WO2022104748A1 - Procédé d'étalonnage d'appareil de surveillance de type implanté, ensemble capteur et système de surveillance de glucose sanguin - Google Patents

Procédé d'étalonnage d'appareil de surveillance de type implanté, ensemble capteur et système de surveillance de glucose sanguin Download PDF

Info

Publication number
WO2022104748A1
WO2022104748A1 PCT/CN2020/130643 CN2020130643W WO2022104748A1 WO 2022104748 A1 WO2022104748 A1 WO 2022104748A1 CN 2020130643 W CN2020130643 W CN 2020130643W WO 2022104748 A1 WO2022104748 A1 WO 2022104748A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
conductive
control circuit
identifiable electronic
identifiable
Prior art date
Application number
PCT/CN2020/130643
Other languages
English (en)
Chinese (zh)
Inventor
于非
宣佳杰
宋哲
王国栋
Original Assignee
微泰医疗器械(杭州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微泰医疗器械(杭州)股份有限公司 filed Critical 微泰医疗器械(杭州)股份有限公司
Priority to PCT/CN2020/130643 priority Critical patent/WO2022104748A1/fr
Publication of WO2022104748A1 publication Critical patent/WO2022104748A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue

Definitions

  • the present invention relates to the technical field of medical devices, in particular to a calibration method of an implantable monitoring device, a sensor assembly and a blood glucose monitoring system.
  • the implantable monitoring device includes sensors, and the sensors are used to continuously or discontinuously detect the values of relevant indicators in the human body.
  • the blood glucose monitoring system uses the blood glucose sensor to detect the blood glucose value in the human body. Due to the particularity of the sensor production process, there will be differences in signal strength between different batches of sensors, which need to be calibrated with reference blood glucose values before or during use.
  • the batch calibration operation of the existing blood glucose monitoring system is relatively complicated. It is usually necessary to calibrate the system with other blood glucose meters to measure blood glucose before each sensor is used, or manually input the batch number information of the sensor into the program of the blood glucose monitoring system. , after matching with the information in the system, then output the corresponding code to calibrate the sensor.
  • the invention provides a calibration method of an implanted monitoring device, a sensor component and a blood glucose monitoring system, which can automatically calibrate the sensor, and the calibration method is accurate, simple and fast.
  • a method for calibrating an implantable monitoring device comprising the following steps: presetting a parameter library, wherein the parameter library includes sensor calibration parameters corresponding to values of identifiable electronic components; setting the sensor in the sensor The electronic component can be identified, and the sensor control circuit detects the value of the identifiable electronic component and reads the calibration parameter corresponding to the value in the parameter library; the sensor control circuit corrects the original parameter of the sensor to the calibration parameter corresponding to the value .
  • the method before the step of arranging the identifiable electronic components in the sensor, the method further includes: testing the sensor probe, determining parameters matching the performance of the sensor probe, and determining the type of the identifiable electronic components according to the parameters.
  • a selected identifiable electronic component and a sensor probe are installed in the sensor;
  • the identifiable electronic component includes at least 2 conductive connection ends, each of which is in contact with a conductor structure inside the sensor and forms a A conductive path, so that the identifiable electronic element and the control circuit of the sensor form a conductive path.
  • connection method between the identifiable electronic element and the conductive connection end is one of the following: welding, bonding with conductive adhesive, bonding with conductive film, and snap-fit.
  • a sensor assembly comprising a blood glucose sensor, an identifiable electronic element and a storage element;
  • the blood glucose sensor includes a control circuit board, the identifiable electronic element and the storage element are connected to the control circuit board, Thus, a conductive path is formed;
  • the control circuit board is used to detect the value of the identifiable electronic component, the storage element is used to store the parameter library, the control circuit board reads the calibration parameter corresponding to the value in the parameter library, and corrects the original parameters of the blood glucose sensor is the calibration parameter corresponding to the value.
  • the identifiable electronic component is one or more of the following: resistance, capacitance, inductance, coding chip or memory.
  • the identifiable electronic element is connected to the control circuit board through a conductive structure;
  • the conductive structure is one or more of the following: conductive rubber, conductive elastic needle, and conductive spring.
  • the identifiable electronic component includes at least two conductive connection ends, each of which is connected to a conductor structure on the control circuit board, thereby forming a conductive path.
  • the conductor structure is one or more of the following: a metal conductor, a PCB circuit board, an FPC flexible circuit board, and a casing conductive coating.
  • a blood glucose monitoring system comprising a transmitting component and the above-mentioned sensor component, the transmitting component is used for connecting with the sensor component to form a monitoring circuit, and sending the detected blood glucose signal in the form of an electronic signal to the terminal device.
  • an identifiable electronic element is added to the sensor, and the value of the identifiable electronic element corresponds to a fixed calibration parameter.
  • the control circuit of the sensor detects the identifiable electronic element and detects its numerical value. , and then, the control circuit board automatically calibrates the sensor parameters to the calibration parameters in the parameter library corresponding to the values of the identifiable electronic components.
  • FIG. 1 is a flowchart of a method for calibrating an implantable monitoring device according to an embodiment of the present invention
  • FIG. 2 is another flowchart of a method for calibrating an implantable monitoring device provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a sensor assembly provided by an embodiment of the present invention.
  • FIG. 4 is an exploded schematic diagram of a blood glucose monitoring system provided by an embodiment of the present invention.
  • 101 control circuit board
  • 102 identifiable electronic components.
  • the senor after adding identifiable electronic components to the sensor, the sensor can be automatically calibrated, which will be described in detail below.
  • FIG. 1 is a flowchart of a method for calibrating an implantable monitoring device according to an embodiment of the present invention. As shown in Figure 1, the implantable monitoring device calibration method includes the following steps:
  • Step S1 preset a parameter library, the parameter library includes sensor calibration parameters corresponding to the values of the identifiable electronic components;
  • Step S2 setting an identifiable electronic component in the sensor, the sensor control circuit detects the value of the identifiable electronic component, and reads the calibration parameter corresponding to the value in the parameter library;
  • Step S3 The sensor control circuit calibrates the original parameters to calibration parameters corresponding to the above-mentioned values.
  • the calibration parameters corresponding to different values are recorded in the parameter library, for example, the value 1 corresponds to the calibration parameter 1, the value 2 corresponds to the calibration parameter 2, the value 3 corresponds to the calibration parameter 3...etc.
  • the control circuit detects the value of the identifiable electronic component, it modifies the parameter in the signal conversion algorithm built in the control circuit to the parameter corresponding to the value to complete the calibration process. For example, if the detection value of the identifiable electronic component is 2, then Correct the original parameters of the sensor to calibration parameter 2.
  • FIG. 2 is another flowchart of a method for calibrating an implantable monitoring device according to an embodiment of the present invention.
  • a step S0 testing the sensor probe, determining parameters matching the performance of the sensor probe, and determining the type and value of the identifiable electronic components according to the parameters .
  • the purpose of step S0 is to determine the type and value of the identifiable electronic component, wherein the type of the identifiable electronic component includes but is not limited to: resistance, capacitance, inductance, coding chip or memory, the value of the identifiable electronic component and the sensor probe.
  • the parameters for performance matching are the same or related.
  • the selected identifiable electronic component and the sensor probe are installed together in the sensor;
  • the identifiable electronic component includes at least two conductive connection ends, each conductive connection end is connected to one of the inside of the sensor.
  • the conductor structure contacts and forms a conductive path so that the identifiable electronic element and the sensor's control circuit form a conductive path.
  • the identifiable electronic element and the conductive connection end are connected by welding, conductive adhesive bonding, conductive film bonding or metal snap-fit.
  • the sensor is a blood glucose sensor
  • a resistor can be selected for an electronic component that can be identified. Due to the batch-to-batch variability of the manufacturing process, the stable current response of each batch of blood glucose sensors may fluctuate between 17 and 25 nA when testing a glucose solution with a concentration of 10 mmol/L. Therefore, the conversion factor (glucose concentration/current value) for calculating the glucose concentration from the current of the blood glucose sensor may fluctuate between 0.4 and 0.6.
  • the identifiable electronic components select the resistance of 4000-6000 ohms.
  • the preset parameter library set the resistance of 4000 ohms to correspond to the conversion factor of 0.4, and the resistance of 4100 ohms to correspond to the conversion factor of 0.41...6000 ohms correspond to the conversion factor of 0.6.
  • the conversion coefficient of this batch of products can be determined, and the corresponding resistors are assembled into the sensors during production (the resistors are assembled together with the sensors).
  • the sensor control circuit can automatically read the corresponding conversion coefficient in the preset parameter library to calculate the glucose concentration after detecting and identifying the resistance value.
  • the conversion factor should be 0.4. If the current conversion factor of the blood sugar sensor is not 0.4, it will be corrected to 0.4, or the blood sugar sensor will directly correct the conversion factor to 0.4. The above operations realize the automatic correction of the blood sugar sensor.
  • FIG. 3 is a schematic structural diagram of a sensor assembly according to an embodiment of the present invention.
  • the sensor assembly includes a blood glucose sensor, an identification electronic component 102 and a storage element;
  • the blood glucose sensor includes a control circuit board 101, and the identification electronic element 102 and the storage element are connected to the control circuit board 101 to form a conductive path ;
  • the control circuit board 101 is used to detect the numerical value of the identifiable electronic component 102, the storage element is used to store the parameter library, and the control circuit board 101 reads the calibration parameter corresponding to the numerical value in the parameter library, and corrects the original parameter to be the same as the specified value.
  • the calibration parameters corresponding to the above values.
  • the pre-selected identifiable electronic component 102 is placed in the control circuit board 101 of the blood glucose sensor, and the identifiable electronic component 102 is connected to the conductor structure on the control circuit board 101, so that the identifiable electronic component 102 is connected to the conductor structure on the control circuit board 101. After the control circuit board 101 is powered on, the value of the identifiable electronic component 102 can be measured.
  • the identifiable electronic component 102 includes at least two conductive connection ends, each of which is connected to the control circuit board 101. on the conductor structure connection.
  • the identifiable electronic components 102 include, but are not limited to, resistors, capacitors, inductors, coding chips, memories, or combinations thereof, etc.
  • the identifiable electronic components 102 are connected to the control circuit board 101 through a conductive structure;
  • the conductive structure includes but It is not limited to conductive rubber, conductive elastic needles or conductive springs, etc.; conductor structures include but are not limited to metal conductors, PCB circuit boards, FPC flexible circuit boards or shell conductive coatings, etc.
  • FIG. 4 is an exploded schematic diagram of a blood glucose monitoring system provided by an embodiment of the present invention.
  • the blood glucose monitoring system includes a transmitter assembly 200 and a sensor assembly 100 as shown in FIG. 3 .
  • the blood sugar monitoring device is a split structure, wherein the sensor assembly 100 is a disposable part, which includes a blood sugar sensor, and the detection needle of the blood sugar sensor penetrates under the human skin, which is used to detect the blood sugar content, and the blood sugar sensor can be calibrated by itself , so as to ensure the accuracy of detection;
  • the transmitter assembly 200 is a reusable part, which includes a circuit board. When in use, the transmitter assembly 200 is connected with the sensor assembly 100 to form an integrated structure.
  • the sensor assembly 100 and the transmitter assembly 200 The electronic components inside form a monitoring circuit, which can send the blood sugar signal detected by the blood sugar sensor to the terminal device in the form of an electronic signal, and the doctor or patient can read and store the blood sugar data on the terminal device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Un procédé d'étalonnage d'appareil de surveillance de type implanté, un ensemble capteur et un système de surveillance de glucose sanguin, qui se rapportent au domaine technique des dispositifs médicaux. Le procédé comprend les étapes suivantes : une bibliothèque de paramètres est préconfigurée, la bibliothèque de paramètres contenant un paramètre d'étalonnage de capteur correspondant à une valeur numérique d'un élément électronique identifiable (S1) ; l'élément électronique identifiable est disposé dans un capteur, et un circuit de commande de capteur détecte la valeur numérique de l'élément électronique identifiable et lit un paramètre d'étalonnage correspondant à la valeur numérique dans la bibliothèque de paramètres (S2) ; et le circuit de commande de capteur modifie un paramètre d'origine de capteur selon un paramètre d'étalonnage correspondant à la valeur numérique (S3). L'étalonnage automatisé d'un paramètre de capteur peut être implémenté, et le procédé d'étalonnage est précis, simple et rapide.
PCT/CN2020/130643 2020-11-20 2020-11-20 Procédé d'étalonnage d'appareil de surveillance de type implanté, ensemble capteur et système de surveillance de glucose sanguin WO2022104748A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130643 WO2022104748A1 (fr) 2020-11-20 2020-11-20 Procédé d'étalonnage d'appareil de surveillance de type implanté, ensemble capteur et système de surveillance de glucose sanguin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130643 WO2022104748A1 (fr) 2020-11-20 2020-11-20 Procédé d'étalonnage d'appareil de surveillance de type implanté, ensemble capteur et système de surveillance de glucose sanguin

Publications (1)

Publication Number Publication Date
WO2022104748A1 true WO2022104748A1 (fr) 2022-05-27

Family

ID=81708288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130643 WO2022104748A1 (fr) 2020-11-20 2020-11-20 Procédé d'étalonnage d'appareil de surveillance de type implanté, ensemble capteur et système de surveillance de glucose sanguin

Country Status (1)

Country Link
WO (1) WO2022104748A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295506B1 (en) * 1997-10-27 2001-09-25 Nokia Mobile Phones Limited Measurement apparatus
CN1444749A (zh) * 2000-06-02 2003-09-24 阿克雷株式会社 测定支援系统以及测定支援方法
US20040142483A1 (en) * 2003-01-21 2004-07-22 Bayer Healthcare Llc Calibration data entry system for a test instrument
CN101176099A (zh) * 2005-05-17 2008-05-07 霍夫曼-拉罗奇有限公司 在测量过程中向使用耗材试剂的测量设备提供校准和试剂信息的主机设备和方法
CN102821687A (zh) * 2010-03-26 2012-12-12 美敦力迷你迈德公司 葡萄糖监测传感器和/或胰岛素递送系统的校准
US20140339100A1 (en) * 2013-05-17 2014-11-20 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip based on multiple calibration parameters
CN109069074A (zh) * 2016-05-13 2018-12-21 豪夫迈·罗氏有限公司 分析物测量系统和初始化方法
CN110208352A (zh) * 2019-06-24 2019-09-06 深圳硅基传感科技有限公司 葡萄糖传感器的出厂校准方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295506B1 (en) * 1997-10-27 2001-09-25 Nokia Mobile Phones Limited Measurement apparatus
CN1444749A (zh) * 2000-06-02 2003-09-24 阿克雷株式会社 测定支援系统以及测定支援方法
US20040142483A1 (en) * 2003-01-21 2004-07-22 Bayer Healthcare Llc Calibration data entry system for a test instrument
CN101176099A (zh) * 2005-05-17 2008-05-07 霍夫曼-拉罗奇有限公司 在测量过程中向使用耗材试剂的测量设备提供校准和试剂信息的主机设备和方法
CN102821687A (zh) * 2010-03-26 2012-12-12 美敦力迷你迈德公司 葡萄糖监测传感器和/或胰岛素递送系统的校准
US20140339100A1 (en) * 2013-05-17 2014-11-20 Lifescan Scotland Limited Accurate analyte measurements for electrochemical test strip based on multiple calibration parameters
CN109069074A (zh) * 2016-05-13 2018-12-21 豪夫迈·罗氏有限公司 分析物测量系统和初始化方法
CN110208352A (zh) * 2019-06-24 2019-09-06 深圳硅基传感科技有限公司 葡萄糖传感器的出厂校准方法

Similar Documents

Publication Publication Date Title
RU2490596C1 (ru) Измерительный преобразователь технологического параметра с диагностикой двухпроводного контура управления процессом
KR100675463B1 (ko) 혈액을 비롯한 체액의 농도 측정기, 농도 측정기용 시험편, 바이오 센서 및 상기 시험편의 단자 형성방법
US4858615A (en) Catheter sensor and memory unit
US6351112B1 (en) Calibrating combinations of probes and channels in an oscilloscope
EP0079086A1 (fr) Capteur à cathéter avec une unité de mémoire
EP1012602A1 (fr) Systeme de verification de la performance d'instruments
TW200416547A (en) Probe based information storage for probes used for opens detection in in-circuit testing
US20200054224A1 (en) Pressure sensor calibration systems and methods
CN111208175A (zh) 一种传感器识别方法、装置及待测物测试设备
US5248933A (en) Calibration
JPH0738007B2 (ja) インピ−ダンスの測定方法
JP2010127865A (ja) 測定装置
EP2696199A1 (fr) Dispositif et procédé de lecture de bandes d'essai électrochimique
WO2022104748A1 (fr) Procédé d'étalonnage d'appareil de surveillance de type implanté, ensemble capteur et système de surveillance de glucose sanguin
JP6629845B2 (ja) 診断測定器用ストリップを制御及び識別する装置
CN112731241B (zh) 晶圆测试机台的校准工具和校准方法
US11517231B2 (en) Blood glucose test strip and associated measuring method
CN112285171A (zh) 一种应用于电化学试条的阻抗测试方法及电化学测量系统
KR101022838B1 (ko) 오토코딩용 저항전극을 구비한 센서 스트립을 채용하는 혈당측정장치
CN112603299A (zh) 植入式监测装置校准方法、传感器组件及血糖监测系统
CN109655497B (zh) 一种用于修正tds探针测量误差的控制电路及方法
US20060040251A1 (en) Portable medical measurement device and method
JP2006015068A (ja) 生体情報測定センサおよび生体情報測定装置
EP3647737B1 (fr) Circuit d'interface de capteur
WO2015099546A1 (fr) Systèmes et procédés pour détecter de l'ascorbate dans des échantillons liquides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962039

Country of ref document: EP

Kind code of ref document: A1