WO2022105732A1 - 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺 - Google Patents

折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺 Download PDF

Info

Publication number
WO2022105732A1
WO2022105732A1 PCT/CN2021/130841 CN2021130841W WO2022105732A1 WO 2022105732 A1 WO2022105732 A1 WO 2022105732A1 CN 2021130841 W CN2021130841 W CN 2021130841W WO 2022105732 A1 WO2022105732 A1 WO 2022105732A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
section
sewage
cavity section
carbon removal
Prior art date
Application number
PCT/CN2021/130841
Other languages
English (en)
French (fr)
Inventor
周向同
席海朋
刘承烨
吴智仁
刘志刚
蒋素英
董红军
梁止水
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2022105732A1 publication Critical patent/WO2022105732A1/zh
Priority to US17/988,883 priority Critical patent/US11724949B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/284Anaerobic digestion processes using anaerobic baffled reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/303Nitrification and denitrification treatment characterised by the nitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of sewage treatment, in particular to a baffled anaerobic biological nest integrated denitrification and decarbonization device and a denitrification and decarbonization process.
  • the activated sludge method is mostly used in municipal sewage treatment, and biomass exists in the form of suspension in these systems.
  • the typical processes include oxidation ditch, anaerobic/anoxic/aerobic (A2O), etc., but these processes have aeration High energy consumption, long process flow, high investment cost, mismatch between hydraulic retention time and solid retention time, large excess sludge output, and complicated maintenance process.
  • the coexisting biofilm law can form a biofilm on the surface of the filler by means of microorganisms to achieve the separation of hydraulic retention time and solid retention time.
  • the biofilm has a stratification phenomenon in space, which can be used for anaerobic/anoxic (A/O) or anaerobic/anoxic/aerobic (A2/O) in the activated sludge process.
  • the function is integrated into a single reaction unit, and steps such as sludge return are not required to simplify the process.
  • the typical processes in the biofilm method include biological turntable, biological contact oxidation and aerated biological filter. These processes overcome many defects of the activated sludge method to a certain extent, and also create conditions for the aggregation of slow-growing autotrophic bacteria (such as nitrifying bacteria), making the biological phase more diverse.
  • biological methods also have a common disadvantage, that is, affected by factors such as mass transfer, physicochemical properties of carriers, hydraulic shock, local acidification/biological gas production at the interface between microorganisms and carriers, etc.
  • the phenomenon restricts the efficiency of the process.
  • CSTRs Continuous stirred reactor systems
  • biodegradable wastewater such as food and beverages.
  • high-efficiency anaerobic reactors are roughly divided into three types: fixed biofilm, suspended growth and hybrid.
  • the upflow anaerobic sludge bed (UASB-suspension) reactor occupies a large proportion.
  • an ideal anaerobic process should also effectively improve bacterial activity and its biodiversity, and ensure adequate contact between bacteria and substrates.
  • the baffled flow anaerobic reactor (ABR) is the most representative. In terms of structure, it has a simple design, no movable parts, no mechanical stirring, low construction cost, not easy to block, effectively reducing the swelling phenomenon of the sludge bed, and low investment and operating costs.
  • biomass there are no special requirements for the sedimentation of biomass, the amount of sludge produced is small, and the solid residence time is long.
  • the biomass residence does not require fixed fillers, nor does it require special gas or sludge separation. In terms of operation, the hydraulic retention time is short and the adaptability to the impact load of the water body is strong.
  • the main advantage of the baffled anaerobic reactor (ABR) is the separation of acid production and methane production in the longitudinal direction, which ensures that different bacterial groups can grow and function under their own suitable conditions.
  • the unique mode of the baffled anaerobic reactor (ABR) avoids the limitations of other systems such as the clogging risk of anaerobic filters and UASB and the swelling of the sludge bed.
  • the baffled anaerobic reactor also has its own defects, that is, in order to ensure the upward flow rate of liquid and gas, the constructed reactor body is generally shallow, and there is also the problem of uniform water distribution. It has been reported that the combination of activated sludge process and biofilm reactor can enhance the stability of the system. In order to offset the above disadvantages, packing bundles were introduced into the partitions and chambers of the baffled anaerobic reactor (ABR) in engineering research to enhance the efficiency of anaerobic treatment.
  • the baffled anaerobic reactor can handle not only high-intensity sewage, but also low-intensity municipal sewage.
  • ABR baffled anaerobic reactor
  • the purpose of the present invention is to provide a baffled anaerobic biological nest integrated denitrification and carbon removal device, which has low construction cost, low operation cost and simple structure; another purpose of the present invention is to provide a baffled anaerobic biological nest.
  • the integrated denitrification and carbon removal process of aerobic biological nests can not only retain a large amount of anaerobic sludge to form a rich micro-environment, but also deeply denitrify without external carbon sources, save costs and energy consumption, and achieve Efficient treatment of sewage.
  • a baffled anaerobic biological nest integrated denitrification and carbon removal device characterized in that it comprises a device main body, a plurality of groove plates and a plurality of baffle plates; a plurality of the groove plates are connected in the device main body and the The internal space of the main body of the device is divided into chambers of section I, section II, section III and section IV; the chambers of section I, section II and section III are arranged in sequence and communicated with each other, and the chamber of section IV is located in the One side of the chamber of the first section; one end of the several baffles is connected to the main body of the device and is located in the four chambers respectively, for guiding sewage into the chambers of each section; the first section , II and III chambers are provided with a number of packing bundles for purifying water quality and microbial attachment; the IV chamber is a nitrification tank, and the IV chamber is provided with a biomass separation device and aeration The two ends of the biomass separation device are respectively connected with the groove plate
  • the denitrification and carbon removal device is divided into four chambers, that is, the first chamber is mainly used to convert carbohydrates, proteins and lipids in the sewage to be treated into soluble organic molecules; the second chamber is mainly used for Realize the acidification of sugars, amino acids and fatty acids and the reduction of nitrates; the third chamber is mainly used to realize the acetic acid production of volatile fatty acids and the reduction of nitrates (in the II and III chambers). Methane may be produced); the IV section chamber mainly deals with the low C/N ratio effluent of the III section chamber, that is, the water from the III section chamber is pumped into the IV section chamber.
  • the IV stage chamber is an independent nitrification tank, which further converts the untreated ammonia nitrogen in the first three stage chambers into nitrate nitrogen through nitrification, and uses the low C/N ratio reflux liquid to enrich heterotrophic nitrification and aerobic reaction.
  • the nitrifying bacteria can further remove carbon and nitrogen, and the nitrifying liquid in the IV section chamber passes through the biomass separation device and then enters the first section chamber and mixes with the sewage to be treated to achieve deep denitrification of the sewage.
  • the device body is a cuboid structure; a plurality of the groove plates are connected in parallel in the device body, and the volumes of the chambers in the first, second and third sections are equal; the device body is also provided with several rows breath.
  • the exhaust port discharges the biogas generated during the entire sewage treatment process from the exhaust port.
  • baffle plates are provided with a bending structure, and a bending angle of 120-150° is formed between the bending structure and the baffle plate.
  • the bending structures in the chamber of the first stage face the chamber of the second stage; the bending structures in the chamber of the second stage are towards the chamber of the third stage; and the orientations of all the bending structures remain the same.
  • the filler bundles are arranged in the chambers of the first stage, the second stage and the third stage; the filler monomer is in the shape of an umbrella; the filler monomer is composed of basalt fibers.
  • the three basalt fiber bundles (packing bundles) in each chamber are equally spaced.
  • Micron-scale basalt fiber is a kind of green and environmentally friendly material.
  • the filler monomer prepared by micron-scale basalt fiber is introduced into the activated sludge of aerobic process to quickly form biological aggregates with a size of more than 10cm, which is called "biological nest". ".
  • biological nest This kind of biological nest can still detect the activity at a depth of 6cm, and the existence of dissolved oxygen can still be detected at a depth of 5cm.
  • the structure is stable and there is no obvious shedding phenomenon.
  • the rich diversity of microorganisms in the biological nest creates conditions for the deep removal of pollutants.
  • three umbrella-shaped packing monomers are connected in series with titanium wires with a diameter of 1-3 mm, and the two ends of the titanium wires are respectively connected to the main body of the device, so that the sewage to be treated is immersed in the packing bundles .
  • basalt fiber bundles with a length of 12-15cm are cut according to the amount, and a titanium wire with a diameter of 1-3mm is used as the core material to prevent it from rusting in water; then the two stretched core materials are fixed on the braiding machine , lay the basalt fiber bundle at an amount of 1g/cm along its length, and ensure that the midpoint of the basalt fiber bundle is between the two strands of titanium wires (the amount of basalt fiber per filler monomer is 3g), and then start the weaving Machine twisted titanium wire to form a bundle of three filler monomers.
  • the biomass separation device includes a separator and a fiber mat; the separator is provided with a number of water-permeable holes, and the fiber mat is laid on the separator; the two ends of the separator are respectively connected to the The groove plate and the baffle plate in the chamber of stage IV.
  • a biomass separation device was installed in the IV section chamber.
  • the separator acts as a support for placing the fiber mat and at the same time ensuring the normal flow of sewage; the fiber mat is used for retaining nitrifying bacteria and increasing the biomass in the chamber of stage IV.
  • the slot plate and the baffle plate in the chamber of section IV are both provided with card slots; the two ends of the partition plate are provided with clips, and the clips are inserted into the clip slots; the The fiber mat is a basalt fiber mat and the thickness of the fiber mat is 5-7 mm.
  • the clip and the slot are used for fixing the partition.
  • the aeration device includes an aeration pump and a connecting pipe; the aeration pump is arranged in the chamber of the IV section, one end of the connecting pipe is connected with the aeration pump, and the other end is connected with the device External communication of the body.
  • the aeration device can drive the sewage in the IV section chamber to form an internal circulation in its interior at the same time of air intake.
  • a baffled anaerobic biological nest integrated denitrification and decarbonization process characterized in that the device according to the claim is used for denitrification and decarbonization, and the process flow is as follows:
  • the sewage is pumped from the return water inlet into the IV section chamber through the return water outlet, and then the aeration device is activated to drive the sewage to circulate in the IV section chamber flow;
  • the sewage After the sewage is continuously pumped into the chamber of stage IV, the sewage passes through the biomass separation device (that is, the sewage passes through the fiber mat through a number of the water-permeable holes on the separator) and flows back into the chamber. It is mixed with the newly inflowing sewage to be treated from the first water inlet, and then enters the chambers of the first, second and third stages for classification treatment to complete anaerobic nitrification and dehydration. In the process of nitrogen removal and carbon removal, the sewage after denitrification and carbon removal is finally discharged from the device body through the water outlet; the biological gas generated during the whole process reaction is discharged from the device through the exhaust outlet.
  • the biomass separation device that is, the sewage passes through the fiber mat through a number of the water-permeable holes on the separator
  • the nitrogen and carbon removal device of the present invention is simple in structure, low in construction cost and operation cost; the baffled anaerobic biological nest integrated nitrogen and carbon removal device of the present invention is improved and innovated on the basis of conventional ABR, namely Micron-sized basalt fiber packing bundles are arranged inside the conventional ABR (i.e., in the chambers of Sections I, II, and III), which greatly retains anaerobic biomass to form biological nests with a size of more than 10 cm.
  • the thickness of the biofilm formed on the ABR is only a few microns; on the basis of not changing the basic configuration of the ABR, an independent nitrification reaction chamber (that is, in the IV section chamber) is embedded to realize the further conversion of ammonia nitrogen in the reflux liquid and mix with the influent water. Then, deep denitrification is carried out; separators and fiber mats are installed in the nitrification chamber to trap slow-growing nitrifying bacteria, avoid their loss, and ensure smooth water flow; the energy consumption of aeration in the independent nitrification tank is compared with the conventional aerobic process. more energy efficient;
  • the present invention opens a process for sewage treatment that can not only retain a large amount of anaerobic sludge, but also deeply denitrify under the condition of no external carbon source; for this reason, the umbrella-shaped basalt fiber filler bundle is introduced into the baffled flow Anaerobic reactor (ABR) has a specific chamber, and forms anaerobic biological nests in the specific chamber; the influent is graded along the longitudinal direction of the reactor to achieve simultaneous denitrification and organic substrate removal;
  • the nitrification tank (IV section chamber) is used for deep nitrification; the nitrifying liquid and influent water flow into the anaerobic section again for deep denitrification; this process of the present invention combines the advantages of ABR and biological nests, which greatly saves investment costs and energy. It realizes the efficient treatment of sewage and overcomes the limitation of the shallow body of the ABR pool.
  • Fig. 1 is the sectional view of the baffled anaerobic biological nest integrated nitrogen and carbon removal device of the present invention
  • FIG. 2 is a schematic structural diagram of a baffle in the baffled anaerobic biological nest integrated nitrogen and carbon removal device of the present invention
  • FIG. 3 is a perspective view of the baffled anaerobic biological nest integrated nitrogen and carbon removal device of the present invention.
  • a baffled anaerobic biological nest integrated denitrification and carbon removal device includes a device main body 1, three groove plates 2 and four baffle plates 3; three said groove plates 2 It is connected in the device main body 1 and divides the internal space of the device main body 1 into chambers of section I, section II, section III and section IV; the chambers of section I, section II and section III are arranged in sequence and mutually The chamber of the IV section is located on one side of the chamber of the first section; one ends of the four baffles 3 are respectively connected to the main body 1 of the device and located in the four chambers, respectively.
  • the chambers of section I, section II and section III are all provided with three filler monomers 4 (the filler monomer 4 is umbrella-shaped) for purifying water quality and attaching microorganisms.
  • the set basalt fiber monomer and the monofilament diameter of the basalt fiber is 10-15 ⁇ m);
  • the IV section chamber is an independent nitrification tank, and the IV section chamber is provided with a biomass separation device 5 and an aeration device 6;
  • the two ends of the biomass separation device 5 are respectively connected with the groove plate 2 and the baffle plate 3 in the chamber of the IV stage, and the water in the chamber of the IV stage can pass through the biomass separation device 5 into the I-section chamber;
  • the I-section chamber is provided with a water inlet 7;
  • the III-section chamber is provided with a return water outlet 8;
  • the IV-section chamber is provided with a The water in the outflow port 8 flows to the return water inlet 9 in the IV section chamber;
  • the III section chamber is provided with a drain port 18
  • the device body 1 in the above-mentioned embodiment 1 is a cuboid structure; the three groove plates 2 are connected in the device body 1 in parallel with each other, and the volumes of the chambers of the first, second and third sections are equal (section IV).
  • the volume of the chamber is larger than that of other chambers); the device body 1 is also provided with several exhaust ports 19 (for exhausting the biogas generated in the reaction process).
  • the above-mentioned baffles 3 are all provided with bending structures 31 , and a bending angle of 120-150° is formed between the bending structures 31 and the baffles 3 .
  • the above-mentioned biomass separation device 5 includes a separator 11 and a basalt fiber mat 12 (the thickness of the basalt fiber mat 12 is 5-7 mm); the separator 11 is evenly provided with a number of permeable holes 13 (as shown in The fiber mat 12 is laid on the separator 11 (the basalt fiber mat 12 covers the permeable holes 13 on the separator 11 ); the two ends of the separator 11 are respectively connected to the on the groove plate 2 and the baffle plate 3 .
  • Both the groove plate 2 and the baffle plate 3 in the above-mentioned IV section chamber are provided with card slots 14; both ends of the partition plate 11 are provided with buckles 15, which are inserted into the card In the groove 14, the partition plate 11 is fixed on the groove plate 2 and the baffle plate 3 located in the chamber of the IV section.
  • a baffled anaerobic biological nest integrated nitrogen and carbon removal process comprising the following steps:
  • the sewage to be treated is injected into the first stage chamber from the first water inlet 7 along the baffle plate 3 in the first stage chamber. It flows into the chamber of section II (each chamber is divided into an upstream chamber and a downstream chamber, flows from the upper end of the upstream chamber of each chamber into the downstream chamber of the next chamber, and then enters from the bottom of the downstream chamber through the baffle 3 Upstream chamber), after the sewage fills the chamber of section II, it flows into the chamber of section III from the upper port of the chamber of section II, and then the grading treatment of sewage is completed in the chambers of section I, section II and section III;
  • the sewage is pumped from the return water inlet 9 into the IV section chamber through the return water outlet 8, and then the aeration device 6 is started to drive the sewage to circulate in the IV section chamber;
  • the air pump 16 and the connecting pipe 17 communicated with the outside make the sewage to be treated form an internal circulation in the IV section chamber;
  • the sewage in the chamber of stage IV reaches a certain amount, the sewage passes through the biomass separation device 5 (that is, through the separator 11 and the basalt fiber felt 12) and flows into the chamber of the first stage again and flows from the first water inlet 7
  • the newly inflowing sewage to be treated is mixed and then enters into the chambers of Section I, Section II and Section III in turn to carry out classification treatment of sewage to complete the process of denitrification and carbon removal by anaerobic denitrification.
  • the sewage after carbon removal is discharged from the device body 1 ; the biogas generated during the entire process reaction is discharged from the device through the exhaust port 19 .
  • Glucose, potassium nitrate and ammonium chloride are used as carbon and nitrogen sources, respectively.
  • the main compositions and concentrations are as follows: the influent COD concentration is about 350 mg/L; the total ammonia nitrogen is about 25 mg/L, and the total nitrogen (TN) is about 35 mg. /L, run the reaction device (nitrogen and carbon removal device) under different factors and horizontal conditions to test the water treatment effect of the process; the device with basalt fiber filler monomer 4 was used as the experimental group, and the basalt fiber filler was not included.
  • the bundled device served as a control group;
  • the removal efficiencies of COD, ammonia nitrogen and total nitrogen in the experimental group were 91.4 ⁇ 0.3%, 79.4 ⁇ 3.4%, and 79.0 ⁇ 2.8%, respectively; correspondingly , the removal efficiencies of COD, ammonia nitrogen and total nitrogen in the control group were 83.0 ⁇ 0.4%, 57.2 ⁇ 2.2%, and 64.3 ⁇ 3.5%, respectively; from the above data, it can be seen that the removal efficiencies of COD, ammonia nitrogen and total nitrogen in the experimental group were also It is obviously better than the control group, which also shows that the denitrification and decarbonization device and the denitrification and decarbonization process of the present invention realize the efficient treatment of sewage.
  • the growth of microorganisms in the mud reaches a relative balance, so the baffle anaerobic bio-nest reactor hardly needs to discharge the mud.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本发明公开了折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺。包括装置主体、槽板和折流板;槽板连接在装置主体中将其内部分隔成Ⅰ段、Ⅱ段、Ⅲ段和Ⅳ段腔室;Ⅰ段、Ⅱ段、Ⅲ段腔室呈顺次排列且连通,Ⅳ段腔室位于Ⅰ段腔室的一侧;折流板连接在装置主体中用于引导污水进入各段腔室;Ⅰ段、Ⅱ段、Ⅲ段腔室设有用于净化水质和微生物附着的填料束;Ⅳ段腔室中设有生物质分离装置和曝气装置,生物质分离装置的两端分别与槽板和折流板连接,Ⅳ段腔室中的水可透过生物质分离装置流入Ⅰ段腔室;Ⅰ段腔室设有进水口;Ⅲ段腔室中设有回流出水口和排水口;Ⅳ段腔室中设有回流进水口。本发明装置结构简单,节约成本和能耗,且实现了污水的高效处理。

Description

[根据细则37.2由ISA制定的发明名称] 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺 技术领域
本发明涉及污水处理技术领域,具体涉及一种折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺。
背景技术
目前,市政污水处理多采用活性污泥法,生物质在这些系统中以悬浮形式存在,其典型工艺有氧化沟、厌氧/缺氧/好氧(A2O)等,不过这些工艺存在着曝气能耗高、工艺流程长、投资成本高、水力停留时间与固体停留时间不匹配、剩余污泥产量大、维护过程复杂等缺陷。与之并存的生物膜法则可以借助微生物在填料表面形成生物膜,实现水力停留时间和固体停留时间的分离。生物膜受传质等因素的影响,在空间上具有分层现象,可将活性污泥法中的厌氧/缺氧(A/O)或厌氧/缺氧/好氧(A2/O)功能集成到单一反应单元中,不需要污泥回流等步骤,实现工艺的简化。生物膜法中比较典型工艺的有生物转盘、生物接触氧化和曝气生物滤池等。这些工艺在一定程度上克服了活性污泥法的很多缺陷,也为生长缓慢的自养菌(如硝化菌)创造了聚集的条件,使生物相更加多样化。不过,生物法也存在一个共性的缺点,即受传质、载体理化性质、水力冲击、微生物与载体界面局部酸化/生物产气等因素的影响,生物膜的有效厚度一般很少超过2mm,脱落现象制约了工艺的效能。
相比于上述好氧工艺,厌氧工艺的优势表现在耗能小、剩余污泥产量少、运行和维护成本低等方面。此外,厌氧工艺还能实现能量回 收。连续搅拌反应器系统(CSTRs)是一种典型的厌氧工艺,广泛用于高强度工业废水处理,但也仅限于可生化降解的食品、饮料等废水。实现高效厌氧处理需要满足水力停留时间和固体停留时间的分离,实现生物质的长时间持留。依据生物质在反应器中的停留方式,高效厌氧反应器大致分为固定生物膜、悬浮式生长和混合式三种。其中,上流式厌氧污泥床(UASB-悬浮式)反应器占有很大比例。理想的厌氧工艺除了要有效截留生物质外,还要有效改善细菌活性及其生物多样性,保证细菌和底物之间的充分接触。在众多的厌氧工艺中,折流式厌氧反应器(ABR)最具代表性。在结构方面,它设计简单,无可以移动部分,无须机械搅拌,建造成本低,不易堵塞,有效减小污泥床膨胀现象,投资和运行成本低。在生物质方面,对生物质的沉降性方面没有特殊要求,产泥量少,固体停留时间长,生物质停留不需要固定填料,也不需要特殊的气体或污泥分离。在运行方面,水力停留时间短,对水体抗冲击负荷适应性强。折流式厌氧反应器(ABR)主要的优点还表现在纵向上的产酸和产甲烷过程分离,保证了不同菌群在各自适宜的条件下生长、发挥功能。折流式厌氧反应器(ABR)的独特模式避免其他系统的局限性如厌氧滤池和UASB的堵塞风险和污泥床的膨胀。折流式厌氧反应器(ABR)也有自身缺陷,即为了保证液体和气体上流流速,构建的反应器池体一般较浅,此外还存在均匀布水问题。据报道,活性污泥工艺与生物膜反应器结合可强化系统的稳定性。为抵消上述弱势,工程研究中开始把填料束引入折流式厌氧反应器(ABR)的隔断和腔室中,强化厌氧处理的效能。
折流式厌氧反应器(ABR)不仅可以处理高强度污水,也可以处理低强度的市政污水。通过ABR与生物膜反应器结合实现真正意义上的工程应用,亟待解决大多生物处理工艺面临的问题:(1)现有填料单体上形成的生物膜有效厚度只有几毫米且易脱落,直接影响到工艺的污水处理效果;(2)厌氧呼吸过程产能较低,导致细胞产率过低,附着于填料上的生物量有限;(3)厌氧条件下不能去除进水中的氨氮;(4)鲜有简化工艺在无外加碳源的条件下实现深度脱氮。
发明内容
本发明的目的在于提供一种折流式厌氧生物巢一体化脱氮除碳装置,该装置建造成本低、运行成本低、结构简单;本发明的另一目的在于提供一种折流式厌氧生物巢一体化脱氮除碳工艺,该工艺既能截留大量厌氧污泥,形成丰富的微环境,又能在无外加碳源的条件下深度脱氮,节约成本和能耗,实现了污水的高效处理。
本发明是通过如下技术方案实现的:
一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,包括装置主体、若干槽板和若干折流板;若干所述槽板连接在所述装置主体中并将所述装置主体的内部空间分隔成Ⅰ段、Ⅱ段、Ⅲ段和Ⅳ段腔室;所述Ⅰ段、Ⅱ段、Ⅲ段腔室呈顺次排列且相互连通,所述Ⅳ段腔室位于所述Ⅰ段腔室的一侧;若干所述折流板的一端连接在所述装置主体中且分别位于所述的四个腔室中,用于引导污水进入各段腔室中;所述Ⅰ段、Ⅱ段、Ⅲ段腔室中均设有若干用于净化水质和微生物附着的填料束;所述Ⅳ段腔室为硝化池,所述Ⅳ段腔室中设置有生物质分 离装置和曝气装置;所述生物质分离装置的两端分别与所述Ⅳ段腔室中的所述槽板和所述折流板连接,所述Ⅳ段腔室中的水可透过所述生物质分离装置流入所述Ⅰ段腔室中;所述Ⅰ段腔室中设置进水口;所述Ⅲ段腔室中设置有回流出水口;所述Ⅳ段腔室中设置有用于接引所述回流出水口中的水至所述Ⅳ段腔室中的回流进水口;所述Ⅲ段腔室中设置有用于将完成脱氮除碳后的污水排出装置的排水口。具体地,该脱氮除碳装置分为四段腔室,即Ⅰ段腔室主要用于将待处理污水中的碳水化合物、蛋白和脂类转化为可溶性有机分子;Ⅱ段腔室主要用于实现糖类、氨基酸和脂肪酸的产酸化以及硝酸盐的还原过程;Ⅲ段腔室主要用于实现挥发性脂肪酸的产乙酸化以及硝酸盐的还原过程(在Ⅱ段腔室和Ⅲ段腔室中可能产生甲烷);Ⅳ段腔室主要处理Ⅲ段腔室的低C/N比的出水,即将Ⅲ段腔室的水泵入Ⅳ段腔室中。所述Ⅳ段腔室为独立硝化池,通过硝化作用将前面三段腔室中未处理的氨氮进一步转化为硝态氮,同时利用低C/N比回流液富集异养硝化和好氧反硝化菌,实现碳氮进一步去除,Ⅳ段腔室硝化液透过生物质分离装置再进入Ⅰ段腔室中和待处理的污水混合后实现对污水的深度脱氮。
进一步,所述装置本体为长方体结构;若干所述槽板平行连接在所述装置本体中,所述Ⅰ段、Ⅱ段和Ⅲ段腔室的容积相等;所述装置本体中还设置有若干排气口。所述的排气口将整个污水处理过程中产生的生物气从排气口排出。
进一步,若干所述折流板上均设有折弯结构,所述折弯结构与所述折流板之间形成120-150°的折角。优选地,所述Ⅰ段腔室中的折 弯结构朝向所述Ⅱ段腔室;所述Ⅱ段腔室中的折弯结构朝向所述Ⅲ段腔室;所有折弯结构的朝向保持一致。
进一步,所述Ⅰ段、Ⅱ段、Ⅲ段腔室中均设置三个所述填料束;所述填料单体呈伞状;所述填料单体由玄武岩纤维组成。每个腔室中的三个玄武岩纤维束(填料束)均呈等间距设置。
进一步,所述玄武岩纤维的单丝直径为10-15μm。微米级的玄武岩纤维是一种绿色环保的材料,将微米级玄武岩纤维制备的填料单体引入好氧工艺的活性污泥中可快速形成尺寸在10cm以上的生物聚集体,称之为“生物巢”。该种生物巢在6cm深处仍能检测到活性,在5cm深处仍能检测到溶解氧的存在,结构稳定,无明显脱落现象。此外,生物巢内微生物多样性丰富,为污染物的深度去除创造了条件。
进一步,以直径1-3㎜的钛丝串联三个所述伞状填料单体,并将所述钛丝的两端分别连接在所述装置主体上,使待处理的污水浸没所述填料束。具体地,根据用量裁取长度为12-15cm的玄武岩纤维束,以直径为1-3mm的的钛丝作为芯材,防止其在水中锈蚀;然后将两股绷直的芯材固定于编制机,沿其长度方向按1g/cm的用量铺放玄武岩纤维束,并确保玄武岩纤维束的中点位置处于两股钛丝之间(每个填料单体的玄武岩纤维用量为3g),然后开动编织机绞缠钛丝,形成一束三个填料单体的成品。
进一步,所述生物质分离装置包括隔板和纤维毡;所述隔板上设置有若干透水孔,所述纤维毡铺设在所述隔板上;所述隔板的两端分别连接在所述Ⅳ段腔室中的所述槽板上和所述折流板上。具体地,为 防止生长缓慢的硝化细菌发生流失,在Ⅳ段腔室内加装了生物质分离装置。所述的隔板起支架的作用,用于放置纤维毡,同时保证污水正常流动;所述的纤维毡用于截留硝化细菌,提高Ⅳ段腔室内的生物量。
进一步,Ⅳ段腔室中的所述槽板和折流板上均设置有卡槽;所述隔板的两端设置有卡扣,所述卡扣插接在所述卡槽中;所述纤维毡为玄武岩纤维毡且所述纤维毡的厚度为5-7㎜。所述卡扣和所述卡槽配合用于固定隔板。
进一步,所述曝气装置包括曝气泵和连接管;所述曝气泵设置在所述Ⅳ段腔室中,所述连接管的一端与所述曝气泵连接,另一端与所述装置本体的外部连通。曝气装置在进气的同时能带动Ⅳ段腔室中的污水在其内部形成内循环。
一种折流式厌氧生物巢一体化脱氮除碳工艺,其特征在于,采用权利要求上述的装置进行脱氮除碳,工艺流程如下:
S1、采集活性污泥并用待处理的污水进行驯化培养,待混合液悬浮固体浓度介于3000-4000mg/L之间时,加入脱氮除碳装置内,启动装置,使活性污泥附着于所述填料(即玄武岩纤维)的表面;初步形成结构相对稳定的生物巢前体;
S2、将待处理污水从所述第一进水口处沿所述折流板注入所述Ⅰ段腔室中,待污水浸满所述Ⅰ段腔室后再流入所述Ⅱ段腔室中(此时Ⅰ段腔室中的待处理污水浸没所述的玄武岩纤维填料束),待污水浸满所述Ⅱ段腔室后流入所述Ⅲ段腔室中,在所述的Ⅰ段、Ⅱ段和Ⅲ段腔室中完成污水的分级处理;
S3、完成污水的分级处理后,经所述回流出水口将污水从所述回流进水口处泵入所述Ⅳ段腔室中,然后启动所述曝气装置带动污水在Ⅳ段腔室中循环流动;
S4、随着污水不断的泵入Ⅳ段腔室后,污水透过所述生物质分离装置(即通过所述隔板上的若干所述透水孔使污水透过所述纤维毡)重新流入所述Ⅰ段腔室中并与从第一进水口处新流入的待处理污水混合后再顺次进入所述的Ⅰ段、Ⅱ段和Ⅲ段腔室中进行分级处理,完成厌氧硝化和脱氮除碳过程,最终经所述排水口将脱氮除碳后的污水从所述装置本体中排出;整个工艺反应过程中产生的生物气体由排气口排出装置外。
本发明的有益效果:
(1)本发明的脱氮除碳装置结构简单、建造成本和运行成本低;本发明的折流式厌氧生物巢一体化脱氮除碳装置在常规ABR基础上进行了改进和创新,即在常规ABR内部布置了微米级玄武岩纤维填料束(即Ⅰ段、Ⅱ段、Ⅲ段腔室内),大幅截留厌氧生物质形成尺寸在10cm以上的生物巢,相比之下,常规填料单体上形成的生物膜厚度仅有几微米;在不改变ABR基本构型的基础上嵌入了独立的硝化反应腔室(即Ⅳ段腔室内),实现回流液中氨氮的进一步转化,和进水混合后进行深度脱氮;在硝化腔室内加装了隔板和纤维毡,用于截留生长缓慢的硝化菌,避免其流失,同时保证水流顺畅;独立硝化池曝气能耗相对于常规好氧工艺更节能;
(2)本发明针对污水处理开放一种既能截留大量厌氧污泥,又 能在无外加碳源的条件下深度脱氮的工艺;为此,将伞状玄武岩纤维填料束引入折流式厌氧反应器(ABR)特定腔室,在特定腔室形成厌氧生物巢;进水沿反应器纵向分级处理,实现同步脱氮和有机底物去除;将低碳氮比的出水泵入独立的硝化池(Ⅳ段腔室)进行深度硝化;硝化液和进水再次流入厌氧段进行深度脱氮;本发明的这种工艺兼具ABR和生物巢的优点,大大节约了投资成本和能耗,实现了污水的高效处理,克服了ABR池体浅的局限性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明折流式厌氧生物巢一体化脱氮除碳装置的剖面图;
图2为本发明折流式厌氧生物巢一体化脱氮除碳装置中隔板的结构示意图;
图3为本发明折流式厌氧生物巢一体化脱氮除碳装置的透视图。
图中:1装置本体、2槽板、3折流板、4填料单体、5生物质分离装置、6曝气装置、7进水口、8回流出水口、9回流进水口、10钛丝、11隔板、12纤维毡、13透水孔、14卡槽、15卡扣、16曝气泵、17连接管、18排水口、19排气口、31折弯结构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1-3所示,一种折流式厌氧生物巢一体化脱氮除碳装置,包括装置主体1、三块槽板2和四块折流板3;三块所述槽板2连接在所述装置主体1中并将装置主体1的内部空间分隔成Ⅰ段、Ⅱ段、Ⅲ段和Ⅳ段腔室;所述Ⅰ段、Ⅱ段、Ⅲ段腔室呈顺次排列且相互连通,所述Ⅳ段腔室位于所述Ⅰ段腔室的一侧;四块所述折流板3的一端分别连接在所述装置主体1中且分别位于所述的四个腔室中,用于引导污水进入各段腔室中;所述的Ⅰ段、Ⅱ段、Ⅲ段腔室中均设有三个用于净化水质和微生物附着的填料单体4(填料单体4为呈伞状设置的玄武岩纤维单体且玄武岩纤维的单丝直径为10-15μm);所述Ⅳ段腔室为独立硝化池,所述Ⅳ段腔室中设置有生物质分离装置5和曝气装置6;所述生物质分离装置5的两端分别与所述Ⅳ段腔室中的槽板2和折流板3连接,且所述Ⅳ段腔室中的水可透过所述生物质分离装置5流入所述Ⅰ段腔室中;所述Ⅰ段腔室中设置进水口7;所述Ⅲ段腔室中设置有回流出水口8;所述Ⅳ段腔室中设置有用于接引所述回流出水口8中的水至所述Ⅳ段腔室中的回流进水口9;所述Ⅲ段腔室中设置有用于将完成脱氮除碳后的污水排出装置的排水口18。
上述实施例1中的装置本体1为长方体结构;三块所述槽板2相互平行的连接在所述装置本体1中,所述Ⅰ段、Ⅱ段和Ⅲ段腔室的容积相等(Ⅳ段腔室的容积大于其他的腔室);所述装置本体1中还设置有若干排气口19(用于排出反应过程中产生的生物气)。上述折流板3上均设有折弯结构31,折弯结构31与所述折流板3之间形成120-150°的折角。上述生物质分离装置5包括隔板11和玄武岩纤维毡12(玄武岩纤维毡12的厚度为5-7㎜);隔板11上均匀的设置有若干透水孔13(如图2所示),玄武岩纤维毡12铺设在所述隔板11上(所述玄武岩纤维毡12将隔板11上的透水孔13遮住);所述隔板11的两端分别连接在所述Ⅳ段腔室中的所述槽板2上和所述折流板3上。上述Ⅳ段腔室中的所述槽板2和折流板3上均设置有卡槽14;所述隔板11的两端设置有卡扣15,所述卡扣15插接在所述卡槽14中将隔板11固定在位于Ⅳ段腔室中的槽板2和折流板3上。
实施例2
一种折流式厌氧生物巢一体化脱氮除碳工艺,包括如下步骤:
S1、采集活性污泥并用待处理的污水进行驯化培养,待混合液悬浮固体浓度介于3000-4000mg/L之间时,加入脱氮除碳装置内,然后启动装置,使活性污泥附着于所述填料单体4(玄武岩纤维)的表面;微米级的玄武岩纤维开始形成生物巢;
S2、将待处理污水从第一进水口7处沿Ⅰ段腔室中的折流板3注入Ⅰ段腔室中,待污水浸满Ⅰ段腔室后从Ⅰ段腔室的上端的通口处流入Ⅱ段腔室中(每个腔室分为上流室和下流室,从每个腔室的上流室上端 流入下一个腔室的下流室,然后从下流室的底部通过折流板3进入上流室),待污水浸满Ⅱ段腔室后再从Ⅱ段腔室的上端通口处流入Ⅲ段腔室中,然后在Ⅰ段、Ⅱ段和Ⅲ段腔室中完成污水的分级处理;
S3、完成污水的分级处理后,经回流出水口8将污水从回流进水口9处泵入Ⅳ段腔室中,然后启动曝气装置6带动污水在Ⅳ段腔室中循环流动;即通过曝气泵16以及与外部连通的连接管17,使待处理的污水在Ⅳ段腔室中形成内循环;
S4、当Ⅳ段腔室中的污水达到一定量后,污水透过生物质分离装置5(即透过隔板11和玄武岩纤维毡12)重新流入Ⅰ段腔室中与从第一进水口7处新流入的待处理污水混合后再顺次进入Ⅰ段、Ⅱ段和Ⅲ段腔室中进行污水的分级处理,完成厌氧反硝化的脱氮除碳过程,最终经排水口18将脱氮除碳后的污水从装置本体1中排出;整个工艺反应过程中产生的生物气体由排气口19排出装置外。
通过具体的试验测试,对本发明的脱氮除碳工艺进行评价,具体如下:
模拟市政污水:分别以葡萄糖、硝酸钾和氯化铵为碳源和氮源,主要组成和浓度如下:进水COD浓度约350mg/L;总氨氮约25mg/L,总氮(TN)约35mg/L,在不同因素和水平条件下运行反应装置(脱氮除碳装置),检测该工艺的水处理效果;以设置了玄武岩纤维填料单体4的装置为实验组,以不含玄武岩纤维填料束的装置作为对照组;
(1)在溶氧(DO)浓度为0-1mg/L,回流比为100%的条件下,考察水力停留时间(HRT)对COD、氨氮和总氮去除效率,得出的结 果为:在HRT为18h时,实验组和对照组均取得最好的水处理效果,实验组的COD、氨氮和总氮去除效率分别为88.5±1.3%、73.1±4.7%、71.8±5.2%;相应地,对照组的COD、氨氮和总氮去除效率分别为85.5±0.7%、49.4±4.1%、52.5±2.9%;由上述的数据可以看出实验组对氨氮和总氮的去除效率要明显优于对照组,说明了本发明的本发明的脱氮除碳装置及脱氮除碳工艺实现了污水的高效处理。
(2)在溶氧(DO)浓度为0-1mg/L,水力停留时间(HRT)为18h的条件下,考察回流比对COD、氨氮和总氮去除效率,得出的结果为:在回流比为200%时,实验组和对照组均取得最好的水处理效果,实验组的COD、氨氮和总氮去除效率分别为91.4±0.3%、79.4±3.4%、79.0±2.8%;相应地,对照组的COD、氨氮和总氮去除效率分别为83.0±0.4%、57.2±2.2%、64.3±3.5%;由上述的数据可以看出实验组对COD、氨氮和总氮的去除效率也要明显优于对照组,也说明了本发明的脱氮除碳装置及脱氮除碳工艺实现了污水的高效处理。
(3)在水力停留时间为HRT=18h,回流比为200%的条件下,考察不同溶氧(DO)范围下的COD、氨氮和总氮去除效率,得出的结果为:在DO介于1.0-2.0mg/L时,实验组和对照组均取得最好的水处理效果,实验组的COD、氨氮和总氮去除效率分别为90.0±1.0%、86.5±2.5%、85.9±1.6%,相应地,对照组的COD、氨氮和总氮去除效率分别为85.5±0.5%、71.4±2.1%、75.5±0.9%;同样的从上述的数据中可以看出实验组对COD、氨氮和总氮的去除效率也要明显优于对照组,也说明了本发明的脱氮除碳装置及脱氮除碳工艺实现了污 水的高效处理。
本发明装置中设置的独立硝化池(即Ⅳ段腔室)曝气能耗相对于常规好氧工艺节能约60%;反应装置在HRT=18h时,逐渐实现了污泥的流失量与活性污泥中微生物的生长量达到相对的平衡,因此折流板厌氧生物巢反应器几乎不需要排泥。
上述为本发明的较佳实施例仅用于解释本发明,并不用于限定本发明。凡由本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (10)

  1. 一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,包括装置主体(1)、若干槽板(2)和若干折流板(3);若干所述槽板(2)连接在所述装置主体(1)中并将所述装置主体(1)的内部空间分隔成Ⅰ段、Ⅱ段、Ⅲ段和Ⅳ段腔室;所述Ⅰ段、Ⅱ段、Ⅲ段腔室呈顺次排列且相互连通,所述Ⅳ段腔室位于所述Ⅰ段腔室的一侧;若干所述折流板(3)的一端连接在所述装置主体(1)中且分别位于所述的四个腔室中,用于引导污水进入各段腔室中;所述Ⅰ段、Ⅱ段、Ⅲ段腔室中均设有若干用于净化水质和微生物附着的填料束(4);所述Ⅳ段腔室为硝化池,所述Ⅳ段腔室中设置有生物质分离装置(5)和曝气装置(6);所述生物质分离装置(5)的两端分别与所述Ⅳ段腔室中的所述槽板(2)和所述折流板(3)连接,所述Ⅳ段腔室中的水可透过所述生物质分离装置(5)流入所述Ⅰ段腔室中;所述Ⅰ段腔室中设置进水口(7);所述Ⅲ段腔室中设置有回流出水口(8);所述Ⅳ段腔室中设置有用于接引所述回流出水口(8)中的水至所述Ⅳ段腔室中的回流进水口(9);所述Ⅲ段腔室中设置有用于将完成脱氮除碳后的污水排出装置的排水口(18)。
  2. 根据权利要求1所述的一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,所述装置本体(1)为长方体结构;若干所述槽板(2)平行连接在所述装置本体(1)中,所述Ⅰ段、Ⅱ段和Ⅲ段腔室的容积相等;所述装置本体(1)中还设置有若干排气口(19)。
  3. 根据权利要求1所述的一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,若干所述折流板(3)上均设有折弯结构(31), 所述折弯结构(31)与所述折流板(3)之间形成120-150°的折角。
  4. 根据权利要求1所述的一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,所述Ⅰ段、Ⅱ段、Ⅲ段腔室中均设置三个所述填料束(4);所述填料单体(4)呈伞状;所述填料单体(4)由玄武岩纤维组成。
  5. 根据权利要求4所述的一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,所述玄武岩纤维的单丝直径为10-15μm。
  6. 根据权利要求4所述的一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,以直径1-3㎜的钛丝(10)串联三个所述填料单体(4),并将所述钛丝(10)的两端分别连接在所述装置主体(1)上,使待处理的污水浸没所述填料束(4)。
  7. 根据权利要求1所述的一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,所述生物质分离装置(5)包括隔板(11)和纤维毡(12);所述隔板(11)上设置有若干透水孔(13),所述纤维毡(12)铺设在所述隔板(11)上;所述隔板(11)的两端分别连接在所述Ⅳ段腔室中的所述槽板(2)上和所述折流板(3)上。
  8. 根据权利要求7所述的一种折流式厌氧生物巢一体化脱氮除碳装置,其特征在于,Ⅳ段腔室中的所述槽板(2)和折流板(3)上均设置有卡槽(14);所述隔板(11)的两端设置有卡扣(15),所述卡扣(15)插接在所述卡槽(14)中;所述纤维毡(12)为玄武岩纤维毡且所述纤维毡(12)的厚度为5-7㎜。
  9. 根据权利要求1所述的一种折流式厌氧生物巢一体化脱氮除 碳装置,其特征在于,所述曝气装置(6)包括曝气泵(16)和连接管(17);所述曝气泵(16)设置在所述Ⅳ段腔室中,所述连接管(17)的一端与所述曝气泵(16)连接,另一端与所述装置本体(1)的外部连通。
  10. 一种折流式厌氧生物巢一体化脱氮除碳工艺,其特征在于,采用权利要求1-9任一项所述的装置进行脱氮除碳,工艺流程如下:
    S1、采集活性污泥并用待处理的污水进行驯化培养,待混合液悬浮固体浓度介于3000-4000mg/L之间时,加入脱氮除碳装置内,启动装置,使活性污泥附着于所述填料单体(4)的表面;
    S2、将待处理污水从所述第一进水口(7)处沿所述折流板(3)注入所述Ⅰ段腔室中,待污水浸满所述Ⅰ段腔室后流入所述Ⅱ段腔室中,待污水浸满所述Ⅱ段腔室后流入所述Ⅲ段腔室中,在所述的Ⅰ段、Ⅱ段和Ⅲ段腔室中完成污水的分级处理;
    S3、完成污水的分级处理后,经所述回流出水口(8)将污水从所述回流进水口(9)处泵入所述Ⅳ段腔室中,启动所述曝气装置(6)带动污水在Ⅳ段腔室中循环流动;
    S4、然后污水透过所述生物质分离装置(5)重新流入所述Ⅰ段腔室中与从第一进水口(7)处新流入的待处理污水混合后再顺次进入所述的Ⅰ段、Ⅱ段和Ⅲ段腔室中进行分级处理,完成厌氧硝化和脱氮除碳过程,最终经所述排水口(18)将脱氮除碳后的污水从所述装置本体(1)中排出。
PCT/CN2021/130841 2020-11-20 2021-11-16 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺 WO2022105732A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/988,883 US11724949B2 (en) 2020-11-20 2022-11-17 Baffled integrated denitrifying and decarbonizing device with anaerobic bio-nests and baffled integrated denitrifying and decarbonizing process with anaerobic bio-nests

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011312077.4A CN112707503B (zh) 2020-11-20 2020-11-20 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺
CN202011312077.4 2020-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/988,883 Continuation US11724949B2 (en) 2020-11-20 2022-11-17 Baffled integrated denitrifying and decarbonizing device with anaerobic bio-nests and baffled integrated denitrifying and decarbonizing process with anaerobic bio-nests

Publications (1)

Publication Number Publication Date
WO2022105732A1 true WO2022105732A1 (zh) 2022-05-27

Family

ID=75542407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130841 WO2022105732A1 (zh) 2020-11-20 2021-11-16 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺

Country Status (3)

Country Link
US (1) US11724949B2 (zh)
CN (1) CN112707503B (zh)
WO (1) WO2022105732A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707503B (zh) * 2020-11-20 2022-01-14 江苏大学 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺
CN115490330B (zh) * 2022-10-10 2024-05-10 江苏大学 一种多功能模块化农村生活污水处理设备及处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2401445A1 (es) * 2013-02-01 2013-04-19 Universidade De Santiago De Compostela Sistema Integrado de reactor anaerobio metanogénico y biorreactor de membranas para la eliminación de materia orgánica y nitrógeno en aguas residuales
CN104609558A (zh) * 2015-01-30 2015-05-13 广西师范大学 一种短程硝化反硝化一体化abr反应器
CN204454743U (zh) * 2015-01-30 2015-07-08 广西师范大学 一种短程硝化反硝化一体化abr反应器
CN109264869A (zh) * 2018-10-22 2019-01-25 江苏大学 一种适用于河道原位净化处理的装置系统
CN110526391A (zh) * 2019-09-18 2019-12-03 江苏大学 快速富集悬浮态厌氧氨氧化菌的设备及使用方法
CN209906581U (zh) * 2019-04-29 2020-01-07 武汉益锦祥生物环保有限公司 一种水产养殖尾水一体化处理设备
CN112707503A (zh) * 2020-11-20 2021-04-27 艾特克控股集团股份有限公司 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2357907A1 (en) * 2001-09-26 2003-03-26 Garfield R. Lord Bacteria growth apparatus for use in multi chamber biological reactor used after a settling tank or solids removal apparatus
WO2005026052A2 (en) * 2003-06-19 2005-03-24 University Of Hawaii Bionest reactor for the application of anaerobic wastewater treatment and bioenergy recovery
US7972502B2 (en) * 2007-07-04 2011-07-05 Kabushiki Kaisha Toshiba Aeration-less water treatment apparatus
CN201296706Y (zh) * 2008-08-13 2009-08-26 山东美泉环保科技有限公司 两段进水生物脱氮系统
US8809037B2 (en) * 2008-10-24 2014-08-19 Bioprocessh20 Llc Systems, apparatuses and methods for treating wastewater
CN206955753U (zh) * 2017-06-15 2018-02-02 境友环保科技(北京)有限公司 小型化污水处理设备
CN109179872A (zh) * 2018-09-19 2019-01-11 江苏艾特克环境工程设计研究院有限公司 一种基于玄武岩纤维的水处理装置及水处理工艺
CN110606565A (zh) * 2019-09-12 2019-12-24 广西博世科环保科技股份有限公司 倒置短程硝化-厌氧氨氧化污水处理装置及处理方法
CN111056708A (zh) * 2019-12-26 2020-04-24 华南理工大学 一种两段反硝化的废水脱氮处理工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2401445A1 (es) * 2013-02-01 2013-04-19 Universidade De Santiago De Compostela Sistema Integrado de reactor anaerobio metanogénico y biorreactor de membranas para la eliminación de materia orgánica y nitrógeno en aguas residuales
CN104609558A (zh) * 2015-01-30 2015-05-13 广西师范大学 一种短程硝化反硝化一体化abr反应器
CN204454743U (zh) * 2015-01-30 2015-07-08 广西师范大学 一种短程硝化反硝化一体化abr反应器
CN109264869A (zh) * 2018-10-22 2019-01-25 江苏大学 一种适用于河道原位净化处理的装置系统
CN209906581U (zh) * 2019-04-29 2020-01-07 武汉益锦祥生物环保有限公司 一种水产养殖尾水一体化处理设备
CN110526391A (zh) * 2019-09-18 2019-12-03 江苏大学 快速富集悬浮态厌氧氨氧化菌的设备及使用方法
CN112707503A (zh) * 2020-11-20 2021-04-27 艾特克控股集团股份有限公司 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺

Also Published As

Publication number Publication date
US11724949B2 (en) 2023-08-15
US20230078272A1 (en) 2023-03-16
CN112707503A (zh) 2021-04-27
CN112707503B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2022105732A1 (zh) 折流式厌氧生物巢一体化脱氮除碳装置及脱氮除碳工艺
CN109485150B (zh) 一种管式膜结合后置缺氧内源反硝化深度脱氮除磷的装置
CN102502963A (zh) 一种多模式序批式活性污泥处理污水的方法及其系统
CN101172711A (zh) 分点进水多级生物膜反应器污水处理设备
CN1686862A (zh) 改良型交替式活性污泥法污水处理工艺及其装置
CN202369444U (zh) 一种多模式恒水位序批式活性污泥处理污水系统
CN102358663A (zh) 一种低do后置反硝化污水处理装置及工艺
CN110240273A (zh) 交替饥饿培养诱导短程硝化反硝化的装置及其控制方法
CN114751518B (zh) 一种交替好氧-厌氧一体化生物处理装置、方法及应用
CN111646652A (zh) 一种用于低碳氮比污水的高效生物脱氮装置
CN114516683A (zh) 基于曝气无动力回流的多工艺式污水脱氮除磷系统及方法
CN201313853Y (zh) 用于污水处理的生物膜反应设备
CN103183454A (zh) 耦合式生物脱氮方法及其系统
CN212025101U (zh) Mbr一体化污水处理装置
CN110386732B (zh) 一种基于mbbr的主流自养脱氮改造系统与改造方法
CN208648877U (zh) 一种改良型a/o-mbr一体化装置
CN203159405U (zh) 耦合式生物脱氮系统
CN111977797B (zh) 一种AxOx同步脱氮除磷的污水处理系统及其工艺
CN114477444A (zh) 一种自养异养协同反硝化一体化装置及污水处理方法
CN211644779U (zh) 基于mbbr的自养脱氮一体化系统
CN209957474U (zh) 一种基于a2/o工艺的新型污水处理装置
CN1283564C (zh) 交替式内循环好氧生物反应器
CN112607862A (zh) 多级ao污水生化处理工艺
CN107055776B (zh) 一种兼氧式mbr一体化污水处理设备及其方法
CN100572300C (zh) 一种复合式动态膜生物处理污水的方法及其设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893879

Country of ref document: EP

Kind code of ref document: A1