou inverse. There are two types of membranes (33) which correspond to these criteria: membranes (33) with positive selectivity and membranes (33) with negative or inverse selectivity.
[0072] Les membranes (33) à sélectivité positive présentent un coefficient de sélectivité a(O2-CH4) et a(N2-CH4) supérieur à l’unité. Ainsi, l’affinité des espèces gazeuses de dioxygène et de diazote avec la membrane (33) est bien meilleure que celle du méthane. Le diazote et le dioxygène auront donc plus de facilité à traverser la membrane (33). Dans ce cas de figure, le perméat (30) sera enrichi en O2 et en N2 tandis que le rétentat (31 ) sera enrichi en CP . The membranes (33) with positive selectivity have a selectivity coefficient a(O 2 -CH 4 ) and a(N2-CH4) greater than unity. Thus, the affinity of the gaseous species of dioxygen and dinitrogen with the membrane (33) is much better than that of methane. Dinitrogen and oxygen will therefore find it easier to cross the membrane (33). In this case, the permeate (30) will be enriched in O2 and N2 while the retentate (31) will be enriched in CP.
[0073] Les membranes (33) à sélectivité négative présentent un coefficient de sélectivité a(C>2-CPl4) et a(N2-CP ) inférieur à l’unité. Ainsi, l’affinité du méthane avec la membrane (33) est bien meilleure que celle du dioxygène et du diazote. Le méthane aura donc plus de facilité à traverser la membrane (33). Dans ce cas de figure, le perméat (30) sera enrichi en méthane tandis que le rétentat (31 ) sera enrichi en O2 et N2. The membranes (33) with negative selectivity have a selectivity coefficient a(C>2-CP14) and a(N2-CP) of less than unity. Thus, the affinity of methane with the membrane (33) is much better than that of oxygen and nitrogen. Methane will therefore find it easier to cross the membrane (33). In this case, the permeate (30) will be enriched in methane while the retentate (31) will be enriched in O2 and N2.
[0074] A titre d’exemple, les membranes (33) réalisées en polyimide (6FDA-BAPIF) ont une sélectivité a(N2-CH4) de 2,3. En variante, les membranes (33) peuvent être réalisées dans un matériau compris dans le groupe incluant les polyimides, cellulose acetate, polycarbonates, polysulfone, poly(dimethylsiloxane-dimethylstyrene), poly(dimethylsiloxane), poly(siloctylene-siloxane), poly(p-silphenylene-siloxane), copolymère de polyamide-polyester... For example, the membranes (33) made of polyimide (6FDA-BAPIF) have an a(N2-CH4) selectivity of 2.3. As a variant, the membranes (33) can be made of a material included in the group including polyimides, cellulose acetate, polycarbonates, polysulfone, poly(dimethylsiloxane-dimethylstyrene), poly(dimethylsiloxane), poly(siloctylene-siloxane), poly( p-silphenylene-siloxane), polyamide-polyester copolymer...
[0075] A l’issue de cette séparation membranaire, le flux enrichi en CPU (16) est récupéré. At the end of this membrane separation, the flow enriched in CPU (16) is recovered.
Tel qu’illustré sur les figures 1 et 2, si la membrane (33) utilisée est à sélectivité positive, c’est le rétentat (31) qui est enrichi en CP et qui est récupéré. En revanche, dans un mode de réalisation non représenté dans lequel la membrane utilisée est à sélectivité inverse, c’est le perméat (30) qui est enrichi en CP et qui est récupéré. As illustrated in Figures 1 and 2, if the membrane (33) used is of positive selectivity, it is the retentate (31) which is enriched in CP and which is recovered. On the other hand, in an embodiment not shown in which the membrane used has reverse selectivity, it is the permeate (30) which is enriched in CP and which is recovered.
[0076] Une fois le flux enrichi en CPU (16) récupéré, il est envoyé dans une vanne de contrôle de pression (17) permettant de faire varier la pression dans le système membranaire (15), et donc de contrôler la qualité de la séparation. Once the flow enriched in CPU (16) has been recovered, it is sent to a pressure control valve (17) making it possible to vary the pressure in the membrane system (15), and therefore to control the quality of the separation.
[0077] Dans un premier mode de réalisation illustré sur la figure 1 , le flux enrichi en CH4 (16) est réinjecté dans le débit d’alimentation (1 ), formant ainsi une boucle de recyclage permettant de récupérer une partie du débit de méthane contenu dans le gaz d’évent (12) et de le réinjecter dans le débit d’alimentation (1 ) en méthane. [0077] In a first embodiment illustrated in Figure 1, the stream enriched in CH4 (16) is reinjected into the feed flow (1), thus forming a recycling loop making it possible to recover part of the methane flow. contained in the vent gas (12) and to reinject it into the supply flow (1) of methane.
[0078] Dans un second mode de réalisation illustré sur la figure 2, le flux enrichi en CH4 (16) est injecté dans le débit de méthane purifié (10) issu de la distillation. In a second embodiment illustrated in Figure 2, the stream enriched in CH4 (16) is injected into the flow of purified methane (10) from the distillation.
[0079] Le flux enrichi en O2 et en N2 et comprenant également la perte en CH4 du procédé est envoyé dans une seconde vanne de contrôle (20) permettant d’ajuster la contre- pression du système membranaire (15). Le flux détendu (21) est ensuite évacué (23) dans l’atmosphère ou vers un appareil d’oxydation permettant d’oxyder le méthane perdu avant d’évacuer le flux dans l’atmosphère. Une ligne de bypass comprenant une vanne (22) permet d’évacuer un excès de gaz d’évent qui ne pourrait être traité par le système membranaire (15). The flow enriched in O2 and N2 and also comprising the loss of CH4 from the process is sent to a second control valve (20) making it possible to adjust the back pressure of the membrane system (15). The expanded stream (21) is then vented (23) to the atmosphere or to an oxidizer to oxidize the lost methane before venting the stream to the atmosphere. A bypass line comprising a valve (22) makes it possible to evacuate an excess of vent gas which could not be treated by the membrane system (15).
[0080] Dans un mode de réalisation non représenté, on récupère le méthane liquide (24) directement en sortie de cuve. Pour ce faire, l’installation comprend en outre des moyens de refroidissement du débit d’alimentation (1), dans l’échangeur (2), qui se présentent par exemple sous la forme d’un fluide frigorigène circulant à contre-courant du débit d’alimentation (1) ou un bain de fluide frigorigène dans lequel le débit d’alimentation (1) circule. Dans tous les cas, le fluide frigorigène est de préférence plus froid que le débit d’alimentation (1) pour en récupérer les calories. Par exemple, le fluide frigorigène peut se présenter sous la forme d’un fluide sacrificiel ou être refroidi dans un cycle thermodynamique fermé comprenant une étape de compression, de refroidissement et de détente du fluide frigorigène. In an embodiment not shown, the liquid methane (24) is recovered directly from the tank outlet. To do this, the installation further comprises means for cooling the feed flow (1), in the exchanger (2), which are for example in the form of a refrigerant flowing counter-current to the feed stream (1) or a refrigerant bath in which the feed stream (1) circulates. In all cases, the refrigerant is preferably colder than the supply flow (1) to recover the calories. For example, the refrigerant can be in the form of a sacrificial fluid or be cooled in a closed thermodynamic cycle comprising a stage of compression, cooling and expansion of the refrigerant.
[0081] On donne à titre indicatif le bilan matière suivant pour le système global couplant une distillation et un système membranaire (15) tel qu’illustré sur la figure 1. Dans ce système, le gaz perdu est le flux évacué (23), qui contient 7,2% de CH4. Le taux de récupération du méthane est alors de 96.75%. La formule de calcul du rendement méthane est donnée ci-après, pour un système comprenant une entrée F (1), et deux sorties : un évent V (19) et un produit P (10). x est la fraction molaire du composé i dont on souhaite calculer le taux de récupération : i = [x_ * (x_F - x_V)] / [x_F * (x_P - x_V)] The following material balance is given as an indication for the overall system coupling a distillation and a membrane system (15) as illustrated in FIG. 1. In this system, the waste gas is the evacuated stream (23), which contains 7.2% CH4. The methane recovery rate is then 96.75%. The formula for calculating the methane yield is given below, for a system comprising an inlet F (1), and two outputs: a vent V (19) and a product P (10). x is the molar fraction of compound i whose recovery rate is to be calculated: i = [x_ * (x_F - x_V)] / [x_F * (x_P - x_V)]
[0082] Ainsi, le rendement du méthane est calculé comme suit : iméthane = 0,99*(0.7-0,072)/(0.7*(0.99-0.072)= 96,75%. Thus, the methane yield is calculated as follows: imethane=0.99*(0.7-0.072)/(0.7*(0.99-0.072)=96.75%.
[Tableau 1]
Figure imgf000017_0001
[Table 1]
Figure imgf000017_0001
[0083] A titre de comparaison, un système avec distillation seule présenterait le bilan matière suivant. Dans ce système, le gaz perdu est le gaz d’évent (11 ), qui contient 12% de CPU, donc une concentration plus importante en CP que le système couplant la distillation et les membranes. Le taux de récupération du méthane est donc de 92%. La formule de calcul du rendement méthane est identique, pour un système comprenant une entrée F (1), et deux sorties : un évent V (12) et un produit P (10). By way of comparison, a system with distillation alone would have the following material balance. In this system, the waste gas is the vent gas (11), which contains 12% CPU, therefore a higher concentration of CP than the system coupling the distillation and the membranes. The methane recovery rate is therefore 92%. The formula for calculating the methane yield is identical, for a system comprising an inlet F (1), and two outlets: a vent V (12) and a product P (10).
[0084] Ainsi, le rendement du méthane est calculé comme suit : iméthane = 0,99*(0.7-0, 16)/(0.7*(0.99-0.16)= 92%. Thus, the methane yield is calculated as follows: imethane=0.99*(0.7-0.16)/(0.7*(0.99-0.16)=92%.
[Tableau 2]
Figure imgf000017_0002
[Table 2]
Figure imgf000017_0002
[0085] En comparant le taux de récupération méthane avec les membranes, au taux de récupération méthane sans membrane, le gain en rendement est donc de 4.75% dans les conditions étudiées. [0086] Pour conclure, l’invention permet d’obtenir un taux de récupération du méthane plus élevé que les techniques de séparation cryogéniques existantes, tout en évitant de générer un mélange explosif dans la distillation. By comparing the methane recovery rate with the membranes, to the methane recovery rate without membrane, the gain in yield is therefore 4.75% under the conditions studied. To conclude, the invention makes it possible to obtain a higher methane recovery rate than existing cryogenic separation techniques, while avoiding the generation of an explosive mixture in the distillation.

Claims

Revendications [Revendications 1] Procédé de séparation cryogénique d'un débit d'alimentation Claims [Claims 1] Process for the cryogenic separation of a feed stream
(1 ) contenant du méthane, du diazote et du dioxygène dans lequel : (1) containing methane, nitrogen and oxygen in which:
- on refroidit le débit d'alimentation (1 ) dans un échangeur récupérateur (2), - the feed flow (1) is cooled in a recuperator exchanger (2),
- on condense (3) au moins partiellement le débit d'alimentation refroidi (8), - the cooled feed flow (8) is at least partially condensed (3),
- on détend (4) le débit d'alimentation refroidi au moins partiellement condensé (25), lequel contient alors une fraction liquide et une fraction vapeur, - the at least partially condensed cooled feed stream (25) is expanded (4), which then contains a liquid fraction and a vapor fraction,
- on sépare la fraction liquide de la fraction vapeur du débit détendu (27), - the liquid fraction is separated from the vapor fraction of the expanded flow (27),
- on envoie la fraction liquide à un niveau supérieur d'une colonne de distillation (26),- the liquid fraction is sent to an upper level of a distillation column (26),
- on soutire de la colonne de distillation (26) un débit de cuve (24), le débit de cuve (24) étant enrichi en méthane par rapport au débit d'alimentation (1 ), - a tank flow (24) is withdrawn from the distillation column (26), the tank flow (24) being enriched in methane with respect to the feed flow (1),
- on vaporise (3) une première partie du débit de cuve (24), - a first part of the tank flow (24) is vaporized (3),
- on introduit la première partie vaporisée du débit de cuve (34) à un niveau inférieur de la colonne de distillation (26) puis on la met en contact avec la farction liquide introduite à un niveau supérieur de la colonne de distillation (26), et - the first vaporized part of the tank flow (34) is introduced at a lower level of the distillation column (26) then it is brought into contact with the liquid filling introduced at a higher level of the distillation column (26), and
- on soutire de la colonne de distillation (26) et on réchauffe dans l’échangeur récupérateur (2) un débit de gaz d’évent (11 ) enrichi en oxygène et en azote par rapport au débit d'alimentation (1 ), caractérisé en ce que : - a flow of vent gas (11) enriched in oxygen and nitrogen relative to the feed flow (1) is withdrawn from the distillation column (26) and heated in the recuperator exchanger (2), characterized in that :
- on comprime le débit réchauffé de gaz d’évent (11 ), - the heated flow of vent gas (11) is compressed,
- on refroidit le débit de gaz d’évent comprimé à température ambiante, - the flow of compressed vent gas is cooled to ambient temperature,
- on soumet le débit de gaz d’évent comprimé refroidi (29) à au moins une séparation membranaire (15) pour séparer partiellement le méthane du dioxygène et du diazote. - the flow of cooled compressed vent gas (29) is subjected to at least one membrane separation (15) to partially separate the methane from the oxygen and the nitrogen.
[Revendications 2] Procédé selon la revendication 1 , caractérisé en ce qu’on introduit dans la colonne de distillation (26) au moins un débit de dilution (6) non combustible et plus volatil que l'oxygène à au moins un niveau inférieur à celui auquel est introduit la fraction liquide du débit détendu (27) après séparation, le débit de dilution étant formé par la fraction vapeur du débit détendu après séparation. [Claims 2] Process according to claim 1, characterized in that at least one dilution flow (6) which is non-combustible and more volatile than oxygen is introduced into the distillation column (26) at at least a level lower than that into which the liquid fraction of the expanded flow (27) is introduced after separation, the dilution flow being formed by the vapor fraction of the expanded flow after separation.
[Revendications 3] Procédé selon la revendication 1 ou 2, caractérisé en ce qu’on condense (3) au moins partiellement le débit d'alimentation refroidi (8) par échange de chaleur avec la première partie du débit de cuve (24), ladite première partie du débit de cuve (24) étant vaporisée au contact du débit d'alimentation refroidi (8).[Claims 3] Method according to claim 1 or 2, characterized in that the cooled feed flow (8) is at least partially condensed (3) by heat exchange with the first part of the tank flow (24), said first part of the tank flow (24) being vaporized in contact with the cooled feed flow (8).
[Revendications 4] Procédé selon l’une des revendications 1 à 3, caractérisé en ce qu’on refroidit le débit de gaz d’évent comprimé à une température comprise entre -40 et 45°C. [Claims 4] Method according to one of Claims 1 to 3, characterized in that the flow of compressed vent gas is cooled to a temperature of between -40 and 45°C.
[Revendications 5] Procédé selon l’une des revendications 1 à 4, caractérisé en ce que la sélectivité a(N2-CH4) de la membrane est supérieure à 1. [Claims 5] Process according to one of Claims 1 to 4, characterized in that the selectivity a(N2-CH4) of the membrane is greater than 1.
[Revendications 6] Procédé de production de biométhane par épuration d’un débit d’alimentation contenant du méthane, du diazote et du dioxygène mettant en oeuvre le procédé de séparation cryogénique selon l’une des revendications 1 à 5, dans lequel : [Claims 6] Process for the production of biomethane by purification of a feed stream containing methane, dinitrogen and dioxygen implementing the cryogenic separation process according to one of claims 1 to 5, in which:
- on soumet ledit débit d’alimentation contenant du méthane, du diazote et du dioxygène à épurer audit procédé de séparation cryogénique, et - subjecting said feed stream containing methane, nitrogen and oxygen to be purified to said cryogenic separation process, and
- on récupère une seconde partie (9) du débit de cuve (24) ainsi que le débit enrichi en méthane (16) issu de la séparation membranaire. - Recovering a second part (9) of the tank flow (24) and the flow enriched in methane (16) from the membrane separation.
[Revendications 7] Procédé de production de biométhane selon la revendication[Claims 7] Process for the production of biomethane according to claim
6, caractérisé en ce que : 6, characterized in that:
- on récupère la seconde partie (9) du débit de cuve (24) sous forme liquide,- the second part (9) of the tank flow (24) is recovered in liquid form,
- on refroidit le débit d'alimentation (1) dans l’échangeur récupérateur (2) avec un fluide frigorigène provenant d’une source extérieure, et - the feed flow (1) in the recuperator exchanger (2) is cooled with a refrigerant coming from an external source, and
- on introduit le débit enrichi en méthane issu de la séparation membranaire dans le débit d’alimentation. - the flow enriched in methane resulting from the membrane separation is introduced into the feed flow.
[Revendications 8] Procédé de production de biométhane selon la revendication 6, caractérisé en ce que : [Claim 8] Process for the production of biomethane according to claim 6, characterized in that:
- on vaporise la seconde partie (9) du débit de cuve (24) dans l’échangeur récupérateur (2) de sorte à récupérer le débit de gaz (10) enrichi en méthane, et- the second part (9) of the tank flow (24) is vaporized in the recovery exchanger (2) so as to recover the gas flow (10) enriched in methane, and
- on introduit le débit enrichi en méthane (16) issu de la séparation membranaire dans le débit d’alimentation (1). - the methane-enriched flow (16) resulting from the membrane separation is introduced into the feed flow (1).
[Revendications 9] Procédé de production de biométhane selon la revendication 6, caractérisé en ce que : [Claims 9] Process for the production of biomethane according to claim 6, characterized in that:
- on vaporise la seconde partie (9) du débit de cuve (24) dans l’échangeur récupérateur (2) de sorte à récupérer le débit de gaz enrichi en méthane (10),- the second part (9) of the flow from the tank (24) is vaporized in the recuperator exchanger (2) so as to recover the flow of gas enriched in methane (10),
- on comprime le débit de gaz enrichi en méthane (10), - the flow of gas enriched in methane (10) is compressed,
- on refroidit le débit de gaz comprimé enrichi en méthane, - the flow of compressed gas enriched in methane is cooled,
- on introduit le débit enrichi en méthane (16) issu de la séparation membranaire dans le débit de gaz comprimé refroidi (32), pour former un débit de méthane final (36), et - the flow enriched in methane (16) resulting from the membrane separation is introduced into the flow of cooled compressed gas (32), to form a final flow of methane (36), and
- on récupère le débit de méthane final (36). - Recovering the final methane flow (36).
[Revendications 10] Installation pour la production de biométhane par épuration d’un débit d’alimentation contenant du méthane, du diazote et du dioxygène mettant en oeuvre le procédé selon l’une des revendications 5 à 7 et comprenant : 19 [Claims 10] Installation for the production of biomethane by purification of a feed stream containing methane, dinitrogen and dioxygen implementing the method according to one of Claims 5 to 7 and comprising: 19
- un échangeur de chaleur (2) apte à refroidir un débit d’alimentation (1), à réchauffer le débit de gaz d’évent (11) et le cas échéant à vaporiser la seconde partie du débit de cuve (9); des moyens de condensation (3) au moins partielle du débit d’alimentation refroidi (8) ; - a heat exchanger (2) able to cool a feed flow (1), to heat the vent gas flow (11) and if necessary to vaporize the second part of the tank flow (9); at least partial condensation means (3) of the cooled feed flow (8);
- des moyens de vaporisation (3) de la première partie du débit de cuve ; - vaporization means (3) of the first part of the tank flow;
- une conduite apte à transporter la première partie du débit de cuve vaporisée (3) à un niveau inférieur de la colonne de distillation (26), - a pipe capable of transporting the first part of the vaporized tank flow (3) to a lower level of the distillation column (26),
- un moyen de détente (4) du débit au moins partiellement condensé (25); - an expansion means (4) of the at least partially condensed flow (25);
- un ballon séparateur (5) des fractions liquide (7) et vapeur (6) du débit au moins partiellement condensé (25) après détente; - a separating drum (5) for the liquid (7) and vapor (6) fractions of the flow at least partially condensed (25) after expansion;
- une colonne de distillation (26); - a distillation column (26);
- une conduite apte à transporter la fraction liquide (7) du ballon séparateur (5) à un niveau supérieur d’une colonne de distillation (26); - a pipe capable of transporting the liquid fraction (7) from the separator flask (5) to an upper level of a distillation column (26);
- des moyens de compression (13) du débit de gaz d’évent (11), soutiré de la colonne (26); - compression means (13) of the vent gas flow (11), withdrawn from the column (26);
- un échangeur de chaleur (14) apte à refroidir le débit de gaz d’évent (11) une fois comprimé; - a heat exchanger (14) capable of cooling the vent gas flow (11) once compressed;
- au moins une membrane séparatrice apte à séparer partiellement le méthane de l’O2 et du N2; - at least one separator membrane able to partially separate the methane from the O 2 and from the N 2 ;
- un moyen de récupération (16-18) du débit enrichi en méthane issu de la séparation membranaire; - a recovery means (16-18) of the flow enriched in methane resulting from the membrane separation;
- un moyen d’évacuation (19-23) du débit enrichi en dioxygène et en diazote issu de la séparation membranaire, et - a means of evacuation (19-23) of the flow enriched in dioxygen and dinitrogen resulting from the membrane separation, and
- un moyen d’introduction du débit enrichi en méthane issu de la séparation membranaire dans le débit d’alimentation (1). - a means of introducing the flow enriched in methane resulting from the membrane separation into the feed flow (1).
[Revendications 11] Installation pour la production de biométhane par épuration de biogaz mettant en oeuvre le procédé selon l’une des revendications 5 ou 8 et comprenant : [Claims 11] Installation for the production of biomethane by purification of biogas implementing the process according to one of claims 5 or 8 and comprising:
- un échangeur de chaleur (2) apte à refroidir un débit d’alimentation (1), à réchauffer le débit de gaz d’évent (11) et à vaporiser la seconde partie du débit de cuve (9) en un débit vaporisé (10); des moyens de condensation (3) au moins partielle du débit d’alimentation refroidi (8) ; - a heat exchanger (2) able to cool a feed flow (1), to heat the vent gas flow (11) and to vaporize the second part of the tank flow (9) into a vaporized flow ( 10); at least partial condensation means (3) of the cooled feed flow (8);
- des moyens de vaporisation (3) de la première partie du débit de cuve (24) ; - vaporization means (3) of the first part of the tank flow (24);
- une conduite apte à transporter la première partie du débit de cuve vaporisée (3) à 20 un niveau inférieur de la colonne de distillation (26), - a pipe capable of transporting the first part of the vaporized tank flow (3) to 20 a lower level of the distillation column (26),
- un moyen de détente (4) du débit au moins partiellement condensé (25); - an expansion means (4) of the at least partially condensed flow (25);
- un ballon séparateur (5) des fractions liquide (7) et vapeur (6) du débit au moins partiellement condensé (25) après détente; - a separating drum (5) for the liquid (7) and vapor (6) fractions of the flow at least partially condensed (25) after expansion;
- une colonne de distillation (26); - a distillation column (26);
- une conduite apte à transporter la fraction liquide (7) du ballon séparateur (5) à un niveau supérieur d’une colonne de distillation (26); - a pipe capable of transporting the liquid fraction (7) from the separator flask (5) to an upper level of a distillation column (26);
- des moyens de compression (13) du débit de gaz d’évent (11), soutiré de la colonne (26); - compression means (13) of the vent gas flow (11), withdrawn from the column (26);
- un échangeur de chaleur (14) apte à refroidir le débit de gaz d’évent (11) une fois comprimé; - a heat exchanger (14) capable of cooling the vent gas flow (11) once compressed;
- au moins une membrane séparatrice (33) apte à séparer partiellement le méthane de l’O2 et du N2; - at least one separating membrane (33) able to partially separate the methane from the O 2 and from the N 2 ;
- un moyen de récupération du débit enrichi en méthane (16-18) issu de la séparation membranaire; - a means for recovering the flow enriched in methane (16-18) resulting from the membrane separation;
- un moyen d’évacuation du débit enrichi en dioxygène et en diazote (19-23) issu de la séparation membranaire, - a means of evacuating the flow enriched in oxygen and nitrogen (19-23) resulting from the membrane separation,
- des moyens de compression (27) du débit vaporisé (10), - compression means (27) of the vaporized flow (10),
- un échangeur de chaleur (28) apte à refroidir le débit comprimé, et - a heat exchanger (28) capable of cooling the compressed flow, and
- un moyen d’introduction du débit enrichi en méthane (18) dans le débit de gaz comprimé refroidi (32). - a means of introducing the flow enriched in methane (18) into the flow of cooled compressed gas (32).
[Revendications 12] Installation selon la revendication 9 ou 10, comprenant en outre un rebouilleur (3), ledit rebouilleur étant apte à condenser au moins partiellement le débit refroidi (8) et à vaporiser la première partie du débit de cuve. [Claims 12] Installation according to claim 9 or 10, further comprising a reboiler (3), said reboiler being adapted to at least partially condense the cooled flow (8) and to vaporize the first part of the bottom flow.
[Revendications 13] Installation selon l’une des revendication 10 à 12, comprenant une conduite apte à transporter la fraction vapeur (6) du ballon séparateur (5) dans la colonne (26) à au moins un niveau inférieur à celui auquel est introduite la fraction liquide (7). [Claims 13] Installation according to one of Claims 10 to 12, comprising a pipe capable of transporting the vapor fraction (6) from the separator drum (5) into the column (26) at least at a level lower than that at which it is introduced. the liquid fraction (7).
[Revendications 14] Installation selon l’une des revendications 10 à 13, caractérisée en ce que les membranes séparatrices (33) sont réalisées dans un matériau compris dans le groupe incluant les polyimides, acétate de cellulose, polycarbonates, polysulfone, poly(dimethylsiloxane-dimethylstyrene), poly(dimethylsiloxane), poly(siloctylene-siloxane), poly(p-silphenylene-siloxane), copolymère de polyamide-polyester. 21 [Claims 14] Installation according to one of Claims 10 to 13, characterized in that the separating membranes (33) are made of a material included in the group including polyimides, cellulose acetate, polycarbonates, polysulfone, poly(dimethylsiloxane- dimethylstyrene), poly(dimethylsiloxane), poly(siloctylene-siloxane), poly(p-silphenylene-siloxane), polyamide-polyester copolymer. 21
[Revendications 15] Installation selon l’une des revendications 10 à 14, caractérisée en ce que les moyens de récupération du méthane incluent une vanne (17) apte à faire varier la pression dans le système membranaire (15). [Claims 15] Installation according to one of claims 10 to 14, characterized in that the methane recovery means include a valve (17) able to vary the pressure in the membrane system (15).
[Revendications 16] Installation selon l’une des revendications 10 à 15, caractérisée en ce que les moyens d’évacuation du diazote et du dioxygène incluent une vanne (20) apte à ajuster la contre-pression du système membranaire (15). [Claims 16] Installation according to one of Claims 10 to 15, characterized in that the means for evacuating the dinitrogen and the dioxygen include a valve (20) able to adjust the back pressure of the membrane system (15).
PCT/FR2021/051967 2020-11-23 2021-11-08 Method for cryogenic separation of a biomethane-based feed stream, method for producing biomethane that includes said cryogenic separation and associated facility WO2022106768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2012013 2020-11-23
FR2012013A FR3116445B1 (en) 2020-11-23 2020-11-23 Process for cryogenic separation of a feed stream based on biomethane, process for producing biomethane integrating said cryogenic separation and associated installation.

Publications (1)

Publication Number Publication Date
WO2022106768A1 true WO2022106768A1 (en) 2022-05-27

Family

ID=74553988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051967 WO2022106768A1 (en) 2020-11-23 2021-11-08 Method for cryogenic separation of a biomethane-based feed stream, method for producing biomethane that includes said cryogenic separation and associated facility

Country Status (2)

Country Link
FR (1) FR3116445B1 (en)
WO (1) WO2022106768A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035641A (en) 1996-02-29 2000-03-14 Membane Technology And Research, Inc. Membrane-augmented power generation
US20100192627A1 (en) * 2007-06-14 2010-08-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method And Device For The Cryogenic Separation Of A Methane-Rich Flow
US20150290596A1 (en) * 2012-10-29 2015-10-15 Georgia Tech Research Corporation Carbon molecular sieve membranes for nitrogen/methane separation
FR3051892A1 (en) 2016-05-27 2017-12-01 Waga Energy PROCESS FOR THE CRYOGENIC SEPARATION OF A SUPPLY RATE CONTAINING METHANE AND AIR GASES, INSTALLATION FOR THE PRODUCTION OF BIO METHANE BY PURIFYING BIOGAS FROM NON-HAZARDOUS WASTE STORAGE FACILITIES (ISDND) IMPLEMENTING THE PROCESS
US20180112142A1 (en) * 2016-10-20 2018-04-26 Iogen Corporation Method and system for providing upgraded biogas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6035641A (en) 1996-02-29 2000-03-14 Membane Technology And Research, Inc. Membrane-augmented power generation
US20100192627A1 (en) * 2007-06-14 2010-08-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method And Device For The Cryogenic Separation Of A Methane-Rich Flow
US20150290596A1 (en) * 2012-10-29 2015-10-15 Georgia Tech Research Corporation Carbon molecular sieve membranes for nitrogen/methane separation
FR3051892A1 (en) 2016-05-27 2017-12-01 Waga Energy PROCESS FOR THE CRYOGENIC SEPARATION OF A SUPPLY RATE CONTAINING METHANE AND AIR GASES, INSTALLATION FOR THE PRODUCTION OF BIO METHANE BY PURIFYING BIOGAS FROM NON-HAZARDOUS WASTE STORAGE FACILITIES (ISDND) IMPLEMENTING THE PROCESS
US20180112142A1 (en) * 2016-10-20 2018-04-26 Iogen Corporation Method and system for providing upgraded biogas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SKIBOROWSKI MIRKO ET AL: "Efficient Optimization-Based Design of Membrane-Assisted Distillation Processes", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 53, no. 40, 29 September 2014 (2014-09-29), pages 15698 - 15717, XP055822279, ISSN: 0888-5885, DOI: 10.1021/ie502482b *

Also Published As

Publication number Publication date
FR3116445A1 (en) 2022-05-27
FR3116445B1 (en) 2023-11-17

Similar Documents

Publication Publication Date Title
EP1869385B1 (en) Integrated method and installation for cryogenic adsorption and separation for producing co2
EP3393621B1 (en) Method for producing biomethane by purifying biogas from non-hazardous waste storage facilities and facility for implementing the method
CA3024382C (en) Process for cryogenic separation of a feed stream containing methane and air gases, facility for producing biomethane by purification of biogases derived from non-hazardous waste storage facilities (nhwsf) implementing the process
FR3075659B1 (en) PROCESS FOR PRODUCING NATURAL GAS CURRENT FROM BIOGAS CURRENT.
EP3142967B1 (en) Treatment method for separating carbon dioxide and hydrogen from a mixture
FR2848123A1 (en) Recuperation of blast furnace gas with carbon dioxide and nitrogen purification to produce an enriched gas for recycling to the blast furnace or for export to other gas users
EP3719426A1 (en) Biogas purification and liquefaction by combining a crystallisation system with a liquefaction heat exchanger
EP3727648B1 (en) Method for distilling a gas stream containing oxygen
WO2022106768A1 (en) Method for cryogenic separation of a biomethane-based feed stream, method for producing biomethane that includes said cryogenic separation and associated facility
EP3471858B1 (en) Apparatus and method for separating co2 at low temperature comprising a step of separation by permeation
EP4101911B1 (en) Cryogenic purification for biogas with external pre-separation and solidification of carbon dioxide
EP4101913B1 (en) Cryogenic purification for biogas with drawing to an intermediate stage and external solidification of carbon dioxide
EP4101914B1 (en) Installation for separation and liquefaction of methane and co2 comprising a vapour condenser placed in an intermediate stage of the distillation column
EP4101917B1 (en) Method for separation and liquefaction of methane and carbon dioxide with elimination of impurities from the air present in the methane
EP4101912B1 (en) Method for separation and liquefaction of methane and carbon dioxide with pre-separation upstream of the distillation column
EP4101916B1 (en) Method for separation and liquefaction of methane and co2 comprising drawing of steam from an intermediate stage of the distillation column
EP4101918B1 (en) Method for separation and liquefaction of methane and carbon dioxide with solidification of carbon dioxide outside the distillation column
EP4101915B1 (en) Combined installation for cryogenic separation and liquefaction of methane and carbon dioxide included in a flow of biogas
WO2022064159A1 (en) Biogas treatment method - associated plant
FR2997866A3 (en) Purification of carbon dioxide from e.g. synthesis gas, from gas turbine in integrated gasification combined cycle-type thermal power plant, comprises carrying out partial condensation of feed gas followed by purification and distillation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21815248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21815248

Country of ref document: EP

Kind code of ref document: A1