WO2022104656A1 - 控制信道的传输及接收方法、装置、通信设备 - Google Patents

控制信道的传输及接收方法、装置、通信设备 Download PDF

Info

Publication number
WO2022104656A1
WO2022104656A1 PCT/CN2020/130179 CN2020130179W WO2022104656A1 WO 2022104656 A1 WO2022104656 A1 WO 2022104656A1 CN 2020130179 W CN2020130179 W CN 2020130179W WO 2022104656 A1 WO2022104656 A1 WO 2022104656A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
target sequence
value
sequence
time
Prior art date
Application number
PCT/CN2020/130179
Other languages
English (en)
French (fr)
Inventor
左志松
崔胜江
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/130179 priority Critical patent/WO2022104656A1/zh
Priority to CN202080105342.3A priority patent/CN116264867A/zh
Publication of WO2022104656A1 publication Critical patent/WO2022104656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method, an apparatus, and a communication device for transmitting and receiving a control channel.
  • control channel can carry multi-bit control information, wherein the number of bits of the control information can reflect the amount of payload carried by the control channel.
  • some types of control channels can carry a larger load by adding a reference signal (Reference Signal, RS).
  • Reference Signal Reference Signal
  • RS Reference Signal
  • implementing a larger load through the RS will increase the overhead of the control channel, and the processing complexity is also high. .
  • Embodiments of the present application provide a method, an apparatus, and a communication device for transmitting and receiving a control channel.
  • the control channel occupies Z time-domain resource units, Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; wherein, the Z first sequences are based on control information Sure.
  • control channel occupies Z time-domain resource units, Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; wherein, the Z first sequences are used to determine control information.
  • a sending unit configured to send a control channel
  • the control channel occupies Z time-domain resource units, Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; A sequence is determined based on the control information.
  • a receiving unit configured to receive a control channel, the control channel occupies Z time-domain resource units, Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; A sequence is used to determine control information.
  • the communication device includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned method for transmitting a control channel or a method for receiving a control channel.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for transmitting a control channel or a method for receiving a control channel.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for transmitting a control channel or receiving method for a control channel.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned method for transmitting a control channel or a method for receiving a control channel.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned method for transmitting a control channel or a method for receiving a control channel.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned method for transmitting a control channel or a method for receiving a control channel.
  • a control channel format without RS is realized.
  • the Z time-domain resource units occupied by the control channel are used to carry the Z first sequences, and the control information is represented by the Z first sequences, thereby realizing a larger
  • unnecessary radio resource overhead is reduced, and the processing complexity of the control channel transmission side and the reception side is also reduced.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • 2-2 is a schematic diagram of an RS pattern of PUCCH format 1 provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for transmitting a control channel provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for receiving a control channel provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of application example 1 provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of application example 2 provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural composition diagram of a control channel transmission apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural composition diagram of an apparatus for receiving a control channel provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the NR system supports two types of Physical Uplink Control Channel (PUCCH), namely long PUCCH and short PUCCH. There are 3 formats for long PUCCH and 2 formats for short PUCCH. Different types of PUCCH are used for different purposes.
  • PUCCH Physical Uplink Control Channel
  • the short PUCCH of NR occupies 1-2 symbols in the time domain.
  • PUCCH format 0 carries 1 to 2 bits of control information and has no RS; PUCCH format 0 represents control information through a sequence.
  • PUCCH format 2 carries more than 2 bits of control information.
  • the number of physical resource blocks (Physical Resource Blocks, PRBs) occupied by PUCCH format 2 is configurable.
  • the frequency domain resources occupied by PUCCH format 2 are 1 to 16 PRBs
  • the occupied time domain resources are 1 to 2 symbols, as shown in Figure 2-1.
  • the "RS" in this embodiment of the present application may be, but is not limited to, a demodulation reference signal (Demodulation Reference Signal, DMRS).
  • DMRS Demodulation Reference Signal
  • the number of symbols occupied by the short PUCCH in the time domain does not exceed 2.
  • the control information is repeatedly transmitted in the 2 symbols.
  • PUCCH format 2 if it occupies 2 symbols in the time domain, the control information is coded and distributed over the 2 symbols for transmission.
  • symbol in this embodiment of the present application may be, but is not limited to, an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • PUCCH format 0 uses a sequence of length 12 to represent control information, such as ACK information or NACK information. Specifically, sequences with different cyclic shifts may be used to characterize ACK information and/or NACK information. As shown in Table 1 and Table 2 below, m cs represents the cyclic shift of the sequence, and Table 1 shows the mapping relationship between the 1-bit ACK/NACK information and the cyclic shift of the sequence carried by PUCCH format 0; The mapping relationship between the 2-bit ACK/NACK information and the cyclic shift of the sequence carried in PUCCH format 0.
  • the long PUCCH of NR occupies 4 to 14 symbols in the time domain.
  • the long PUCCH is divided into three types, namely PUCCH format 1, PUCCH format 3 and PUCCH format 4. Since the long PUCCH occupies a larger number of symbols, the coverage is better than the short PUCCH.
  • the three formats of the long PUCCH are shown in Table 3 below.
  • a major problem with the PUCCH structure is the RS pattern.
  • the position of the even-numbered symbols (numbered from 0) of the slot is the RS, and the position of the odd-numbered symbols is the control information, as shown in Figure 2-2.
  • the PUCCH its control information refers to uplink control information (Uplink Control Information, UCI).
  • UCI Uplink Control Information
  • Control information and RS use ZC sequences, which can achieve lower peak-to-average ratios.
  • the control information of PUCCH format 1 is directly modulated on the sequence.
  • PUCCH format 3 and PUCCH format 4 carry more bits of control information and thus require relatively more symbols.
  • each frequency hopping part of PUCCH format 3 and PUCCH format 4 includes one column of RSs.
  • Higher layers can configure additional RSs. After configuring additional RSs, if the number of symbols included in each frequency hopping part is not greater than 5, the frequency hopping part includes 1 column of RSs. If the number of time domain symbols included in each frequency hopping part is greater than or equal to 5, the frequency hopping part includes 2 columns of RSs.
  • the control information of PUCCH format 3 and PUCCH format 4 needs to be channel coded, and the coded load is modulated on each symbol by means of DFT preprocessing.
  • PUCCH format 3 needs to carry multiple ACK and CSI feedbacks, and its coverage is weaker than that of PUCCH format 1 (but due to the large number of symbols, the coverage of PUCCH format 3 is better than that of PUCCH format 2). When the coverage is limited, the coverage of PUCCH format 3 also needs to be enhanced to achieve coverage similar to other channels. Since the PUCCH format 3 is based on the mechanism of coherent demodulation, the PUCCH format 3 has the RS overhead, which will cause the performance of the PUCCH format 3 to decrease in low coverage scenarios. So there is room for coverage improvement.
  • FIG. 3 is a schematic flowchart of a method for transmitting a control channel provided by an embodiment of the present application. As shown in FIG. 3 , the method for transmitting a control channel includes the following steps:
  • Step 301 Send a control channel, the control channel occupies Z time-domain resource units, Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; wherein, the Z first sequences Determined based on control information.
  • the technical solutions of the embodiments of the present application are applied to uplink
  • the control channel may be PUCCH
  • the control information may be UCI.
  • the sending of the control channel specifically refers to: the terminal device sends the PUCCH to the network device.
  • the control channel may be a physical downlink control channel (Physical Downlink Control Channel, PDCCH), and the control information may be downlink control information (Downlink Control Information, DCI).
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the sending of the control channel specifically refers to: the network device sends the PDCCH to the terminal device.
  • the control channel may be a physical side link control channel (Physical Sidelink Control Channel, PSCCH), and the control information may be side line control information (Sidelink Control Information, SCI).
  • PSCCH Physical Sidelink Control Channel
  • SCI Sidelink Control Information
  • control channel has no RS, so the overhead of radio resources can be effectively saved, and the complexity of the transmitting side can also be reduced.
  • the transmitting side refers to the transmitting side of the control channel.
  • the sending side is the terminal device; for the downlink, the sending side is the network device; for the side line, the sending side is the first terminal device.
  • control channel occupies Z time-domain resource units, where Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; wherein, the Z first sequences are based on control information Sure.
  • the value of Z may be equal to 1 or greater than 1, and the following descriptions will be given in conjunction with different values.
  • the Z first sequences are obtained by spreading the target sequence using a target spreading code, and the target sequence and the target spreading code are obtained. Determined based on control information.
  • the transmitting side determines the target sequence and the target spreading code according to the control information; spreads the target sequence into the Z first sequences by using the target spreading code, and spreads the The Z first sequences are mapped to the Z time-domain resource units.
  • the target spreading code is an orthogonal cover code (Orthogonal Cover Code, OCC).
  • determining the target sequence and the target spreading code according to the control information may be implemented in any of the following ways:
  • the control information is represented by N-bit information, where N is a positive integer; the target sequence and the target spreading code are determined according to the value of the N-bit information.
  • control information is represented by N-bit information, wherein one value of the N-bit information is used to represent one control information.
  • a value of 1 for 1-bit information represents one control information
  • a value of 0 for 1-bit information represents another control information.
  • the value of 2-bit information is 00 to indicate control information 1
  • the value of 2-bit information is 01 to indicate control information 2
  • the value of 2-bit information is 10 to indicate control information 3
  • the value of 2-bit information is 11 Characterization control information 4 .
  • the value of the N-bit information can determine the corresponding control information, and based on this, the target sequence and the target spreading code can be determined according to the value of the N-bit information.
  • the target sequence is in the target sequence.
  • the index in the first set and the index of the target spreading code in the second set wherein, the index of the target sequence in the first set is used to determine the target sequence, the target sequence
  • the index of the spreading code in the second set is used to determine the target spreading code.
  • the following formulas describe how to determine the index of the target sequence and the index of the target spreading code. It should be noted that the following formulas are only exemplary, and the technical solutions of the embodiments of the present application are not limited to the following formulas, and other formulas may also be used to determine the index of the target sequence and the index of the target spreading code, or, through N bits
  • the corresponding relationship between the value of the information and the sequence and the spreading code determine the target sequence and the target spreading code corresponding to the current value of the N-bit information, for example: the value of the N-bit information is the first value corresponding to the sequence 1 and Spreading code 1, the value of the N-bit information is the second value corresponding to sequence 2 and spreading code 2, and so on.
  • the index of the target sequence is L
  • the index of the target spreading code is I
  • L and I satisfy the following formula:
  • CI represents the value of N-bit information
  • the value of 1-bit information can be 0 or 1
  • the value of 2-bit information can be 0 (ie 00) or 1 (ie 01) or 2 (ie 10 ) or 3 (ie 11).
  • y size represents the total number of sequences contained in the first set.
  • the selection of the target sequence is selected from the first set.
  • each sequence in the first set may have the same length, for example, the first set includes y size sequences of length 12, wherein the cyclic shifts of different sequences are different.
  • the index of the target sequence is L
  • the index of the target spreading code is I
  • L and I satisfy the following formula:
  • I CI mod OCC size
  • CI represents the value of N-bit information
  • the value of 1-bit information can be 0 or 1
  • the value of 2-bit information can be 0 (ie 00) or 1 (ie 01) or 2 (ie 10 ) or 3 (ie 11).
  • the OCC size represents the total number of spreading codes included in the second set.
  • the selection of the target spreading code is selected from the second set.
  • the control information is represented by N-bit information, where N is a positive integer; the N-bit information includes a first part of bit information and a second part of bit information; according to the value of the first part of the bit information, determine the index of the target sequence ; Determine the index of the target spreading code according to the value of the second part of the bit information; wherein, the index of the target sequence is used to determine the target sequence, and the index of the target spreading code is used to determine the target spreading code.
  • control information is represented by N-bit information, wherein one value of the N-bit information is used to represent one control information.
  • the value of 2-bit information is 00 to indicate control information 1
  • the value of 2-bit information is 01 to indicate control information 2
  • the value of 2-bit information is 10 to indicate control information 3
  • the value of 2-bit information is 11 to indicate Control information 4.
  • the value of the N-bit information can determine the corresponding control information.
  • the N-bit information is decomposed into two parts, the target sequence can be determined according to the value of the first part of the bit information, and the value of the second part of the bit information can be Determine the target spreading code.
  • the target sequence can represent the value of the first part of the bit information, and the target spreading code can represent the value of the second part of the bit information.
  • the 3-bit information is decomposed into 1-bit information (corresponding to the first part of the bit information) and 2-bit information (corresponding to the second part of the bit information), where the value of the 1-bit information can be 0 or 1.
  • the target sequence can be determined by the value of the 1-bit information
  • the value of the 2-bit information can be 00 or 01 or 10 or 11
  • the target spreading code can be determined by the value of the 2-bit information.
  • the index of the target sequence in the first set may be determined according to the value of the first part of the bit information and the total number of sequences contained in the first set. Or, a target sequence corresponding to the current value of the first part of bit information is determined according to the correspondence between each value of the first part of bit information and each sequence in the first set.
  • the index of the target spreading code in the second set may be determined according to the value of the second part of the bit information and the total number of sequences included in the second set. Or, according to the correspondence between each value of the second part of the bit information and each spreading code in the second set, the target spreading code corresponding to the current value of the second part of the bit information is determined.
  • the target sequence after the target sequence and the target spreading code are determined through the above method 1 or method 2, the target sequence can be spread into Z first sequences by using the target spreading code, and the The Z first sequences are mapped onto the Z time-domain resource units.
  • the target sequence may be spread into Z first sequences in the following manner:
  • the length of the target sequence is L, L is a positive integer, the nth value in the target sequence is y(n), and n is an integer greater than or equal to 0 and less than or equal to L-1;
  • the Z first The mth in the sequence The nth value in the first sequence is Z(n) m , and the Z(n) m and the y(n) satisfy the following relationship:
  • w(m) represents the m-th value of the target spreading code
  • the target spreading code supports Z values.
  • the target sequence can be expressed as:
  • y ⁇ y(0),y(1),...,y(n),...,y(L-1) ⁇ .
  • the target spreading code can be expressed as:
  • w ⁇ w(0),w(1),...,w(m),...,w(Z-1) ⁇ .
  • the 0th first sequence By multiplying the first value w(0) in the target spreading code with each value in the target sequence, the 0th first sequence can be obtained, as follows:
  • Z 0 ⁇ w(0) ⁇ y(0),w(0) ⁇ y(1),...,w(0) ⁇ y(n),...,w(0) ⁇ y(L-1) ⁇ .
  • the first first sequence By multiplying the first value w(1) in the target spreading code with each value in the target sequence, the first first sequence can be obtained, as follows:
  • Z 1 ⁇ w(1) ⁇ y(0),w(1) ⁇ y(1),...,w(1) ⁇ y(n),...,w(1) ⁇ y(L-1) ⁇ .
  • a total of Z first sequences can be obtained, which are Z 0 , Z 1 ,...,Z m ,...,Z Z-1 .
  • mapping the Z first sequences to the Z time-domain resource units may be implemented in the following manner: when the m-th first sequence in the Z first sequences is mapped to the Z first sequences The mth time domain resource unit in the domain resource unit, where m is an integer greater than or equal to 0 and less than or equal to Z-1.
  • the value of Z is 5, that is, there are 5 first sequences, namely sequence 1, sequence 2, sequence 3, sequence 4 and sequence 5, and the control channel occupies 5 time domain resource units, which are respectively time domain resource units 1.
  • the sequence 3 is mapped to the time domain resource unit 3
  • the sequence 4 is mapped to the time domain resource unit 4
  • the sequence 5 is mapped to the time domain resource unit 5.
  • the target sequence may be directly determined according to the index of the target sequence.
  • a pseudo-random sequence associated with the target sequence may be determined according to the index of the target sequence, and then the target sequence is generated according to the pseudo-random sequence.
  • discrete Fourier transform may be performed on the pseudo-random sequence to generate the target sequence.
  • one first sequence is a target sequence, and the target sequence is determined based on the control information.
  • spread spectrum is not required in the time domain.
  • the determination of the target sequence can be achieved in the following ways:
  • the control information is represented by N-bit information, where N is a positive integer; the target sequence is determined according to the value of the N-bit information.
  • the index of the target sequence in the first set may be determined according to the value of the N-bit information and the total number of sequences contained in the first set. Or, according to the correspondence between each value of the N-bit information and each sequence in the first set, a target sequence corresponding to the current value of the N-bit information is determined.
  • each sequence in the first set may have the same length.
  • the first set includes y size sequences with a length of 12, wherein no sequence is used. The cyclic shift is different.
  • the value of Z is determined based on the number of time domain symbols occupied by the control channel in the time domain.
  • the value of Z is ceiling(X/S), where ceiling represents a round-up operation, X represents the number of time domain symbols occupied by the control channel in the time domain, and S is a time domain The number of time domain symbols occupied by the resource unit.
  • the control channel occupies Z time-domain resource units in the time domain. It can be seen that the length of the Z time-domain resource units is equal to the length of X time-domain symbols. It can be seen that one time-domain resource unit occupies X /Z symbols. In an optional manner, one time domain resource unit occupies one time domain symbol. In another optional manner, one of the time-domain resource units occupies a group of time-domain symbols.
  • the first sequence mapped on the time-domain resource unit is repeated on a group of time-domain symbols, so that coverage can be enhanced.
  • the time-domain symbols may be OFDM symbols.
  • the embodiments of the present application propose a new control channel format, such as a new PUCCH format, a new PDCCH format, or a new PSCCH format.
  • the control channel is used to transmit control information of multiple bits (eg, greater than 2 bits).
  • the sending side determines the target sequence and target spreading code used when transmitting the control information according to the number of bits N corresponding to the control information (that is, N bits of information represent the control information), and then spreads the target sequence using the target spreading code into Zth Then, map each first sequence after spreading to Z time-domain resource units, where the Z time-domain resource units are, for example, Z time-domain symbols or Z groups of time-domain symbols. For the case of Z groups of time-domain symbols, the sequence on each time-domain symbol within a group of time-domain symbols is the same.
  • FIG. 4 is a schematic flowchart of a method for receiving a control channel provided by an embodiment of the present application. As shown in FIG. 4 , the method for receiving a control channel includes the following steps:
  • Step 401 Receive a control channel, the control channel occupies Z time-domain resource units, Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; wherein, the Z first sequences Used to determine control information.
  • the control channel may be PUCCH
  • the control information may be UCI.
  • the receiving control channel specifically refers to: the network device receives the PUCCH sent by the terminal device.
  • the control channel may be PDCCH
  • the control information may be DCI.
  • the receiving control channel specifically refers to: the terminal device receives the PDCCH sent by the network device.
  • the control channel may be PSCCH
  • the control information may be SCI.
  • the receiving the control channel specifically refers to: the second terminal device receives the PSCCH sent by the first terminal device.
  • control channel has no RS, so the overhead of radio resources can be effectively saved, and the complexity of the receiving side can also be reduced.
  • the receiving side refers to the receiving side of the control channel.
  • the receiving side is the network device; for the downlink, the receiving side is the terminal device; for the side line, the receiving side is the second terminal device.
  • control channel occupies Z time-domain resource units, where Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; wherein, the Z first sequences are used to determine control information.
  • the m-th first sequence in the Z first sequences is mapped to the m-th time-domain resource unit in the Z time-domain resource units, where m is greater than or equal to 0 and less than An integer equal to Z-1.
  • the value of Z may be equal to 1 or greater than 1, and the following descriptions will be given in conjunction with different values.
  • the Z first sequences are obtained by spreading the target sequence using a target spreading code, the target sequence and/or the target spreading code.
  • the frequency code is used to determine control information.
  • the target spreading code is OCC.
  • the receiving side determines the corresponding target sequence and the target spreading code according to the Z first sequences carried by the control channel, and determines the control information according to the target sequence and/or the target spreading code.
  • the receiving side may determine the target sequence and the target spreading code according to the relationship between the Z first sequences and the target spreading code and the target sequence.
  • the Z first sequences and the target spreading code The relationship between the target sequence and the target sequence is:
  • the length of the target sequence is L, L is a positive integer, the nth value in the target sequence is y(n), and n is an integer greater than or equal to 0 and less than or equal to L-1; the mth value is y(n);
  • the nth value in a sequence is Z(n) m , and the Z(n) m and the y(n) satisfy the following relationship:
  • w(m) represents the m-th value of the target spreading code
  • the target spreading code supports Z values.
  • the receiving side determines the control information according to the target sequence and/or the target spreading code.
  • the receiving side can determine the control information according to the relationship between the target sequence and the target spreading code and the control information.
  • how to determine the control information can be implemented in any of the following ways:
  • the control information is represented by N-bit information, where N is a positive integer; the value of the N-bit information is determined based on the target sequence and/or the target spreading code.
  • the value of the N-bit information is based on the index of the target sequence in the first set, the index of the target spreading code in the second set, and the index of the target spreading code in the first set.
  • the total number of sequences, and the total number of spreading codes contained in the second set are determined.
  • the control information is represented by N-bit information, where N is a positive integer; the N-bit information includes a first part of bit information and a second part of bit information; the value of the first part of the bit information is determined based on the index of the target sequence, The value of the second part of the bit information is determined based on the index of the target spreading code.
  • the value of the N-bit information is determined through the above-mentioned manner 1 or manner 2, and the corresponding control information can be determined according to the value of the N-bit information.
  • one first sequence is a target sequence, and the target sequence is used to determine control information.
  • spread spectrum is not required in the time domain.
  • the receiving side may determine the control information according to the relationship between the target sequence and the control information.
  • the control information is represented by N-bit information, where N is a positive integer; the value of the N-bit information Values are determined based on the target sequence.
  • the value of Z is determined based on the number of time domain symbols occupied by the control channel in the time domain.
  • the value of Z is ceiling(X/S), where ceiling represents a round-up operation, X represents the number of time domain symbols occupied by the control channel in the time domain, and S is a time domain The number of time domain symbols occupied by the resource unit.
  • the control channel occupies Z time-domain resource units in the time domain. It can be seen that the length of the Z time-domain resource units is equal to the length of X time-domain symbols. It can be seen that one time-domain resource unit occupies X /Z symbols. In an optional manner, one time-domain resource unit occupies one time-domain symbol. In another optional manner, one of the time-domain resource units occupies a group of time-domain symbols.
  • the terminal device determines the sequence y (that is, the target sequence) and the OCC (that is, the target spreading code); the terminal device uses the OCC to spread the sequence y into Z sequences, and divides each of the Z sequences respectively Mapped to Z OFDM symbols.
  • the determination of the sequence y and the OCC may adopt a joint determination manner.
  • the values of the N-bit information corresponding to the UCI are decomposed into the sequence y and the OCC, wherein the index value L of the sequence y and the index of the OCC are The values I are:
  • I UCI mod OCC size
  • UCI represents the value of N-bit information.
  • y size represents the total number of sequences contained in the first set.
  • OCC size represents the total number of spreading codes contained in the second set.
  • the determination of the sequence y and the OCC can be determined independently.
  • the N-bit information corresponding to the UCI is decomposed into two parts, the value of the first part of the bit information corresponds to the sequence y, and the value of the second part of the bit information corresponds to the sequence y.
  • the value corresponds to OCC. It can be understood that the sequence y carries the first part of bit information, and the OCC carries the second part of bit information.
  • the corresponding sequence parameter can be determined according to the index value of the sequence y.
  • the index value of the sequence y is represented by 2-bit information, corresponding to the value of 4 cyclic shifts m cs .
  • the nth value in the sequence y is y(n), n is an integer greater than or equal to 0 and less than or equal to L-1, L is the length of the sequence y, and L can also be written as visible, Here, the value of L is 12 or other positive integers.
  • using OCC to perform time domain spreading on the y sequence specifically refers to: spreading one y sequence to Z sequences, where the spreading coefficient Z is determined by the number X of OFDM symbols occupied by the PUCCH in the time domain.
  • the value of Z is ceiling(X/S), where S is the number of OFDM symbols included in a time-domain resource unit, for example, S can also be understood as the number of OFDM symbols included in a group of OFDM symbols.
  • the value of S can be 1 or an integer greater than 1.
  • the time-domain orthogonal sequence (that is, w i (m)) may adopt a set of time-domain orthogonal complex number sequences in the following Table 5, wherein, It is equal to Z (ie spreading factor) and OCC size (ie total number of spreading codes).
  • n is mapped in ascending order with subcarrier indices in the frequency domain in ascending order.
  • the value of m is mapped to the time domain resource units (ie, a group of ODFM symbols) in the time domain in the order from small to large.
  • time-domain orthogonal complex number sequence is only exemplary, and the OCC can also be obtained through other a*a DFT matrices, so that the spread spectrum of more groups of OFDM symbols can be supported, for example, 14 groups of OFDM symbols can be supported spread spectrum.
  • the above solution takes the terminal device side as an example for description, and the network device side (such as a base station) corresponds to the terminal device side, which can be understood by referring to the relevant description on the terminal device side.
  • the terminal device determines the sequence y (that is, the target sequence) and the OCC (that is, the target spreading code); the terminal device uses the OCC to spread the sequence y into Z sequences, and divides each of the Z sequences respectively Mapped to Z OFDM symbols.
  • the determination of the sequence y and the OCC may adopt a joint determination manner.
  • the values of the N-bit information corresponding to the UCI are decomposed into the sequence y and the OCC, wherein the index value L of the sequence y and the index of the OCC are The values I are:
  • I UCI mod OCC size
  • UCI represents the value of N-bit information.
  • y size represents the total number of sequences contained in the first set.
  • OCC size represents the total number of spreading codes contained in the second set.
  • the determination of the sequence y and the OCC can be determined independently.
  • the N-bit information corresponding to the UCI is decomposed into two parts, the value of the first part of the bit information corresponds to the sequence y, and the value of the second part of the bit information corresponds to the sequence y.
  • the value corresponds to OCC. It can be understood that the sequence y carries the first part of bit information, and the OCC carries the second part of bit information.
  • the corresponding sequence parameter can be determined according to the index value of the sequence y.
  • the corresponding initial value is determined according to the index value of the sequence y for the generated pseudo-random sequence y'.
  • the pseudo-random sequence may be an M sequence, a Gold sequence or other sequences.
  • a DFT process may be performed on the pseudo-random sequence y' to generate a sequence of modulation symbols (ie, sequence y).
  • the pseudo-random sequence y' may be directly modulated to generate a modulation symbol sequence (ie, sequence y).
  • the nth value in the sequence y is y(n), n is an integer greater than or equal to 0 and less than or equal to L-1, L is the length of the sequence y, and L can also be written as visible, Here, the value of L is 12 or other positive integers.
  • using OCC to perform time domain spreading on the y sequence specifically refers to: spreading one y sequence to Z sequences, where the spreading coefficient Z is determined by the number X of OFDM symbols occupied by the PUCCH in the time domain.
  • the value of Z is ceiling(X/S), where S is the number of OFDM symbols included in a time-domain resource unit, for example, S can also be understood as the number of OFDM symbols included in a group of OFDM symbols.
  • the value of S can be 1 or an integer greater than 1.
  • the time-domain orthogonal sequence ie OCC
  • OCC time-domain orthogonal sequence
  • the time-domain orthogonal sequence (ie, w i (m)) may adopt a set of time-domain orthogonal complex number sequences as shown in Table 5 above.
  • n is mapped in ascending order with subcarrier indices in the frequency domain in ascending order.
  • the value of m is mapped to the time domain resource units (ie, a group of ODFM symbols) in the time domain in the order from small to large.
  • time-domain orthogonal complex number sequence is only exemplary, and the OCC can also be obtained through other a*a DFT matrices, so that the spread spectrum of more groups of OFDM symbols can be supported, for example, 14 groups of OFDM symbols can be supported spread spectrum.
  • the sequence before performing time-domain spreading, can be processed in various ways to reduce the peak-to-average ratio. Peak-to-average ratio, improve coverage, and effectively increase the capacity of the sequence.
  • the above solution takes the terminal device side as an example for description, and the network device side (such as a base station) corresponds to the terminal device side, which can be understood by referring to the relevant description on the terminal device side.
  • a format without RS overhead is added to the long PUCCH, which reduces unnecessary wireless resource overhead, and uses sequences and time-domain spreading methods to represent multi-bit control information, so as to realize a large bearing capacity.
  • Load control information In the case of long-distance coverage, by spreading the spectrum in the time domain, the coverage performance of the PUCCH is enhanced, thereby ensuring that the coverage of each channel of the wireless network is more balanced.
  • no RS since no RS is required, the processing complexity on the transmitting side and the receiving side is low, and each time-domain resource unit only needs to transmit a sequence that has undergone a simple spread spectrum operation, and does not need to perform coherent modulation and coherent demodulation.
  • the decoding speed of the PUCCH on the receiving side is also relatively fast.
  • FIG. 7 is a schematic diagram of the structure and composition of a control channel transmission apparatus provided by an embodiment of the present application, which is applied to the transmission side of the control channel, for example, an uplink terminal device, or a downlink network device (such as a base station), or a sideline first terminal equipment.
  • the transmission device for the control channel includes:
  • a sending unit 701 configured to send a control channel, the control channel occupies Z time-domain resource units, Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; The first sequence is determined based on the control information.
  • the Z first sequences are obtained by spreading the target sequence using a target spreading code, and the target sequence and the target spreading code are obtained. Determined based on control information.
  • the device further includes:
  • a processing unit 702 configured to determine the target sequence and the target spreading code according to the control information; spread the target sequence into the Z first sequences by using the target spreading code, and spread the The Z first sequences are mapped onto the Z time-domain resource units.
  • the processing unit 702 is configured to map the m-th first sequence in the Z first sequences to the m-th time-domain resource unit in the Z time-domain resource units , m is an integer greater than or equal to 0 and less than or equal to Z-1.
  • the length of the target sequence is L, L is a positive integer, the nth value in the target sequence is y(n), and n is an integer greater than or equal to 0 and less than or equal to L-1 ;
  • the n-th value in the m-th first sequence is Z(n) m , and the Z(n) m and the y(n) satisfy the following relationship:
  • w(m) represents the m-th value of the target spreading code
  • the target spreading code supports Z values.
  • control information is represented by N-bit information, where N is a positive integer
  • the processing unit 702 is configured to determine the target sequence and the target spreading code according to the value of the N-bit information.
  • the processing unit 702 is configured to, according to the value of the N-bit information, and at least one of the total number of sequences included in the first set and the total number of spreading codes included in the second set , determine the index of the target sequence in the first set and the index of the target spreading code in the second set;
  • the index of the target sequence in the first set is used to determine the target sequence
  • the index of the target spreading code in the second set is used to determine the target spreading code
  • control information is represented by N-bit information, where N is a positive integer; the N-bit information includes a first part of bit information and a second part of bit information;
  • the processing unit 702 is configured to determine the index of the target sequence according to the value of the first part of the bit information; determine the index of the target spreading code according to the value of the second part of the bit information;
  • the index of the target sequence is used to determine the target sequence
  • the index of the target spreading code is used to determine the target spreading code
  • the processing unit 702 is further configured to determine the target sequence according to the index of the target sequence; or, determine the pseudorandom sequence associated with the target sequence according to the index of the target sequence, and The target sequence is generated from the pseudorandom sequence.
  • the processing unit 702 is configured to perform discrete Fourier transform on the pseudo-random sequence to generate the target sequence.
  • the target spreading code is OCC.
  • one first sequence is a target sequence, and the target sequence is determined based on the control information.
  • control information is represented by N-bit information, where N is a positive integer; the apparatus further includes:
  • the processing unit 702 is configured to determine the target sequence according to the value of the N-bit information.
  • the value of Z is determined based on the number of time domain symbols occupied by the control channel in the time domain.
  • the value of Z is ceiling(X/S), where ceiling represents a round-up operation, X represents the number of time domain symbols occupied by the control channel in the time domain, and S is The number of time-domain symbols occupied by one time-domain resource unit.
  • one time-domain resource unit occupies one time-domain symbol
  • One of the time domain resource units occupies a group of time domain symbols.
  • FIG. 8 is a schematic structural diagram of a control channel receiving apparatus provided by an embodiment of the present application, which is applied to the receiving side of the control channel, for example, an uplink network device (such as a base station), or a downlink terminal device, or a second terminal on the side. equipment.
  • the apparatus for receiving the control channel includes:
  • a receiving unit 801 configured to receive a control channel, the control channel occupies Z time-domain resource units, Z is a positive integer, and the Z time-domain resource units are used to carry Z first sequences; The first sequence is used to determine control information.
  • the Z first sequences are obtained by spreading the target sequence using a target spreading code, the target sequence and/or the target spreading code.
  • the frequency code is used to determine control information.
  • the m-th first sequence in the Z first sequences is mapped to the m-th time-domain resource unit in the Z time-domain resource units, where m is greater than or equal to 0 and less than An integer equal to Z-1.
  • the length of the target sequence is L, L is a positive integer, the nth value in the target sequence is y(n), and n is an integer greater than or equal to 0 and less than or equal to L-1 ;
  • the n-th value in the m-th first sequence is Z(n) m , and the Z(n) m and the y(n) satisfy the following relationship:
  • w(m) represents the m-th value of the target spreading code
  • the target spreading code supports Z values.
  • control information is represented by N-bit information, where N is a positive integer
  • the value of the N-bit information is determined based on the target sequence and/or the target spreading code.
  • the value of the N-bit information is based on the index of the target sequence in the first set, the index of the target spreading code in the second set, and the index of the target spreading code in the first set. At least one of the total number of sequences and the total number of spreading codes contained in the second set is determined.
  • control information is represented by N-bit information, where N is a positive integer; the N-bit information includes a first part of bit information and a second part of bit information;
  • the value of the first part of the bit information is determined based on the index of the target sequence, and the value of the second part of the bit information is determined based on the index of the target spreading code.
  • the target spreading code is OCC.
  • one first sequence is a target sequence, and the target sequence is used to determine control information.
  • control information is represented by N-bit information, where N is a positive integer
  • the value of the N-bit information is determined based on the target sequence.
  • the value of Z is determined based on the number of time domain symbols occupied by the control channel in the time domain.
  • the value of Z is ceiling(X/S), where ceiling represents a round-up operation, X represents the number of time domain symbols occupied by the control channel in the time domain, and S is The number of time-domain symbols occupied by one time-domain resource unit.
  • one time-domain resource unit occupies one time-domain symbol
  • One of the time domain resource units occupies a group of time domain symbols.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 900 may further include a memory 920 .
  • the processor 910 may call and run a computer program from the memory 920 to implement the methods in the embodiments of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 900 may specifically be a network device in this embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 900 may specifically be the mobile terminal/terminal device in the embodiments of the present application, and the communication device 900 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method in the embodiments of the present application. , and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory, so as to implement the method in this embodiment of the present application.
  • the chip 1000 may further include a memory 1020 .
  • the processor 1010 may call and run a computer program from the memory 1020 to implement the methods in the embodiments of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030 .
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040 .
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 11 is a schematic block diagram of a communication system 1100 provided by an embodiment of the present application. As shown in FIG. 11 , the communication system 1100 includes a terminal device 1110 and a network device 1120 .
  • the terminal device 1110 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1120 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiment may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种控制信道的传输及接收方法、装置、通信设备,该方法包括:发送控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列基于控制信息确定。

Description

控制信道的传输及接收方法、装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种控制信道的传输及接收方法、装置、通信设备。
背景技术
控制信道的格式有多种类型,可以承载多比特的控制信息,其中,控制信息的比特数能够体现出控制信道承载的负荷(payload)量。目前,一些类型的控制信道通过增加参考信号(Reference Signal,RS)来实现较大负荷的承载,然而,通过RS来实现较大负荷的承载会增加控制信道的开销,并且处理复杂度也较高。
发明内容
本申请实施例提供一种控制信道的传输及接收方法、装置、通信设备。
本申请实施例提供的控制信道的传输方法,包括:
发送控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列基于控制信息确定。
本申请实施例提供的控制信道的接收方法,包括:
接收控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列用于确定控制信息。
本申请实施例提供的控制信道的传输装置,包括:
发送单元,用于发送控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列基于控制信息确定。
本申请实施例提供的控制信道的接收装置,包括:
接收单元,用于接收控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列用于确定控制信息。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的控制信道的传输方法或者控制信道的接收方法。
本申请实施例提供的芯片,用于实现上述的控制信道的传输方法或者控制信道的接收方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的控制信道的传输方法或者控制信道的接收方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的控制信道的传输方法或者控制信道的接收方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的控制信道的传输方法或者控制信道的接收方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的控制信道的传输方法或者控制信道的接收方法。
通过上述技术方案,实现了一种无RS的控制信道格式,控制信道占据的Z个时域资源单元用于承载Z个第一序列,通过Z个第一序列来表征控制信息,从而实现较大负荷的承载,由于控制信道不需要增加RS,因而减少了不必要的无线资源开销,并且也降低了控制信道的发送侧和接收侧的处理复杂度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实 施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2-1是本申请实施例提供的PUCCH格式2的结构示意图;
图2-2是本申请实施例提供的PUCCH格式1的RS图案的示意图;
图3是本申请实施例提供的控制信道的传输方法的流程示意图;
图4是本申请实施例提供的控制信道的接收方法的流程示意图;
图5是本申请实施例提供的应用实例1的原理图;
图6是本申请实施例提供的应用实例2的原理图;
图7是本申请实施例提供的控制信道的传输装置的结构组成示意图;
图8是本申请实施例提供的控制信道的接收装置的结构组成示意图;
图9是本申请实施例提供的一种通信设备示意性结构图;
图10是本申请实施例的芯片的示意性结构图;
图11是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施 例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
NR系统为了兼顾高可靠性、高灵活性以及高效率的传输,支持两种物理上行控制信道(Physical Uplink Control Channel,PUCCH)类型,即长PUCCH和短PUCCH。长PUCCH有3种格式,短PUCCH有2种格式。不同类型的PUCCH应用于不同的用途。
短PUCCH
NR的短PUCCH在时域上占据1~2个符号。短PUCCH分为两种,分别为PUCCH格式0和PUCCH格式2。其中,PUCCH格式0承载1到2比特的控制信息,且无RS;PUCCH格式0通过序列来表示控制信息。PUCCH格式2承载多于2比特的控制信息,有RS且RS的开销占整个PUCCH资源的1/3,PUCCH格式2占用的物理资源块(Physical Resource Block,PRB)数量可配置。在一个示例中,PUCCH格式2占据的频域资源为1~16个PRB,占据的时域资源为1~2个符号,如图2-1所示。
需要说明的是,本申请实施例中的“RS”可以是但不局限于是解调参考信号(Demodulation Reference Signal,DMRS)。
由于短PUCCH的应用场景是针对小覆盖场景,因而短PUCCH在时域上占用的符号数量不超过2个。对于PUCCH格式0,若占据时域上的2个符号,则控制信息在2个符号上重复传输。对于PUCCH格式2,若占据时域上的2个符号,则控制信息经编码后分布于2个符号上传输。
需要说明的是,本申请实施例中的“符号”可以是但不局限于是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
PUCCH格式0使用长度为12的序列来表征控制信息,如ACK信息或NACK信息。具体地,可以使用具有不同循环移位的序列来表征ACK信息和/或NACK信息。如下表1和表2所示,m cs代表序列的循环移位,表1给出了1比特的ACK/NACK信息与PUCCH格式0承载的序列的循环移位的映射关系;表2给出了2比特的ACK/NACK信息与PUCCH格式0承载的序列的循环移位的映射关系。
ACK/NACK NACK ACK
序列的循环移位 m cs=0 m cs=6
表1
ACK/NACK NACK,NACK NACK,ACK ACK,ACK ACK,NACK
序列的循环移位 m cs=0 m cs=3 m cs=6 m cs=9
表2
长PUCCH
NR的长PUCCH在时域上占据4~14个符号。长PUCCH分为三种,分别为PUCCH格式1、PUCCH格式3和PUCCH格式4。由于长PUCCH占用较多数量的符号,因而覆盖比短PUCCH更好。长PUCCH的三种格式分别如下表3所示。
Figure PCTCN2020130179-appb-000001
Figure PCTCN2020130179-appb-000002
表3
PUCCH结构的一个主要问题为RS图案。对于PUCCH格式1来说,在时隙的偶数符号(从0开始编号)位置处为RS,奇数符号位置处为控制信息,如图2-2所示。
需要说明的是,对于PUCCH来说,其控制信息是指上行控制信息(Uplink Control Information,UCI)。
控制信息和RS使用ZC序列,可以实现较低的峰均比。PUCCH格式1的控制信息直接调制在序列上。PUCCH格式3和PUCCH格式4承载更多比特的控制信息,因此需要相对较多的符号。未配置额外RS时,PUCCH格式3和PUCCH格式4的每个跳频部分中包括1列RS。高层可以配置额外的RS。配置额外的RS后,若每个跳频部分包括的符号数量不大于5,则该跳频部分包括1列RS。若每个跳频部分包括的时域符号数量大于或等于5,则该跳频部分包括2列RS。PUCCH格式3和PUCCH格式4的控制信息需要通过信道编码,编码后的负载通过DFT预处理的方式调制在每个符号上。
PUCCH格式3需要承载多个ACK和CSI反馈,其覆盖弱于PUCCH格式1(但由于符号数较多,PUCCH格式3的覆盖优于PUCCH格式2)。当处在覆盖受限场景时,PUCCH格式3的覆盖也需要增强以达到和其他信道相近的覆盖。由于PUCCH格式3基于相干解调的机制,因此PUCCH格式3有RS的开销,这将导致PUCCH格式3在低覆盖场景的性能下降。因此有覆盖提升的空间。
对于类似于PUCCH格式3这种有RS的PUCCH来说,会增加无线资源的开销且处理复杂度也较高,为此,提出了本申请实施例的以下技术方案,可以实现一种新型的PUCCH格式。
图3是本申请实施例提供的控制信道的传输方法的流程示意图,如图3所示,所述控制信道的传输方法包括以下步骤:
步骤301:发送控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列基于控制信息确定。
本申请实施例的技术方案可以但不局限应用于上行或者下行或者侧行。
在一可选方式中,本申请实施例的技术方案应用于上行,控制信道可以是PUCCH,控制信息可以是UCI。所述发送控制信道具体是指:终端设备向网络设备发送PUCCH。
在一可选方式中,本申请实施例的技术方案应用于下行,控制信道可以是物理下行控制信道(Physical Downlink Control Channel,PDCCH),控制信息可以是下行控制信息(Downlink Control Information,DCI)。所述发送控制信道具体是指:网络设备向终端设备发送PDCCH。
在一可选方式中,本申请实施例的技术方案应用于侧行,控制信道可以是物理侧行控制信道(Physical Sidelink Control Channel,PSCCH),控制信息可以是侧行控制信息(Sidelink Control Information,SCI)。所述发送控制信道具体是指:第一终端设备向第二终端设备发送PSCCH。
本申请实施例中,控制信道无RS,因而可以有效节省无线资源的开销,并且也可以降低发送侧的复杂度。
需要说明的是,发送侧是指控制信道的发送侧。对于上行来说,发送侧为终端设备;对于下行来说,发送侧为网络设备;对于侧行来说,发送侧为第一终端设备。
本申请实施例中,控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列基于控制信息确定。
本申请实施例中,所述Z的取值可以等于1或者大于1,以下结合不同的取值情况分别进行说明。
情况一
在一可选方式中,所述Z的取值大于1的情况下,所述Z个第一序列由目标序列使用目标扩频码进行扩频得到,所述目标序列和所述目标扩频码基于控制信息确定。
对于这种情况,发送侧根据控制信息,确定所述目标序列和所述目标扩频码;使用所述目标扩频码将所述目标序列扩频成所述Z个第一序列,并将所述Z个第一序列映射到所述Z个时域资源单元上。
本申请实施例中,可选地,所述目标扩频码为正交覆盖码(Orthogonal Cover Code,OCC)。
本申请实施例中,根据控制信息确定目标序列和目标扩频码,可以通过以下任意一种方式来实现:
方式一:联合确定方式
所述控制信息通过N比特信息表征,N为正整数;根据所述N比特信息的取值,确定所述 目标序列和所述目标扩频码。
这里,控制信息通过N比特信息表征,其中,N比特信息的一个取值用于表征一个控制信息。例如:1比特信息的取值为1表征一个控制信息,1比特信息的取值为0表征另一个控制信息。再例如:2比特信息的取值为00表征控制信息1,2比特信息的取值为01表征控制信息2,2比特信息的取值为10表征控制信息3,2比特信息的取值为11表征控制信息4。
可见,N比特信息的取值可以确定对应的控制信息,基于此,可以根据N比特信息的取值确定目标序列和目标扩频码。
在一可选方式中,根据所述N比特信息的取值、以及第一集合中包含的序列总数和第二集合中包含的扩频码总数中的至少之一,确定所述目标序列在所述第一集合中的索引以及所述目标扩频码在所述第二集合中的索引;其中,所述目标序列在所述第一集合中的索引用于确定所述目标序列,所述目标扩频码在所述第二集合中的索引用于确定所述目标扩频码。
以下通过公式来描述如何确定目标序列的索引和目标扩频码的索引。需要说明的是,以下公式仅为示例性的,本申请实施例的技术方案并不局限于以下公式,也可以通过其他公式确定目标序列的索引和目标扩频码的索引,或者,通过N比特信息的取值与序列和扩频码之间的对应关系,确定N比特信息的当前取值对应的目标序列和目标扩频码,例如:N比特信息的取值为第一值对应序列1和扩频码1,N比特信息的取值为第二值对应序列2和扩频码2,以此类推。
在一个示例中,目标序列的索引为L,目标扩频码的索引为I,L和I满足以下公式:
L=CI mod y size
Figure PCTCN2020130179-appb-000003
其中,CI代表N比特信息的取值,例如1比特信息的取值可以是0或者1,再例如2比特信息的取值可以是0(即00)或者1(即01)或者2(即10)或者3(即11)。y size代表第一集合中包含的序列总数,这里,目标序列的选取是从第一集合中选取的,可选地,第一集合中的各个序列可以具有相同的长度,例如第一集合包括y size个长度为12的序列,其中,不用序列的循环移位不同。
在另一个示例中,目标序列的索引为L,目标扩频码的索引为I,L和I满足以下公式:
Figure PCTCN2020130179-appb-000004
I=CI mod OCC size
其中,CI代表N比特信息的取值,例如1比特信息的取值可以是0或者1,再例如2比特信息的取值可以是0(即00)或者1(即01)或者2(即10)或者3(即11)。OCC size代表第二集合中包含的扩频码总数,这里,目标扩频码的选取是从第二集合中选取的。
方式二:独立确定方式
所述控制信息通过N比特信息表征,N为正整数;所述N比特信息包括第一部分比特信息和第二部分比特信息;根据所述第一部分比特信息的取值,确定所述目标序列的索引;根据所述第二部分比特信息的取值,确定所述目标扩频码的索引;其中,所述目标序列的索引用于确定所述目标序列,所述目标扩频码的索引用于确定所述目标扩频码。
这里,控制信息通过N比特信息表征,其中,N比特信息的一个取值用于表征一个控制信息。例如:2比特信息的取值为00表征控制信息1,2比特信息的取值为01表征控制信息2,2比特信息的取值为10表征控制信息3,2比特信息的取值为11表征控制信息4。
可见,N比特信息的取值可以确定对应的控制信息,基于此,将N比特信息分解成两部分,根据第一部分比特信息的取值可以确定目标序列,根据第二部分比特信息的取值可以确定目标扩频码。换句话说,目标序列可以体现第一部分比特信息的取值,目标扩频码可以体现第二部分比特信息的取值。
以N=3为例,将3比特信息分解为1比特信息(对应于第一部分比特信息)和2比特信息(对应于第二部分比特信息),其中,1比特信息的取值可以是0或者1,通过1比特信息的取值可以确定目标序列,2比特信息的取值可以是00或者01或者10或11,通过2比特信息的取值可以确定目标扩频码。
在一可选方式中,可以根据第一部分比特信息的取值和第一集合中包含的序列总数,确定目标序列在所述第一集合中的索引。或者,根据第一部分比特信息的各个取值与第一集合中的各个序列之间的对应关系,确定第一部分比特信息的当前取值对应的目标序列。
在一可选方式中,可以根据第二部分比特信息的取值和第二集合中包含的序列总数,确定目标扩频码在所述第二集合中的索引。或者,根据第二部分比特信息的各个取值与第二集合中的各个扩频码之间的对应关系,确定第二部分比特信息的当前取值对应的目标扩频码。
本申请实施例中,通过上述方式一或者方式二确定出目标序列和目标扩频码后,可以使用所述 目标扩频码将所述目标序列扩频成Z个第一序列,并将所述Z个第一序列映射到Z个时域资源单元上。
这里,可选地,可以采用以下方式将目标序列扩频成Z个第一序列:
所述目标序列的长度为L,L为正整数,所述目标序列中的第n个值为y(n),n为大于等于0且小于等于L-1的整数;所述Z个第一序列中的第m个第一序列中的第n个值为Z(n) m,所述Z(n) m与所述y(n)满足以下关系:
Z(n) m=w(m)·y(n);
其中,w(m)代表所述目标扩频码的第m个取值,所述目标扩频码支持Z个取值。
本申请实施例中,目标序列可以表示为:
y={y(0),y(1),…,y(n),…,y(L-1)}。
目标扩频码可以表示为:
w={w(0),w(1),…,w(m),…,w(Z-1)}。
使用目标扩频码中的第一个取值w(0)与目标序列中的各个值相乘,可以得到第0个第一序列,如下:
Z 0={w(0)·y(0),w(0)·y(1),…,w(0)·y(n),…,w(0)·y(L-1)}。
使用目标扩频码中的第一个取值w(1)与目标序列中的各个值相乘,可以得到第1个第一序列,如下:
Z 1={w(1)·y(0),w(1)·y(1),…,w(1)·y(n),…,w(1)·y(L-1)}。
以此类推,总共可以得到Z个第一序列,分别为Z 0,Z 1,…,Z m,…,Z Z-1
这里,可选地,可以采用以下方式实现将Z个第一序列映射到Z个时域资源单元上:将所述Z个第一序列中的第m个第一序列映射至所述Z个时域资源单元中的第m个时域资源单元,m为大于等于0且小于等于Z-1的整数。
例如:Z的取值为5,即有5个第一序列,分别为序列1,序列2,序列3,序列4和序列5,控制信道占据5个时域资源单元,分别为时域资源单元1、时域资源单元2、时域资源单元3、时域资源单元4和时域资源单元5,将序列1映射到时域资源单元1上,将序列2映射到时域资源单元2上,将序列3映射到时域资源单元3上,将序列4映射到时域资源单元4上,将序列5映射到时域资源单元5上。
本申请实施例中,在一可选方式中,根据目标序列的索引可以直接确定目标序列。在另一可选方式中,根据目标序列的索引可以确定所述目标序列关联的伪随机序列,然后根据所述伪随机序列生成所述目标序列。进一步,可选地,可以对所述伪随机序进行离散傅里叶变换,从而生成所述目标序列。
情况二
在一可选方式中,所述Z的取值为1的情况下,1个第一序列为目标序列,所述目标序列基于控制信息确定。
这种情况,时域上是不需要扩频的。
本申请实施例中,目标序列的确定可以通过以下方式实现:
所述控制信息通过N比特信息表征,N为正整数;根据所述N比特信息的取值,确定所述目标序列。
在一可选方式中,可以根据N比特信息的取值和第一集合中包含的序列总数,确定目标序列在所述第一集合中的索引。或者,根据N比特信息的各个取值与第一集合中的各个序列之间的对应关系,确定N比特信息的当前取值对应的目标序列。
这里,目标序列的选取是从第一集合中选取的,可选地,第一集合中的各个序列可以具有相同的长度,例如第一集合包括y size个长度为12的序列,其中,不用序列的循环移位不同。
本申请实施例中,所述Z的取值基于所述控制信道在时域上占据的时域符号的数目确定。可选地,所述Z的取值为ceiling(X/S),其中,ceiling代表向上取整运算,X代表所述控制信道在时域上占据的时域符号的数目,S为一个时域资源单元占据的时域符号的数目。
在一个示例中,S=1,控制信道在时域上占据的时域符号的数目为X,那么,Z的取值为X。
在一个示例中,S=2,控制信道在时域上占据的时域符号的数目为X,那么,Z的取值为ceiling(X/2)。
本申请实施例中,所述控制信道在时域上占据Z个时域资源单元,可见,Z个时域资源单元的长度等于X个时域符号的长度,可见,一个时域资源单元占据X/Z个符号。在一可选方式中, 一个所述时域资源单元占据一个时域符号。在另一可选方式中,一个所述时域资源单元占据一组时域符号。
对于一个时域资源单元占据一组时域符号的情况,该时域资源单元上映射的第一序列在一组时域符号上重复,从而可以增强覆盖。
上述方案中,可选地,所述时域符号可以是OFDM符号。
本申请实施例提出了一种新型的控制信道格式,例如新型的PUCCH格式或者新型的PDCCH格式或者新型的PSCCH格式,控制信道用于传输多个比特(例如大于2比特)的控制信息。发送侧根据控制信息对应的比特数N(即N比特信息表征控制信息)确定传输该控制信息时使用的目标序列和目标扩频码,然后将目标序列使用目标扩频码扩频成Z个第一序列,再将扩频后的每一个第一序列分别映射到Z个时域资源单元上,Z个时域资源单元例如是Z个时域符号或者Z组时域符号。对于Z组时域符号的情况,一组时域符号内的各个时域符号上的序列相同。
图4是本申请实施例提供的控制信道的接收方法的流程示意图,如图4所示,所述控制信道的接收方法包括以下步骤:
步骤401:接收控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列用于确定控制信息。
本申请实施例的技术方案可以但不局限应用于上行或者下行或者侧行。
在一可选方式中,本申请实施例的技术方案应用于上行,控制信道可以是PUCCH,控制信息可以是UCI。所述接收控制信道具体是指:网络设备接收终端设备发送的PUCCH。
在一可选方式中,本申请实施例的技术方案应用于下行,控制信道可以是PDCCH,控制信息可以是DCI。所述接收控制信道具体是指:终端设备接收网络设备发送的PDCCH。
在一可选方式中,本申请实施例的技术方案应用于侧行,控制信道可以是PSCCH,控制信息可以是SCI。所述接收控制信道具体是指:第二终端设备接收第一终端设备发送的PSCCH。
本申请实施例中,控制信道无RS,因而可以有效节省无线资源的开销,并且也可以降低接收侧的复杂度。
需要说明的是,接收侧是指控制信道的接收侧。对于上行来说,接收侧为网络设备;对于下行来说,接收侧为终端设备;对于侧行来说,接收侧为第二终端设备。
本申请实施例中,控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列用于确定控制信息。
在一可选方式中,所述Z个第一序列中的第m个第一序列被映射至所述Z个时域资源单元中的第m个时域资源单元,m为大于等于0且小于等于Z-1的整数。
本申请实施例中,所述Z的取值可以等于1或者大于1,以下结合不同的取值情况分别进行说明。
情况一
在一可选方式中,所述Z的取值大于1的情况下,所述Z个第一序列由目标序列使用目标扩频码进行扩频得到,所述目标序列和/或所述目标扩频码用于确定控制信息。
本申请实施例中,可选地,所述目标扩频码为OCC。
本申请实施例中,接收侧根据控制信道承载的Z个第一序列确定对应的目标序列和目标扩频码,根据目标序列和/或目标扩频码确定控制信息。
本申请实施例中,接收侧可以根据Z个第一序列与目标扩频码和目标序列之间的关系来确定目标序列和目标扩频码,具体地,Z个第一序列与目标扩频码和目标序列之间的关系,为:
所述目标序列的长度为L,L为正整数,所述目标序列中的第n个值为y(n),n为大于等于0且小于等于L-1的整数;所述第m个第一序列中的第n个值为Z(n) m,所述Z(n) m与所述y(n)满足以下关系:
Z(n) m=w(m)·y(n);
其中,w(m)代表所述目标扩频码的第m个取值,所述目标扩频码支持Z个取值。
需要说明的是,上述Z个第一序列与目标扩频码和目标序列之间的关系的具体细节,可以参照前述发送侧的相关方案,不再赘述。
本申请实施例中,接收侧确定出目标序列和目标扩频码后,根据目标序列和/或目标扩频码确定控制信息。接收侧可以根据目标序列和目标扩频码与控制信息的关系来确定控制信息。
本申请实施例中,如何确定控制信息,可以通过以下任意一种方式来实现:
方式一:联合确定方式
所述控制信息通过N比特信息表征,N为正整数;所述N比特信息的取值基于所述目标序列和/或所述目标扩频码确定。
在一可选方式中,所述N比特信息的取值基于所述目标序列在第一集合中的索引、所述目标扩频码在第二集合中的索引、所述第一集合中包含的序列总数、以及所述第二集合中包含的扩频码总数确定。
方式二:独立确定方式
所述控制信息通过N比特信息表征,N为正整数;所述N比特信息包括第一部分比特信息和第二部分比特信息;所述第一部分比特信息的取值基于所述目标序列的索引确定,所述第二部分比特信息的取值基于所述目标扩频码的索引确定。
本申请实施例中,通过上述方式一或者方式二确定出N比特信息的取值,根据N比特信息的取值可以确定出对应的控制信息。
需要说明的是,上述目标序列和目标扩频码与控制信息之间的关系的具体细节,可以参照前述发送侧的相关方案,不再赘述。
情况二
在一可选方式中,所述Z的取值为1的情况下,1个第一序列为目标序列,所述目标序列用于确定控制信息。
这种情况,时域上是不需要扩频的。
本申请实施例中,接收侧可以根据目标序列与控制信息之间的关系,来确定控制信息,具体地,所述控制信息通过N比特信息表征,N为正整数;所述N比特信息的取值基于所述目标序列确定。
需要说明的是,上述目标序列与控制信息之间的关系的具体细节,可以参照前述发送侧的相关方案,不再赘述。
本申请实施例中,所述Z的取值基于所述控制信道在时域上占据的时域符号的数目确定。可选地,所述Z的取值为ceiling(X/S),其中,ceiling代表向上取整运算,X代表所述控制信道在时域上占据的时域符号的数目,S为一个时域资源单元占据的时域符号的数目。
本申请实施例中,所述控制信道在时域上占据Z个时域资源单元,可见,Z个时域资源单元的长度等于X个时域符号的长度,可见,一个时域资源单元占据X/Z个符号。在一可选方式中,一个所述时域资源单元占据一个时域符号。在另一可选方式中,一个所述时域资源单元占据一组时域符号。
以下结合具体应用实例对本申请实施例的技术方案进行举例说明,需要说明的是,以下应用实例是针对上行的情况进行举例说明的,本申请实施例的技术方案不局限应用于上行,还可以应用于下行,侧行等。
应用实例1
终端设备基于待传输的UCI,确定序列y(即目标序列)和OCC(即目标扩频码);终端设备将序列y使用OCC扩频成Z个序列,将Z个序列中的每一个序列分别映射到Z个OFDM符号上。
在一可选方式中,序列y和OCC的确定可以采用联合确定方式,具体地,分解UCI对应的N比特信息的取值到序列y和OCC,其中,序列y的索引值L和OCC的索引值I分别为:
L=UCI mod y size
Figure PCTCN2020130179-appb-000005
或者,
I=UCI mod OCC size
Figure PCTCN2020130179-appb-000006
其中,UCI代表N比特信息的取值。y size代表第一集合中包含的序列总数。OCC size代表第二集合中包含的扩频码总数。
在一可选方式中,序列y和OCC的确定可以采用独立确定方式,具体地,分解UCI对应的N比特信息为两部分,第一部分比特信息的取值对应序列y,第二部分比特信息的取值对应OCC。可以理解,序列y承载了第一部分比特信息,OCC承载了第二部分比特信息。
根据上述方案确定出序列y的索引值后,可以根据序列y的索引值确定对应的序列参数。例如:序列y的索引值和序列的循环移位之间一一对应,如下表4所示,序列y的索引值通过2比特信息表示,对应4个循环移位m cs的值。
序列y的索引值 00 01 10 11
序列的循环移位 m cs=0 m cs=3 m cs=6 m cs=9
表4
本申请实施例中,序列y中的第n个值为y(n),n为大于等于0且小于等于L-1的整数,L为序 列y的长度,L也可以记作
Figure PCTCN2020130179-appb-000007
可见,
Figure PCTCN2020130179-appb-000008
这里,L的取值为12或者其他正整数。
上述方案中,使用OCC对y序列进行时域扩频具体是指:将1个y序列扩到Z个序列,这里,扩频系数Z由PUCCH在时域上占据的OFDM符号数X决定。可选地,Z的取值为ceiling(X/S),其中S为一个时域资源单元包括的OFDM符号数,例如:S也可以理解为一组OFDM符号包括的OFDM符号数。S的取值可以为1或者为大于1的整数。
上述方案中,选用时域正交序列(即OCC)在时域上进行扩频,整体扩频映射的原理如图5所示,其中,
Figure PCTCN2020130179-appb-000009
上述方案中,可选地,时域正交序列(即w i(m))可以采用如下表5中的一组时域正交复数序列,其中,
Figure PCTCN2020130179-appb-000010
与Z(即扩频系数)和OCC size(即扩频码总数)相等。
Figure PCTCN2020130179-appb-000011
表5
对于每一组OFDM符号按照如下方式映射:在时域上第m组OFDM符号上按照频域映射:Z(n) m=w(m)·y(n),其中:
Figure PCTCN2020130179-appb-000012
需要说明的是,n按照从小到大的顺序与频域上的子载波索引按照从小到大的顺序进行映射。m的取值按照从小到大的顺序与时域上的时域资源单元(即一组ODFM符号)按照从前到后的顺序进行映射。
在一个例子中,
Figure PCTCN2020130179-appb-000013
即有7组OFDM符号。如果每组OFDM符号包括1个OFDM符号,则PUCCH在时域上占据的OFDM符号数X=7(即半个时隙)。如果每组OFDM符号包括2个OFDM符号,则PUCCH在时域上占据的OFDM符号数X=7×2=14(即一个时隙)。
需要说明的是,上述时域正交复数序列仅为示例性的,还可以通过其他的a*a DFT矩阵获得OCC,从而可以支持更多组OFDM符号的扩频,例如可以支持14组OFDM符号的扩频。
需要说明的是,上述方案是以终端设备侧为例进行说明,网络设备侧(如基站)与终端设备侧是对应的,可以参照终端设备侧的相关描述理解。
应用实例2
终端设备基于待传输的UCI,确定序列y(即目标序列)和OCC(即目标扩频码);终端设备将序列y使用OCC扩频成Z个序列,将Z个序列中的每一个序列分别映射到Z个OFDM符号上。
在一可选方式中,序列y和OCC的确定可以采用联合确定方式,具体地,分解UCI对应的N比特信息的取值到序列y和OCC,其中,序列y的索引值L和OCC的索引值I分别为:
L=UCI mod y size
Figure PCTCN2020130179-appb-000014
或者,
I=UCI mod OCC size
Figure PCTCN2020130179-appb-000015
其中,UCI代表N比特信息的取值。y size代表第一集合中包含的序列总数。OCC size代表第二集合中包含的扩频码总数。
在一可选方式中,序列y和OCC的确定可以采用独立确定方式,具体地,分解UCI对应的N比特信息为两部分,第一部分比特信息的取值对应序列y,第二部分比特信息的取值对应OCC。可以理解,序列y承载了第一部分比特信息,OCC承载了第二部分比特信息。
根据上述方案确定出序列y的索引值后,可以根据序列y的索引值确定对应的序列参数。例如:根据序列y的索引值确定相应的初始值用于产生的伪随机序列y′。这里,伪随机序列可以为M序列,Gold序列或者其他序列。
在一可选方式中,可以对伪随机序列y′进行DFT处理,生成调制符号序列(即序列y)。在另一可选方式中,可以直接对伪随机序列y′调制生成调制符号序列(即序列y)。
本申请实施例中,序列y中的第n个值为y(n),n为大于等于0且小于等于L-1的整数,L为序列y的长度,L也可以记作
Figure PCTCN2020130179-appb-000016
可见,
Figure PCTCN2020130179-appb-000017
这里,L的取值为12或者其他正整数。
上述方案中,使用OCC对y序列进行时域扩频具体是指:将1个y序列扩到Z个序列,这里,扩频系数Z由PUCCH在时域上占据的OFDM符号数X决定。可选地,Z的取值为ceiling(X/S),其中S为一个时域资源单元包括的OFDM符号数,例如:S也可以理解为一组OFDM符号包括的OFDM符号数。S的取值可以为1或者为大于1的整数。
上述方案中,选用时域正交序列(即OCC)在时域上进行扩频,整体扩频映射的原理如图6所示,其中,
Figure PCTCN2020130179-appb-000018
上述方案中,可选地,时域正交序列(即w i(m))可以采用如上表5中的一组时域正交复数序列。
对于每一组OFDM符号按照如下方式映射:在时域上第m组OFDM符号上按照频域映射:Z(n) m=w(m)·y(n),其中:
Figure PCTCN2020130179-appb-000019
需要说明的是,n按照从小到大的顺序与频域上的子载波索引按照从小到大的顺序进行映射。m的取值按照从小到大的顺序与时域上的时域资源单元(即一组ODFM符号)按照从前到后的顺序进行映射。
在一个例子中,
Figure PCTCN2020130179-appb-000020
即有7组OFDM符号。如果每组OFDM符号包括1个OFDM符号,则PUCCH在时域上占据的OFDM符号数X=7(即半个时隙)。如果每组OFDM符号包括2个OFDM符号,则PUCCH在时域上占据的OFDM符号数X=7×2=14(即一个时隙)。
需要说明的是,上述时域正交复数序列仅为示例性的,还可以通过其他的a*a DFT矩阵获得OCC,从而可以支持更多组OFDM符号的扩频,例如可以支持14组OFDM符号的扩频。
本申请实施例的技术方案,在进行时域扩频前,可以对序列进行多种峰均比降低的处理方式,如在低伪随机序列生成后做一个DFT变换,可以有效降低伪随机序列的峰均比,提高覆盖,同时还可以有效增加序列的容量。
需要说明的是,上述方案是以终端设备侧为例进行说明,网络设备侧(如基站)与终端设备侧是对应的,可以参照终端设备侧的相关描述理解。
本申请实施例的技术方案,在长PUCCH中增加了没有RS开销的格式,减少了不必要的无线资源开销,用序列以及时域扩频的方式来表示多比特的控制信息,从而实现承载大负荷的控制信息。在远距离覆盖的情况下,通过在时域上进行扩频,增强了PUCCH的覆盖性能,从而保证无线网络的各个信道的覆盖更加均衡。同样,由于不需要RS,在发射侧和接收侧的处理复杂度较低,每个时域资源单元上只需要传输经过简单扩频运算的序列即可,不需要进行相干调制以及相干解调。再者,在中等负荷量的情况下,由于序列的组合数比较小,因而接收侧解码PUCCH的速度也较快。
需要说明的是,本申请实施例的技术方案描述了一种增强的PUCCH格式用于UCI的传输,但是本申请实施例的技术方案不限于上行,亦可应用于其他方向,如下行,侧行等无线链路的信号。
需要说明的是,本申请实施例的技术方案描述了控制信道和控制信息的传输,但是本申请实施例的技术方案不限于控制信道,还可以用于数据信道和数据的传输,其数据对应的序列和OCC可用于承载PUSCH或PDSCH或PSSCH中的数据,进而接收侧可以使用非相干解调数据。
图7是本申请实施例提供的控制信道的传输装置的结构组成示意图,应用于控制信道的发送侧,例如上行的终端设备,或者下行的网络设备(如基站),或者侧行的第一终端设备。如图7所示,所述控制信道的传输装置包括:
发送单元701,用于发送控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列基于控制信息确定。
在一可选方式中,所述Z的取值大于1的情况下,所述Z个第一序列由目标序列使用目标扩频码进行扩频得到,所述目标序列和所述目标扩频码基于控制信息确定。
在一可选方式中,所述装置还包括:
处理单元702,用于根据控制信息,确定所述目标序列和所述目标扩频码;使用所述目标扩频码将所述目标序列扩频成所述Z个第一序列,并将所述Z个第一序列映射到所述Z个时域资源单元上。
在一可选方式中,所述处理单元702,用于将所述Z个第一序列中的第m个第一序列映射至所述Z个时域资源单元中的第m个时域资源单元,m为大于等于0且小于等于Z-1的整数。
在一可选方式中,所述目标序列的长度为L,L为正整数,所述目标序列中的第n个值为y(n),n为大于等于0且小于等于L-1的整数;所述第m个第一序列中的第n个值为Z(n) m,所述Z(n) m与 所述y(n)满足以下关系:
Z(n) m=w(m)·y(n);
其中,w(m)代表所述目标扩频码的第m个取值,所述目标扩频码支持Z个取值。
在一可选方式中,所述控制信息通过N比特信息表征,N为正整数;
所述处理单元702,用于根据所述N比特信息的取值,确定所述目标序列和所述目标扩频码。
在一可选方式中,所述处理单元702,用于根据所述N比特信息的取值、以及第一集合中包含的序列总数和第二集合中包含的扩频码总数中的至少之一,确定所述目标序列在所述第一集合中的索引以及所述目标扩频码在所述第二集合中的索引;
其中,所述目标序列在所述第一集合中的索引用于确定所述目标序列,所述目标扩频码在所述第二集合中的索引用于确定所述目标扩频码。
在一可选方式中,所述控制信息通过N比特信息表征,N为正整数;所述N比特信息包括第一部分比特信息和第二部分比特信息;
所述处理单元702,用于根据所述第一部分比特信息的取值,确定所述目标序列的索引;根据所述第二部分比特信息的取值,确定所述目标扩频码的索引;
其中,所述目标序列的索引用于确定所述目标序列,所述目标扩频码的索引用于确定所述目标扩频码。
在一可选方式中,所述处理单元702,还用于根据所述目标序列的索引确定所述目标序列;或者,根据所述目标序列的索引确定所述目标序列关联的伪随机序列,并根据所述伪随机序列生成所述目标序列。
在一可选方式中,所述处理单元702,用于对所述伪随机序进行离散傅里叶变换,生成所述目标序列。
在一可选方式中,所述目标扩频码为OCC。
在一可选方式中,所述Z的取值为1的情况下,1个第一序列为目标序列,所述目标序列基于控制信息确定。
在一可选方式中,所述控制信息通过N比特信息表征,N为正整数;所述装置还包括:
处理单元702,用于根据所述N比特信息的取值,确定所述目标序列。
在一可选方式中,所述Z的取值基于所述控制信道在时域上占据的时域符号的数目确定。
在一可选方式中,所述Z的取值为ceiling(X/S),其中,ceiling代表向上取整运算,X代表所述控制信道在时域上占据的时域符号的数目,S为一个时域资源单元占据的时域符号的数目。
在一可选方式中,一个所述时域资源单元占据一个时域符号;或者,
一个所述时域资源单元占据一组时域符号。
本领域技术人员应当理解,本申请实施例的上述控制信道的传输装置的相关描述可以参照本申请实施例的控制信道的传输方法的相关描述进行理解。
图8是本申请实施例提供的控制信道的接收装置的结构组成示意图,应用于控制信道的接收侧,例如上行的网络设备(如基站),或者下行的终端设备,或者侧行的第二终端设备。如图8所示,所述控制信道的接收装置包括:
接收单元801,用于接收控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列用于确定控制信息。
在一可选方式中,所述Z的取值大于1的情况下,所述Z个第一序列由目标序列使用目标扩频码进行扩频得到,所述目标序列和/或所述目标扩频码用于确定控制信息。
在一可选方式中,所述Z个第一序列中的第m个第一序列被映射至所述Z个时域资源单元中的第m个时域资源单元,m为大于等于0且小于等于Z-1的整数。
在一可选方式中,所述目标序列的长度为L,L为正整数,所述目标序列中的第n个值为y(n),n为大于等于0且小于等于L-1的整数;所述第m个第一序列中的第n个值为Z(n) m,所述Z(n) m与所述y(n)满足以下关系:
Z(n) m=w(m)·y(n);
其中,w(m)代表所述目标扩频码的第m个取值,所述目标扩频码支持Z个取值。
在一可选方式中,所述控制信息通过N比特信息表征,N为正整数;
所述N比特信息的取值基于所述目标序列和/或所述目标扩频码确定。
在一可选方式中,所述N比特信息的取值基于所述目标序列在第一集合中的索引、所述目标扩频码在第二集合中的索引、以及所述第一集合中包含的序列总数和所述第二集合中包含的扩频 码总数中的至少之一确定。
在一可选方式中,所述控制信息通过N比特信息表征,N为正整数;所述N比特信息包括第一部分比特信息和第二部分比特信息;
所述第一部分比特信息的取值基于所述目标序列的索引确定,所述第二部分比特信息的取值基于所述目标扩频码的索引确定。
在一可选方式中,所述目标扩频码为OCC。
在一可选方式中,所述Z的取值为1的情况下,1个第一序列为目标序列,所述目标序列用于确定控制信息。
在一可选方式中,所述控制信息通过N比特信息表征,N为正整数;
所述N比特信息的取值基于所述目标序列确定。
在一可选方式中,所述Z的取值基于所述控制信道在时域上占据的时域符号的数目确定。
在一可选方式中,所述Z的取值为ceiling(X/S),其中,ceiling代表向上取整运算,X代表所述控制信道在时域上占据的时域符号的数目,S为一个时域资源单元占据的时域符号的数目。
在一可选方式中,一个所述时域资源单元占据一个时域符号;或者,
一个所述时域资源单元占据一组时域符号。
本领域技术人员应当理解,本申请实施例的上述控制信道的接收装置的相关描述可以参照本申请实施例的控制信道的接收方法的相关描述进行理解。
图9是本申请实施例提供的一种通信设备900示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的移动终端/终端设备,并且该通信设备900可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该通信系统1100包括终端设备1110和网络设备1120。
其中,该终端设备1110可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (63)

  1. 一种控制信道的传输方法,所述方法包括:
    发送控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列基于控制信息确定。
  2. 根据权利要求1所述的方法,其中,所述Z的取值大于1的情况下,所述Z个第一序列由目标序列使用目标扩频码进行扩频得到,所述目标序列和所述目标扩频码基于控制信息确定。
  3. 根据权利要求2所述的方法,其中,所述发送控制信道之前,所述方法还包括:
    根据控制信息,确定所述目标序列和所述目标扩频码;
    使用所述目标扩频码将所述目标序列扩频成所述Z个第一序列,并将所述Z个第一序列映射到所述Z个时域资源单元上。
  4. 根据权利要求3所述的方法,其中,所述将所述Z个第一序列映射到所述Z个时域资源单元上,包括:
    将所述Z个第一序列中的第m个第一序列映射至所述Z个时域资源单元中的第m个时域资源单元,m为大于等于0且小于等于Z-1的整数。
  5. 根据权利要求4所述的方法,其中,所述目标序列的长度为L,L为正整数,所述目标序列中的第n个值为y(n),n为大于等于0且小于等于L-1的整数;所述第m个第一序列中的第n个值为Z(n) m,所述Z(n) m与所述y(n)满足以下关系:
    Z(n) m=w(m)·y(n);
    其中,w(m)代表所述目标扩频码的第m个取值,所述目标扩频码支持Z个取值。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述控制信息通过N比特信息表征,N为正整数;
    所述根据控制信息,确定所述目标序列和所述目标扩频码,包括:
    根据所述N比特信息的取值,确定所述目标序列和所述目标扩频码。
  7. 根据权利要求6所述的方法,其中,所述根据所述N比特信息的取值,确定所述目标序列和所述目标扩频码,包括:
    根据所述N比特信息的取值、以及第一集合中包含的序列总数和第二集合中包含的扩频码总数中的至少之一,确定所述目标序列在所述第一集合中的索引以及所述目标扩频码在所述第二集合中的索引;
    其中,所述目标序列在所述第一集合中的索引用于确定所述目标序列,所述目标扩频码在所述第二集合中的索引用于确定所述目标扩频码。
  8. 根据权利要求3至5中任一项所述的方法,其中,所述控制信息通过N比特信息表征,N为正整数;所述N比特信息包括第一部分比特信息和第二部分比特信息;
    所述根据控制信息,确定所述目标序列和所述目标扩频码,包括:
    根据所述第一部分比特信息的取值,确定所述目标序列的索引;
    根据所述第二部分比特信息的取值,确定所述目标扩频码的索引;
    其中,所述目标序列的索引用于确定所述目标序列,所述目标扩频码的索引用于确定所述目标扩频码。
  9. 根据权利要求7或8所述的方法,其中,所述方法还包括:
    根据所述目标序列的索引确定所述目标序列;或者,
    根据所述目标序列的索引确定所述目标序列关联的伪随机序列,并根据所述伪随机序列生成所述目标序列。
  10. 根据权利要求9所述的方法,其中,所述根据所述伪随机序列生成所述目标序列,包括:
    对所述伪随机序进行离散傅里叶变换,生成所述目标序列。
  11. 根据权利要求2至10中任一项所述的方法,其中,所述目标扩频码为正交覆盖码OCC。
  12. 根据权利要求1所述的方法,其中,所述Z的取值为1的情况下,1个第一序列为目标序列,所述目标序列基于控制信息确定。
  13. 根据权利要求12所述的方法,其中,所述控制信息通过N比特信息表征,N为正整数;
    所述发送控制信道之前,所述方法还包括:
    根据所述N比特信息的取值,确定所述目标序列。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述Z的取值基于所述控制信道在时域上占据的时域符号的数目确定。
  15. 根据权利要求14所述的方法,其中,所述Z的取值为ceiling(X/S),其中,ceiling代表向上取整运算,X代表所述控制信道在时域上占据的时域符号的数目,S为一个时域资源单元占据的时域符号的数目。
  16. 根据权利要求1至15中任一项所述的方法,其中,
    一个所述时域资源单元占据一个时域符号;或者,
    一个所述时域资源单元占据一组时域符号。
  17. 一种控制信道的接收方法,所述方法包括:
    接收控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列用于确定控制信息。
  18. 根据权利要求17所述的方法,其中,所述Z的取值大于1的情况下,所述Z个第一序列由目标序列使用目标扩频码进行扩频得到,所述目标序列和/或所述目标扩频码用于确定控制信息。
  19. 根据权利要求18所述的方法,其中,所述Z个第一序列中的第m个第一序列被映射至所述Z个时域资源单元中的第m个时域资源单元,m为大于等于0且小于等于Z-1的整数。
  20. 根据权利要求19所述的方法,其中,所述目标序列的长度为L,L为正整数,所述目标序列中的第n个值为y(n),n为大于等于0且小于等于L-1的整数;所述第m个第一序列中的第n个值为Z(n) m,所述Z(n) m与所述y(n)满足以下关系:
    Z(n) m=w(m)·y(n);
    其中,w(m)代表所述目标扩频码的第m个取值,所述目标扩频码支持Z个取值。
  21. 根据权利要求18至20中任一项所述的方法,其中,所述控制信息通过N比特信息表征,N为正整数;
    所述N比特信息的取值基于所述目标序列和/或所述目标扩频码确定。
  22. 根据权利要求21所述的方法,其中,所述N比特信息的取值基于所述目标序列在第一集合中的索引、所述目标扩频码在第二集合中的索引、以及所述第一集合中包含的序列总数和所述第二集合中包含的扩频码总数中的至少之一确定。
  23. 根据权利要求18至20中任一项所述的方法,其中,所述控制信息通过N比特信息表征,N为正整数;所述N比特信息包括第一部分比特信息和第二部分比特信息;
    所述第一部分比特信息的取值基于所述目标序列的索引确定,所述第二部分比特信息的取值基于所述目标扩频码的索引确定。
  24. 根据权利要求18至23中任一项所述的方法,其中,所述目标扩频码为OCC。
  25. 根据权利要求17所述的方法,其中,所述Z的取值为1的情况下,1个第一序列为目标序列,所述目标序列用于确定控制信息。
  26. 根据权利要求25所述的方法,其中,所述控制信息通过N比特信息表征,N为正整数;
    所述N比特信息的取值基于所述目标序列确定。
  27. 根据权利要求17至26中任一项所述的方法,其中,所述Z的取值基于所述控制信道在时域上占据的时域符号的数目确定。
  28. 根据权利要求27所述的方法,其中,所述Z的取值为ceiling(X/S),其中,ceiling代表向上取整运算,X代表所述控制信道在时域上占据的时域符号的数目,S为一个时域资源单元占据的时域符号的数目。
  29. 根据权利要求17至28中任一项所述的方法,其中,
    一个所述时域资源单元占据一个时域符号;或者,
    一个所述时域资源单元占据一组时域符号。
  30. 一种控制信道的传输装置,所述装置包括:
    发送单元,用于发送控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列基于控制信息确定。
  31. 根据权利要求30所述的装置,其中,所述Z的取值大于1的情况下,所述Z个第一序列由目标序列使用目标扩频码进行扩频得到,所述目标序列和所述目标扩频码基于控制信息确定。
  32. 根据权利要求31所述的装置,其中,所述装置还包括:
    处理单元,用于根据控制信息,确定所述目标序列和所述目标扩频码;使用所述目标扩频码将所述目标序列扩频成所述Z个第一序列,并将所述Z个第一序列映射到所述Z个时域资源单元上。
  33. 根据权利要求32所述的装置,其中,所述处理单元,用于将所述Z个第一序列中的第m个第一序列映射至所述Z个时域资源单元中的第m个时域资源单元,m为大于等于0且小于等于Z-1的整数。
  34. 根据权利要求33所述的装置,其中,所述目标序列的长度为L,L为正整数,所述目标序列中的第n个值为y(n),n为大于等于0且小于等于L-1的整数;所述第m个第一序列中的第n个值为Z(n) m,所述Z(n) m与所述y(n)满足以下关系:
    Z(n) m=w(m)·y(n);
    其中,w(m)代表所述目标扩频码的第m个取值,所述目标扩频码支持Z个取值。
  35. 根据权利要求32至34中任一项所述的装置,其中,所述控制信息通过N比特信息表征,N为正整数;
    所述处理单元,用于根据所述N比特信息的取值,确定所述目标序列和所述目标扩频码。
  36. 根据权利要求35所述的装置,其中,所述处理单元,用于根据所述N比特信息的取值、以及第一集合中包含的序列总数和第二集合中包含的扩频码总数中的至少之一,确定所述目标序列在所述第一集合中的索引以及所述目标扩频码在所述第二集合中的索引;
    其中,所述目标序列在所述第一集合中的索引用于确定所述目标序列,所述目标扩频码在所述第二集合中的索引用于确定所述目标扩频码。
  37. 根据权利要求32至34中任一项所述的装置,其中,所述控制信息通过N比特信息表征,N为正整数;所述N比特信息包括第一部分比特信息和第二部分比特信息;
    所述处理单元,用于根据所述第一部分比特信息的取值,确定所述目标序列的索引;根据所述第二部分比特信息的取值,确定所述目标扩频码的索引;
    其中,所述目标序列的索引用于确定所述目标序列,所述目标扩频码的索引用于确定所述目标扩频码。
  38. 根据权利要求36或37所述的装置,其中,所述处理单元,还用于根据所述目标序列的索引确定所述目标序列;或者,根据所述目标序列的索引确定所述目标序列关联的伪随机序列,并根据所述伪随机序列生成所述目标序列。
  39. 根据权利要求38所述的装置,其中,所述处理单元,用于对所述伪随机序进行离散傅里叶变换,生成所述目标序列。
  40. 根据权利要求31至39中任一项所述的装置,其中,所述目标扩频码为OCC。
  41. 根据权利要求30所述的装置,其中,所述Z的取值为1的情况下,1个第一序列为目标序列,所述目标序列基于控制信息确定。
  42. 根据权利要求41所述的装置,其中,所述控制信息通过N比特信息表征,N为正整数;所述装置还包括:
    处理单元,用于根据所述N比特信息的取值,确定所述目标序列。
  43. 根据权利要求30至42中任一项所述的装置,其中,所述Z的取值基于所述控制信道在时域上占据的时域符号的数目确定。
  44. 根据权利要求43所述的装置,其中,所述Z的取值为ceiling(X/S),其中,ceiling代表向上取整运算,X代表所述控制信道在时域上占据的时域符号的数目,S为一个时域资源单元占据的时域符号的数目。
  45. 根据权利要求30至44中任一项所述的装置,其中,
    一个所述时域资源单元占据一个时域符号;或者,
    一个所述时域资源单元占据一组时域符号。
  46. 一种控制信道的接收装置,所述装置包括:
    接收单元,用于接收控制信道,所述控制信道占据Z个时域资源单元,Z为正整数,所述Z个时域资源单元用于承载Z个第一序列;其中,所述Z个第一序列用于确定控制信息。
  47. 根据权利要求46所述的装置,其中,所述Z的取值大于1的情况下,所述Z个第一序列由目标序列使用目标扩频码进行扩频得到,所述目标序列和/或所述目标扩频码用于确定控制信息。
  48. 根据权利要求47所述的装置,其中,所述Z个第一序列中的第m个第一序列被映射至 所述Z个时域资源单元中的第m个时域资源单元,m为大于等于0且小于等于Z-1的整数。
  49. 根据权利要求48所述的装置,其中,所述目标序列的长度为L,L为正整数,所述目标序列中的第n个值为y(n),n为大于等于0且小于等于L-1的整数;所述第m个第一序列中的第n个值为Z(n) m,所述Z(n) m与所述y(n)满足以下关系:
    Z(n) m=w(m)·y(n);
    其中,w(m)代表所述目标扩频码的第m个取值,所述目标扩频码支持Z个取值。
  50. 根据权利要求47至49中任一项所述的装置,其中,所述控制信息通过N比特信息表征,N为正整数;
    所述N比特信息的取值基于所述目标序列和/或所述目标扩频码确定。
  51. 根据权利要求50所述的装置,其中,所述N比特信息的取值基于所述目标序列在第一集合中的索引、所述目标扩频码在第二集合中的索引、以及所述第一集合中包含的序列总数和所述第二集合中包含的扩频码总数中的至少之一确定。
  52. 根据权利要求47至49中任一项所述的装置,其中,所述控制信息通过N比特信息表征,N为正整数;所述N比特信息包括第一部分比特信息和第二部分比特信息;
    所述第一部分比特信息的取值基于所述目标序列的索引确定,所述第二部分比特信息的取值基于所述目标扩频码的索引确定。
  53. 根据权利要求47至52中任一项所述的装置,其中,所述目标扩频码为OCC。
  54. 根据权利要求46所述的装置,其中,所述Z的取值为1的情况下,1个第一序列为目标序列,所述目标序列用于确定控制信息。
  55. 根据权利要求54所述的装置,其中,所述控制信息通过N比特信息表征,N为正整数;
    所述N比特信息的取值基于所述目标序列确定。
  56. 根据权利要求46至55中任一项所述的装置,其中,所述Z的取值基于所述控制信道在时域上占据的时域符号的数目确定。
  57. 根据权利要求56所述的装置,其中,所述Z的取值为ceiling(X/S),其中,ceiling代表向上取整运算,X代表所述控制信道在时域上占据的时域符号的数目,S为一个时域资源单元占据的时域符号的数目。
  58. 根据权利要求46至57中任一项所述的装置,其中,
    一个所述时域资源单元占据一个时域符号;或者,
    一个所述时域资源单元占据一组时域符号。
  59. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至16中任一项所述的方法,或者权利要求17至29中任一项所述的方法。
  60. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法,或者权利要求17至29中任一项所述的方法。
  61. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法,或者权利要求17至29中任一项所述的方法。
  62. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法,或者权利要求17至29中任一项所述的方法。
  63. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法,或者权利要求17至29中任一项所述的方法。
PCT/CN2020/130179 2020-11-19 2020-11-19 控制信道的传输及接收方法、装置、通信设备 WO2022104656A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/130179 WO2022104656A1 (zh) 2020-11-19 2020-11-19 控制信道的传输及接收方法、装置、通信设备
CN202080105342.3A CN116264867A (zh) 2020-11-19 2020-11-19 控制信道的传输及接收方法、装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/130179 WO2022104656A1 (zh) 2020-11-19 2020-11-19 控制信道的传输及接收方法、装置、通信设备

Publications (1)

Publication Number Publication Date
WO2022104656A1 true WO2022104656A1 (zh) 2022-05-27

Family

ID=81708145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130179 WO2022104656A1 (zh) 2020-11-19 2020-11-19 控制信道的传输及接收方法、装置、通信设备

Country Status (2)

Country Link
CN (1) CN116264867A (zh)
WO (1) WO2022104656A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012558A1 (zh) * 2022-07-15 2024-01-18 维沃移动通信有限公司 Srs与上行资源的冲突处理方法、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049646A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种资源映射方法及装置
CN106559101A (zh) * 2015-09-25 2017-04-05 电信科学技术研究院 一种频域扩频、解扩频方法及装置
US20180324794A1 (en) * 2010-01-18 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Radio Base Station and User Equipment and Methods Therein
CN109845314A (zh) * 2017-04-07 2019-06-04 华为技术有限公司 控制信道的传输方法及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180324794A1 (en) * 2010-01-18 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Radio Base Station and User Equipment and Methods Therein
WO2017049646A1 (zh) * 2015-09-25 2017-03-30 华为技术有限公司 一种资源映射方法及装置
CN106559101A (zh) * 2015-09-25 2017-04-05 电信科学技术研究院 一种频域扩频、解扩频方法及装置
CN109845314A (zh) * 2017-04-07 2019-06-04 华为技术有限公司 控制信道的传输方法及相关装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "On short PUCCH design for up to two UCI bits", 3GPP DRAFT; R1-1717826, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051341011 *
ERICSSON: "On PUCCH Resource Allocation and Other Issues", 3GPP DRAFT; R1-1800950, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051385183 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012558A1 (zh) * 2022-07-15 2024-01-18 维沃移动通信有限公司 Srs与上行资源的冲突处理方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN116264867A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN109391359B (zh) 用于数据传输的方法、网络设备和终端设备
CN109672511B (zh) 发送pucch的方法和用户终端
WO2018126872A1 (zh) 请求资源的方法和装置
WO2018027982A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
US20210235479A1 (en) Method and terminal device for transmitting data
JP7488864B2 (ja) 無線通信方法及びデバイス
CN111641483B (zh) 一种反馈信息传输方法及装置、通信设备
US20240090006A1 (en) Wireless communication method and network device
WO2022104656A1 (zh) 控制信道的传输及接收方法、装置、通信设备
CN112166571A (zh) 用于传输反馈信息的方法、终端设备和网络设备
CN112715043B (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2021056135A1 (zh) 传输上行控制信息的方法和终端设备
WO2020061776A9 (zh) 一种反馈资源的复用方法、终端设备及网络设备
US20200163108A1 (en) Method for transmitting uplink control channel, network device and terminal device
CN114302408B (zh) 无线通信的方法、终端设备和网络设备
WO2018137130A1 (zh) Harq进程的配置方法、装置及设备
JP2021516496A (ja) 無線通信方法及び通信装置
CN111869299A (zh) 用于非授权频谱的通信方法、终端设备和网络设备
CN113853756B (zh) 一种优先级配置方法及装置、终端设备
WO2021232425A1 (zh) 无线通信方法和终端设备
WO2024020891A1 (en) Methods and apparatuses for determining dmrs port mode
WO2023011008A1 (zh) 一种加扰、解扰方法及通信装置
WO2019183762A1 (zh) 天线端口指示方法及装置
CN117811886A (zh) 一种信号传输的方法和通信装置
CN111711993A (zh) 一种传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961947

Country of ref document: EP

Kind code of ref document: A1