WO2022106652A1 - Procede et dispositif d'optimisation de panneaux photovoltaiques et panneaux photovoltaiques optimises selon ce procede - Google Patents

Procede et dispositif d'optimisation de panneaux photovoltaiques et panneaux photovoltaiques optimises selon ce procede Download PDF

Info

Publication number
WO2022106652A1
WO2022106652A1 PCT/EP2021/082366 EP2021082366W WO2022106652A1 WO 2022106652 A1 WO2022106652 A1 WO 2022106652A1 EP 2021082366 W EP2021082366 W EP 2021082366W WO 2022106652 A1 WO2022106652 A1 WO 2022106652A1
Authority
WO
WIPO (PCT)
Prior art keywords
existing
panel
cells
module
panels
Prior art date
Application number
PCT/EP2021/082366
Other languages
English (en)
Inventor
Sébastien JUTTEAU
Pierre-Philippe Grand
Cédric GUERARD
Etienne DRAHI
Original Assignee
Electricite De France
Institut Photovoltaique D'ile De France (Ipvf)
Totalenergies Se
Centre National De La Recherche Scientifique - Cnrs -
Ecole Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France, Institut Photovoltaique D'ile De France (Ipvf), Totalenergies Se, Centre National De La Recherche Scientifique - Cnrs -, Ecole Polytechnique filed Critical Electricite De France
Priority to EP21819086.6A priority Critical patent/EP4248497A1/fr
Priority to US18/253,087 priority patent/US20230421094A1/en
Priority to CN202180076852.7A priority patent/CN117083712A/zh
Publication of WO2022106652A1 publication Critical patent/WO2022106652A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/043Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of electric generators with photovoltaic panels and relates to a process for optimizing a photovoltaic panel, a photovoltaic panel optimizes according to this process.
  • photovoltaic panels comprising several layers of stacked photovoltaic cells to convert different wavelength ranges of sunlight and increase the efficiency of the panels.
  • panels with tandem cells connected in parallel unitarily and encapsulated photovoltaic modules with multiple junctions comprising cells of a first type connected in series and forming a first sub-module, cells of a second type forming a second sub- -module, said first and second sub-modules being stacked to balance the no-load and load voltages of said groups of cells.
  • the present application relates to one or more additional photovoltaic modules (hereinafter additional modules) that can be installed and connected directly to one or more existing conventional panels, new or already installed, in order to increase the quantity of energy produced by means of the assembly consisting of the existing panel(s) or a group of existing panels and the additional module(s).
  • additional modules additional photovoltaic modules
  • the present invention provides a method for optimizing an existing photovoltaic cell generator system provided with an existing photovoltaic panel or a group of existing photovoltaic panels, each existing panel being provided with a first plurality P of cells of a first type interconnected in series or in series/parallel, by means of one or more additional modules, which comprises:
  • one or more additional modules comprising a second plurality Q of photovoltaic cells of a second type and with a band gap different from the cells of the existing panel or from the existing panels of the group of existing panels, said second plurality Q of cells of the additional module(s) being configured to supply an operating voltage V1 equal to ⁇ 10% to the voltage VMPP of said existing panel or group of panels,
  • the additional module has a complementary spectral response to the existing panel, the efficiency of the assembly is improved.
  • the additional module(s) may comprise a plurality of sub-modules S1, S′1 of cells supplying said operating voltage V1 and themselves connected in parallel.
  • the arrangement of the plurality Q of the cells of the additional module(s) is preferably made according to an electrical and spatial configuration different from the plurality P of the cells of the existing panel or of the panels of the group of existing panels.
  • the existing panel having a width I and a length L and said plurality Q of photovoltaic cells of the second type being arranged parallel to the length L of the existing panel, said method may comprise one or more steps of:
  • the power of the modules and the coverage of the existing panels are optimized according to the VMPP voltage of the existing panel(s) with module cells of a width close to the width of the existing panels.
  • the existing panel having a width I and a length L and said plurality Q of photovoltaic cells of the second type being arranged parallel to the width I of the existing panel, said method comprises one or more steps of:
  • the power of the module and the coverage of the existing panel are optimized according to the VMPP voltage of the existing panel with cells of the module of a width close to the length of the existing panel.
  • said forbidden band width of the cells of the second type being greater than the forbidden band width of the cells.
  • said at least one additional module can be placed covering a face exposed to the sun of the existing panel or covering a face opposite the face exposed to the sun of the existing panel.
  • said forbidden band width of the cells of the second type being less than the forbidden band width of the cells of the first type, said at least one additional module can be placed overlapping an opposite face. to a sun-exposed side of the existing panel.
  • an optical interface material transparent to the active wavelengths for the existing panel and whose refractive index is adapted to minimize the reflections at the interface between the additional module and the existing panel is placed between the additional module and the existing panel.
  • the invention further relates to a panel optimized by means of the method of any one of the preceding claims.
  • This optimized panel can comprise an existing panel and an additional module provided with a plurality of sub-modules S1 or S′1 of cells, connected in parallel by connection tracks made on said module.
  • the additional module of the optimized panel can be fixed to the existing panel by means of an adhesive or transparent encapsulating material or any non-adhesive mechanical fixing means such as screws, bolts, rivets or clips.
  • the existing panel is a whole-cell, half-cell or tiled-cell type panel.
  • the invention finally proposes an additional module suitable for producing an optimized panel according to the method of the invention.
  • the cells of the sub-modules provided with additional module connection tracks advantageously extend over a width of the module or over a length of the module or in two groups each extending over half of said width or length.
  • the cells of the additional module can be thin-film technology cells.
  • the cells of the additional module can be cells produced by a structurable photovoltaic technology, such as CIGS, Perovskite, CdTe or amorphous silicon technologies with a band gap different from that of the cells of the existing panel.
  • the cells of the additional module can more generally be cells produced by type III-V photovoltaic technology.
  • FIG. 1 shows a schematic top view of a first type of existing panel
  • FIG. 2 shows a schematic top view of a second type of existing panel
  • FIG. 3 shows a schematic top view of a third type of existing panel
  • FIG. 4 shows a schematic perspective view of a module applicable to the invention
  • FIG. 5A shows the module of Figure 4 in top view
  • FIG. 5B shows the module of Figure 4 associated with an existing panel under a first type of shading
  • FIG. 5C shows the module of Figure 4 associated with an existing panel under a second type of shading
  • FIG. 5D shows the module of Figure 4 associated with an existing panel under a third type of shading
  • FIG. 6 shows a simplified flowchart of the process
  • FIG. 7 shows an example of module positioning on an existing panel
  • FIG. 8 shows a schematic side view of an example of an optimized panel
  • FIG. 9A shows a schematic view of a first example of an optimized panel
  • FIG. 9B shows a schematic view of a second example of an optimized panel
  • FIG. 9C shows a schematic view of a third example of an optimized panel.
  • Photovoltaic panels have certain limitations such as sensitivity to shading and are subject to ageing.
  • photovoltaic panels encapsulated for example with Ethyl Vinyl Acetate (EVA) can yellow/brown over time following exposure to UV.
  • Ethyl Vinyl Acetate (EVA) can yellow/brown over time following exposure to UV.
  • EVA Ethyl Vinyl Acetate
  • This effect limits the exposure of the cells of the panel to light and therefore reduces its performance. This effect is included in the calculation of the rate of degradation of the producible of the panels, today around 0.5-0.7% / year. This degradation leads to having to replace the panels, which is a heavy operation.
  • a conventional panel may no longer deliver part of the maximum power that can be supplied if part of its surface is no longer exposed to light.
  • panels whose cells are connected in series with bypass diodes in parallel with groupings of cells for example models with 3 bypass diodes defining three groups of cells which represent the majority of current commercial products, 1/3 of the maximum power is lost as soon as a cell of a group is shaded, 2/3 maximum power is lost for shading on cells of two groups and all of the power is lost in the event of partial shading distributed over the three groups. This therefore leads to a loss of efficiency of the installations.
  • the object of the present invention is therefore to propose a solution making it possible to solve the problems of aging and/or shading simply and making it possible to increase the efficiency and the producible of the existing panels without changing them.
  • the main idea concerns a device consisting of an additional photovoltaic panel module which is installed and connected directly to an existing conventional panel, new or already installed, in order to increase the quantity of energy produced by the classic panel assembly - additional module.
  • the additional module can in particular be based on the manufacturing flexibility of a panel in thin layer technology, in particular produced by structuring such as laser or other structuring to modify its electrical characteristics in terms of current and voltage in order to adapt to the different types of panels. existing ones on which the additional module can be installed.
  • the additional module is designed to constitute a photovoltaic panel having an operating voltage equal to +/-10% to the operating voltage of the existing panel once the two associated systems, that is to say that an operating voltage VMPP of said existing panel or group of panels is determined once assembled with said one or more additional modules knowing the type of additional module that one wishes to use and in particular the transparency of this module at the frequencies necessary for the existing panel.
  • Tandem-type cells based on silicon have a theoretical efficiency of around 43%. Tandem panels with around 30% efficiency are expected in the next few years.
  • the method and the module of the present invention use a different technology from the existing panel to improve the performance of the whole.
  • One possibility is the use of thin-film technology cells and/or structurable technology cells, for example using a laser, such as the CIGS, Perovskite, CdTe or hydrogenated amorphous silicon cell technologies known to this day. It can of course use any new technology of photovoltaic cells with at least partial transparency for the useful wavelengths for the existing panel which could emerge.
  • the technology of structured cells allows the creation of a custom electrical architecture by alternating the phases of electrical insulation, such as laser etching, and electrical connection, such as the deposition of conductive film, and by making connections of series or parallel type.
  • the module produced is semi-transparent, i.e. it allows light to pass in the wavelengths not absorbed by its cells, which can in particular make it possible to recover light energy at the level of the cells of the panel. when the additional panel module covers the existing panel on its side exposed to the sun.
  • the module will be based on photovoltaic technology with a gap energy greater than existing panel technology.
  • the module can then use Perovskite cells, with a band gap energy Eg e which can be defined between 1.2 and 1.9eV, CdTe cells with a band gap energy Eg of the order of 1.5eV or hydrogenated amorphous silicon cells with a band gap energy Eg of 1.7eV to 1.9eV.
  • the bandgap energy of the additional module is chosen to be different from that of the additional panel and the aforementioned technologies apply in particular in the case where the existing panel uses thick mono or polycrystalline silicon cells, with a bandgap energy Eg of the order of 1.1 eV.
  • the cells of the additional module are cells produced by type III-V photovoltaic technology with a band gap different from that of the cells of the existing panel.
  • the cells of the module may have a higher or lower bandgap energy than that of the cells of the existing panel.
  • the module comprises a conventional substrate of the glass or plastic type, which can be rigid or flexible, on which is deposited all the layers allowing the production of photovoltaic cells, these layers being structured to produce the cells and their connection tracks. .
  • this assembly can be covered with an encapsulating material of the polymer type, for example Polyolefin, or of the inorganic type, for example Al2O3 and a second layer of the glass or plastic type, rigid or flexible can be laminated on the module.
  • a rigid or flexible frame can be installed around the module to stiffen it or insulate it at its edges.
  • the additional module 10 is advantageously fixed to the existing panel, for example a panel 100 by means of a transparent adhesive or encapsulating material 19.
  • a material transparent to the operating wavelengths of the panel deducted from the spectral range absorbed by the additional module, for example between 700 and 1200 nm at a minimum, whose refractive index will minimize reflections at the interfaces between the module and the existing panel, can be used to make the junction between the existing panel and the additional module in order to allow irradiation of the existing panel.
  • the additional module is configured to present at its output terminals a voltage V1 close to the voltage VMPP of the existing panel in operation when the latter is combined with the additional module.
  • the voltage V1 is chosen as being at least the voltage VMPP ⁇ 10% which constitutes an acceptable error.
  • the existing panel is a panel of known type, in particular with monocrystalline or polycrystalline silicon cells.
  • the existing panel 100 can for example be of the traditional full cell type with rows 101, 102, 103, 104, 105, 106 of cells 150 in series, the rows themselves being connected in series by links 110, 120.
  • the panel further comprises shunt diodes 131, 132, 133 called bypass in English which will inhibit the shaded panel parts.
  • the panel 200 is of the half-cell 250 type with two banks of secondary networks of half-cells 200a, 200b connected in series by links 220a, 220b, 210 and in parallel by connections 115.
  • the panel also comprises in this case three bypass diodes 231, 232, 233.
  • the panel 300 is of the type with tiled cells 350 (shingle cell in English) and comprises a first half-panel 301 comprising strips 301 a, ..., 301 f of cells in series these strips being connected in parallel and a second half-panel comprising strips of cells in series 302a, ..., 302f themselves connected in parallel.
  • the strips of the sub-panels 301, 302 are connected in series by links 310 and in parallel by links 315, 325. In the latter case two bypass diodes 331, 332 are provided.
  • the existing panel can be single-sided to transform light arriving on one side or double-sided, i.e. adapted to transform light arriving on both sides.
  • the voltage VMPP of the panel is the sum of the voltages VMPPC of the unit cells, 72 cells according to the example, and the current is the current passing through each of the cells in the absence of shading.
  • the voltage is the sum of the voltages of half the cells of the panel, ie the voltage of 2 ⁇ 36 cells according to the example, and the current is the sum of the currents of the half-panels.
  • the panel output voltage is the sum of the voltages of the cell elements succeeding one another in a strip along the length of the panel, 72 elements according to the example, and the current is the sum of the currents of the strips in parallel across the width of the panel.
  • the existing panel as comprising a major network REI supplying the voltage and the output current of the panel and possibly minor networks RE2 the networks put in parallel in the existing panel if necessary.
  • the additional module according to the examples shown will be made up from a minor network of cells formed as a strip of length Lceii and height Hceii put in series to reach the voltage V1 equal to VMPP of the existing panel to within 10% .
  • FIG. 6 illustrates the optimization process which includes the determination in step 1 of an operating voltage VMPP of an existing panel with P cells of a first type, for example cells based on crystalline silicon , the production in step 2 of an additional module 10 comprising a second plurality Q of cells of the second type and with a band gap different from the cells of the existing panel configured to supply an operating voltage V1 equal to within ⁇ 10% to the voltage VMPP of said panel or of said group of existing panels, the installation in step 3 of the additional module overlapping on or under the existing panel, the module being connected in parallel to said existing panel or to said group of existing panels.
  • the starting point is the width I and the length L of the panel and it is chosen whether the plurality Q of cells is arranged parallel to the length L of the existing panel or to its width.
  • Step 21 determines the maximum power point voltage VMPP of the existing panel combined with the additional module
  • step 22 the number N of cells to be put in series is calculated to produce a sub-module S1 of the additional module adapted to supply said voltage V1.
  • step 23 a height Hceii of said cells of the sub-module S1 is calculated and in step 24 the number M1 of sub-modules S1 that can be implanted in parallel over the width I of the existing panel is calculated, maximizing the power of said module covering the existing panel at voltage V1. It should be noted that steps 23 and 24 are interdependent. Several combinations can exist but we choose the one that allows to deliver a maximum of power.
  • step 25 the additional module is produced in structurable photovoltaic technology comprising M1 under modules S1 in parallel, encapsulation of the additional module and installation of the additional module overlaying the existing panel.
  • the resulting additional module is shown schematically in Figure 4 with the minor networks 10a, 10b, 10c, 10d each comprising 46 cells of length Lceii and cell height Hceii of 4.91 mm to supply a voltage V1 equal to VMPP at 0.2 % close, these minor networks being placed in parallel by links 15 and 16 to produce the module of width adapted to the existing panel.
  • the losses at the complementary module level are 0.1 W which is very low compared to a panel with cells of optimal dimensions above.
  • the spatial organization of the existing panel according to Figure 1 is an organization where the cells are connected in series on lines and connected in Zig-Zag line by line on the height of the panel while the spatial organization of the additional module comprises on the height of the panel four strips of cells connected in parallel, the strips of cells being made up of cells connected in series along a direction parallel to the height of the panel.
  • the two panels thus have different spatial and electrical organizations.
  • the additional module will be configured on demand according to the type of existing panel to be renovated.
  • the 47 cells in strip height 4.32 mm and of length equivalent to the length of the panel in series form a sub-network or minor network S1, four minor networks being connected in parallel to form a major network.
  • the existing panel comprises 6 minor arrays of cells in series, each minor array comprising two superimposed half lines of cells in series, the minor arrays are two by two in parallel along the length of the panel then connected in series. along the width of the panel to form the major array of the existing panel while the add-on still has four cell strips connected in parallel across the height of the panel, the cell strips being made up of cells connected in series along a direction parallel to the panel height.
  • the spatial organization and the electrical organization of the two panels is again different.
  • the module is structured on demand according to the configuration of the existing panel, it is possible to organize the complementary module with strips of cells extending over the width of the panel in series along the length of the panel, these strips being placed in parallel one after the other along the length of the panel. This allows for example to orient the cells of the additional module
  • FIGS. 5A to 5D a configuration with an additional module 10 Perovskite, of 300 W of power, represented in FIG. 5A with four subnets 10a, 10b, 10c, 10d in parallel.
  • This additional module is placed on the existing panel on the illuminated side of the existing panel and connected in parallel to this panel.
  • the existing panel used is a full cell PERC silicon panel rated at 300W.
  • Such a panel whose configuration is as described in Figure 1 is provided with six rows 101, 102, 103, 104, 105, 106 of cells in series and three bypass diodes 131, 132, 133. It delivers about 160W when under the additional module.
  • the panel 100 then sees all of its cells of the lines 101 and 102 deactivated and the diode 133 becomes conductive which causes a loss of 1/3 of its power.
  • the additional module loses little power and overall the balance is favourable. It is the same for the cases of Figures 5C, shading 21 of the upper half of the assembly and Figure 5D shading 22 of a side half.
  • FIGS 9A to 9C give examples of possible configurations within the scope of the invention.
  • each existing panel 100a, 100b is connected in parallel to an additional module 51 and these individually optimized panels are connected in series by a link 61 and connected to other panels by the serial link 60a, 60b.
  • additional panels 52a, 52b are positioned on panels 100c, 100d of a group of panels 100c, 100d, and connected in parallel to these panels 100c, 100d by links 63a, 63b, 65a, 65b, the panels 100c, 100d being for their part connected in series by a link 64.
  • the voltage V1 of the modules must be the voltage 2XVMPP sum of the VMPPs of each panel of the group.
  • each panel 100e, 10Of of a group of two panels receives an additional module 53a, 53b.
  • the existing panels are connected in series by a link 68
  • the modules 53a, 53b are connected in series by a link 67
  • the pair of existing panels 100e, 10Of are connected in parallel to the pair of complementary panel modules 53a, 53b.
  • the voltages V1 of each module 53a, 53b must be established so that the voltage of all the additional panels connected in series corresponds to the voltage of all the existing panels put in series. This can be generalized to a complete line of existing panels managed by a voltage converter.
  • the number of panels of the groups of panels may be different from two while remaining within the scope of the invention. It is thus possible within the framework of the invention to add the additional modules to the existing panels of a group of panels and to connect these modules in series with each other and in parallel with all the panels themselves. Same connected in series as shown in Figure 9C for two existing panels and two additional modules. This can be useful if, for example, it is desired to alleviate localized shading phenomena on a photovoltaic park or to reduce the costs of updating the park.
  • the additional module 10 is placed overlapping the existing tiled cell panel 300 and connected in parallel with the latter to produce a common voltage output 17, 18.
  • the voltage V1 of the additional module will be calculated by taking as value of VMPP the sum of the voltages VMPP of the panels in series and the module will be structured accordingly.
  • the additional module uses structured thin layer technology
  • the latter can be produced in one piece by depositing and structuring the layers constituting the strips forming the cells and the tracks directly on a single substrate, for example by laser structuring.
  • the invention is not limited to the examples described above, but it encompasses all the variants that a person skilled in the art may consider in the context of the protection sought.
  • the technology of Additional module cells may differ from thin film technology.
  • the orientation of the strips constituting the cells of the additional module can be parallel to the length or the width of the existing panel(s) and the surface covered by this module can be adapted to optimize the number parallel minor networks.
  • the forbidden band of the cells of the additional module can be chosen to allow a range of wavelengths to pass through these cells adapted to maximize the efficiency of the cells of the existing panel under the additional module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Procédé d'optimisation d'un système générateur à cellules photovoltaïques existant et pourvu d'un panneau photovoltaïque existant (100, 200, 300) ou d'un groupe de panneaux photovoltaïques existants, chaque panneau existant étant muni d'une première pluralité P de cellules d'un premier type interconnectées en série ou en série/parallèle, comportant : la détermination (1) d'une tension de fonctionnement VMPP dudit panneau ou groupe de panneaux existant; la réalisation (2) d'un ou plusieurs modules de panneau additionnel (10, 51, 52, 53) comportant une seconde pluralité Q de cellules couche mince d'un second type et à largeur de bande interdite différente des cellules du panneau existant ou des panneaux existants du groupe de panneaux existants, ladite seconde pluralité Q du module additionnel étant configurée pour fournir une tension de fonctionnement V1 égale à ±10% près à la tension VMPP dudit panneau ou dudit groupe de panneaux existants; la pose (3) dudit module additionnel en recouvrement sur ou sous ledit panneau existant ou l'un quelconque des panneaux dudit groupe de panneaux existants ledit module étant relié en parallèle audit panneau existant ou audit groupe de panneaux existants ou la pose (3) desdits plusieurs modules additionnels en recouvrement sur ou sous plusieurs desdits panneaux existants dudit groupe de panneaux existants, lesdits plusieurs modules étant reliés en parallèle audit groupe de panneaux existants.

Description

Description
Titre : PROCEDE ET DISPOSITIF D’OPTIMISATION DE PANNEAUX PHOTOVOLTAÏQUES ET PANNEAUX PHOTOVOLTAÏQUES OPTIMISES SELON CE PROCEDE
Domaine technique
[0001] L’invention relève du domaine des générateurs électriques à panneaux photovoltaïques et concerne un procédé d’optimisation d’un panneau photovoltaïque, un panneau photovoltaïque optimise selon ce procédé.
Technique antérieure
[0002] Il est connu de réaliser des panneaux photovoltaïques comportant plusieurs couches de cellules photovoltaïques empilées pour convertir des plages de longueurs d’onde différentes de la lumière solaire et accroître le rendement des panneaux. Il existe notamment des panneaux à cellules tandem connectées en parallèle unitairement et des modules photovoltaïques encapsulés à jonctions multiples comportant des cellules d’un premier type connectées en série et formant un premier sous-module, des cellules d’un second type formant un second sous-module, lesdits premier et second sous-modules étant empilés pour équilibrer les tensions à vide et en charge desdits groupes de cellules.
Problème technique
[0003] Ainsi, des panneaux à modules empilés existent mais améliorer le rendement d’installations existantes passe par le remplacement des panneaux soit vieillissants soit de faible rendement par de tels panneaux ce qui est complexe et onéreux.
[0004] Il existe donc un besoin pour réduire le coût de modernisation de parcs de panneaux photovoltaïques et éviter de mettre au rebut des panneaux existants tout en permettant l’actualisation d’une centrale à panneaux photovoltaïque vieillissante. De même lors de l’installation ou la vie d’une centrale solaire à panneaux photovoltaïques il peut être souhaitable de pouvoir augmenter la quantité d’énergie produite si les besoins augmentent sans accroître la surface couverte par les panneaux de la centrale solaire.
Exposé de l’invention
[0005] Dans ce but, la présente demande concerne un ou plusieurs modules photovoltaïques additionnels (ci-après modules additionnels) pouvant être installés et connectés directement sur un ou plusieurs panneaux classiques existants, neuf où déjà installés, afin d’augmenter la quantité d’énergie produite au moyen de l’ensemble constitué par le ou les panneaux existants ou un groupe de panneaux existants et le ou les modules additionnels.
[0006] Pour ce faire, la présente invention propose un procédé d’optimisation d’un système générateur à cellules photovoltaïques existant et pourvu d’un panneau photovoltaïque existant ou d’un groupe de panneaux photovoltaïques existants, chaque panneau existant étant muni d’une première pluralité P de cellules d’un premier type interconnectées en série ou en série/parallèle, au moyen d’un ou plusieurs modules additionnels, qui comporte :
- la détermination d’une tension de fonctionnement VMPP dudit panneau ou groupe de panneaux existant une fois assemblés avec lesdits un ou plusieurs modules additionnels,
- la réalisation d’un ou plusieurs modules additionnels comportant une seconde pluralité Q de cellules photovoltaïques d’un second type et à largeur de bande interdite différente des cellules du panneau existant ou des panneaux existants du groupe de panneaux existants, ladite seconde pluralité Q de cellules du ou des modules additionnels étant configurée pour fournir une tension de fonctionnement V1 égale à ±10% près à la tension VMPP dudit panneau ou dudit groupe de panneaux existants,
- la pose du module additionnel en recouvrement sur ou sous le panneau existant, ledit module étant relié en parallèle audit panneau existant ou la pose desdits plusieurs modules additionnels en recouvrement sur ou sous plusieurs desdits panneaux existants dudit groupe de panneaux existants, lesdits plusieurs modules étant reliés en parallèle à au moins certains des panneaux existants ou audit groupe de panneaux existants. [0007] Ceci permet notamment l’amélioration d’une centrale photovoltaïque existante qu’elle soit en toiture ou une ferme solaire, en profitant des installations déjà présentes sans modifications de leur structure ou l’actualisation d’une centrale photovoltaïque vieillissante par exemple du fait du jaunissement d’un matériau d’encapsulation Ethyl Vinyle Acetate (EVA) ou autre sans remplacer les panneaux existants.
[0008] En outre, du fait de sa largeur de bande interdite différente, le module additionnel a une réponse spectrale complémentaire du panneau existant, le rendement de l’ensemble est amélioré.
[0009] Le ou les modules additionnels peuvent comporter une pluralité de sous modules S1 , S’1 de cellules fournissant ladite tension de fonctionnement V1 et eux-mêmes reliés en parallèle.
[0010] Ceci accroît la puissance fournie par le panneau additionnel qui reste toutefois dans l’encombrement du panneau existant.
[0011] La disposition de la pluralité Q des cellules du ou des modules additionnels est préférablement réalisée selon une configuration électrique et spatiale différente de la pluralité P des cellules du panneau existant ou des panneaux du groupe de panneaux existants.
[0012] Ceci rend le panneau moins sensible aux effets d’ombrage, l’organisation spatiale et électrique du module, différente de celle du panneau existant, compensant les pertes de ce dernier selon les cas d’ombrages partiels.
[0013] Le panneau existant comportant une largeur I et une longueur L et ladite pluralité Q de cellules photovoltaïques du second type étant disposées parallèlement à la longueur L du panneau existant, ledit procédé peut comporter une ou plusieurs étapes de :
- détermination de la tension de point de puissance maximale VMPP du panneau existant ou du groupe de panneaux existants lorsqu’ils sont combinés avec un module additionnel ;
- calcul du nombre N1 de cellules photovoltaïques du second type à mettre en série pour réaliser un sous module S1 du module additionnel adapté à fournir ladite tension V1 ; - calcul d’une hauteur Hceii desdites cellules du sous module S1 et du nombre M1 de sous modules S1 implantables en parallèle sur la largeur I du panneau existant maximisant la puissance dudit module recouvrant le panneau existant à la tension V1 ;
- réalisation du module additionnel à cellules photovoltaïques du second type comportant M1 sous modules S1 en parallèle, encapsulation du module additionnel et pose du module additionnel en recouvrement du panneau existant.
[0014] Ainsi la puissance des modules et la couverture des panneaux existants sont optimisées en fonction de la tension VMPP du ou des panneaux existants avec des cellules de modules de largeur proche de la largeur des panneaux existant.
[0015] Alternativement, le panneau existant comportant une largeur I et une longueur L et ladite pluralité Q de cellules photovoltaïques du second type étant disposée parallèlement à la largeur I du panneau existant, ledit procédé comporte une ou plusieurs étapes de :
- détermination de la tension de point de puissance maximale VMPP du panneau existant ou du groupe de panneaux existants lorsqu’ils sont combinés avec le module additionnel ;
- calcul du nombre N’1 de cellules photovoltaïques du second type à mettre en série pour réaliser un sous module S’1 du module additionnel adapté à fournir ladite tension V1 ;
- calcul d’une hauteur H’ceii desdites cellules du sous module S’1 et du nombre M’1 de sous modules S’1 implantables en parallèle sur la longueur L du panneau existant maximisant la puissance du module recouvrant le panneau existant à la tension V1 ;
- réalisation du module additionnel à photovoltaïques du second type comportant M’1 sous modules S’1 en parallèle, encapsulation du module additionnel et pose (3) du module additionnel en recouvrement du panneau existant.
[0016] Ainsi la puissance du module et la couverture du panneau existant sont optimisées en fonction de la tension VMPP du panneau existant avec des cellules du module de largeur proche de la longueur du panneau existant.
[0017] Selon un premier mode de réalisation, ladite largeur de bande interdite des cellules du second type étant supérieur à la largeur de bande interdite des cellules du premier type, ledit au moins un module additionnel peut être posé en recouvrement d’une face exposée au soleil du panneau existant ou en recouvrement d’une face opposée à la face exposée au soleil du panneau existant. [0018] Selon un second mode de réalisation, ladite largeur de bande interdite des cellules du second type étant inférieure à la largeur de bande interdite des cellules du premier type, ledit au moins un module additionnel peut être posé en recouvrement d’une face opposée à une face exposée au soleil du panneau existant.
[0019] Selon un mode de réalisation particulier, un matériau d’interface optique transparent aux longueurs d’ondes actives pour le panneau existant et dont l’indice de réfraction est adapté à minimiser les réflexions à l’interface entre le module additionnel et le panneau existant est disposé entre le module additionnel et le panneau existant.
[0020] Ceci améliore le rendement du panneau existant recouvert.
[0021] L’invention concerne en outre un panneau optimisé au moyen du procédé de l’une quelconque des revendications précédentes.
[0022] Ce panneau optimisé peut comporter un panneau existant et un module additionnel pourvu d’une pluralité de sous-modules S1 ou S’1 de cellules, reliés en parallèle par des pistes de connexion réalisées sur ledit module.
[0023] Le module additionnel du panneau optimisé peut être fixé sur le panneau existant au moyen d’un matériau adhésif ou encapsulant transparent ou tout moyen de fixation mécanique non adhésifs tel que vis, boulons, rivets ou clips.
[0024] Selon un mode de réalisation particulier, le panneau existant est un panneau de type cellules entières, demi cellules ou à cellules tuilées.
[0025] L’invention propose enfin un module additionnel adapté à la réalisation d’un panneau optimisé selon le procédé de l’invention.
[0026] Les cellules des sous-modules munies de pistes de connexion du module additionnel s’étendent avantageusement sur une largeur du module ou sur une longueur du module ou en deux groupes s’étendant chacun sur une moitié desdites largeur ou longueur.
[0027] Les cellules du module additionnel peuvent être des cellules de technologie couche mince. [0028] Les cellules du module additionnel peuvent être des cellules réalisées par une technologie photo voltaïque structurable, telles que les technologies CIGS, Pérovskite, CdTe ou Silicium amorphe de bande interdite différente de celle des cellules du panneau existant.
[0029] Les cellules du module additionnel peuvent plus généralement être des cellules réalisées par une technologie photovoltaïque de type III - V.
Brève description des dessins
[0030] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après d’exemples de réalisation non limitatifs, et à l’analyse des dessins annexés, sur lesquels :
[0031] [Fig. 1] montre une vue de dessus schématique d’un premier type de panneau existant ;
[0032] [Fig. 2] montre une vue de dessus schématique d’un deuxième type de panneau existant ;
[0033] [Fig. 3] montre une vue de dessus schématique d’un troisième type de panneau existant ;
[0034] [Fig. 4] montre une vue schématique en perspective d’un module applicable à l’invention ;
[0035] [Fig. 5A] montre le module de la figure 4 en vue de dessus ;
[0036] [Fig. 5B] montre le module de la figure 4 associé à un panneau existant sous un premier type d’ombrage ;
[0037] [Fig. 5C] montre le module de la figure 4 associé à un panneau existant sous un deuxième type d’ombrage ;
[0038] [Fig. 5D] montre le module de la figure 4 associé à un panneau existant sous un troisième type d’ombrage ;
[0039] [Fig. 6] montre un logigramme simplifié du procédé ;
[0040] [Fig. 7] montre un exemple de positionnement de module sur panneau existant ;
[0041] [Fig. 8] montre une vue schématique de côté d’un exemple de panneau optimisé ; [0042] [Fig. 9A] montre une vue schématique d’un premier exemple de panneau optimisé ;
[0043] [Fig. 9B] montre une vue schématique d’un deuxième exemple de panneau optimisé ;
[0044] [Fig. 9C] montre une vue schématique d’un troisième exemple de panneau optimisé.
Description des modes de réalisation
[0045] Les dessins et la description ci-après contiennent des éléments pouvant non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
[0046] Les panneaux photovoltaïques ont certaines limitations comme la sensibilité à l’ombrage et sont sujettes au vieillissement. Par exemple, les panneaux photovoltaïques encapsulés par exemple avec de l’Ethyl Vinyl Acetate (EVA) peuvent jaunir/brunir avec le temps suite à une exposition aux UV. Comme décrit dans Oliveira, M.C.C.D., Diniz, A.S.A.C., Viana, M.M., Lins, V.F.C. - “The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review/’ In Renewable and Sustainable Energy Reviews Volume 81 , Part 2, January 2018, Pages 2299-2317. Cet effet limite ainsi l’exposition des cellules du panneau à la lumière et réduit donc ses performances. Cet effet est inclus dans le calcul du taux de dégradation du productible des panneaux, aujourd’hui autour de 0,5-0, 7% /an. Cette dégradation conduit à devoir remplacer les panneaux ce qui est une opération lourde.
[0047] Pour ce qui concerne la sensibilité à l’ombrage, un panneau classique, en fonction de sa technologie et de sa configuration peut ne plus délivrer une partie de la puissance maximale pouvant être fournie si une partie de sa surface n’est plus exposée à la lumière. Dans le cas de panneaux dont les cellules sont raccordées en série avec diodes bypass en parallèles avec des regroupements de cellules, par exemple les modèles avec 3 diodes by-pass définissant trois groupes de cellules qui représentent la majorité des produits commerciaux actuels, 1/3 de la puissance maximale est perdue dès qu’une cellule d’un groupe est ombrée, 2/3 de la puissance maximale est perdue pour un ombrage sur des cellules de deux groupes et la totalité de la puissance est perdue en cas d’ombrage partiel réparti sur les trois groupes. Ceci entraine donc une perte en efficacité des installations.
[0048] La gestion de l’ombrage est une problématique d’optimisation de performances, particulièrement pour des installations en toitures, chez les particuliers ou dans les applications commerciales comme décrit dans le document Quaschning, V. and Hanitsch, R. - 1996 - « Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells » Solar Energy Volume 56, Issue 6, June 1996, Pages 513-520.
[0049] L’objet de la présente invention est donc de proposer une solution permettant de résoudre les problématiques de vieillissement et/ou d’ombrage simplement et permettant d’augmenter l’efficacité et le productible des panneaux existants sans les changer.
[0050] L’idée principale concerne un dispositif composé d’un module panneau photovoltaïque additionnel qui s’installe et se connecte directement sur un panneau classique existant, neuf où déjà installé, afin d’augmenter la quantité d’énergie produite par l’ensemble panneau classique - module additionnel.
[0051] Ceci permet par exemple l’amélioration d’une centrale photovoltaïque existante, toiture ou ferme, en profitant des installations déjà présentes ou l’actualisation d’une centrale photovoltaïque vieillissante. Le module additionnel peut notamment se baser sur la flexibilité de fabrication d’un panneau en technologie couche mince notamment réalisé par structuration telle que structuration laser ou autre pour modifier ses caractéristiques électriques en courant et en tension afin de s’adapter aux différents types de panneaux existants sur lesquels le module additionnel pourra être installé.
[0052] Pour permettre un branchement en parallèle du module additionnel et du panneau existant, le module additionnel est conçu pour constituer un panneau photovoltaïque présentant une tension de fonctionnement égale à +/-10% à la tension de fonctionnement du panneau existant une fois les deux systèmes associés, c’est-à-dire que l’on détermine une tension de fonctionnement VMPP dudit panneau ou groupe de panneaux existant une fois assemblés avec lesdits un ou plusieurs modules additionnels connaissant le type de module additionnel que l’on souhaite utiliser et notamment la transparence de ce module aux fréquences nécessaires pour le panneau existant.
[0053] Les performances d’un panneau simple jonction, à cellules de type silicium, sont théoriquement limitées autour de 29% d’efficacité. Cependant, pour des questions de procédés de fabrication, la limite pratique devrait atteindre 25%. Un panneau commercial présente aujourd’hui une efficacité entre 18 et 22%.
[0054] Les cellules de type Tandem à base de Silicium ont un rendement théorique d’environ 43%. Des panneaux Tandem d’environ 30% de rendement sont attendus dans les prochaines années.
[0055] Le procédé et le module de la présente invention utilisent une technologie différente du panneau existant pour améliorer les performances de l’ensemble. Une possibilité est l’utilisation de cellules de technologie couche mince et/ou de cellules de technologie structurable, par exemple à l’aide d’un laser, telles que les technologies à cellules CIGS, Pérovskite, CdTe ou Silicium amorphe hydrogéné connues à ce jour. Il peut bien entendu utiliser toute nouvelle technologie de cellules de photovoltaïques avec transparence au moins partielle pour les longueurs d’ondes utiles pour le panneau existant qui pourrait émerger.
[0056] La technologie de cellules structurées permet la création d’une architecture électrique à façon en alternant les phases d’isolation électrique, comme la gravure laser, et de connexion électrique, comme le dépôt de film conducteur, et en réalisant des connexions de type série ou parallèle. Le module réalisé est semi transparent c’est-à-dire qu’il laisse passer de la lumière dans les longueurs d’ondes non absorbées par ses cellules ce qui peut notamment permettre de récupérer de l’énergie lumineuse au niveau des cellules du panneau existant lorsque le module panneau additionnel recouvre le panneau existant sur sa face exposée au soleil.
[0057] Dans cette optique, dans le cas où le module se positionne côté face exposée au soleil du panneau existant, c’est à dire sur le panneau, le module va être basé sur une technologie photo voltaïque avec une énergie de gap supérieure à la technologie du panneau existant. Par exemple le module peut utiliser alors des cellules Perovskite, avec une énergie de bande interdite Eg e qui peut être définie entre 1 ,2 et 1 ,9eV, des cellules CdTe avec une énergie de bande interdite Eg de l’ordre de 1 ,5eV ou des cellules silicium amorphe hydrogéné avec une énergie de bande interdite Eg de 1 ,7eV à 1 ,9eV. L’énergie de bande interdite du module additionnel est choisie pour être différente de celle du panneau additionnel et les technologies précitées s’appliquent en particulier dans le cas où le panneau existant utilise des cellules épaisses Silicium mono ou polycristallin, avec une énergie de bande interdite Eg de l’ordre de 1 ,1 eV.
[0058] Plus généralement, les cellules du module additionnel sont des cellules réalisées par une technologie photovoltaïque de type III - V de bande interdite différente de celle des cellules du panneau existant.
[0059] Dans le cas où le module se place sur une face opposée à la face exposée au soleil du panneau existant, c’est à dire sous le panneau pour recevoir la lumière réfléchie par le sol ou le support du panneau existant, les cellules du module pourront avoir une énergie de bande interdite supérieure ou inférieure à celle des cellules du panneau existant.
[0060] Le module comporte un substrat classique de type verre ou plastique, pouvant être rigide ou souple, sur lequel est déposé l’ensemble des couches permettant la réalisation de cellules photovoltaïques, ces couches étant structurées pour réaliser les cellules et leurs pistes de connexion. A des fins de protection, cet ensemble peut être recouvert d’un matériau encapsulant de type polymère, par exemple Polyoléfine, où de type inorganique, par exemple AI2O3 et une seconde couche de type verre ou plastique, rigide ou souple peut être laminée sur le module. Enfin, un cadre rigide ou souple peut être installé autour du module pour le rigidifier ou l’isoler sur ses bords.
[0061] Comme représenté en figure 8, le module additionnel 10 est avantageusement fixé sur le panneau existant, par exemple un panneau 100 au moyen d’un matériau adhésif ou encapsulant transparent 19. Un matériau transparent aux longueurs d’onde de fonctionnement du panneau existant déduction faite de la gamme spectrale absorbée par le module additionnel soit par exemple entre 700 et 1200nm à minima, dont l’indice de réfraction permettra de minimiser les réflexions aux interfaces entre le module et le panneau existant, pourra être utilisé pour faire la jonction optique entre le panneau existant et le module additionnel afin de permettre une irradiation du panneau existant. [0062] Selon un premier mode de réalisation de l’invention, le module supplémentaire est configuré pour présenter à ses bornes de sortie une tension V1 proche de la tension VMPP du panneau existant en fonctionnement lorsque ce dernier est combiné avec le module additionnel. La tension V1 est choisie comme étant au moins la tension VMPP±1 0% ce qui constitue une erreur acceptable.
[0063] Le panneau existant est un panneau de type connu notamment à cellules silicium monocristallin ou polycristallin. Selon la figure 1 , le panneau existant 100 peut par exemple être de type cellules entières (full cell en anglais) traditionnel avec des lignes 101 , 102, 103, 104, 105, 106 de cellules 150 en série, les lignes étant elles-mêmes reliées en série par des liaisons 110, 120. Le panneau comporte en outre des diodes shunt 131 , 132, 133 dites bypass en anglais qui vont inhiber les parties de panneau ombrées. Selon la figure 2, le panneau 200 est de type demi-cellules 250 (half cell en anglais) avec deux bancs de réseaux secondaires de demi-cellules 200a, 200b reliés en série par des liaisons 220a, 220b, 210 et en parallèle par des liaisons 115. Le panneau comporte aussi dans ce cas trois diodes bypass 231 , 232, 233. Selon la figure 3, le panneau 300 est de type à cellules tuilées 350 (shingle cell en anglais) et comporte un premier demi-panneau 301 comportant des bandes 301 a, ..., 301 f de cellules en série ces bandes étant reliées en parallèle et un second demi-panneau comportant des bandes de cellules en série 302a, ..., 302f elles-mêmes reliées en parallèle. Les bandes des sous-panneaux 301 , 302 sont reliées en série par des liaisons 310 et en parallèle par des liaisons 315, 325. Dans ce dernier cas deux diodes bypass 331 , 332 sont prévues. Le panneau existant peut être simple face pour transformer de la lumière arrivant sur une seule face ou double face c’est-à-dire adapté à transformer de la lumière arrivant sur ses deux faces.
[0064] En prenant le cas du panneau à cellules entières, la tension VMPP du panneau est la somme des tensions VMPPC des cellules unitaires, 72 cellules selon l’exemple et le courant est le courant traversant chacune des cellules en absence d’ombrage. Pour le panneau de type demi cellules, la tension est la somme des tensions de la moitié des cellules du panneau, soit la tension de 2x36 cellules selon l’exemple, et le courant est la somme des courants des demi panneaux. Dans le cas du panneau à cellules tuilées, la tension de sortie du panneau est la somme des tensions des éléments de cellules se succédant en bande dans la longueur du panneau, 72 éléments selon l’exemple, et le courant est la somme des courants des bandes en parallèle dans la largeur du panneau. On peut ainsi définir le panneau existant comme comportant un réseau majeur REI fournissant la tension et le courant de sortie du panneau et éventuellement des réseaux mineurs RE2 les réseaux mis en parallèle dans le panneau existant le cas échéant.
[0065] Le module additionnel selon les exemples représentés va être constitué à partir d’un réseau mineur de cellules formées en bandelette de longueur Lceii et de hauteur Hceii mises en série pour atteindre la tension V1 égale à VMPP du panneau existant à 10% près.
[0066] La figure 6 illustre le procédé d’optimisation qui comporte la détermination à l’étape 1 d’une tension de fonctionnement VMPP d’un panneau existant à P cellules d’un premier type par exemple des cellules à base de silicium cristallin, la réalisation à l’étape 2 d’un module additionnel 10 comportant une seconde pluralité Q de cellules du second type et à largeur de bande interdite différente des cellules du panneau existant configurée pour fournir une tension de fonctionnement V1 égale à ±10% près à la tension VMPP dudit panneau ou dudit groupe de panneaux existants, la pose à l’étape 3 du module additionnel en recouvrement sur ou sous le panneau existant, le module étant relié en parallèle audit panneau existant ou audit groupe de panneaux existants. Pour la réalisation des cellules structurées du module, on part de la largeur I et de la longueur L du panneau et on choisit si la pluralité Q de cellules est disposée parallèlement à la longueur L du panneau existant ou à sa largeur.
[0067] On procède à l’étape 21 à une détermination de la tension de point de puissance maximale VMPP du panneau existant combiné avec le module additionnel ;
[0068] On calcule à l’étape 22 le nombre N de cellules à mettre en série pour réaliser un sous module S1 du module additionnel adapté à fournir ladite tension V1.
[0069] On calcule à l’étape 23 une hauteur Hceii desdites cellules du sous module S1 et on calcule à l’étape 24 le nombre M1 de sous modules S1 implantables en parallèle sur la largeur I du panneau existant maximisant la puissance dudit module recouvrant le panneau existant à la tension V1. Il est à noter que les étapes 23 et 24 sont interdépendantes. Plusieurs combinaisons peuvent exister mais on choisit celle qui permet de délivrer un maximum de puissance.
[0070] On réalise à l’étape 25 le module additionnel en technologie photovoltaïque structurable comportant M1 sous modules S1 en parallèle, encapsulation du module additionnel et pose du module additionnel en recouvrement du panneau existant.
[0071] Par exemple dans le cas du panneau PERC (pour Passivated Emitter and Rear Contact en anglais soit émetteur passivé et contact arrière en français) à cellules entières de la figure 1 , en considérant que les cellules sont des cellules silicium de VMPPC de 0,55V, une fois associé au module complémentaire la tension VMPP du panneau existant est de 39,7V. Pour un module additionnel à cellules Perovskite, la tension VceiiMPP est de 0,864V. Il faudra donc N1 =46 cellules Perovskite en série pour fournir la tension V1 .
[0072] A partir de cette valeur on va calculer le nombre de cellules d’un panneau optimisé équivalent Perovskite utilisé seul. En partant des dimensions longueur 1950mm et largeur 950mm du panneau existant et de la hauteur optimale de 5,03mm d’une cellule Perovskite considérée on obtient un nombre de cellules possible dans la largeur du panneau de 180 cellules en considérant les liaisons et détourages nécessaires. Pour remplir la surface du panneau et conserver la tension VMPP du panneau existant on va alors réduire légèrement la hauteur des cellules pour obtenir un multiple 46 cellules dans la largeur du panneau ce qui donne 184 cellules et donc M1 = 4 réseaux mineurs S1 mis en parallèle fournissant la tension V1. Le module additionnel résultant est schématisé en figure 4 avec les réseaux mineurs 10a, 10b, 10c, 10d comportant chacune 46 cellules de longueur Lceii et de hauteur de cellule Hceii de 4,91 mm pour fournir une tension V1 égale à VMPP à 0,2% près, ces réseaux mineurs étant mis en parallèle par des liaisons 15 et 16 pour réaliser le module de largeur adaptée au panneau existant. Dans cette configuration, les pertes au niveau de module complémentaires sont de 0,1 W ce qui est très faible par rapport à un panneau avec cellules de dimensions optimales ci-dessus. [0073] L’organisation spatiale du panneau existant selon la figure 1 est une organisation où les cellules sont reliées en série sur des lignes et reliées en Zig- Zag ligne par ligne sur la hauteur du panneau alors que l’organisation spatiale du module complémentaire comporte sur la hauteur du panneau quatre bandes de cellules reliées en parallèle, les bandes de cellules étant constituées de cellules reliées en série selon une direction parallèle à la hauteur du panneau. Les deux panneaux ont ainsi des organisations spatiale et électrique différentes. Ainsi avec le procédé de l’invention on va configurer le module additionnel à la demande selon le type de panneau existant à rénover.
[0074] A titre d’exemple, pour un panneau demi cellules de 955mm de largeur ayant des cellules de VMPPC de 0,562V et donc une VMPP de 40,5V, le module additionnel de même configuration va avoir N1 =47 cellules de hauteur Hceii=4,32mm en série par sous réseau S1 , l’erreur de V1 par rapport à VMPP étant ici de 0,4%. Il est alors possible de disposer quatre sous réseaux S1 en parallèle soit 188 cellules dans la largeur du panneau compte tenu des pistes de raccordement et de la présence d’une zone périphérique libre pour la préhension du module ou pour l’ajout éventuel d’un cadre. Les pertes par rapport aux dimensions idéales sont là aussi de 0,1 W.
[0075] Les 47 cellules en bande de hauteur 4,32mm et de longueur équivalente à la longueur du panneau en série forment un sous réseau ou réseau mineur S1 , quatre réseaux mineurs étant raccordés en parallèle pour former un réseau majeur.
[0076] Dans ce cas, le panneau existant comporte 6 réseaux mineurs de cellules en série, chaque réseau mineur comportant deux demi lignes superposées de cellules en série, les réseaux mineurs sont deux à deux en parallèle sur la longueur du panneau puis raccordés en série selon la largeur du panneau pour former le réseau majeur du panneau existant tandis que le module complémentaire comporte toujours quatre bandes de cellules reliées en parallèle sur la hauteur du panneau, les bandes de cellules étant constituées de cellules reliées en série selon une direction parallèle à la hauteur du panneau. L’organisation spatiale et l’organisation électrique des deux panneaux est là aussi différente. [0077] Pour un panneau à cellules tuilées de largeur 955mm, partant d’une distribution optimale de 182 cellules de 5mm de hauteur, disposées selon la largeur du panneau on arrive, toujours compte tenu des pistes de raccordement et de la présence d’une zone périphérique libre pour la préhension du module ou pour l’ajout éventuel d’un cadre, à une disposition avec 168 cellules de hauteur de 5,44mm soit 4 réseaux mineurs S1 ayant chacun 42 cellules pour une erreur sur V1 de 0,2% par rapport à VMPP. La perte de puissance est ici seulement de 0,3W.
[0078] Il est à noter que dans tous les cas, du fait que le module est structuré à la demande en fonction de la configuration du panneau existant, il est possible d’organiser le module complémentaire avec des bandes de cellules s’étendant sur la largeur du panneau en série selon la longueur du panneau, ces bandes étant mises en parallèle l’une après l’autre sur la longueur du panneau. Ceci permet par exemple d’orienter les cellules du module additionnel
[0079] Pour illustrer l’amélioration du comportement de l’ensemble en cas d’ombrage, on se place dans le cas des figures 5A à 5D dans une configuration avec un module additionnel 10 Perovskite, de 300W de puissance, représenté en figure 5A avec quatre sous réseaux 10a, 10b, 10c, 10d en parallèle. Ce module additionnel est disposé sur le panneau existant côté face éclairée du panneau existant et raccordé en parallèle sur ce panneau. Dans cet exemple, le panneau existant utilisé est un panneau PERC silicium cellules entières de puissance nominale de 300W. Un tel panneau dont la configuration est telle que décrite en figure 1 est pourvu de six lignes 101 , 102, 103, 104, 105, 106 de cellules en série et trois diodes bypass 131 , 132, 133. Il délivre de l’ordre de 160W lorsqu’il est sous le module additionnel.
[0080] Dans le cas de la figure 5B, où les cellules du panneau existant sont montrées au travers d’une déchirure du module, l’ombrage 20 est localisé dans le coin haut à droite et recouvre une cellule de la ligne 101 ainsi qu’une portion des cellules de la première bande de cellules 10a du module.
[0081] Le panneau 100 voit alors l’ensemble de ses cellules des lignes 101 et 102 désactivées et la diode 133 devient passante ce qui occasionne une perte de 1/3 de sa puissance. Par contre, du fait de sa configuration, le module additionnel perd peu de puissance et au global le bilan est favorable. [0082] Il en est de même pour les cas des figures 5C, ombrage 21 de la moitié supérieure de l’ensemble et figure 5D ombrage 22 d’une moitié latérale.
[0083] Les mesures effectuées en laboratoire sur les prototypes sont représentées dans le tableau ci-dessous pour des illuminations normalisées correspondant à 1000W/m2 avec un spectre proche de la définition AM1.5G. La présence du module additionnel a réduit les pertes globales.
[0084] [Tableau 1]
Figure imgf000018_0001
[0085] Dans le cas d’un panneau existant demi-cellules, comme représenté en figure 2, de dimensions et puissance nominale similaire associé à un module additionnel similaire, les valeurs mesurées en laboratoire sont reprises dans le tableau ci-dessous:
[0086] [Tableau 2]
Figure imgf000018_0002
Figure imgf000019_0001
[0087] On constate dans tous les cas une augmentation de la puissance produite ainsi qu’une baisse de la sensibilité à l’ombrage une fois le panneau additionnel installé.,
[0088] Les figures 9A à 9C donnent des exemples de configurations possibles dans le cadre de l’invention.
[0089] En figure 9A chaque panneau existant 100a, 100b est relié en parallèle à un module complémentaire 51 et ces panneaux optimisés unitairement sont reliés en série par une liaison 61 et reliés à d’autres panneaux par la liaison série 60a, 60b.
[0090] En figure 9B, des panneaux additionnels 52a, 52b sont positionnés sur des panneaux 100c, 100d d’un groupe de panneaux 100c, 100d, et relié en parallèle à ces panneaux 100c, 100d par des liaisons 63a, 63b, 65a, 65b, les panneaux 100c, 100d étant pour leur part reliés en série par une liaison 64. Dans ce cas la tension V1 des modules doit être la tension 2XVMPP somme des VMPP de chaque panneau du groupe.
[0091] En figure 9C, chaque panneau 100e, 10Of d’un groupe de deux panneaux reçoit un module additionnel 53a, 53b. Les panneaux existants sont reliés en série par une liaison 68, les modules 53a, 53b sont reliés en série par une liaison 67 et la paire de panneaux existants 100e, 10Of est reliée en parallèle à la paire de modules de panneau complémentaires 53a, 53b. Dans ce cas la tensions V1 de chaque module 53a, 53b doit être établie de façon à ce que la tension de l’ensemble des panneaux additionnels reliés en série corresponde à la tension de l’ensemble des panneaux existants mis en série. Ceci peut être généralisé à une ligne complète de panneaux existants gérée par un convertisseur de tension.
[0092] Au-delà des exemples représentés, le nombre de panneaux des groupes de panneaux peut être différent de deux tout en restant dans le cadre de l’invention. [0093] Il est ainsi possible dans le cadre de l’invention d’ajouter les modules additionnels sur les panneaux existants d’un groupe de panneaux et de raccorder ces modules en série entre eux et en parallèle avec l’ensemble des panneaux eux-mêmes raccordés en série comme représenté en figure 9C pour deux panneaux existants et deux modules additionnels. Ceci peut être utile si par exemple il est souhaité de pallier des phénomènes d’ombrage localisés sur un parc photovoltaïque ou pour réduire les coûts de mise à jour du parc.
[0094] Dans l’exemple de la figure 7, le module additionnel 10 est posé en recouvrement sur le panneau existant à cellules tuilées 300 et raccordé en parallèle avec ce dernier pour réaliser une sortie de tension commune 17, 18.
[0095] Dans un tel cas, la tension V1 du module additionnel sera calculée en prenant comme valeur de VMPP la somme des tensions VMPP des panneaux en série et le module sera structuré en conséquence.
[0096] Dans le cas où le module additionnel utilise la technologie couche mince structurée, ce dernier peut être réalisé d’un seul tenant en déposant et structurant les couches constituant les bandes formant les cellules et les pistes directement sur un substrat unique par exemple par structuration laser.
[0097] L’invention ne se limite pas aux exemples décrits ci-avant, mais elle englobe toutes les variantes que pourra envisager l’homme de l’art dans le cadre de la protection recherchée. En particulier, du moment que le module additionnel laisse passer des longueurs d’ondes actives pour le panneau existant et que sa disposition spatiale et électrique est différente de ce panneau existant tandis que sa tension VMPP est proche de celle du panneau existant, la technologie des cellules du module additionnel peut différer d’une technologie couche mince. Par ailleurs, dans le cas de cellules en bande, l’orientation des bandes constituant les cellules du module additionnel peut être parallèle à la longueur ou la largeur du ou des panneaux existants et la surface couverte par ce module peut être adaptée pour optimiser le nombre de réseaux mineurs en parallèle. Enfin, la bande interdite des cellules du module additionnel peut être choisie pour laisser passer une plage de longueurs d’ondes au travers de ces cellules adaptée pour maximiser le rendement des cellules du panneau existant sous le module additionnel.

Claims

Revendications
[Revendication 1] Procédé d’optimisation d’un système générateur à cellules photovoltaïques existant et pourvu d’un panneau photovoltaïque existant (100, 200, 300) ou d’un groupe de panneaux photovoltaïques existants, chaque panneau existant étant muni d’une première pluralité P de cellules d’un premier type interconnectées en série ou en série/parallèle, au moyen d’un ou plusieurs modules additionnels, caractérisé en ce qu’il comporte :
- la détermination (1 ) d’une tension de fonctionnement VMPP dudit panneau ou groupe de panneaux existant une fois assemblés avec lesdits un ou plusieurs modules additionnels,
- la réalisation (2) d’un ou plusieurs modules additionnels (10, 51 , 52, 53) comportant une seconde pluralité Q de cellules photovoltaïques d’un second type et à largeur de bande interdite différente des cellules du panneau existant ou des panneaux existants du groupe de panneaux existants, ladite seconde pluralité Q de cellules du ou des modules additionnels étant configurée pour fournir une tension de fonctionnement V1 égale à ±10% près à la tension VMPP dudit panneau ou dudit groupe de panneaux existants,
- la pose (3) du module additionnel en recouvrement sur ou sous le panneau existant, ledit module étant relié en parallèle audit panneau existant ou la pose (3) desdits plusieurs modules additionnels en recouvrement sur ou sous plusieurs desdits panneaux existants dudit groupe de panneaux existants, lesdits plusieurs modules étant reliés en parallèle à au moins certains des panneaux existants ou audit groupe de panneaux existants.
[Revendication 2] Procédé d’optimisation d’un système générateur à cellules photovoltaïques existant selon la revendication 1 , pour lequel le ou les modules additionnels (10) comportent une pluralité de sous modules S1 , S’1 (10a, 10b, 10c, 10d) de cellules fournissant ladite tension de fonctionnement V1 et eux-mêmes reliés en parallèle.
[Revendication 3] Procédé d’optimisation d’un système générateur à cellules photovoltaïques existant selon la revendication 1 ou 2, pour lequel la disposition de la pluralité Q des cellules du ou des modules additionnels est réalisée selon une configuration électrique et spatiale différente de la pluralité P des cellules du panneau existant ou des panneaux du groupe de panneaux existants.
[Revendication 4] Procédé d’optimisation d’un système générateur à cellules photovoltaïques existant selon la revendication 1 , 2 ou 3, pour lequel le panneau existant comportant une largeur I et une longueur L et pour lequel ladite pluralité Q de cellules photovoltaïques du second type sont disposées parallèlement à la longueur L du panneau existant, ledit procédé comporte une ou plusieurs étapes de :
- détermination (21 ) de la tension de point de puissance maximale VMPP du panneau existant ou du groupe de panneaux existants lorsqu’ils sont combinés avec un module additionnel ;
- calcul (22) du nombre N1 de cellules photovoltaïques du second type à mettre en série pour réaliser un sous module S1 du module additionnel adapté à fournir ladite tension V1 ;
- calcul (23, 24) d’une hauteur Hcell desdites cellules du sous module S1 et du nombre M1 de sous modules S1 implantables en parallèle sur la largeur I du panneau existant maximisant la puissance dudit module recouvrant le panneau existant à la tension V1 ;
- réalisation (25) du module additionnel à cellules photovoltaïques du second type comportant M1 sous modules S1 en parallèle, encapsulation du module additionnel et pose du module additionnel en recouvrement du panneau existant.
[Revendication 5] Procédé d’optimisation d’un système générateur à cellules photovoltaïques existant selon la revendication 1 , 2 ou 3, pour lequel le panneau existant comportant une largeur I et une longueur L et pour lequel ladite pluralité Q de cellules photovoltaïques du second type est disposée parallèlement à la largeur I du panneau existant, ledit procédé comporte une ou plusieurs étapes de :
- détermination (21 ) de la tension de point de puissance maximale VMPP du panneau existant ou du groupe de panneaux existants lorsqu’ils sont combinés avec le module additionnel ; - calcul (22) du nombre N’1 de cellules photovoltaïques du second type à mettre en série pour réaliser un sous module S’1 du module additionnel adapté à fournir ladite tension V1 ;
- calcul (23, 24) d’une hauteur H’cell desdites cellules du sous module S’1 et du nombre M’1 de sous modules S’1 implantables en parallèle sur la longueur L du panneau existant maximisant la puissance du module recouvrant le panneau existant à la tension V1 ;
- réalisation (25) du module additionnel à photovoltaïques du second type comportant M’1 sous modules S’1 en parallèle, encapsulation du module additionnel et pose (3) du module additionnel en recouvrement du panneau existant.
[Revendication 6] Procédé selon l’une quelconque des revendications précédentes, pour lequel ladite largeur de bande interdite des cellules du second type étant supérieur à la largeur de bande interdite des cellules du premier type, ledit au moins un module additionnel est posé en recouvrement d’une face exposée au soleil du panneau existant ou en recouvrement d’une face opposée à la face exposée au soleil du panneau existant.
[Revendication 7] Procédé selon l’une quelconque des revendications précédentes, pour lequel ladite largeur de bande interdite des cellules du second type étant inférieure à la largeur de bande interdite des cellules du premier type, ledit au moins un module additionnel est posé en recouvrement d’une face opposée à une face exposée au soleil du panneau existant.
[Revendication 8] Procédé selon l’une quelconque des revendications précédentes, pour lequel un matériau d’interface optique (19) transparent aux longueurs d’ondes actives pour le panneau existant et dont l’indice de réfraction est adapté à minimiser les réflexions à l’interface entre le module additionnel et le panneau existant est disposé entre le module additionnel et le panneau existant.
[Revendication 9] Panneau optimisé au moyen du procédé de l’une quelconque des revendications précédentes. 22
[Revendication 10] Panneau optimisé selon la revendication 9, caractérisé en ce qu’il comporte un panneau existant et un module additionnel pourvu d’une pluralité de sous-modules S1 ou S’1 (10a, 10b, 10c, 10d) de cellules, reliés en parallèle par des pistes de connexion (15, 16) réalisées sur ledit module.
[Revendication 11] Panneau optimisé selon la revendication 9 ou 10 pour lequel le module additionnel (10) est fixé sur le panneau existant au moyen d’un matériau adhésif ou encapsulant transparent (19) ou tout moyen de fixation mécanique non adhésifs tel que vis, boulons, rivets ou clips.
[Revendication 12] Panneau optimisé selon la revendication 9, 10 ou 11 , pour lequel les cellules des sous-modules munies de pistes de connexion s’étendent sur une largeur du module ou sur une longueur du module ou en deux groupes s’étendant chacun sur une moitié desdites largeur ou longueur.
[Revendication 13] Panneau optimisé selon l’une quelconque des revendications 9 à 12, pour lequel les cellules du module additionnel sont des cellules de technologie couche mince.
[Revendication 14] Panneau optimisé selon l‘une quelconque des revendications 9 à 13, pour lequel les cellules du module additionnel sont des cellules réalisées par une technologie photovoltaïque structurable, telles que les technologies CIGS, Pérovskite, CdTe ou Silicium amorphe de bande interdite différente de celle des cellules du panneau existant.
[Revendication 15] Panneau optimisé selon l‘une quelconque des revendications 9 à 12, pour lequel les cellules du module additionnel sont des cellules réalisées par une technologie photovoltaïque de type III - V.
[Revendication 16] Panneau optimisé selon l’une quelconque des revendications 9 à 15, pour lequel le panneau existant est un panneau de type cellules entières (100), demi cellules (200) ou à cellules tuilées (300).
[Revendication 17] Module additionnel adapté à la réalisation d’un panneau optimisé selon le procédé de l’une quelconque des revendications 1 à 8.
PCT/EP2021/082366 2020-11-20 2021-11-19 Procede et dispositif d'optimisation de panneaux photovoltaiques et panneaux photovoltaiques optimises selon ce procede WO2022106652A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21819086.6A EP4248497A1 (fr) 2020-11-20 2021-11-19 Procede et dispositif d'optimisation de panneaux photovoltaiques et panneaux photovoltaiques optimises selon ce procede
US18/253,087 US20230421094A1 (en) 2020-11-20 2021-11-19 Method and device for optimising photovoltaic panels and photovoltaic panels optimised using this method
CN202180076852.7A CN117083712A (zh) 2020-11-20 2021-11-19 用于优化光伏面板的方法和装置以及使用此方法优化的光伏面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011935 2020-11-20
FR2011935A FR3116677A1 (fr) 2020-11-20 2020-11-20 Procede et dispositif d’optimisation de panneaux photovoltaiques et panneaux photovoltaiques optimises selon ce procede

Publications (1)

Publication Number Publication Date
WO2022106652A1 true WO2022106652A1 (fr) 2022-05-27

Family

ID=73793540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082366 WO2022106652A1 (fr) 2020-11-20 2021-11-19 Procede et dispositif d'optimisation de panneaux photovoltaiques et panneaux photovoltaiques optimises selon ce procede

Country Status (5)

Country Link
US (1) US20230421094A1 (fr)
EP (1) EP4248497A1 (fr)
CN (1) CN117083712A (fr)
FR (1) FR3116677A1 (fr)
WO (1) WO2022106652A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180083151A1 (en) * 2016-09-21 2018-03-22 Kabushiki Kaisha Toshiba Solar cell module and photovoltaic power generation system
DE102018216768A1 (de) * 2018-09-28 2020-04-02 Siemens Aktiengesellschaft Erweiterte PV-Anlage mit verbesserter Effizienz
WO2020113251A1 (fr) * 2018-12-03 2020-06-11 Ait Austrian Institute Of Technology Gmbh Restauration de la puissance de centrales électriques photovoltaïques
EP3923468A1 (fr) * 2020-06-09 2021-12-15 Siemens Gamesa Renewable Energy GmbH & Co. KG Procédé d'augmentation de la génération d'énergie d'une centrale solaire déjà installée, système de modification d'une centrale solaire et centrale solaire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180083151A1 (en) * 2016-09-21 2018-03-22 Kabushiki Kaisha Toshiba Solar cell module and photovoltaic power generation system
DE102018216768A1 (de) * 2018-09-28 2020-04-02 Siemens Aktiengesellschaft Erweiterte PV-Anlage mit verbesserter Effizienz
WO2020113251A1 (fr) * 2018-12-03 2020-06-11 Ait Austrian Institute Of Technology Gmbh Restauration de la puissance de centrales électriques photovoltaïques
EP3923468A1 (fr) * 2020-06-09 2021-12-15 Siemens Gamesa Renewable Energy GmbH & Co. KG Procédé d'augmentation de la génération d'énergie d'une centrale solaire déjà installée, système de modification d'une centrale solaire et centrale solaire

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LESLIE HOOK: "Alternative to silicon offers cheaper solar power", FINANCIAL TIMES, 8 January 2018 (2018-01-08), pages 1 - 4, XP055654974, Retrieved from the Internet <URL:https://www.ft.com/content/9b9a2374-cec0-11e7-947e-f1ea5435bcc7> [retrieved on 20200106] *
OLIVEIRA, M.C.C.D.DINIZ, A.S.A.C.VIANA, M.M.LINS, V.F.C.: "The causes and effects of dégradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A re vie w", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, vol. 81, January 2018 (2018-01-01), pages 2299 - 2317, XP085252378, DOI: 10.1016/j.rser.2017.06.039
QUASCHNING, V.HANITSCH, R.: "Numerical simulation of current-voitage characteristics of photovoltaic systems with shaded solar cells", SOLAR ENERGY, vol. 56, June 1996 (1996-06-01), pages 513 - 520, XP004011959, DOI: 10.1016/0038-092X(96)00006-0
ZE'EV R ABRAMS: "Alternative Strategies for Maximizing the Output of Multi-Junction Photovoltaic Panels", ARXIV.ORG, no. 1412.2056, 5 December 2014 (2014-12-05), pages 1 - 11, XP055351662, Retrieved from the Internet <URL:https://arxiv.org/ftp/arxiv/papers/1412/1412.2056.pdf> [retrieved on 20170306] *

Also Published As

Publication number Publication date
US20230421094A1 (en) 2023-12-28
FR3116677A1 (fr) 2022-05-27
CN117083712A (zh) 2023-11-17
EP4248497A1 (fr) 2023-09-27

Similar Documents

Publication Publication Date Title
Zhengshan et al. PVMirror: a new concept for tandem solar cells and hybrid solar converters
EP2380069B1 (fr) Système de gestion électronique de cellules photovoltaiques
US10043929B1 (en) Spectrally adaptive multijunction photovoltaic thin film device and method of producing same
US20140209149A1 (en) Superstrate sub-cell voltage-matched multijunction solar cells
US20170012155A1 (en) System and method for manipulating solar energy
EP2510415B1 (fr) Systeme de gestion electronique de cellules photovoltaiques avec seuils adaptes
FR2945670A1 (fr) Dispositif photovoltaique et procede de fabrication
WO2022106652A1 (fr) Procede et dispositif d&#39;optimisation de panneaux photovoltaiques et panneaux photovoltaiques optimises selon ce procede
EP3840063B1 (fr) Module photovoltaïque avec réduction du déséquilibre électrique
EP4111506A1 (fr) Architecture d&#39; installations photovoltaiques
FR3074963A1 (fr) Module photovoltaique comportant des cellules photovoltaiques interconnectees par des elements d&#39;interconnexion
EP3000136B1 (fr) Procédé de fabrication d&#39;un système photovoltaïque à concentration de lumière
WO2013167564A2 (fr) Module photovoltaïque et procede de realisation d&#39;un tel module
WO2012099816A2 (fr) Dispositifs photovoltaïques et leurs procédés de formation
FR3086102A1 (fr) Module solaire ameliore
EP3882984A1 (fr) Module solaire ameliore
WO2023280949A2 (fr) Procede d&#39;optimisation de la duree de vie d&#39;un module photovoltaique bifacial multijonctions et module ou panneau photovoltaique adapte a ce procede
Yu et al. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency]
US20110265856A1 (en) Monolithic thin-film photovoltaic device with enhanced output voltage
WO2004059746A1 (fr) Module photovoltaIque intEgrE pour systEme A concentration et un procEdE DE FABRICATION
Yu Silicon-Based Tandem Solar Cells with Silicon Heterojunction Bottom Cells
WO2023280830A1 (fr) Procede de controle de dispositif de suivi pour la maximisation du courant produit par un module solaire photovoltaïque bifacial a cellules multi-jonctions
WO2013098204A2 (fr) Panneau photovoltaîque a diodes montees en parallele a structure centrale diffusante et structure arriere reflechissante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21819086

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180076852.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18253087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021819086

Country of ref document: EP

Effective date: 20230620