WO2022104764A1 - Method and device for jointly serving user equipment by wireless access network nodes - Google Patents

Method and device for jointly serving user equipment by wireless access network nodes Download PDF

Info

Publication number
WO2022104764A1
WO2022104764A1 PCT/CN2020/130726 CN2020130726W WO2022104764A1 WO 2022104764 A1 WO2022104764 A1 WO 2022104764A1 CN 2020130726 W CN2020130726 W CN 2020130726W WO 2022104764 A1 WO2022104764 A1 WO 2022104764A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
access network
wireless access
network node
communication service
Prior art date
Application number
PCT/CN2020/130726
Other languages
French (fr)
Inventor
Li Yang
Guanghui Yu
Feng Xie
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN202080107365.8A priority Critical patent/CN116491159A/en
Priority to KR1020237017511A priority patent/KR20230096022A/en
Priority to PCT/CN2020/130726 priority patent/WO2022104764A1/en
Priority to EP20962055.8A priority patent/EP4233364A4/en
Publication of WO2022104764A1 publication Critical patent/WO2022104764A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1129Arrangements for outdoor wireless networking of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/32Release of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This disclosure is directed generally to wireless communications and particularly to jointly serving a user equipment by wireless access network nodes.
  • Wireless communication technologies are moving the world toward an increasingly connected and networked society.
  • the rapid growth of mobile communications and advances in technology have render greater demand for network service capability and connectivity.
  • Other aspects, such as energy consumption, reliability, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios.
  • next generation systems and wireless communication techniques are expected to provide user equipments (UEs) with diversified services with low latency beyond radio communication service.
  • UEs user equipments
  • This disclosure is directed to methods and device related to wireless communication, and more specifically, for jointly serving a user equipment by wireless access network nodes so as to provide the user equipments with various non-radio-communication services.
  • a method performed by a first wireless access network node serving a user equipment in a wireless communication network may include transmitting a request message for a non-radio-communication service resource of a second wireless access network node to the second wireless access network node.
  • the first wireless access network node may provide the user equipment with a non-radio-communication service and request the non-radio-communication service resource to assist to provide the non-radio-communication service to the user equipment.
  • the method may further include receiving a response message allocating the non-radio-communication service resource for the user equipment from the second wireless access network node.
  • a method performed by a second wireless access network node in a wireless communication network may include receiving a first request message for a non-radio-communication service resource of the second wireless access network node from a first wireless access network node.
  • the first wireless access network node may provide a user equipment with both a radio communication service and a non-radio-communication service and request the non-radio-communication service resource to assist to provide the non-radio-communication service to the user equipment.
  • the method may further include transmitting a response message allocating the non-radio-communication service resource to the first wireless access network node.
  • a device for wireless communication may include a memory storing instructions and a processing circuitry in communication with the memory.
  • the processing circuitry executes the instructions, the processing circuitry is configured to carry out the above method.
  • a computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the above method.
  • FIG. 1 illustrates an exemplary cellular wireless access network in accordance with various embodiments.
  • FIG. 2 illustrates an exemplary diagram illustrating communication between the wireless access network nodes in the wireless access network.
  • FIG. 3A-3B illustrate an exemplary architecture model of dual connectivity.
  • FIG. 4 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
  • FIG. 5 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
  • FIG. 6 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
  • FIG. 7 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
  • FIG. 8 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
  • FIG. 9 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
  • FIG. 10 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
  • implementations and/or embodiments in this disclosure can be used to improve performance in wireless communication systems.
  • the term “exemplary” is used to mean “an example of” and unless otherwise stated, does not imply an ideal or preferred example, implementation, or embodiment.
  • the implementations may, however, be embodied in a variety of different forms and, therefore, the covered or claimed subject matter is intended to be construed as not being limited to any of the embodiments to be set forth below.
  • the implementations may be embodied as methods, devices, components, or systems. Accordingly, embodiments of this disclosure may, for example, take the form of hardware, software, firmware or any combination thereof.
  • a wireless access network typically provides radio link and backhaul connectivity between a user equipment and an information or data network such as a voice or video communication network, the Internet, and the like.
  • An example wireless access network may be based on cellular technologies, which may further be based on, for example, 5G NR technologies and/or Radio Access Type.
  • WANNs wireless access network nodes
  • RATs radio access technologies
  • eNB, en-gNB, ng-eNB, gNB may be deployed in different frequency carriers but for the same geographic coverage areas. They can inter-work with each other via specified dual connectivity (DC) /multiple connectivity (MC) operation to provide joint radio communication service for target UE (s) .
  • DC dual connectivity
  • MC multiple connectivity
  • FIG. 1 illustrates an exemplary cellular wireless access network 100 according to various embodiments.
  • one macro WANN 104 also referred to as master node (MN)
  • MN master node
  • SN secondary node
  • the UE 106 can be configured and served by the MN 104 and the SN 102 jointly so as to boost its user data peak rate/throughput, radio link reliability, etc.
  • the UE 106 moves around the SN clusters, its serving SN (s) gets changed accordingly based on the radio quality of the micro cell. From UE perspective, it is provided with the joint radio communication service among multiple WANNs.
  • the UE 202 may include but is not limited to a mobile phone, smartphone, tablet, laptop computer, a smart electronics, a wearable device, a video surveillance device, an industrial wireless sensors, or appliance including an air conditioner, a television, a refrigerator, an oven and the like, or other devices that are capable of communicating wirelessly over a network.
  • FIG. 2 shows an exemplary system diagram illustrating communication between the MN 104 and the SN 102 in the wireless access network 100.
  • the WANNs in the wireless access network 100 may be configured to perform a corresponding set of wireless network functions.
  • the set of wireless network functions, capabilities, resources between different types of wireless access network nodes may not be identical.
  • the set of wireless network functions, capabilities, resources between different types of wireless access network nodes may overlap to some extent.
  • each of them may include transceiver circuitry 214 coupled to one or more antennas 216 to effect wireless communication with the UE 202.
  • the transceiver circuitry 214 may also be coupled to one or more processors 220, which may also be coupled to a memory 222 or other storage devices.
  • the memory 222 may store therein the radio communication service modules 224 that, when read and executed by the processor 220, cause the processor 220 to implement radio communication services such as the radio access for UEs, data transmission between UEs, etc.
  • the memory 222 may also store therein the non-radio-communication service modules 226 that, when read and executed by the processor 220, cause the processor 220 to implement non-radio-communication services provided to UEs such as computing assisting service, intelligence assisting service, storage assisting service, etc.
  • the memory 222 may also store therein instructions or code that, when read and executed by the processor 220, cause the processor 220 to implement various ones of the methods described herein.
  • the MN 104 and the SN 102 may have a direct or indirect communication interface in-between for information coordination.
  • the direct communication interface may be implemented in a wireline such as fiber or wireless way.
  • the underlying principle applies to other applicable wireless communication networks.
  • Access Mobility Function/Session Management Function are control plane entities in 5G Core (5GC) and User Plane Function (UPF) is user plane entity in 5GC.
  • the signaling connection between the AMF/SMF and the MN is Next Generation -Control Plane (NG-C) (MN) interface instance.
  • the signaling connection between MN and SN is Xn-Control Plane (Xn-C) interface instance.
  • the signaling connection between MN and UE is Uu-Control Plane (Uu-C) Radio Resource Control (RRC) interface instance. All above signaling connections together manage the configuration and operation of DC.
  • N-C Next Generation -Control Plane
  • Xn-C Xn-Control Plane
  • RRC Radio Resource Control
  • the user plane connection between UPF and MN is Next Generation-User Plane (NG-U) (MN) interface instance, which corresponds to MN terminated bearer.
  • MN Next Generation-User Plane
  • SN Next Generation-User Plane
  • Xn-U Xn-U
  • SCG Secondary Cell Group
  • the MN and the SN provide joint radio communication service to the same target UE.
  • the MN may provide the radio communication service via local processing effort inside the MN and MCG resources over Uu-U (MCG) while the SN may provide the communication service in parallel via local processing effort inside the SN and SCG resources over Uu-U (SCG) .
  • a MN may have local resources and capacities for non-radio-communication services such as computing, intelligence and storage towards a target UE.
  • the MN may turn to Cloud Resource Center (CRC) in upstream network node for help.
  • CRC Cloud Resource Center
  • the MN may not turn to the SN and needs no processing assistance from the SN.
  • a SN may also have local resources and capacities for non-radio-communication services towards the target UE.
  • the SN may turn to CRC in upstream network node for help. The SN may not turn to the MN and needs no processing assistance from the MN.
  • the MN/SN may not have sufficient local resources for them; may encounter imbalanced local resources, incurring resource overload on one side but unused/idle on the other side; or cannot always turn to CRC in upstream network node for help because the long geographical and/or logical distance between the MN/SN and the CRC may fail to meet the lower latency requirement.
  • the present disclosure introduces a new mechanism to enable two WANNs such as the MN and the SN to share their non-radio-communication service resources such as computing, intelligence and storage resources with each other in quicker and efficient way locally in lieu of involving upstream network node with higher latency. In this way, the WANNs can split their local work/tasks and provide joint non-radio-communication services to target UE (s) .
  • FIG. 4 illustrates an exemplary implementation 400 for jointly serving a UE such as the UE 106.
  • the first WANN may transmit a request message for a non-radio-communication service resource of a second WANN to the second WANN (402) .
  • the first WANN may be, for example, the MN 104 or the SN 102 that is providing radio communication service for the UE 106.
  • the first WANN may request the non-radio-communication service resource of the second WANN to assist to provide the non-radio-communication service to the UE 106.
  • the first WANN may provide the UE 106 with a non-radio-communication service.
  • the non-radio-communication service may include, for example, a computing assisting service, an intelligence assisting service, and a storage assisting service.
  • the request message may include, for example, the type of non-radio-communication service and the amount of non-radio-communication service resource.
  • the request message may include, for example, the identification of the UE for which the first WANN requests the non-radio-communication service resource to provide the non-radio-communication service.
  • the second WANN may receive the request message from the first WANN (404) .
  • the second WANN may or may not be providing the UE 106 with radio communication service.
  • the second WANN may be the MN 104 or the SN 102 and the UE 106 may be in dual connectivity with the first WANN and the second WANN such that the first WANN and the second WANN may be providing joint radio communication service for the UE 106.
  • the first WANN may be providing the UE 106 with radio communication service while the second WANN may be serving a UE other than the UE 106 though the second WANN may have spare non-radio-communication service resources to share with the first WANN.
  • the second WANN may determine if it would accept to allocate the requested non-radio-communication service resource based on the request message. For example, the second WANN may check if it has sufficient spare non-radio-communication service resources for sharing. Also, the second WANN may be more likely to accept the allocation request if the second WANN is providing radio communication service to the UE for which the non-radio-communication service resource is allocated to assist to provide the non-radio-communication service.
  • the second WANN may transmit a response message allocating the requested non-radio-communication service resource to the first WANN (406) .
  • the response message may include an acknowledgement to allocate the non-radio-communication service.
  • the response message may include further information with respect to the resource allocation of the non-radio-communication service.
  • the second WANN may simply transmit a response message indicating to refuse the resource allocation request to the first WANN.
  • the first WANN may, for example, split work/tasks for the non-radio-communication service provided to the UE 106. Then, the first WANN may transmit a first non-radio-communication service assisting data update message including a task of the non-radio-communication service to the second WANN (410) .
  • the task may include, for example, intermediate data for the computing service, training data for intelligence service, or storage data for storage service.
  • the task may be included in the first non-radio-communication service assisting data update message in a form of container.
  • the container is designated as an abstract communication block structure encapsulating the specific data to be transmitted. In the course of transmission, the WANN may not necessarily learn what is contained in the container and simply transmit or forward the container to specific target module as required.
  • the second WANN may complete the task of the non-radio-communication service using the non-radio-communication service resource allocated for the UE 106, and transmit a second non-radio-communication service assisting data update message including a result of the task to the first WANN (412) .
  • the result of the task may include, for example, the computing result from the intermediate data, the intelligence prediction result, or the indication of data store success/failure.
  • the result of the task may be included in the second non-radio-communication service assisting data update message in a form of container. In this way, the first WANN and the second WANN may provide joint non-radio-communication service for the UE 106.
  • the request message, response message, and update message communicated between the first WANN and the second WANN may be carried by signaling.
  • the signaling connection between the first WANN and the second WANN may be established through various existing or future communication interfaces between WANNs.
  • the communication interfaces may include, for example, X2 Application Protocol (X2AP) between eNBs and Xn Application Protocol (XnAP) between gNBs.
  • X2AP X2 Application Protocol
  • XnAP Xn Application Protocol
  • the signaling may be transported/transferred by Streaming Control Transport Protocol (SCTP) or General Packet Radio Services Tunnel Protocol (GTP-U) .
  • SCTP Streaming Control Transport Protocol
  • GTP-U General Packet Radio Services Tunnel Protocol
  • the signaling may be transported/transferred by other Transport Network Layer (TNL) protocols decoupling with the communication interfaces such as Transmission Control Protocol (TCP) .
  • TNL Transport Network Layer
  • the first WANN may be neighboring to the second WANN, and the first WANN and the second WANN may have a direct communication interface in-between for information coordination such as signaling transmission/reception between the first WANN and the second WANN.
  • the direct communication interface may be implemented in a wireline or wireless way. In this way, the first WANN may communicate with the second WANN more rapidly than the upstream network node such cloud resource center, and thus may jointly provide the non-radio-communication service to the served UE with much lower latency.
  • the signaling procedures may be either UE associated or non-UE associated.
  • the signaling procedure may be intended to establish the joint non-radio-communication service dedicated to a specific UE, which has been already in DC/MC mode with joint radio communication service.
  • the signaling procedure may be intended to establish the joint non-radio-communication service commonly applied to a group of UEs, which are not yet in DC/MC mode without joint radio communication service.
  • FIG. 5 illustrates an exemplary implementation 500 for jointly providing a UE with the computing assisting service.
  • the MN 104 and the SN 102 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air.
  • the MN 104 may be providing a computing assistance service for the UE 106.
  • the computing assistance service may represent any service providing the UE with various advanced computing capabilities including, for example, blockchain service, business analytics service, and collaborative editing service, etc.
  • the MN 104 may choose either to queue up all pending work/tasks (e.g.
  • the MN 104 may request the SN 102 to assist the MN 104 in the area of computing for its split-work/tasks.
  • the MN 104 may transmit “SN Computing Resource Request” message to the SN 102, which may include the information of requesting the SN 102 to allocate the expected computing resource and start the computing assistance operation if admitted (502) .
  • the SN 102 may allocate the corresponding computing resources and provide the admitted capacity in the area of computing.
  • the SN 102 may transmit the “SN Computing Resource Request Acknowledge” message including the information related to the resource allocation of computing resources to the MN 104 (506) .
  • the joint computing service between the MN 104 and the SN 102 may be established.
  • the MN 104 may transmit, for example, one or more “SN Computing Intermediate Data Update” messages including the relevant intermediate data information of split-work/tasks to the SN 102 (510) .
  • the relevant intermediate data information may include, for example, a blockchain transaction to be synchronized to a blockchain, business data for interactive visualization and analysis, and the like.
  • the SN 102 may perform the corresponding computing assistance operation based on the intermediate data information.
  • the SN 102 may transmit the corresponding “SN Computing Intermediate Data Update” messages including the relevant data information of computing results to the MN 104 (512) .
  • the MN 104 may, for example, leverage the computing results from the SN 102 to compute the final result of the computing service for the UE 106.
  • the MN 104 may transmit the final result, i.e., user data obtained from the joint computing service and relevant processing by the MN 104 and the SN 102 to the UE 106 (514) .
  • the transmission between the MN 104 and the SN 102 may be achieved on control plane as signaling while the transmission between the MN 104 and the UE 106 may be achieved on user plane as user data.
  • the MN 104 may transmit “SN Computing Resource Release” message to the SN 102, which may include the information of requesting the SN 102 to release/revoke the previously allocated computing resources (516) .
  • the SN 102 may release and revoke the allocated storage resources to stop the computing assistance.
  • the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
  • FIG. 6 illustrates an exemplary implementation 600 for jointly providing a UE with the computing assisting service.
  • the MN 104 and the SN 102 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air.
  • the SN 102 may be providing a computing assistance service for the UE 106.
  • the computing assistance service may represent any service providing the UE with various advanced computing capabilities including, for example, blockchain service, business analytics service, and collaborative editing service, etc.
  • the SN 102 may choose either to queue up all pending work/tasks (e.g.
  • the MN 104 may request the MN 104 to assist the SN 102 in the area of computing for its split-work/tasks.
  • the SN 102 may transmit “SN Computing Resource Required” message to the MN 104, which may contain the information of requesting the MN 104 to allocate the expected computing resource and start the computing assistance operation if admitted (602) .
  • the MN 104 may allocate the corresponding computing resources and provide the admitted capacity in the area of computing.
  • the MN 104 may transmit the “SN Computing Resource Confirm” message including the information related to the resource allocation of computing resources to the SN 102 (606) .
  • the joint computing service between the SN 102 and the MN 104 may be established.
  • the SN 102 may transmit, for example, one or more “MN Computing Intermediate Data Update” messages including the relevant intermediate data information of split-work/tasks to the MN 104 (610) .
  • the relevant intermediate data information may include, for example, a blockchain transaction to be synchronized to a blockchain, business data for interactive visualization and analysis, and the like.
  • the MN 104 may perform the corresponding computing assistance operation based on the intermediate data information.
  • the MN 104 may transmit the corresponding “MN Computing Intermediate Data Update” messages including the relevant data information of computing results to the SN 102 (612) .
  • the SN 102 may, for example, leverage the computing results from the MN 104 to obtain the final result of the computing service for the UE 106.
  • the SN 102 may transmit the final result, i.e., user data obtained from the joint computing service and relevant processing by the SN 102 and the MN 104 as user data to the UE 106 (614) .
  • the transmission between the MN 104 and the SN 102 may be achieved on control plane as signaling while the transmission between the SN 102 and the UE 106 may be achieved on user plane as user data.
  • the SN 102 may transmit “MN Computing Resource Release” message to the MN 104, which may include the information of requesting the MN 104 to release/revoke the previously allocated computing resources (616) .
  • the MN 104 may release and revoke the allocated computing resources to stop the computing assistance operation.
  • the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
  • FIG. 7 illustrates an exemplary implementation 700 for jointly providing a UE with the intelligence assisting service.
  • the MN 104 and the SN 102 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air.
  • the MN 104 may be providing an intelligence assistance service for the UE 106.
  • the intelligence assistance service may include, for example, natural language processing (NLP) , speech recognition, autonomous driving or navigation, and the like.
  • NLP natural language processing
  • the MN 104 may choose either to await and collect additional training data from local serving cells (e.g., from various UEs served by MCG) or to request other WANNs such as the SN 102 for intelligence assistance.
  • the MN 104 may request the SN 102 to assist the MN 104 in the area of intelligence assistance service.
  • the SN 102 may provide additional training data to the MN 104 to facilitate to improve the AI intelligence model of the MN 104.
  • the SN 102 may utilize its local AI intelligence model to assist to perform intelligence operation, for example, performing NLP on the text data received from the MN 104 or performing speech recognition on the audio data received from the MN 104.
  • the MN 104 may transmit “SN Intelligence Resource Request” message to the SN 102, which may include the information of requesting the SN 102 to allocate the expected intelligence resource and start the intelligence assistance operation if admitted (702) .
  • the SN 102 may allocate the corresponding intelligence resources such as the local AI intelligence model of the SN 102 and the training data for improving the AI intelligence model of MN 104, thereby providing the admitted intelligence assistance service.
  • the SN 102 may transmit the “SN Intelligence Resource Request Acknowledge” message including information related to the resource allocation of intelligence resources to the MN 104 (706) .
  • the joint intelligence service between the MN 104 and the SN 102 may be established.
  • the MN 104 may transmit, for example, one or more “SN intelligence Data Update” messages to the SN 102 (710) .
  • the “SN intelligence Data Update” messages may include, for example, related information on the training data that the MN 104 needs and/or the related data to be processed by the AI intelligence model of the SN 102, e.g. the text data for NLP and the audio data for speech recognition.
  • the SN 102 may perform the corresponding intelligence assistance operation based on the information in the “SN intelligence Data Update” messages.
  • the MN 104 may transmit the corresponding “SN Intelligence Data Update” messages to the SN 102 (712) .
  • the corresponding “SN Intelligence Data Update” messages may include, for example, the expected training data and/or the prediction results produced by the AI intelligence model of the SN 102.
  • the MN 104 may, for example, leverage the training data from the SN 102 to improve its own intelligence model and/or the prediction results from the SN 102 to obtain the final result of the intelligence service for the UE 106.
  • the MN 104 may transmit the final result , i.e., user data obtained from the joint intelligence service and relevant processing by the MN 104 and the SN 102 as user data to the UE 106 (714) .
  • the MN 104 may transmit “SN Intelligence Resource Release” message to the SN 102, which may include the information of requesting the SN 102 to release/revoke the previously allocated intelligence resources (716) .
  • the SN 102 may stop the intelligence assistance by releasing and revoking the allocated storage resources for the UE 106. Subsequent to the end of the joint non-radio-communication service between the MN 104 and the SN 102, the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
  • FIG. 8 illustrates an exemplary implementation 800 for jointly providing a UE with the intelligence assisting service.
  • the SN 102 and the MN 104 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air.
  • the SN 102 may be providing an intelligence assistance service for the UE 106.
  • the intelligence assistance service may include, for example, natural language processing, speech recognition, autonomous driving or navigation, and the like.
  • the SN 102 may choose either to await and collect additional training data from local serving cells (e.g., from various UEs served by MCG) or to request other WANNs such as the MN 104 for intelligence assistance.
  • the capability and quality of TNL signaling connection between the MN 104 and the SN 102 e.g. SCTP
  • the SN 102 may request the MN 104 to assist the SN 102 in the area of intelligence assistance service.
  • the MN 104 may provide additional training data to the SN 102 to facilitate to train the AI intelligence model of the SN 102.
  • the MN 104 may utilize its AI intelligence model to assist to perform prediction operation, for example, performing NLP on the text data received from the SN 102 or performing speech recognition on the audio data received from the SN 102.
  • the SN 102 may transmit “SN Intelligence Resource Required” message to the MN 104, which may include the information of requesting the MN 104 to allocate the expected intelligence resource and start the intelligence assistance operation if admitted (802) .
  • the MN 104 may allocate the corresponding intelligence resources such as the local AI intelligence model of the MN 104 and the training data for training the AI intelligence model of SN 102, thereby providing the admitted intelligence assistance service.
  • the MN 104 may transmit the “SN Intelligence Resource Confirm” message including information related to the resource allocation of intelligence resources to the SN 102 (806) .
  • the joint intelligence service between the MN 104 and the SN 102 may be established.
  • the SN 102 may transmit, for example, one or more “MN intelligence Data Update” messages to the MN 104 (810) .
  • the “MN intelligence Data Update” messages may include, for example, related information on the training data that the SN 102 expects and/or the related data to be processed by the AI intelligence model of the MN 104, e.g. the text data for NLP and the audio data for speech recognition.
  • the MN 104 may perform the corresponding intelligence assistance operation based on the information in the “MN intelligence Data Update” messages. Then, the MN 104 may transmit the corresponding “MN Intelligence Data Update” messages to the SN 102 (812) .
  • the corresponding “MN Intelligence Data Update” messages may include, for example, the expected training data and/or the prediction results produced by the AI intelligence model of the MN 104.
  • the SN 102 may, for example, leverage the training data from the MN 104 to improve its own intelligence model and/or the prediction results from the MN 104 to obtain the final result of the intelligence service for the UE 106.
  • the SN 102 may transmit the final result, i.e., user data obtained from the joint intelligence service and relevant processing by the MN 104 and the SN 102 as user data to the UE 106 (814) .
  • the SN 102 may transmit “MN Intelligence Resource Release” message to the MN 104, which may include the information of requesting the MN 104 to release/revoke the previously allocated intelligence resources (816) .
  • the MN 104 may stop the intelligence assistance by releasing and revoking the allocated intelligence resources.
  • the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
  • FIG. 9 illustrates an exemplary implementation 900 for jointly providing a UE with the storage assisting service.
  • the MN 104 and the SN 102 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air.
  • the MN 104 may be providing a storage assistance service for the UE 106.
  • the storage assistance service may allow the UE 106 to store user data online, which eliminates the need for the UE to maintain a huge memory space locally.
  • the MN 104 may choose either to store those data in up-streamed cloud database or to request other WANNs such as the SN 102 for storage assistance.
  • the MN 104 may request the SN 102 to assist the MN 104 in the area of storage.
  • the MN 104 may transmit “SN Storage Resource Request” message to the serving SN 102, which may include the information of requesting the SN 102 to allocate the expected storage resource and start the storage assistance operation if admitted (902) .
  • the SN 102 may allocate the corresponding storage resources and provide the admitted capacity in the area of storage.
  • the SN 102 may transmit the “SN Computing Resource Request Acknowledge” message including the information related to the resource allocation of storage resources, e.g., the amount of allocated storage space, to the MN 104 (906) .
  • the joint storage service between the MN 104 and the SN 102 may be established.
  • the MN 104 may transmit, for example, one or more “SN Storage Intermediate Data Update” to the SN 102 (910) .
  • the “SN Storage Intermediate Data Update” messages may include, for example, the relevant user data of the UE 106 to be stored online such as mobile edge multimedia cache data.
  • the SN 102 may perform the corresponding storage assistance operation, for example, utilizing the allocated storage space to store the user data of the UE 106.
  • the SN 102 may transmit the corresponding “SN Storage Intermediate Data Update” messages including the relevant information of data store operation result, e.g., data store success or failure, to the MN 104 (912) .
  • the MN 104 may notify the UE 106 of the result of the data store operation (914) .
  • the SN 102 may transfer the stored user data of the UE 106 back to the MN 104 for storage through the “SN Storage Intermediate Data Update” messages.
  • the MN 104 may transmit “SN Storage Resource Release” message to the SN 102, which may include the information of requesting the SN 102 to release/revoke the previously allocated storage resources (916) .
  • the SN 102 may stop the storage assistance by releasing and revoking the allocated storage resources.
  • the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
  • FIG. 10 illustrates an exemplary implementation 1000 for jointly providing a UE with the storage assisting service.
  • the SN 102 and the MN 104 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air.
  • the SN 102 may be providing a storage assistance service for the UE 106.
  • the storage assistance service may allow the UE 106 to store user data online, which eliminates the need for the UE to maintain a huge memory space locally.
  • the SN 102 may choose either to store those data in up-streamed cloud database or to request other WANNs such as the MN 104 for storage assistance.
  • the SN 102 may request the MN 104 to assist the SN 102 in the area of storage.
  • the SN 102 may transmit “SN Storage Resource Required” message to the MN 104, which may contain the information of requesting the MN 104 to allocate the expected storage resource and start the storage assistance operation if admitted (1002) .
  • the MN 104 may allocate the corresponding storage resources and provide the admitted capacity in the area of storage.
  • the MN 104 may transmit the “SN Storage Resource confirmed” message including the information related to the resource allocation of storage resources, e.g., the amount of allocated storage resources, to the SN 102 (906) .
  • the joint storage service between the MN 104 and the SN 102 may be established.
  • the SN 102 may transmit, for example, one or more “MN Storage Intermediate Data Update” messages to the MN 104 (1010) .
  • the “SN Storage Intermediate Data Update” messages may include, for example, the relevant user data of the UE 106 to be stored online such as mobile edge multimedia cache data.
  • the MN 104 may perform the corresponding storage assistance operation, for example, utilizing the allocated storage resources to store the user data of the UE 106.
  • the MN 104 may transmit the corresponding “MN Storage Data Update” messages including the relevant information of data store operation result, e.g., data store success or failure, to the SN 102 (1012) .
  • the SN 102 may notify the UE 106 of the result of the data store operation (1014) .
  • the SN 102 may transmit “MN Storage Resource Release” message to the MN 104, which may include the information of requesting the MN 104 to release/revoke the previously allocated storage resources (1016) .
  • the MN 104 may stop the storage assistance by releasing and revoking the allocated storage resources.
  • the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
  • terms, such as “a, ” “an, ” or “the, ” may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
  • the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.

Abstract

This disclosure relates to method and device for serving a user equipment by a first wireless network node. In one implementation, the method may include transmitting a request message for a non-radio-communication service resource of a second wireless access network node to the second wireless access network node. The first wireless access network node may provide the user equipment with a non-radio-communication service and request the non-radio-communication service resource to assist to provide the non-radio-communication service to the user equipment. The method may further include receiving a response message allocating the non-radio-communication service resource for the user equipment from the second wireless access network node.

Description

METHOD AND DEVICE FOR JOINTLY SERVING USER EQUIPMENT BY WIRELESS ACCESS NETWORK NODES TECHNICAL FIELD
This disclosure is directed generally to wireless communications and particularly to jointly serving a user equipment by wireless access network nodes.
BACKGROUND
Wireless communication technologies are moving the world toward an increasingly connected and networked society. The rapid growth of mobile communications and advances in technology have render greater demand for network service capability and connectivity. Other aspects, such as energy consumption, reliability, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios. In comparison with the existing wireless access networks, next generation systems and wireless communication techniques are expected to provide user equipments (UEs) with diversified services with low latency beyond radio communication service.
SUMMARY
This disclosure is directed to methods and device related to wireless communication, and more specifically, for jointly serving a user equipment by wireless access network nodes so as to provide the user equipments with various non-radio-communication services.
In one embodiment, a method performed by a first wireless access network node serving a user equipment in a wireless communication network is disclosed. The method may include transmitting a request message for a non-radio-communication service resource of a second wireless access network node to the second wireless access network node. The first wireless access network node may provide the user equipment with a non-radio-communication service and request the non-radio-communication service resource  to assist to provide the non-radio-communication service to the user equipment. The method may further include receiving a response message allocating the non-radio-communication service resource for the user equipment from the second wireless access network node.
In another embodiment, a method performed by a second wireless access network node in a wireless communication network is disclosed. The method may include receiving a first request message for a non-radio-communication service resource of the second wireless access network node from a first wireless access network node. The first wireless access network node may provide a user equipment with both a radio communication service and a non-radio-communication service and request the non-radio-communication service resource to assist to provide the non-radio-communication service to the user equipment. The method may further include transmitting a response message allocating the non-radio-communication service resource to the first wireless access network node.
In another embodiment, a device for wireless communication may include a memory storing instructions and a processing circuitry in communication with the memory. When the processing circuitry executes the instructions, the processing circuitry is configured to carry out the above method.
In another embodiment, a computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the above method.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an exemplary cellular wireless access network in accordance with various embodiments.
FIG. 2 illustrates an exemplary diagram illustrating communication between the wireless access network nodes in the wireless access network.
FIG. 3A-3B illustrate an exemplary architecture model of dual connectivity.
FIG. 4 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
FIG. 5 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
FIG. 6 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
FIG. 7 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
FIG. 8 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
FIG. 9 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
FIG. 10 illustrates a flow diagram of a method for serving a UE in accordance with an embodiment.
DETAILED DESCRIPTION
The technology and examples of implementations and/or embodiments in this disclosure can be used to improve performance in wireless communication systems. The term “exemplary” is used to mean “an example of” and unless otherwise stated, does not imply an ideal or preferred example, implementation, or embodiment. Please note that the implementations may, however, be embodied in a variety of different forms and, therefore, the covered or claimed subject matter is intended to be construed as not being limited to any of the embodiments to be set forth below. Please also note that the implementations may be embodied as methods, devices, components, or systems. Accordingly, embodiments of this disclosure may, for example, take the form of hardware, software, firmware or any combination thereof.
A wireless access network typically provides radio link and backhaul connectivity between a user equipment and an information or data network such as a voice or video communication network, the Internet, and the like. An example wireless access network may be based on cellular technologies, which may further be based on, for example, 5G NR technologies and/or Radio Access Type. In cellular wireless access network, multiple wireless access network nodes (WANNs) of same or different radio access technologies (RATs) , e.g. eNB, en-gNB, ng-eNB, gNB, may be deployed in different frequency carriers but for the same geographic coverage areas. They can inter-work with each other via specified dual connectivity (DC) /multiple connectivity (MC) operation to provide joint radio communication service for target UE (s) .
FIG. 1 illustrates an exemplary cellular wireless access network 100 according to various embodiments. In the network 100, one macro WANN 104, also referred to as master node (MN) , may provide a large coverage with macro cell 110, while some micro WANNs 102, also referred to as secondary node (SN) may provide overlapped small coverage with micro cells 120. The UE 106 can be configured and served by the MN 104 and the SN 102 jointly so as to boost its user data peak rate/throughput, radio link reliability, etc. When the UE 106 moves around the SN clusters, its serving SN (s) gets changed accordingly based on the radio quality of the micro cell. From UE perspective, it is provided with the joint radio communication service among multiple WANNs. The UE 202 may include but is not limited to a mobile phone, smartphone, tablet, laptop computer, a smart electronics, a wearable device, a video surveillance device, an industrial wireless sensors, or appliance including an air conditioner, a television, a refrigerator, an oven and the like, or other devices that are capable of communicating wirelessly over a network.
FIG. 2 shows an exemplary system diagram illustrating communication between the MN 104 and the SN 102 in the wireless access network 100. The WANNs in the wireless access network 100 may be configured to perform a corresponding set of wireless network functions. The set of wireless network functions, capabilities, resources between different types of wireless access network nodes may not be identical. The set of wireless network functions, capabilities, resources between different types of wireless access network  nodes, however, may overlap to some extent.
Take the MN 104 and the SN 102 as example, each of them may include transceiver circuitry 214 coupled to one or more antennas 216 to effect wireless communication with the UE 202. The transceiver circuitry 214 may also be coupled to one or more processors 220, which may also be coupled to a memory 222 or other storage devices. The memory 222 may store therein the radio communication service modules 224 that, when read and executed by the processor 220, cause the processor 220 to implement radio communication services such as the radio access for UEs, data transmission between UEs, etc. The memory 222 may also store therein the non-radio-communication service modules 226 that, when read and executed by the processor 220, cause the processor 220 to implement non-radio-communication services provided to UEs such as computing assisting service, intelligence assisting service, storage assisting service, etc. The memory 222 may also store therein instructions or code that, when read and executed by the processor 220, cause the processor 220 to implement various ones of the methods described herein. The MN 104 and the SN 102 may have a direct or indirect communication interface in-between for information coordination. The direct communication interface may be implemented in a wireline such as fiber or wireless way. In addition, while various embodiments will be discussed in the context of the particular example wireless communication network 100, the underlying principle applies to other applicable wireless communication networks.
For purpose of conceptual illustration, an exemplary architecture model of dual connectivity is shown in FIGs. 3A and 3B. Access Mobility Function/Session Management Function (AMF/SMF) are control plane entities in 5G Core (5GC) and User Plane Function (UPF) is user plane entity in 5GC. The signaling connection between the AMF/SMF and the MN is Next Generation -Control Plane (NG-C) (MN) interface instance. The signaling connection between MN and SN is Xn-Control Plane (Xn-C) interface instance. The signaling connection between MN and UE is Uu-Control Plane (Uu-C) Radio Resource Control (RRC) interface instance. All above signaling connections together manage the configuration and operation of DC. In FIG. 3A, the user plane connection between UPF and MN is Next Generation-User Plane (NG-U) (MN) interface instance, which corresponds to  MN terminated bearer. In FIG. 3B, the user plane connection between UPF and SN is NG-U (SN) interface instance, which corresponds to SN terminated bearer. The user plane connection between MN and SN is Xn-User Plane (Xn-U) interface instance, which corresponds to split bearer. The user plane connection between MN and UE is Uu-User Plane (Uu-U) Master Cell Group (MCG) interface instance and the user plane connection between SN and UE is Uu-U Secondary Cell Group (SCG) interface instance. All above user plane connections together support the user data transfer of DC. From the perspective of the wireless communication network, the MN and the SN provide joint radio communication service to the same target UE. The MN may provide the radio communication service via local processing effort inside the MN and MCG resources over Uu-U (MCG) while the SN may provide the communication service in parallel via local processing effort inside the SN and SCG resources over Uu-U (SCG) .
Aside from radio communication service, a MN may have local resources and capacities for non-radio-communication services such as computing, intelligence and storage towards a target UE. In case of resource/capacity insufficiency, the MN may turn to Cloud Resource Center (CRC) in upstream network node for help. The MN may not turn to the SN and needs no processing assistance from the SN. Likewise, a SN may also have local resources and capacities for non-radio-communication services towards the target UE. In case of resource/capacity insufficiency, the SN may turn to CRC in upstream network node for help. The SN may not turn to the MN and needs no processing assistance from the MN.
With more advanced and highly profiled services coming into play, such as intensified Mobile Edge Computing (MEC) tasks and applications involving massive data processing and lower latency requirement, the MN/SN may not have sufficient local resources for them; may encounter imbalanced local resources, incurring resource overload on one side but unused/idle on the other side; or cannot always turn to CRC in upstream network node for help because the long geographical and/or logical distance between the MN/SN and the CRC may fail to meet the lower latency requirement. the present disclosure introduces a new mechanism to enable two WANNs such as the MN and the SN to share their non-radio-communication service resources such as computing, intelligence and storage  resources with each other in quicker and efficient way locally in lieu of involving upstream network node with higher latency. In this way, the WANNs can split their local work/tasks and provide joint non-radio-communication services to target UE (s) .
FIG. 4 illustrates an exemplary implementation 400 for jointly serving a UE such as the UE 106. The first WANN may transmit a request message for a non-radio-communication service resource of a second WANN to the second WANN (402) . The first WANN may be, for example, the MN 104 or the SN 102 that is providing radio communication service for the UE 106. The first WANN may request the non-radio-communication service resource of the second WANN to assist to provide the non-radio-communication service to the UE 106. The first WANN may provide the UE 106 with a non-radio-communication service. The non-radio-communication service may include, for example, a computing assisting service, an intelligence assisting service, and a storage assisting service. The request message may include, for example, the type of non-radio-communication service and the amount of non-radio-communication service resource. Alternatively or additionally, the request message may include, for example, the identification of the UE for which the first WANN requests the non-radio-communication service resource to provide the non-radio-communication service.
The second WANN may receive the request message from the first WANN (404) . The second WANN may or may not be providing the UE 106 with radio communication service. In an example, the second WANN may be the MN 104 or the SN 102 and the UE 106 may be in dual connectivity with the first WANN and the second WANN such that the first WANN and the second WANN may be providing joint radio communication service for the UE 106. In another example, the first WANN may be providing the UE 106 with radio communication service while the second WANN may be serving a UE other than the UE 106 though the second WANN may have spare non-radio-communication service resources to share with the first WANN.
Upon receiving the request message, the second WANN may determine if it would accept to allocate the requested non-radio-communication service resource based on the request message. For example, the second WANN may check if it has sufficient spare  non-radio-communication service resources for sharing. Also, the second WANN may be more likely to accept the allocation request if the second WANN is providing radio communication service to the UE for which the non-radio-communication service resource is allocated to assist to provide the non-radio-communication service.
Where the second WANN determines to allocate the requested non-radio-communication service resource, the second WANN may transmit a response message allocating the requested non-radio-communication service resource to the first WANN (406) . The response message may include an acknowledgement to allocate the non-radio-communication service. Alternatively or additionally, the response message may include further information with respect to the resource allocation of the non-radio-communication service. Where the second WANN determines not to allocate the requested non-radio-communication service resource, the second WANN may simply transmit a response message indicating to refuse the resource allocation request to the first WANN.
Upon receiving the response message allocating the requested non-radio-communication service resource for the UE 106 from the second WANN (408) , the first WANN may, for example, split work/tasks for the non-radio-communication service provided to the UE 106. Then, the first WANN may transmit a first non-radio-communication service assisting data update message including a task of the non-radio-communication service to the second WANN (410) . The task may include, for example, intermediate data for the computing service, training data for intelligence service, or storage data for storage service. The task may be included in the first non-radio-communication service assisting data update message in a form of container. The container is designated as an abstract communication block structure encapsulating the specific data to be transmitted. In the course of transmission, the WANN may not necessarily learn what is contained in the container and simply transmit or forward the container to specific target module as required.
When receiving the first non-radio-communication service assisting data update message including the task of the non-radio-communication service from the first WANN, the second WANN may complete the task of the non-radio-communication service using the  non-radio-communication service resource allocated for the UE 106, and transmit a second non-radio-communication service assisting data update message including a result of the task to the first WANN (412) . The result of the task may include, for example, the computing result from the intermediate data, the intelligence prediction result, or the indication of data store success/failure. The result of the task may be included in the second non-radio-communication service assisting data update message in a form of container. In this way, the first WANN and the second WANN may provide joint non-radio-communication service for the UE 106.
The request message, response message, and update message communicated between the first WANN and the second WANN may be carried by signaling. The signaling connection between the first WANN and the second WANN may be established through various existing or future communication interfaces between WANNs. The communication interfaces may include, for example, X2 Application Protocol (X2AP) between eNBs and Xn Application Protocol (XnAP) between gNBs. The signaling may be transported/transferred by Streaming Control Transport Protocol (SCTP) or General Packet Radio Services Tunnel Protocol (GTP-U) . Alternatively, the signaling may be transported/transferred by other Transport Network Layer (TNL) protocols decoupling with the communication interfaces such as Transmission Control Protocol (TCP) .
In some implementations, the first WANN may be neighboring to the second WANN, and the first WANN and the second WANN may have a direct communication interface in-between for information coordination such as signaling transmission/reception between the first WANN and the second WANN. The direct communication interface may be implemented in a wireline or wireless way. In this way, the first WANN may communicate with the second WANN more rapidly than the upstream network node such cloud resource center, and thus may jointly provide the non-radio-communication service to the served UE with much lower latency.
To further clarify the signaling procedure to accomplish the joint non-radio-communication service between the first WANN and the second WANN, various embodiments will be discussed with reference to FIGs. 5-10. The signaling procedures may  be either UE associated or non-UE associated. In the case of UE associated, the signaling procedure may be intended to establish the joint non-radio-communication service dedicated to a specific UE, which has been already in DC/MC mode with joint radio communication service. In the case of non-UE associated, the signaling procedure may be intended to establish the joint non-radio-communication service commonly applied to a group of UEs, which are not yet in DC/MC mode without joint radio communication service.
FIG. 5 illustrates an exemplary implementation 500 for jointly providing a UE with the computing assisting service. In the implementation 500, the MN 104 and the SN 102 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air. In the meantime, the MN 104 may be providing a computing assistance service for the UE 106. The computing assistance service may represent any service providing the UE with various advanced computing capabilities including, for example, blockchain service, business analytics service, and collaborative editing service, etc. Where the local computing resources of the MN 104 are overloaded, the MN 104 may choose either to queue up all pending work/tasks (e.g. for high-profiled data services of UE) or to request other WANNs such as the SN 102 for computing assistance. In the case that the capability and quality of TNL signaling connection between the MN 104 and the SN 102 (e.g. SCTP) is good enough in terms of data transfer bandwidth, latency/jitters and reliability, the MN 104 may request the SN 102 to assist the MN 104 in the area of computing for its split-work/tasks.
The MN 104 may transmit “SN Computing Resource Request” message to the SN 102, which may include the information of requesting the SN 102 to allocate the expected computing resource and start the computing assistance operation if admitted (502) . Upon receiving the “SN Computing Resource Request” message and accepting the request, the SN 102 may allocate the corresponding computing resources and provide the admitted capacity in the area of computing. Then, the SN 102 may transmit the “SN Computing Resource Request Acknowledge” message including the information related to the resource allocation of computing resources to the MN 104 (506) . As such, the joint computing service between the MN 104 and the SN 102 may be established.
During the joint computing service, the MN 104 may transmit, for example, one or more “SN Computing Intermediate Data Update” messages including the relevant intermediate data information of split-work/tasks to the SN 102 (510) . The relevant intermediate data information may include, for example, a blockchain transaction to be synchronized to a blockchain, business data for interactive visualization and analysis, and the like. The SN 102 may perform the corresponding computing assistance operation based on the intermediate data information. Then, the SN 102 may transmit the corresponding “SN Computing Intermediate Data Update” messages including the relevant data information of computing results to the MN 104 (512) . The MN 104 may, for example, leverage the computing results from the SN 102 to compute the final result of the computing service for the UE 106. Then, the MN 104 may transmit the final result, i.e., user data obtained from the joint computing service and relevant processing by the MN 104 and the SN 102 to the UE 106 (514) . It should be noted that the transmission between the MN 104 and the SN 102 may be achieved on control plane as signaling while the transmission between the MN 104 and the UE 106 may be achieved on user plane as user data.
When the MN 104 does not need the computing assistance from the SN 102, the MN 104 may transmit “SN Computing Resource Release” message to the SN 102, which may include the information of requesting the SN 102 to release/revoke the previously allocated computing resources (516) . In response, the SN 102 may release and revoke the allocated storage resources to stop the computing assistance. Subsequent to the end of the joint non-radio-communication service between the MN 104 and the SN 102, the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
FIG. 6 illustrates an exemplary implementation 600 for jointly providing a UE with the computing assisting service. In the implementation 600, the MN 104 and the SN 102 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air. In the meantime, the SN 102 may be providing a computing assistance service for the UE 106. The computing assistance service may represent any service providing the UE with various  advanced computing capabilities including, for example, blockchain service, business analytics service, and collaborative editing service, etc. Where the local computing resources of the SN 102 are overloaded, the SN 102 may choose either to queue up all pending work/tasks (e.g. for high-profiled data services of UE) or to request other WANNs such as the MN 104 for computing assistance. In the case that the capability and quality of TNL signaling connection between the MN 104 and the SN 102 (e.g. SCTP) is good enough in terms of data transfer bandwidth, latency/jitters and reliability, the SN 102 may request the MN 104 to assist the SN 102 in the area of computing for its split-work/tasks.
The SN 102 may transmit “SN Computing Resource Required” message to the MN 104, which may contain the information of requesting the MN 104 to allocate the expected computing resource and start the computing assistance operation if admitted (602) . Upon receiving the “SN Computing Resource Required” message and accepting the request, the MN 104 may allocate the corresponding computing resources and provide the admitted capacity in the area of computing. Then, the MN 104 may transmit the “SN Computing Resource Confirm” message including the information related to the resource allocation of computing resources to the SN 102 (606) . As such, the joint computing service between the SN 102 and the MN 104 may be established.
During the joint computing service, the SN 102 may transmit, for example, one or more “MN Computing Intermediate Data Update” messages including the relevant intermediate data information of split-work/tasks to the MN 104 (610) . The relevant intermediate data information may include, for example, a blockchain transaction to be synchronized to a blockchain, business data for interactive visualization and analysis, and the like. The MN 104 may perform the corresponding computing assistance operation based on the intermediate data information. Then, the MN 104 may transmit the corresponding “MN Computing Intermediate Data Update” messages including the relevant data information of computing results to the SN 102 (612) . The SN 102 may, for example, leverage the computing results from the MN 104 to obtain the final result of the computing service for the UE 106. Then, the SN 102 may transmit the final result, i.e., user data obtained from the joint computing service and relevant processing by the SN 102 and the MN 104 as user data  to the UE 106 (614) . It should be noted that the transmission between the MN 104 and the SN 102 may be achieved on control plane as signaling while the transmission between the SN 102 and the UE 106 may be achieved on user plane as user data.
When the SN 102 does not need the computing assistance from the MN 104, the SN 102 may transmit “MN Computing Resource Release” message to the MN 104, which may include the information of requesting the MN 104 to release/revoke the previously allocated computing resources (616) . In response, the MN 104 may release and revoke the allocated computing resources to stop the computing assistance operation. Subsequent to the end of the joint non-radio-communication service between the MN 104 and the SN 102, the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
FIG. 7 illustrates an exemplary implementation 700 for jointly providing a UE with the intelligence assisting service. In the implementation 700, the MN 104 and the SN 102 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air. In the meantime, the MN 104 may be providing an intelligence assistance service for the UE 106. The intelligence assistance service may include, for example, natural language processing (NLP) , speech recognition, autonomous driving or navigation, and the like. Where the local intelligence capabilities of the MN 104 are restricted, for example, the Deep Neural Network (DNN) parameter setting of Artificial Intelligence (AI) model is sub-optimal due to lack of sufficient training data, the MN 104 may choose either to await and collect additional training data from local serving cells (e.g., from various UEs served by MCG) or to request other WANNs such as the SN 102 for intelligence assistance. In the case that the capability and quality of TNL signaling connection between the MN 104 and the SN 102 (e.g. SCTP) is good enough in terms of data transfer bandwidth, latency/jitters and reliability, the MN 104 may request the SN 102 to assist the MN 104 in the area of intelligence assistance service. The SN 102 may provide additional training data to the MN 104 to facilitate to improve the AI intelligence model of the MN 104. Alternatively or additionally, the SN 102 may utilize its local AI intelligence model to assist to perform intelligence operation, for example,  performing NLP on the text data received from the MN 104 or performing speech recognition on the audio data received from the MN 104.
The MN 104 may transmit “SN Intelligence Resource Request” message to the SN 102, which may include the information of requesting the SN 102 to allocate the expected intelligence resource and start the intelligence assistance operation if admitted (702) . Upon receiving the “SN Intelligence Resource Request” message and accepting the request, the SN 102 may allocate the corresponding intelligence resources such as the local AI intelligence model of the SN 102 and the training data for improving the AI intelligence model of MN 104, thereby providing the admitted intelligence assistance service. Then, the SN 102 may transmit the “SN Intelligence Resource Request Acknowledge” message including information related to the resource allocation of intelligence resources to the MN 104 (706) . As such, the joint intelligence service between the MN 104 and the SN 102 may be established.
During the joint intelligence service, the MN 104 may transmit, for example, one or more “SN intelligence Data Update” messages to the SN 102 (710) . The “SN intelligence Data Update” messages may include, for example, related information on the training data that the MN 104 needs and/or the related data to be processed by the AI intelligence model of the SN 102, e.g. the text data for NLP and the audio data for speech recognition. The SN 102 may perform the corresponding intelligence assistance operation based on the information in the “SN intelligence Data Update” messages. Then, the MN 104 may transmit the corresponding “SN Intelligence Data Update” messages to the SN 102 (712) . The corresponding “SN Intelligence Data Update” messages may include, for example, the expected training data and/or the prediction results produced by the AI intelligence model of the SN 102. The MN 104 may, for example, leverage the training data from the SN 102 to improve its own intelligence model and/or the prediction results from the SN 102 to obtain the final result of the intelligence service for the UE 106. The MN 104 may transmit the final result , i.e., user data obtained from the joint intelligence service and relevant processing by the MN 104 and the SN 102 as user data to the UE 106 (714) .
When the MN 104 does not need the intelligence assistance from the SN 102, the MN 104 may transmit “SN Intelligence Resource Release” message to the SN 102, which may include the information of requesting the SN 102 to release/revoke the previously allocated intelligence resources (716) . In response, the SN 102 may stop the intelligence assistance by releasing and revoking the allocated storage resources for the UE 106. Subsequent to the end of the joint non-radio-communication service between the MN 104 and the SN 102, the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
FIG. 8 illustrates an exemplary implementation 800 for jointly providing a UE with the intelligence assisting service. In the implementation 800, the SN 102 and the MN 104 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air. In the meantime, the SN 102 may be providing an intelligence assistance service for the UE 106. The intelligence assistance service may include, for example, natural language processing, speech recognition, autonomous driving or navigation, and the like. Where the local intelligence capabilities of the SN 102 are restricted, for example, the DNN parameter setting of AI model is sub-optimal due to lack of sufficient training data, the SN 102 may choose either to await and collect additional training data from local serving cells (e.g., from various UEs served by MCG) or to request other WANNs such as the MN 104 for intelligence assistance. In the case that the capability and quality of TNL signaling connection between the MN 104 and the SN 102 (e.g. SCTP) is good enough in terms of data transfer bandwidth, latency/jitters and reliability, the SN 102 may request the MN 104 to assist the SN 102 in the area of intelligence assistance service. The MN 104 may provide additional training data to the SN 102 to facilitate to train the AI intelligence model of the SN 102. Alternatively or additionally, the MN 104 may utilize its AI intelligence model to assist to perform prediction operation, for example, performing NLP on the text data received from the SN 102 or performing speech recognition on the audio data received from the SN 102.
The SN 102 may transmit “SN Intelligence Resource Required” message to the MN 104, which may include the information of requesting the MN 104 to allocate the  expected intelligence resource and start the intelligence assistance operation if admitted (802) . Upon receiving the “SN Intelligence Resource Required” message and accepting the request, the MN 104 may allocate the corresponding intelligence resources such as the local AI intelligence model of the MN 104 and the training data for training the AI intelligence model of SN 102, thereby providing the admitted intelligence assistance service. Then, the MN 104 may transmit the “SN Intelligence Resource Confirm” message including information related to the resource allocation of intelligence resources to the SN 102 (806) . As such, the joint intelligence service between the MN 104 and the SN 102 may be established.
During the joint intelligence service, the SN 102 may transmit, for example, one or more “MN intelligence Data Update” messages to the MN 104 (810) . The “MN intelligence Data Update” messages may include, for example, related information on the training data that the SN 102 expects and/or the related data to be processed by the AI intelligence model of the MN 104, e.g. the text data for NLP and the audio data for speech recognition. The MN 104 may perform the corresponding intelligence assistance operation based on the information in the “MN intelligence Data Update” messages. Then, the MN 104 may transmit the corresponding “MN Intelligence Data Update” messages to the SN 102 (812) . The corresponding “MN Intelligence Data Update” messages may include, for example, the expected training data and/or the prediction results produced by the AI intelligence model of the MN 104. The SN 102 may, for example, leverage the training data from the MN 104 to improve its own intelligence model and/or the prediction results from the MN 104 to obtain the final result of the intelligence service for the UE 106. The SN 102 may transmit the final result, i.e., user data obtained from the joint intelligence service and relevant processing by the MN 104 and the SN 102 as user data to the UE 106 (814) .
When the SN 102 does not need the intelligence assistance from the MN 104, the SN 102 may transmit “MN Intelligence Resource Release” message to the MN 104, which may include the information of requesting the MN 104 to release/revoke the previously allocated intelligence resources (816) . In response, the MN 104 may stop the intelligence assistance by releasing and revoking the allocated intelligence resources. Subsequent to the end of the joint non-radio-communication service between the MN 104 and the SN 102, the  DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
FIG. 9 illustrates an exemplary implementation 900 for jointly providing a UE with the storage assisting service. In the implementation 900, the MN 104 and the SN 102 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air. In the meantime, the MN 104 may be providing a storage assistance service for the UE 106. The storage assistance service may allow the UE 106 to store user data online, which eliminates the need for the UE to maintain a huge memory space locally. Where the local storage capacity of the MN 104 is limited, for example, due to large amount of data existing for MEC applications, the MN 104 may choose either to store those data in up-streamed cloud database or to request other WANNs such as the SN 102 for storage assistance. In the case that the capability and quality of TNL signaling connection between the MN 104 and the SN 102 (e.g. SCTP) is good enough in terms of data transfer bandwidth, latency/jitters and reliability, the MN 104 may request the SN 102 to assist the MN 104 in the area of storage.
The MN 104 may transmit “SN Storage Resource Request” message to the serving SN 102, which may include the information of requesting the SN 102 to allocate the expected storage resource and start the storage assistance operation if admitted (902) . Upon receiving the “SN Storage Resource Request” message and accepting the request, the SN 102 may allocate the corresponding storage resources and provide the admitted capacity in the area of storage. Then, the SN 102 may transmit the “SN Computing Resource Request Acknowledge” message including the information related to the resource allocation of storage resources, e.g., the amount of allocated storage space, to the MN 104 (906) . As such, the joint storage service between the MN 104 and the SN 102 may be established.
During the joint storage service, the MN 104 may transmit, for example, one or more “SN Storage Intermediate Data Update” to the SN 102 (910) . The “SN Storage Intermediate Data Update” messages may include, for example, the relevant user data of the UE 106 to be stored online such as mobile edge multimedia cache data. The SN 102 may perform the corresponding storage assistance operation, for example, utilizing the allocated  storage space to store the user data of the UE 106. Then, the SN 102 may transmit the corresponding “SN Storage Intermediate Data Update” messages including the relevant information of data store operation result, e.g., data store success or failure, to the MN 104 (912) . The MN 104 may notify the UE 106 of the result of the data store operation (914) . In some implementations, where the MN 104 obtain sufficient free storage resources, the SN 102 may transfer the stored user data of the UE 106 back to the MN 104 for storage through the “SN Storage Intermediate Data Update” messages.
When the MN 104 does not need the storage assistance from the SN 102, the MN 104 may transmit “SN Storage Resource Release” message to the SN 102, which may include the information of requesting the SN 102 to release/revoke the previously allocated storage resources (916) . In response, the SN 102 may stop the storage assistance by releasing and revoking the allocated storage resources. Subsequent to the end of the joint storage service between the MN 104 and the SN 102, the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
FIG. 10 illustrates an exemplary implementation 1000 for jointly providing a UE with the storage assisting service. In the implementation 1000, the SN 102 and the MN 104 may be providing joint radio communication service for the UE 106 in a dual connectivity mode, for example, via separate MCG/SCG radio links over the air. In the meantime, the SN 102 may be providing a storage assistance service for the UE 106. The storage assistance service may allow the UE 106 to store user data online, which eliminates the need for the UE to maintain a huge memory space locally. Where the local storage capacity of the SN 102 is limited, for example, due to large amount of data existing for MEC applications, the SN 102 may choose either to store those data in up-streamed cloud database or to request other WANNs such as the MN 104 for storage assistance. In the case that the capability and quality of TNL signaling connection between the MN 104 and the SN 102 (e.g. SCTP) is good enough in terms of data transfer bandwidth, latency/jitters and reliability, the SN 102 may request the MN 104 to assist the SN 102 in the area of storage.
The SN 102 may transmit “SN Storage Resource Required” message to the MN 104, which may contain the information of requesting the MN 104 to allocate the expected  storage resource and start the storage assistance operation if admitted (1002) . Upon receiving the “SN Storage Resource Required” message and accepting the request, the MN 104 may allocate the corresponding storage resources and provide the admitted capacity in the area of storage. Then, the MN 104 may transmit the “SN Storage Resource confirmed” message including the information related to the resource allocation of storage resources, e.g., the amount of allocated storage resources, to the SN 102 (906) . As such, the joint storage service between the MN 104 and the SN 102 may be established.
During the joint storage service, the SN 102 may transmit, for example, one or more “MN Storage Intermediate Data Update” messages to the MN 104 (1010) . The “SN Storage Intermediate Data Update” messages may include, for example, the relevant user data of the UE 106 to be stored online such as mobile edge multimedia cache data. The MN 104 may perform the corresponding storage assistance operation, for example, utilizing the allocated storage resources to store the user data of the UE 106. Then, the MN 104 may transmit the corresponding “MN Storage Data Update” messages including the relevant information of data store operation result, e.g., data store success or failure, to the SN 102 (1012) . The SN 102 may notify the UE 106 of the result of the data store operation (1014) .
When the SN 102 does not need the storage assistance from the MN 104, the SN 102 may transmit “MN Storage Resource Release” message to the MN 104, which may include the information of requesting the MN 104 to release/revoke the previously allocated storage resources (1016) . In response, the MN 104 may stop the storage assistance by releasing and revoking the allocated storage resources. Subsequent to the end of the joint non-radio-communication service between the MN 104 and the SN 102, the DC operation for the joint radio communication service between the MN 104 and the SN 102 may be kept ongoing if available.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment/implementation” as used herein does not necessarily refer to the same embodiment and the phrase “in another embodiment/implementation” as used herein does not  necessarily refer to a different embodiment. It is intended, for example, that claimed subject matter includes combinations of example embodiments in whole or in part.
In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and” , “or” , or “and/or, ” as used herein may include a variety of meanings that may depend at least in part on the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a, ” “an, ” or “the, ” may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present solution should be or are included in any single implementation thereof. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present solution. Thus, discussions of the features and advantages, and similar language, throughout the specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages and characteristics of the present solution may be combined in any suitable manner in one or more embodiments. One of ordinary skill in the relevant art will recognize, in light of the description herein, that the present solution can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and  advantages may be recognized in certain embodiments that may not be present in all embodiments of the present solution.

Claims (17)

  1. A method performed by a first wireless access network node serving a user equipment in a wireless communication network, comprising:
    transmitting a request message for a non-radio-communication service resource of a second wireless access network node to the second wireless access network node, the first wireless access network node providing the user equipment with a non-radio-communication service and requesting the non-radio-communication service resource to assist to provide the non-radio-communication service to the user equipment; and
    receiving a response message allocating the non-radio-communication service resource for the user equipment from the second wireless access network node.
  2. The method of claim 1, wherein the user equipment is in a dual connectivity with the first wireless access network node and the second wireless access network node such that the first wireless access network node and the second wireless access network node provide joint radio communication service to the user equipment.
  3. The method of claim 2, wherein in the dual connectivity, the first wireless access network node is a master node and the second wireless access network node is a secondary node, or the first wireless access network node is a secondary node and the second wireless access network node is a master node.
  4. The method of claim 1, wherein the first wireless access network node is neighboring to the second wireless access network node, and the first wireless access network node and the second wireless access network node have a direct communication interface in-between for information coordination.
  5. The method of claim 1, wherein the method further comprises:
    in response to receiving the response message, transmitting a first non-radio-communication service assisting data update message including a task of the non-radio-communication service to the second wireless access network node.
  6. The method of claim 5, wherein the method further comprises:
    receiving a second non-radio-communication service assisting data update message including a result of the task from the second wireless access network node.
  7. The method of claim 6, wherein the task is included in the first non-radio-communication service assisting data update message in a form of container and the result of the task is included in the second non-radio-communication service assisting data update message in a form of container.
  8. The method of claim 1, wherein the method further comprises:
    transmitting a non-radio-communication service resource release message to the second wireless access network node such that the second wireless access network node releases and revokes the non-radio-communication service resource allocated for the user equipment to end a joint non-radio-communication service between the first wireless access network node and the second wireless access network node, wherein a dual connectivity operation for a joint radio communication service between the first wireless access network node and the second wireless access network node can be kept subsequent to the end of the joint non-radio-communication service.
  9. The method of claim 1, wherein the non-radio-communication service comprises at least one of a computing assisting service, an intelligence assisting service, or a storage assisting service.
  10. The method of claim 1, the method further comprises transmitting a user data resulted from a joint non-radio-communication service and relevant processing by the first wireless access network node and the second wireless access network node to the user equipment.
  11. A method performed by a second wireless access network node in a wireless communication network, comprising:
    receiving a request message for a non-radio-communication service resource of the second wireless access network node from a first wireless access network node, the first wireless access network node providing a user equipment with both a radio communication service and a non-radio-communication service and requesting the non-radio-communication service resource to assist to provide the non-radio-communication service to the user equipment; and
    transmitting a response message allocating the non-radio-communication service resource to the first wireless access network node.
  12. The method of claim 11, wherein the user equipment is in a dual connectivity with the first wireless access network node and the second wireless access network node such that the first wireless access network node and the second wireless access network node provide joint radio communication service to the user equipment.
  13. The method of claim 11, wherein the method further comprises allocating the non-radio-communication service resource for the user equipment.
  14. The method of claim 11, wherein the method further comprises:
    in response to receiving a first non-radio-communication service assisting data update message including a task of the non-radio-communication service from the first wireless access network node,
    completing the task of the non-radio-communication service using the non-radio-communication service resource allocated for the user equipment, and
    transmitting a second non-radio-communication service assisting data update message including a result of the task to the first wireless access network node.
  15. The method of claim 11, wherein the method further comprises:
    in response to receiving a non-radio-communication service resource release message from the first wireless access network node, releasing and revoking the non-radio-communication service resource allocated for the user equipment to end a joint non-radio-communication service between the first wireless access network node and the second wireless access network node, wherein a dual connectivity operation for a joint radio communication service between the first wireless access network node and the second wireless access network node can be kept subsequent to the end of the joint non-radio-communication service.
  16. A device comprising a processor and a memory, wherein the processor is configured to read computer code from the memory to implement a method in any one of claims 1 to 15.
  17. A computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the method of any one of claims 1 to 15.
PCT/CN2020/130726 2020-11-23 2020-11-23 Method and device for jointly serving user equipment by wireless access network nodes WO2022104764A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080107365.8A CN116491159A (en) 2020-11-23 2020-11-23 Method and apparatus for joint service of user equipment through radio access network node
KR1020237017511A KR20230096022A (en) 2020-11-23 2020-11-23 Method and device for jointly serving user equipment by radio access network nodes
PCT/CN2020/130726 WO2022104764A1 (en) 2020-11-23 2020-11-23 Method and device for jointly serving user equipment by wireless access network nodes
EP20962055.8A EP4233364A4 (en) 2020-11-23 2020-11-23 Method and device for jointly serving user equipment by wireless access network nodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130726 WO2022104764A1 (en) 2020-11-23 2020-11-23 Method and device for jointly serving user equipment by wireless access network nodes

Publications (1)

Publication Number Publication Date
WO2022104764A1 true WO2022104764A1 (en) 2022-05-27

Family

ID=81708231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130726 WO2022104764A1 (en) 2020-11-23 2020-11-23 Method and device for jointly serving user equipment by wireless access network nodes

Country Status (4)

Country Link
EP (1) EP4233364A4 (en)
KR (1) KR20230096022A (en)
CN (1) CN116491159A (en)
WO (1) WO2022104764A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392028A (en) * 2017-08-09 2019-02-26 华为技术有限公司 The method and equipment of data transmission
CN109417721A (en) * 2016-07-01 2019-03-01 株式会社Kt For sending or receiving the method and its equipment of data under dual link state
CN109862592A (en) * 2018-12-06 2019-06-07 北京邮电大学 Resource management and dispatching method under a kind of mobile edge calculations environment based on multi-base station cooperative
US20200205117A1 (en) * 2017-08-10 2020-06-25 Ntt Docomo, Inc. Position calculation device, wireless base station, position calculation method, and positioning control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989755B2 (en) * 2013-02-26 2015-03-24 Blackberry Limited Methods of inter-cell resource sharing
WO2015115964A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) A master and second evolved node b and method performed thereby for modifying a radio resource of the senb with respect to a ue currently being connected to the menb
US10966274B2 (en) * 2016-08-12 2021-03-30 Apple Inc. RRC coordination between a plurality of nodes
KR102536118B1 (en) * 2017-12-30 2023-05-23 인텔 코포레이션 Method and device for vehicle wireless communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417721A (en) * 2016-07-01 2019-03-01 株式会社Kt For sending or receiving the method and its equipment of data under dual link state
CN109392028A (en) * 2017-08-09 2019-02-26 华为技术有限公司 The method and equipment of data transmission
US20200205117A1 (en) * 2017-08-10 2020-06-25 Ntt Docomo, Inc. Position calculation device, wireless base station, position calculation method, and positioning control method
CN109862592A (en) * 2018-12-06 2019-06-07 北京邮电大学 Resource management and dispatching method under a kind of mobile edge calculations environment based on multi-base station cooperative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4233364A4 *

Also Published As

Publication number Publication date
EP4233364A1 (en) 2023-08-30
KR20230096022A (en) 2023-06-29
CN116491159A (en) 2023-07-25
EP4233364A4 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
US20230292387A1 (en) Method and device for jointly serving user equipment by wireless access network nodes
Guo et al. Computation offloading for multi-access mobile edge computing in ultra-dense networks
Cheng et al. Air-ground integrated mobile edge networks: Architecture, challenges, and opportunities
US20220104299A1 (en) Small data transmission without path switch procedure
CN111984364B (en) Artificial intelligence cloud platform towards 5G age
US11432204B2 (en) Method and apparatus for enhancing handover procedure for supporting conditional handover in wireless communication system
US20220053390A1 (en) Support of inter-gnb handover in higher layer multi-connectivity
US10206219B2 (en) Base station apparatus and resource management method and data processing method in wireless communication system
JP7352018B2 (en) Method and apparatus for performing retransmission in a wireless communication system
US20200260324A1 (en) Support of load balancing for supplementary uplink in cu-du architecture
US20220070826A1 (en) Sidelink resource handling for cu-du split based v2x communication
WO2022037360A1 (en) Computing task processing method, communication device and wireless network architecture
CN109151077B (en) Calculation unloading method based on target guidance
US20220174563A1 (en) Mobility enhancement for new radio access technology
US20200267801A1 (en) Method and apparatus for message processing in wireless communication system
KR20220123285A (en) Method and apparatus for multicast-broadcast service area control in wireless communication system
WO2022037363A1 (en) Computing bearer application method and apparatus
US20230284244A1 (en) Method and apparatus for resource allocation in wireless communication system
CN114731550B (en) Method and apparatus for performing communication after mobility in wireless communication system
US20230033272A1 (en) Method and apparatus for dynamic and efficient load balancing in mobile communication network
US20220394744A1 (en) Clearing part of sidelink grant for single pdu transmission and sidelink resource allocation
Peng et al. Fog Radio Access Networks (F-RAN)
WO2022104764A1 (en) Method and device for jointly serving user equipment by wireless access network nodes
US20220060292A1 (en) Determination of maximum number of uplink retransmissions
Muthanna et al. Analysis of the advantages of millimeter waves for video traffic transmission in 5G networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107365.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237017511

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020962055

Country of ref document: EP

Effective date: 20230522

NENP Non-entry into the national phase

Ref country code: DE