WO2022103151A1 - Method and device for pdcch repeated reception and transmission in wireless communication system - Google Patents

Method and device for pdcch repeated reception and transmission in wireless communication system Download PDF

Info

Publication number
WO2022103151A1
WO2022103151A1 PCT/KR2021/016345 KR2021016345W WO2022103151A1 WO 2022103151 A1 WO2022103151 A1 WO 2022103151A1 KR 2021016345 W KR2021016345 W KR 2021016345W WO 2022103151 A1 WO2022103151 A1 WO 2022103151A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
pdcch
terminal
transmitted
base station
Prior art date
Application number
PCT/KR2021/016345
Other languages
French (fr)
Korean (ko)
Inventor
정의창
윤수하
박진현
장영록
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2022103151A1 publication Critical patent/WO2022103151A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to cell-to-cell cooperative communication using a plurality of cells.
  • the 5G communication system or the pre-5G communication system is called a system after the 4G network (Beyond 4G Network) communication system or the LTE system after (Post LTE).
  • the 5G communication system is being considered for implementation in a very high frequency (mmWave) band (eg, such as a 60 gigabyte (60 GHz) band).
  • mmWave very high frequency
  • FD-MIMO Full Dimensional MIMO
  • array antenna analog beam-forming, and large scale antenna technologies are being discussed.
  • cloud radio access network cloud radio access network: cloud RAN
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation Technology development is underway.
  • CoMP Coordinated Multi-Points
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cell Superposition Coding
  • advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non orthogonal multiple access), and sparse code multiple access (SCMA) are being developed.
  • FBMC Filter Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • IoE Internet of Everything
  • M2M Machine Type Communication
  • MTC Machine Type Communication
  • IoT an intelligent IT (Internet Technology) service that collects and analyzes data generated from connected objects and creates new values in human life can be provided.
  • IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service, etc. can be applied to
  • 5G communication technology is implemented by techniques such as beam forming, MIMO, and array antenna.
  • cloud radio access network cloud RAN
  • CoMP Coordinatd multi-point
  • CoMP is a technology that reduces inter-cell interference and increases the throughput of the UE at the cell boundary by enabling neighboring cells to cooperate with each other so that not only the serving cell but also other cells can communicate with the same UE.
  • the present disclosure provides a plurality of transmission reception point (TRP) (hereinafter, Multiple TRP or Multi-TRP)-based CoMP (eg, non-coherent joint transmission (NC-JT)) in a wireless communication system for various suggest methods. Specifically, we propose a method for improving robustness and reliability through PDCCH transmission in multi-TRP.
  • TRP transmission reception point
  • Multi-TRP Multi-TRP-based CoMP
  • NC-JT non-coherent joint transmission
  • a method of a terminal of a wireless communication system for setting repeated transmission/reception of at least one physical downlink control channel (PDCCH) Receiving a setting message; Receiving the at least one PDCCH scheduling a physical downlink shared channel (PDSCH); determining, among the at least one PDCCH, a PDCCH related to a change in a beam through which the PDSCH is transmitted; and confirming a change in a beam through which the PDSCH is transmitted based on downlink control information (DCI) included in the determined PDCCH.
  • DCI downlink control information
  • a method of a base station of a wireless communication system setting repeated transmission/reception of at least one physical downlink control channel (PDCCH) transmitting a setting message for; transmitting the at least one PDCCH scheduling a physical downlink shared channel (PDSCH); determining, among the at least one PDCCH, a PDCCH related to a change in a beam through which the PDSCH is transmitted; and determining a beam through which the PDSCH is transmitted based on downlink control information (DCI) included in the determined PDCCH.
  • PDCCH physical downlink control channel
  • a transceiver in a terminal of a wireless communication system, a transceiver; and controlling the transceiver to receive a configuration message for configuring repeated transmission/reception of at least one physical downlink control channel (PDCCH), and scheduling a physical downlink shared channel (PDSCH) controls the transceiver to receive the at least one PDCCH, controls to determine a PDCCH related to a change in a beam through which the PDSCH is transmitted, from among the at least one PDCCH, and downlink control information included in the determined PDCCH ( Downlink control information, DCI), characterized in that it comprises a control unit for controlling to check the change of the beam through which the PDSCH is transmitted.
  • DCI downlink control information
  • a transceiver in a base station of a wireless communication system, a transceiver; and controlling the transceiver to transmit a configuration message for configuring repeated transmission/reception of at least one physical downlink control channel (PDCCH), and scheduling a physical downlink shared channel (PDSCH) controls the transceiver to transmit the at least one PDCCH, controls to determine a PDCCH related to a change in a beam through which the PDSCH is transmitted, from among the at least one PDCCH, and downlink control information included in the determined PDCCH ( Downlink control information, DCI), characterized in that it comprises a control unit for controlling to determine the beam through which the PDSCH is transmitted.
  • DCI downlink control information
  • a PDCCH serving as a reference for the UE and the base station to perform PDSCH beamforming may be determined.
  • efficient PDSCH beamforming may be performed based on the determined PDCCH and PDSCH reception timing.
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a wireless communication system.
  • FIG. 2 is a diagram illustrating a frame, subframe, and slot structure in a 5G system.
  • FIG. 3 is a diagram for explaining a setting of a bandwidth portion in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a method of dynamically changing a setting for a bandwidth portion according to an embodiment of the present disclosure.
  • Control Resource Set CORESET
  • a downlink control channel is transmitted in a 5G wireless communication system.
  • 6 is a diagram illustrating an example of a basic unit of time and frequency resources constituting a downlink control channel that can be used in 5G.
  • FIG. 7 is a diagram for explaining the configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
  • 8A is a diagram illustrating a beam management procedure according to an embodiment.
  • 8B is a diagram illustrating a beam management procedure according to an embodiment.
  • FIG. 9 is a diagram illustrating a procedure for reporting UE capability according to an embodiment of the present disclosure.
  • FIG. 10 is a diagram illustrating a method of instructing a change in a PDSCH transmission beam when a plurality of PDSCHs are repeatedly transmitted according to an embodiment.
  • FIG. 11 is a diagram illustrating a method for a base station to repeatedly transmit a PDCCH according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated in the time domain in the same CORESET and in the same slot according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated in the time domain between different slots within the same CORESET according to an embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in the time domain within the same CORESET and in the same slot according to an embodiment of the present disclosure.
  • 15 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in the time domain between different slots within the same CORESET according to an embodiment of the present disclosure.
  • FIG. 16 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated between different CORESETs in the time domain or spatial domain within the same slot according to an embodiment of the present disclosure.
  • 17 is a diagram illustrating a case in which a PDCCH for scheduling one PDSCH is repeated between different CORESETs and between different slots in a time domain or spatial domain according to an embodiment of the present disclosure.
  • FIG. 18 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated between different CORESETs in the time domain or spatial domain within the same slot according to an embodiment of the present disclosure.
  • 19 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in a time domain or spatial domain between different CORESETs and between different slots according to an embodiment of the present disclosure.
  • 20 is a flowchart illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • 21 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
  • 22 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 23 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions.
  • These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions.
  • These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory.
  • the instructions stored in the flow chart block(s) may also be possible for the instructions stored in the flow chart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s).
  • the computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible that instructions for performing the processing equipment provide steps for performing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in a reverse order according to a corresponding function.
  • ' ⁇ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and ' ⁇ unit' performs certain roles do.
  • '-part' is not limited to software or hardware.
  • ' ⁇ ' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors.
  • ' ⁇ part' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • components and ' ⁇ units' may be combined into a smaller number of components and ' ⁇ units' or further separated into additional components and ' ⁇ units'.
  • components and ' ⁇ units' may be implemented to play one or more CPUs in a device or secure multimedia card.
  • ' ⁇ unit' may include one or more processors.
  • the base station is a subject that performs resource allocation of the terminal, and may be at least one of gNode B, eNode B, Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • UE user equipment
  • MS mobile station
  • a cellular phone a smart phone
  • a computer or a multimedia system capable of performing a communication function.
  • a description will be given of a technique for a terminal to receive broadcast information from a base station in a wireless communication system.
  • the present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after the 4 th generation (4G) system with Internet of Things (IoT) technology, and a system thereof.
  • the present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
  • Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
  • a wireless communication system for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2 HRPD (High Rate Packet Data), UMB (Ultra Mobile Broadband), and IEEE 802.16e, such as communication standards such as broadband wireless broadband wireless providing high-speed, high-quality packet data service It is evolving into a communication system.
  • HSPA High Speed Packet Access
  • LTE-A Long Term Evolution-A
  • LTE-Pro LTE-Pro
  • 3GPP2 HRPD High Rate Packet Data
  • UMB Ultra Mobile Broadband
  • IEEE 802.16e such as communication standards such as broadband wireless broadband wireless providing high-speed, high-quality packet data service It is evolving into a communication system.
  • Uplink refers to a radio link in which a UE (User Equipment) or MS (Mobile Station) transmits data or control signals to a base station (eNode B, or base station (BS)). It means a wireless link that transmits data or control signals.
  • the multiple access method as described above divides the data or control information of each user by allocating and operating the time-frequency resources for each user to transmit data or control information so that they do not overlap each other, that is, orthogonality is established. .
  • the 5G communication system must be able to freely reflect various requirements such as users and service providers, so services that satisfy various requirements must be supported.
  • Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). etc.
  • the eMBB aims to provide a data transfer rate that is more improved than the data transfer rate supported by existing LTE, LTE-A, or LTE-Pro.
  • the eMBB should be able to provide a maximum data rate of 20 Gbps in the downlink and a maximum data rate of 10 Gbps in the uplink from the viewpoint of one base station.
  • it is necessary to provide an increased user perceived data rate of the terminal.
  • transmission/reception technology including a more advanced multi-input multi-output (MIMO) transmission technology.
  • MIMO multi-input multi-output
  • mMTC is being considered to support application services such as the Internet of Things (IoT) in the 5G communication system.
  • IoT Internet of Things
  • mMTC may require large-scale terminal access support, improved terminal coverage, improved battery life, and reduced terminal cost within a cell. Since the Internet of Things is attached to various sensors and various devices to provide communication functions, it must be able to support a large number of terminals (eg, 1,000,000 terminals/km2) within a cell.
  • a terminal supporting mMTC is highly likely to be located in a shaded area that a cell cannot cover, such as the basement of a building, due to the nature of the service, it may require wider coverage compared to other services provided by the 5G communication system.
  • a terminal supporting mMTC should be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
  • URLLC as a cellular-based wireless communication service used for a specific purpose (mission-critical), remote control for a robot or machine, industrial automation
  • a service used in an unmaned aerial vehicle, remote health care, emergency alert, etc. it is necessary to provide communication that provides ultra-low latency and ultra-reliability.
  • a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time has a requirement of a packet error rate of 10-5 or less. Therefore, for a service supporting URLLC, the 5G system must provide a smaller transmit time interval (TTI) than other services, and at the same time, a design requirement for allocating a wide resource in a frequency band is required.
  • TTI transmit time interval
  • the aforementioned mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which the present disclosure is applied are not limited to the above-described examples.
  • each service considered in the above-mentioned 5G communication system should be provided by convergence with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated and controlled and transmitted as a single system rather than being operated independently.
  • the embodiment of the present invention will be described below using LTE, LTE-A, LTE Pro, or NR system as an example, the embodiment of the present invention may be applied to other communication systems having a similar technical background or channel type. In addition, the embodiments of the present invention can be applied to other communication systems through some modifications within the scope of the present invention as judged by a person having skilled technical knowledge.
  • Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
  • 3GPP LTE 3rd generation partnership project long term evolution
  • present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
  • FIG. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a wireless communication system.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • a basic unit of a resource in the time and frequency domain is a resource element (RE) (1-01) as 1 OFDM (orthogonal frequency division multiplexing) symbol (1-02) on the time axis and 1 subcarrier on the frequency axis It can be defined as (1-03).
  • RE resource element
  • 1-02 1 OFDM (orthogonal frequency division multiplexing) symbol
  • 1-03 resource block
  • RB resource block
  • FIG. 2 is a diagram illustrating a frame, subframe, and slot structure in a 5G system.
  • FIG. 2 an example of a structure of a frame 2-00, a subframe 2-01, and a slot 2-02 is illustrated in FIG. 2 .
  • One frame (2-00) may be defined as 10 ms.
  • One subframe (2-01) may be defined as 1 ms, and one frame (2-00) may consist of a total of 10 subframes (2-01).
  • One subframe (2-01) may consist of one or a plurality of slots (2-02, 2-03), and the number of slots (2-02, 2-03) per one subframe (2-01) may be different depending on the set value ⁇ (2-04, 2-05) for the subcarrier spacing.
  • each subcarrier spacing setting ⁇ and may be defined as in [Table 1] below.
  • one component carrier (CC) or serving cell may consist of up to 250 or more RBs. Therefore, when the terminal always receives the entire serving cell bandwidth (serving cell bandwidth) like LTE, the power consumption of the terminal may be extreme, and in order to solve this, the base station provides one or more bandwidth parts (BWP) to the terminal. It can be configured to support the UE to change the reception area within the cell.
  • BWP bandwidth parts
  • the base station may set 'initial BWP', which is the bandwidth of CORESET #0 (or common search space, CSS), to the terminal through the MIB. Thereafter, the base station sets the initial BWP (first BWP) of the terminal through RRC signaling, and may notify at least one or more BWP configuration information that may be indicated through future downlink control information (DCI). . Thereafter, the base station may indicate which band the terminal uses by announcing the BWP ID through DCI. If the terminal does not receive DCI in the currently allocated BWP for a specific time or longer, the terminal returns to the 'default BWP' and attempts to receive DCI.
  • 'initial BWP' which is the bandwidth of CORESET #0 (or common search space, CSS)
  • the base station sets the initial BWP (first BWP) of the terminal through RRC signaling, and may notify at least one or more BWP configuration information that may be indicated through future downlink control information (DCI).
  • DCI downlink control
  • FIG. 3 is a diagram for explaining a setting of a bandwidth portion in a wireless communication system according to an embodiment of the present disclosure.
  • the terminal bandwidth 3-00 may include two bandwidth portions, namely, a bandwidth portion #1(3-05) and a bandwidth portion #2(3-10).
  • the base station may set one or more bandwidth portions to the terminal, and may set information as shown in [Table 2] below for each bandwidth portion.
  • Setting information 1 Bandwidth in the bandwidth portion (number of PRBs that make up the bandwidth portion)
  • Setting information 2 The frequency position of the bandwidth part (such information may include an offset value compared to the reference point A, and the reference point may include, for example, the center frequency of a carrier wave, a synchronization signal, a synchronization signal raster, etc.)
  • Setting information 3 Numerology of the bandwidth part (eg, subcarrier spacing, CP (Cyclic Prefix) length, etc.) etc.
  • various parameters related to the bandwidth portion may be set in the terminal.
  • the above-described information may be transmitted by the base station to the terminal through higher layer signaling, for example, RRC signaling.
  • At least one bandwidth part among the set one or a plurality of bandwidth parts may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the terminal through RRC signaling, or may be dynamically transmitted through a MAC control element (MAC CE) or DCI.
  • MAC CE MAC control element
  • the setting of the bandwidth part supported by the above-described 5G communication system may be used for various purposes.
  • the bandwidth supported by the terminal when the bandwidth supported by the terminal is smaller than the system bandwidth, the bandwidth supported by the terminal may be supported by setting the bandwidth portion. For example, in [Table 2], the frequency position of the bandwidth part (setting information 2) is set for the terminal, so that the terminal can transmit and receive data at a specific frequency position within the system bandwidth.
  • the base station may configure a plurality of bandwidth portions for the terminal. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to an arbitrary terminal, two bandwidth portions may be configured to use a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be subjected to frequency division multiplexing (FDM), and when data is transmitted/received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
  • FDM frequency division multiplexing
  • the base station may configure a bandwidth portion having different sizes of bandwidths for the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits/receives data using the corresponding bandwidth, very large power consumption may be caused. In particular, it is very inefficient in terms of power consumption for the UE to monitor an unnecessary downlink control channel for a large bandwidth of 100 MHz in a situation in which there is no traffic. Therefore, for the purpose of reducing power consumption of the terminal, the base station may set a relatively small bandwidth portion for the terminal, for example, a bandwidth portion of 20 MHz. In the absence of traffic, the UE may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data using the 100 MHz bandwidth portion according to the instruction of the base station.
  • FIG. 4 is a diagram illustrating a method of dynamically changing a setting for a bandwidth portion according to an embodiment of the present disclosure.
  • the base station may set one or more bandwidth parts to the terminal, and as settings for each bandwidth part, the bandwidth of the bandwidth part, the frequency position of the bandwidth part, Information on the numerology of the bandwidth part may be informed to the terminal.
  • bandwidth portion #1 bandwidth portion #1
  • BWP#2, 4- 10 bandwidth portion #2
  • One or a plurality of bandwidth portions may be activated among the set bandwidths, and an example in which one bandwidth portion is activated may be considered in FIG. 4 .
  • the bandwidth part #1 (4-02) is activated among the set bandwidth parts, and the terminal controls the control region #1 ( 4-45) may monitor a Physical Downlink Control Channel (PDCCH), and may transmit/receive data 4-55 in bandwidth part #1 (4-05).
  • a control region in which the terminal receives the PDCCH may be different according to which bandwidth portion among the configured bandwidth portions is activated, and accordingly, the bandwidth in which the terminal monitors the PDCCH may vary.
  • the base station may additionally transmit an indicator for changing the configuration of the bandwidth portion to the terminal.
  • changing the setting for the bandwidth portion may be considered the same as an operation of activating a specific bandwidth portion (eg, changing the activation from the bandwidth portion A to the bandwidth portion B).
  • the base station may transmit a configuration switching indicator to the terminal in a specific slot.
  • the terminal After receiving the configuration change indicator from the base station, the terminal may determine a bandwidth portion to be activated by applying the changed configuration according to the configuration change indicator from a specific time point.
  • the UE may perform monitoring for the PDCCH in the control region set in the activated bandwidth portion.
  • the base station instructs the terminal to change the activated bandwidth part from the existing bandwidth part #1 (4-05) to the bandwidth part #2 (4-10) (Configuration Switching Indication, 4-15) can be transmitted in slot #1 (4-30).
  • the terminal may activate the bandwidth part #2 (6-10) according to the content of the indicator.
  • a transition time (4-20) for changing the bandwidth portion may be required, and accordingly, a time point for changing and applying the active bandwidth portion may be determined.
  • 4 shows a case in which a transition time 4-20 of one slot is required after receiving the setting change indicator 4-15. In the transition time (4-20), data transmission/reception may not be performed (4-60). Accordingly, the bandwidth part #2 (4-10) is activated in the slot #2 (4-35), so that the control channel and data can be transmitted/received through the corresponding bandwidth part.
  • the base station may preset one or more bandwidth parts to the terminal as higher layer signaling (eg, RRC signaling), and the configuration change indicator 4-15 is activated in a way that is mapped with one of the bandwidth part settings preset by the base station. can be instructed.
  • an indicator of log 2 N bits may indicate by selecting one of N preset bandwidth parts.
  • [Table 3] below an example of indicating configuration information for a bandwidth portion using a 2-bit indicator is described.
  • Bandwidth Partial Settings 00 Bandwidth setting A set by upper layer signaling 01
  • Bandwidth setting B set with higher layer signaling 10
  • Bandwidth setting C set with higher layer signaling 11
  • Bandwidth setting D set by higher layer signaling
  • the configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 is in the form of MAC (Medium Access Control) CE (Control Element) signaling or L1 signaling (eg, common DCI, group-common DCI, terminal-specific DCI) may be transmitted from the base station to the terminal.
  • MAC Medium Access Control
  • CE Control Element
  • L1 signaling eg, common DCI, group-common DCI, terminal-specific DCI
  • the configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 from which point in time the bandwidth portion activation is applied may depend on the following. From which point in time the setting change is applied, it follows a predefined value (eg, it is applied from N ( ⁇ 1) slots after receiving the setting change indicator), or is set from the base station to the UE through higher layer signaling (eg RRC signaling), or , may be partially included in the contents of the setting change indicator 4-15 and transmitted. Alternatively, the timing at which the setting change is applied may be determined by a combination of the above-described methods. After receiving the configuration change indicator 4-15 for the bandwidth portion, the terminal may apply the changed configuration from the point in time obtained by the above-described method.
  • a predefined value eg, it is applied from N ( ⁇ 1) slots after receiving the setting change indicator
  • RRC signaling eg RRC signaling
  • DCI downlink control information
  • scheduling information for uplink data (or physical uplink shared channel (PUSCH)) or downlink data (or physical downlink data channel (Physical Downlink Shared Channel, PDSCH)) is through DCI transmitted from the base station to the terminal.
  • the UE may monitor the DCI format for fallback and the DCI format for non-fallback for PUSCH or PDSCH.
  • the DCI format for countermeasures may be composed of a fixed field predetermined between the base station and the terminal, and the DCI format for non-prevention may include a configurable field.
  • the DCI may be transmitted through a Physical Downlink Control Channel (PDCCH), which is a physical downlink control channel, through a channel coding and modulation process.
  • PDCCH Physical Downlink Control Channel
  • a cyclic redundancy check (CRC) is attached to the DCI message payload, and the CRC is scrambled with a Radio Network Temporary Identifier (RNTI) corresponding to the identity of the terminal.
  • RNTI Radio Network Temporary Identifier
  • Different RNTIs are used according to the purpose of the DCI message, for example, UE-specific data transmission, a power control command, or a random access response. That is, the RNTI is not explicitly transmitted, but included in the CRC calculation process and transmitted.
  • the UE Upon receiving the DCI message transmitted on the PDCCH, the UE checks the CRC using the assigned RNTI. If the CRC check result is correct, the UE can know that the message has been transmitted to the UE.
  • DCI scheduling PDSCH for system information may be scrambled with SI-RNTI.
  • DCI scheduling a PDSCH for a random access response (RAR) message may be scrambled with an RA-RNTI.
  • DCI scheduling a PDSCH for a paging message may be scrambled with a P-RNTI.
  • DCI notifying SFI Slot Format Indicator
  • DCI notifying Transmit Power Control TPC
  • DCI for scheduling UE-specific PDSCH or PUSCH may be scrambled with C-RNTI (Cell RNTI).
  • DCI format 0_0 may be used as a DCI for scheduling PUSCH, and in this case, CRC may be scrambled with C-RNTI.
  • DCI format 0_0 in which CRC is scrambled with C-RNTI may include, for example, the following information.
  • DCI format 0_1 may be used as non-preparation DCI for scheduling PUSCH, and in this case, CRC may be scrambled with C-RNTI.
  • DCI format 0_1 in which CRC is scrambled with C-RNTI may include, for example, the following information.
  • ⁇ 0 bit if only resource allocation type 0 is configured; ⁇ 1 bit otherwise.
  • - Modulation and coding scheme - 5 bits - New data indicator - 1 bit - Redundancy version - 2 bits - HARQ process number - 4 bits - 1st downlink assignment index (first downlink assignment index) - 1 or 2 bits ⁇ 1 bit for semi-static HARQ-ACK codebook (in case of semi-static HARQ-ACK codebook); ⁇ 2 bits for dynamic HARQ-ACK codebook with single HARQ-ACK codebook (when dynamic HARQ-ACK codebook is used together with single HARQ-ACK codebook).
  • - 2nd downlink assignment index (second downlink assignment index) - 0 or 2 bits ⁇ 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks (when dynamic HARQ-ACK codebook is used together with two HARQ-ACK sub-codebooks); ⁇ 0 bit otherwise.
  • - TPC command for scheduled PUSCH - 2 bits - SRS resource indicator (SRS resource indicator) - or bits ⁇ bits for non-codebook based PUSCH transmission (when PUSCH transmission is not codebook based); ⁇ bits for codebook based PUSCH transmission (when PUSCH transmission is codebook based).
  • DCI format 1_0 may be used as a DCI for scheduling PDSCH, and in this case, CRC may be scrambled with C-RNTI.
  • DCI format 1_0 in which CRC is scrambled with C-RNTI may include, for example, the following information.
  • DCI format 1_1 may be used as non-preparation DCI for scheduling PDSCH, and in this case, CRC may be scrambled with C-RNTI.
  • DCI format 1_1 in which CRC is scrambled with C-RNTI may include, for example, the following information.
  • PRB bundling size indicator (physical resource block bundling size indicator) - 0 or 1 bit - Rate matching indicator - 0, 1, or 2 bits - ZP CSI-RS trigger (zero power channel state information reference signal trigger) - 0, 1, or 2 bits
  • Control Resource Set CORESET
  • a downlink control channel is transmitted in a 5G wireless communication system.
  • control region #1 (control region #1 (5-01), control region #2 (5-02) in one slot (5-20) on the time axis and the bandwidth part (5-10) of the terminal on the frequency axis ) shows an example in which it is set.
  • the control regions 5-01 and 5-02 may be set in a specific frequency resource 5-03 within the entire terminal bandwidth portion 5-10 on the frequency axis.
  • one or more OFDM symbols may be set, and this may be defined as a control region length (Control Resource Set Duration, 5-04).
  • the control region #1 (5-01) is set to a control region length of 2 symbols
  • the control region #2 (5-02) is set to a control region length of 1 symbol.
  • the control region in 5G described above may be set by the base station to the terminal through higher layer signaling (eg, system information, master information block (MIB), radio resource control (RRC) signaling).
  • Setting the control region to the terminal means providing information such as the control region identifier (Identity), the frequency position of the control region, and the symbol length of the control region. For example, it may include the following information.
  • ControlResourceSet SEQUENCE ⁇ controlResourceSetId ControlResourceSetId, (Control area identifier (Identity)) frequencyDomainResources BIT STRING (SIZE (45)), (frequency axis resource allocation information) duration INTEGER (1..maxCoReSetDuration), (Time axis resource allocation information) cce-REG-MappingType CHOICE ⁇ (CCE-to-REG mapping method) interleaved SEQUENCE ⁇ reg-BundleSize ENUMERATED ⁇ n2, n3, n6 ⁇ , (REG bundle size) interleaverSize ENUMERATED ⁇ n2, n3, n6 ⁇ , (interleaver size) shiftIndex INTEGER(0..maxNrofPhysicalResourceBlocks-1) OPTIONAL (Interleaver Shift) ⁇ , nonInterleaved NULL ⁇ , precoderGranularity ENUMERATED ⁇ sameAsREG-bundle
  • coresetPoolIndex may be an index of the CORESET pool to which the set control region belongs.
  • up to five CORESETs can be set in one BWP, and in this case, a set of CORESETs capable of performing multi-TRP transmission can be set to the same CORESETPoolIndex.
  • the UE may decode DCI by monitoring a plurality of PDCCHs included in CORESET in which CORESETPoolIndex is set to the same value in at least one BWP.
  • the UE may decode DCI by monitoring a plurality of PDCCHs included in CORESET in which CORESETPoolIndex is set to different values in at least one BWP.
  • the UE can expect to receive fully/partially/non-overlapped PDSCHs scheduled by the DCI.
  • 6 is a diagram illustrating an example of a basic unit of time and frequency resources constituting a downlink control channel that can be used in 5G.
  • the basic unit of time and frequency resources constituting the control channel is named REG (Resource Element Group, 6-03), and REG (6-03) is 1 OFDM symbol (6-01) on the time axis, On the frequency axis, 1 PRB (Physical Resource Block, 6-02), that is, may be defined as 12 subcarriers.
  • a downlink control channel allocation unit may be configured by concatenating the REGs 6-03.
  • one CCE 6-04 consists of a plurality of REGs 6-03.
  • the REG 6-03 shown in FIG. 6 is described as an example, the REG 6-03 may be composed of 12 REs and 1 CCE 6-04 is composed of 6 REGs 6-03. If configured, it means that 1 CCE (6-04) can be configured with 72 REs.
  • the corresponding region may be composed of a plurality of CCEs 6-04, and a specific downlink control channel may have one or more CCEs 6 according to an aggregation level (AL) within the control region. -04) can be mapped and transmitted.
  • the CCEs 6-04 in the control area are divided by numbers, and in this case, numbers may be assigned according to a logical mapping method.
  • the basic unit of the downlink control channel shown in FIG. 6, that is, REG 6-03, may include both REs to which DCI is mapped and regions to which DMRS 6-05, which is a reference signal for decoding them, is mapped. . As shown in FIG. 6, three DMRSs 6-05 may be transmitted within 1 REG 6-03.
  • the number of CCEs required to transmit the PDCCH may be 1, 2, 4, 8, or 16 according to an aggregation level (AL), and the number of different CCEs is the link adaptation of the downlink control channel.
  • AL aggregation level
  • the UE needs to detect a signal without knowing information about the downlink control channel.
  • a search space indicating a set of CCEs is defined.
  • the search space is a set of downlink control channel candidates consisting of CCEs that the UE should attempt to decode on a given aggregation level, and various aggregations that make one bundle with 1, 2, 4, 8, or 16 CCEs. Since there is a level, the terminal has a plurality of search spaces.
  • a search space set may be defined as a set of search spaces in all set aggregation levels.
  • the search space may be classified into a common search space and a UE-specific search space.
  • a group of terminals or all terminals may search the common search space of the PDCCH to receive control information common to cells such as dynamic scheduling for system information or a paging message.
  • PDSCH scheduling assignment information for SIB transmission including cell operator information may be received by examining the common search space of the PDCCH.
  • the common search space since terminals of a certain group or all terminals need to receive the PDCCH, it may be defined as a set of promised CCEs.
  • the UE-specific scheduling allocation information for the PDSCH or PUSCH may be received by examining the UE-specific search space of the PDCCH.
  • the UE-specific search space may be UE-specifically defined as a function of UE identity and various system parameters.
  • a parameter for the search space for the PDCCH may be set from the base station to the terminal through higher layer signaling (eg, SIB, MIB, RRC signaling).
  • the base station is the number of PDCCH candidates in each aggregation level L, the monitoring period for the search space, the monitoring occasion in symbol units in the slot for the search space, the search space type (common search space or terminal-specific search space), the corresponding search space
  • a combination of a DCI format and an RNTI to be monitored in the RNTI, a control region index for monitoring a search space, etc. may be set to the UE. For example, it may include the following information.
  • SearchSpace :: SEQUENCE ⁇ -- Identity of the search space.
  • SearchSpaceId 0 identifies the SearchSpace configured via PBCH (MIB) or ServingCellConfigCommon.
  • searchSpaceId SearchSpaceId, (search space identifier) controlResourceSetId ControlResourceSetId, (control area identifier) monitoringSlotPeriodicityAndOffset CHOICE ⁇ (Monitoring slot level cycle) sl1 NULL, sl2 INTEGER (0..1), sl4 INTEGER (0..3), sl5 INTEGER (0..4), sl8 INTEGER (0..7), sl10 INTEGER (0..9), sl16 INTEGER (0..15), sl20 INTEGER (0..19) ⁇ OPTIONAL, monitoringSymbolsWithinSlot BIT STRING (SIZE (14)) OPTIONAL, (Monitoring symbol in slot) nrofCandidates SEQUENCE ⁇ (N
  • SEQUENCE ⁇ (Common Search Space) ⁇ ue-Specific SEQUENCE ⁇ (Terminal-specific search space) -- Indicates whether the UE monitors in this USS for DCI formats 0-0 and 1-0 or for formats 0-1 and 1-1. formats ENUMERATED ⁇ formats0-0-And-1-0, formats0-1-And-1-1 ⁇ , ... ⁇
  • the base station may configure one or more search space sets for the terminal.
  • the base station may set the search space set 1 and the search space set 2 to the terminal, and may configure the DCI format A scrambled with X-RNTI in the search space set 1 to be monitored in the common search space, and in the search space set 2 DCI format B scrambled with Y-RNTI may be configured to be monitored in a UE-specific search space.
  • one or more search space sets may exist in a common search space or a terminal-specific search space.
  • the search space set #1 and the search space set #2 may be set as the common search space
  • the search space set #3 and the search space set #4 may be set as the terminal-specific search space.
  • a combination of the following DCI format and RNTI may be monitored.
  • a combination of the following DCI format and RNTI may be monitored.
  • RNTIs specified above may follow the definitions and uses below.
  • C-RNTI Cell RNTI
  • Cell RNTI UE-specific PDSCH scheduling purpose
  • TC-RNTI Temporal Cell RNTI
  • CS-RNTI Configured Scheduling RNTI
  • RA-RNTI Random Access RNTI
  • P-RNTI Paging RNTI
  • SI-RNTI System Information RNTI
  • INT-RNTI Used to indicate whether PDSCH is pucturing
  • TPC-PUSCH-RNTI Transmit Power Control for PUSCH RNTI
  • TPC-PUCCH-RNTI Transmit Power Control for PUCCH RNTI
  • TPC-SRS-RNTI Transmit Power Control for SRS RNTI
  • the set of search space sets monitored by the UE at every time point may vary. For example, if the search space set #1 is set to the X-slot period, the search space set #2 is set to the Y-slot period, and X and Y are different, the terminal sets the search space set #1 and the search space set# in a specific slot. 2 can be monitored, and one of the search space set #1 and the search space set #2 can be monitored in a specific slot.
  • parameters eg, parameters in Table 8
  • the following conditions may be considered in a method for determining a search space set to be monitored by the terminal.
  • the number of PDCCH candidates that can be monitored per slot does not exceed X.
  • the value of X may have a different value depending on the subcarrier spacing, and may be defined, for example, in the table below.
  • the subcarrier interval may be defined as 15 ⁇ 2 ⁇ kHz.
  • the number of CCEs constituting the entire search space per slot does not exceed Y.
  • the Y value may have a different value depending on the subcarrier spacing, and may be defined, for example, in the table below.
  • the subcarrier spacing may be defined as 15*2 ⁇ kHz.
  • condition A a situation that satisfies both conditions 1 and 2 at a specific point in time is defined as “condition A”. Therefore, not satisfying condition A may mean not satisfying at least one of conditions 1 and 2 above.
  • the above-described condition A may not be satisfied at a specific time point. If the condition A is not satisfied at a specific time point, the UE may select and monitor only some of the search space sets configured to satisfy the condition A at the corresponding time point, and the base station may transmit the PDCCH to the selected search space set.
  • the following method may be followed as a method of selecting a partial search space from among the entire set of search spaces.
  • condition A for PDCCH is not satisfied at a specific time point (slot).
  • the terminal may preferentially select a search space set in which the search space type is set as a common search space from among search space sets existing at a corresponding time, over a search space set set as a terminal-specific search space.
  • the terminal uses the terminal-specific search space You can select search space sets set to .
  • a search space set having a low search space set index may have a higher priority.
  • UE-specific search space sets may be selected within a range in which condition A is satisfied.
  • FIG. 7 is a diagram for explaining the configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
  • FIG. 7 an example of radio resource allocation for each transmission reception point (TRP) according to a joint transmission (JT) technique and a situation is illustrated.
  • 700 is a diagram illustrating coherent joint transmission (C-JT) supporting coherent precoding between each cell, TRP, and/or beam.
  • C-JT coherent joint transmission
  • TRP A 705 and TRP B 710 transmit the same data (PDSCH), and joint precoding can be performed in multiple TRPs. This may mean that the TRP A 705 and the TRP B 710 transmit the same DMRS ports (eg, DMRS ports A and B in both TRPs).
  • the terminal may receive one piece of DCI information for receiving one physical downlink shared channel (PDSCH) demodulated by the reference signal received through DMRS ports A and B.
  • PDSCH physical downlink shared channel
  • FIG. 7 720 is a diagram illustrating non-coherent joint transmission (NC-JT) supporting non-coherent precoding between each cell, TRP and/or beam.
  • NC-JT non-coherent joint transmission
  • different PDSCHs may be transmitted in each cell, TRP, and/or beam, and individual precoding may be applied to each PDSCH.
  • the TRP A 725 and the TRP B 730 transmit different DMRS ports (eg, DMRS port A in TRP A and DMRS port B in TRP B).
  • the UE may receive two types of DCI information for receiving PDSCH A demodulated by DMRS port A and PDSCH B demodulated by another DMRS port B.
  • NC-JT which transmits data from two or more transmission points to one terminal at the same time
  • PDSCHs transmitted from two (or more) different transmission points are allocated through a single PDCCH, or two It is necessary to allocate PDSCHs transmitted from the above different transmission points.
  • the UE acquires a QCL (quasi co-location) connection relationship between each reference signal or channel based on L1/L2/L3 signaling, and through this, efficiently estimates large scale parameters of each reference signal or channel can do. If the transmission point of the reference signal or channel is different, since large scale parameters are difficult to share with each other, when performing cooperative transmission, the base station simultaneously informs the terminal of quasi co-location information for two or more transmission points. It is necessary to inform through two or more TCI states.
  • non-coherent cooperative transmission is supported through multiple PDCCHs, that is, when two or more PDCCHs allocate two or more PDSCHs to the same serving cell and the same bandwidth portion at the same time, two or more TCI states are each PDCCH It may be allocated to each PDSCH to DMRS ports, respectively.
  • the two or more TCI states are one It may be allocated to each PDSCH to DMRS ports through the PDCCH of .
  • the DMRS ports allocated to the terminal at a specific time are divided into a DMRS port group A transmitted from a transmission point A and a DMRS port group B transmitted from a transmission point B, two or more TCI states are respectively connected to the DMRS port group. and a channel can be estimated based on different QCL assumptions for each group.
  • different DMRS ports may be subjected to code division multiplexing (CDM), frequency division multiplexing (FDM), or time domain multiplexing (TDM) in order to increase channel measurement accuracy and reduce transmission burden at the same time.
  • CDM code division multiplexing
  • FDM frequency division multiplexing
  • TDM time domain multiplexing
  • CDM group when the DMRS ports used for CDM are collectively referred to as the CDM group, code-based multiplexing works well when the channel characteristics of each port are similar to the DMRS ports in the CDM group (that is, if the channel characteristics of each port are similar, OCC (orthogonal It may be important to ensure that DMRS ports existing in the same CDM group do not have different TCI states because they are distinguished by the cover code).
  • a node may mean a physical or logical node in a wireless communication system that transmits and receives data with a terminal through a specific cell.
  • the node may mean a transmission/reception point (hereinafter, TRP), a base station, an evolved node B (eNodeB or eNB), a next generation node B (gNodeB, or gNB), and the like.
  • the first node may mean TRP for transmitting and receiving data to and from the terminal through the first cell
  • the second node is physically separated or separated from the first node and is different from the first cell. It may mean TRP for transmitting and receiving data with the terminal through the second cell.
  • the operation of transmitting data through a plurality of TRPs as described above may be referred to as a multi-TRP (M-TRP) operation.
  • M-TRP multi-TRP
  • an operation of transmitting data through a plurality of cells in a plurality of TRPs as described above may be referred to as an inter cell multi-TRP operation.
  • the plurality of cells may mean each cell operated by a plurality of base stations, may mean a plurality of cells operated by one base station, or a combination thereof.
  • the present disclosure proposes a method for the inter cell multi TRP operation.
  • an inter-cell can be configured through inter-cell configuration information, and the inter-cell configuration information includes a unit and method for configuring an inter-cell, a unit and method for grouping cells, and a method for identifying the cell.
  • the inter-cell configuration information includes a unit and method for configuring an inter-cell, a unit and method for grouping cells, and a method for identifying the cell.
  • At least one of information eg, cell id, serving cell id, physical cell id
  • the embodiment of the present disclosure is not limited thereto, and the above-described information may not be included in the inter-cell configuration information, and any information related to the inter-cell may be included.
  • the inter-cell configuration information may include SSB pattern (ssb-PositionsInBurst, ssb-periodicityServingCell), sub-carrier spacing (subcarrier Spacing), frequency (absoluteFrequencySSB), and the like.
  • the inter-cell configuration information refers to cell configuration information for inter-cell cooperative transmission, and may also be referred to as configuration information, cell configuration information, or the like.
  • the present disclosure may be applied to inter-cell multi-TRP cooperative transmission through serving cells and inter-cell multi-TRP cooperative transmission through serving cells and non-serving cells.
  • 8A and 8B are diagrams illustrating a beam management procedure according to an embodiment.
  • NR or 5G
  • One of the main functions in NR is to support a large number of controllable antenna elements for both transmit and receive.
  • a large number of antenna elements may be mainly used for beamforming for the purpose of extending coverage.
  • All NR channels and signals, including those used for control and synchronization, are designed to support beamforming.
  • NR can support analog beamforming as well as digital precoding and beamforming for implementation flexibility.
  • analog beamforming that converts a signal from digital to analog and then forms a beam may be used.
  • analog beamforming a reception beam or a transmission beam may be formed in one direction at a given point in time.
  • analog beamforming may require a process (beam sweeping) in which the same signal is repeated in a plurality of OFDM symbols but must be transmitted using different transmission beams. Since a signal can be transmitted with a high gain in any direction through the beam sweeping function, the signal can be transmitted through a narrow beam up to an intended entire coverage area.
  • the base station may indicate to the terminal information for selecting a beam through which the terminal receives data and control information.
  • Various signaling methods supporting such a beam management procedure may be considered.
  • the beam management aims to select and maintain a combination of the direction of the transmission beam on the transmission side and the direction of the reception beam on the reception side so that the channel gain is maximized. If the beam management is efficiently operated, data rate and throughput can be maximized.
  • the optimal beam pair may be a beam pair 820 in which the downlink transmission beam direction of the base station 810 and the downlink reception beam direction of the terminal 800 directly coincide with each other. there is.
  • the beam pair 830 in the transmission beam direction and the reception beam direction according to the reflection path may be an optimal beam pair. This can happen especially in high frequency bands where there is little diffraction at the edges of obstacles.
  • the base station 810 and the terminal 800 can determine an optimal beam pair even when the above-described direct path between the transmitting side and the receiving side is blocked.
  • FIG. 8A illustrates beamforming in the downlink direction
  • the optimal transmission/reception beam pair in the downlink direction may be the optimal beam pair in the uplink direction as well.
  • the optimal beam pair in the uplink direction may be the optimal beam pair in the downlink direction as well. In this case, it may be said that beam correspondence (or beam correspondence) is established for downlink and uplink.
  • initial beam establishment may refer to a procedure for establishing an initial beam pair.
  • the base station may transmit a synchronization signal block (SS/PBCH block, or SSB) corresponding to each beam using different downlink beams in an initial access process.
  • the UE may attempt random access to the BS by selecting one of a PRACH occasion (physical random access channel occasion) and a preamble corresponding to each beam.
  • the base station may check the downlink transmission beam for the terminal based on the received random access preamble.
  • SS/PBCH block synchronization signal block
  • the procedure of reconfirming the beam pair as described above may be referred to as a beam adjustment procedure.
  • the beam adjustment may include a downlink transmission side (eg, a base station) (downlink transmitter-side) beam adjustment and a downlink reception side (eg, a terminal) (downlink receiver-side) beam adjustment.
  • the reception beam of the terminal 800 may be maintained and the transmission beam of the base station 810 may be adjusted.
  • the base station 810 may sequentially transmit signals using different downlink beams. In this way, the base station 810 sequentially transmits signals using different beams may be referred to as beam sweeping.
  • the terminal 800 may measure a reference signal (RS) corresponding to the different downlink beams while maintaining the reception beam 850 .
  • the RS may be a channel state information reference signal (CSI-RS) or an SSB. Accordingly, the terminal 800 may measure the quality of different downlink beams on the transmission side. Also, the terminal 800 may report different measured beam qualities to the base station 810 . According to the above process, the optimal beam 840 of the downlink transmission side can be identified.
  • the base station 810 maintains the downlink transmission beam 860 and the terminal 800 may adjust the downlink reception beam (or beam sweep).
  • the terminal 800 may be configured with a set of downlink RSs.
  • the terminal 800 may perform measurement on the RS by sequentially applying a reception beam to the configured RS.
  • the terminal 800 may identify the optimal beam 870 of the downlink reception side based on the measurement value.
  • NR may support beam indication (or beam indication).
  • the beam indication may mean indicating (or specifying) to the UE that the PDSCH or PDCCH is being transmitted in the same beam as the configured RS (CSI-RS or SSB). Alternatively, it may mean indicating (or specifying) that the PDSCH or PDCCH is transmitted using the same spatial filter as the configured RS.
  • transmitting or receiving the PDSCH may mean transmitting or receiving data through the PDSCH.
  • transmitting or receiving a PDCCH may mean transmitting or receiving a DCI through the PDCCH.
  • a PDCCH transmission beam or a PDSCH transmission beam may mean a transmission beam used by a base station to transmit a PDCCH or a PDSCH to a UE, and the PDCCH reception beam or PDSCH reception beam means that the UE transmits a PDCCH or a PDSCH. It may mean a reception beam used for reception.
  • the beam indication may be made through downlink signaling using transmission configuration indicator state (TCI state) information.
  • TCI state information is one or more synchronization signal (SS) / physical broadcast channel (PBCH) block (referred to as SSB or SS / PBCH block) index or CSI-RS (channel state information reference signal) information of the index may include.
  • SS synchronization signal
  • PBCH physical broadcast channel
  • CSI-RS channel state information reference signal
  • the base station may inform the terminal of beam information related to downlink transmission (PDSCH or PDCCH transmission) through the TCI state information.
  • the UE may assume that the PDSCH or PDCCH is transmitted through the same beam as the downlink transmission beam through which the RS (CSI-RS or SSB) included in the TCI state information is transmitted.
  • CSI-RS or SSB RS
  • the base station may configure N (for example, up to 128) TCI state lists to the terminal.
  • the N TCI state list may be included in information (eg, PDSCH-Config) for PDSCH configuration in a configuration message (eg, RRC message) transmitted from the base station to the terminal.
  • Each TCI state of the TCI state list (eg, tci-StatesToAddModList) included in the information for the PDSCH configuration is a demodulation reference signal (DMRS) port of the PDSCH and a downlink RS in a quasi co-located (QCL) relationship.
  • DMRS demodulation reference signal
  • QCL quasi co-located
  • SSB or CSI-RS may indicate an index.
  • the base station may configure M (eg, up to 64) candidate TCI states for PDCCH used to indicate (or specify) a beam through which a PDCCH is transmitted among the N through a configuration message.
  • M e.g. up to 64
  • candidate TCI states for PDCCH used to indicate a beam through which the PDCCH is transmitted may be referred to as, for example, tci-StatesPDCCH.
  • Some of the M candidate TCI states for the PDCCH may be selected and included in information for configuring a control region related to the PDCCH, respectively.
  • each CORESET configuration information may include a list of candidate TCI states for PDCCH (eg, tci-StatesPDCCH-ToAddList).
  • Each CORESET setting information may include information according to Table 8 described above.
  • Each TCI state and QCL relationship may be set to the UE through the RRC parameters TCI-State and QCL-Info as shown in Table 13 below.
  • TCI-State SEQUENCE ⁇ tci-StateId TCI-StateId, (ID of TCI state) qcl-Type1 QCL-Info, (QCL information of the first reference RS of the RS (target RS) referring to the ID of the TCI state) qcl-Type2 QCL-Info OPTIONAL, -- Need R (QCL information of the second reference RS of the RS (target RS) referring to the ID of the TCI state) ...
  • QCL-Info :: SEQUENCE ⁇ cell ServCellIndex OPTIONAL, -- Need R (index of serving cell of reference RS indicated by QCL information) bwp-Id BWP-Id OPTIONAL, -- Cond CSI-RS-Indicated (index of BWP of reference RS indicated by QCL information) referenceSignal CHOICE ⁇ (reference RS ID indicated by QCL information) csi-rs NZP-CSI-RS-ResourceId, ssb SSB-Index (either CSI-RS ID or SSB-ID) ⁇ , qcl-Type ENUMERATED ⁇ typeA, typeB, typeC, typeD ⁇ , ... ⁇
  • one or more different antenna ports are to be associated with each other by QCL configuration such as QCL-Info of Table 13.
  • the QCL setting can connect two different antenna ports in a relationship between a (QCL) target antenna port and a (QCL) reference antenna port, and the terminal can perform statistical characteristics (eg, For example, all or part of the large scale parameters of the channel such as Doppler shift, Doppler spread, average delay, delay spread, average gain, and spatial Rx (or Tx) parameters or the reception spatial filter coefficient or transmission spatial filter coefficient of the terminal) are set to the target antenna. It can be applied (or assumed) when receiving a port.
  • statistical characteristics eg, For example, all or part of the large scale parameters of the channel such as Doppler shift, Doppler spread, average delay, delay spread, average gain, and spatial Rx (or Tx) parameters or the reception spatial filter coefficient or transmission spatial filter coefficient of the terminal
  • the target antenna port refers to an antenna port for transmitting a channel or signal set by a higher layer setting including the QCL setting, or an antenna port for transmitting a channel or signal to which a TCI state indicating the QCL setting is applied. .
  • the reference antenna port means an antenna port for transmitting a channel or signal indicated (specific) by a referenceSignal parameter in the QCL configuration.
  • the statistical characteristics of the channel defined by the QCL setting may be classified according to the QCL type as follows.
  • ⁇ 'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • the types of QCL type are not limited to the above four types, but all possible combinations are not listed in order not to obscure the gist of the description.
  • the bandwidth and transmission period of the target antenna port are both sufficient compared to the reference antenna port (that is, the number of samples and the transmission band/time of the target antenna port in both the frequency axis and the time axis are the number of samples and transmission of the reference antenna port. More than band/time)
  • QCL-TypeB is a QCL type used when the bandwidth of the target antenna port is sufficient to measure measurable statistical characteristics on the frequency axis, that is, Doppler shift and Doppler spreads.
  • QCL-TypeC is a QCL type used when the bandwidth and transmission period of the target antenna port are insufficient to measure second-order statistics, that is, Doppler spread and delay spreads, so that only first-order statistics, that is, Doppler shift and average delay, can be referred to. .
  • QCL-TypeD is a QCL type set when spatial reception filter values used when receiving a reference antenna port can be used when receiving a target antenna port.
  • the base station can set or instruct up to two QCL settings to one target antenna port through the TCI state setting.
  • the first QCL setting may be set to one of QCL-TypeA, QCL-TypeB, and QCL-TypeC.
  • the settable QCL type is specified according to the types of the target antenna port and the reference antenna port and will be described in detail below.
  • the second QCL setting among the two QCL settings included in the one TCI state setting may be set to QCL-TypeD, and may be omitted in some cases.
  • the base station transmits the configuration information to the terminal through a configuration message (eg, an RRC message), and the terminal may store it.
  • a configuration message eg, an RRC message
  • the base station may transmit a control message (eg, MAC CE) to the terminal to indicate (or specify) the changed beam.
  • a control message eg, MAC CE
  • the UE can confirm that the PDCCH is transmitted through the same beam as the RS (eg, CSI-RS or SSB) associated with the TCI state set for each CORESET (eg, the UE is the It can be assumed that the PDCCH is transmitted through a spatial filter such as RS).
  • indicating to the UE the beam through which the PDCCH is transmitted through the MAC CE message may be referred to as MAC CE based beam indication.
  • the base station may indicate (or specify) the changed beam by transmitting control information (eg, DCI) for scheduling the PDSCH to the terminal.
  • control information eg, DCI
  • the UE may need time to adjust the reception beam before decoding the TCI state information in the DCI and receiving the PDSCH.
  • the UE may need time to receive and store the PDSCH by using a beam adjusted to decode the transmitted PDSCH. Therefore, a method of instructing a change in the PDSCH transmission beam according to the time offset between the reception of the PDCCH and the reception of the PDSCH scheduled by the PDCCH and the capability of the UE to adjust and receive the reception beam is required. Do.
  • FIG. 9 is a diagram illustrating a procedure for reporting UE capability according to an embodiment of the present disclosure.
  • the terminal may perform a procedure of reporting the capability supported by the terminal to the corresponding base station while connected to the serving base station.
  • this may be referred to as UE capability report.
  • the base station may transmit a UE capability enquiry message for requesting a capability report to the terminal in the connected state in step S901.
  • the UE capability inquiry message may include a UE capability request for each RAT type.
  • the request for each RAT type may include requested frequency band information.
  • the UE capability enquiry message may include a plurality of RAT types in one RRC message container.
  • a UE capability enquiry message including a request for each RAT type may be delivered to the UE multiple times. That is, the UE capability enquiry message is repeatedly transmitted a plurality of times, and the UE may configure and report (transmit) a corresponding UE capability information message.
  • the base station may request UE capability for MR-DC including NR, LTE, and EN-DC.
  • the base station may transmit a UE capability inquiry message after the terminal is connected, and may also request a UE capability report under any conditions when the base station is needed.
  • the terminal may configure or acquire UE capability according to the RAT type and band information included in the UE capability enquiry message.
  • the SCS may include, for example, 60 kHz and 120 kHz.
  • the timeDurationForQCL may be the minimum number of OFDM symbols required for a UE to receive a PDCCH, change a PDSCH reception beam scheduled by the PDCCH, and receive a signal.
  • the timeDurationForQCL may be the minimum number of OFDM symbols required for the UE to receive the PDCCH and apply spatial QCL information included in the DCI.
  • the terminal may transmit a UE capability information message including the UE capability to the base station in step S902.
  • the base station may then perform scheduling and transmission/reception management for the corresponding terminal based on the UE capability received from the terminal.
  • FIG. 10 is a diagram illustrating a method of instructing a change in a PDSCH transmission beam when a plurality of PDSCHs are repeatedly transmitted according to an embodiment.
  • a plurality of PDSCHs are repeatedly transmitted to the terminal in two TRPs, so that the downlink throughput and reliability of the terminal can be expected to be improved.
  • the PDCCH 1005 may be transmitted through the control region of CORESET #0 in TRP 1 and the PDSCH 1010 scheduled by the PDCCH 1005 may be transmitted.
  • the UE may receive the PDCCH 1005 through the control region of CORESET #0 and receive the PDSCH 1010 scheduled by the PDCCH 1005 .
  • the PDCCH 1020 may be transmitted through the control region of CORESET #1, and the PDSCH 1025 scheduled by the PDCCH 1020 may be transmitted.
  • the UE may receive the PDCCH 1020 through the control region of CORESET #1 and receive the PDSCH 1025 scheduled by the PDCCH 1020 .
  • the PDCCHs 1005 and 1020 may indicate a change in a beam through which the scheduled PDSCHs 1010 and 1025 are transmitted, respectively.
  • the UE may receive DCI for scheduling the PDSCH by decoding the PDCCH.
  • the DCI may include a Transmission configuration indication field (hereinafter referred to as a TCI field).
  • the TCI field may be 0 bits when not indicating a beam change, and may have a length of bits (eg, 3 bits) of a specific length to indicate a beam change.
  • each codepoint of the TCI field may be mapped to at least one activated TCI state through the MAC CE.
  • the UE receives the PDCCH from the TRP 1 (1005) and the PDSCH is scheduled by DCI having a TCI field
  • the UE receives the DCI (1005) and the corresponding PDSCH reception (1010) a time offset (1015) )can confirm.
  • the time offset may mean a time difference from the last symbol resource of the PDCCH resource of the UE to the first symbol resource of the corresponding PDSCH resource scheduled by the PDCCH.
  • the UE is associated with the TCI state indicated by the TCI field.
  • a time threshold eg, timeDurationForQCL
  • the UE may assume that the DM-RS of the PDSCH 1010 is QCLed (quasi co-located) with the RS configured in association with the TCI state. Accordingly, the UE may receive the PDSCH 1010 from TRP 1 through the changed beam.
  • the UE receives the PDCCH from the TRP 2 (1020) and the PDSCH is scheduled by DCI having a TCI field
  • the UE receives the DCI (1020) and the corresponding PDSCH reception (1025). (1030) can be confirmed.
  • the time offset may mean a time difference from the last symbol resource of the PDCCH resource of the UE to the first symbol resource of the corresponding PDSCH resource scheduled by the PDCCH.
  • the UE is associated with the TCI state indicated by the TCI field
  • a time threshold eg, timeDurationForQCL
  • the UE may assume that the DM-RS of the PDSCH 1030 is QCLed with the RS configured in association with the TCI state. Accordingly, the UE may receive the PDSCH 1030 from TRP 2 through the changed beam.
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • repeated PDCCH transmission/reception or PDCCH repetition may be considered.
  • the PDCCH repetition one TRP or a plurality of TRPs transmits a plurality of PDCCH(s) including at least a portion of the same DCI, and the UE receives a plurality of PDCCH(s) including the at least a portion of the same DCI.
  • the terminal may or may not receive a plurality of PDCCH(s) transmitted by the base station according to channel conditions.
  • a plurality of transmitted PDCCH(s) may be included in the CORESET ID set to the same value in coresetPoolIndex.
  • a plurality of transmitted PDCCH(s) may be included in the CORESET ID set to different values in coresetPoolIndex.
  • a channel coding scheme may be considered as a method for improving PDCCH transmission/reception performance through a plurality of TRPs, and an additional combining gain may be considered when the PDCCH is repeated within one slot.
  • an additional combining gain may be considered when PDCCH is repeated within 1 slot or outside 1 slot.
  • information such as beam direction (TCI), frequency domain resource allocation (FDRA) information of the allocated PDSCH, time domain resource allocation (TDRA), HARQ ACK transmission time, PUCCH resource indicator, etc. are the same depending on the timing of the transmitted PDCCH or It may be changed.
  • TCI beam direction
  • FDRA frequency domain resource allocation
  • TDRA time domain resource allocation
  • HARQ ACK transmission time PUCCH resource indicator
  • the same DCI information among the repeated PDCCHs is Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, It may include at least one or more of DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, and DMRS sequence initialization.
  • FIG. 11 is a diagram illustrating a method for a base station to repeatedly transmit a PDCCH according to an embodiment of the present disclosure.
  • DCI including scheduling information for PUSCH or PDSCH may be transmitted from the base station to the terminal through the PDCCH.
  • the base station may generate a DCI, attach a CRC to a DCI payload, and generate a PDCCH through channel coding. Thereafter, the base station may copy the generated PDCCH a plurality of times and distribute it to different CORESET or search space resources for transmission.
  • the base station maps the PDCCHs to TRP A and TRP B one by one, respectively, in terms of spatial domain, based on the same or different beams.
  • the PDCCH may be repeatedly transmitted. If the base station repeatedly transmits the PDCCH four times, the base station maps two PDCCHs to TRP A and TRP B, respectively, and in this case, two PDCCHs of each TRP may be transmitted separately in the time domain.
  • the repeated PDCCH transmission differentiated in the time domain may be repeated in time units of slot based, subslot based, or mini-slot based.
  • the terminal and the base station may consider the following method for the above-described PDCCH repetition operation.
  • Method 1-1) PDCCH repetition in the time domain in the same CORESET and in the same slot.
  • Method 1-2 PDCCH repetition in the frequency domain in the same CORESET and in the same slot.
  • Method 1-3 PDCCH repetition in the spatial domain within the same CORESET and within the same slot.
  • Method 2-1 PDCCH repetition in the time domain between different slots within the same CORESET.
  • Method 2-2 PDCCH repetition in terms of frequency domain between different slots within the same CORESET.
  • Method 2-3 PDCCH repetition in the spatial domain between different slots within the same CORESET.
  • Method 3-1) PDCCH repetition between different CORESETs in terms of time domain within the same slot.
  • Method 3-2 PDCCH repetition between different CORESETs in terms of frequency domain within the same slot.
  • Method 3-3) PDCCH repetition between different CORESETs in terms of spatial domain within the same slot.
  • Method 4-1) PDCCH repetition in terms of time domain between different CORESETs and between different slots.
  • Method 4-3) PDCCH repetition in terms of spatial domain between different CORESETs and between different slots.
  • the number of repetitions of the PDCCH may increase independently, and accordingly, the above-described methods may be considered in combination at the same time.
  • the base station may preset information on which domain the PDCCH is repeatedly transmitted through to the terminal through the RRC message.
  • the base station in the case of repeated PDCCH transmission in terms of the time domain, the base station is any of the above-described slot-based, sub-slot-based, or mini-slot-based time units Information on whether or not to be repeated according to one may be preset in the terminal.
  • the base station may preset information on whether it is repeated based on any one of CORESET, bandwidth part (BWP), or component carrier (CC) to the terminal in advance.
  • BWP bandwidth part
  • CC component carrier
  • the base station may preset information related to a beam for repeated PDCCH transmission to the terminal through configuration for each QCL type.
  • the information listed above may be combined and transmitted to the terminal through an RRC message.
  • the base station may repeatedly transmit the PDCCH according to preset information through the RRC message, and the terminal may repeatedly receive the PDCCH according to the preset information through the RRC message.
  • the UE may check a time offset between a DCI reception time and a corresponding PDSCH reception time.
  • the time offset may mean a time difference from the last symbol resource of the PDCCH resource of the UE to the first symbol resource of the corresponding PDSCH resource scheduled by the PDCCH.
  • the time offset is equal to or greater than a time threshold required for the UE to receive the PDSCH due to a change in the beam through which the PDSCH is transmitted (hereinafter, simply referred to as timeDurationForQCL for convenience of technology). It may be assumed that the PDSCH is transmitted through the same beam as RS configured in association with the TCI state indicated by DCI. However, in a scenario in which PDCCHs including at least a portion of the same DCI are repeated, there is no standard for determining the time offset based on which PDCCH is received from among a plurality of PDCCHs.
  • the UE transmits the PDSCH reception beam in the DCI. It may not be possible to change to a reception beam corresponding to the indicated PDSCH transmission beam (TCI). Therefore, in a scenario in which the PDCCH is repeated, in the above situation, the base station and the terminal need to determine a beam for PDSCH transmission and reception scheduled by the DCI according to a specific criterion (or a predetermined appointment).
  • a specific criterion or a predetermined appointment.
  • an operation in which the base station and the terminal determine a beam for PDSCH transmission/reception according to a specific criterion in the above situation may be referred to as default QCL application or default QCL assumption.
  • the PDCCH for scheduling one PDSCH is repeated in the time domain in the same CORESET and in the same slot as in method 1-1).
  • a PDCCH serving as a reference is determined in order to check the time offset between the DCI reception and the corresponding PDSCH. Describe the method.
  • FIG. 12 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated in the time domain in the same CORESET and in the same slot according to an embodiment of the present disclosure.
  • the UE may be configured as follows through higher layer signaling (eg, RRC message) from the base station.
  • higher layer signaling eg, RRC message
  • Search space config#1 ⁇ controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), ⁇ 1st, 7th ⁇ symbol(monitoringSymbolsWithinSlot(11000001100000)), USS, ... ⁇
  • a separate parameter eg, linkage parameter
  • linkage parameter indicating that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) may be set through higher layer signaling. Accordingly, the base station or the terminal can confirm that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) configured by being connected to the linkage parameter.
  • the UE may attempt to decode PDCCHs based on the configuration information.
  • the base station uses at least some of the same DCI information (eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization, etc.) may be transmitted.
  • DCI information eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI,
  • the terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
  • the UE succeeds in decoding all PDCCHs in which at least some of the same DCIs are repeated within one slot.
  • the UE may check a time offset between DCI reception and the corresponding PDSCH reception based on the first transmitted PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam.
  • the terminal and the base station may check the time offset based on the PDCCH transmitted first among CORESET(s) or Search space(s) configured by being connected with the linkage parameter.
  • the terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • the UE succeeds in decoding all PDCCHs in which at least some of the same DCIs are repeated within one slot. For the example shown in FIG. 12 , it may be assumed that the UE succeeds in decoding both PDCCH #1 1205 and PDCCH #2 1210 .
  • the UE may check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the last transmitted PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam.
  • the terminal and the base station may check the time offset based on the last transmitted PDCCH among CORESET(s) or search space(s) configured by being connected with the linkage parameter.
  • the UE may check the time offset 1225 between the reception of DCI and the reception of the corresponding PDSCH #1 1215 based on PDCCH #2 1210 .
  • the terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • the UE succeeds in decoding only some of the PDCCHs in which at least some of the same DCI are repeated within one slot.
  • the UE confirms the time offset between DCI reception and the corresponding PDSCH reception based on the first successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs that succeed in decoding and indicate the change of the PDSCH transmission beam.
  • the terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • the UE succeeds in decoding only some of the PDCCHs in which at least some of the same DCI are repeated within one slot.
  • the terminal succeeds in decoding, and among the PDCCHs indicating the change of the PDSCH transmission beam, based on the PDCCH (or CORESET, search space set) that has been decoded the most, the time offset between the DCI reception and the corresponding PDSCH reception can be checked
  • the terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • the PDCCH for scheduling one PDSCH is repeated in the time domain between different slots within the same CORESET as in method 2-1).
  • a PDCCH serving as a reference is determined in order to check the time offset between the DCI reception and the corresponding PDSCH. Describe the method.
  • FIG. 13 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated in the time domain between different slots within the same CORESET according to an embodiment of the present disclosure.
  • the UE may be configured as follows through higher layer signaling from the base station.
  • Search space config#2 ⁇ controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), ⁇ 1st ⁇ symbol(monitoringSymbolsWithinSlot(11000000000000)), USS, ... ⁇
  • a separate parameter eg, linkage parameter
  • linkage parameter indicating that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) may be set through higher layer signaling. Accordingly, the base station or the terminal can confirm that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) configured by being connected to the linkage parameter.
  • the UE may attempt to decode PDCCHs based on the configuration information.
  • the base station uses at least some of the same DCI information (eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization, etc.) may be transmitted.
  • Some DCIs of PDCCH#1 ( 1305 ) and PDCCH#2 ( 1310 ) may be the same, and timing-related information such as time domain resource assignment (TDRA) may be different.
  • TDRA time domain resource assignment
  • the terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
  • the UE succeeds in decoding all of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
  • the UE may check a time offset between DCI reception and the corresponding PDSCH reception based on the first transmitted PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam.
  • the terminal and the base station may check the time offset based on the PDCCH transmitted first among CORESET(s) or Search space(s) configured by being connected with the linkage parameter.
  • the terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • the terminal can check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the first transmitted PDCCH (or CORESET, search space set) among the PDCCHs set with the same CORESETPoolIndex. .
  • the UE succeeds in decoding all of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots. For the example shown in FIG. 13 , it may be assumed that the UE succeeds in decoding both PDCCH #1 ( 1305 ) and PDCCH #2 ( 1310 ).
  • the UE may check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the last transmitted PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam.
  • the terminal and the base station may check the time offset based on the last transmitted PDCCH among CORESET(s) or search space(s) configured by being connected with the linkage parameter.
  • the UE may check the time offset 1325 between the reception of DCI and the reception of the corresponding PDSCH #1 1315 based on PDCCH #2 1310 .
  • the terminal and the base station are the time offset and,
  • the UE can check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the last transmitted PDCCH (or CORESET, search space set) among the PDCCHs set with the same CORESETPoolIndex. there is.
  • the UE succeeds in decoding all of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
  • the UE from among the PDCCHs indicating the change of the PDSCH transmission beam, based on the PDCCH (or CORESET, search space set) transmitted first in the most recent (last) slot, a time offset between DCI reception and the corresponding PDSCH reception can confirm.
  • the terminal and the base station may check the time offset based on the PDCCH transmitted first in the most recent (last) slot among CORESET(s) or Search space(s) configured by being connected with the linkage parameter.
  • the terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • CORESETPoolIndex is set by the base station
  • the UE receives DCI based on the PDCCH (or CORESET, Search space set) transmitted first in the most recent (last) slot among the PDCCHs set to the same CORESETPoolIndex and receives the corresponding PDSCH. You can check the time offset between them.
  • the UE succeeds in decoding all of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
  • the UE from among the PDCCHs indicating the change of the PDSCH transmission beam, based on the PDCCH (or CORESET, search space set) transmitted last in the first transmitted slot, a time offset between DCI reception and the corresponding PDSCH reception can confirm.
  • the terminal and the base station may check the time offset based on the last transmitted PDCCH in the first transmitted slot among the CORESET(s) or the search space(s) configured by being connected with the linkage parameter.
  • the terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • CORESETPoolIndex is set by the base station
  • the UE receives DCI and the corresponding PDSCH based on the last transmitted PDCCH (or CORESET, search space set) in the first transmitted slot among the PDCCHs set to the same CORESETPoolIndex. You can check the time offset between them.
  • the UE succeeds in decoding only some of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
  • the UE may check the time offset between DCI reception and the corresponding PDSCH reception based on the first successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam.
  • the terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • the CORESETPoolIndex is set by the base station, the UE can check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the PDCCH (or CORESET, Search space set) that has been decoded first among the PDCCHs set with the same CORESETPoolIndex. there is.
  • the UE succeeds in decoding only some of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
  • the UE fails in decoding PDCCH #1 1305, and PDCCH(s) (not shown) transmitted after PDCCH #1 and decoding of PDCCH #2 1310 is successful. can be assumed.
  • the UE may check the time offset between DCI reception and the corresponding PDSCH reception based on the last successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam. For example, as shown in FIG. 13 , the UE may check a time offset 1325 between reception of DCI and reception of corresponding PDSCH #1 1315 based on PDCCH #2 1310 . The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
  • the terminal checks the time offset between DCI reception and the corresponding PDSCH reception based on the last successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs set to the same CORESETPoolIndex.
  • the UE receives a DCI and a time offset between the corresponding PDSCH reception times can confirm.
  • the time offset is equal to or greater than the timeDurationForQCL
  • the UE may assume that the PDSCH is transmitted through the same beam as the RS configured in association with the TCI state indicated by the DCI.
  • the UE may receive the PDSCH through the changed beam.
  • a third embodiment of the present disclosure describes a method in which a base station and a terminal apply the default QCL in a scenario in which PDCCHs including at least a part of the same DCI are repeated.
  • the UE is not preset to enable the default QCL application operation for each CORESET Pool.
  • the terminal may be a case where the enableDefaultTCIStatePerCoresetPoolIndex parameter in the RRC configuration message is not set.
  • the UE may assume that the DMRS port for PDSCH reception is QCLed with the SS/PBCH block determined in the initial access procedure in the serving cell, QCL-TypeA, and QCL-TypeD.
  • the UE may perform beamforming by applying the QCL parameter applied to reception in the SS/PBCH block determined in the initial access procedure as a beam for receiving PDSCH #1 1215.
  • the terminal may receive data from the base station through the changed beam.
  • the UE is preset to enable the default QCL application operation for each CORESET Pool.
  • the UE may set the enableDefaultTCIStatePerCoresetPoolIndex parameter in the RRC configuration message and include two different values of CORESETPoolIndex in the ControlResourceset.
  • the UE can apply the QCL parameter of the PDCCH transmitted through the CORESET associated with the search space monitored in the lowest controlResourceSetId among a plurality of CORESETs in the CORESETPoolIndex set in the serving cell as a beam for receiving the PDSCH.
  • the UE may consider that the RS associated with the QCL parameter of the PDCCH and the DMRS port for receiving the PDSCH are QCLed to each other.
  • the plurality of CORESETs may refer to CORESETs set to the same CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
  • the terminal when the time offset (1320) between the reception of DCI and the reception of the corresponding PDSCH #1 (1315) based on PDCCH #1 (1305) is less than the timeDurationForQCL, the terminal As a beam for receiving PDSCH #1 (1315), in CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell, the QCL parameter of the PDCCH transmitted through the CORESET associated with the search space monitored in the most recent slot is applied. can do.
  • the UE may assume that the PDSCH #1 (1315) is transmitted through the same beam through which the PDCCH last monitored before slot #0 through which the PDCCH #1 (1305) is transmitted from the base station.
  • the terminal when the time offset 1325 between the reception of the DCI and the reception of the corresponding PDSCH #1 (1315) based on the PDCCH #2 1310 is smaller than the timeDurationForQCL, the terminal is a beam for receiving PDSCH #1 (1315), and in CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell, the PDCCH transmitted through the CORESET associated with the search space monitored in the most recent slot (PDCCH #1 ) of QCL parameter can be applied.
  • the UE may assume that the PDSCH #1 1315 is transmitted through the same beam through which the PDCCH #1 1305 is transmitted from the base station.
  • the UE fails to decode PDCCH #1 ( 1205 ) and succeeds in decoding of PDCCH # 2 ( 1210 ).
  • the UE uses a beam for receiving PDSCH #1 (1315).
  • CORESET #X which is the lowest CORESETId
  • the QCL parameter of the PDCCH (PDCCH #1) transmitted through the CORESET associated with the monitored search space in the most recent slot may be applied.
  • the UE may assume that the PDSCH #1 1315 is transmitted through the same beam through which the PDCCH #1 1305 is transmitted from the base station.
  • a PDCCH for scheduling two PDSCHs is repeated in the same CORESET and in the same slot in the time domain as in method 1-1), or in the same CORESET in a different slot as in method 2-1).
  • a case of repetition in terms of the inter-time domain can be assumed.
  • FIG. 14 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in the time domain within the same CORESET and in the same slot according to an embodiment of the present disclosure.
  • the UE may be configured from the base station through the same higher layer signaling as described in the first embodiment, and the UE decodes PDCCHs based on this can try
  • the base station uses at least some of the same DCI information (eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization, etc.) may be transmitted.
  • DCI information eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI,
  • the terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
  • 15 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in the time domain between different slots within the same CORESET according to an embodiment of the present disclosure.
  • the UE may be configured from the base station through the same higher layer signaling as described in the second embodiment, and the UE decodes PDCCHs based on this can try
  • the base station uses at least some of the same DCI information (eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization, etc.) may be transmitted.
  • Some DCIs of the PDCCH#1 1505 and the PDCCH#2 1510 may be the same, and timing-related information such as time domain resource assignment (TDRA) may be different.
  • TDRA time domain resource assignment
  • the terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
  • the methods described in the first and second embodiments may be equally applied. Therefore, the following describes how the base station and the terminal apply the default QCL in a scenario in which PDCCHs for scheduling two PDSCHs are repeated in the same slot or in different slots.
  • the UE is preset to enable the default QCL application operation when the PDCCH for scheduling two PDSCHs is repeated.
  • the terminal may set the enableTwoDefaultTCIStates parameter in the RRC configuration message.
  • each codepoint of the TCI field described above through the MAC CE may be mapped to two different activated TCI states.
  • the terminal may refer to two TCI states corresponding to the lowest codepoint among TCI codepoints mapped to two different TCI states.
  • the UE may apply the QCL parameter of the RS associated with each of the referenced TCI states.
  • the UE may assume that the DMRS port of each PDSCH or PDSCH transmission occasion is QCL with the associated RS.
  • the UE may receive PDSCH #1 (1415, 1515) and PDSCH #2 (1420, 1520) by applying two QCL parameters respectively associated with the referenced TCI states.
  • the UE corresponds to the lowest (lowest) codepoint among TCI codepoints including two TCI states (two different TCI states) preset in MAC CE as a beam for receiving PDSCH#1 (1415) and PDSCH #2 (1420) TCI states), PDSCH#1 (1415) and PDSCH#2 (1420) may be received by applying the specified QCL parameter.
  • the base station and the terminal may apply the default QCL. Thereafter, the method of applying the default QCL is the same as above.
  • the base station and the UE may apply the default QCL.
  • the UE is a beam for receiving PDSCH#1 (1415) and PDSCH #2 (1420).
  • PDSCH#1 (1415) and PDSCH #2 (1420) may be received by applying the QCL parameter specified in (TCI states corresponding to the lowest) codepoint, respectively.
  • the base station and the terminal receive DCI based on the PDCCH#1 (1405) regardless of whether the PDCCH#2 (1410) is repeated and this If the time offset (1425, 1430) between reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL value, the above-described default QCL is applied to PDSCH#1 (1415), PDSCH #2 (1420) ) can be received.
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #1 (1405) to PDSCH#1 (1415), PDSCH #2 1420 may be received.
  • the base station and the terminal when the terminal fails to receive and decode PDCCH#1 ( 1405 ) and to receive and decode PDCCH#2 ( 1410 ), the base station and the terminal receive DCI based on PDCCH #2 ( 1410 ) And if the time offset (1435, 1440) between reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL value, the above-described default QCL is applied to PDSCH#1 (1415), PDSCH #2 1420 may be received.
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1410) to PDSCH#1 (1415), PDSCH #2 1420 may be received.
  • the base station and the terminal may apply the default QCL.
  • the UE is a beam for receiving PDSCH#1 (1415) and PDSCH #2 (1420).
  • PDSCH#1 (1415) and PDSCH #2 (1420) may be received by applying the QCL parameter specified in (TCI states corresponding to the lowest) codepoint, respectively.
  • the UE may succeed in receiving and decoding the PDCCH #2 1410 to check whether DCI information is repeated. Thereafter, the base station and the terminal receive DCI based on PDCCH #2 (1410) and the time offset (1435, 1440) between reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL value.
  • PDSCH#1 (1415) and PDSCH#2 (1420) may be received by applying the default QCL described above.
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1410) to PDSCH#1 (1415) , PDSCH #2 1420 may be received.
  • the terminal fails to receive and decode PDCCH#1 ( 1405 ) and succeed in receiving and decoding PDCCH #2 ( 1410 )
  • the base station and the terminal receive DCI based on PDCCH #2 ( 1410 )
  • the time offset (1435, 1440) between reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL value
  • the above-described default QCL is applied to PDSCH#1 (1415), PDSCH #2 1420 may be received.
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1410) to PDSCH#1 (1415), PDSCH #2 1420 may be received.
  • the PDCCH as a reference is determined by any one of the above-described embodiments 2-1) to 2-6), and thereafter, the base station and the terminal may perform the above-described operation.
  • the base station and the terminal receive DCI based on PDCCH #1 (1505) and the corresponding PDSCH #1 (1515) or PDSCH #2 (1520) If the time offset (1525, 1530) between receptions is smaller than the timeDurationForQCL value, the above-described default QCL may be applied to receive PDSCH#1 (1515) and PDSCH #2 (1520).
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #1 1505 to PDSCH #1 (1515) and PDSCH #2 (1520) may be received.
  • the base station and the terminal receive DCI based on PDCCH #2 (1510) and the corresponding PDSCH #1 (1515) or PDSCH #2 (1520) ), if the time offset (1535, 1540) between receptions is smaller than the timeDurationForQCL value, the above-described default QCL may be applied to receive PDSCH#1 (1515) and PDSCH #2 (1520).
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1510) to PDSCH #1 (1515) and PDSCH #2 (1520) may be received.
  • the PDCCH scheduling one PDSCH is repeated in the time domain or spatial domain within the same slot, as in methods 3-1) and 3-3).
  • the PDCCH scheduling one PDSCH is repeated in the time domain or spatial domain between different CORESETs and between different slots as in Method 4-1) and Method 4-3).
  • FIG. 16 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated between different CORESETs in the time domain or spatial domain within the same slot according to an embodiment of the present disclosure.
  • the UE may be configured as follows through higher layer signaling from the base station.
  • Search space config#1 ⁇ controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), ⁇ 1st ⁇ symbol(monitoringSymbolsWithinSlot(11000000000000)), USS, ... ⁇
  • Search space config#2 ⁇ controlresourcesetId(X+1), 1 slot periodicity(duration field absent), 0 offset(sl1), ⁇ 4th ⁇ symbol(monitoringSymbolsWithinSlot(0001100000000)), USS, ... ⁇
  • a separate parameter eg, linkage parameter
  • linkage parameter indicating that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) may be set through higher layer signaling. Accordingly, the base station or the terminal can confirm that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) configured by being connected to the linkage parameter.
  • the UE may attempt to decode PDCCHs based on the configuration information.
  • the base station transmits at least some or all of the same DCI information (eg, MCS) through PDCCH #1 1605 of CORESET #X and PDCCH #2 1610 of CORESET #X+1 in slot #0. , TDRA, FDRA, or TCI) may be transmitted.
  • the base station uses some of the same DCI information (eg, MCS, TDRA, FDRA, etc.) through PDCCH #3 (1615) of CORESET #X and PDCCH #4 (1620) of CORESET #X+1 in slot #1. , and some may transmit different information (eg, TCI).
  • the terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
  • 17 is a diagram illustrating a case in which a PDCCH for scheduling one PDSCH is repeated between different CORESETs and between different slots in a time domain or spatial domain according to an embodiment of the present disclosure.
  • the UE may be configured as follows through higher layer signaling from the base station.
  • Search space config#1' ⁇ controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), ⁇ 1st ⁇ symbol(monitoringSymbolsWithinSlot(11000000000000), USS, ... ⁇
  • Search space config#2' ⁇ controlresourcesetId(X+1), 1 slot periodicity(duration field absent), 0 offset(sl1), ⁇ 3rd ⁇ symbol(monitoringSymbolsWithinSlot(00110000000000), USS, ... ⁇
  • a separate parameter eg, linkage parameter
  • linkage parameter indicating that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) may be set through higher layer signaling. Accordingly, the base station or the terminal can confirm that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) configured by being connected to the linkage parameter.
  • the UE may attempt to decode PDCCHs based on the configuration information.
  • the base station performs PDCCH #1 (1705) and PDCCH #2 (1710) and PDCCH #2 (1710) of CORESET #X in slot #0 and slot #1, and PDCCH #3 (1715) and PDCCH #4 ( 1720), at least some of the same DCI information (eg, MCS, TDRA, FDRA, or TCI) may be transmitted.
  • DCI information eg, MCS, TDRA, FDRA, or TCI
  • Some DCIs of the PDCCH#1 1705 and the PDCCH#2 1710 may be the same, and timing related information such as TDRA may be the same or different.
  • some DCIs of PDCCH#3 1715 and PDCCH#4 1720 may be the same, and timing related information such as TDRA may be the same or different.
  • a case in which the timing information is the same can be understood as a case different in the spatial domain.
  • PDCCH #2, PDCCH #3, PDCCH #4 ⁇ in the same slot some or all of the same DCI may be transmitted.
  • the terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
  • the methods described in the first and second embodiments may be equally applied. Therefore, the following describes how the base station and the terminal apply the default QCL in a scenario in which a PDCCH scheduling one PDSCH is repeated in the same slot or in a different slot.
  • the UE is not preset to enable the default QCL application operation for each CORESET Pool.
  • the terminal may be a case where the enableDefaultTCIStatePerCoresetPoolIndex parameter in the RRC configuration message is not set.
  • the UE may assume that the DMRS port for PDSCH reception is QCLed with the SS/PBCH block determined in the initial access procedure in the serving cell, QCL-TypeA, and QCL-TypeD.
  • the UE may perform beamforming by applying the QCL parameter applied to reception in the SS/PBCH block determined in the initial access procedure as a beam for receiving PDSCH #3 1635 .
  • the terminal may receive data from the base station through the changed beam.
  • the UE may perform beamforming by applying the QCL parameter applied to reception in the SS/PBCH block determined in the initial access procedure as a beam for receiving PDSCH #4 (1640).
  • the terminal may receive data from the base station through the changed beam.
  • the terminal is preset to enable the default QCL application operation for each CORESET Pool.
  • the UE may set the enableDefaultTCIStatePerCoresetPoolIndex parameter in the RRC configuration message and include two different values of CORESETPoolIndex in the ControlResourceset.
  • the UE can apply the QCL parameter of the PDCCH transmitted through the CORESET associated with the search space monitored in the lowest controlResourceSetId among a plurality of CORESETs in the CORESETPoolIndex set in the serving cell as a beam for receiving the PDSCH.
  • the UE may consider that the RS associated with the QCL parameter of the PDCCH and the DMRS port for receiving the PDSCH are QCLed to each other.
  • the plurality of CORESETs may refer to CORESETs set to the same CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
  • the plurality of CORESETs may mean CORESETs set to different CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
  • the terminal when the time offset (1735) between the reception of the DCI and the reception of the corresponding PDSCH #1 (1725) based on the PDCCH #1 (1705) is smaller than the timeDurationForQCL, the terminal is a beam for receiving PDSCH #1 (1725), and in CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell, the QCL parameter of the PDCCH transmitted through the CORESET associated with the search space monitored in the most recent slot.
  • CORESET #X and CORESET #X+1 are set to the same CORESETPoolIndex (eg 0)
  • the UE determines that the last monitored PDCCH before slot #0 in which PDCCH #1 (1705) is transmitted from the base station is It may be assumed that the PDSCH #1 1725 is transmitted through the same beam as the transmitted beam.
  • CORESET #X and CORESET #X+1 are set to different CORESETPoolIndex (eg, 0 and 1), the terminal last monitored before slot #0 in which PDCCH #1 (1705) is transmitted from the base station. It may be assumed that the PDSCH #1 1725 is transmitted through the same beam through which the PDCCH is transmitted.
  • the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #1 (1705) to PDSCH#1 (1725) can receive
  • the UE fails to decode PDCCH #1 (1705), PDCCH #2 (1710), and decodes PDCCH #3 (1715), PDCCH #4 (1720) is successful, the UE first succeeds in decoding Based on PDCCH #3 (1715), a time offset (1745) between DCI reception and a corresponding PDSCH #2 (1730) (or PDSCH #1 (1725)) can be confirmed.
  • the UE When the time offset (1745) is smaller than the timeDurationForQCL, the UE is a beam for receiving PDSCH #2 (1730) (or PDSCH #1 (1725)), and CORESET #X and CORESET #X+1 are the same CORESETPoolIndex If set, in CORESET #X, which is the lowest CORESETId, in CORESET #X+1, which is the lowest CORESETId if CORESET #X and CORESET #X+1 are set to different CORESETPoolIndexes (eg 0 and 1), monitored search space in the most recent slot
  • the QCL parameter of the PDCCH (PDCCH #1 or PDCCH #2) transmitted through the CORESET associated with may be applied.
  • CORESET #X and CORESET #X+1 are set to the same CORESETPoolIndex
  • the UE uses the same beam through which PDCCH #1 (1705) is transmitted from the base station PDSCH #2 (1730) (or PDSCH #1 (1725) )) can be assumed to be transmitted.
  • PDSCH #2 (1730) (or PDSCH #1 ( 1725)) is transmitted.
  • the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #3 (1715) to PDSCH #1 (1725) (or PDSCH #2 1730).
  • the UE fails to decode PDCCH #1 (1705), PDCCH #4 (1720), and decoding of PDCCH #2 (1710), PDCCH #3 (1715) is successful, the UE is the first to decode Based on the successful PDCCH #3 (1715), it is possible to check the time offset (1745) between the DCI reception and the corresponding PDSCH #1 (1725) (or PDSCH #2 (1730)).
  • the UE When the time offset (1745) is smaller than the timeDurationForQCL, the UE is a beam for receiving PDSCH #1 (1725) (or PDSCH #2 (1730)), CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell , the QCL parameter of the PDCCH transmitted through the CORESET associated with the monitored search space in the latest slot may be applied. For example, if CORESET #X and CORESET #X+1 are both set to the same CORESETPoolIndex (eg 0), the terminal last monitored PDCCH before slot #0 in which PDCCH #3 (1715) is transmitted from the base station.
  • CORESET #X which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell
  • the QCL parameter of the PDCCH transmitted through the CORESET associated with the monitored search space in the latest slot may be applied. For example, if CORESET #X and CORESET #
  • PDSCH #1 1725 (or PDSCH #2 1730) is transmitted through the same beam as the transmitted beam.
  • CORESET X and CORESET X+1 are set to different CORESETPoolIndex (eg, 0 and 1)
  • the UE transmits PDSCH #1 (1725) through the same beam through which PDCCH #1 (1705) is transmitted from the base station.
  • PDSCH #2 1730 is transmitted through the same beam through which the PDCCH last monitored before slot #0 through which PDCCH #3 1715 is transmitted.
  • the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #3 (1715) to PDSCH #1 (1725) (or PDSCH #2 1730).
  • the UE fails to decode PDCCH #1 (1705) and PDCCH #2 (1710), and the decoding of PDCCH #3 (1715) and PDCCH #4 (1720) is successful, the UE is the last to decode Based on the successful PDCCH #4 (1720), it is possible to check the time offset (1750) between the DCI reception and the corresponding PDSCH #2 (1730) (or PDSCH #1 (1725)).
  • the terminal When the time offset (1750) is smaller than the timeDurationForQCL, the terminal is a beam for receiving PDSCH #2 (1730) (or PDSCH #1 (1725)), in CORESET that is the lowest CORESETId in CORESETPoolIndex set in the serving cell, the most The QCL parameter of the PDCCH (PDCCH #1) transmitted through the CORESET associated with the monitored search space in the latest slot can be applied. For example, if CORESET #X and CORESET #X+1 are both set to the same CORESETPoolIndex (eg 0), the UE transmits PDSCH #2 (1730) through the same beam through which PDCCH #1 (1705) is transmitted from the base station.
  • CORESET #X and CORESET #X+1 are both set to the same CORESETPoolIndex (eg 0)
  • the UE transmits PDSCH #2 (1730) through the same beam through which PDCCH #1 (1705) is transmitted from the base station.
  • PDSCH #1 (1725) may be assumed to be transmitted.
  • CORESET #X and CORESET #X+1 are set to different CORESETPoolIndex (eg, 0 and 1)
  • the UE uses the same beam through which PDCCH #3 (1705) is transmitted from the base station PDSCH #2 It may be assumed that 1730 is transmitted.
  • the time offset (1750) is equal to or greater than the timeDurationForQCL value
  • the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #4 (1720) to PDSCH #1 (1725) (or PDSCH #2 1730).
  • the terminal decodes the last Based on the successful PDCCH #2 (1710), a time offset (1740) between the DCI reception and the corresponding PDSCH #1 (1725) (or PDSCH #2 (1730)) can be confirmed.
  • the UE When the time offset (1740) is smaller than the timeDurationForQCL, the UE is a beam for receiving PDSCH #1 (1725) (or PDSCH #2 (1730)), CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell
  • CORESET #X which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell
  • the QCL parameter of the PDCCH (PDCCH #1) transmitted through the CORESET associated with the monitored search space in the latest slot may be applied. For example, if both CORESET #X and CORESET #X+1 are set to the same CORESETPoolIndex (eg 0), the UE transmits PDSCH #1 (1725) through the same beam through which PDCCH #1 (1705) is transmitted from the base station.
  • PDSCH #2 1730 may be assumed to be transmitted.
  • CORESET X and CORESET X+1 are set to different CORESETPoolIndex (eg, 0 and 1)
  • the UE transmits PDSCH #1 (1725) through the same beam through which PDCCH #1 (1705) is transmitted from the base station.
  • PDSCH #2 1730 is transmitted through the same beam through which the PDCCH last monitored before slot #0 through which PDCCH #3 1715 is transmitted.
  • the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 1710 to PDSCH #1 (1725) (or PDSCH #2 1730).
  • the PDCCH scheduling two PDSCHs is repeated between different CORESETs, in the time domain aspect or in the spatial domain aspect within the same slot, as in methods 3-1) and 3-3).
  • the PDCCH scheduling two PDSCHs is repeated in the time domain or spatial domain between different CORESETs and between different slots as in Method 4-1) and Method 4-3).
  • FIG. 18 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated between different CORESETs in the time domain or spatial domain within the same slot according to an embodiment of the present disclosure.
  • the UE For repeated PDCCH transmission/reception between different CORESETs, in the time domain side or in the spatial domain side within the same slot, the UE performs upper layer signaling from the base station in the same manner as described with Search space config#1 and Search space config#2 in the fifth embodiment. may be configured through , and the UE may attempt to decode PDCCHs based on this.
  • the base station transmits at least some of the same DCI information (eg, MCS, TDRA, FDRA or TCI).
  • DCI information eg, MCS, TDRA, FDRA or TCI.
  • the terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
  • 19 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in a time domain or spatial domain between different CORESETs and between different slots according to an embodiment of the present disclosure.
  • the UE For repeated PDCCH transmission/reception between different CORESETs and different slots in the time domain or spatial domain, the UE receives the same upper level from the base station as described with Search space config#1' and Search space config#2' in the fifth embodiment. It may be configured through layer signaling, and the UE may attempt to decode PDCCHs based on this.
  • the base station performs PDCCH #1 (1905) and PDCCH #2 (1910) of CORESET #0 in slot #0 and slot #1, and PDCCH #3 (1915) and PDCCH #4 (1920) of CORESET #1. ) through at least some of the same DCI information (eg, MCS, TDRA, FDRA, or TCI) may be transmitted.
  • DCI information eg, MCS, TDRA, FDRA, or TCI
  • Some DCIs of PDCCH#1 1905 and PDCCH#2 1910 may be the same, and timing related information such as TDRA may be the same or different.
  • some DCIs of PDCCH#3 1915 and PDCCH#4 1920 may be the same, and timing related information such as TDRA may be the same or different.
  • a case in which the timing information is the same can be understood as a case different in the spatial domain.
  • PDCCH #2, PDCCH #3, PDCCH #4 ⁇ in the same slot some or all of the same DCI may be transmitted.
  • the terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
  • the methods described in the first and second embodiments may be equally applied. Therefore, the following describes how the base station and the terminal apply the default QCL in a scenario in which a PDCCH scheduling one PDSCH is repeated in the same slot or in a different slot.
  • the UE is preset to enable the default QCL application operation when the PDCCH for scheduling two PDSCHs is repeated.
  • the terminal may set the enableTwoDefaultTCIStates parameter in the RRC configuration message.
  • each codepoint of the TCI field described above through the MAC CE may be mapped to two different activated TCI states.
  • the terminal may refer to two TCI states corresponding to the lowest codepoint among TCI codepoints mapped to two different TCI states.
  • the UE may apply the QCL parameter of the RS associated with each of the referenced TCI states.
  • the UE may assume that the DMRS port of each PDSCH or PDSCH transmission occasion is QCL with the associated RS. For example, the UE may receive PDSCH #1 (1815, 1925) and PDSCH #2 (1820, 1930) by applying two QCL parameters respectively associated with the referenced TCI states.
  • the UE corresponds to the lowest codepoint among TCI codepoints including two TCI states (two different TCI states) preset in MAC CE as a beam for receiving PDSCH#1 (1815) and PDSCH #2 (1820).
  • TCI states), PDSCH#1 (1815) and PDSCH#2 (1820) may be received by applying the specified QCL parameter.
  • the base station and the terminal may apply the default QCL. Thereafter, the method of applying the default QCL is the same as above.
  • the base station and the UE may apply the default QCL.
  • the UE is a beam for receiving PDSCH#1 (1815) and PDSCH #2 (1820), and two TCI states (TCI codepoints including two different TCI states) preset for CORESET #0 or CORESET #1 in MAC CE PDSCH#1 (1815) and PDSCH#2 (1820) may be received by applying the QCL parameter specified in the TCI states corresponding to the lowest codepoint among them.
  • TCI states TCI codepoints including two different TCI states preset for CORESET #0 or CORESET #1 in MAC CE PDSCH#1 (1815) and PDSCH#2 (1820) may be received by applying the QCL parameter specified in the TCI states corresponding to the lowest codepoint among them.
  • the base station and the terminal receive DCI based on the PDCCH#1 1805 and receive it regardless of whether the PDCCH#2 1810 is repeated. If the time offset (1825, 1830) between the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) reception is less than the timeDurationForQCL value, apply the default QCL described above (CORESET #0 for two mapped to the lowest codepoint) TCI states are applied) to receive PDSCH#1 (1815) and PDSCH #2 (1820).
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #1 (1805) to PDSCH#1 (1815), PDSCH #2 1820 may be received.
  • the base station and the terminal receive DCI based on PDCCH #2 1810
  • the time offset (1835, 1840) between the reception of the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) is less than the timeDurationForQCL value
  • apply the default QCL described above CORESET #1 mapped to the lowest codepoint
  • Two TCI states are applied) to receive PDSCH#1 (1815) and PDSCH#2 (1820).
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1810) to PDSCH#1 (1815), PDSCH #2 1820 may be received.
  • the base station and the terminal may apply the default QCL.
  • the UE is a beam for receiving PDSCH#1 (1815) and PDSCH #2 (1820), and two TCI states (TCI codepoints including two different TCI states) preset for CORESET #0 or CORESET #1 in MAC CE PDSCH#1 (1815) and PDSCH#2 (1820) may be received by applying the QCL parameter specified in the TCI states corresponding to the lowest codepoint among them.
  • TCI states TCI codepoints including two different TCI states preset for CORESET #0 or CORESET #1 in MAC CE PDSCH#1 (1815) and PDSCH#2 (1820) may be received by applying the QCL parameter specified in the TCI states corresponding to the lowest codepoint among them.
  • the UE may succeed in receiving and decoding the PDCCH #2 1810 to check whether DCI information is repeated. Thereafter, the base station and the terminal receive DCI based on PDCCH #2 (1810) and the time offset (1835, 1840) between the reception of the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) is less than the timeDurationForQCL value.
  • the base station and the terminal receive DCI based on PDCCH #2 (1810) and the time offset (1835, 1840) between the reception of the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) is less than the timeDurationForQCL value.
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1810) to PDSCH#1 (1815) , PDSCH #2 1820 may be received.
  • the base station and the terminal receive DCI based on PDCCH #2 1810
  • the time offset (1835, 1840) between the reception of the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) is less than the timeDurationForQCL value
  • apply the default QCL described above CORESET #1 mapped to the lowest codepoint
  • Two TCI states are applied) to receive PDSCH#1 (1815) and PDSCH#2 (1820).
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1810) to PDSCH#1 (1815), PDSCH #2 1820 may be received.
  • the UE fails to decode PDCCH #1 (1905), PDCCH #2 (1910), and decodes PDCCH #3 (1915), PDCCH #4 (1920) is successful, the UE first succeeds in decoding Based on PDCCH #3 (1915), a time offset (1955, 1960) between DCI reception and the corresponding PDSCH #1 (1925) or PDSCH #2 (1930) reception can be checked.
  • the terminal applies the default QCL described above as a beam for receiving PDSCH #1 and PDSCH #2 (1925, 1930) (lowest codepoint for CORESET #1) PDSCH#1 (1925) and PDSCH#2 (1930) may be received by applying two TCI states mapped to .
  • the time offset (1955, 1960) is equal to or greater than the timeDurationForQCL value
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #3 (1915) to PDSCH# 1 (1925), PDSCH #2 (1930) may be received.
  • the terminal decodes first Based on the successful PDCCH #3 (1915), the time offset (1955, 1960) between the DCI reception and the corresponding PDSCH #1 (1925) or PDSCH #2 (1930) reception can be checked.
  • the time offset (1955, 1960) is smaller than the timeDurationForQCL
  • the terminal applies the default QCL described above as a beam for receiving PDSCH #1 and PDSCH #2 (1925, 1930) (lowest codepoint for CORESET #1) PDSCH#1 (1925) and PDSCH#2 (1930) can be received by applying two TCI states mapped to .
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #3 (1915) to PDSCH# 1 (1925), PDSCH #2 (1930) may be received.
  • the UE succeeds in decoding PDCCH #1 (1905) and PDCCH #2 (1910), and decoding of PDCCH #3 (1915) and PDCCH #4 (1920) fails, the UE is the last to decode Based on the successful PDCCH #2 (1910), the time offset (1945, 1950) between the DCI reception and the corresponding PDSCH #1 (1925) or PDSCH #2 (1930) reception can be checked.
  • the terminal applies the default QCL described above as a beam for receiving PDSCH #1 and PDSCH #2 (1925, 1930) (lowest codepoint for CORESET #0) PDSCH#1 (1925) and PDSCH#2 (1930) may be received by applying two TCI states mapped to .
  • the time offset (1945, 1950) is equal to or greater than the timeDurationForQCL value
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1910) to PDSCH# 1 (1925), PDSCH #2 (1930) may be received.
  • the UE decodes the last Based on the successful PDCCH #4 (1920), a time offset (1965, 1970) between DCI reception and the corresponding PDSCH #1 (1925) or PDSCH #2 (1930) reception can be checked.
  • the terminal applies the default QCL described above as a beam for receiving PDSCH #1 and PDSCH #2 (1925, 1930) (lowest codepoint for CORESET #1) PDSCH#1 (1925) and PDSCH#2 (1930) can be received by applying two TCI states mapped to .
  • the time offset (1965, 1970) is equal to or greater than the timeDurationForQCL value
  • the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #4 (1920) to PDSCH# 1 (1925), PDSCH #2 (1930) may be received.
  • each of the embodiments described in the present disclosure may be selectively combined and implemented.
  • the PDCCH serving as a reference is implemented to check the time offset between DCI reception and the corresponding PDSCH. It may be determined based on any one of Examples 1-1) to 2-6).
  • the UE or the base station performs beamforming according to the TCI state indicated by the PDCCH or applies the default QCL described above according to various scenarios according to any one of embodiments 3-1) to 6-6) can be performed based on
  • 20 is a flowchart illustrating an operation of a terminal according to an embodiment of the present disclosure.
  • step S2010 the terminal may transmit and receive a configuration message (eg, an RRC message) with the base station.
  • a configuration message eg, an RRC message
  • At least one of configuration information related to the control channel (eg, ControlResourceSet, SearchSpace, etc.), configuration information related to the data channel (PDSCH-Config, etc.), or parameters related to beamforming (eg, tci-PresentinDCI, etc.)
  • the included RRC message may be received from the base station.
  • the terminal may receive a message for requesting UE capability from the base station through the RRC message, and may transmit a message for reporting UE capability to the base station.
  • the UE capability includes threshold information of the time required for the UE to change the PDSCH reception beam for each sub-carrier spacing (SCS) or the beam through which the PDSCH is transmitted for each SCS.
  • Time threshold information (timeDurationForQCL) required for the UE to receive the PDSCH may be included.
  • the SCS may include, for example, 60 kHz or 120 kHz.
  • the timeDurationForQCL may be the minimum number of OFDM symbols required for a UE to receive a PDCCH and change a PDSCH reception beam scheduled by the PDCCH.
  • the timeDurationForQCL may be the minimum number of OFDM symbols required for the UE to receive the PDCCH and apply spatial QCL information included in DCI.
  • the UE may receive a plurality of PDCCHs that are repeated in terms of time domain, frequency domain, or spatial domain.
  • the repeated plurality of PDCCHs may mean that a plurality of PDCCHs including at least some of the same DCI are repeatedly transmitted or received in terms of time domain, frequency domain, or spatial domain.
  • information such as beam direction (TCI), frequency domain resource allocation (FDRA) information of the allocated PDSCH, time domain resource allocation (TDRA), HARQ ACK transmission time, PUCCH resource indicator, etc. are the same depending on the timing of the transmitted PDCCH or It may be changed.
  • TCI beam direction
  • FDRA frequency domain resource allocation
  • TDRA time domain resource allocation
  • HARQ ACK transmission time PUCCH resource indicator
  • the same DCI information among the repeated PDCCHs is Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, It may include at least one or more of DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, and DMRS sequence initialization.
  • the UE may compare the timeDurationForQCL with the time offset between the PDCCH and the corresponding PDSCH based on any one of the plurality of PDCCHs.
  • the PDCCH serving as a reference for checking the time offset may be determined according to a specific criterion.
  • the terminal succeeds in decoding all PDCCHs in which at least some of the same DCI are repeated in one slot or in a plurality of slots.
  • the UE from among the PDCCHs indicating the change of the PDSCH transmission beam, based on the last PDCCH (or CORESET, Search space set) transmitted in the same CORESETPoolIndex set in the serving cell, the time between DCI reception and the corresponding PDSCH reception You can check the offset.
  • the terminal may check the time offset between DCI reception and the corresponding PDSCH reception based on the last successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam.
  • the above-described embodiment is merely an example and is not limited thereto, and the PDCCH serving as a reference for confirming the time offset may be determined based on any one of embodiments 1-1) to 2-6).
  • step S2040 if the time offset is equal to or greater than the timeDurationForQCL, the UE may assume that the PDSCH is transmitted through the same beam as the RS associated with the TCI state indicated by the PDCCH.
  • the DCI for scheduling the PDSCH may be received by decoding the PDCCH.
  • the DCI may include a TCI field.
  • the TCI field may be 0 bits when not indicating a beam change, and may have a length of bits (eg, 3 bits) of a specific length to indicate a beam change.
  • each codepoint of the TCI field may be mapped to at least one activated TCI state through the MAC CE.
  • the UE may assume that the PDSCH is transmitted through the same beam as the RS configured in association with the TCI state indicated by the TCI field. Alternatively, the UE may assume that the DM-RS of the PDSCH is QCLed with the RS configured in association with the TCI state.
  • step S2050 if the time offset is smaller than the timeDurationForQCL, the terminal may perform the above-described default QCL application operation.
  • the UE may not be able to change the PDSCH reception beam to a reception beam corresponding to the PDSCH transmission beam (TCI) indicated by the DCI. Accordingly, the base station and the terminal can determine a beam for PDSCH transmission and reception scheduled by the DCI according to a specific criterion (or a predetermined appointment).
  • TCI PDSCH transmission beam
  • the UE uses the lowest controlResourceSetId among a plurality of CORESETs in the same CORESETPoolIndex set in the serving cell as a beam for receiving the PDSCH, the CORESET associated with the monitored search space.
  • the QCL parameter of the PDCCH transmitted through the PDCCH may be applied. That is, the UE may consider that the RS associated with the QCL parameter of the PDCCH and the DMRS port for receiving the PDSCH are QCLed to each other.
  • the plurality of CORESETs may refer to CORESETs set to the same CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
  • the above-described embodiment is merely an example and is not limited thereto, and the terminal may operate based on any one of the above-described embodiments 3-1) to 6-6) for the default QCL application operation.
  • step S2060 the UE may receive at least one PDSCH from the base station through the changed beam based on the above-described step S2040 or S2050.
  • 21 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
  • the base station may transmit and receive a configuration message (eg, an RRC message) with the terminal in step S2110.
  • a configuration message eg, an RRC message
  • the base station has at least one of configuration information related to the control channel (eg, ControlResourceSet, SearchSpace, etc.), configuration information related to the data channel (PDSCH-Config, etc.), or parameters related to beamforming (eg, tci-PresentinDCI, etc.)
  • the included RRC message may be transmitted to the terminal.
  • the base station may transmit a message for requesting UE capability to the terminal through an RRC message, and receive a message reporting UE capability from the terminal.
  • the UE capability includes threshold information of the time required for the UE to change the PDSCH reception beam for each sub-carrier spacing (SCS) or the beam through which the PDSCH is transmitted for each SCS.
  • Time threshold information (timeDurationForQCL) required for the UE to receive the PDSCH may be included.
  • the SCS may include, for example, 60 kHz and 120 kHz.
  • the timeDurationForQCL may be the minimum number of OFDM symbols required for a UE to receive a PDCCH and change a PDSCH reception beam scheduled by the PDCCH.
  • the timeDurationForQCL may be the minimum number of OFDM symbols required for the UE to receive the PDCCH and apply spatial QCL information included in the DCI.
  • the base station may transmit a plurality of PDCCHs that are repeated in a time domain, a frequency domain, or a spatial domain.
  • the repeated plurality of PDCCHs may mean that a plurality of PDCCHs including at least some of the same DCI are repeatedly transmitted or received in terms of time domain, frequency domain, or spatial domain.
  • information such as beam direction (TCI), frequency domain resource allocation (FDRA) information of the allocated PDSCH, time domain resource allocation (TDRA), HARQ ACK transmission time, PUCCH resource indicator, etc. are the same depending on the timing of the transmitted PDCCH or It may be changed.
  • TCI beam direction
  • FDRA frequency domain resource allocation
  • TDRA time domain resource allocation
  • HARQ ACK transmission time PUCCH resource indicator
  • the same DCI information among the repeated PDCCHs is Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, It may include at least one or more of DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, and DMRS sequence initialization.
  • the base station may compare timeDurationForQCL with a time offset between the PDCCH and the corresponding PDSCH based on any one of the plurality of PDCCHs.
  • the base station may store timeDurationForQCL included in the UE capability reported by the terminal.
  • the base station receives the PDCCH determined based on any one of the above-described embodiments 1-1) to 2-6) through the resource allocation and scheduling algorithm, and the terminal receives the PDSCH scheduled by the DCI in the PDCCH. Able to know. Accordingly, the base station can compare the time offset between the determined PDCCH and the corresponding PDSCH and timeDurationForQCL.
  • step S2140 if the time offset is equal to or greater than the timeDurationForQCL, the base station may change the PDSCH transmission beam to the same beam as the RS associated with the TCI state indicated by the PDCCH.
  • DCI included in the PDCCH may include a TCI field.
  • the TCI field may be 0 bits when not indicating a beam change, and may have a length of bits (eg, 3 bits) of a specific length to indicate a beam change.
  • each codepoint of the TCI field may be mapped to at least one activated TCI state through the MAC CE.
  • the base station may change the PDSCH transmission beam on the premise that the UE assumes that the PDSCH is transmitted through the same beam as RS configured in association with the TCI state indicated by the TCI field.
  • the RS may change the PDSCH transmission beam on the assumption that it is QCLed with the RS configured in association with the TCI state.
  • step S2150 if the time offset is smaller than the timeDurationForQCL, the base station may perform the above-described default QCL application operation.
  • the UE may not be able to change the PDSCH reception beam to a reception beam corresponding to the PDSCH transmission beam (TCI) indicated by the DCI. Accordingly, the base station and the terminal can determine a beam for PDSCH transmission and reception scheduled by the DCI according to a specific criterion (or a predetermined appointment).
  • TCI PDSCH transmission beam
  • the base station is a beam for transmitting the PDSCH, and among a plurality of CORESETs in the serving cell connected to the terminal, the lowest (lowest) controlResourceSetId through the CORESET associated with the monitored search space.
  • the QCL parameter of the transmitted PDCCH may be applied. That is, the base station may change the PDSCH transmission beam on the premise that the terminal considers that the RS associated with the QCL parameter of the PDCCH and the DMRS port for PDSCH reception are QCLed to each other.
  • the plurality of CORESETs may refer to CORESETs set to the same CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
  • the above-described embodiment is merely an example and is not limited thereto, and the base station may operate based on any one of the above-described embodiments 3-1) to 6-6) for the default QCL application operation.
  • the base station may transmit at least one PDSCH to the terminal through the changed beam based on the above-described step S2140 or S2150.
  • 22 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
  • the terminal may include a transceiver 2205 , a controller 2210 , and a storage 2215 .
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 2205 may transmit/receive a signal to/from another network entity.
  • the transceiver 2205 may receive, for example, system information from a base station, and may receive a synchronization signal or a reference signal.
  • the controller 2210 may control the overall operation of the terminal according to the embodiment proposed in the present invention.
  • the controller 2210 may control a signal flow between blocks to perform an operation according to the above-described flowchart.
  • the controller 2210 may control the operation proposed by the present invention to repeatedly receive a PDCCH including at least some DCI according to an embodiment of the present invention and to determine a PDSCH receive beam direction.
  • the storage 2215 may store at least one of information transmitted and received through the transceiver 2205 and information generated through the control unit 2210 .
  • the storage unit 2215 may store threshold information of a time required for the UE to change the PDSCH reception beam.
  • FIG. 23 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
  • the base station may include a transceiver 2305 , a control unit 2310 , and a storage unit 2315 .
  • the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 2305 may transmit/receive signals to and from other network entities.
  • the transceiver 2305 may transmit, for example, system information to the terminal, and may transmit a synchronization signal or a reference signal.
  • the controller 2310 may control the overall operation of the base station according to the embodiment proposed in the present invention.
  • the controller 2310 may control a signal flow between blocks to perform an operation according to the above-described flowchart.
  • the controller 2310 may control the operation proposed by the present invention to repeatedly transmit a PDCCH including at least a part of DCI according to an embodiment of the present invention and to determine a PDSCH transmission beam direction.
  • the storage unit 2315 may store at least one of information transmitted/received through the transceiver 2305 and information generated through the control unit 2310.
  • the storage unit 2215 may be configured such that the terminal changes the PDSCH reception beam. It is possible to store threshold information of the time required for the .

Abstract

The present invention relates to a method and a device for physical downlink control channel (PDCCH) repeated reception and transmission in a wireless communication system, wherein a PDCCH related to switching of a beam on which a physical downlink shared channel (PDSCH) is transmitted is determined among received PDCCHs, and the switching of the beam on which the PDSCH is transmitted is identified on the basis of downlink control information included in the determined PDCCH.

Description

무선 통신 시스템에서 PDCCH 반복 송수신을 위한 방법 및 장치Method and apparatus for repeated PDCCH transmission/reception in a wireless communication system
본 개시는 무선 통신 시스템에 대한 것으로서, 보다 구체적으로 복수 개의 셀을 이용한 셀 간 협력 통신에 관련된 것이다.The present disclosure relates to a wireless communication system, and more particularly, to cell-to-cell cooperative communication using a plurality of cells.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.Efforts are being made to develop an improved 5G communication system or pre-5G communication system in order to meet the increasing demand for wireless data traffic after commercialization of the 4G communication system. For this reason, the 5G communication system or the pre-5G communication system is called a system after the 4G network (Beyond 4G Network) communication system or the LTE system after (Post LTE). In order to achieve a high data rate, the 5G communication system is being considered for implementation in a very high frequency (mmWave) band (eg, such as a 60 gigabyte (60 GHz) band). In order to alleviate the path loss of radio waves and increase the propagation distance of radio waves in the ultra-high frequency band, in the 5G communication system, beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO) are used. ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed. In addition, for network improvement of the system, in the 5G communication system, an evolved small cell, an advanced small cell, a cloud radio access network (cloud radio access network: cloud RAN), an ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation Technology development is underway. In addition, in the 5G system, advanced coding modulation (ACM) methods such as FQAM (Hybrid FSK and QAM Modulation) and SWSC (Sliding Window Superposition Coding), and advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non orthogonal multiple access), and sparse code multiple access (SCMA) are being developed.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.On the other hand, the Internet is evolving from a human-centered connection network where humans create and consume information to an Internet of Things (IoT) network that exchanges and processes information between distributed components such as objects. Internet of Everything (IoE) technology, which combines big data processing technology through connection with cloud servers, etc. with IoT technology, is also emerging. In order to implement IoT, technology elements such as sensing technology, wired and wireless communication and network infrastructure, service interface technology, and security technology are required. , M2M), and MTC (Machine Type Communication) are being studied. In the IoT environment, an intelligent IT (Internet Technology) service that collects and analyzes data generated from connected objects and creates new values in human life can be provided. IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliance, advanced medical service, etc. can be applied to
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.Accordingly, various attempts are being made to apply the 5G communication system to the IoT network. For example, in technologies such as sensor network, machine to machine (M2M), and MTC (Machine Type Communication), 5G communication technology is implemented by techniques such as beam forming, MIMO, and array antenna. there will be The application of cloud radio access network (cloud RAN) as the big data processing technology described above can be said to be an example of convergence of 5G technology and IoT technology.
한편, 5G (또는 NR) 시스템에서는 셀 경계에 위치한 단말의 처리량 (throughput)을 높이기 위하여 복수 개의 셀을 이용한 셀 간 협력 통신이 가능하다. 이에, 셀 간 협력 통신에서 효과적인 빔 관리 방법의 필요성이 대두하였다.Meanwhile, in the 5G (or NR) system, cooperative communication between cells using a plurality of cells is possible in order to increase the throughput of the terminal located at the cell boundary. Accordingly, the need for an effective beam management method in cell-to-cell cooperative communication has emerged.
셀 경계에 위치한 단말의 처리량 (throughput)을 높이기 위하여 새로운 형태의 셀 간 협력 기술인 CoMP (coordinated multi-point)가 사용될 수 있다. CoMP는 이웃한 셀들이 협력하여서 서빙 (serving) 셀 뿐만 아니라 다른 셀들도 같은 단말과 통신할 수 있도록 함으로써 셀 간 간섭을 줄이고 셀 경계에서 단말의 throughput을 높이는 기술이다.In order to increase the throughput of the UE located at the cell boundary, a new type of inter-cell cooperation technology CoMP (coordinated multi-point) may be used. CoMP is a technology that reduces inter-cell interference and increases the throughput of the UE at the cell boundary by enabling neighboring cells to cooperate with each other so that not only the serving cell but also other cells can communicate with the same UE.
본 개시는 무선 통신 시스템에서 복수의 송수신 포인트 (transmission reception point, TRP) (이하, Multiple TRP 또는 Multi-TRP) 기반의 CoMP (예를 들어, NC-JT (non-coherent joint transmission))에 대한 다양한 기법들을 제안한다. 구체적으로, Multi-TRP에서의 PDCCH 전송을 통해 robustness와 reliability를 향상하는 방법을 제안한다.The present disclosure provides a plurality of transmission reception point (TRP) (hereinafter, Multiple TRP or Multi-TRP)-based CoMP (eg, non-coherent joint transmission (NC-JT)) in a wireless communication system for various suggest methods. Specifically, we propose a method for improving robustness and reliability through PDCCH transmission in multi-TRP.
상기와 같은 문제점을 해결하기 위한 본 개시의 일 실시예에 따르면, 무선 통신 시스템의 단말의 방법에 있어서, 적어도 하나의 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)의 반복 송수신을 설정하기 위한 설정메시지를 수신하는 단계; 물리적 하향링크 공유 채널 (physical downlink shared channel, PDSCH)을 스케쥴링하는 상기 적어도 하나의 PDCCH를 수신하는 단계; 상기 적어도 하나의 PDCCH 중, 상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH를 결정하는 단계; 상기 결정된 PDCCH에 포함된 하향링크 제어 정보 (downlink control information, DCI)에 기반하여, 상기 PDSCH가 전송되는 빔의 변경을 확인하는 단계를 포함하는 것을 특징으로 한다.According to an embodiment of the present disclosure for solving the above problems, in a method of a terminal of a wireless communication system, for setting repeated transmission/reception of at least one physical downlink control channel (PDCCH) Receiving a setting message; Receiving the at least one PDCCH scheduling a physical downlink shared channel (PDSCH); determining, among the at least one PDCCH, a PDCCH related to a change in a beam through which the PDSCH is transmitted; and confirming a change in a beam through which the PDSCH is transmitted based on downlink control information (DCI) included in the determined PDCCH.
또한 상기와 같은 문제점을 해결하기 위한 본 개시의 다른 실시예에 따르면, 무선 통신 시스템의 기지국의 방법에 있어서, 적어도 하나의 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)의 반복 송수신을 설정하기 위한 설정메시지를 전송하는 단계; 물리적 하향링크 공유 채널 (physical downlink shared channel, PDSCH)을 스케쥴링하는 상기 적어도 하나의 PDCCH를 전송하는 단계; 상기 적어도 하나의 PDCCH 중, 상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH를 결정하는 단계; 상기 결정된 PDCCH에 포함된 하향링크 제어 정보 (downlink control information, DCI)에 기반하여, 상기 PDSCH가 전송되는 빔을 결정하는 단계를 포함하는 것을 특징으로 한다.Also, according to another embodiment of the present disclosure for solving the above problems, in a method of a base station of a wireless communication system, setting repeated transmission/reception of at least one physical downlink control channel (PDCCH) transmitting a setting message for; transmitting the at least one PDCCH scheduling a physical downlink shared channel (PDSCH); determining, among the at least one PDCCH, a PDCCH related to a change in a beam through which the PDSCH is transmitted; and determining a beam through which the PDSCH is transmitted based on downlink control information (DCI) included in the determined PDCCH.
또한 상기와 같은 문제점을 해결하기 위한 본 개시의 다른 실시예에 따르면, 무선 통신 시스템의 단말에 있어서, 송수신부; 및 적어도 하나의 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)의 반복 송수신을 설정하기 위한 설정메시지를 수신하도록 상기 송수신부를 제어하고, 물리적 하향링크 공유 채널 (physical downlink shared channel, PDSCH)을 스케쥴링하는 상기 적어도 하나의 PDCCH를 수신하도록 상기 송수신부를 제어하고, 상기 적어도 하나의 PDCCH 중, 상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH를 결정하도록 제어하고, 상기 결정된 PDCCH에 포함된 하향링크 제어 정보 (downlink control information, DCI)에 기반하여, 상기 PDSCH가 전송되는 빔의 변경을 확인하도록 제어하는 제어부를 포함하는 것을 특징으로 한다.In addition, according to another embodiment of the present disclosure for solving the above problems, in a terminal of a wireless communication system, a transceiver; and controlling the transceiver to receive a configuration message for configuring repeated transmission/reception of at least one physical downlink control channel (PDCCH), and scheduling a physical downlink shared channel (PDSCH) controls the transceiver to receive the at least one PDCCH, controls to determine a PDCCH related to a change in a beam through which the PDSCH is transmitted, from among the at least one PDCCH, and downlink control information included in the determined PDCCH ( Downlink control information, DCI), characterized in that it comprises a control unit for controlling to check the change of the beam through which the PDSCH is transmitted.
또한 상기와 같은 문제점을 해결하기 위한 본 개시의 다른 실시예에 따르면, 무선 통신 시스템의 기지국에 있어서, 송수신부; 및 적어도 하나의 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)의 반복 송수신을 설정하기 위한 설정메시지를 전송하도록 상기 송수신부를 제어하고, 물리적 하향링크 공유 채널 (physical downlink shared channel, PDSCH)을 스케쥴링하는 상기 적어도 하나의 PDCCH를 전송하도록 상기 송수신부를 제어하고, 상기 적어도 하나의 PDCCH 중, 상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH를 결정하도록 제어하고, 상기 결정된 PDCCH에 포함된 하향링크 제어 정보 (downlink control information, DCI)에 기반하여, 상기 PDSCH가 전송되는 빔을 결정하도록 제어하는 제어부를 포함하는 것을 특징으로 한다.In addition, according to another embodiment of the present disclosure for solving the above problems, in a base station of a wireless communication system, a transceiver; and controlling the transceiver to transmit a configuration message for configuring repeated transmission/reception of at least one physical downlink control channel (PDCCH), and scheduling a physical downlink shared channel (PDSCH) controls the transceiver to transmit the at least one PDCCH, controls to determine a PDCCH related to a change in a beam through which the PDSCH is transmitted, from among the at least one PDCCH, and downlink control information included in the determined PDCCH ( Downlink control information, DCI), characterized in that it comprises a control unit for controlling to determine the beam through which the PDSCH is transmitted.
본 개시의 일 실시예에 따르면, 적어도 일부의 동일한 DCI를 포함하는 PDCCH가 반복 전송되는 상황에서, 단말 및 기지국의 PDSCH 빔포밍 수행을 위해 기준이 되는 PDCCH가 결정될 수 있다.According to an embodiment of the present disclosure, in a situation in which a PDCCH including at least a portion of the same DCI is repeatedly transmitted, a PDCCH serving as a reference for the UE and the base station to perform PDSCH beamforming may be determined.
또한 본 개시의 일 실시예에 따르면, 상기 결정된 PDCCH와 PDSCH 수신 타이밍에 기반하여 효율적인 PDSCH 빔포밍을 수행할 수 있다.Also, according to an embodiment of the present disclosure, efficient PDSCH beamforming may be performed based on the determined PDCCH and PDSCH reception timing.
도 1은 무선 통신 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다.1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a wireless communication system.
도 2는 5G 시스템에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.2 is a diagram illustrating a frame, subframe, and slot structure in a 5G system.
도 3은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 대역폭 부분에 대한 설정을 설명하기 위한 도면이다.3 is a diagram for explaining a setting of a bandwidth portion in a wireless communication system according to an embodiment of the present disclosure.
도 4는 본 개시의 일 실시 예에 따른 대역폭 부분에 대한 동적 설정 변경 방법을 도시한 도면이다. 4 is a diagram illustrating a method of dynamically changing a setting for a bandwidth portion according to an embodiment of the present disclosure.
도 5는 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(Control Resource Set, CORESET)에 대한 일 예를 도시한 도면이다.5 is a diagram illustrating an example of a control region (Control Resource Set, CORESET) in which a downlink control channel is transmitted in a 5G wireless communication system.
도 6는 5G에서 사용될 수 있는 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 일 예를 도시한 도면이다. 6 is a diagram illustrating an example of a basic unit of time and frequency resources constituting a downlink control channel that can be used in 5G.
도 7은 본 개시의 일 실시예에 따른 협력 통신 안테나 포트 구성을 설명하기 위한 도면이다. 7 is a diagram for explaining the configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
도 8a는 일 실시예에 따른 빔 관리 절차를 도시한 도면이다. 8A is a diagram illustrating a beam management procedure according to an embodiment.
도 8b는 일 실시예에 따른 빔 관리 절차를 도시한 도면이다. 8B is a diagram illustrating a beam management procedure according to an embodiment.
도 9은 본 개시의 일 실시예에 따른 단말 능력 (UE capability)을 보고하는 절차를 도시한 도면이다. 9 is a diagram illustrating a procedure for reporting UE capability according to an embodiment of the present disclosure.
도 10은 일 실시예에 따른 복수의 PDSCH가 반복 전송될 때 PDSCH 전송 빔의 변경을 지시하는 방법을 도시한 도면이다.10 is a diagram illustrating a method of instructing a change in a PDSCH transmission beam when a plurality of PDSCHs are repeatedly transmitted according to an embodiment.
도 11은 본 개시의 일 실시예에 따라 기지국이 PDCCH를 반복하여 전송하는 방법을 도시한 도면이다.11 is a diagram illustrating a method for a base station to repeatedly transmit a PDCCH according to an embodiment of the present disclosure.
도 12는 본 개시의 일 실시예에 따라 한 개의 PDSCH를 스케쥴링하는 PDCCH가, 동일한 CORESET 내, 동일한 slot 내 time domain 측면에서 반복되는 경우를 도시한 도면이다.12 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated in the time domain in the same CORESET and in the same slot according to an embodiment of the present disclosure.
도 13은 본 개시의 일 실시예에 따라 한 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 CORESET 내, 다른 slot 간 time domain 측면에서 반복되는 경우를 도시한 도면이다.13 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated in the time domain between different slots within the same CORESET according to an embodiment of the present disclosure.
도 14는 본 개시의 일 실시예에 따라 두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 CORESET 내, 동일한 slot 내 time domain 측면에서 반복되는 경우를 도시한 도면이다.14 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in the time domain within the same CORESET and in the same slot according to an embodiment of the present disclosure.
도 15은 본 개시의 일 실시예에 따라 두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 CORESET 내, 다른 slot 간 time domain 측면에서 반복되는 경우를 도시한 도면이다.15 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in the time domain between different slots within the same CORESET according to an embodiment of the present disclosure.
도 16은 본 개시의 일 실시예에 따라 한 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 동일한 slot 내 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 도시한 도면이다.FIG. 16 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated between different CORESETs in the time domain or spatial domain within the same slot according to an embodiment of the present disclosure.
도 17은 본 개시의 일 실시예에 따라 한 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 다른 slot 간 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 도시한 도면이다.17 is a diagram illustrating a case in which a PDCCH for scheduling one PDSCH is repeated between different CORESETs and between different slots in a time domain or spatial domain according to an embodiment of the present disclosure.
도 18은 본 개시의 일 실시예에 따라 두 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 동일한 slot 내 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 도시한 도면이다.18 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated between different CORESETs in the time domain or spatial domain within the same slot according to an embodiment of the present disclosure.
도 19는 본 개시의 일 실시예에 따라 두 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 다른 slot 간 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 도시한 도면이다.19 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in a time domain or spatial domain between different CORESETs and between different slots according to an embodiment of the present disclosure.
도 20은 본 개시의 일 실시예에 따른 단말의 동작을 도시한 순서도이다.20 is a flowchart illustrating an operation of a terminal according to an embodiment of the present disclosure.
도 21은 본 개시의 일 실시예에 따른 기지국의 동작을 도시한 순서도이다.21 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
도 22는 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다.22 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
도 23는 본 발명의 일 실시예에 따른 기지국의 구조를 도시한 도면이다.23 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments, descriptions of technical contents that are well known in the technical field to which the present invention pertains and are not directly related to the present invention will be omitted. This is to more clearly convey the gist of the present invention without obscuring the gist of the present invention by omitting unnecessary description.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, some components are exaggerated, omitted, or schematically illustrated in the accompanying drawings. In addition, the size of each component does not fully reflect the actual size. In each figure, the same or corresponding elements are assigned the same reference numerals.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 개시의 실시 예들은 본 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and a method for achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the embodiments of the present disclosure make the present disclosure complete, and common knowledge in the technical field to which the present invention belongs It is provided to fully inform the possessor of the scope of the invention, and the present disclosure is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능할 수 있다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능할 수 있다.At this time, it will be understood that each block of the flowchart diagrams and combinations of the flowchart diagrams may be performed by computer program instructions. These computer program instructions may be embodied in a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, such that the instructions performed by the processor of the computer or other programmable data processing equipment are not described in the flowchart block(s). It creates a means to perform functions. These computer program instructions may also be stored in a computer-usable or computer-readable memory that may direct a computer or other programmable data processing equipment to implement a function in a particular manner, and thus the computer-usable or computer-readable memory. It may also be possible for the instructions stored in the flow chart block(s) to produce an article of manufacture containing instruction means for performing the function described in the flowchart block(s). The computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operational steps are performed on the computer or other programmable data processing equipment to create a computer-executed process to create a computer or other programmable data processing equipment. It may also be possible that instructions for performing the processing equipment provide steps for performing the functions described in the flowchart block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능할 수 있다.Additionally, each block may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). It should also be noted that in some alternative implementations it is also possible for the functions recited in blocks to occur out of order. For example, two blocks shown one after another may in fact be performed substantially simultaneously, or it may be possible that the blocks are sometimes performed in a reverse order according to a corresponding function.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일부 실시 예에 따르면 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 일부 실시 예에 따르면, '~부'는 하나 이상의 프로세서를 포함할 수 있다. At this time, the term '~ unit' used in this embodiment means software or hardware components such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit), and '~ unit' performs certain roles do. However, '-part' is not limited to software or hardware. '~' may be configured to reside on an addressable storage medium or may be configured to refresh one or more processors. Accordingly, according to some embodiments, '~ part' refers to components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, and programs. Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The functions provided in the components and '~ units' may be combined into a smaller number of components and '~ units' or further separated into additional components and '~ units'. In addition, components and '~ units' may be implemented to play one or more CPUs in a device or secure multimedia card. Also, according to some embodiments, '~ unit' may include one or more processors.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다.이하, 본 개시는 무선 통신 시스템에서 단말이 기지국으로부터 방송 정보를 수신하기 위한 기술에 대해 설명한다. 본 개시는 4G (4th generation) 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G (5th generation) 통신 시스템을 IoT (Internet of Things, 사물인터넷) 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다.Hereinafter, the operating principle of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification. Hereinafter, the base station is a subject that performs resource allocation of the terminal, and may be at least one of gNode B, eNode B, Node B, a base station (BS), a radio access unit, a base station controller, or a node on a network. The terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function. Of course, the present disclosure is not limited to the above example. Hereinafter, a description will be given of a technique for a terminal to receive broadcast information from a base station in a wireless communication system. The present disclosure relates to a communication technique that converges a 5 th generation (5G) communication system for supporting a higher data rate after the 4 th generation (4G) system with Internet of Things (IoT) technology, and a system thereof. The present disclosure provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, etc.) based on 5G communication technology and IoT-related technology. ) can be applied to
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.A term referring to broadcast information, a term referring to control information, a term related to communication coverage, a term referring to a state change (eg, an event), and network entities used in the following description Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, some terms and names defined in 3GPP LTE (3rd generation partnership project long term evolution) standard may be used. However, the present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB (Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. A wireless communication system, for example, 3GPP's HSPA (High Speed Packet Access), LTE (Long Term Evolution or E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), LTE-Pro, 3GPP2 HRPD (High Rate Packet Data), UMB (Ultra Mobile Broadband), and IEEE 802.16e, such as communication standards such as broadband wireless broadband wireless providing high-speed, high-quality packet data service It is evolving into a communication system.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 또는 MS(Mobile Station))이 기지국(eNode B, 또는 base station(BS))으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.As a representative example of a broadband wireless communication system, in an LTE system, an Orthogonal Frequency Division Multiplexing (OFDM) scheme is employed in Downlink (DL), and Single Carrier Frequency Division Multiple Access (SC-FDMA) is used in Uplink (UL). ) method is used. Uplink refers to a radio link in which a UE (User Equipment) or MS (Mobile Station) transmits data or control signals to a base station (eNode B, or base station (BS)). It means a wireless link that transmits data or control signals. The multiple access method as described above divides the data or control information of each user by allocating and operating the time-frequency resources for each user to transmit data or control information so that they do not overlap each other, that is, orthogonality is established. .
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 증가된 모바일 광대역 통신(Enhanced Mobile BroadBand: eMBB), 대규모 기계형 통신(massive Machine Type Communication: mMTC), 초신뢰 저지연 통신(Ultra Reliability Low Latency Communciation: URLLC) 등이 있다.As a future communication system after LTE, that is, the 5G communication system must be able to freely reflect various requirements such as users and service providers, so services that satisfy various requirements must be supported. Services considered for the 5G communication system include Enhanced Mobile BroadBand (eMBB), Massive Machine Type Communication (mMTC), and Ultra Reliability Low Latency Communication (URLLC). etc.
일부 실시 예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 한다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 한다. 이와 같은 요구 사항을 만족시키기 위해, 더욱 향상된 다중 입력 다중 출력 (Multi Input Multi Output: MIMO) 전송 기술을 포함하여 송수신 기술의 향상을 요구한다. 또한 현재의 LTE가 사용하는 2GHz 대역 대신에 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다. According to some embodiments, the eMBB aims to provide a data transfer rate that is more improved than the data transfer rate supported by existing LTE, LTE-A, or LTE-Pro. For example, in the 5G communication system, the eMBB should be able to provide a maximum data rate of 20 Gbps in the downlink and a maximum data rate of 10 Gbps in the uplink from the viewpoint of one base station. At the same time, it is necessary to provide an increased user perceived data rate of the terminal. In order to satisfy such a requirement, it is required to improve transmission/reception technology, including a more advanced multi-input multi-output (MIMO) transmission technology. In addition, it is possible to satisfy the data transmission speed required by the 5G communication system by using a frequency bandwidth wider than 20 MHz in a frequency band of 3 to 6 GHz or 6 GHz or more instead of the 2 GHz band used by the current LTE.
동시에, 5G 통신시스템에서 사물 인터넷(Internet of Thing: IoT)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지를 요구할 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다. At the same time, mMTC is being considered to support application services such as the Internet of Things (IoT) in the 5G communication system. In order to efficiently provide the Internet of Things, mMTC may require large-scale terminal access support, improved terminal coverage, improved battery life, and reduced terminal cost within a cell. Since the Internet of Things is attached to various sensors and various devices to provide communication functions, it must be able to support a large number of terminals (eg, 1,000,000 terminals/km2) within a cell. In addition, since a terminal supporting mMTC is highly likely to be located in a shaded area that a cell cannot cover, such as the basement of a building, due to the nature of the service, it may require wider coverage compared to other services provided by the 5G communication system. A terminal supporting mMTC should be configured as a low-cost terminal, and since it is difficult to frequently exchange the battery of the terminal, a very long battery life time may be required.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmaned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스로서, 초 저지연 및 초 신뢰도를 제공하는 통신을 제공해야 한다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 갖는다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(Transmit Time Interval: TTI)를 제공해야 하며, 동시에 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구된다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.Lastly, in the case of URLLC, as a cellular-based wireless communication service used for a specific purpose (mission-critical), remote control for a robot or machine, industrial automation, As a service used in an unmaned aerial vehicle, remote health care, emergency alert, etc., it is necessary to provide communication that provides ultra-low latency and ultra-reliability. For example, a service supporting URLLC must satisfy an air interface latency of less than 0.5 milliseconds, and at the same time has a requirement of a packet error rate of 10-5 or less. Therefore, for a service supporting URLLC, the 5G system must provide a smaller transmit time interval (TTI) than other services, and at the same time, a design requirement for allocating a wide resource in a frequency band is required. However, the aforementioned mMTC, URLLC, and eMBB are only examples of different service types, and the service types to which the present disclosure is applied are not limited to the above-described examples.
상기에서 전술한 5G 통신시스템에서 고려되는 서비스들은 하나의 프레임워크 (Framework) 기반으로 서로 융합되어 제공되어야 한다. 즉, 효율적인 리소스 관리 및 제어를 위해 각 서비스들이 독립적으로 운영되기 보다는 하나의 시스템으로 통합되어 제어되고 전송되는 것이 바람직하다. The services considered in the above-mentioned 5G communication system should be provided by convergence with each other based on one framework. That is, for efficient resource management and control, it is preferable that each service is integrated and controlled and transmitted as a single system rather than being operated independently.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 NR 시스템을 일례로서 본 발명의 실시 예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시 예가 적용될 수 있다. 또한, 본 발명의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.In addition, although the embodiment of the present invention will be described below using LTE, LTE-A, LTE Pro, or NR system as an example, the embodiment of the present invention may be applied to other communication systems having a similar technical background or channel type. In addition, the embodiments of the present invention can be applied to other communication systems through some modifications within the scope of the present invention as judged by a person having skilled technical knowledge.
이하 설명에서 사용되는 방송 정보를 지칭하는 용어, 제어 정보를 지칭하는 용어, 통신 커버리지(coverage)에 관련된 용어, 상태 변화를 지칭하는 용어(예: 이벤트(event)), 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 장치의 구성 요소를 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 다른 용어가 사용될 수 있다.A term referring to broadcast information, a term referring to control information, a term related to communication coverage, a term referring to a state change (eg, an event), and network entities used in the following description Terms referring to, terms referring to messages, terms referring to components of an apparatus, and the like are exemplified for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms having equivalent technical meanings may be used.
이하 설명의 편의를 위하여, 3GPP LTE (3rd generation partnership project long term evolution) 규격에서 정의하고 있는 용어 및 명칭들이 일부 사용될 수 있다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다.For convenience of description below, some terms and names defined in 3GPP LTE (3rd generation partnership project long term evolution) standard may be used. However, the present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
도 1은 무선 통신 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다. 1 is a diagram illustrating a basic structure of a time-frequency domain, which is a radio resource domain in which data or a control channel is transmitted in a wireless communication system.
도 1을 참조하면, 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(resource element: RE)(1-01)로서 시간 축으로 1 OFDM (orthogonal frequency division multiplexing) 심볼(1-02) 및 주파수 축으로 1 부반송파(Subcarrier)(1-03)로 정의될 수 있다. 주파수 영역에서
Figure PCTKR2021016345-appb-I000001
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(resource block: RB)(1-04)을 구성할 수 있다.
Referring to FIG. 1 , the horizontal axis represents the time domain and the vertical axis represents the frequency domain. A basic unit of a resource in the time and frequency domain is a resource element (RE) (1-01) as 1 OFDM (orthogonal frequency division multiplexing) symbol (1-02) on the time axis and 1 subcarrier on the frequency axis It can be defined as (1-03). in the frequency domain
Figure PCTKR2021016345-appb-I000001
(for example, 12) consecutive REs may constitute one resource block (RB) 1-04.
도 2는 5G 시스템에서 프레임, 서브프레임, 슬롯 구조를 도시한 도면이다.2 is a diagram illustrating a frame, subframe, and slot structure in a 5G system.
도 2를 참조하면, 도 2에는 프레임(Frame, 2-00), 서브프레임(Subframe, 2-01), 슬롯(Slot, 2-02) 구조의 일 예가 도시되어 있다. 1 프레임(2-00)은 10ms로 정의될 수 있다. 1 서브프레임(2-01)은 1ms로 정의될 수 있으며, 1 프레임(2-00)은 총 10개의 서브프레임(2-01)으로 구성될 수 있다. 1 슬롯(2-02, 2-03)은 14개의 OFDM 심볼로 정의될 수 있다 (즉 1 슬롯 당 심볼 수(
Figure PCTKR2021016345-appb-I000002
)=14). 1 서브프레임(2-01)은 하나 또는 다수 개의 슬롯(2-02, 2-03)으로 구성될 수 있으며, 1 서브프레임(2-01)당 슬롯(2-02, 2-03)의 개수는 부반송파 간격에 대한 설정 값 μ(2-04, 2-05)에 따라 다를 수 있다.
Referring to FIG. 2 , an example of a structure of a frame 2-00, a subframe 2-01, and a slot 2-02 is illustrated in FIG. 2 . One frame (2-00) may be defined as 10 ms. One subframe (2-01) may be defined as 1 ms, and one frame (2-00) may consist of a total of 10 subframes (2-01). One slot (2-02, 2-03) may be defined as 14 OFDM symbols (that is, the number of symbols per slot (
Figure PCTKR2021016345-appb-I000002
)=14). One subframe (2-01) may consist of one or a plurality of slots (2-02, 2-03), and the number of slots (2-02, 2-03) per one subframe (2-01) may be different depending on the set value μ(2-04, 2-05) for the subcarrier spacing.
도 2의 일 예에서는 부반송파 간격 설정 값으로 μ=0(2-04)인 경우와 μ=1(2-05)인 경우가 도시되어 있다. μ=0(2-04)일 경우, 1 서브프레임(2-01)은 1개의 슬롯(2-02)으로 구성될 수 있고, μ=1(2-05)일 경우, 1 서브프레임(2-01)은 2개의 슬롯(2-03)으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수(
Figure PCTKR2021016345-appb-I000003
)가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수(
Figure PCTKR2021016345-appb-I000004
)가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure PCTKR2021016345-appb-I000005
Figure PCTKR2021016345-appb-I000006
는 하기의 [표 1]과 같이 정의될 수 있다.
In the example of FIG. 2 , a case of μ=0 (2-04) and a case of μ=1 (2-05) are illustrated as the subcarrier spacing setting values. When μ = 0 (2-04), one subframe (2-01) may consist of one slot (2-02), and when μ = 1 (2-05), one subframe (2) -01) may be composed of two slots (2-03). That is, the number of slots per subframe (
Figure PCTKR2021016345-appb-I000003
) may vary, and accordingly, the number of slots per frame (
Figure PCTKR2021016345-appb-I000004
) may be different. According to each subcarrier spacing setting μ
Figure PCTKR2021016345-appb-I000005
and
Figure PCTKR2021016345-appb-I000006
may be defined as in [Table 1] below.
μμ
Figure PCTKR2021016345-appb-I000007
Figure PCTKR2021016345-appb-I000007
Figure PCTKR2021016345-appb-I000008
Figure PCTKR2021016345-appb-I000008
Figure PCTKR2021016345-appb-I000009
Figure PCTKR2021016345-appb-I000009
00 1414 1010 1One
1One 1414 2020 22
22 1414 4040 44
33 1414 8080 88
44 1414 160160 1616
55 1414 320320 3232
NR에서 한 개의 컴포넌트 캐리어(component carrier, CC) 혹은 서빙 셀(serving cell)은 최대 250개 이상의 RB로 구성될 수 있다. 따라서, 단말이 LTE와 같이 항상 전체 서빙 셀 대역폭(serving cell bandwidth)을 수신하는 경우 단말의 파워 소모가 극심할 수 있고, 이를 해결하기 위하여 기지국은 단말에게 하나 이상의 대역폭 부분(bandwidth part,BWP)을 설정하여 단말이 셀(cell) 내 수신 영역을 변경할 수 있도록 지원할 수 있다. In NR, one component carrier (CC) or serving cell may consist of up to 250 or more RBs. Therefore, when the terminal always receives the entire serving cell bandwidth (serving cell bandwidth) like LTE, the power consumption of the terminal may be extreme, and in order to solve this, the base station provides one or more bandwidth parts (BWP) to the terminal. It can be configured to support the UE to change the reception area within the cell.
NR에서 기지국은 CORESET #0 (혹은 common search space, CSS)의 대역폭인 'initial BWP'를 MIB를 통하여 단말에게 설정할 수 있다. 이후 기지국은 RRC 시그날링을 통하여 단말의 초기 BWP(first BWP)를 설정하고, 향후 하향링크 제어 정보(downlink control information, DCI)를 통하여, 지시될 수 있는 적어도 하나 이상의 BWP 설정 정보들을 통지할 수 있다. 이후 기지국은 DCI를 통하여 BWP ID를 공지함으로써 단말이 어떠한 대역을 사용할지를 지시할 수 있다. 만약 단말이 특정 시간 이상 동안 현재 할당된 BWP에서 DCI를 수신하지 못할 경우 단말은, 'default BWP'로 회귀하여 DCI 수신을 시도한다. In NR, the base station may set 'initial BWP', which is the bandwidth of CORESET #0 (or common search space, CSS), to the terminal through the MIB. Thereafter, the base station sets the initial BWP (first BWP) of the terminal through RRC signaling, and may notify at least one or more BWP configuration information that may be indicated through future downlink control information (DCI). . Thereafter, the base station may indicate which band the terminal uses by announcing the BWP ID through DCI. If the terminal does not receive DCI in the currently allocated BWP for a specific time or longer, the terminal returns to the 'default BWP' and attempts to receive DCI.
도 3은 본 개시의 일 실시예에 따른 무선 통신 시스템에서 대역폭 부분에 대한 설정을 설명하기 위한 도면이다.3 is a diagram for explaining a setting of a bandwidth portion in a wireless communication system according to an embodiment of the present disclosure.
도 3을 참조하면, 단말 대역폭(3-00)은 두 개의 대역폭 부분, 즉 대역폭 부분 #1(3-05)과 대역폭 부분 #2(3-10)을 포함할 수 있다. 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정해줄 수 있으며, 각 대역폭 부분에 대하여 하기의 [표 2]와 같은 정보들을 설정해 줄 수 있다.Referring to FIG. 3 , the terminal bandwidth 3-00 may include two bandwidth portions, namely, a bandwidth portion #1(3-05) and a bandwidth portion #2(3-10). The base station may set one or more bandwidth portions to the terminal, and may set information as shown in [Table 2] below for each bandwidth portion.
설정정보 1Setting information 1 대역폭 부분의 대역폭 (대역폭 부분을 구성하는 PRB 수)Bandwidth in the bandwidth portion (number of PRBs that make up the bandwidth portion)
설정정보 2 Setting information 2 대역폭 부분의 주파수 위치(이러한 정보로 기준점(A Reference Point) 대비 오프셋(Offset) 값, 기준점은 예컨대 반송파의 중심 주파수, 동기 신호, 동기 신호 래스터(Raster) 등이 있을 수 있다)The frequency position of the bandwidth part (such information may include an offset value compared to the reference point A, and the reference point may include, for example, the center frequency of a carrier wave, a synchronization signal, a synchronization signal raster, etc.)
설정정보 3Setting information 3 대역폭 부분의 뉴머롤로지 (Numerology) (예컨대, 부반송파 (Subcarrier) 간격, CP (Cyclic Prefix) 길이 등)Numerology of the bandwidth part (eg, subcarrier spacing, CP (Cyclic Prefix) length, etc.)
그 외etc
[표 2]에서 설명된 설정 정보 외에도 대역폭 부분과 관련된 다양한 파라미터들이 단말에게 설정될 수 있다. 상술한 정보들은 상위 계층 시그널링, 예컨대 RRC 시그널링을 통해 기지국이 단말에게 전달할 수 있다. 설정된 하나 또는 다수 개의 대역폭 부분들 중에서 적어도 하나의 대역폭 부분이 활성화(Activation)될 수 있다. 설정된 대역폭 부분에 대한 활성화 여부는 기지국으로부터 단말에게 RRC 시그널링을 통해 준정적(semi-static)으로 전달되거나, MAC CE(control element) 또는 DCI를 통해 동적으로 전달될 수 있다.In addition to the setting information described in [Table 2], various parameters related to the bandwidth portion may be set in the terminal. The above-described information may be transmitted by the base station to the terminal through higher layer signaling, for example, RRC signaling. At least one bandwidth part among the set one or a plurality of bandwidth parts may be activated. Whether to activate the set bandwidth portion may be semi-statically transmitted from the base station to the terminal through RRC signaling, or may be dynamically transmitted through a MAC control element (MAC CE) or DCI.
상술한 5G 통신 시스템에서 지원하는 대역폭 부분에 대한 설정은 다양한 목적으로 사용될 수 있다. The setting of the bandwidth part supported by the above-described 5G communication system may be used for various purposes.
일 예로 시스템 대역폭보다 단말이 지원하는 대역폭이 작을 경우에, 대역폭 부분에 대한 설정을 통해, 단말이 지원하는 대역폭이 지원될 수 있다. 예컨대 [표 2]에서 대역폭 부분의 주파수 위치(설정정보 2)가 단말에게 설정됨으로써, 시스템 대역폭 내의 특정 주파수 위치에서 단말이 데이터를 송수신할 수 있다.For example, when the bandwidth supported by the terminal is smaller than the system bandwidth, the bandwidth supported by the terminal may be supported by setting the bandwidth portion. For example, in [Table 2], the frequency position of the bandwidth part (setting information 2) is set for the terminal, so that the terminal can transmit and receive data at a specific frequency position within the system bandwidth.
또 다른 일 예로 서로 다른 뉴머롤로지를 지원하기 위한 목적으로, 기지국이 단말에게 다수 개의 대역폭 부분을 설정할 수 있다. 예컨대, 임의의 단말에게 15kHz의 부반송파 간격과 30kHz의 부반송파 간격을 이용한 데이터 송수신을 모두 지원하기 위해서, 두 개의 대역폭 부분이 각각 15kHz와 30kHz의 부반송파 간격을 이용하도록 설정될 수 있다. 서로 다른 대역폭 부분은 FDM(Frequency Division Multiplexing)될 수 있고, 특정 부반송파 간격으로 데이터를 송수신하고자 할 경우 해당 부반송파 간격으로 설정되어 있는 대역폭 부분이 활성화 될 수 있다.As another example, for the purpose of supporting different numerologies, the base station may configure a plurality of bandwidth portions for the terminal. For example, in order to support both data transmission and reception using a subcarrier interval of 15 kHz and a subcarrier interval of 30 kHz to an arbitrary terminal, two bandwidth portions may be configured to use a subcarrier interval of 15 kHz and 30 kHz, respectively. Different bandwidth portions may be subjected to frequency division multiplexing (FDM), and when data is transmitted/received at a specific subcarrier interval, a bandwidth portion set for the corresponding subcarrier interval may be activated.
또 다른 일 예로 단말의 전력 소모 감소를 위한 목적으로, 기지국이 단말에게 서로 다른 크기의 대역폭을 갖는 대역폭 부분을 설정할 수 있다. 예컨대, 단말이 매우 큰 대역폭, 예컨대 100MHz의 대역폭을 지원하고 해당 대역폭으로 항상 데이터를 송수신할 경우, 매우 큰 전력 소모를 야기할 수 있다. 특히 트래픽(Traffic)이 없는 상황에서 단말이 100MHz의 큰 대역폭에 대한 불필요한 하향링크 제어채널에 대한 모니터링을 수행하는 것은 전력 소모 관점에서 매우 비효율적이다. 그러므로 단말의 전력 소모를 줄이기 위한 목적으로 기지국은 단말에게 상대적으로 작은 대역폭의 대역폭 부분, 예컨대 20MHz의 대역폭 부분을 설정할 수 있다. 트래픽이 없는 상황에서 단말은 20MHz 대역폭 부분에서 모니터링 동작을 수행할 수 있고, 데이터가 발생하였을 경우 기지국의 지시에 따라 100MHz의 대역폭 부분을 이용하여 데이터를 송수신할 수 있다. As another example, for the purpose of reducing power consumption of the terminal, the base station may configure a bandwidth portion having different sizes of bandwidths for the terminal. For example, when the terminal supports a very large bandwidth, for example, a bandwidth of 100 MHz and always transmits/receives data using the corresponding bandwidth, very large power consumption may be caused. In particular, it is very inefficient in terms of power consumption for the UE to monitor an unnecessary downlink control channel for a large bandwidth of 100 MHz in a situation in which there is no traffic. Therefore, for the purpose of reducing power consumption of the terminal, the base station may set a relatively small bandwidth portion for the terminal, for example, a bandwidth portion of 20 MHz. In the absence of traffic, the UE may perform a monitoring operation in the 20 MHz bandwidth portion, and when data is generated, it may transmit/receive data using the 100 MHz bandwidth portion according to the instruction of the base station.
도 4는 본 개시의 일 실시 예에 따른 대역폭 부분에 대한 동적 설정 변경 방법을 도시한 도면이다. 4 is a diagram illustrating a method of dynamically changing a setting for a bandwidth portion according to an embodiment of the present disclosure.
도 4를 참조하면, 상술한 [표 2]에서 설명한 바와 같이, 기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 설정할 수 있으며, 각 대역폭 부분에 대한 설정으로 대역폭 부분의 대역폭, 대역폭 부분의 주파수 위치, 대역폭 부분의 뉴머롤로지 등에 대한 정보를 단말에게 알려줄 수 있다. 도 4에 도시된 바에 따르면, 단말에게 단말 대역폭(4-00) 내의 두 개의 대역폭 부분, 즉, 대역폭 부분#1(BPW#1, 4-05)과 대역폭 부분#2(BWP#2, 4-10)이 설정될 수 있다. 설정된 대역폭 중에서 하나 또는 다수 개의 대역폭 부분이 활성화 될 수 있으며, 도 4에서는 하나의 대역폭 부분이 활성화되는 일 예가 고려될 수 있다. 슬롯#0(4-25)에서는 설정된 대역폭 부분들 중에서 대역폭 부분#1(4-02)이 활성화되어 있는 상태이고, 단말은 대역폭 부분#1(4-05)에 설정되어 있는 제어 영역#1(4-45)에서 PDCCH(Physical Downlink Control Channel)를 모니터링할 수 있고, 대역폭 부분 #1(4-05)에서 데이터(4-55)를 송수신할 수 있다. 설정된 대역폭 부분 중에서 어떤 대역폭 부분이 활성화되는지에 따라서 단말이 PDCCH를 수신하는 제어 영역이 다를 수 있고, 이에 따라 단말이 PDCCH를 모니터링하는 대역폭이 달라질 수 있다. Referring to FIG. 4, as described in [Table 2] above, the base station may set one or more bandwidth parts to the terminal, and as settings for each bandwidth part, the bandwidth of the bandwidth part, the frequency position of the bandwidth part, Information on the numerology of the bandwidth part may be informed to the terminal. As shown in FIG. 4 , two bandwidth portions within the terminal bandwidth 4-00, that is, bandwidth portion #1 (BPW#1, 4-05) and bandwidth portion #2 (BWP#2, 4- 10) can be set. One or a plurality of bandwidth portions may be activated among the set bandwidths, and an example in which one bandwidth portion is activated may be considered in FIG. 4 . In slot #0 (4-25), the bandwidth part #1 (4-02) is activated among the set bandwidth parts, and the terminal controls the control region #1 ( 4-45) may monitor a Physical Downlink Control Channel (PDCCH), and may transmit/receive data 4-55 in bandwidth part #1 (4-05). A control region in which the terminal receives the PDCCH may be different according to which bandwidth portion among the configured bandwidth portions is activated, and accordingly, the bandwidth in which the terminal monitors the PDCCH may vary.
기지국은 단말에게 대역폭 부분에 대한 설정을 변경하는 지시자를 추가로 전송할 수 있다. 여기서, 대역폭 부분에 대한 설정을 변경하는 것이라 함은 특정 대역폭 부분을 활성화하는 동작(예컨대 대역폭 부분 A에서 대역폭 부분 B로의 활성화 변경)과 동일하게 여겨질 수 있다. 기지국은 단말에게 설정 변경 지시자(Configuration Switching Indicator)를 특정 슬롯에서 전송할 수 있다. 단말은 기지국으로부터 설정 변경 지시자를 수신한 후 특정 시점에서부터 설정 변경 지시자에 따라 변경된 설정을 적용하여 활성화할 대역폭 부분을 결정할 수 있다. 또한, 단말은 활성화된 대역폭 부분에 설정되어 있는 제어 영역에서 PDCCH에 대한 모니터링을 수행할 수 있다. The base station may additionally transmit an indicator for changing the configuration of the bandwidth portion to the terminal. Here, changing the setting for the bandwidth portion may be considered the same as an operation of activating a specific bandwidth portion (eg, changing the activation from the bandwidth portion A to the bandwidth portion B). The base station may transmit a configuration switching indicator to the terminal in a specific slot. After receiving the configuration change indicator from the base station, the terminal may determine a bandwidth portion to be activated by applying the changed configuration according to the configuration change indicator from a specific time point. In addition, the UE may perform monitoring for the PDCCH in the control region set in the activated bandwidth portion.
도 4에서 기지국은 단말에게 활성화된 대역폭 부분을 기존의 대역폭 부분#1(4-05)에서 대역폭 부분#2(4-10)로 변경을 지시하는 설정 변경 지시자(Configuration Switching Indication, 4-15)를 슬롯#1(4-30)에서 전송할 수 있다. 단말은 해당 지시자를 수신한 후, 지시자의 내용에 따라 대역폭 부분#2(6-10)를 활성화 할 수 있다. 이 때 대역폭 부분의 변경을 위한 전이 시간(Transistion Time, 4-20)이 요구될 수 있고, 이에 따라 활성화하는 대역폭 부분을 변경하여 적용하는 시점이 결정될 수 있다. 도 4에서는 설정 변경 지시자(4-15)를 수신한 후 1 슬롯의 전이 시간(4-20)이 소요되는 경우가 도시되어 있다. 전이 시간(4-20)에는 데이터 송수신이 수행되지 않을 수 있다(4-60). 이에 따라 슬롯#2(4-35)에서 대역폭 부분#2(4-10)이 활성화되어 해당 대역폭 부분으로 제어채널 및 데이터가 송수신될 수 있다.In FIG. 4, the base station instructs the terminal to change the activated bandwidth part from the existing bandwidth part #1 (4-05) to the bandwidth part #2 (4-10) (Configuration Switching Indication, 4-15) can be transmitted in slot #1 (4-30). After receiving the indicator, the terminal may activate the bandwidth part #2 (6-10) according to the content of the indicator. In this case, a transition time (4-20) for changing the bandwidth portion may be required, and accordingly, a time point for changing and applying the active bandwidth portion may be determined. 4 shows a case in which a transition time 4-20 of one slot is required after receiving the setting change indicator 4-15. In the transition time (4-20), data transmission/reception may not be performed (4-60). Accordingly, the bandwidth part #2 (4-10) is activated in the slot #2 (4-35), so that the control channel and data can be transmitted/received through the corresponding bandwidth part.
기지국은 단말에게 하나 또는 다수 개의 대역폭 부분을 상위 계층 시그널링(예컨대 RRC 시그널링)으로 미리 설정할 수 있으며, 설정 변경 지시자(4-15)가 기지국이 미리 설정한 대역폭 부분 설정 중 하나와 매핑되는 방법으로 활성화를 지시할 수 있다. 예컨대 log2N비트의 지시자는 N개의 기 설정된 대역폭 부분들 중 한 가지를 선택하여 지시할 수 있다. 하기 [표 3]에서는 2 비트 지시자를 이용하여 대역폭 부분에 대한 설정 정보를 지시하는 일 예가 설명된다.The base station may preset one or more bandwidth parts to the terminal as higher layer signaling (eg, RRC signaling), and the configuration change indicator 4-15 is activated in a way that is mapped with one of the bandwidth part settings preset by the base station. can be instructed. For example, an indicator of log 2 N bits may indicate by selecting one of N preset bandwidth parts. In [Table 3] below, an example of indicating configuration information for a bandwidth portion using a 2-bit indicator is described.
지시자 값indicator value 대역폭 부분 설정Bandwidth Partial Settings
0000 상위 계층 시그널링으로 설정된 대역폭 설정 ABandwidth setting A set by upper layer signaling
0101 상위 계층 시그널링으로 설정된 대역폭 설정 BBandwidth setting B set with higher layer signaling
1010 상위 계층 시그널링으로 설정된 대역폭 설정 CBandwidth setting C set with higher layer signaling
1111 상위 계층 시그널링으로 설정된 대역폭 설정 DBandwidth setting D set by higher layer signaling
도 4에서 설명된 대역폭 부분에 대한 설정 변경 지시자(4-15)는 MAC(Medium Access Control) CE(Control Element) 시그널링 또는 L1 시그널링(예컨대 공통 DCI, 그룹-공통 DCI, 단말-특정 DCI)의 형태로 기지국으로부터 단말에게 전달될 수 있다. The configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 is in the form of MAC (Medium Access Control) CE (Control Element) signaling or L1 signaling (eg, common DCI, group-common DCI, terminal-specific DCI) may be transmitted from the base station to the terminal.
도 4에서 설명된 대역폭 부분에 대한 설정 변경 지시자(4-15)에 따라, 대역폭 부분 활성화가 어느 시점에서부터 적용될지 여부는 다음에 따를 수 있다. 설정 변경이 어느 시점부터 적용될지는 미리 정의되어 있는 값(예컨대 설정 변경 지시자 수신 후 N(≥1) 슬롯 뒤부터 적용)에 따르거나, 기지국으로부터 단말에게 상위 계층 시그널링(예컨대 RRC 시그널링)을 통해 설정하거나, 설정 변경 지시자(4-15)의 내용에 일부 포함되어 전송될 수 있다. 또는, 설정 변경이 적용되는 시점은 상술한 방법들의 조합으로 결정될 수 있다. 단말은 대역폭 부분에 대한 설정 변경 지시자(4-15)를 수신한 후 상술한 방법으로 획득한 시점에서부터 변경된 설정을 적용할 수 있다.According to the configuration change indicator 4-15 for the bandwidth portion described in FIG. 4 , from which point in time the bandwidth portion activation is applied may depend on the following. From which point in time the setting change is applied, it follows a predefined value (eg, it is applied from N (≥1) slots after receiving the setting change indicator), or is set from the base station to the UE through higher layer signaling (eg RRC signaling), or , may be partially included in the contents of the setting change indicator 4-15 and transmitted. Alternatively, the timing at which the setting change is applied may be determined by a combination of the above-described methods. After receiving the configuration change indicator 4-15 for the bandwidth portion, the terminal may apply the changed configuration from the point in time obtained by the above-described method.
다음으로 5G 시스템에서의 하향링크 제어 정보(Downlink Control Information, DCI)에 대해 구체적으로 설명한다.Next, downlink control information (DCI) in the 5G system will be described in detail.
5G 시스템에서 상향링크 데이터(또는 물리 상향링크 데이터 채널(Physical Uplink Shared Channel, PUSCH)) 또는 하향링크 데이터(또는 물리 하향링크 데이터 채널(Physical Downlink Shared Channel, PDSCH))에 대한 스케줄링 정보는 DCI를 통해 기지국으로부터 단말에게 전달된다. 단말은 PUSCH 또는 PDSCH에 대하여 대비책(Fallback)용 DCI 포맷과 비대비책(Non-fallback)용 DCI 포맷을 모니터링(Monitoring)할 수 있다. 대비책 DCI 포맷은 기지국과 단말 사이에서 선정의된 고정된 필드로 구성될 수 있고, 비대비책용 DCI 포맷은 설정 가능한 필드를 포함할 수 있다.In the 5G system, scheduling information for uplink data (or physical uplink shared channel (PUSCH)) or downlink data (or physical downlink data channel (Physical Downlink Shared Channel, PDSCH)) is through DCI transmitted from the base station to the terminal. The UE may monitor the DCI format for fallback and the DCI format for non-fallback for PUSCH or PDSCH. The DCI format for countermeasures may be composed of a fixed field predetermined between the base station and the terminal, and the DCI format for non-prevention may include a configurable field.
상기 DCI는 채널코딩 및 변조 과정을 거쳐 물리 하향링크 제어 채널인 PDCCH(Physical Downlink Control Channel)을 통해 전송될 수 있다. DCI 메시지 페이로드(payload)에는 CRC(Cyclic Redundancy Check)가 부착되며 CRC는 단말의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로 스크램블링(scrambling) 된다. DCI 메시지의 목적, 예를 들어 단말-특정(UE-specific)의 데이터 전송, 전력 제어 명령 또는 랜덤 엑세스 응답 등에 따라 서로 다른 RNTI들이 사용된다. 즉 RNTI는 명시적으로 전송되지 않고 CRC 계산과정에 포함되어 전송된다. PDCCH 상으로 전송되는 DCI 메시지를 수신하면 단말은 할당 받은 RNTI를 사용하여 CRC를 확인하여 CRC 확인 결과가 맞으면 단말은 해당 메시지는 상기 단말에게 전송된 것임을 알 수 있다.The DCI may be transmitted through a Physical Downlink Control Channel (PDCCH), which is a physical downlink control channel, through a channel coding and modulation process. A cyclic redundancy check (CRC) is attached to the DCI message payload, and the CRC is scrambled with a Radio Network Temporary Identifier (RNTI) corresponding to the identity of the terminal. Different RNTIs are used according to the purpose of the DCI message, for example, UE-specific data transmission, a power control command, or a random access response. That is, the RNTI is not explicitly transmitted, but included in the CRC calculation process and transmitted. Upon receiving the DCI message transmitted on the PDCCH, the UE checks the CRC using the assigned RNTI. If the CRC check result is correct, the UE can know that the message has been transmitted to the UE.
예컨대 시스템 정보(System Information, SI)에 대한 PDSCH를 스케줄링하는 DCI는 SI-RNTI로 스크램블링될 수 있다. RAR(Random Access Response) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 RA-RNTI로 스크램블링 될 수 있다. 페이징(Paging) 메시지에 대한 PDSCH를 스케줄링하는 DCI는 P-RNTI로 스크램블링 될 수 있다. SFI(Slot Format Indicator)를 통지하는 DCI는 SFI-RNTI로 스크램블링 될 수 있다. TPC(Transmit Power Control)를 통지하는 DCI는 TPC-RNTI로 스크램블링 될 수 있다. 단말-특정의 PDSCH 또는 PUSCH를 스케줄링하는 DCI는 C-RNTI(Cell RNTI)로 스크램블링 될 수 있다.For example, DCI scheduling PDSCH for system information (SI) may be scrambled with SI-RNTI. DCI scheduling a PDSCH for a random access response (RAR) message may be scrambled with an RA-RNTI. DCI scheduling a PDSCH for a paging message may be scrambled with a P-RNTI. DCI notifying SFI (Slot Format Indicator) may be scrambled with SFI-RNTI. DCI notifying Transmit Power Control (TPC) may be scrambled with TPC-RNTI. DCI for scheduling UE-specific PDSCH or PUSCH may be scrambled with C-RNTI (Cell RNTI).
DCI 포맷 0_0은 PUSCH를 스케줄링하는 대비책 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_0은 예컨대 하기의 정보들을 포함할 수 있다.DCI format 0_0 may be used as a DCI for scheduling PUSCH, and in this case, CRC may be scrambled with C-RNTI. DCI format 0_0 in which CRC is scrambled with C-RNTI may include, for example, the following information.
- Identifier for DCI formats (DCI 포맷 식별자) - [1] bit
- Frequency domain resource assignment (주파수 도메인 자원 할당) -[
Figure PCTKR2021016345-appb-I000010
] bits
- Time domain resource assignment (시간 도메인 자원 할당) - X bits
- Frequency hopping flag (주파수 호핑 플래그) - 1 bit.
- Modulation and coding scheme (변조 및 코딩 스킴) - 5 bits
- New data indicator (새로운 데이터 지시자) - 1 bit
- Redundancy version (리던던시 버전) - 2 bits
- HARQ process number (HARQ 프로세스 번호) - 4 bits
- TPC command for scheduled PUSCH (스케줄링된 PUSCH를 위한 전송 전력 제어(transmit power control) 명령 - [2] bits
- UL/SUL indicator (상향링크/추가적 상향링크(supplementary UL) 지시자) - 0 or 1 bit
- Identifier for DCI formats - [1] bit
- Frequency domain resource assignment -[
Figure PCTKR2021016345-appb-I000010
] bits
- Time domain resource assignment - X bits
- Frequency hopping flag - 1 bit.
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- TPC command for scheduled PUSCH (transmit power control command for scheduled PUSCH - [2] bits
- UL / SUL indicator (uplink / additional uplink (supplementary UL) indicator) - 0 or 1 bit
DCI 포맷 0_1은 PUSCH를 스케줄링하는 비대비책 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 0_1은 예컨대 하기의 정보들을 포함할 수 있다.DCI format 0_1 may be used as non-preparation DCI for scheduling PUSCH, and in this case, CRC may be scrambled with C-RNTI. DCI format 0_1 in which CRC is scrambled with C-RNTI may include, for example, the following information.
- Carrier indicator (캐리어 지시자) - 0 or 3 bits
- UL/SUL indicator - 0 or 1 bit
- Identifier for DCI formats - [1] bits
- Bandwidth part indicator (대역폭 부분 지시자) - 0, 1 or 2 bits
- Frequency domain resource assignment
● For resource allocation type 0(자원 할당 타입 0의 경우),
Figure PCTKR2021016345-appb-I000011
bits
● For resource allocation type 1(자원 할당 타입 1의 경우),
Figure PCTKR2021016345-appb-I000012
bits
- Time domain resource assignment -1, 2, 3, or 4 bits
- VRB-to-PRB mapping (가상 자원 블록(virtual resource block)-to-물리 자원 블록(physical resource block) 매핑) - 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- Frequency hopping flag - 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- 1st downlink assignment index (제1 하향링크 할당 인덱스)- 1 or 2 bits
● 1 bit for semi-static HARQ-ACK codebook(준정적 HARQ-ACK 코드북의 경우);
● 2 bits for dynamic HARQ-ACK codebook with single HARQ-ACK codebook(단일 HARQ-ACK 코드북과 함께 동적 HARQ-ACK 코드북이 사용되는 경우).
- 2nd downlink assignment index (제2 하향링크 할당 인덱스) - 0 or 2 bits
● 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks(2개의 HARQ-ACK 부코드북과 함께 동적 HARQ-ACK 코드북이 사용되는 경우);
● 0 bit otherwise.
- TPC command for scheduled PUSCH - 2 bits
- SRS resource indicator (SRS 자원 지시자) -
Figure PCTKR2021016345-appb-I000013
or
Figure PCTKR2021016345-appb-I000014
bits
Figure PCTKR2021016345-appb-I000015
bits for non-codebook based PUSCH transmission(PUSCH 전송이 코드북 기반이 아닐 경우);
Figure PCTKR2021016345-appb-I000016
bits for codebook based PUSCH transmission(PUSCH 전송이 코드북 기반일 경우).
- Precoding information and number of layers (프리코딩 정보 및 레이어의 개수)-up to 6 bits
- Antenna ports (안테나 포트)- up to 5 bits
- SRS request (SRS 요청)- 2 bits
- CSI request (채널 상태 정보 요청) - 0, 1, 2, 3, 4, 5, or 6 bits
- CBG transmission information (코드 블록 그룹(code block group) 전송 정보)- 0, 2, 4, 6, or 8 bits
- PTRS-DMRS association (위상 트래킹 기준 신호-복조 기준 신호 관계)- 0 or 2 bits.
- beta_offset indicator (베타 오프셋 지시자)- 0 or 2 bits
- DMRS sequence initialization (복조 기준 신호 시퀀스 초기화)- 0 or 1 bit
- Carrier indicator - 0 or 3 bits
- UL/SUL indicator - 0 or 1 bit
- Identifier for DCI formats - [1] bits
- Bandwidth part indicator - 0, 1 or 2 bits
- Frequency domain resource assignment
● For resource allocation type 0 (for resource allocation type 0),
Figure PCTKR2021016345-appb-I000011
bits
● For resource allocation type 1 (for resource allocation type 1),
Figure PCTKR2021016345-appb-I000012
bits
- Time domain resource assignment -1, 2, 3, or 4 bits
- VRB-to-PRB mapping (virtual resource block-to-physical resource block mapping) - 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- Frequency hopping flag - 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- 1st downlink assignment index (first downlink assignment index) - 1 or 2 bits
● 1 bit for semi-static HARQ-ACK codebook (in case of semi-static HARQ-ACK codebook);
● 2 bits for dynamic HARQ-ACK codebook with single HARQ-ACK codebook (when dynamic HARQ-ACK codebook is used together with single HARQ-ACK codebook).
- 2nd downlink assignment index (second downlink assignment index) - 0 or 2 bits
● 2 bits for dynamic HARQ-ACK codebook with two HARQ-ACK sub-codebooks (when dynamic HARQ-ACK codebook is used together with two HARQ-ACK sub-codebooks);
● 0 bit otherwise.
- TPC command for scheduled PUSCH - 2 bits
- SRS resource indicator (SRS resource indicator) -
Figure PCTKR2021016345-appb-I000013
or
Figure PCTKR2021016345-appb-I000014
bits
Figure PCTKR2021016345-appb-I000015
bits for non-codebook based PUSCH transmission (when PUSCH transmission is not codebook based);
Figure PCTKR2021016345-appb-I000016
bits for codebook based PUSCH transmission (when PUSCH transmission is codebook based).
- Precoding information and number of layers-up to 6 bits
- Antenna ports- up to 5 bits
- SRS request - 2 bits
- CSI request (channel state information request) - 0, 1, 2, 3, 4, 5, or 6 bits
- CBG transmission information (code block group transmission information) - 0, 2, 4, 6, or 8 bits
- PTRS-DMRS association (phase tracking reference signal-demodulation reference signal relationship)- 0 or 2 bits.
- beta_offset indicator - 0 or 2 bits
- DMRS sequence initialization - 0 or 1 bit
DCI 포맷 1_0은 PDSCH를 스케줄링하는 대비책 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_0은 예컨대 하기의 정보들을 포함할 수 있다.DCI format 1_0 may be used as a DCI for scheduling PDSCH, and in this case, CRC may be scrambled with C-RNTI. DCI format 1_0 in which CRC is scrambled with C-RNTI may include, for example, the following information.
- Identifier for DCI formats - [1] bit
- Frequency domain resource assignment -[
Figure PCTKR2021016345-appb-I000017
] bits
- Time domain resource assignment - X bits
- VRB-to-PRB mapping - 1 bit.
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- Downlink assignment index - 2 bits
- TPC command for scheduled PUCCH - [2] bits
- PUCCH resource indicator (물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 자원 지시자- 3 bits
- PDSCH-to-HARQ feedback timing indicator (PDSCH-to-HARQ 피드백 타이밍 지시자)- [3] bits
- Identifier for DCI formats - [1] bit
- Frequency domain resource assignment -[
Figure PCTKR2021016345-appb-I000017
] bits
- Time domain resource assignment - X bits
- VRB-to-PRB mapping - 1 bit.
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- Downlink assignment index - 2 bits
- TPC command for scheduled PUCCH - [2] bits
- PUCCH resource indicator (physical uplink control channel (PUCCH) resource indicator- 3 bits
- PDSCH-to-HARQ feedback timing indicator (PDSCH-to-HARQ feedback timing indicator)- [3] bits
DCI 포맷 1_1은 PDSCH를 스케줄링하는 비대비책 DCI로 사용될 수 있고, 이 때 CRC는 C-RNTI로 스크램블링될 수 있다. C-RNTI로 CRC가 스크램블링 된 DCI 포맷 1_1은 예컨대 하기의 정보들을 포함할 수 있다.DCI format 1_1 may be used as non-preparation DCI for scheduling PDSCH, and in this case, CRC may be scrambled with C-RNTI. DCI format 1_1 in which CRC is scrambled with C-RNTI may include, for example, the following information.
- Carrier indicator - 0 or 3 bits
- Identifier for DCI formats - [1] bits
- Bandwidth part indicator - 0, 1 or 2 bits
- Frequency domain resource assignment
● For resource allocation type 0,
Figure PCTKR2021016345-appb-I000018
bits
● For resource allocation type 1,
Figure PCTKR2021016345-appb-I000019
bits
- Time domain resource assignment -1, 2, 3, or 4 bits
- VRB-to-PRB mapping - 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- PRB bundling size indicator (물리 자원 블록 번들링 크기 지시자) - 0 or 1 bit
- Rate matching indicator (레이트 매칭 지시자) - 0, 1, or 2 bits
- ZP CSI-RS trigger (영전력 채널 상태 정보 기준 신호 트리거) - 0, 1, or 2 bits
For transport block 1(제1 전송 블록의 경우):
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
For transport block 2(제2 전송 블록의 경우):
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- Downlink assignment index - 0 or 2 or 4 bits
- TPC command for scheduled PUCCH - 2 bits
- PUCCH resource indicator - 3 bits
- PDSCH-to-HARQ_feedback timing indicator - 3 bits
- Antenna ports - 4, 5 or 6 bits
- Transmission configuration indication (전송 설정 지시)- 0 or 3 bits
- SRS request - 2 bits
- CBG transmission information - 0, 2, 4, 6, or 8 bits
- CBG flushing out information (코드 블록 그룹 플러싱 아웃 정보) - 0 or 1 bit
- DMRS sequence initialization - 1 bit
- Carrier indicator - 0 or 3 bits
- Identifier for DCI formats - [1] bits
- Bandwidth part indicator - 0, 1 or 2 bits
- Frequency domain resource assignment
● For resource allocation type 0,
Figure PCTKR2021016345-appb-I000018
bits
● For resource allocation type 1,
Figure PCTKR2021016345-appb-I000019
bits
- Time domain resource assignment -1, 2, 3, or 4 bits
- VRB-to-PRB mapping - 0 or 1 bit, only for resource allocation type 1.
● 0 bit if only resource allocation type 0 is configured;
● 1 bit otherwise.
- PRB bundling size indicator (physical resource block bundling size indicator) - 0 or 1 bit
- Rate matching indicator - 0, 1, or 2 bits
- ZP CSI-RS trigger (zero power channel state information reference signal trigger) - 0, 1, or 2 bits
For transport block 1 (for the first transport block):
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
For transport block 2 (for the second transport block):
- Modulation and coding scheme - 5 bits
- New data indicator - 1 bit
- Redundancy version - 2 bits
- HARQ process number - 4 bits
- Downlink assignment index - 0 or 2 or 4 bits
- TPC command for scheduled PUCCH - 2 bits
- PUCCH resource indicator - 3 bits
- PDSCH-to-HARQ_feedback timing indicator - 3 bits
- Antenna ports - 4, 5 or 6 bits
- Transmission configuration indication - 0 or 3 bits
- SRS request - 2 bits
- CBG transmission information - 0, 2, 4, 6, or 8 bits
- CBG flushing out information (code block group flushing out information) - 0 or 1 bit
- DMRS sequence initialization - 1 bit
하기에서는 5G 통신 시스템에서의 하향링크 제어채널에 대하여 도면을 참조하여 보다 구체적으로 설명하고자 한다.Hereinafter, a downlink control channel in a 5G communication system will be described in more detail with reference to the drawings.
도 5는 5G 무선통신 시스템에서 하향링크 제어채널이 전송되는 제어영역(Control Resource Set, CORESET)에 대한 일 예를 도시한 도면이다. 5 is a diagram illustrating an example of a control region (Control Resource Set, CORESET) in which a downlink control channel is transmitted in a 5G wireless communication system.
도 5에는 주파수 축으로 단말의 대역폭부분(5-10), 시간축으로 1 슬롯(5-20) 내에 2개의 제어영역(제어영역#1(5-01), 제어영역#2(5-02))이 설정되어 있는 일 예를 보여준다. 제어영역(5-01, 5-02)는 주파수 축으로 전체 단말 대역폭부분(5-10) 내에서 특정 주파수 자원(5-03)에 설정될 수 있다. 시간 축으로는 하나 혹은 다수 개의 OFDM 심볼로 설정될 수 있고 이를 제어영역 길이 (Control Resource Set Duration, 5-04)으로 정의할 수 있다. 도 5의 일 예에서 제어영역#1(5-01)은 2 심볼의 제어영역 길이로 설정되어 있고, 제어영역#2(5-02)는 1 심볼의 제어영역 길이로 설정되어 있다. In Fig. 5, two control regions (control region #1 (5-01), control region #2 (5-02) in one slot (5-20) on the time axis and the bandwidth part (5-10) of the terminal on the frequency axis ) shows an example in which it is set. The control regions 5-01 and 5-02 may be set in a specific frequency resource 5-03 within the entire terminal bandwidth portion 5-10 on the frequency axis. As a time axis, one or more OFDM symbols may be set, and this may be defined as a control region length (Control Resource Set Duration, 5-04). In the example of FIG. 5 , the control region #1 (5-01) is set to a control region length of 2 symbols, and the control region #2 (5-02) is set to a control region length of 1 symbol.
상기에서 설명한 5G에서의 제어영역은 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC(Radio Resource Control) 시그널링)을 통해 설정될 수 있다. 단말에게 제어영역을 설정한다는 것은 제어영역 식별자(Identity), 제어영역의 주파수 위치, 제어영역 의 심볼 길이 등의 정보를 제공하는 것을 의미한다. 예컨대 하기의 정보들을 포함할 수 있다.The control region in 5G described above may be set by the base station to the terminal through higher layer signaling (eg, system information, master information block (MIB), radio resource control (RRC) signaling). Setting the control region to the terminal means providing information such as the control region identifier (Identity), the frequency position of the control region, and the symbol length of the control region. For example, it may include the following information.
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
(제어영역 식별자(Identity))

frequencyDomainResources BIT STRING (SIZE (45)),
(주파수 축 자원할당 정보)
duration INTEGER (1..maxCoReSetDuration),
(시간 축 자원할당 정보)
cce-REG-MappingType CHOICE {
(CCE-to-REG 매핑 방식)
interleaved SEQUENCE {
reg-BundleSize ENUMERATED {n2, n3, n6},
(REG 번들 크기)
interleaverSize ENUMERATED {n2, n3, n6},
(인터리버 크기)
shiftIndex INTEGER(0..maxNrofPhysicalResourceBlocks-1) OPTIONAL
(인터리버 쉬프트(Shift))
},
nonInterleaved NULL
},
precoderGranularity ENUMERATED {sameAsREG-bundle, allContiguousRBs},
tci-StatesPDCCH-ToAddList SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL,
tci-StatesPDCCH-ToReleaseList SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL,
tci-PresentInDCI ENUMERATED {enabled} OPTIONAL,
pdcch-DMRS-ScramblingID INTEGER (0..65535) OPTIONAL,
...,
[[
rb-Offset-r16 INTEGER (0..5) OPTIONAL,
tci-PresentDCI-1-2-r16 INTEGER (1..3) OPTIONAL,
coresetPoolIndex-r16 INTEGER (0..1) OPTIONAL,
controlResourceSetId-v1610 ControlResourceSetId-v1610 OPTIONAL
]]
}
ControlResourceSet ::= SEQUENCE {
controlResourceSetId ControlResourceSetId,
(Control area identifier (Identity))

frequencyDomainResources BIT STRING (SIZE (45)),
(frequency axis resource allocation information)
duration INTEGER (1..maxCoReSetDuration),
(Time axis resource allocation information)
cce-REG-MappingType CHOICE {
(CCE-to-REG mapping method)
interleaved SEQUENCE {
reg-BundleSize ENUMERATED {n2, n3, n6},
(REG bundle size)
interleaverSize ENUMERATED {n2, n3, n6},
(interleaver size)
shiftIndex INTEGER(0..maxNrofPhysicalResourceBlocks-1) OPTIONAL
(Interleaver Shift)
},
nonInterleaved NULL
},
precoderGranularity ENUMERATED {sameAsREG-bundle, allContiguousRBs},
tci-StatesPDCCH-ToAddList SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL,
tci-StatesPDCCH-ToReleaseList SEQUENCE(SIZE (1..maxNrofTCI-StatesPDCCH)) OF TCI-StateId OPTIONAL,
tci-PresentInDCI ENUMERATED {enabled} OPTIONAL,
pdcch-DMRS-ScramblingID INTEGER (0..65535) OPTIONAL,
...,
[[
rb-Offset-r16 INTEGER (0..5) OPTIONAL,
tci-PresentDCI-1-2-r16 INTEGER (1..3) OPTIONAL,
coresetPoolIndex-r16 INTEGER (0..1) OPTIONAL,
controlResourceSetId-v1610 ControlResourceSetId-v1610 OPTIONAL
]]
}
상기 표 8에서 coresetPoolIndex는, 설정하는 제어영역이 속한 CORESET pool의 인덱스일 수 있다. 일반적으로 하나의 BWP 내에 최대 5개의 CORESET까지 설정될 수 있으며, 이때 Multi-TRP transmission을 수행할 수 있는 CORESET의 집합(set)을 동일한 CORESETPoolIndex로 설정할 수 있다. 단말은 적어도 하나 이상의 BWP에서 CORESETPoolIndex가 동일한 값으로 설정된 CORESET에 포함된 복수의 PDCCH를 모니터링하여 DCI를 디코딩할 수 있다. 또는 단말은 적어도 하나 이상의 BWP에서 CORESETPoolIndex가 상이한 값으로 설정된 CORESET에 포함된 복수의 PDCCH를 모니터링하여 DCI를 디코딩할 수 있다. 또한, 단말은 상기 DCI가 스케줄링하는 fully/partially/non-overlapped PDSCHs를 수신을 기대할 수 있다.In Table 8, coresetPoolIndex may be an index of the CORESET pool to which the set control region belongs. In general, up to five CORESETs can be set in one BWP, and in this case, a set of CORESETs capable of performing multi-TRP transmission can be set to the same CORESETPoolIndex. The UE may decode DCI by monitoring a plurality of PDCCHs included in CORESET in which CORESETPoolIndex is set to the same value in at least one BWP. Alternatively, the UE may decode DCI by monitoring a plurality of PDCCHs included in CORESET in which CORESETPoolIndex is set to different values in at least one BWP. In addition, the UE can expect to receive fully/partially/non-overlapped PDSCHs scheduled by the DCI.
도 6는 5G에서 사용될 수 있는 하향링크 제어채널을 구성하는 시간 및 주파수 자원의 기본단위의 일 예를 도시한 도면이다. 6 is a diagram illustrating an example of a basic unit of time and frequency resources constituting a downlink control channel that can be used in 5G.
도 6에 따르면 제어채널을 구성하는 시간 및 주파수 자원의 기본 단위를 REG(Resource Element Group, 6-03)으로 명명하며, REG(6-03)는 시간 축으로 1 OFDM 심볼(6-01), 주파수 축으로 1 PRB(Physical Resource Block, 6-02), 즉 12개 서브캐리어(Subcarrier)로 정의될 수 있다. 상기 REG(6-03)를 연접하여 하향링크 제어채널 할당 단위를 구성할 수 있다. According to FIG. 6, the basic unit of time and frequency resources constituting the control channel is named REG (Resource Element Group, 6-03), and REG (6-03) is 1 OFDM symbol (6-01) on the time axis, On the frequency axis, 1 PRB (Physical Resource Block, 6-02), that is, may be defined as 12 subcarriers. A downlink control channel allocation unit may be configured by concatenating the REGs 6-03.
도 6에 도시된 바와 같이 5G에서 하향링크 제어채널이 할당되는 기본 단위를 CCE(Control Channel Element, 6-04)라고 할 경우, 1 CCE(6-04)는 다수의 REG(6-03)로 구성될 수 있다. 도 6에 도시된 REG(6-03)를 예를 들어 설명하면, REG(6-03)는 12개의 RE로 구성될 수 있고 1 CCE(6-04)가 6개의 REG(6-03)로 구성된다면 1 CCE(6-04)는 72개의 RE로 구성될 수 있음을 의미한다. 하향링크 제어영역이 설정되면 해당 영역은 다수의 CCE(6-04)로 구성될 수 있으며, 특정 하향링크 제어채널은 제어영역 내의 집성 레벨(Aggregation Level; AL)에 따라 하나 또는 다수의 CCE(6-04)로 매핑 되어 전송될 수 있다. 제어영역내의 CCE(6-04)들은 번호로 구분되며 이 때 번호는 논리적인 매핑 방식에 따라 부여될 수 있다.As shown in FIG. 6 , when a basic unit to which a downlink control channel is allocated in 5G is referred to as a CCE (Control Channel Element, 6-04), one CCE 6-04 consists of a plurality of REGs 6-03. can be configured. If the REG 6-03 shown in FIG. 6 is described as an example, the REG 6-03 may be composed of 12 REs and 1 CCE 6-04 is composed of 6 REGs 6-03. If configured, it means that 1 CCE (6-04) can be configured with 72 REs. When the downlink control region is set, the corresponding region may be composed of a plurality of CCEs 6-04, and a specific downlink control channel may have one or more CCEs 6 according to an aggregation level (AL) within the control region. -04) can be mapped and transmitted. The CCEs 6-04 in the control area are divided by numbers, and in this case, numbers may be assigned according to a logical mapping method.
도 6에 도시된 하향링크 제어채널의 기본 단위, 즉 REG(6-03)에는 DCI가 매핑되는 RE들과 이를 디코딩하기 위한 레퍼런스 신호인 DMRS(6-05)가 매핑되는 영역이 모두 포함될 수 있다. 도 6에서와 같이 1 REG(6-03) 내에 3개의 DMRS(6-05)가 전송될 수 있다. The basic unit of the downlink control channel shown in FIG. 6, that is, REG 6-03, may include both REs to which DCI is mapped and regions to which DMRS 6-05, which is a reference signal for decoding them, is mapped. . As shown in FIG. 6, three DMRSs 6-05 may be transmitted within 1 REG 6-03.
PDCCH를 전송하는데 필요한 CCE의 개수는 집성 레벨(Aggregation Level, AL)에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 하향링크 제어채널의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예컨대 AL=L일 경우, 하나의 하향링크 제어채널이 L 개의 CCE를 통해 전송될 수 있다. 단말은 하향링크 제어채널에 대한 정보를 모르는 상태에서 신호를 검출해야 하는데, 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색공간(search space)를 정의하였다. 탐색공간은 주어진 집성 레벨 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 하향링크 제어채널 후보군(Candidate)들의 집합이며, 1, 2, 4, 8, 16 개의 CCE로 하나의 묶음을 만드는 여러 가지 집성 레벨이 있으므로 단말은 복수개의 탐색공간을 갖는다. 탐색공간 세트(Set)는 설정된 모든 집성 레벨에서의 탐색공간들의 집합으로 정의될 수 있다.The number of CCEs required to transmit the PDCCH may be 1, 2, 4, 8, or 16 according to an aggregation level (AL), and the number of different CCEs is the link adaptation of the downlink control channel. can be used to implement For example, when AL=L, one downlink control channel may be transmitted through L CCEs. The UE needs to detect a signal without knowing information about the downlink control channel. For blind decoding, a search space indicating a set of CCEs is defined. The search space is a set of downlink control channel candidates consisting of CCEs that the UE should attempt to decode on a given aggregation level, and various aggregations that make one bundle with 1, 2, 4, 8, or 16 CCEs. Since there is a level, the terminal has a plurality of search spaces. A search space set may be defined as a set of search spaces in all set aggregation levels.
탐색공간은 공통(Common) 탐색공간과 단말-특정(UE-specific) 탐색공간으로 분류될 수 있다. 일정 그룹의 단말들 혹은 모든 단말들이 시스템정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 셀 공통의 제어정보를 수신하기 위해 PDCCH의 공통 탐색 공간을 조사할 수 있다. 예를 들어 셀의 사업자 정보 등을 포함하는 SIB의 전송을 위한 PDSCH 스케줄링 할당 정보는 PDCCH의 공통 탐색 공간을 조사하여 수신할 수 있다. 공통 탐색공간의 경우, 일정 그룹의 단말들 혹은 모든 단말들이 PDCCH를 수신해야 하므로 기 약속된 CCE의 집합으로써 정의될 수 있다. 단말-특정적인 PDSCH 또는 PUSCH에 대한 스케쥴링 할당 정보는 PDCCH의 단말-특정 탐색공간을 조사하여 수신할 수 있다. 단말-특정 탐색공간은 단말의 신원(Identity) 및 다양한 시스템 파라미터의 함수로 단말-특정적으로 정의될 수 있다. The search space may be classified into a common search space and a UE-specific search space. A group of terminals or all terminals may search the common search space of the PDCCH to receive control information common to cells such as dynamic scheduling for system information or a paging message. For example, PDSCH scheduling assignment information for SIB transmission including cell operator information may be received by examining the common search space of the PDCCH. In the case of the common search space, since terminals of a certain group or all terminals need to receive the PDCCH, it may be defined as a set of promised CCEs. The UE-specific scheduling allocation information for the PDSCH or PUSCH may be received by examining the UE-specific search space of the PDCCH. The UE-specific search space may be UE-specifically defined as a function of UE identity and various system parameters.
5G에서는 PDCCH에 대한 탐색공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)으로 기지국으로부터 단말로 설정될 수 있다. 예컨대 기지국은 각 집성 레벨 L에서의 PDCCH 후보군 수, 탐색공간에 대한 모니터링 주기, 탐색공간에 대한 슬롯 내 심볼 단위의 모니터링 occasion, 탐색공간 타입 (공통 탐색공간 또는 단말-특정 탐색공간), 해당 탐색공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI의 조합, 탐색공간을 모니터링 하고자 하는 제어영역 인덱스 등을 단말에게 설정할 수 있다. 예컨대 하기의 정보들을 포함할 수 있다.In 5G, a parameter for the search space for the PDCCH may be set from the base station to the terminal through higher layer signaling (eg, SIB, MIB, RRC signaling). For example, the base station is the number of PDCCH candidates in each aggregation level L, the monitoring period for the search space, the monitoring occasion in symbol units in the slot for the search space, the search space type (common search space or terminal-specific search space), the corresponding search space A combination of a DCI format and an RNTI to be monitored in the RNTI, a control region index for monitoring a search space, etc. may be set to the UE. For example, it may include the following information.
SearchSpace ::= SEQUENCE {
-- Identity of the search space. SearchSpaceId = 0 identifies the SearchSpace configured via PBCH (MIB) or ServingCellConfigCommon.
searchSpaceId SearchSpaceId,
(탐색공간 식별자)
controlResourceSetId ControlResourceSetId,
(제어영역 식별자)
monitoringSlotPeriodicityAndOffset CHOICE {
(모니터링 슬롯 레벨 주기)
sl1 NULL,
sl2 INTEGER (0..1),
sl4 INTEGER (0..3),
sl5 INTEGER (0..4),
sl8 INTEGER (0..7),
sl10 INTEGER (0..9),
sl16 INTEGER (0..15),
sl20 INTEGER (0..19)
} OPTIONAL,

monitoringSymbolsWithinSlot BIT STRING (SIZE (14)) OPTIONAL,
(슬롯 내 모니터링 심볼)
nrofCandidates SEQUENCE {
(집성 레벨 별 PDCCH 후보군 수)
aggregationLevel1 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel2 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel4 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel8 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel16 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}
},

searchSpaceType CHOICE {
(탐색공간 타입)
-- Configures this search space as common search space (CSS) and DCI formats to monitor.
common SEQUENCE {
(공통 탐색 공간)
}
ue-Specific SEQUENCE {
(단말-특정 탐색공간)
-- Indicates whether the UE monitors in this USS for DCI formats 0-0 and 1-0 or for formats 0-1 and 1-1.
formats ENUMERATED {formats0-0-And-1-0, formats0-1-And-1-1},
...
}
SearchSpace ::= SEQUENCE {
-- Identity of the search space. SearchSpaceId = 0 identifies the SearchSpace configured via PBCH (MIB) or ServingCellConfigCommon.
searchSpaceId SearchSpaceId,
(search space identifier)
controlResourceSetId ControlResourceSetId,
(control area identifier)
monitoringSlotPeriodicityAndOffset CHOICE {
(Monitoring slot level cycle)
sl1 NULL,
sl2 INTEGER (0..1),
sl4 INTEGER (0..3),
sl5 INTEGER (0..4),
sl8 INTEGER (0..7),
sl10 INTEGER (0..9),
sl16 INTEGER (0..15),
sl20 INTEGER (0..19)
} OPTIONAL,

monitoringSymbolsWithinSlot BIT STRING (SIZE (14)) OPTIONAL,
(Monitoring symbol in slot)
nrofCandidates SEQUENCE {
(Number of PDCCH candidates by aggregation level)
aggregationLevel1 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel2 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel4 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel8 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8},
aggregationLevel16 ENUMERATED {n0, n1, n2, n3, n4, n5, n6, n8}
},

searchSpaceType CHOICE {
(Search space type)
-- Configures this search space as common search space (CSS) and DCI formats to monitor.
common SEQUENCE {
(Common Search Space)
}
ue-Specific SEQUENCE {
(Terminal-specific search space)
-- Indicates whether the UE monitors in this USS for DCI formats 0-0 and 1-0 or for formats 0-1 and 1-1.
formats ENUMERATED {formats0-0-And-1-0, formats0-1-And-1-1},
...
}
상기 설정 정보에 따라 기지국은 단말에게 하나 또는 다수 개의 탐색공간 세트를 설정할 수 있다. 일 예로 기지국은 단말에게 탐색공간 세트 1과 탐색공간 세트 2를 설정할 수 있고, 탐색공간 세트 1에서 X-RNTI로 스크램블링된 DCI 포맷 A를 공통 탐색공간에서 모니터링 하도록 설정할 수 있고, 탐색공간 세트 2에서 Y-RNTI로 스크램블링된 DCI 포맷 B를 단말-특정 탐색공간에서 모니터링 하도록 설정할 수 있다.According to the configuration information, the base station may configure one or more search space sets for the terminal. As an example, the base station may set the search space set 1 and the search space set 2 to the terminal, and may configure the DCI format A scrambled with X-RNTI in the search space set 1 to be monitored in the common search space, and in the search space set 2 DCI format B scrambled with Y-RNTI may be configured to be monitored in a UE-specific search space.
상기 설정 정보에 따르면, 공통 탐색공간 또는 단말-특정 탐색공간에 하나 또는 다수 개의 탐색공간 세트가 존재할 수 있다. 예를 들어 탐색공간 세트#1과 탐색공간 세트#2가 공통 탐색공간으로 설정될 수 있고, 탐색공간 세트#3과 탐색공간 세트#4가 단말-특정 탐색공간으로 설정될 수 있다.According to the configuration information, one or more search space sets may exist in a common search space or a terminal-specific search space. For example, the search space set #1 and the search space set #2 may be set as the common search space, and the search space set #3 and the search space set #4 may be set as the terminal-specific search space.
공통 탐색공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다.In the common search space, a combination of the following DCI format and RNTI may be monitored.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI, RA-RNTI, TC-RNTI, P-RNTI, SI-RNTI
- DCI format 2_0 with CRC scrambled by SFI-RNTI- DCI format 2_0 with CRC scrambled by SFI-RNTI
- DCI format 2_1 with CRC scrambled by INT-RNTI- DCI format 2_1 with CRC scrambled by INT-RNTI
- DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI- DCI format 2_2 with CRC scrambled by TPC-PUSCH-RNTI, TPC-PUCCH-RNTI
- DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI- DCI format 2_3 with CRC scrambled by TPC-SRS-RNTI
단말-특정 탐색공간에서는 하기의 DCI 포맷과 RNTI의 조합이 모니터링 될 수 있다.In the UE-specific search space, a combination of the following DCI format and RNTI may be monitored.
- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI- DCI format 0_0/1_0 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
- DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI- DCI format 1_0/1_1 with CRC scrambled by C-RNTI, CS-RNTI, TC-RNTI
상기 명시되어 있는 RNTI들은 하기의 정의 및 용도를 따를 수 있다.The RNTIs specified above may follow the definitions and uses below.
C-RNTI (Cell RNTI): 단말-특정 PDSCH 스케쥴링 용도C-RNTI (Cell RNTI): UE-specific PDSCH scheduling purpose
TC-RNTI (Temporary Cell RNTI): 단말-특정 PDSCH 스케쥴링 용도TC-RNTI (Temporary Cell RNTI): UE-specific PDSCH scheduling purpose
CS-RNTI(Configured Scheduling RNTI): 준정적으로 설정된 단말-특정 PDSCH 스케쥴링 용도CS-RNTI (Configured Scheduling RNTI): Semi-statically configured UE-specific PDSCH scheduling purpose
RA-RNTI (Random Access RNTI): 랜덤 엑세스 단계에서 PDSCH 스케쥴링 용도RA-RNTI (Random Access RNTI): Used for scheduling PDSCH in the random access phase
P-RNTI (Paging RNTI): 페이징이 전송되는 PDSCH 스케쥴링 용도P-RNTI (Paging RNTI): PDSCH scheduling purpose for which paging is transmitted
SI-RNTI (System Information RNTI): 시스템 정보가 전송되는 PDSCH 스케쥴링 용도SI-RNTI (System Information RNTI): Used for scheduling PDSCH in which system information is transmitted
INT-RNTI (Interruption RNTI): PDSCH에 대한 pucturing 여부를 알려주기 위한 용도INT-RNTI (Interruption RNTI): Used to indicate whether PDSCH is pucturing
TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): PUSCH에 대한 전력 조절 명령 지시 용도TPC-PUSCH-RNTI (Transmit Power Control for PUSCH RNTI): Purpose of indicating power control command for PUSCH
TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): PUCCH에 대한 전력 조절 명령 지시 용도TPC-PUCCH-RNTI (Transmit Power Control for PUCCH RNTI): Used to indicate power control command for PUCCH
TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): SRS에 대한 전력 조절 명령 지시 용도TPC-SRS-RNTI (Transmit Power Control for SRS RNTI): Used to indicate power control command for SRS
상기 명시되어 있는 DCI 포맷들은 하기의 정의를 따를 수 있다.The DCI formats specified above may follow the definition below.
DCI formatDCI format UsageUsage
0_00_0 Scheduling of PUSCH in one cellScheduling of PUSCH in one cell
0_10_1 Scheduling of PUSCH in one cellScheduling of PUSCH in one cell
1_01_0 Scheduling of PDSCH in one cellScheduling of PDSCH in one cell
1_11_1 Scheduling of PDSCH in one cellScheduling of PDSCH in one cell
2_02_0 Notifying a group of UEs of the slot formatNotifying a group of UEs of the slot format
2_12_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UENotifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_22_2 Transmission of TPC commands for PUCCH and PUSCHTransmission of TPC commands for PUCCH and PUSCH
2_32_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEsTransmission of a group of TPC commands for SRS transmissions by one or more UEs
5G에서는 다수 개의 탐색공간 세트가 서로 다른 파라미터들(예컨대, 표 8의 파라미터들)로 설정될 수 있음에 따라, 매 시점에서 단말이 모니터링하는 탐색공간 세트의 집합이 달라질 수 있다. 예컨대 탐색공간 세트#1이 X-슬롯 주기로 설정되어 있고, 탐색공간 세트#2가 Y-슬롯 주기로 설정되어 있고 X와 Y가 다를 경우, 단말은 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2를 모두 모니터링 할 수 있고, 특정 슬롯에서는 탐색공간 세트#1과 탐색공간 세트#2 중 하나를 모니터링 할 수 있다. In 5G, as a plurality of search space sets can be set with different parameters (eg, parameters in Table 8), the set of search space sets monitored by the UE at every time point may vary. For example, if the search space set #1 is set to the X-slot period, the search space set #2 is set to the Y-slot period, and X and Y are different, the terminal sets the search space set #1 and the search space set# in a specific slot. 2 can be monitored, and one of the search space set #1 and the search space set #2 can be monitored in a specific slot.
다수 개의 탐색공간 세트가 단말에게 설정되었을 경우, 단말이 모니터링해야 하는 탐색공간 세트를 결정하는 방법에 있어서 하기의 조건들이 고려될 수 있다. When a plurality of search space sets are configured for the terminal, the following conditions may be considered in a method for determining a search space set to be monitored by the terminal.
[조건 1][Condition 1]
슬롯 당 모니터링 할 수 있는 PDCCH 후보군의 수는 X를 넘지 않는다. X 값은 서브캐리어 간격에 따라 값이 다를 수 있으며, 예컨대 하기 표로 정의될 수 있다. The number of PDCCH candidates that can be monitored per slot does not exceed X. The value of X may have a different value depending on the subcarrier spacing, and may be defined, for example, in the table below.
μμ Maximum number of PDCCH candidates per slot and per serving cell (X)Maximum number of PDCCH candidates per slot and per serving cell (X)
00 4444
1One 3636
22 2222
33 2020
상기 표에서 서브캐리어 간격은 15·2μ kHz로 정의 될 수 있다.In the table above, the subcarrier interval may be defined as 15·2 μ kHz.
[조건 2][Condition 2]
슬롯 당 전체 탐색공간(여기서 전체 탐색공간이란 다수개의 탐색공간 세트의 union 영역에 해당하는 전체 CCE 집합을 의미)을 구성하는 CCE의 개수가 Y를 넘지 않는다. Y 값은 서브캐리어 간격에 따라 값이 다를 수 있으며, 예컨대 하기 표로 정의될 수 있다. The number of CCEs constituting the entire search space per slot (here, the total search space means the entire set of CCEs corresponding to the union area of a plurality of search space sets) does not exceed Y. The Y value may have a different value depending on the subcarrier spacing, and may be defined, for example, in the table below.
μμ Maximum number of CCEs per slot and per serving cell (Y)Maximum number of CCEs per slot and per serving cell (Y)
00 5656
1One 5656
22 4848
33 3232
상기 표에서 서브캐리어 간격은 15*2μ kHz로 정의 될 수 있다.In the table above, the subcarrier spacing may be defined as 15*2 μ kHz.
기술의 편의를 위해, 특정 시점에서 상기 조건 1, 2를 모두 만족시키는 상황을 “조건 A”로 정의하도록 한다. 따라서 조건 A를 만족시키지 않는 것은 상기 조건 1, 2 중에서 적어도 하나의 조건을 만족시키지 않는 것을 의미할 수 있다.For convenience of description, a situation that satisfies both conditions 1 and 2 at a specific point in time is defined as “condition A”. Therefore, not satisfying condition A may mean not satisfying at least one of conditions 1 and 2 above.
기지국의 탐색공간 세트들의 설정에 따라 특정 시점에서 상기 기술된 조건 A를 만족하지 않는 경우가 발생할 수 있다. 특정 시점에서 상기 조건 A를 만족하지 않을 경우, 단말은 해당 시점에서 조건 A를 만족하도록 설정된 탐색공간 세트들 중에서 일부만을 선택하여 모니터링 할 수 있고, 기지국은 선택된 탐색공간 세트로 PDCCH를 전송할 수 있다. According to the setting of the search space sets of the base station, the above-described condition A may not be satisfied at a specific time point. If the condition A is not satisfied at a specific time point, the UE may select and monitor only some of the search space sets configured to satisfy the condition A at the corresponding time point, and the base station may transmit the PDCCH to the selected search space set.
전체 설정된 탐색공간 세트 중에서 일부 탐색공간을 선택하는 방법으로 하기의 방법을 따를 수 있다.The following method may be followed as a method of selecting a partial search space from among the entire set of search spaces.
특정 시점(슬롯)에서 PDCCH에 대한 조건 A를 만족시키지 못할 경우, If condition A for PDCCH is not satisfied at a specific time point (slot),
단말은(또는 기지국은) 해당 시점에 존재하는 탐색공간 세트들 중에서 탐색 공간 타입이 공통 탐색공간으로 설정되어 있는 탐색공간 세트를 단말-특정 탐색공간으로 설정된 탐색공간 세트보다 우선적으로 선택할 수 있다.The terminal (or the base station) may preferentially select a search space set in which the search space type is set as a common search space from among search space sets existing at a corresponding time, over a search space set set as a terminal-specific search space.
공통 탐색공간으로 설정되어 있는 탐색공간 세트들이 모두 선택되었을 경우(즉, 공통 탐색공간으로 설정되어 있는 모든 탐색공간을 선택한 후에도 조건 A를 만족할 경우), 단말은(또는 기지국은) 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트들을 선택할 수 있다. 이 때, 단말-특정 탐색공간으로 설정되어 있는 탐색공간 세트가 다수 개일 경우, 탐색공간 세트 인덱스(Index)가 낮은 탐색공간 세트가 더 높은 우선 순위를 가질 수 있다. 우선 순위를 고려하여 단말-특정 탐색공간 세트들을 조건 A가 만족되는 범위 내에서 선택할 수 있다.When all search space sets set as the common search space are selected (that is, condition A is satisfied even after all search spaces set as the common search space are selected), the terminal (or the base station) uses the terminal-specific search space You can select search space sets set to . In this case, when there are a plurality of search space sets set as the terminal-specific search space, a search space set having a low search space set index may have a higher priority. In consideration of priority, UE-specific search space sets may be selected within a range in which condition A is satisfied.
도 7은 본 개시의 일 실시예에 따른 협력 통신 안테나 포트 구성을 설명하기 위한 도면이다. 7 is a diagram for explaining the configuration of a cooperative communication antenna port according to an embodiment of the present disclosure.
도 7을 참조하면, 합동 전송(joint transmission: JT)기법과 상황에 따른 TRP (transmission reception point)별 무선자원 할당 예시가 도시되어 있다. Referring to FIG. 7 , an example of radio resource allocation for each transmission reception point (TRP) according to a joint transmission (JT) technique and a situation is illustrated.
도 7에서 700은 각 셀, TRP 및/또는 빔 간 코히런트(coherent) 프리코딩을 지원하는 코히런트 합동 전송(coherent joint transmission: C-JT)을 나타낸 도면이다. C-JT의 경우 TRP A(705)과 TRP B(710)가 서로 같은 데이터(PDSCH)를 전송하며, 다수의 TRP에서 joint 프리코딩을 수행할 수 있다. 이는 TRP A(705)과 TRP B(710)에서 동일한 DMRS 포트들(예를 들어 두 TRP 모두에서 DMRS port A, B)을 전송하게 됨을 의미할 수 있다. 이 경우 단말은, DMRS port A, B를 통해 수신된 기준 신호에 의해 복조되는 하나의 PDSCH (physical downlink shared channel)를 수신하기 위한 하나의 DCI 정보를 수신할 수 있다.In FIG. 7, 700 is a diagram illustrating coherent joint transmission (C-JT) supporting coherent precoding between each cell, TRP, and/or beam. In the case of C-JT, TRP A 705 and TRP B 710 transmit the same data (PDSCH), and joint precoding can be performed in multiple TRPs. This may mean that the TRP A 705 and the TRP B 710 transmit the same DMRS ports (eg, DMRS ports A and B in both TRPs). In this case, the terminal may receive one piece of DCI information for receiving one physical downlink shared channel (PDSCH) demodulated by the reference signal received through DMRS ports A and B.
도 7에서 720은 각 셀, TRP 및/또는 빔 간 비-코히런트(non-coherent) 프리코딩을 지원하는 비-코히런트 합동 전송(non-coherent joint transmission: NC-JT)을 나타낸 도면이다. NC-JT의 경우 상기 각 셀, TRP 및/또는 빔에서 서로 다른 PDSCH를 전송할 수 있으며, 각 PDSCH에는 개별 프리코딩이 적용될 수 있다. 이는 TRP A(725)과 TRP B(730)에서 서로 다른 DMRS 포트들(예를 들어 TRP A에서는 DMRS port A, TRP B에서는 DMRS port B)을 전송하게 됨을 의미할 수 있다. 이 경우, 단말은 DMRS port A에 의해 복조되는 PDSCH A와, 다른 DMRS port B에 의해 복조되는 PDSCH B를 수신하기 위한 두 종류의 DCI 정보를 수신할 수 있다.In FIG. 7, 720 is a diagram illustrating non-coherent joint transmission (NC-JT) supporting non-coherent precoding between each cell, TRP and/or beam. In the case of NC-JT, different PDSCHs may be transmitted in each cell, TRP, and/or beam, and individual precoding may be applied to each PDSCH. This may mean that the TRP A 725 and the TRP B 730 transmit different DMRS ports (eg, DMRS port A in TRP A and DMRS port B in TRP B). In this case, the UE may receive two types of DCI information for receiving PDSCH A demodulated by DMRS port A and PDSCH B demodulated by another DMRS port B.
두 개 이상의 전송지점에서 한 단말에 동시에 데이터를 전송하는 NC-JT를 지원하기 위하여, 단일 PDCCH를 통해 두 개 (이상)의 서로 다른 전송지점에서 전송되는 PDSCH들을 할당하거나, 다중 PDCCH를 통해 두 개 이상의 서로 다른 전송지점에서 전송되는 PDSCH들을 할당하는 것이 필요하다. 단말은 L1/L2/L3 시그날링을 기반으로 각 기준신호 혹은 채널 간 QCL(quasi co-location) 연결 관계를 획득하고 이를 통하여 각 기준신호 혹은 채널의 라지 스케일 파라미터(large scale parameter)들을 효율적으로 추정할 수 있다. 만약 기준신호 혹은 채널의 전송지점이 다를 경우 라지 스케일 파라미터(large scale parameter)들은 서로 공유되기 어렵기 때문에 협력 전송을 수행할 때 기지국은 단말에게 동시에 두 개 이상의 전송지점에 대한 quasi co-location 정보를 두 개 이상의 TCI state를 통하여 알려줄 필요가 있다. In order to support NC-JT, which transmits data from two or more transmission points to one terminal at the same time, PDSCHs transmitted from two (or more) different transmission points are allocated through a single PDCCH, or two It is necessary to allocate PDSCHs transmitted from the above different transmission points. The UE acquires a QCL (quasi co-location) connection relationship between each reference signal or channel based on L1/L2/L3 signaling, and through this, efficiently estimates large scale parameters of each reference signal or channel can do. If the transmission point of the reference signal or channel is different, since large scale parameters are difficult to share with each other, when performing cooperative transmission, the base station simultaneously informs the terminal of quasi co-location information for two or more transmission points. It is necessary to inform through two or more TCI states.
만약 다중 PDCCH를 통해 비-코히런트 협력 전송이 지원되는 경우, 즉 두 개 이상의 PDCCH가 두 개 이상의 PDSCH를 동일 시점에 같은 서빙 셀 및 같은 대역폭 부분에 할당하는 경우, 두 개 이상의 TCI state들은 각 PDCCH를 통하여 각 PDSCH 내지 DMRS port들에 각각 할당될 수 있다. 반면, 단일 PDCCH를 통해 비-코히런트 협력 전송이 지원되는 경우, 즉 하나의 PDCCH가 두 개 이상의 PDSCH를 동일 시점에 같은 서빙 셀 및 같은 대역폭 부분에 할당하는 경우, 상기 두 개 이상의 TCI state들은 하나의 PDCCH를 통하여 각 PDSCH 내지 DMRS port들에 할당될 수 있다.If non-coherent cooperative transmission is supported through multiple PDCCHs, that is, when two or more PDCCHs allocate two or more PDSCHs to the same serving cell and the same bandwidth portion at the same time, two or more TCI states are each PDCCH It may be allocated to each PDSCH to DMRS ports, respectively. On the other hand, when non-coherent cooperative transmission is supported through a single PDCCH, that is, when one PDCCH allocates two or more PDSCHs to the same serving cell and the same bandwidth portion at the same time, the two or more TCI states are one It may be allocated to each PDSCH to DMRS ports through the PDCCH of .
만약 특정 시점에서 단말에게 할당된 DMRS port들이 전송지점 A에서 전송되는 DMRS port group A와 전송지점 B에서 전송되는 DMRS port group B로 나뉜다고 가정하면, 두 개 이상의 TCI state는 각기 DMRS port group에 연결되며, 각 group 별 서로 다른 QCL 가정을 바탕으로 채널이 추정될 수 있다. 한편, 서로 다른 DMRS 포트들은 채널 측정 정확도를 높임과 동시에 전송 부담을 경감시키기 위하여 CDM (code division multiplexing) 되거나 FDM (frequency division multiplexing) 되거나 TDM (time domain multiplexing) 될 수 있다. 이 중 CDM 되는 DMRS port들을 CDM group으로 통칭할 때, CDM group 내 DMRS port 들은 각 port 별 채널 특성이 유사한 경우에 code 기반의 멀티플렉싱이 잘 동작 하므로 (즉 각 port 별 채널 특성이 유사한 경우 OCC (orthogonal cover code)에 의한 구분이 잘 되므로) 같은 CDM group에 존재하는 DMRS port들이 서로 다른 TCI state를 가지지 않도록 하는 것이 중요할 수 있다.If it is assumed that the DMRS ports allocated to the terminal at a specific time are divided into a DMRS port group A transmitted from a transmission point A and a DMRS port group B transmitted from a transmission point B, two or more TCI states are respectively connected to the DMRS port group. and a channel can be estimated based on different QCL assumptions for each group. On the other hand, different DMRS ports may be subjected to code division multiplexing (CDM), frequency division multiplexing (FDM), or time domain multiplexing (TDM) in order to increase channel measurement accuracy and reduce transmission burden at the same time. Among them, when the DMRS ports used for CDM are collectively referred to as the CDM group, code-based multiplexing works well when the channel characteristics of each port are similar to the DMRS ports in the CDM group (that is, if the channel characteristics of each port are similar, OCC (orthogonal It may be important to ensure that DMRS ports existing in the same CDM group do not have different TCI states because they are distinguished by the cover code).
한편, 본 개시에서 노드 (node)는 특정 셀을 통해 단말과 데이터를 송수신하는 무선 통신 시스템에서의 물리적 또는 논리적인 노드를 의미할 수 있다. 예를 들면 상기 노드는 송수신 포인트 (transmission/reception point, 이하 TRP), 기지국, evolved node B (eNodeB 또는 eNB), next generation node B (gNodeB, 또는 gNB), 등을 의미할 수 있다. 일 실시예에 따라, 제 1 노드는 제 1 셀을 통해 단말과 데이터를 송수신하는 TRP를 의미할 수 있으며, 제 2 노드는 상기 제 1 노드와 물리적으로 구분 또는 분리되어 있고 상기 제 1 셀과 다른 제 2 셀을 통해 단말과 데이터를 송수신하는 TRP를 의미할 수 있다.Meanwhile, in the present disclosure, a node may mean a physical or logical node in a wireless communication system that transmits and receives data with a terminal through a specific cell. For example, the node may mean a transmission/reception point (hereinafter, TRP), a base station, an evolved node B (eNodeB or eNB), a next generation node B (gNodeB, or gNB), and the like. According to an embodiment, the first node may mean TRP for transmitting and receiving data to and from the terminal through the first cell, and the second node is physically separated or separated from the first node and is different from the first cell. It may mean TRP for transmitting and receiving data with the terminal through the second cell.
상기와 같이 복수의 TRP를 통해 데이터를 전송하는 동작을 multi-TRP (M-TRP) 동작이라 칭할 수 있다. 또한, 상기와 같이 복수의 TRP에서 복수의 셀을 통해 데이터를 전송하는 동작을 셀 간 (inter cell) multi-TRP 동작이라 칭할 수 있다. 이때, 상기 복수의 셀은 복수의 기지국이 운용하는 각 셀을 의미할 수도 있고, 하나의 기지국에서 운용하는 복수의 셀을 의미할 수도 있으며, 이들의 조합일 수도 있다.The operation of transmitting data through a plurality of TRPs as described above may be referred to as a multi-TRP (M-TRP) operation. In addition, an operation of transmitting data through a plurality of cells in a plurality of TRPs as described above may be referred to as an inter cell multi-TRP operation. In this case, the plurality of cells may mean each cell operated by a plurality of base stations, may mean a plurality of cells operated by one base station, or a combination thereof.
본 개시에서는 상기 inter cell multi TRP 동작을 위한 방법을 제안한다. The present disclosure proposes a method for the inter cell multi TRP operation.
inter-cell multi-TRP (M-TRP) 동작을 위해서는 inter-cell을 설정하는 방법이 필요하다. 예를 들어, inter-cell 설정 정보를 통해 inter-cell을 설정할 수 있으며, 상기 inter-cell 설정 정보에는 inter-cell을 구성하는 단위 및 방법, cell을 grouping 하는 단위 및 방법, 상기 셀을 식별하기 위한 정보 (예를 들어, cell id, serving cell id, physical cell id)등의 정보 중 적어도 하나가 포함될 수 있다. 다만, 본 개시의 실시예가 이에 한정되는 것은 아니고 inter-cell 설정 정보에는 상술한 정보가 포함되지 않을 수 있으며, inter-cell과 관련된 어떠한 정보도 포함될 수 있다. 여기에 추가하여, 상기 inter-cell 설정 정보에는 SSB pattern (ssb-PositionsInBurst, ssb-periodicityServingCell), sub-carrier spacing (subcarrier Spacing), frequency (absoluteFrequencySSB) 등이 포함될 수 있다.For the inter-cell multi-TRP (M-TRP) operation, a method for configuring the inter-cell is required. For example, an inter-cell can be configured through inter-cell configuration information, and the inter-cell configuration information includes a unit and method for configuring an inter-cell, a unit and method for grouping cells, and a method for identifying the cell. At least one of information (eg, cell id, serving cell id, physical cell id) may be included. However, the embodiment of the present disclosure is not limited thereto, and the above-described information may not be included in the inter-cell configuration information, and any information related to the inter-cell may be included. In addition to this, the inter-cell configuration information may include SSB pattern (ssb-PositionsInBurst, ssb-periodicityServingCell), sub-carrier spacing (subcarrier Spacing), frequency (absoluteFrequencySSB), and the like.
또한, 상기 inter-cell 설정 정보는 본 개시에서 cell 간 협력 전송을 위한 셀 설정 정보를 지칭하는 용어로, 설정 정보, 셀 설정 정보 등으로 언급될 수도 있다. 또한, 본 개시는 서빙 셀 (serving cell)들을 통한 inter-cell multi-TRP 협력 전송 및 serving cell과 non-serving cell들을 통한 inter-cell multi-TRP 협력 전송 등에 적용될 수 있다.Also, in the present disclosure, the inter-cell configuration information refers to cell configuration information for inter-cell cooperative transmission, and may also be referred to as configuration information, cell configuration information, or the like. In addition, the present disclosure may be applied to inter-cell multi-TRP cooperative transmission through serving cells and inter-cell multi-TRP cooperative transmission through serving cells and non-serving cells.
도 8a 및 도 8b는 일 실시예에 따른 빔 관리 절차를 도시한 도면이다. 8A and 8B are diagrams illustrating a beam management procedure according to an embodiment.
NR (또는 5G)에서의 주요 기능 중 하나는 전송 및 수신 모두를 위한 많은 수의 제어 가능한 안테나 엘리먼트들을 지원하는 것이다. 높은 주파수 대역의 경우, 많은 수의 안테나 엘리먼트들이 주로 커버리지 확장 목적으로 빔포밍에 사용될 수 있다. 제어 및 동기화에 사용되는 것들을 포함하여 NR 채널들과 시그널들은 모두 빔포밍을 지원하도록 설계되었다.One of the main functions in NR (or 5G) is to support a large number of controllable antenna elements for both transmit and receive. In the case of a high frequency band, a large number of antenna elements may be mainly used for beamforming for the purpose of extending coverage. All NR channels and signals, including those used for control and synchronization, are designed to support beamforming.
NR에서는 구현상의 유연성을 위해, 디지털 프리코딩 및 빔포밍뿐만 아니라 아날로그 빔포밍을 지원할 수 있다. 높은 주파수 대역에서, 신호를 디지털에서 아날로그로 변환한 후 빔을 형성하는 아날로그 빔포밍이 사용될 수 있다. 아날로그 빔포밍은 수신 빔이나 전송 빔이 주어진 시점에서 한 방향으로 형성될 수 있다. 또한, 아날로그 빔포밍은 동일한 신호가 복수 개의 OFDM심볼에서 반복되지만 다른 전송 빔들로 전송해야하는 과정 (빔 스위핑)을 필요로 할 수 있다. 상기 빔 스위핑 기능을 통해, 신호를 어떠한 방향으로도 높은 이득으로 전송할 수 있으므로, 의도했던 전체 커버리지 영역까지 좁은 빔을 통해 신호를 전송할 수 있다.NR can support analog beamforming as well as digital precoding and beamforming for implementation flexibility. In a high frequency band, analog beamforming that converts a signal from digital to analog and then forms a beam may be used. In analog beamforming, a reception beam or a transmission beam may be formed in one direction at a given point in time. In addition, analog beamforming may require a process (beam sweeping) in which the same signal is repeated in a plurality of OFDM symbols but must be transmitted using different transmission beams. Since a signal can be transmitted with a high gain in any direction through the beam sweeping function, the signal can be transmitted through a narrow beam up to an intended entire coverage area.
아날로그 수신 빔포밍의 경우 기지국은, 단말이 데이터 및 제어 정보를 수신하는 빔을 선택하기 위한 정보를 단말에게 지시(indication)할 수 있다. 이러한 빔 관리 (beam management) 절차를 지원하는 여러 가지 시그널링 방법이 고려될 수 있다. 상기 빔 관리는 채널 이득이 최대가 되도록 전송 측의 전송 빔의 방향과 수신 측의 수신 빔의 방향의 조합을 선택 및 유지하는 것을 목적으로 한다. 상기의 빔 관리를 효율적으로 운영하면 데이터 전송 속도(data rate) 및 처리량(throughput)을 최대로 할 수 있다.In the case of analog reception beamforming, the base station may indicate to the terminal information for selecting a beam through which the terminal receives data and control information. Various signaling methods supporting such a beam management procedure may be considered. The beam management aims to select and maintain a combination of the direction of the transmission beam on the transmission side and the direction of the reception beam on the reception side so that the channel gain is maximized. If the beam management is efficiently operated, data rate and throughput can be maximized.
도 8a에 도시된 바와 같이, 최적의 빔 쌍 (beam pair)은 기지국 (810)의 하향링크 전송 빔 방향과 단말 (800)의 하향링크 수신 빔 방향이 직접적으로 일치하는 빔 쌍(820)일 수 있다. 또는, 주변 환경의 장애물에 의해 기지국 (810) 및 단말 (800) 간의 직접적인 경로가 차단되는 경우, 반사 경로에 따른 전송 빔 방향과 수신 빔 방향의 빔 쌍 (830)이 최적의 빔 쌍일 수 있다. 이러한 경우는 특히 장애물의 모서리에서 회절이 거의 없는 높은 주파수 대역에서 발생할 수 있다. 기지국 (810) 및 단말 (800)은 빔 관리 기능을 이용하면 상술한 전송 측 및 수신 측 간의 직접 경로가 차단되는 경우에도 최적의 빔 쌍을 결정할 수 있다.As shown in FIG. 8A , the optimal beam pair may be a beam pair 820 in which the downlink transmission beam direction of the base station 810 and the downlink reception beam direction of the terminal 800 directly coincide with each other. there is. Alternatively, when a direct path between the base station 810 and the terminal 800 is blocked by an obstacle in the surrounding environment, the beam pair 830 in the transmission beam direction and the reception beam direction according to the reflection path may be an optimal beam pair. This can happen especially in high frequency bands where there is little diffraction at the edges of obstacles. By using the beam management function, the base station 810 and the terminal 800 can determine an optimal beam pair even when the above-described direct path between the transmitting side and the receiving side is blocked.
상기 도 8a는 하향링크 방향의 빔포밍을 도시하였으나, 상향링크 방향의 빔포밍에서도 이와 유사한 경우를 가정할 수 있다. 예를 들면, 하향링크 방향에서의 최적의 송수신 빔 쌍은 상향링크 방향에서도 최적인 빔 쌍일 수 있다. 마찬가지로, 상향링크 방향에서의 최적의 빔 쌍은 하향링크 방향에서도 최적인 빔 쌍일 수 있다. 이러한 경우에 하향링크 및 상향링크에 대해 빔 관련성 (또는 빔 부합성, beam correspondence)이 성립한다고 지칭할 수 있다. Although FIG. 8A illustrates beamforming in the downlink direction, a similar case may be assumed in the uplink direction beamforming. For example, the optimal transmission/reception beam pair in the downlink direction may be the optimal beam pair in the uplink direction as well. Similarly, the optimal beam pair in the uplink direction may be the optimal beam pair in the downlink direction as well. In this case, it may be said that beam correspondence (or beam correspondence) is established for downlink and uplink.
한편, 초기 빔 수립 (initial beam establishment)은 초기 빔 쌍을 설정하는 절차를 지칭할 수 있다. 기지국은 초기 접속 (initial access) 과정에서 서로 다른 하향링크 빔을 이용하여 각각의 빔에 상응하는 동기 신호 블록 (synchronization signal block, SS/PBCH block 또는 SSB)을 전송할 수 있다. 단말은 각 빔에 대응하는 PRACH occasion (물리적 랜덤 액세스 채널 오케이젼, physical random access channel occasion)과 프리앰블 (preamble) 중 하나를 선택하여 기지국에게 랜덤 엑세스를 시도할 수 있다. 기지국은 수신된 랜덤 엑세스 프리앰블에 기반하여 단말에 대한 하향링크 전송 빔을 확인할 수 있다. Meanwhile, initial beam establishment may refer to a procedure for establishing an initial beam pair. The base station may transmit a synchronization signal block (SS/PBCH block, or SSB) corresponding to each beam using different downlink beams in an initial access process. The UE may attempt random access to the BS by selecting one of a PRACH occasion (physical random access channel occasion) and a preamble corresponding to each beam. The base station may check the downlink transmission beam for the terminal based on the received random access preamble.
초기 빔 쌍이 수립된 후 단말의 이동 또는 회전 등에 의해 전송 빔과 수신 빔을 재확인하는 절차가 필요할 수 있다. 또는 단말이 고정된 경우에도 주변에 있는 다른 물체가 움직임으로써 빔을 가리거나 가렸던 빔이 수신되는 경우가 발생할 수 있다. 따라서 빔 쌍을 재확인하는 절차가 필요할 수 있다. 상기와 같이 빔 쌍을 재확인하는 절차를 빔 조정 (beam adjustment) 절차라고 칭할 수 있다. 상기 빔 조정은 하향링크 전송 측 (예를 들면 기지국) (downlink transmitter-side) 빔 조정과 하향링크 수신 측 (예를 들면 단말) (downlink receiver-side) 빔 조정이 있을 수 있다. After the initial beam pair is established, a procedure for reconfirming the transmit beam and the receive beam by movement or rotation of the terminal may be required. Alternatively, even when the terminal is fixed, there may be a case in which the beam is blocked or the beam that has been blocked is received because another object in the vicinity moves. Therefore, a procedure for reconfirming the beam pair may be required. The procedure of reconfirming the beam pair as described above may be referred to as a beam adjustment procedure. The beam adjustment may include a downlink transmission side (eg, a base station) (downlink transmitter-side) beam adjustment and a downlink reception side (eg, a terminal) (downlink receiver-side) beam adjustment.
도 8b를 참고하면, 하향링크 전송 측 빔 조정의 경우 단말 (800)의 수신 빔은 유지하고 기지국 (810)의 전송 빔을 조정할 수 있다. 이를 위해 기지국 (810)은 순서대로 서로 다른 하향링크 빔을 이용하여 신호를 전송할 수 있다. 이렇게 기지국 (810)에서 순서대로 서로 다른 빔을 이용하여 신호를 전송하는 것을 빔 스위핑 (beam sweeping)이라고 칭할 수 있다. Referring to FIG. 8B , in the case of downlink transmission-side beam adjustment, the reception beam of the terminal 800 may be maintained and the transmission beam of the base station 810 may be adjusted. To this end, the base station 810 may sequentially transmit signals using different downlink beams. In this way, the base station 810 sequentially transmits signals using different beams may be referred to as beam sweeping.
단말 (800)은 수신 빔 (850)을 유지한 채 상기 서로 다른 하향링크 빔에 상응하는 기준 신호 (reference signal, RS)를 측정할 수 있다. 상기 RS는 채널 상태 정보 기준 신호 (channel state information - reference signal, CSI-RS) 또는 SSB 일 수 있다. 이에 따라 단말 (800)은 전송 측의 서로 다른 하향링크 빔의 품질을 측정할 수 있다. 또한, 단말 (800)은 측정된 서로 다른 빔 품질을 기지국 (810)으로 보고할 수 있다. 상기와 같은 과정에 따라 하향링크 전송 측의 최적의 빔 (840)을 확인할 수 있다.The terminal 800 may measure a reference signal (RS) corresponding to the different downlink beams while maintaining the reception beam 850 . The RS may be a channel state information reference signal (CSI-RS) or an SSB. Accordingly, the terminal 800 may measure the quality of different downlink beams on the transmission side. Also, the terminal 800 may report different measured beam qualities to the base station 810 . According to the above process, the optimal beam 840 of the downlink transmission side can be identified.
도 8b를 참고하면, 하향링크 수신 측 빔 조정의 경우 기지국 (810)은 하향링크 전송 빔 (860)을 유지하고 단말 (800)은 하향링크 수신 빔을 조정 (또는 빔 스위핑)할 수 있다. 이를 위해 단말 (800)은 하향링크 RS의 셋 (set)이 설정될 수 있다. 단말 (800)은 설정된 RS에 대해 수신 빔을 순차적으로 적용하여 상기 RS에 대한 측정을 수행할 수 있다. 단말 (800)은 상기 측정 값에 기반하여 하향링크 수신 측의 최적의 빔 (870)을 확인할 수 있다. Referring to FIG. 8B , in the case of downlink reception side beam adjustment, the base station 810 maintains the downlink transmission beam 860 and the terminal 800 may adjust the downlink reception beam (or beam sweep). To this end, the terminal 800 may be configured with a set of downlink RSs. The terminal 800 may perform measurement on the RS by sequentially applying a reception beam to the configured RS. The terminal 800 may identify the optimal beam 870 of the downlink reception side based on the measurement value.
상향링크 빔 조정이 필요한 경우에는 상술한 하향링크 빔 조정 과정이 유사하게 적용될 수 있을 것이다.When uplink beam adjustment is required, the above-described downlink beam adjustment process may be similarly applied.
NR (또는 5G) 에서는 빔 지시 (또는 빔 명시, beam indication)을 지원할 수 있다. 상기 빔 지시는 설정된 RS (CSI-RS 또는 SSB)와 같은 빔으로 PDSCH 또는 PDCCH를 전송하고 있다는 것을 단말에게 지시 (또는 명시)하는 것을 의미할 수 있다. 또는, PDSCH 또는 PDCCH가 설정된 RS와 동일한 공간 필터를 이용하여 전송된다는 것을 지시 (또는 명시)하는 것을 의미할 수 있다. 한편, 본 개시에서 PDSCH를 전송 또는 수신한다는 것은 PDSCH를 통해 데이터를 전송 또는 수신함을 의미할 수 있다. 또한 본 개시에서 PDCCH를 전송 또는 수신한다는 것은 PDCCH를 통해 DCI를 전송 또는 수신함을 의미할 수 있다. 또한 본 개시에서 PDCCH 전송 빔 또는 PDSCH 전송 빔이라 함은 기지국이 PDCCH 또는 PDSCH를 단말에게 전송하는데 이용되는 전송 빔을 의미할 수 있고, PDCCH 수신 빔 또는 PDSCH 수신 빔이라 함은 단말이 PDCCH 또는 PDSCH를 수신하는데 이용되는 수신 빔을 의미할 수 있다.NR (or 5G) may support beam indication (or beam indication). The beam indication may mean indicating (or specifying) to the UE that the PDSCH or PDCCH is being transmitted in the same beam as the configured RS (CSI-RS or SSB). Alternatively, it may mean indicating (or specifying) that the PDSCH or PDCCH is transmitted using the same spatial filter as the configured RS. Meanwhile, in the present disclosure, transmitting or receiving the PDSCH may mean transmitting or receiving data through the PDSCH. Also, in the present disclosure, transmitting or receiving a PDCCH may mean transmitting or receiving a DCI through the PDCCH. Also, in the present disclosure, a PDCCH transmission beam or a PDSCH transmission beam may mean a transmission beam used by a base station to transmit a PDCCH or a PDSCH to a UE, and the PDCCH reception beam or PDSCH reception beam means that the UE transmits a PDCCH or a PDSCH. It may mean a reception beam used for reception.
상기 빔 지시는 전송 설정 지시자 상태 (transmission configuration indicator state, TCI state) 정보를 이용한 하향링크 시그널링을 통해 이루어질 수 있다. 상기 TCI state 정보는 하나 또는 다수 개의 SS(synchronization signal)/PBCH(physical broadcast channel) 블록(block) (SSB 또는 SS/PBCH block 으로 지칭) 인덱스 또는 CSI-RS(channel state information reference signal) 인덱스의 정보를 포함할 수 있다.The beam indication may be made through downlink signaling using transmission configuration indicator state (TCI state) information. The TCI state information is one or more synchronization signal (SS) / physical broadcast channel (PBCH) block (referred to as SSB or SS / PBCH block) index or CSI-RS (channel state information reference signal) information of the index may include.
기지국은 상기 TCI state 정보를 통해서 하향링크 전송 (PDSCH 또는 PDCCH 전송)과 관련된 빔 정보를 단말에게 알려줄 수 있다. 예를 들면, 단말은 PDSCH 또는 PDCCH가 상기 TCI state 정보에 포함된 RS (CSI-RS 또는 SSB)가 전송되는 하향링크 전송 빔과 같은 빔을 통해 전송된다고 가정할 수 있다.The base station may inform the terminal of beam information related to downlink transmission (PDSCH or PDCCH transmission) through the TCI state information. For example, the UE may assume that the PDSCH or PDCCH is transmitted through the same beam as the downlink transmission beam through which the RS (CSI-RS or SSB) included in the TCI state information is transmitted.
기지국은 단말에게 N개 (예를 들면 최대 128개)의 TCI state 리스트를 설정할 수 있다. 상기 N개의 TCI state 리스트는 기지국이 단말에게 전송하는 설정 메시지 (예를 들면 RRC 메시지)내의 PDSCH 설정을 위한 정보 (예를 들면, PDSCH-Config) 에 포함될 수 있다. 상기 PDSCH 설정을 위한 정보에 포함된 TCI state 리스트 (예를 들면, tci-StatesToAddModList)의 각 TCI state는 상기 PDSCH의 DMRS (demodulation reference signal) port와 QCL (quasi co-located) 관계에 있는 하향링크 RS (SSB 또는 CSI-RS)의 인덱스를 지시할 수 있다.The base station may configure N (for example, up to 128) TCI state lists to the terminal. The N TCI state list may be included in information (eg, PDSCH-Config) for PDSCH configuration in a configuration message (eg, RRC message) transmitted from the base station to the terminal. Each TCI state of the TCI state list (eg, tci-StatesToAddModList) included in the information for the PDSCH configuration is a demodulation reference signal (DMRS) port of the PDSCH and a downlink RS in a quasi co-located (QCL) relationship. (SSB or CSI-RS) may indicate an index.
또한, 기지국은 설정 메시지를 통해 상기 N개 중에서 특히 PDCCH가 전송되는 빔을 지시 (또는 명시)하기 위해 사용되는 M개 (예를 들면 최대 64개)의 PDCCH용 후보 TCI state들을 설정할 수 있다. 상기 PDCCH가 전송되는 빔을 지시하기 위해 사용되는 PDCCH용 후보 TCI state들은 예를 들어 tci-StatesPDCCH 라고 지칭될 수 있다. 상기 M개의 PDCCH용 후보 TCI state들 중에서 몇 개가 선택되어 각각 상기 PDCCH와 관련된 제어영역을 설정하기 위한 정보에 포함될 수 있다. 예를 들어 각 CORESET 설정 정보에 PDCCH용 후보 TCI state들의 리스트 (예를 들어 tci-StatesPDCCH-ToAddList)를 포함할 수 있다. 각 CORESET 설정 정보에는 상술한 표 8에 따른 정보들이 포함될 수 있다. In addition, the base station may configure M (eg, up to 64) candidate TCI states for PDCCH used to indicate (or specify) a beam through which a PDCCH is transmitted among the N through a configuration message. Candidate TCI states for PDCCH used to indicate a beam through which the PDCCH is transmitted may be referred to as, for example, tci-StatesPDCCH. Some of the M candidate TCI states for the PDCCH may be selected and included in information for configuring a control region related to the PDCCH, respectively. For example, each CORESET configuration information may include a list of candidate TCI states for PDCCH (eg, tci-StatesPDCCH-ToAddList). Each CORESET setting information may include information according to Table 8 described above.
각 TCI state와 QCL 관계는 하기의 표 13과 같이 RRC 파라미터 TCI-State 및 QCL-Info를 통하여 단말에게 설정될 수 있다. Each TCI state and QCL relationship may be set to the UE through the RRC parameters TCI-State and QCL-Info as shown in Table 13 below.
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId,
(TCI state의 ID)
qcl-Type1 QCL-Info,
(TCI state의 ID를 참조하는 RS (target RS)의 첫 번째 reference RS의 QCL 정보)
qcl-Type2 QCL-Info OPTIONAL, -- Need R
(TCI state의 ID를 참조하는 RS (target RS)의 두 번째 reference RS의 QCL 정보)
...
}

QCL-Info ::= SEQUENCE {
cell ServCellIndex OPTIONAL, -- Need R
(QCL 정보가 지시하는 reference RS의 서빙셀의 index)
bwp-Id BWP-Id OPTIONAL, -- Cond CSI-RS-Indicated
(QCL 정보가 지시하는 reference RS의 BWP의 index)
referenceSignal CHOICE {
(QCL 정보가 지시하는 reference RS ID)
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
(CSI-RS ID 또는 SSB-ID 중 어느 하나)
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD},
...
}
TCI-State ::= SEQUENCE {
tci-StateId TCI-StateId,
(ID of TCI state)
qcl-Type1 QCL-Info,
(QCL information of the first reference RS of the RS (target RS) referring to the ID of the TCI state)
qcl-Type2 QCL-Info OPTIONAL, -- Need R
(QCL information of the second reference RS of the RS (target RS) referring to the ID of the TCI state)
...
}

QCL-Info ::= SEQUENCE {
cell ServCellIndex OPTIONAL, -- Need R
(index of serving cell of reference RS indicated by QCL information)
bwp-Id BWP-Id OPTIONAL, -- Cond CSI-RS-Indicated
(index of BWP of reference RS indicated by QCL information)
referenceSignal CHOICE {
(reference RS ID indicated by QCL information)
csi-rs NZP-CSI-RS-ResourceId,
ssb SSB-Index
(either CSI-RS ID or SSB-ID)
},
qcl-Type ENUMERATED {typeA, typeB, typeC, typeD},
...
}
무선 통신 시스템에서 하나 이상의 서로 다른 안테나 포트들(혹은 하나 이상의 채널, 신호 및 이들의 조합들로 대체되는 것도 가능하다.)은 표 13의 QCL-Info와 같은 QCL 설정에 의하여 서로 연결(associate)될 수 있다.In a wireless communication system, one or more different antenna ports (or one or more channels, signals, and combinations thereof may be replaced) are to be associated with each other by QCL configuration such as QCL-Info of Table 13. can
구체적으로 상기 QCL 설정은 두 개의 서로 다른 안테나 포트들을 (QCL) target 안테나 포트와 (QCL) reference 안테나 포트의 관계로 연결할 수 있으며, 단말은 상기 reference 안테나 포트에서 측정된 채널의 통계적인 특성들(예를 들어 Doppler shift, Doppler spread, average delay, delay spread, average gain, spatial Rx (혹은 Tx) 파라미터 등 채널의 large scale 파라미터 내지 단말의 수신 공간 필터 계수 혹은 전송 공간 필터 계수) 중 전부 혹은 일부를 target 안테나 포트 수신 시 적용 (혹은 가정) 할 수 있다. Specifically, the QCL setting can connect two different antenna ports in a relationship between a (QCL) target antenna port and a (QCL) reference antenna port, and the terminal can perform statistical characteristics (eg, For example, all or part of the large scale parameters of the channel such as Doppler shift, Doppler spread, average delay, delay spread, average gain, and spatial Rx (or Tx) parameters or the reception spatial filter coefficient or transmission spatial filter coefficient of the terminal) are set to the target antenna. It can be applied (or assumed) when receiving a port.
상기 target 안테나 포트라 함은 상기 QCL 설정을 포함하는 상위레이어 설정에 의하여 설정되는 채널 혹은 신호를 전송하는 안테나 포트 내지는 상기 QCL 설정을 지시하는 TCI state가 적용되는 채널 혹은 신호를 전송하는 안테나 포트를 의미한다. The target antenna port refers to an antenna port for transmitting a channel or signal set by a higher layer setting including the QCL setting, or an antenna port for transmitting a channel or signal to which a TCI state indicating the QCL setting is applied. .
상기 reference 안테나 포트라 함은 상기 QCL 설정 내 referenceSignal 파라미터에 의하여 지시(특정)되는 채널 혹은 신호를 전송하는 안테나 포트를 의미한다.The reference antenna port means an antenna port for transmitting a channel or signal indicated (specific) by a referenceSignal parameter in the QCL configuration.
구체적으로, 상기 QCL 설정에 의하여 한정되는 (상기 QCL 설정 내에서 파라미터 qcl-Type에 의하여 지시되는) 채널의 통계적인 특성들은 QCL type에 따라 다음과 같이 분류될 수 있다.Specifically, the statistical characteristics of the channel defined by the QCL setting (indicated by the parameter qcl-Type in the QCL setting) may be classified according to the QCL type as follows.
○ 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}○ 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
○ 'QCL-TypeB': {Doppler shift, Doppler spread}○ 'QCL-TypeB': {Doppler shift, Doppler spread}
○ 'QCL-TypeC': {Doppler shift, average delay}○ 'QCL-TypeC': {Doppler shift, average delay}
○ 'QCL-TypeD': {Spatial Rx parameter}○ 'QCL-TypeD': {Spatial Rx parameter}
이때 QCL type의 종류는 위 네 가지 종류에 한정되는 것은 아니나 설명의 요지를 흐리지 않기 위하여 모든 가능한 조합들을 나열하지는 않는다. In this case, the types of QCL type are not limited to the above four types, but all possible combinations are not listed in order not to obscure the gist of the description.
상기 QCL-TypeA는 target 안테나 포트의 대역폭 및 전송 구간이 reference 안테나 포트 대비 모두 충분하여 (즉 주파수 축 및 시간 축 모두에서 target 안테나 포트의 샘플 수 및 전송 대역/시간이 reference 안테나 포트의 샘플 수 및 전송 대역/시간보다 많은 경우) 주파수 및 시간 축에서 측정 가능한 모든 통계적 특성들을 참조 가능한 경우에 사용되는 QCL type이다. In the QCL-TypeA, the bandwidth and transmission period of the target antenna port are both sufficient compared to the reference antenna port (that is, the number of samples and the transmission band/time of the target antenna port in both the frequency axis and the time axis are the number of samples and transmission of the reference antenna port. More than band/time) This is a QCL type used when all statistical properties measurable in frequency and time axis can be referenced.
QCL-TypeB는 target 안테나 포트의 대역폭이 주파수 축에서 측정 가능한 통계적 특성들, 즉 Doppler shift, Doppler spread들을 측정하기에 충분한 경우에 사용되는 QCL type이다. QCL-TypeB is a QCL type used when the bandwidth of the target antenna port is sufficient to measure measurable statistical characteristics on the frequency axis, that is, Doppler shift and Doppler spreads.
QCL-TypeC는 target 안테나 포트의 대역폭 및 전송 구간이 second-order statistics, 즉 Doppler spread 및 delay spread들을 측정하기에는 불충분하여 first-order statistics, 즉 Doppler shift, average delay만을 참조 가능한 경우에 사용되는 QCL type이다. QCL-TypeC is a QCL type used when the bandwidth and transmission period of the target antenna port are insufficient to measure second-order statistics, that is, Doppler spread and delay spreads, so that only first-order statistics, that is, Doppler shift and average delay, can be referred to. .
QCL-TypeD는 reference 안테나 포트를 수신할 때 사용한 공간 수신 필터 값 들을 target 안테나 포트 수신 시 사용할 수 있을 때 설정되는 QCL type이다.QCL-TypeD is a QCL type set when spatial reception filter values used when receiving a reference antenna port can be used when receiving a target antenna port.
한편, 기지국은 TCI state설정을 통하여 최대 두 개의 QCL 설정을 하나의 target 안테나 포트에 설정 혹은 지시하는 것이 가능하다.Meanwhile, the base station can set or instruct up to two QCL settings to one target antenna port through the TCI state setting.
하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 첫 번째 QCL 설정은 QCL-TypeA, QCL-TypeB, QCL-TypeC 중 하나로 설정될 수 있다. 이 때 설정 가능한 QCL type은 target 안테나 포트 및 reference 안테나 포트의 종류에 따라 특정되며 아래 상세히 설명한다. 또한 상기 하나의 TCI state 설정에 포함되는 두 개의 QCL 설정 중 두 번째 QCL 설정은 QCL-TypeD로 설정될 수 있으며 경우에 따라 생략되는 것이 가능하다.Among the two QCL settings included in one TCI state setting, the first QCL setting may be set to one of QCL-TypeA, QCL-TypeB, and QCL-TypeC. At this time, the settable QCL type is specified according to the types of the target antenna port and the reference antenna port and will be described in detail below. In addition, the second QCL setting among the two QCL settings included in the one TCI state setting may be set to QCL-TypeD, and may be omitted in some cases.
기지국은 설정 메시지 (예를 들면 RRC 메시지)를 통해 단말에게 상기 설정 정보를 전송하고 단말은 이를 저장할 수 있다. The base station transmits the configuration information to the terminal through a configuration message (eg, an RRC message), and the terminal may store it.
이후 기지국에서 PDCCH가 전송되는 빔의 변경이 있는 경우에 단말에게 제어 메시지 (예를 들면, MAC CE)를 전송하여 변경되는 빔을 지시 (또는 명시)할 수 있다. 단말은 상기 제어 메시지를 수신하여, 각 CORESET마다 설정된 TCI state와 연계된 RS (예를 들면 CSI-RS 또는 SSB)와 같은 빔을 통해 상기 PDCCH가 전송된다는 것을 확인할 수 있다 (예를 들어 단말은 상기 RS와 같은 공간 필터를 통해 PDCCH가 전송되었다고 가정할 수 있다). 이와 같이 MAC CE 메시지를 통해 PDCCH가 전송되는 빔을 단말에게 지시하는 것을 MAC CE 기반 빔 지시 (MAC CE based beam indication)라고 칭할 수 있다.Thereafter, when there is a change in the beam through which the PDCCH is transmitted, the base station may transmit a control message (eg, MAC CE) to the terminal to indicate (or specify) the changed beam. Upon receiving the control message, the UE can confirm that the PDCCH is transmitted through the same beam as the RS (eg, CSI-RS or SSB) associated with the TCI state set for each CORESET (eg, the UE is the It can be assumed that the PDCCH is transmitted through a spatial filter such as RS). As such, indicating to the UE the beam through which the PDCCH is transmitted through the MAC CE message may be referred to as MAC CE based beam indication.
또는, 기지국에서 PDSCH가 전송되는 빔의 변경이 있는 경우에, 기지국은 상기 PDSCH를 스케쥴링하는 제어 정보 (예를 들면, DCI)를 단말에게 전송하여 변경되는 빔을 지시 (또는 명시)할 수 있다. 그런데 단말은 상기 DCI 내에 있는 TCI state 정보를 디코딩하고 PDSCH를 수신하기 전에 수신 빔을 조정할 시간이 필요할 수 있다. 또한 단말은 전송되는 PDSCH를 디코딩하기 위해 조정된 빔을 이용하여 PDSCH를 수신 및 저장(buffer)하는데 시간이 필요할 수 있다. 따라서 단말이 수신 빔을 조정하고 수신할 수 있는 시간에 대한 능력 (capability) 및 PDCCH 수신과 상기 PDCCH가 스케쥴링하는 PDSCH 수신 간의 시간 차이 (time offset)에 따라 PDSCH 전송 빔의 변경을 지시하는 방법이 필요하다.Alternatively, when there is a change in the beam through which the PDSCH is transmitted in the base station, the base station may indicate (or specify) the changed beam by transmitting control information (eg, DCI) for scheduling the PDSCH to the terminal. However, the UE may need time to adjust the reception beam before decoding the TCI state information in the DCI and receiving the PDSCH. In addition, the UE may need time to receive and store the PDSCH by using a beam adjusted to decode the transmitted PDSCH. Therefore, a method of instructing a change in the PDSCH transmission beam according to the time offset between the reception of the PDCCH and the reception of the PDSCH scheduled by the PDCCH and the capability of the UE to adjust and receive the reception beam is required. Do.
도 9은 본 개시의 일 실시예에 따른 단말 능력 (UE capability)을 보고하는 절차를 도시한 도면이다. 9 is a diagram illustrating a procedure for reporting UE capability according to an embodiment of the present disclosure.
LTE 및 NR 시스템에서 단말은 서빙 기지국에 연결된 상태에서 해당 기지국에게 단말이 지원하는 능력 (capability)를 보고하는 절차를 수행할 수 있다. 이하에서는 이를 UE capability 보고로 지칭할 수 있다. In LTE and NR systems, the terminal may perform a procedure of reporting the capability supported by the terminal to the corresponding base station while connected to the serving base station. Hereinafter, this may be referred to as UE capability report.
기지국은 S901 단계에서 연결 상태의 단말에게 capability 보고를 요청하는 UE capability enquiry 메시지를 전송할 수 있다. 상기 UE capability enquiry 메시지에는 RAT type 별 UE capability 요청이 포함될 수 있다. RAT type 별 요청에는 요청하는 주파수 밴드 정보가 포함될 수 있다. The base station may transmit a UE capability enquiry message for requesting a capability report to the terminal in the connected state in step S901. The UE capability inquiry message may include a UE capability request for each RAT type. The request for each RAT type may include requested frequency band information.
또한, UE capability enquiry 메시지는 하나의 RRC 메시지 container에서 복수의 RAT type을 포함할 수 있다. 또는 다른 예에 따라, 각 RAT type 별 요청을 포함한 UE capability enquiry 메시지가 복수 회 단말에게 전달될 수 있다. 즉, UE capability enquiry 메시지가 복수 회 반복 전송되고 단말은 이에 해당하는 UE capability information 메시지를 구성하여 보고 (전송)할 수 있다. In addition, the UE capability enquiry message may include a plurality of RAT types in one RRC message container. Alternatively, according to another example, a UE capability enquiry message including a request for each RAT type may be delivered to the UE multiple times. That is, the UE capability enquiry message is repeatedly transmitted a plurality of times, and the UE may configure and report (transmit) a corresponding UE capability information message.
NR 시스템에서 기지국은 NR, LTE, EN-DC를 비롯한 MR-DC에 대한 UE capability를 요청할 수 있다. 기지국은 단말이 연결된 이후 UE capability enquiry 메시지를 전송할 수 있으며, 또한 기지국이 필요할 때 어떤 조건에서도 UE capability 보고를 요청할 수 있다.In the NR system, the base station may request UE capability for MR-DC including NR, LTE, and EN-DC. The base station may transmit a UE capability inquiry message after the terminal is connected, and may also request a UE capability report under any conditions when the base station is needed.
기지국으로부터 UE capability 보고 요청을 받은 단말은 UE capability enquiry 메시지에 포함된 RAT type 및 밴드 정보에 따라 UE capability를 구성 또는 획득할 수 있다. Upon receiving the UE capability report request from the base station, the terminal may configure or acquire UE capability according to the RAT type and band information included in the UE capability enquiry message.
한편, 본 개시의 일 실시예에 따르면, 상기 UE capability에는, 서브캐리어 간격 (sub-carrier spacing, SCS) 마다 단말이 PDSCH 수신 빔 변경을 위해 필요한 시간의 임계값 (threshold) 정보 또는 SCS마다 PDSCH가 전송되는 빔이 변경되어 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값 정보 (예를 들면 timeDurationForQCL)가 포함될 수 있다. 상기 SCS는 예를 들면 60kHz, 120kHz를 포함할 수 있다. 상기 timeDurationForQCL은, 단말이 PDCCH를 수신하고, 상기 PDCCH가 스케쥴링하는 PDSCH 수신 빔을 변경하고 신호를 수신하는데 필요한 OFDM 심볼의 최소 개수일 수 있다. 또는, 상기 timeDurationForQCL은 단말이 PDCCH를 수신하고 DCI에 포함된 공간 QCL 정보 (spatial QCL information)을 적용하는데 필요한 OFDM 심볼의 최소 개수일 수 있다. On the other hand, according to an embodiment of the present disclosure, in the UE capability, for each sub-carrier spacing (SCS), a threshold value information of a time required for a UE to change a PDSCH reception beam or a PDSCH for each SCS. Since the transmitted beam is changed, time threshold information (eg, timeDurationForQCL) required for the UE to receive the PDSCH may be included. The SCS may include, for example, 60 kHz and 120 kHz. The timeDurationForQCL may be the minimum number of OFDM symbols required for a UE to receive a PDCCH, change a PDSCH reception beam scheduled by the PDCCH, and receive a signal. Alternatively, the timeDurationForQCL may be the minimum number of OFDM symbols required for the UE to receive the PDCCH and apply spatial QCL information included in the DCI.
상기 UE capability가 구성되고 난 이후, 단말은 S902 단계에서 UE capability가 포함된 UE capability information 메시지를 기지국에 전송할 수 있다. 기지국은 단말로부터 수신한 UE capability를 기반으로 이후 해당 단말에게 스케줄링 및 송수신 관리를 수행할 수 있다.After the UE capability is configured, the terminal may transmit a UE capability information message including the UE capability to the base station in step S902. The base station may then perform scheduling and transmission/reception management for the corresponding terminal based on the UE capability received from the terminal.
도 10은 일 실시예에 따른 복수의 PDSCH가 반복 전송될 때 PDSCH 전송 빔의 변경을 지시하는 방법을 도시한 도면이다.10 is a diagram illustrating a method of instructing a change in a PDSCH transmission beam when a plurality of PDSCHs are repeatedly transmitted according to an embodiment.
일반적으로 NC-JT 동작에서, 두 개의 TRP에서 복수의 PDSCH가 단말에게 반복 전송되어 단말의 하향링크 처리량(throughput) 및 신뢰성(reliability)의 향상을 기대할 수 있다.In general, in the NC-JT operation, a plurality of PDSCHs are repeatedly transmitted to the terminal in two TRPs, so that the downlink throughput and reliability of the terminal can be expected to be improved.
도 10을 참고하면, TRP 1에서 CORESET #0의 제어영역을 통해 PDCCH (1005)가 전송되고 상기 PDCCH (1005)가 스케쥴링하는 PDSCH (1010)가 전송될 수 있다. 단말은 CORESET #0의 제어영역을 통해 PDCCH (1005)를 수신하고 상기 PDCCH (1005)가 스케쥴링하는 PDSCH (1010)를 수신할 수 있다. 또한, TRP 2에서 CORESET #1의 제어영역을 통해 PDCCH (1020)가 전송되고 상기 PDCCH (1020)가 스케쥴링하는 PDSCH (1025)가 전송될 수 있다. 단말은 CORESET #1의 제어영역을 통해 PDCCH (1020)를 수신하고 상기 PDCCH (1020)가 스케쥴링하는 PDSCH (1025)를 수신할 수 있다.Referring to FIG. 10 , the PDCCH 1005 may be transmitted through the control region of CORESET #0 in TRP 1 and the PDSCH 1010 scheduled by the PDCCH 1005 may be transmitted. The UE may receive the PDCCH 1005 through the control region of CORESET #0 and receive the PDSCH 1010 scheduled by the PDCCH 1005 . In addition, in TRP 2, the PDCCH 1020 may be transmitted through the control region of CORESET #1, and the PDSCH 1025 scheduled by the PDCCH 1020 may be transmitted. The UE may receive the PDCCH 1020 through the control region of CORESET #1 and receive the PDSCH 1025 scheduled by the PDCCH 1020 .
상기 PDCCH (1005, 1020)는 각각 스케쥴링하는 PDSCH (1010, 1025)가 전송되는 빔의 변경을 지시할 수 있다. The PDCCHs 1005 and 1020 may indicate a change in a beam through which the scheduled PDSCHs 1010 and 1025 are transmitted, respectively.
구체적으로, 단말은 PDCCH를 디코딩하여 PDSCH를 스케쥴링하는 DCI를 수신할 수 있다. 상기 DCI는 Transmission configuration indication 필드 (전송 설정 지시, 이하 TCI field로 지칭한다.)를 포함할 수 있다. 상기 TCI field는 빔 변경을 지시하지 않는 경우 0bit 일 수 있으며 빔 변경을 지시하기 위해 특정 길이의 bit (예를 들면 3bits)의 길이를 가질 수 있다. 이때 MAC CE를 통해 상기 TCI field의 각 codepoint는 적어도 하나의 활성화된 (activated) TCI state와 매핑되어 있을 수 있다.Specifically, the UE may receive DCI for scheduling the PDSCH by decoding the PDCCH. The DCI may include a Transmission configuration indication field (hereinafter referred to as a TCI field). The TCI field may be 0 bits when not indicating a beam change, and may have a length of bits (eg, 3 bits) of a specific length to indicate a beam change. In this case, each codepoint of the TCI field may be mapped to at least one activated TCI state through the MAC CE.
만약 단말이 상기 TRP 1로부터 PDCCH를 수신하고 (1005), TCI field를 가지는 DCI에 의해 PDSCH가 스케쥴링되는 경우, 단말은 상기 DCI 수신 (1005) 및 이와 상응하는 PDSCH 수신 (1010)간의 time offset (1015)을 확인할 수 있다. 상기 time offset은 단말이 PDCCH 자원의 마지막 심볼 자원부터 PDCCH가 스케줄링하여 대응되는 PDSCH 자원의 첫 심볼 자원까지의 시간 차를 의미할 수 있다. If the UE receives the PDCCH from the TRP 1 (1005) and the PDSCH is scheduled by DCI having a TCI field, the UE receives the DCI (1005) and the corresponding PDSCH reception (1010) a time offset (1015) )can confirm. The time offset may mean a time difference from the last symbol resource of the PDCCH resource of the UE to the first symbol resource of the corresponding PDSCH resource scheduled by the PDCCH.
만약 상기 time offset이, PDSCH가 전송되는 빔이 변경되어 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값 (예를 들면 timeDurationForQCL) 보다 같거나 큰 경우에는, 단말은 상기 TCI field가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔을 통해 상기 PDSCH (1010)가 전송된다고 가정할 수 있다. 예를 들면, 단말은 PDSCH (1010)의 DM-RS는 TCI state와 연계되어 설정된 RS와 QCLed (quasi co-located)됨을 가정할 수 있다. 따라서 단말은 변경되는 빔을 통해 TRP 1로부터 PDSCH (1010)를 수신할 수 있다.If the time offset is equal to or greater than a time threshold (eg, timeDurationForQCL) required for the UE to receive the PDSCH due to a change in the beam through which the PDSCH is transmitted, the UE is associated with the TCI state indicated by the TCI field It can be assumed that the PDSCH 1010 is transmitted through the same beam as the configured RS. For example, the UE may assume that the DM-RS of the PDSCH 1010 is QCLed (quasi co-located) with the RS configured in association with the TCI state. Accordingly, the UE may receive the PDSCH 1010 from TRP 1 through the changed beam.
마찬가지로, 만약 단말이 상기 TRP 2로부터 PDCCH를 수신하고 (1020), TCI field를 가지는 DCI에 의해 PDSCH가 스케쥴링되는 경우, 단말은 상기 DCI 수신 (1020) 및 이와 상응하는 PDSCH 수신 (1025)간의 time offset (1030)을 확인할 수 있다. 상기 time offset은 단말이 PDCCH 자원의 마지막 심볼 자원부터 PDCCH가 스케줄링하여 대응되는 PDSCH 자원의 첫 심볼 자원까지의 시간 차를 의미할 수 있다. Similarly, if the UE receives the PDCCH from the TRP 2 (1020) and the PDSCH is scheduled by DCI having a TCI field, the UE receives the DCI (1020) and the corresponding PDSCH reception (1025). (1030) can be confirmed. The time offset may mean a time difference from the last symbol resource of the PDCCH resource of the UE to the first symbol resource of the corresponding PDSCH resource scheduled by the PDCCH.
만약 상기 time offset이, PDSCH가 전송되는 빔이 변경되어 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값 (예를 들면 timeDurationForQCL) 보다 같거나 큰 경우에는, 단말은 상기 TCI field가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔을 통해 상기 PDSCH (1030)가 전송된다고 가정할 수 있다. 예를 들면, 단말은 PDSCH (1030)의 DM-RS는 TCI state와 연계되어 설정된 RS와 QCLed됨을 가정할 수 있다. 따라서 단말은 변경되는 빔을 통해 TRP 2로부터 PDSCH (1030)를 수신할 수 있다.If the time offset is equal to or greater than a time threshold (eg, timeDurationForQCL) required for the UE to receive the PDSCH due to a change in the beam through which the PDSCH is transmitted, the UE is associated with the TCI state indicated by the TCI field It may be assumed that the PDSCH 1030 is transmitted through the same beam as the configured RS. For example, the UE may assume that the DM-RS of the PDSCH 1030 is QCLed with the RS configured in association with the TCI state. Accordingly, the UE may receive the PDSCH 1030 from TRP 2 through the changed beam.
한편, FR2 주파수 대역에서는 PDSCH 외의 채널들 (예를 들면 PDCCH, PUSCH, PUCCH 등)의 robustness와 reliability 향상을 위한 방법의 필요성이 대두된다. 특히, PDCCH 송수신 성능의 향상을 위하여 PDCCH 반복 송수신 또는 PDCCH 반복 (PDCCH repetition)을 고려할 수 있다. 상기 PDCCH 반복은, 하나의 TRP 또는 복수의 TRP가 적어도 일부의 동일한 DCI를 포함하는 복수의 PDCCH(s)를 전송하고, 단말은 상기 적어도 일부의 동일한 DCI를 포함하는 복수의 PDCCH(s)를 수신하는 것을 의미할 수 있다. 이때 단말은 채널 상태에 따라서 기지국이 전송하는 복수의 PDCCH(s)을 수신할 수도 있고, 수신하지 못할 수도 있다. 또한, 전송되는 복수의 PDCCH(s)는 coresetPoolIndex에서 동일한 값으로 설정된 CORESET ID에 포함될 수 있다. 또는 전송되는 복수의 PDCCH(s)는 coresetPoolIndex에서 상이한 값으로 설정된 CORESET ID에 포함될 수도 있다. 상기의 (Multi-TRP 기반의) PDCCH 반복을 통해 PDCCH 송수신의 robustness와 reliability 향상을 기대할 수 있다. 이때 기본적으로 복수의 TRP를 통한 PDCCH 송수신 성능 향상을 위한 방법으로 channel coding scheme을 고려할 수 있고, 1 slot 내에서 PDCCH가 반복 되는 경우 추가적인 combining gain을 고려할 수 있다. 또한, 1 slot 내 또는 1 slot외에서 PDCCH 전송이 반복되는 경우, 빔의 방향이 서로 상이한 spatial gain을 고려할 수 있다.Meanwhile, in the FR2 frequency band, there is a need for a method for improving the robustness and reliability of channels other than the PDSCH (eg, PDCCH, PUSCH, PUCCH, etc.). In particular, in order to improve PDCCH transmission/reception performance, repeated PDCCH transmission/reception or PDCCH repetition may be considered. In the PDCCH repetition, one TRP or a plurality of TRPs transmits a plurality of PDCCH(s) including at least a portion of the same DCI, and the UE receives a plurality of PDCCH(s) including the at least a portion of the same DCI. can mean doing In this case, the terminal may or may not receive a plurality of PDCCH(s) transmitted by the base station according to channel conditions. In addition, a plurality of transmitted PDCCH(s) may be included in the CORESET ID set to the same value in coresetPoolIndex. Alternatively, a plurality of transmitted PDCCH(s) may be included in the CORESET ID set to different values in coresetPoolIndex. Through the above (Multi-TRP-based) PDCCH repetition, robustness and reliability of PDCCH transmission/reception can be expected to be improved. In this case, a channel coding scheme may be considered as a method for improving PDCCH transmission/reception performance through a plurality of TRPs, and an additional combining gain may be considered when the PDCCH is repeated within one slot. In addition, when PDCCH transmission is repeated within 1 slot or outside 1 slot, spatial gains with different beam directions may be considered.
이때 빔의 방향 (TCI), 할당되는 PDSCH의 FDRA(Frequency domain resource allocation) 정보, TDRA(Time domain resource allocation), HARQ ACK 전송 시점, PUCCH resource indicator 등의 정보는 전송되는 PDCCH의 타이밍에 따라서 동일하거나 변경될 수도 있다. 따라서 상기 반복되는 PDCCH 중에서 동일한 DCI 정보는 Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization 중 적어도 하나 이상을 포함할 수 있다.At this time, information such as beam direction (TCI), frequency domain resource allocation (FDRA) information of the allocated PDSCH, time domain resource allocation (TDRA), HARQ ACK transmission time, PUCCH resource indicator, etc. are the same depending on the timing of the transmitted PDCCH or It may be changed. Therefore, the same DCI information among the repeated PDCCHs is Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, It may include at least one or more of DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, and DMRS sequence initialization.
도 11은 본 개시의 일 실시예에 따라 기지국이 PDCCH를 반복하여 전송하는 방법을 도시한 도면이다.11 is a diagram illustrating a method for a base station to repeatedly transmit a PDCCH according to an embodiment of the present disclosure.
무선 통신 시스템에서 PUSCH 또는 PDSCH에 대한 스케줄링 정보를 포함하는 DCI는 PDCCH를 통해 기지국으로부터 단말에게 전송될 수 있다. 기지국은 DCI를 생성하고, DCI payload에 CRC가 부착(attach)되며, 채널 코딩 (channel coding)을 거쳐 PDCCH가 생성될 수 있다. 이후 기지국은 생성된 PDCCH를 복수 회수 만큼 복사하여 상이한 CORESET 또는 search space 자원에 각각 분산시켜 전송할 수 있다. In a wireless communication system, DCI including scheduling information for PUSCH or PDSCH may be transmitted from the base station to the terminal through the PDCCH. The base station may generate a DCI, attach a CRC to a DCI payload, and generate a PDCCH through channel coding. Thereafter, the base station may copy the generated PDCCH a plurality of times and distribute it to different CORESET or search space resources for transmission.
도 11에서 도시된 바에 따른 예를 들면, 만약 기지국이 상기 PDCCH를 두 번 반복하여 전송하는 경우, 기지국은 PDCCH들을 각각 TRP A 와 TRP B에 하나씩 매핑함으로써 spatial domain 측면에서 동일한 또는 상이한 빔을 기반으로 PDCCH를 반복하여 전송할 수 있다. 만약 기지국이 상기 PDCCH를 네 번 반복하여 전송하는 경우, 기지국은 PDCCH들을 각각 TRP A 와 TRP B에 두 개씩 매핑하고, 이때 각 TRP의 두 개의 PDCCH들은 time domain에서 구분되어 전송될 수 있다. 상기 time domain에서 구분되는 PDCCH 반복 전송은, 슬롯 기반 (slot based) 또는 서브 슬롯 기반 (subslot based) 또는 미니 슬롯 기반 (mini-slot based)의 시간 단위 (unit)로 반복되는 것이 가능하다. For example as shown in FIG. 11, if the base station repeatedly transmits the PDCCH twice, the base station maps the PDCCHs to TRP A and TRP B one by one, respectively, in terms of spatial domain, based on the same or different beams. The PDCCH may be repeatedly transmitted. If the base station repeatedly transmits the PDCCH four times, the base station maps two PDCCHs to TRP A and TRP B, respectively, and in this case, two PDCCHs of each TRP may be transmitted separately in the time domain. The repeated PDCCH transmission differentiated in the time domain may be repeated in time units of slot based, subslot based, or mini-slot based.
다만 상술한 방법은 예시에 불과하고 이에 한정되는 것은 아니다. 본 개시에서 단말 및 기지국은 상술한 PDCCH repetition 동작을 위해 아래와 같은 방법을 고려할 수 있다.However, the above-described method is merely an example and is not limited thereto. In the present disclosure, the terminal and the base station may consider the following method for the above-described PDCCH repetition operation.
방법 1-1) 동일한 CORESET 내, 동일한 slot 내 time domain 측면에서 PDCCH repetition.Method 1-1) PDCCH repetition in the time domain in the same CORESET and in the same slot.
방법 1-2) 동일한 CORESET 내, 동일한 slot 내 frequency domain 측면에서 PDCCH repetition.Method 1-2) PDCCH repetition in the frequency domain in the same CORESET and in the same slot.
방법 1-3) 동일한 CORESET 내, 동일한 slot 내 spatial domain 측면에서 PDCCH repetition.Method 1-3) PDCCH repetition in the spatial domain within the same CORESET and within the same slot.
방법 2-1) 동일한 CORESET 내, 다른 slot 간 time domain 측면에서 PDCCH repetition.Method 2-1) PDCCH repetition in the time domain between different slots within the same CORESET.
방법 2-2) 동일한 CORESET 내, 다른 slot 간 frequency domain 측면에서 PDCCH repetition.Method 2-2) PDCCH repetition in terms of frequency domain between different slots within the same CORESET.
방법 2-3) 동일한 CORESET 내, 다른 slot 간 spatial domain 측면에서 PDCCH repetition.Method 2-3) PDCCH repetition in the spatial domain between different slots within the same CORESET.
방법 3-1) 다른 CORESET 간, 동일한 slot 내 time domain 측면에서 PDCCH repetition.Method 3-1) PDCCH repetition between different CORESETs in terms of time domain within the same slot.
방법 3-2) 다른 CORESET 간, 동일한 slot 내 frequency domain 측면에서 PDCCH repetition.Method 3-2) PDCCH repetition between different CORESETs in terms of frequency domain within the same slot.
방법 3-3) 다른 CORESET 간, 동일한 slot 내 spatial domain 측면에서 PDCCH repetition.Method 3-3) PDCCH repetition between different CORESETs in terms of spatial domain within the same slot.
방법 4-1) 다른 CORESET 간, 다른 slot 간 time domain 측면에서 PDCCH repetition.Method 4-1) PDCCH repetition in terms of time domain between different CORESETs and between different slots.
방법 4-2) 다른 CORESET 간, 다른 slot 간 frequency domain 측면에서 PDCCH repetition.Method 4-2) PDCCH repetition in terms of frequency domain between different CORESETs and between different slots.
방법 4-3) 다른 CORESET 간, 다른 slot 간 spatial domain 측면에서 PDCCH repetition.Method 4-3) PDCCH repetition in terms of spatial domain between different CORESETs and between different slots.
또한 PDCCH 반복 횟수는 독립적으로 증가할 수 있고, 이에 따라 상술한 방법들이 동시에 조합하여 고려될 수도 있다.In addition, the number of repetitions of the PDCCH may increase independently, and accordingly, the above-described methods may be considered in combination at the same time.
기지국은 PDCCH가 어떤 domain을 통해 반복 전송되는지에 대한 정보를 RRC 메시지를 통해 단말에 미리 설정할 수 있다. 예를 들어 상기 time domain 측면에서의 PDCCH 반복 전송인 경우라면, 기지국은 상술한 슬롯 기반 (slot based), 서브 슬롯 기반 (subslot based), 또는 미니 슬롯 기반 (mini-slot based)의 시간 단위 중 어느 하나에 따라 반복되는지에 대한 정보를 단말에 미리 설정할 수 있다. 상기 frequency domain 측면에서의 PDCCH 반복 전송인 경우라면, 기지국은 CORESET, bandwidth part (BWP), 또는 component carrier (CC) 중 어느 하나에 기반하여 반복되는지에 대한 정보를 단말에 미리 설정할 수 있다. 상기 spatial domain 측면에서의 PDCCH 반복 전송인 경우라면, 기지국은 QCL type별 설정을 통해 PDCCH 반복 전송을 위한 빔과 관련된 정보를 단말에 미리 설정할 수 있다. 또는, 상기 나열한 정보들을 조합하여 RRC 메시지를 통해 단말에 전송할 수 있다. The base station may preset information on which domain the PDCCH is repeatedly transmitted through to the terminal through the RRC message. For example, in the case of repeated PDCCH transmission in terms of the time domain, the base station is any of the above-described slot-based, sub-slot-based, or mini-slot-based time units Information on whether or not to be repeated according to one may be preset in the terminal. In the case of repeated PDCCH transmission in terms of the frequency domain, the base station may preset information on whether it is repeated based on any one of CORESET, bandwidth part (BWP), or component carrier (CC) to the terminal in advance. In the case of repeated PDCCH transmission in terms of the spatial domain, the base station may preset information related to a beam for repeated PDCCH transmission to the terminal through configuration for each QCL type. Alternatively, the information listed above may be combined and transmitted to the terminal through an RRC message.
따라서 기지국은 RRC 메시지를 통해 미리 설정된 정보에 따라 PDCCH를 반복 전송할 수 있으며, 단말은 상기 RRC 메시지를 통해 미리 설정된 정보에 따라 PDCCH를 반복 수신할 수 있다. Accordingly, the base station may repeatedly transmit the PDCCH according to preset information through the RRC message, and the terminal may repeatedly receive the PDCCH according to the preset information through the RRC message.
한편, 상술한 방법에 따라 적어도 일부의 동일한 DCI를 포함하는 PDCCH가 반복되는 시나리오에서, 기지국이 단말에게 PDSCH가 전송되는 빔의 변경을 지시하고자 하는 경우 여러 가지 문제점이 대두될 수 있다. Meanwhile, in a scenario in which a PDCCH including at least a portion of the same DCI is repeated according to the above-described method, various problems may arise when the base station attempts to instruct the terminal to change the beam through which the PDSCH is transmitted.
예를 들면, 일반적으로 단말은 DCI 수신 시점 및 이와 상응하는 PDSCH 수신 시점 간의 time offset을 확인할 수 있다. 상기 time offset은 단말이 PDCCH 자원의 마지막 심볼 자원부터 PDCCH가 스케줄링하여 대응되는 PDSCH 자원의 첫 심볼 자원까지의 시간 차를 의미할 수 있다. 이때 상기 time offset이, PDSCH가 전송되는 빔이 변경되어 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값 (이하, 기술의 편의를 위하여 간단히 timeDurationForQCL으로 지칭한다.) 보다 같거나 큰 경우에는, 단말은 상기 DCI에서 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔을 통해 상기 PDSCH가 전송된다고 가정할 수 있다. 그런데 적어도 일부의 동일한 DCI를 포함하는 PDCCH가 반복되는 시나리오에서는 단말이 복수의 PDCCH중 어느 PDCCH의 수신 시점을 기준으로 상기 time offset을 확인할지에 대한 기준이 정해져 있지 않다.For example, in general, the UE may check a time offset between a DCI reception time and a corresponding PDSCH reception time. The time offset may mean a time difference from the last symbol resource of the PDCCH resource of the UE to the first symbol resource of the corresponding PDSCH resource scheduled by the PDCCH. In this case, the time offset is equal to or greater than a time threshold required for the UE to receive the PDSCH due to a change in the beam through which the PDSCH is transmitted (hereinafter, simply referred to as timeDurationForQCL for convenience of technology). It may be assumed that the PDSCH is transmitted through the same beam as RS configured in association with the TCI state indicated by DCI. However, in a scenario in which PDCCHs including at least a portion of the same DCI are repeated, there is no standard for determining the time offset based on which PDCCH is received from among a plurality of PDCCHs.
또 다른 예를 들면, 만약 상기 time offset이, PDSCH가 전송되는 빔이 변경되어 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값 (예: timeDurationForQCL) 보다 작은 경우에는, 단말은 PDSCH 수신 빔을 상기 DCI에서 지시하는 PDSCH 전송 빔 (TCI)에 상응하는 수신 빔으로 변경이 불가능할 수 있다. 따라서 PDCCH가 반복되는 시나리오에서는 위와 같은 상황에서 기지국과 단말이 특정 기준 (또는 미리 정해진 약속)에 따라 상기 DCI가 스케쥴링하는 PDSCH 송수신을 위한 빔을 결정해야 할 필요가 있다. 본 개시에서는 위와 같은 상황에서 기지국과 단말이 특정 기준에 따라 PDSCH 송수신을 위한 빔을 결정하는 동작을 default QCL 적용 또는 default QCL assumption으로 지칭할 수 있다. For another example, if the time offset is smaller than a time threshold (eg, timeDurationForQCL) required for the UE to receive the PDSCH because the beam through which the PDSCH is transmitted is changed, the UE transmits the PDSCH reception beam in the DCI. It may not be possible to change to a reception beam corresponding to the indicated PDSCH transmission beam (TCI). Therefore, in a scenario in which the PDCCH is repeated, in the above situation, the base station and the terminal need to determine a beam for PDSCH transmission and reception scheduled by the DCI according to a specific criterion (or a predetermined appointment). In the present disclosure, an operation in which the base station and the terminal determine a beam for PDSCH transmission/reception according to a specific criterion in the above situation may be referred to as default QCL application or default QCL assumption.
이하에서는 PDCCH가 반복되는 시나리오에서 발생할 수 있는 여러 가지 문제점을 해결하기 위한 실시예들을 구체적으로 서술한다. Hereinafter, embodiments for solving various problems that may occur in a scenario in which the PDCCH is repeated will be described in detail.
<제 1 실시예><First embodiment>
본 개시의 제 1 실시예에서는 한 개의 PDSCH를 스케쥴링하는 PDCCH가 방법 1-1)과 같이 동일한 CORESET 내, 동일한 slot 내 time domain 측면에서 반복되는 경우를 가정할 수 있다. 이하, 반복되는 PDCCH의 DCI가 스케쥴링하는 PDSCH가 전송되는 빔의 변경이 상기 DCI내 TCI field를 통해 지시된 경우, DCI 수신 및 이와 상응하는 PDSCH간의 time offset을 확인하기 위해 기준이 되는 PDCCH를 결정하는 방법을 서술한다.In the first embodiment of the present disclosure, it can be assumed that the PDCCH for scheduling one PDSCH is repeated in the time domain in the same CORESET and in the same slot as in method 1-1). Hereinafter, when a change in a beam through which a PDSCH scheduled by a DCI of a repeated PDCCH is transmitted is indicated through a TCI field in the DCI, a PDCCH serving as a reference is determined in order to check the time offset between the DCI reception and the corresponding PDSCH. Describe the method.
도 12는 본 개시의 일 실시예에 따라 한 개의 PDSCH를 스케쥴링하는 PDCCH가, 동일한 CORESET 내, 동일한 slot 내 time domain 측면에서 반복되는 경우를 도시한 도면이다.12 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated in the time domain in the same CORESET and in the same slot according to an embodiment of the present disclosure.
한편, 도 12를 참고하면, 본 개시에서 빗금 또는 사선의 도시 패턴 (각도, 방향, 사선의 반복 정도, 밀집도 등)이 동일하게 도시된 경우, 동일한 전송 빔을 통해 신호가 전송되거나 또는 동일한 수신 빔을 통해 신호가 수신되는 것을 의미할 수 있다. 또한, 빗금 또는 사선의 도시 패턴 (각도, 방향, 사선의 반복 정도, 밀집도 등)이 상이하게 도시된 경우, 상이한 전송 빔을 통해 신호가 전송되거나 또는 상이한 수신 빔을 통해 신호가 수신되는 것을 의미할 수 있다. 이하 동일하다.Meanwhile, referring to FIG. 12 , in the present disclosure, when the illustrated pattern of hatched or slanted lines (angle, direction, repetition degree of diagonal lines, density, etc.) is illustrated as the same, a signal is transmitted through the same transmission beam or the same reception beam It may mean that a signal is received through In addition, when the hatched or slanted drawing patterns (angle, direction, repetition degree of diagonal lines, density, etc.) are shown differently, it means that signals are transmitted through different transmission beams or signals are received through different reception beams. can Same as below.
동일한 CORESET 내, 동일한 slot 내 time domain 측면에서의 PDCCH 반복 송수신을 위하여 단말은 기지국으로부터 상위 레이어 시그널링 (예를 들면 RRC 메시지)을 통해 하기와 같이 설정될 수 있다.For repeated PDCCH transmission/reception in the time domain in the same CORESET and in the same slot, the UE may be configured as follows through higher layer signaling (eg, RRC message) from the base station.
Search space config#1 = {controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), {1st, 7th} symbol(monitoringSymbolsWithinSlot(11000001100000)), USS, …}Search space config#1 = {controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), {1st, 7th} symbol(monitoringSymbolsWithinSlot(11000001100000)), USS, … }
이때 상기 PDCCH(s)가 서로 다른 CORESET(s) 또는 Search space(s) 상에서 반복되어 전송되는 것을 나타내는 별도의 파라미터 (예를 들면 linkage parameter)가 상위 레이어 시그널링을 통해 설정될 수 있다. 따라서 기지국 또는 단말은 상기 linkage parameter로 연결되어 설정된 서로 다른 CORESET(s) 또는 Search space(s) 상에서 상기 PDCCH(s)가 반복되어 전송되는 것을 확인할 수 있다.In this case, a separate parameter (eg, linkage parameter) indicating that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) may be set through higher layer signaling. Accordingly, the base station or the terminal can confirm that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) configured by being connected to the linkage parameter.
단말은 상기 설정 정보에 기반하여 PDCCH들에 대한 디코딩을 시도할 수 있다.The UE may attempt to decode PDCCHs based on the configuration information.
도 12를 참고하면 기지국은 CORESET X의 주파수 대역에서 PDCCH#1 (1205)와 PDCCH#2 (1210)를 통해 적어도 일부의 동일한 DCI 정보(예를 들면, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization 등)를 전송할 수 있다.Referring to FIG. 12, the base station uses at least some of the same DCI information (eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization, etc.) may be transmitted.
단말은 상위 레이어 시그널링을 통해 CORESET 또는 Search space의 설정을 확인하고, 기지국이 적어도 일부 또는 전부 동일한 DCI 정보로 구성되는 복수의 PDCCH를 반복하여 전송하는 경우, 단말은 복수의 PDCCH가 전송되는 빔의 변경이 발생하지 않는 것으로 기대(가정)할 수 있다. The terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
실시예 1-1)Example 1-1)
단말이 하나의 slot 내에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들의 디코딩을 모두 성공한 경우를 가정할 수 있다. It may be assumed that the UE succeeds in decoding all PDCCHs in which at least some of the same DCIs are repeated within one slot.
이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 먼저 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 예를 들면, 단말 및 기지국은 상기 linkage parameter로 연결되어 설정된 CORESET(s) 또는 Search space(s) 중에서 가장 먼저 전송되는 PDCCH를 기준으로 상기 time offset을 확인할 수 있다. At this time, the UE may check a time offset between DCI reception and the corresponding PDSCH reception based on the first transmitted PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam. For example, the terminal and the base station may check the time offset based on the PDCCH transmitted first among CORESET(s) or Search space(s) configured by being connected with the linkage parameter.
단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다.The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
이는 PDSCH 수신 빔 변경을 위해 필요한 시간에 대한 단말의 capability를 가장 보수적으로 고려하는 것이 바람직하다고 판단되는 경우에 적용될 수 있다.This may be applied when it is determined that it is desirable to most conservatively consider the capability of the UE for the time required for changing the PDSCH reception beam.
실시예 1-2)Example 1-2)
단말이 하나의 slot 내에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들의 디코딩을 모두 성공한 경우를 가정할 수 있다. 도 12에 도시된 예를 들면, 단말은 PDCCH #1 (1205) 및 PDCCH #2 (1210)의 디코딩을 모두 성공한 경우를 가정할 수 있다.It may be assumed that the UE succeeds in decoding all PDCCHs in which at least some of the same DCIs are repeated within one slot. For the example shown in FIG. 12 , it may be assumed that the UE succeeds in decoding both PDCCH #1 1205 and PDCCH #2 1210 .
이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 마지막으로 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 예를 들면, 단말 및 기지국은 상기 linkage parameter로 연결되어 설정된 CORESET(s) 또는 Search space(s) 중에서 가장 마지막으로 전송되는 PDCCH를 기준으로 상기 time offset을 확인할 수 있다. 도 12에 도시된 예를 들면, 단말은 PDCCH #2 (1210)을 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1 (1215)수신 간의 time offset (1225)을 확인할 수 있다. In this case, the UE may check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the last transmitted PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam. For example, the terminal and the base station may check the time offset based on the last transmitted PDCCH among CORESET(s) or search space(s) configured by being connected with the linkage parameter. For example, as shown in FIG. 12 , the UE may check the time offset 1225 between the reception of DCI and the reception of the corresponding PDSCH #1 1215 based on PDCCH #2 1210 .
단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다.The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
이는 PDSCH 수신 빔 변경을 위해 필요한 시간에 대한 단말의 capability를 가급적 충분히 고려하는 것이 바람직하다고 판단되는 경우에 적용될 수 있다.This may be applied when it is determined that it is desirable to sufficiently consider the capability of the UE for the time required for changing the PDSCH reception beam.
실시예 1-3)Example 1-3)
단말이 하나의 slot내에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들 중 일부만 디코딩에 성공한 경우를 가정할 수 있다. It may be assumed that the UE succeeds in decoding only some of the PDCCHs in which at least some of the same DCI are repeated within one slot.
이때 단말은, 디코딩에 성공하고 PDSCH전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 먼저 디코딩에 성공한 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다.At this time, the UE confirms the time offset between DCI reception and the corresponding PDSCH reception based on the first successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs that succeed in decoding and indicate the change of the PDSCH transmission beam. can The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
이는 PDSCH 수신 빔 변경을 위해 필요한 시간에 대한 단말의 capability를 가장 보수적으로 고려하는 것이 바람직하다고 판단되는 경우에 적용될 수 있다.This may be applied when it is determined that it is desirable to most conservatively consider the capability of the UE for the time required for changing the PDSCH reception beam.
실시예 1-4)Example 1-4)
단말이 하나의 slot 내에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들 중 일부만 디코딩에 성공한 경우를 가정할 수 있다. It may be assumed that the UE succeeds in decoding only some of the PDCCHs in which at least some of the same DCI are repeated within one slot.
이때 단말은, 디코딩에 성공하고 PDSCH전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 마지막으로 디코딩에 성공한 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다.At this time, the terminal succeeds in decoding, and among the PDCCHs indicating the change of the PDSCH transmission beam, based on the PDCCH (or CORESET, search space set) that has been decoded the most, the time offset between the DCI reception and the corresponding PDSCH reception can be checked The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL.
이는 PDSCH 수신 빔 변경을 위해 필요한 시간에 대한 단말의 capability를 가급적 충분히 고려하는 것이 바람직하다고 판단되는 경우에 적용될 수 있다.This may be applied when it is determined that it is desirable to sufficiently consider the capability of the UE for the time required for changing the PDSCH reception beam.
<제 2 실시예><Second embodiment>
본 개시의 제 2 실시예서는 한 개의 PDSCH를 스케쥴링하는 PDCCH가 방법 2-1)과 같이 동일한 CORESET 내, 다른 slot 간 time domain 측면에서 반복되는 경우를 가정할 수 있다. 이하, 반복되는 PDCCH의 DCI가 스케쥴링하는 PDSCH가 전송되는 빔의 변경이 상기 DCI내 TCI field를 통해 지시된 경우, DCI 수신 및 이와 상응하는 PDSCH간의 time offset을 확인하기 위해 기준이 되는 PDCCH를 결정하는 방법을 서술한다.In the second embodiment of the present disclosure, it can be assumed that the PDCCH for scheduling one PDSCH is repeated in the time domain between different slots within the same CORESET as in method 2-1). Hereinafter, when a change in a beam through which a PDSCH scheduled by a DCI of a repeated PDCCH is transmitted is indicated through a TCI field in the DCI, a PDCCH serving as a reference is determined in order to check the time offset between the DCI reception and the corresponding PDSCH. Describe the method.
도 13은 본 개시의 일 실시예에 따라 한 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 CORESET 내, 다른 slot 간 time domain 측면에서 반복되는 경우를 도시한 도면이다.13 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated in the time domain between different slots within the same CORESET according to an embodiment of the present disclosure.
동일한 CORESET 내, 다른 slot 간 time domain 측면에서의 PDCCH 반복 송수신을 위하여 단말은 기지국으로부터 상위 레이어 시그널링을 통해 하기와 같이 설정될 수 있다.For repeated PDCCH transmission/reception in the time domain between different slots within the same CORESET, the UE may be configured as follows through higher layer signaling from the base station.
Search space config#2 = {controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), {1st} symbol(monitoringSymbolsWithinSlot(11000000000000)), USS, …}Search space config#2 = {controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), {1st} symbol(monitoringSymbolsWithinSlot(11000000000000)), USS, … }
이때 상기 PDCCH(s)가 서로 다른 CORESET(s) 또는 Search space(s) 상에서 반복되어 전송되는 것을 나타내는 별도의 파라미터 (예를 들면 linkage parameter)가 상위 레이어 시그널링을 통해 설정될 수 있다. 따라서 기지국 또는 단말은 상기 linkage parameter로 연결되어 설정된 서로 다른 CORESET(s) 또는 Search space(s) 상에서 상기 PDCCH(s)가 반복되어 전송되는 것을 확인할 수 있다.In this case, a separate parameter (eg, linkage parameter) indicating that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) may be set through higher layer signaling. Accordingly, the base station or the terminal can confirm that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) configured by being connected to the linkage parameter.
단말은 상기 설정 정보에 기반하여 PDCCH들에 대한 디코딩을 시도할 수 있다.The UE may attempt to decode PDCCHs based on the configuration information.
도 13를 참고하면 기지국은 CORESET X의 주파수 대역에서 PDCCH#1 (1305)와 PDCCH#2 (1310)를 통해 적어도 일부의 동일한 DCI 정보(예를 들면, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization 등)를 전송할 수 있다. PDCCH#1 (1305)와 PDCCH#2 (1310)의 DCI는 일부 동일한 DCI도 있고, TDRA (Time domain resource assignment)와 같은 타이밍 관련 정보는 상이할 수 있다.Referring to FIG. 13, the base station uses at least some of the same DCI information (eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization, etc.) may be transmitted. Some DCIs of PDCCH#1 ( 1305 ) and PDCCH#2 ( 1310 ) may be the same, and timing-related information such as time domain resource assignment (TDRA) may be different.
단말은 상위 레이어 시그널링을 통해 CORESET 또는 Search space의 설정을 확인하고, 기지국이 적어도 일부 또는 전부 동일한 DCI 정보로 구성되는 복수의 PDCCH를 반복하여 전송하는 경우, 단말은 복수의 PDCCH가 전송되는 빔의 변경이 발생하지 않는 것으로 기대(가정)할 수 있다. The terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
실시예 2-1)Example 2-1)
단말이 복수의 slot에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들의 디코딩을 모두 성공한 경우를 가정할 수 있다.It may be assumed that the UE succeeds in decoding all of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 먼저 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 예를 들면, 단말 및 기지국은 상기 linkage parameter로 연결되어 설정된 CORESET(s) 또는 Search space(s) 중에서 가장 먼저 전송되는 PDCCH를 기준으로 상기 time offset을 확인할 수 있다. At this time, the UE may check a time offset between DCI reception and the corresponding PDSCH reception based on the first transmitted PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam. For example, the terminal and the base station may check the time offset based on the PDCCH transmitted first among CORESET(s) or Search space(s) configured by being connected with the linkage parameter.
단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다. 또는, 기지국에 의해 CORESETPoolIndex가 설정되면, 단말은 동일한 CORESETPoolIndex로 설정된 PDCCH들 중에서 가장 먼저 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다.The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL. Alternatively, when the CORESETPoolIndex is set by the base station, the terminal can check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the first transmitted PDCCH (or CORESET, search space set) among the PDCCHs set with the same CORESETPoolIndex. .
실시예 2-2)Example 2-2)
단말이 복수의 slot에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들의 디코딩을 모두 성공한 경우를 가정할 수 있다. 도 13에 도시된 예를 들면, 단말은 PDCCH #1 (1305) 및 PDCCH #2 (1310)의 디코딩을 모두 성공한 경우를 가정할 수 있다.It may be assumed that the UE succeeds in decoding all of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots. For the example shown in FIG. 13 , it may be assumed that the UE succeeds in decoding both PDCCH #1 ( 1305 ) and PDCCH #2 ( 1310 ).
이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 마지막으로 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 예를 들면, 단말 및 기지국은 상기 linkage parameter로 연결되어 설정된 CORESET(s) 또는 Search space(s) 중에서 가장 마지막으로 전송되는 PDCCH를 기준으로 상기 time offset을 확인할 수 있다. 도 13에 도시된 예를 들면, 단말은 PDCCH #2 (1310)을 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1 (1315)수신 간의 time offset (1325)을 확인할 수 있다. 단말 및 기지국은 상기 time offset과, In this case, the UE may check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the last transmitted PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam. For example, the terminal and the base station may check the time offset based on the last transmitted PDCCH among CORESET(s) or search space(s) configured by being connected with the linkage parameter. For example, as shown in FIG. 13 , the UE may check the time offset 1325 between the reception of DCI and the reception of the corresponding PDSCH #1 1315 based on PDCCH #2 1310 . The terminal and the base station are the time offset and,
상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다. 또는, 기지국에 의해 CORESETPoolIndex가 설정되면, 단말은 동일한 CORESETPoolIndex로 설정된 PDCCH들 중에서 가장 마지막으로 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다.By comparing the timeDurationForQCL, it is possible to determine whether to apply the default QCL. Alternatively, when the CORESETPoolIndex is set by the base station, the UE can check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the last transmitted PDCCH (or CORESET, search space set) among the PDCCHs set with the same CORESETPoolIndex. there is.
실시예 2-3)Example 2-3)
단말이 복수의 slot에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들의 디코딩을 모두 성공한 경우를 가정할 수 있다. It may be assumed that the UE succeeds in decoding all of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 최근 (마지막) slot에서 가장 먼저 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 예를 들면, 단말 및 기지국은 상기 linkage parameter로 연결되어 설정된 CORESET(s) 또는 Search space(s) 중에서 가장 최근 (마지막) slot에서 가장 먼저 전송되는 PDCCH를 기준으로 상기 time offset을 확인할 수 있다. At this time, the UE, from among the PDCCHs indicating the change of the PDSCH transmission beam, based on the PDCCH (or CORESET, search space set) transmitted first in the most recent (last) slot, a time offset between DCI reception and the corresponding PDSCH reception can confirm. For example, the terminal and the base station may check the time offset based on the PDCCH transmitted first in the most recent (last) slot among CORESET(s) or Search space(s) configured by being connected with the linkage parameter.
단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다. 또는, 기지국에 의해 CORESETPoolIndex가 설정되면, 단말은 동일한 CORESETPoolIndex로 설정된 PDCCH들 중에서 가장 최근 (마지막) slot에서 가장 먼저 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다.The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL. Alternatively, when CORESETPoolIndex is set by the base station, the UE receives DCI based on the PDCCH (or CORESET, Search space set) transmitted first in the most recent (last) slot among the PDCCHs set to the same CORESETPoolIndex and receives the corresponding PDSCH. You can check the time offset between them.
실시예 2-4)Example 2-4)
단말이 복수의 slot에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들의 디코딩을 모두 성공한 경우를 가정할 수 있다. It may be assumed that the UE succeeds in decoding all of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 먼저 전송되는 slot에서 가장 마지막으로 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 예를 들면, 단말 및 기지국은 상기 linkage parameter로 연결되어 설정된 CORESET(s) 또는 Search space(s) 중에서 가장 먼저 전송되는 slot에서 가장 마지막으로 전송되는 PDCCH를 기준으로 상기 time offset을 확인할 수 있다. At this time, the UE, from among the PDCCHs indicating the change of the PDSCH transmission beam, based on the PDCCH (or CORESET, search space set) transmitted last in the first transmitted slot, a time offset between DCI reception and the corresponding PDSCH reception can confirm. For example, the terminal and the base station may check the time offset based on the last transmitted PDCCH in the first transmitted slot among the CORESET(s) or the search space(s) configured by being connected with the linkage parameter.
단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다. 또는, 기지국에 의해 CORESETPoolIndex가 설정되면, 단말은 동일한 CORESETPoolIndex로 설정된 PDCCH들 중에서 가장 먼저 전송되는 slot에서 가장 마지막으로 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다.The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL. Alternatively, when CORESETPoolIndex is set by the base station, the UE receives DCI and the corresponding PDSCH based on the last transmitted PDCCH (or CORESET, search space set) in the first transmitted slot among the PDCCHs set to the same CORESETPoolIndex. You can check the time offset between them.
실시예 2-5)Example 2-5)
단말이 복수의 slot에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들 중 일부만 디코딩에 성공한 경우를 가정할 수 있다. It may be assumed that the UE succeeds in decoding only some of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots.
이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 먼저 디코딩에 성공한 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다. 또는, 기지국에 의해 CORESETPoolIndex가 설정되면, 단말은 동일한 CORESETPoolIndex로 설정된 PDCCH들 중에서 가장 먼저 디코딩에 성공한 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다.At this time, the UE may check the time offset between DCI reception and the corresponding PDSCH reception based on the first successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam. The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL. Alternatively, when the CORESETPoolIndex is set by the base station, the UE can check the time offset between the reception of the DCI and the reception of the corresponding PDSCH based on the PDCCH (or CORESET, Search space set) that has been decoded first among the PDCCHs set with the same CORESETPoolIndex. there is.
실시예 2-6)Example 2-6)
단말이 복수의 slot에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들 중 일부만 디코딩에 성공한 경우를 가정할 수 있다. 도 13에 도시된 예를 들면, 단말은 PDCCH #1 (1305)의 디코딩은 실패하고, PDCCH #1 이후에 전송된 PDCCH(들) (미도시) 및 PDCCH #2 (1310)의 디코딩은 성공한 경우를 가정할 수 있다.It may be assumed that the UE succeeds in decoding only some of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots. For the example shown in FIG. 13, the UE fails in decoding PDCCH #1 1305, and PDCCH(s) (not shown) transmitted after PDCCH #1 and decoding of PDCCH #2 1310 is successful. can be assumed.
이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 마지막으로 디코딩에 성공한 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다. 도 13에 도시된 예를 들면, 단말은 PDCCH #2 (1310)을 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1315)수신 간의 time offset (1325)을 확인할 수 있다. 단말 및 기지국은 상기 time offset과, 상기 timeDurationForQCL을 비교하여, default QCL 적용 여부를 결정할 수 있다. 또는, 기지국에 의해 CORESETPoolIndex가 설정되면, 단말은 동일한 CORESETPoolIndex로 설정된 PDCCH들 중에서 가장 마지막으로 디코딩에 성공한 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다.At this time, the UE may check the time offset between DCI reception and the corresponding PDSCH reception based on the last successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam. For example, as shown in FIG. 13 , the UE may check a time offset 1325 between reception of DCI and reception of corresponding PDSCH #1 1315 based on PDCCH #2 1310 . The terminal and the base station may compare the time offset with the timeDurationForQCL to determine whether to apply the default QCL. Alternatively, when CORESETPoolIndex is set by the base station, the terminal checks the time offset between DCI reception and the corresponding PDSCH reception based on the last successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs set to the same CORESETPoolIndex. can
<제 3 실시예><Third embodiment>
적어도 일부의 동일한 DCI를 포함하는 PDCCH가 반복되는 시나리오에서, 상기 실시예 1-1) 내지 실시예 2-6)에 따른 PDCCH를 기준으로 단말은 DCI 수신 시점 및 이와 상응하는 PDSCH 수신 시점 간의 time offset을 확인할 수 있다. 이때 상기 time offset이, 상기 timeDurationForQCL 보다 같거나 큰 경우에는, 단말은 상기 DCI에서 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔을 통해 상기 PDSCH가 전송된다고 가정할 수 있다. 단말은 변경되는 빔을 통해 상기 PDSCH를 수신할 수 있다.In a scenario in which the PDCCH including at least a part of the same DCI is repeated, based on the PDCCH according to the above embodiments 1-1) to 2-6), the UE receives a DCI and a time offset between the corresponding PDSCH reception times can confirm. In this case, when the time offset is equal to or greater than the timeDurationForQCL, the UE may assume that the PDSCH is transmitted through the same beam as the RS configured in association with the TCI state indicated by the DCI. The UE may receive the PDSCH through the changed beam.
그런데 만약 상기 time offset이, 상기 timeDurationForQCL 보다 작은 경우에는, 기지국과 단말은 default QCL을 적용해야 할 수 있다. 본 개시의 제 3 실시예에서는 적어도 일부의 동일한 DCI를 포함하는 PDCCH가 반복되는 시나리오에서 기지국과 단말이 상기 default QCL을 적용하는 방법을 서술한다.However, if the time offset is smaller than the timeDurationForQCL, the base station and the terminal may have to apply the default QCL. A third embodiment of the present disclosure describes a method in which a base station and a terminal apply the default QCL in a scenario in which PDCCHs including at least a part of the same DCI are repeated.
실시예 3-1)Example 3-1)
단말이 CORESET Pool 마다 default QCL 적용 동작이 가능하도록 미리 설정되지 않은 경우를 가정할 수 있다. 예를 들어, 단말은 RRC 설정 메시지 내의 enableDefaultTCIStatePerCoresetPoolIndex 파라미터가 설정되지 않은 경우일 수 있다. It can be assumed that the UE is not preset to enable the default QCL application operation for each CORESET Pool. For example, the terminal may be a case where the enableDefaultTCIStatePerCoresetPoolIndex parameter in the RRC configuration message is not set.
이 경우, 단말은 PDSCH 수신을 위한 DMRS 포트가 서빙셀 내 initial access 절차에서 결정된 SS/PBCH block과 QCL-TypeA, QCL-TypeD로 QCLed 된 것으로 가정할 수 있다. 예를 들어 상기 실시예 1-1)에 따르면, 단말은 PDCCH #1 (1205)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1215)수신 간의 time offset (1220)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1 (1215)를 수신하기 위한 빔으로 initial access 절차에서 결정된 SS/PBCH block에서 수신하는데 적용한 QCL parameter를 적용하여 빔포밍을 수행할 수 있다. 단말은 변경되는 빔을 통해 기지국으로부터 데이터를 수신할 수 있다. In this case, the UE may assume that the DMRS port for PDSCH reception is QCLed with the SS/PBCH block determined in the initial access procedure in the serving cell, QCL-TypeA, and QCL-TypeD. For example, according to the embodiment 1-1), when the time offset (1220) between the reception of DCI and the reception of the corresponding PDSCH #1 (1215) based on PDCCH #1 (1205) is smaller than the timeDurationForQCL, The UE may perform beamforming by applying the QCL parameter applied to reception in the SS/PBCH block determined in the initial access procedure as a beam for receiving PDSCH #1 1215. The terminal may receive data from the base station through the changed beam.
실시예 3-2)Example 3-2)
단말이 CORESET Pool 마다 default QCL 적용 동작이 가능하도록 미리 설정된 경우를 가정할 수 있다. 예를 들어, 단말은 RRC 설정 메시지 내의 enableDefaultTCIStatePerCoresetPoolIndex 파라미터가 설정되고, ControlResourceset 내 CORESETPoolIndex 의 2개 다른 값이 포함된 경우일 수 있다.It can be assumed that the UE is preset to enable the default QCL application operation for each CORESET Pool. For example, the UE may set the enableDefaultTCIStatePerCoresetPoolIndex parameter in the RRC configuration message and include two different values of CORESETPoolIndex in the ControlResourceset.
이 경우, 단말은 PDSCH를 수신하기 위한 빔으로 서빙셀 내 설정된 CORESETPoolIndex 내 복수의 CORESET들 중에서 가장 낮은(lowest) controlResourceSetId에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH의 QCL parameter를 적용할 수 있다. 즉 단말은 상기 PDCCH의 QCL parameter 와 연계된 RS와 PDSCH 수신을 위한 DMRS 포트가 서로 QCLed 된 것으로 간주할 수 있다. 여기서 상기 복수의 CORESET들은 서빙셀의 active BWP 내 PDSCH를 스케줄링하는 PDCCH로서 동일한 CORESETPoolIndex로 설정된 CORESET들을 의미할 수 있다.In this case, the UE can apply the QCL parameter of the PDCCH transmitted through the CORESET associated with the search space monitored in the lowest controlResourceSetId among a plurality of CORESETs in the CORESETPoolIndex set in the serving cell as a beam for receiving the PDSCH. there is. That is, the UE may consider that the RS associated with the QCL parameter of the PDCCH and the DMRS port for receiving the PDSCH are QCLed to each other. Here, the plurality of CORESETs may refer to CORESETs set to the same CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
예를 들어 상기 실시예 2-1)에 따르면, PDCCH #1 (1305)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1315)수신 간의 time offset (1320)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1 (1315)를 수신하기 위한 빔으로, 서빙셀 내 설정된 동일한 CORESETPoolIndex 내 lowest CORESETId인 CORESET #X에서, 가장 최신 slot에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH 의 QCL parameter를 적용할 수 있다. 예를 들어 단말은 기지국으로부터 PDCCH #1(1305)이 전송되는 slot#0 이전에 마지막으로 모니터한 PDCCH가 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1315)이 전송된다고 가정할 수 있다.For example, according to the embodiment 2-1), when the time offset (1320) between the reception of DCI and the reception of the corresponding PDSCH #1 (1315) based on PDCCH #1 (1305) is less than the timeDurationForQCL, the terminal As a beam for receiving PDSCH #1 (1315), in CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell, the QCL parameter of the PDCCH transmitted through the CORESET associated with the search space monitored in the most recent slot is applied. can do. For example, the UE may assume that the PDSCH #1 (1315) is transmitted through the same beam through which the PDCCH last monitored before slot #0 through which the PDCCH #1 (1305) is transmitted from the base station.
다른 예를 들어 상기 실시예 2-2)에 따르면, PDCCH #2 (1310)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1315)수신 간의 time offset (1325)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1 (1315)를 수신하기 위한 빔으로, 서빙셀 내 설정된 동일한 CORESETPoolIndex 내 lowest CORESETId인 CORESET #X에서, 가장 최신 slot에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH (PDCCH #1)의 QCL parameter를 적용할 수 있다. 예를 들어 단말은 기지국으로부터 PDCCH #1 (1305)가 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1315)이 전송된다고 가정할 수 있다.For another example, according to the embodiment 2-2), when the time offset 1325 between the reception of the DCI and the reception of the corresponding PDSCH #1 (1315) based on the PDCCH #2 1310 is smaller than the timeDurationForQCL, the terminal is a beam for receiving PDSCH #1 (1315), and in CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell, the PDCCH transmitted through the CORESET associated with the search space monitored in the most recent slot (PDCCH #1 ) of QCL parameter can be applied. For example, the UE may assume that the PDSCH #1 1315 is transmitted through the same beam through which the PDCCH #1 1305 is transmitted from the base station.
또 다른 예를 들어 상기 실시예 2-5)에 따르면, 단말이 PDCCH #1(1205)의 디코딩은 실패하고 PDCCH #2 (1210)의 디코딩은 성공했다고 가정할 수 있다. 이때 PDCCH #2 (1310)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1315)수신 간의 time offset (1325)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1 (1315)를 수신하기 위한 빔으로, lowest CORESETId인 CORESET #X에서, 가장 최신 slot에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH (PDCCH #1)의 QCL parameter를 적용할 수 있다. 예를 들어 단말은 기지국으로부터 PDCCH #1 (1305)가 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1315)이 전송된다고 가정할 수 있다.For another example, according to Embodiment 2-5), it may be assumed that the UE fails to decode PDCCH #1 ( 1205 ) and succeeds in decoding of PDCCH # 2 ( 1210 ). At this time, when the time offset 1325 between the reception of DCI and the reception of the corresponding PDSCH #1 (1315) is smaller than the timeDurationForQCL based on PDCCH #2 (1310), the UE uses a beam for receiving PDSCH #1 (1315). , in CORESET #X, which is the lowest CORESETId, the QCL parameter of the PDCCH (PDCCH #1) transmitted through the CORESET associated with the monitored search space in the most recent slot may be applied. For example, the UE may assume that the PDSCH #1 1315 is transmitted through the same beam through which the PDCCH #1 1305 is transmitted from the base station.
<제 4 실시예><Fourth embodiment>
본 개시의 제 4 실시예에서는 두 개의 PDSCH를 스케쥴링하는 PDCCH가 방법 1-1)과 같이 동일한 CORESET 내, 동일한 slot 내 time domain 측면에서 반복되거나, 방법 2-1)과 같이 동일한 CORESET 내, 다른 slot 간 time domain 측면에서 반복되는 경우를 가정할 수 있다. In the fourth embodiment of the present disclosure, a PDCCH for scheduling two PDSCHs is repeated in the same CORESET and in the same slot in the time domain as in method 1-1), or in the same CORESET in a different slot as in method 2-1). A case of repetition in terms of the inter-time domain can be assumed.
이러한 경우에도 상술한 바와 같이 default QCL을 적용하기 위한 방법이 필요하다. 따라서 이하 두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 기지국과 단말이 상기 default QCL을 적용하는 방법을 서술한다.Even in this case, as described above, a method for applying the default QCL is required. Therefore, a description will be given of a method for the base station and the terminal to apply the default QCL in a scenario in which PDCCHs for scheduling two PDSCHs are repeated in the same slot or in different slots.
도 14는 본 개시의 일 실시예에 따라 두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 CORESET 내, 동일한 slot 내 time domain 측면에서 반복되는 경우를 도시한 도면이다.14 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in the time domain within the same CORESET and in the same slot according to an embodiment of the present disclosure.
동일한 CORESET 내, 동일한 slot 내 time domain 측면에서의 PDCCH 반복 송수신을 위하여 단말은 기지국으로부터 제 1 실시예에서 서술한 바와 동일한 상위 레이어 시그널링을 통해 설정될 수 있고, 단말은 이에 기반하여 PDCCH들에 대한 디코딩을 시도할 수 있다. For repeated PDCCH transmission and reception within the same CORESET and in the same slot in the time domain, the UE may be configured from the base station through the same higher layer signaling as described in the first embodiment, and the UE decodes PDCCHs based on this can try
도 14를 참고하면 기지국은 CORESET X의 주파수 대역에서 PDCCH#1 (1405)와 PDCCH#2 (1410)를 통해 적어도 일부의 동일한 DCI 정보(예를 들면, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization 등)를 전송할 수 있다.Referring to FIG. 14, the base station uses at least some of the same DCI information (eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization, etc.) may be transmitted.
단말은 상위 레이어 시그널링을 통해 CORESET 또는 Search space의 설정을 확인하고, 기지국이 적어도 일부 또는 전부 동일한 DCI 정보로 구성되는 복수의 PDCCH를 반복하여 전송하는 경우, 단말은 복수의 PDCCH가 전송되는 빔의 변경이 발생하지 않는 것으로 기대(가정)할 수 있다. The terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
도 15은 본 개시의 일 실시예에 따라 두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 CORESET 내, 다른 slot 간 time domain 측면에서 반복되는 경우를 도시한 도면이다.15 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in the time domain between different slots within the same CORESET according to an embodiment of the present disclosure.
동일한 CORESET 내, 다른 slot 간 time domain 측면에서의 PDCCH 반복 송수신을 위하여 단말은 기지국으로부터 제 2 실시예에서 서술한 바와 동일한 상위 레이어 시그널링을 통해 설정될 수 있고, 단말은 이에 기반하여 PDCCH들에 대한 디코딩을 시도할 수 있다. For repeated PDCCH transmission and reception in the time domain between different slots within the same CORESET, the UE may be configured from the base station through the same higher layer signaling as described in the second embodiment, and the UE decodes PDCCHs based on this can try
도 15를 참고하면 기지국은 CORESET X의 주파수 대역에서 PDCCH#1 (1505)와 PDCCH#2 (1510)를 통해 적어도 일부의 동일한 DCI 정보(예를 들면, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization 등)를 전송할 수 있다. PDCCH#1 (1505)와 PDCCH#2 (1510)의 DCI는 일부 동일한 DCI도 있고, TDRA (Time domain resource assignment)와 같은 타이밍 관련 정보는 상이할 수 있다.Referring to FIG. 15, the base station uses at least some of the same DCI information (eg, Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization, etc.) may be transmitted. Some DCIs of the PDCCH#1 1505 and the PDCCH#2 1510 may be the same, and timing-related information such as time domain resource assignment (TDRA) may be different.
단말은 상위 레이어 시그널링을 통해 CORESET 또는 Search space의 설정을 확인하고, 기지국이 적어도 일부 또는 전부 동일한 DCI 정보로 구성되는 복수의 PDCCH를 반복하여 전송하는 경우, 단말은 복수의 PDCCH가 전송되는 빔의 변경이 발생하지 않는 것으로 기대(가정)할 수 있다. The terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 DCI가 스케쥴링하는 PDSCH 전송 빔의 변경을 TCI field를 통해 지시하는 경우, DCI 수신 및 이와 상응하는 PDSCH간의 time offset을 확인하기 위해 기준이 되는 PDCCH를 결정하는 방법은 제 1 실시예 및 제 2 실시예에서 서술한 방법이 동일하게 적용될 수 있다. 따라서 이하에서는 두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 기지국과 단말이 상기 default QCL을 적용하는 방법을 서술한다.In a scenario in which the PDCCH scheduling two PDSCHs is repeated in the same slot or in a different slot, when a change in the PDSCH transmission beam scheduled by the DCI is indicated through the TCI field, in order to check the time offset between DCI reception and the corresponding PDSCH As a method of determining a PDCCH serving as a reference, the methods described in the first and second embodiments may be equally applied. Therefore, the following describes how the base station and the terminal apply the default QCL in a scenario in which PDCCHs for scheduling two PDSCHs are repeated in the same slot or in different slots.
단말이 두 개의 PDSCH를 스케쥴링하는 PDCCH가 반복되는 경우에 default QCL 적용 동작이 가능하도록 미리 설정된 경우를 가정할 수 있다. 예를 들어, 단말은 RRC 설정 메시지 내의 enableTwoDefaultTCIStates 파라미터가 설정될 수 있다. 단말이 두 개의 PDSCH를 스케쥴링하는 PDCCH가 반복되는 시나리오에서, MAC CE를 통해 상술한 TCI field의 각 codepoint는 서로 다른 두 개의 활성화된 (activated) TCI state와 매핑되어 있을 수 있다. It may be assumed that the UE is preset to enable the default QCL application operation when the PDCCH for scheduling two PDSCHs is repeated. For example, the terminal may set the enableTwoDefaultTCIStates parameter in the RRC configuration message. In a scenario in which the PDCCH in which the UE schedules two PDSCHs is repeated, each codepoint of the TCI field described above through the MAC CE may be mapped to two different activated TCI states.
실시예 4-1)Example 4-1)
단말에게 상기 enableTwoDefaultTCIStates가 설정되면, 단말은 두 개의 다른 TCI states와 매핑된 각 TCI codepoint들 중에서, 가장 낮은(lowest) codepoint에 대응하는 두 개의 TCI states를 참조할 수 있다. 단말은 상기 참조된 TCI states와 각각 연계된 RS의 QCL 파라미터를 적용할 수 있다. 단말은 각 PDSCH 또는 PDSCH transmission occasion의 DMRS 포트가 상기 연계된 RS와 QCL 된 것으로 가정할 수 있다. 예를 들어, 단말은 상기 참조된 TCI states와 각각 연계된 2개의 QCL 파라미터를 적용하여 PDSCH #1 (1415, 1515) 및 PDSCH #2 (1420, 1520)를 수신할 수 있다.When the enableTwoDefaultTCIStates is set in the terminal, the terminal may refer to two TCI states corresponding to the lowest codepoint among TCI codepoints mapped to two different TCI states. The UE may apply the QCL parameter of the RS associated with each of the referenced TCI states. The UE may assume that the DMRS port of each PDSCH or PDSCH transmission occasion is QCL with the associated RS. For example, the UE may receive PDSCH #1 (1415, 1515) and PDSCH #2 (1420, 1520) by applying two QCL parameters respectively associated with the referenced TCI states.
실시예 4-2)Example 4-2)
상술한 실시예 1-1)가 적용된 경우를 가정한다. PDCCH #1 (1405)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1415) 또는 PDSCH #2 (1420) 수신 간의 time offset (1425, 1430)이 상기 timeDurationForQCL 보다 작은 경우, 기지국과 단말은 default QCL을 적용할 수 있다.It is assumed that the above-described embodiment 1-1) is applied. When the time offset (1425, 1430) between the reception of DCI based on PDCCH #1 (1405) and the reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL, the base station and the terminal have a default QCL can be applied.
단말은 PDSCH#1 (1415)및 PDSCH #2 (1420)를 수신하기 위한 빔으로 MAC CE에서 미리 설정된 두 개의 TCI states(2개의 다른 TCI states를 포함하는 TCI codepoints 중에서 가장 낮은(lowest) codepoint에 대응하는 TCI states)에서 지정된 QCL 파라미터를 적용하여 각각 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다.The UE corresponds to the lowest (lowest) codepoint among TCI codepoints including two TCI states (two different TCI states) preset in MAC CE as a beam for receiving PDSCH#1 (1415) and PDSCH #2 (1420) TCI states), PDSCH#1 (1415) and PDSCH#2 (1420) may be received by applying the specified QCL parameter.
다른 예를 들어 상술한 실시예 1-2)가 적용된 경우를 가정하면, PDCCH #2 (1410)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1415) 또는 PDSCH #2 (1420) 수신 간의 time offset (1435, 1440)이 상기 timeDurationForQCL 보다 작은 경우, 기지국과 단말은 default QCL을 적용할 수 있다. 이후 상기 default QCL을 적용하는 방법은 위와 동일하다.For another example, assuming that the above-described embodiment 1-2) is applied, the time between DCI reception and the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) reception based on PDCCH #2 1410 When the offset (1435, 1440) is smaller than the timeDurationForQCL, the base station and the terminal may apply the default QCL. Thereafter, the method of applying the default QCL is the same as above.
실시예 4-3)Example 4-3)
상술한 실시예 1-3)이 적용된 경우를 가정한다. 단말이 가장 먼저 디코딩에 성공한 PDCCH를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1 또는 PDSCH #2 수신 간의 time offset이 상기 timeDurationForQCL 보다 작은 경우, 기지국과 단말은 default QCL을 적용할 수 있다.It is assumed that the above-described embodiment 1-3) is applied. When the time offset between DCI reception and the corresponding PDSCH #1 or PDSCH #2 reception is smaller than the timeDurationForQCL based on the PDCCH that the UE first successfully decoded, the base station and the UE may apply the default QCL.
단말은 PDSCH#1 (1415)및 PDSCH #2 (1420)를 수신하기 위한 빔으로 MAC CE에서 CORESET #X를 위해 미리 설정된 2개의 TCI states(2개의 다른 TCI states를 포함하는 TCI codepoints 중에서 가장 낮은(lowest) codepoint에 대응하는 TCI states)에서 지정된 QCL 파라미터를 적용하여 각각 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다. The UE is a beam for receiving PDSCH#1 (1415) and PDSCH #2 (1420). The lowest (TCI codepoints including two different TCI states) preset for CORESET #X in MAC CE. PDSCH#1 (1415) and PDSCH #2 (1420) may be received by applying the QCL parameter specified in (TCI states corresponding to the lowest) codepoint, respectively.
예를 들어, 단말이 PDCCH#1 (1405)의 수신 및 디코딩을 성공한 경우, 기지국과 단말은 PDCCH#2 (1410)가 반복되는지 여부에 상관없이 PDCCH #1 (1405)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1415) 또는 PDSCH #2 (1420) 수신 간의 time offset (1425, 1430)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용하여 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다. 한편, 만약 상기 time offset이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #1 (1405)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다.For example, if the terminal succeeds in receiving and decoding the PDCCH#1 (1405), the base station and the terminal receive DCI based on the PDCCH#1 (1405) regardless of whether the PDCCH#2 (1410) is repeated and this If the time offset (1425, 1430) between reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL value, the above-described default QCL is applied to PDSCH#1 (1415), PDSCH #2 (1420) ) can be received. On the other hand, if the time offset is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #1 (1405) to PDSCH#1 (1415), PDSCH #2 1420 may be received.
다른 예를 들어, 단말이 PDCCH#1 (1405)의 수신 및 디코딩을 실패하고, PDCCH#2 (1410)의 수신 및 디코딩을 성공한 경우, 기지국과 단말은 PDCCH #2 (1410)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1415) 또는 PDSCH #2 (1420) 수신 간의 time offset (1435, 1440)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용하여 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다. 한편, 만약 상기 time offset이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #2 (1410)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다.For another example, when the terminal fails to receive and decode PDCCH#1 ( 1405 ) and to receive and decode PDCCH#2 ( 1410 ), the base station and the terminal receive DCI based on PDCCH #2 ( 1410 ) And if the time offset (1435, 1440) between reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL value, the above-described default QCL is applied to PDSCH#1 (1415), PDSCH #2 1420 may be received. On the other hand, if the time offset is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1410) to PDSCH#1 (1415), PDSCH #2 1420 may be received.
실시예 4-4)Example 4-4)
상술한 실시예 1-4)가 적용된 경우를 가정한다. 단말이 가장 마지막으로 디코딩에 성공한 PDCCH를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1 또는 PDSCH #2 수신 간의 time offset이 상기 timeDurationForQCL 보다 작은 경우, 기지국과 단말은 default QCL을 적용할 수 있다.It is assumed that the above-described embodiment 1-4) is applied. When the time offset between the DCI reception and the corresponding PDSCH #1 or PDSCH #2 reception is smaller than the timeDurationForQCL based on the PDCCH that the terminal has decoded most recently, the base station and the terminal may apply the default QCL.
단말은 PDSCH#1 (1415)및 PDSCH #2 (1420)를 수신하기 위한 빔으로 MAC CE에서 CORESET #X를 위해 미리 설정된 2개의 TCI states(2개의 다른 TCI states를 포함하는 TCI codepoints 중에서 가장 낮은(lowest) codepoint에 대응하는 TCI states)에서 지정된 QCL 파라미터를 적용하여 각각 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다. The UE is a beam for receiving PDSCH#1 (1415) and PDSCH #2 (1420). The lowest (TCI codepoints including two different TCI states) preset for CORESET #X in MAC CE. PDSCH#1 (1415) and PDSCH #2 (1420) may be received by applying the QCL parameter specified in (TCI states corresponding to the lowest) codepoint, respectively.
예를 들어, 단말이 PDCCH#1 (1405)의 수신 및 디코딩을 성공하면, 단말은 PDCCH #2 (1410)의 수신 및 디코딩을 성공하여 DCI 정보가 반복되는지 확인할 수 있다. 이후 기지국과 단말은 PDCCH #2 (1410)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1415) 또는 PDSCH #2 (1420) 수신 간의 time offset (1435, 1440)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용하여 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다. 한편, 만약 상기 time offset이 timeDurationForQCL 값보다 같거나 크면, 단말은 PDCCH #2 (1410)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다.For example, if the UE succeeds in receiving and decoding the PDCCH#1 1405, the UE may succeed in receiving and decoding the PDCCH #2 1410 to check whether DCI information is repeated. Thereafter, the base station and the terminal receive DCI based on PDCCH #2 (1410) and the time offset (1435, 1440) between reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL value. PDSCH#1 (1415) and PDSCH#2 (1420) may be received by applying the default QCL described above. On the other hand, if the time offset is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1410) to PDSCH#1 (1415) , PDSCH #2 1420 may be received.
다른 예를 들어, 단말이 PDCCH#1 (1405)의 수신 및 디코딩을 실패하고, PDCCH #2 (1410)의 수신 및 디코딩을 성공한 경우, 기지국과 단말은 PDCCH #2 (1410)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1415) 또는 PDSCH #2 (1420) 수신 간의 time offset (1435, 1440)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용하여 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다. 한편, 만약 상기 time offset이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #2 (1410)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1415), PDSCH #2 (1420)를 수신할 수 있다.For another example, if the terminal fails to receive and decode PDCCH#1 ( 1405 ) and succeed in receiving and decoding PDCCH #2 ( 1410 ), the base station and the terminal receive DCI based on PDCCH #2 ( 1410 ) And if the time offset (1435, 1440) between reception of the corresponding PDSCH #1 (1415) or PDSCH #2 (1420) is less than the timeDurationForQCL value, the above-described default QCL is applied to PDSCH#1 (1415), PDSCH #2 1420 may be received. On the other hand, if the time offset is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1410) to PDSCH#1 (1415), PDSCH #2 1420 may be received.
실시예 4-5)Example 4-5)
두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서도 상술한 실시예 2-1) 내지 실시예 2-6) 중 어느 하나의 방법으로 기준이 되는 PDCCH가 결정되고 이후 기지국과 단말은 상술한 동작을 수행할 수 있다.Even in a scenario in which the PDCCH scheduling two PDSCHs is repeated in the same slot or in a different slot, the PDCCH as a reference is determined by any one of the above-described embodiments 2-1) to 2-6), and thereafter, the base station and the terminal may perform the above-described operation.
예를 들어 PDCCH #1 (1505)이 기준이 되는 PDCCH로 결정된 경우, 기지국과 단말은 PDCCH #1 (1505)을 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1515) 또는 PDSCH #2 (1520) 수신 간의 time offset (1525, 1530)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용하여 PDSCH#1 (1515), PDSCH #2 (1520)를 수신할 수 있다. 한편, 만약 상기 time offset (1525, 1530)이 timeDurationForQCL 값보다 같거나 크면, 단말은 PDCCH #1 (1505)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1515), PDSCH #2 (1520)를 수신할 수 있다.For example, when PDCCH #1 (1505) is determined as the reference PDCCH, the base station and the terminal receive DCI based on PDCCH #1 (1505) and the corresponding PDSCH #1 (1515) or PDSCH #2 (1520) If the time offset (1525, 1530) between receptions is smaller than the timeDurationForQCL value, the above-described default QCL may be applied to receive PDSCH#1 (1515) and PDSCH #2 (1520). On the other hand, if the time offset (1525, 1530) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #1 1505 to PDSCH #1 (1515) and PDSCH #2 (1520) may be received.
다른 예를 들어 PDCCH #2 (1510)이 기준이 되는 PDCCH로 결정된 경우, 기지국과 단말은 PDCCH #2 (1510)을 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1515) 또는 PDSCH #2 (1520) 수신 간의 time offset (1535, 1540)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용하여 PDSCH#1 (1515), PDSCH #2 (1520)를 수신할 수 있다. 한편, 만약 상기 time offset (1535, 1540)이 timeDurationForQCL 값보다 같거나 크면, 단말은 PDCCH #2 (1510)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1515), PDSCH #2 (1520)를 수신할 수 있다.For another example, when PDCCH #2 (1510) is determined as the reference PDCCH, the base station and the terminal receive DCI based on PDCCH #2 (1510) and the corresponding PDSCH #1 (1515) or PDSCH #2 (1520) ), if the time offset (1535, 1540) between receptions is smaller than the timeDurationForQCL value, the above-described default QCL may be applied to receive PDSCH#1 (1515) and PDSCH #2 (1520). On the other hand, if the time offset (1535, 1540) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1510) to PDSCH #1 (1515) and PDSCH #2 (1520) may be received.
<제 5 실시예><Fifth embodiment>
본 개시의 제 5 실시예에서는 방법 3-1), 방법 3-3) 과 같이 한 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 동일한 slot 내 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 가정할 수 있다. 또는, 방법 4-1), 방법 4-3) 과 같이 한 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 다른 slot 간 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 가정할 수 있다. In the fifth embodiment of the present disclosure, it is assumed that the PDCCH scheduling one PDSCH is repeated in the time domain or spatial domain within the same slot, as in methods 3-1) and 3-3). can Alternatively, it may be assumed that the PDCCH scheduling one PDSCH is repeated in the time domain or spatial domain between different CORESETs and between different slots as in Method 4-1) and Method 4-3).
이러한 경우에도 상술한 바와 같이 default QCL을 적용하기 위한 방법이 필요하다. 따라서 이하 한 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 기지국과 단말이 상기 default QCL을 적용하는 방법을 서술한다.Even in this case, as described above, a method for applying the default QCL is required. Therefore, a method of applying the default QCL by the base station and the terminal in a scenario in which a PDCCH scheduling one PDSCH is repeated in the same slot or in a different slot will be described below.
도 16은 본 개시의 일 실시예에 따라 한 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 동일한 slot 내 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 도시한 도면이다.FIG. 16 is a diagram illustrating a case in which a PDCCH scheduling one PDSCH is repeated between different CORESETs in the time domain or spatial domain within the same slot according to an embodiment of the present disclosure.
다른 CORESET 간, 동일한 slot 내 time domain 측면 또는 spatial domain 측면에서의 PDCCH 반복 송수신을 위하여 단말은 기지국으로부터 상위 레이어 시그널링을 통해 하기와 같이 설정될 수 있다.For repeated PDCCH transmission/reception between different CORESETs in the time domain or spatial domain within the same slot, the UE may be configured as follows through higher layer signaling from the base station.
Search space config#1 = {controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), {1st} symbol(monitoringSymbolsWithinSlot(11000000000000)), USS, …}Search space config#1 = {controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), {1st} symbol(monitoringSymbolsWithinSlot(11000000000000)), USS, … }
Search space config#2 = {controlresourcesetId(X+1), 1 slot periodicity(duration field absent), 0 offset(sl1), {4th} symbol(monitoringSymbolsWithinSlot(0001100000000)), USS, …}Search space config#2 = {controlresourcesetId(X+1), 1 slot periodicity(duration field absent), 0 offset(sl1), {4th} symbol(monitoringSymbolsWithinSlot(0001100000000)), USS, … }
이때 상기 PDCCH(s)가 서로 다른 CORESET(s) 또는 Search space(s) 상에서 반복되어 전송되는 것을 나타내는 별도의 파라미터 (예를 들면 linkage parameter)가 상위 레이어 시그널링을 통해 설정될 수 있다. 따라서 기지국 또는 단말은 상기 linkage parameter로 연결되어 설정된 서로 다른 CORESET(s) 또는 Search space(s) 상에서 상기 PDCCH(s)가 반복되어 전송되는 것을 확인할 수 있다.In this case, a separate parameter (eg, linkage parameter) indicating that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) may be set through higher layer signaling. Accordingly, the base station or the terminal can confirm that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) configured by being connected to the linkage parameter.
단말은 상기 설정 정보에 기반하여 PDCCH들에 대한 디코딩을 시도할 수 있다.The UE may attempt to decode PDCCHs based on the configuration information.
도 16을 참고하면, 기지국은 slot #0에서 CORESET #X의 PDCCH #1 (1605)와, CORESET #X+1의 PDCCH #2 (1610)을 통해 적어도 일부 또는 전부 동일한 DCI 정보 (예를 들면 MCS, TDRA, FDRA 또는 TCI 등)을 전송할 수 있다. 반면, 기지국은 slot #1 에서 CORESET #X의 PDCCH #3 (1615)와, CORESET #X+1의 PDCCH #4 (1620)을 통해 일부의 동일한 DCI 정보 (예를 들면 MCS, TDRA, FDRA 등)을 전송하고, 일부는 상이한 정보 (예를 들면 TCI)를 전송할 수 있다.Referring to FIG. 16 , the base station transmits at least some or all of the same DCI information (eg, MCS) through PDCCH #1 1605 of CORESET #X and PDCCH #2 1610 of CORESET #X+1 in slot #0. , TDRA, FDRA, or TCI) may be transmitted. On the other hand, the base station uses some of the same DCI information (eg, MCS, TDRA, FDRA, etc.) through PDCCH #3 (1615) of CORESET #X and PDCCH #4 (1620) of CORESET #X+1 in slot #1. , and some may transmit different information (eg, TCI).
단말은 상위 레이어 시그널링을 통해 CORESET 또는 Search space의 설정을 확인하고, 기지국이 적어도 일부 또는 전부 동일한 DCI 정보로 구성되는 복수의 PDCCH를 반복하여 전송하는 경우, 단말은 복수의 PDCCH가 전송되는 빔의 변경이 발생하지 않는 것으로 기대(가정)할 수 있다. The terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
도 17은 본 개시의 일 실시예에 따라 한 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 다른 slot 간 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 도시한 도면이다.17 is a diagram illustrating a case in which a PDCCH for scheduling one PDSCH is repeated between different CORESETs and between different slots in a time domain or spatial domain according to an embodiment of the present disclosure.
다른 CORESET 간, 다른 slot 간 time domain 측면 또는 spatial domain 측면에서의 PDCCH 반복 송수신을 위하여 단말은 기지국으로부터 상위 레이어 시그널링을 통해 하기와 같이 설정될 수 있다.For repeated PDCCH transmission/reception in the time domain or spatial domain between different CORESETs and between different slots, the UE may be configured as follows through higher layer signaling from the base station.
Search space config#1' = {controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), {1st} symbol(monitoringSymbolsWithinSlot(11000000000000), USS, …}Search space config#1' = {controlresourcesetId(X), 1 slot periodicity(duration field absent), 0 offset(sl1), {1st} symbol(monitoringSymbolsWithinSlot(11000000000000), USS, …}
Search space config#2' = {controlresourcesetId(X+1), 1 slot periodicity(duration field absent), 0 offset(sl1), {3rd} symbol(monitoringSymbolsWithinSlot(00110000000000), USS, …}Search space config#2' = {controlresourcesetId(X+1), 1 slot periodicity(duration field absent), 0 offset(sl1), {3rd} symbol(monitoringSymbolsWithinSlot(00110000000000), USS, …}
이때 상기 PDCCH(s)가 서로 다른 CORESET(s) 또는 Search space(s) 상에서 반복되어 전송되는 것을 나타내는 별도의 파라미터 (예를 들면 linkage parameter)가 상위 레이어 시그널링을 통해 설정될 수 있다. 따라서 기지국 또는 단말은 상기 linkage parameter로 연결되어 설정된 서로 다른 CORESET(s) 또는 Search space(s) 상에서 상기 PDCCH(s)가 반복되어 전송되는 것을 확인할 수 있다.In this case, a separate parameter (eg, linkage parameter) indicating that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) may be set through higher layer signaling. Accordingly, the base station or the terminal can confirm that the PDCCH(s) is repeatedly transmitted on different CORESET(s) or search space(s) configured by being connected to the linkage parameter.
단말은 상기 설정 정보에 기반하여 PDCCH들에 대한 디코딩을 시도할 수 있다.The UE may attempt to decode PDCCHs based on the configuration information.
도 17을 참고하면 기지국은 slot #0, slot #1에서 CORESET #X의 PDCCH #1 (1705) 및 PDCCH #2 (1710)과 CORESET #X+1의 PDCCH #3 (1715) 및 PDCCH #4 (1720)을 통해 적어도 일부의 동일한 DCI 정보 (예를 들면 MCS, TDRA, FDRA 또는 TCI등)을 전송할 수 있다. PDCCH#1 (1705)와 PDCCH#2 (1710)의 DCI는 일부 동일한 DCI도 있고, TDRA 와 같은 타이밍 관련 정보는 동일하거나 상이할 수 있다. 또한, PDCCH#3 (1715)와 PDCCH#4 (1720)의 DCI는 일부 동일한 DCI도 있고, TDRA 와 같은 타이밍 관련 정보는 동일하거나 상이할 수 있다. 앞서 타이밍 정보가 동일한 경우는 spatial domain 측면에서 상이한 경우로 이해할 수 있다. 다른 예로, 동일한 slot내에서 {PDCCH#1, PDCCH #2, PDCCH #3, PDCCH #4} 는 일부 또는 전부 동일한 DCI가 전송될 수 있다.Referring to FIG. 17, the base station performs PDCCH #1 (1705) and PDCCH #2 (1710) and PDCCH #2 (1710) of CORESET #X in slot #0 and slot #1, and PDCCH #3 (1715) and PDCCH #4 ( 1720), at least some of the same DCI information (eg, MCS, TDRA, FDRA, or TCI) may be transmitted. Some DCIs of the PDCCH#1 1705 and the PDCCH#2 1710 may be the same, and timing related information such as TDRA may be the same or different. Also, some DCIs of PDCCH#3 1715 and PDCCH#4 1720 may be the same, and timing related information such as TDRA may be the same or different. A case in which the timing information is the same can be understood as a case different in the spatial domain. As another example, in {PDCCH#1, PDCCH #2, PDCCH #3, PDCCH #4} in the same slot, some or all of the same DCI may be transmitted.
단말은 상위 레이어 시그널링을 통해 CORESET 또는 Search space의 설정을 확인하고, 기지국이 적어도 일부 또는 전부 동일한 DCI 정보로 구성되는 복수의 PDCCH를 반복하여 전송하는 경우, 단말은 복수의 PDCCH가 전송되는 빔의 변경이 발생하지 않는 것으로 기대(가정)할 수 있다. The terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
한 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 DCI가 스케쥴링하는 PDSCH 전송 빔의 변경을 TCI field를 통해 지시하는 경우, DCI 수신 및 이와 상응하는 PDSCH간의 time offset을 확인하기 위해 기준이 되는 PDCCH를 결정하는 방법은 제 1 실시예 및 제 2 실시예에서 서술한 방법이 동일하게 적용될 수 있다. 따라서 이하에서는 한 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 기지국과 단말이 상기 default QCL을 적용하는 방법을 서술한다.In a scenario in which the PDCCH scheduling one PDSCH is repeated in the same slot or in a different slot, when a change in the PDSCH transmission beam scheduled by the DCI is indicated through the TCI field, in order to check the time offset between DCI reception and the corresponding PDSCH As a method of determining a PDCCH serving as a reference, the methods described in the first and second embodiments may be equally applied. Therefore, the following describes how the base station and the terminal apply the default QCL in a scenario in which a PDCCH scheduling one PDSCH is repeated in the same slot or in a different slot.
실시예 5-1)Example 5-1)
단말이 CORESET Pool 마다 default QCL 적용 동작이 가능하도록 미리 설정되지 않은 경우를 가정할 수 있다. 예를 들어, 단말은 RRC 설정 메시지 내의 enableDefaultTCIStatePerCoresetPoolIndex 파라미터가 설정되지 않은 경우일 수 있다.It can be assumed that the UE is not preset to enable the default QCL application operation for each CORESET Pool. For example, the terminal may be a case where the enableDefaultTCIStatePerCoresetPoolIndex parameter in the RRC configuration message is not set.
이 경우, 단말은 PDSCH 수신을 위한 DMRS 포트가 서빙셀 내 initial access 절차에서 결정된 SS/PBCH block과 QCL-TypeA, QCL-TypeD로 QCLed 된 것으로 가정할 수 있다. In this case, the UE may assume that the DMRS port for PDSCH reception is QCLed with the SS/PBCH block determined in the initial access procedure in the serving cell, QCL-TypeA, and QCL-TypeD.
예를 들어 상술한 실시예 1-1)에 따르면, 단말은 PDCCH #3 (1615)을 기준으로 DCI 수신 및 이와 상응하는 PDSCH #3 (1635) 수신 간의 time offset (1645)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #3 (1635)을 수신하기 위한 빔으로 initial access 절차에서 결정된 SS/PBCH block에서 수신하는데 적용한 QCL parameter를 적용하여 빔포밍을 수행할 수 있다. 단말은 변경되는 빔을 통해 기지국으로부터 데이터를 수신할 수 있다. For example, according to the above-described embodiment 1-1), when the time offset 1645 between the DCI reception and the corresponding PDSCH #3 1635 reception based on the PDCCH #3 1615 is smaller than the timeDurationForQCL , the UE may perform beamforming by applying the QCL parameter applied to reception in the SS/PBCH block determined in the initial access procedure as a beam for receiving PDSCH #3 1635 . The terminal may receive data from the base station through the changed beam.
다른 예를 들어 상기 실시예 1-2)에 따르면, 단말은 PDCCH #4 (1620)을 기준으로 DCI 수신 및 이와 상응하는 PDSCH #4 (1640) 수신 간의 time offset (1650)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #4 (1640)을 수신하기 위한 빔으로 initial access 절차에서 결정된 SS/PBCH block에서 수신하는데 적용한 QCL parameter를 적용하여 빔포밍을 수행할 수 있다. 단말은 변경되는 빔을 통해 기지국으로부터 데이터를 수신할 수 있다. For another example, according to embodiment 1-2), when the time offset (1650) between the reception of the DCI and the reception of the corresponding PDSCH #4 (1640) based on the PDCCH #4 (1620) is smaller than the timeDurationForQCL , the UE may perform beamforming by applying the QCL parameter applied to reception in the SS/PBCH block determined in the initial access procedure as a beam for receiving PDSCH #4 (1640). The terminal may receive data from the base station through the changed beam.
실시예 5-2)Example 5-2)
단말이 CORESET Pool 마다 default QCL 적용 동작이 가능하도록 미리 설정된 경우를 가정할 수 있다. 예를 들어, 단말은 RRC 설정 메시지 내의 enableDefaultTCIStatePerCoresetPoolIndex 파라미터가 설정되고, ControlResourceset 내 CORESETPoolIndex 의 2개 다른 값이 포함된 경우일 수 있다.It can be assumed that the terminal is preset to enable the default QCL application operation for each CORESET Pool. For example, the UE may set the enableDefaultTCIStatePerCoresetPoolIndex parameter in the RRC configuration message and include two different values of CORESETPoolIndex in the ControlResourceset.
이 경우, 단말은 PDSCH를 수신하기 위한 빔으로 서빙셀 내 설정된 CORESETPoolIndex 내 복수의 CORESET들 중에서 가장 낮은(lowest) controlResourceSetId에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH의 QCL parameter를 적용할 수 있다. 즉 단말은 상기 PDCCH의 QCL parameter 와 연계된 RS와 PDSCH 수신을 위한 DMRS 포트가 서로 QCLed 된 것으로 간주할 수 있다. 여기서 상기 복수의 CORESET들은 서빙셀의 active BWP 내 PDSCH를 스케줄링하는 PDCCH로서 동일한 CORESETPoolIndex로 설정된 CORESET들을 의미할 수 있다. 또는, 여기서 상기 복수의 CORESET들은 서빙셀의 active BWP 내 PDSCH를 스케줄링하는 PDCCH로서 상이한 CORESETPoolIndex로 설정된 CORESET들을 의미할 수 있다.In this case, the UE can apply the QCL parameter of the PDCCH transmitted through the CORESET associated with the search space monitored in the lowest controlResourceSetId among a plurality of CORESETs in the CORESETPoolIndex set in the serving cell as a beam for receiving the PDSCH. there is. That is, the UE may consider that the RS associated with the QCL parameter of the PDCCH and the DMRS port for receiving the PDSCH are QCLed to each other. Here, the plurality of CORESETs may refer to CORESETs set to the same CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell. Alternatively, the plurality of CORESETs may mean CORESETs set to different CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
예를 들어 상술한 실시예 2-1)에 따르면, PDCCH #1 (1705)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1725)수신 간의 time offset (1735)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1 (1725)를 수신하기 위한 빔으로, 서빙셀 내 설정된 동일한 CORESETPoolIndex 내 lowest CORESETId인 CORESET #X에서, 가장 최신 slot에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH의 QCL parameter를 적용할 수 있다. 예를 들어, CORESET #X 및 CORESET #X+1이 모두 동일한 CORESETPoolIndex(예:0)로 설정되면, 단말은 기지국으로부터 PDCCH #1 (1705) 이 전송되는 slot#0 이전에 마지막으로 모니터한 PDCCH가 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1725)이 전송된다고 가정할 수 있다. 다른 예를 들어, CORESET #X 및 CORESET #X+1이 상이한 CORESETPoolIndex(예:0 및 1)로 설정되면, 단말은 기지국으로부터 PDCCH #1 (1705) 이 전송되는 slot#0 이전에 마지막으로 모니터한 PDCCH가 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1725)이 전송된다고 가정할 수 있다. 한편, 만약 상기 time offset (1735)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #1 (1705)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 TCI state에 따라 빔포밍을 적용하여 PDSCH#1 (1725)을 수신할 수 있다.For example, according to the above-described embodiment 2-1), when the time offset (1735) between the reception of the DCI and the reception of the corresponding PDSCH #1 (1725) based on the PDCCH #1 (1705) is smaller than the timeDurationForQCL, the terminal is a beam for receiving PDSCH #1 (1725), and in CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell, the QCL parameter of the PDCCH transmitted through the CORESET associated with the search space monitored in the most recent slot. can be applied For example, if both CORESET #X and CORESET #X+1 are set to the same CORESETPoolIndex (eg 0), the UE determines that the last monitored PDCCH before slot #0 in which PDCCH #1 (1705) is transmitted from the base station is It may be assumed that the PDSCH #1 1725 is transmitted through the same beam as the transmitted beam. For another example, if CORESET #X and CORESET #X+1 are set to different CORESETPoolIndex (eg, 0 and 1), the terminal last monitored before slot #0 in which PDCCH #1 (1705) is transmitted from the base station. It may be assumed that the PDSCH #1 1725 is transmitted through the same beam through which the PDCCH is transmitted. On the other hand, if the time offset (1735) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #1 (1705) to PDSCH#1 (1725) can receive
실시예 5-3)Example 5-3)
상술한 실시예 2-5)가 적용된 경우를 가정한다. 이 경우 복수의 PDCCH (PDCCH #1 내지 PDCCH #4)의 디코딩 성공 여부에 따라 다르게 동작할 수 있다. It is assumed that the above-described embodiment 2-5) is applied. In this case, a different operation may be performed depending on whether decoding of a plurality of PDCCHs (PDCCH #1 to PDCCH #4) is successful.
예를 들어 단말이 PDCCH #1 (1705), PDCCH #2 (1710)의 디코딩은 실패하고, PDCCH #3 (1715), PDCCH #4 (1720)의 디코딩은 성공한 경우, 단말은 가장 먼저 디코딩에 성공한 PDCCH #3 (1715)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #2 (1730) (또는 PDSCH #1 (1725)) 간의 time offset (1745)을 확인할 수 있다. 상기 time offset (1745)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #2 (1730) (또는 PDSCH #1 (1725))를 수신하기 위한 빔으로, CORESET #X 및 CORESET #X+1이 동일한 CORESETPoolIndex로 설정되면 lowest CORESETId인 CORESET #X 에서, CORESET #X 및 CORESET #X+1이 상이한 CORESETPoolIndex(예: 0 및 1)로 설정되면 lowest CORESETId인 CORESET #X+1에서, 가장 최신 slot에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH (PDCCH #1 또는 PDCCH #2)의 QCL parameter를 적용할 수 있다. 예를 들어 단말은 CORESET #X 및 CORESET #X+1이 동일한 CORESETPoolIndex로 설정되면 기지국으로부터 PDCCH #1 (1705)가 전송되는 빔과 같은 빔을 통해 PDSCH #2 (1730) (또는 PDSCH #1 (1725))이 전송된다고 가정할 수 있다. 다른 예를 들어 단말은 CORESET #X 및 CORESET #X+1이 상이한 CORESETPoolIndex로 설정되면 기지국으로부터 PDCCH #3 (1715)가 전송되는 빔과 같은 빔을 통해 PDSCH #2 (1730) (또는 PDSCH #1 (1725))이 전송된다고 가정할 수 있다. 한편, 만약 상기 time offset (1745)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #3 (1715)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 TCI state에 따라 빔포밍을 적용하여 PDSCH #1 (1725) (또는 PDSCH #2 (1730))을 수신할 수 있다.For example, if the UE fails to decode PDCCH #1 (1705), PDCCH #2 (1710), and decodes PDCCH #3 (1715), PDCCH #4 (1720) is successful, the UE first succeeds in decoding Based on PDCCH #3 (1715), a time offset (1745) between DCI reception and a corresponding PDSCH #2 (1730) (or PDSCH #1 (1725)) can be confirmed. When the time offset (1745) is smaller than the timeDurationForQCL, the UE is a beam for receiving PDSCH #2 (1730) (or PDSCH #1 (1725)), and CORESET #X and CORESET #X+1 are the same CORESETPoolIndex If set, in CORESET #X, which is the lowest CORESETId, in CORESET #X+1, which is the lowest CORESETId if CORESET #X and CORESET #X+1 are set to different CORESETPoolIndexes (eg 0 and 1), monitored search space in the most recent slot The QCL parameter of the PDCCH (PDCCH #1 or PDCCH #2) transmitted through the CORESET associated with may be applied. For example, when CORESET #X and CORESET #X+1 are set to the same CORESETPoolIndex, the UE uses the same beam through which PDCCH #1 (1705) is transmitted from the base station PDSCH #2 (1730) (or PDSCH #1 (1725) )) can be assumed to be transmitted. For another example, if CORESET #X and CORESET #X+1 are set to different CORESETPoolIndex, PDSCH #2 (1730) (or PDSCH #1 ( 1725)) is transmitted. On the other hand, if the time offset (1745) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #3 (1715) to PDSCH #1 (1725) (or PDSCH #2 1730).
다른 예를 들어 단말이 PDCCH #1 (1705), PDCCH #4 (1720)의 디코딩은 실패하고, PDCCH #2 (1710), PDCCH #3 (1715)의 디코딩은 성공한 경우, 단말은 가장 먼저 디코딩에 성공한 PDCCH #3 (1715)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1 (1725) (또는 PDSCH #2 (1730))간의 time offset (1745)을 확인할 수 있다. 상기 time offset (1745)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1 (1725) (또는 PDSCH #2 (1730))를 수신하기 위한 빔으로, 서빙셀 내 설정된 동일한 CORESETPoolIndex 내 lowest CORESETId인 CORESET #X에서, 가장 최신 slot에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH의 QCL parameter를 적용할 수 있다. 예를 들어, CORESET #X 및 CORESET #X+1이 모두 동일한 CORESETPoolIndex(예:0)로 설정되면, 단말은 기지국으로부터 PDCCH #3 (1715)이 전송되는 slot#0 이전에 마지막으로 모니터한 PDCCH가 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1725) (또는 PDSCH #2 (1730))이 전송된다고 가정할 수 있다. 다른 예를 들어, CORESET X 및 CORESET X+1이 상이한 CORESETPoolIndex(예:0 및 1)로 설정되면, 단말은 기지국으로부터 PDCCH #1 (1705)이 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1725)이 전송되고, PDCCH #3 (1715)가 전송되는 slot#0 이전에 마지막으로 모니터한 PDCCH가 전송되는 빔과 같은 빔을 통해 PDSCH #2 (1730)이 전송된다고 가정할 수 있다. 한편, 만약 상기 time offset (1745)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #3 (1715)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 TCI state에 따라 빔포밍을 적용하여 PDSCH #1 (1725) (또는 PDSCH #2 (1730))을 수신할 수 있다.For another example, if the UE fails to decode PDCCH #1 (1705), PDCCH #4 (1720), and decoding of PDCCH #2 (1710), PDCCH #3 (1715) is successful, the UE is the first to decode Based on the successful PDCCH #3 (1715), it is possible to check the time offset (1745) between the DCI reception and the corresponding PDSCH #1 (1725) (or PDSCH #2 (1730)). When the time offset (1745) is smaller than the timeDurationForQCL, the UE is a beam for receiving PDSCH #1 (1725) (or PDSCH #2 (1730)), CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell , the QCL parameter of the PDCCH transmitted through the CORESET associated with the monitored search space in the latest slot may be applied. For example, if CORESET #X and CORESET #X+1 are both set to the same CORESETPoolIndex (eg 0), the terminal last monitored PDCCH before slot #0 in which PDCCH #3 (1715) is transmitted from the base station. It may be assumed that PDSCH #1 1725 (or PDSCH #2 1730) is transmitted through the same beam as the transmitted beam. For another example, if CORESET X and CORESET X+1 are set to different CORESETPoolIndex (eg, 0 and 1), the UE transmits PDSCH #1 (1725) through the same beam through which PDCCH #1 (1705) is transmitted from the base station. ) is transmitted, and it may be assumed that PDSCH #2 1730 is transmitted through the same beam through which the PDCCH last monitored before slot #0 through which PDCCH #3 1715 is transmitted. On the other hand, if the time offset (1745) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #3 (1715) to PDSCH #1 (1725) (or PDSCH #2 1730).
실시예 5-4)Example 5-4)
상술한 실시예 2-6)이 적용된 경우를 가정한다. 이 경우 복수의 PDCCH (PDCCH #1 내지 PDCCH #4)의 디코딩 성공 여부에 따라 다르게 동작할 수 있다. It is assumed that the above-described embodiment 2-6) is applied. In this case, a different operation may be performed depending on whether decoding of a plurality of PDCCHs (PDCCH #1 to PDCCH #4) is successful.
예를 들어 단말이 PDCCH #1 (1705), PDCCH #2 (1710)의 디코딩은 실패하고, PDCCH #3 (1715), PDCCH #4 (1720)의 디코딩은 성공한 경우, 단말은 가장 마지막으로 디코딩에 성공한 PDCCH #4 (1720)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #2 (1730) (또는 PDSCH #1 (1725))간의 time offset (1750)을 확인할 수 있다. 상기 time offset (1750)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #2 (1730) (또는 PDSCH #1 (1725))를 수신하기 위한 빔으로, 서빙셀 내 설정된 CORESETPoolIndex 내 lowest CORESETId인 CORESET에서, 가장 최신 slot에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH (PDCCH #1)의 QCL parameter를 적용할 수 있다. 예를 들어, CORESET #X 및 CORESET #X+1이 모두 동일한 CORESETPoolIndex(예:0)로 설정되면, 단말은 기지국으로부터 PDCCH #1 (1705)가 전송되는 빔과 같은 빔을 통해 PDSCH #2 (1730) (또는 PDSCH #1 (1725))이 전송된다고 가정할 수 있다. 다른 예를 들어, CORESET #X 및 CORESET #X+1이 상이한 CORESETPoolIndex(예:0 및 1)로 설정되면, 단말은 기지국으로부터 PDCCH #3 (1705) 이 전송되는 빔과 같은 빔을 통해 PDSCH #2 (1730)이 전송된다고 가정할 수 있다. 한편, 만약 상기 time offset (1750)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #4 (1720)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 TCI state에 따라 빔포밍을 적용하여 PDSCH #1 (1725) (또는 PDSCH #2 (1730))을 수신할 수 있다.For example, if the UE fails to decode PDCCH #1 (1705) and PDCCH #2 (1710), and the decoding of PDCCH #3 (1715) and PDCCH #4 (1720) is successful, the UE is the last to decode Based on the successful PDCCH #4 (1720), it is possible to check the time offset (1750) between the DCI reception and the corresponding PDSCH #2 (1730) (or PDSCH #1 (1725)). When the time offset (1750) is smaller than the timeDurationForQCL, the terminal is a beam for receiving PDSCH #2 (1730) (or PDSCH #1 (1725)), in CORESET that is the lowest CORESETId in CORESETPoolIndex set in the serving cell, the most The QCL parameter of the PDCCH (PDCCH #1) transmitted through the CORESET associated with the monitored search space in the latest slot can be applied. For example, if CORESET #X and CORESET #X+1 are both set to the same CORESETPoolIndex (eg 0), the UE transmits PDSCH #2 (1730) through the same beam through which PDCCH #1 (1705) is transmitted from the base station. ) (or PDSCH #1 (1725)) may be assumed to be transmitted. For another example, if CORESET #X and CORESET #X+1 are set to different CORESETPoolIndex (eg, 0 and 1), the UE uses the same beam through which PDCCH #3 (1705) is transmitted from the base station PDSCH #2 It may be assumed that 1730 is transmitted. On the other hand, if the time offset (1750) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #4 (1720) to PDSCH #1 (1725) (or PDSCH #2 1730).
다른 예를 들어 단말이 PDCCH #1 (1705), PDCCH #4 (1720)의 디코딩은 실패하고, PDCCH #2 (1710), PDCCH #3 (1715)의 디코딩은 성공한 경우, 단말은 가장 마지막으로 디코딩에 성공한 PDCCH #2 (1710)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1 (1725) (또는 PDSCH #2 (1730))간의 time offset (1740)을 확인할 수 있다. 상기 time offset (1740)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1 (1725) (또는 PDSCH #2 (1730))를 수신하기 위한 빔으로, 서빙셀 내 설정된 동일한 CORESETPoolIndex 내 lowest CORESETId인 CORESET #X에서, 가장 최신 slot에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH (PDCCH #1)의 QCL parameter를 적용할 수 있다. 예를 들어, CORESET #X 및 CORESET #X+1이 모두 동일한 CORESETPoolIndex(예:0)로 설정되면, 단말은 기지국으로부터 PDCCH #1 (1705)가 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1725) (또는 PDSCH #2 (1730))이 전송된다고 가정할 수 있다. 다른 예를 들어, CORESET X 및 CORESET X+1이 상이한 CORESETPoolIndex(예:0 및 1)로 설정되면, 단말은 기지국으로부터 PDCCH #1 (1705)이 전송되는 빔과 같은 빔을 통해 PDSCH #1 (1725)이 전송되고, PDCCH #3 (1715)이 전송되는 slot#0 이전에 마지막으로 모니터한 PDCCH가 전송되는 빔과 같은 빔을 통해 PDSCH #2 (1730)이 전송된다고 가정할 수 있다. 한편, 만약 상기 time offset (1740)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #2 (1710)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 TCI state에 따라 빔포밍을 적용하여 PDSCH #1 (1725) (또는 PDSCH #2 (1730))을 수신할 수 있다.For another example, if decoding of PDCCH #1 (1705) and PDCCH #4 (1720) fails, and decoding of PDCCH #2 (1710) and PDCCH #3 (1715) is successful, the terminal decodes the last Based on the successful PDCCH #2 (1710), a time offset (1740) between the DCI reception and the corresponding PDSCH #1 (1725) (or PDSCH #2 (1730)) can be confirmed. When the time offset (1740) is smaller than the timeDurationForQCL, the UE is a beam for receiving PDSCH #1 (1725) (or PDSCH #2 (1730)), CORESET #X, which is the lowest CORESETId in the same CORESETPoolIndex set in the serving cell In , the QCL parameter of the PDCCH (PDCCH #1) transmitted through the CORESET associated with the monitored search space in the latest slot may be applied. For example, if both CORESET #X and CORESET #X+1 are set to the same CORESETPoolIndex (eg 0), the UE transmits PDSCH #1 (1725) through the same beam through which PDCCH #1 (1705) is transmitted from the base station. ) (or PDSCH #2 1730) may be assumed to be transmitted. For another example, if CORESET X and CORESET X+1 are set to different CORESETPoolIndex (eg, 0 and 1), the UE transmits PDSCH #1 (1725) through the same beam through which PDCCH #1 (1705) is transmitted from the base station. ) is transmitted, and it may be assumed that PDSCH #2 1730 is transmitted through the same beam through which the PDCCH last monitored before slot #0 through which PDCCH #3 1715 is transmitted. On the other hand, if the time offset 1740 is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to the TCI state indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 1710 to PDSCH #1 (1725) (or PDSCH #2 1730).
<제 6 실시예><Sixth embodiment>
본 개시의 제 6 실시예에서는 방법 3-1), 방법 3-3) 과 같이 두 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 동일한 slot 내 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 가정할 수 있다. 또는, 방법 4-1), 방법 4-3) 과 같이 두 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 다른 slot 간 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 가정할 수 있다. In the sixth embodiment of the present disclosure, it is assumed that the PDCCH scheduling two PDSCHs is repeated between different CORESETs, in the time domain aspect or in the spatial domain aspect within the same slot, as in methods 3-1) and 3-3). can Alternatively, it may be assumed that the PDCCH scheduling two PDSCHs is repeated in the time domain or spatial domain between different CORESETs and between different slots as in Method 4-1) and Method 4-3).
이러한 경우에도 상술한 바와 같이 default QCL을 적용하기 위한 방법이 필요하다. 따라서 이하 두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 기지국과 단말이 상기 default QCL을 적용하는 방법을 서술한다.Even in this case, as described above, a method for applying the default QCL is required. Therefore, a description will be given of a method for the base station and the terminal to apply the default QCL in a scenario in which PDCCHs for scheduling two PDSCHs are repeated in the same slot or in different slots.
도 18은 본 개시의 일 실시예에 따라 두 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 동일한 slot 내 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 도시한 도면이다.18 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated between different CORESETs in the time domain or spatial domain within the same slot according to an embodiment of the present disclosure.
다른 CORESET 간, 동일한 slot 내 time domain 측면 또는 spatial domain 측면에서의 PDCCH 반복 송수신을 위하여 단말은 기지국으로부터 제 5 실시예에서 Search space config#1, Search space config#2로 서술한 바와 동일하게 상위 레이어 시그널링을 통해 설정될 수 있고, 단말은 이에 기반하여 PDCCH들에 대한 디코딩을 시도할 수 있다. For repeated PDCCH transmission/reception between different CORESETs, in the time domain side or in the spatial domain side within the same slot, the UE performs upper layer signaling from the base station in the same manner as described with Search space config#1 and Search space config#2 in the fifth embodiment. may be configured through , and the UE may attempt to decode PDCCHs based on this.
도 18을 참고하면, 기지국은 slot #0에서 CORESET #0의 PDCCH #1 (1805)와, CORESET #1의 PDCCH #2 (1810)을 통해 적어도 일부의 동일한 DCI 정보 (예를 들면 MCS, TDRA, FDRA 또는 TCI 등)을 전송할 수 있다.Referring to FIG. 18 , the base station transmits at least some of the same DCI information (eg, MCS, TDRA, FDRA or TCI).
단말은 상위 레이어 시그널링을 통해 CORESET 또는 Search space의 설정을 확인하고, 기지국이 적어도 일부 또는 전부 동일한 DCI 정보로 구성되는 복수의 PDCCH를 반복하여 전송하는 경우, 단말은 복수의 PDCCH가 전송되는 빔의 변경이 발생하지 않는 것으로 기대(가정)할 수 있다. The terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
도 19는 본 개시의 일 실시예에 따라 두 개의 PDSCH를 스케쥴링하는 PDCCH가 다른 CORESET 간, 다른 slot 간 time domain 측면 또는 spatial domain 측면에서 반복되는 경우를 도시한 도면이다.19 is a diagram illustrating a case in which PDCCHs for scheduling two PDSCHs are repeated in a time domain or spatial domain between different CORESETs and between different slots according to an embodiment of the present disclosure.
다른 CORESET 간, 다른 slot 간 time domain 측면 또는 spatial domain 측면에서의 PDCCH 반복 송수신을 위하여 단말은 기지국으로부터 제 5 실시예에서 Search space config#1', Search space config#2' 로 서술한 바와 동일하게 상위 레이어 시그널링을 통해 설정될 수 있고, 단말은 이에 기반하여 PDCCH들에 대한 디코딩을 시도할 수 있다. For repeated PDCCH transmission/reception between different CORESETs and different slots in the time domain or spatial domain, the UE receives the same upper level from the base station as described with Search space config#1' and Search space config#2' in the fifth embodiment. It may be configured through layer signaling, and the UE may attempt to decode PDCCHs based on this.
도 19를 참고하면, 기지국은 slot #0, slot #1에서 CORESET #0의 PDCCH #1 (1905) 및 PDCCH #2 (1910)과 CORESET #1의 PDCCH #3 (1915) 및 PDCCH #4 (1920)을 통해 적어도 일부의 동일한 DCI 정보 (예를 들면 MCS, TDRA, FDRA 또는 TCI등)을 전송할 수 있다. PDCCH#1 (1905)와 PDCCH#2 (1910)의 DCI는 일부 동일한 DCI도 있고, TDRA 와 같은 타이밍 관련 정보는 동일하거나 상이할 수 있다. 또한, PDCCH#3 (1915)와 PDCCH#4 (1920)의 DCI는 일부 동일한 DCI도 있고, TDRA 와 같은 타이밍 관련 정보는 동일하거나 상이할 수 있다. 앞서 타이밍 정보가 동일한 경우는 spatial domain 측면에서 상이한 경우로 이해할 수 있다. 다른 예로, 동일한 slot내에서 {PDCCH#1, PDCCH #2, PDCCH #3, PDCCH #4} 는 일부 또는 전부 동일한 DCI가 전송될 수 있다.Referring to FIG. 19, the base station performs PDCCH #1 (1905) and PDCCH #2 (1910) of CORESET #0 in slot #0 and slot #1, and PDCCH #3 (1915) and PDCCH #4 (1920) of CORESET #1. ) through at least some of the same DCI information (eg, MCS, TDRA, FDRA, or TCI) may be transmitted. Some DCIs of PDCCH#1 1905 and PDCCH#2 1910 may be the same, and timing related information such as TDRA may be the same or different. Also, some DCIs of PDCCH#3 1915 and PDCCH#4 1920 may be the same, and timing related information such as TDRA may be the same or different. A case in which the timing information is the same can be understood as a case different in the spatial domain. As another example, in {PDCCH#1, PDCCH #2, PDCCH #3, PDCCH #4} in the same slot, some or all of the same DCI may be transmitted.
단말은 상위 레이어 시그널링을 통해 CORESET 또는 Search space의 설정을 확인하고, 기지국이 적어도 일부 또는 전부 동일한 DCI 정보로 구성되는 복수의 PDCCH를 반복하여 전송하는 경우, 단말은 복수의 PDCCH가 전송되는 빔의 변경이 발생하지 않는 것으로 기대(가정)할 수 있다. The terminal checks the CORESET or search space setting through higher layer signaling, and when the base station repeatedly transmits a plurality of PDCCHs composed of at least part or all of the same DCI information, the terminal changes the beam through which the plurality of PDCCHs are transmitted It can be expected (assumed) that this does not occur.
두 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 DCI가 스케쥴링하는 PDSCH 전송 빔의 변경을 TCI field를 통해 지시하는 경우, DCI 수신 및 이와 상응하는 PDSCH간의 time offset을 확인하기 위해 기준이 되는 PDCCH를 결정하는 방법은 제 1 실시예 및 제 2 실시예에서 서술한 방법이 동일하게 적용될 수 있다. 따라서 이하에서는 한 개의 PDSCH를 스케쥴링하는 PDCCH가 동일한 slot 또는 다른 slot에서 반복되는 시나리오에서 기지국과 단말이 상기 default QCL을 적용하는 방법을 서술한다.In a scenario in which the PDCCH scheduling two PDSCHs is repeated in the same slot or in a different slot, when a change in the PDSCH transmission beam scheduled by the DCI is indicated through the TCI field, in order to check the time offset between DCI reception and the corresponding PDSCH As a method of determining a PDCCH serving as a reference, the methods described in the first and second embodiments may be equally applied. Therefore, the following describes how the base station and the terminal apply the default QCL in a scenario in which a PDCCH scheduling one PDSCH is repeated in the same slot or in a different slot.
단말이 두 개의 PDSCH를 스케쥴링하는 PDCCH가 반복되는 경우에 default QCL 적용 동작이 가능하도록 미리 설정된 경우를 가정할 수 있다. 예를 들어, 단말은 RRC 설정 메시지 내의 enableTwoDefaultTCIStates 파라미터가 설정될 수 있다. 단말이 두 개의 PDSCH를 스케쥴링하는 PDCCH가 반복되는 시나리오에서, MAC CE를 통해 상술한 TCI field의 각 codepoint는 서로 다른 두 개의 활성화된 (activated) TCI state와 매핑되어 있을 수 있다.It may be assumed that the UE is preset to enable the default QCL application operation when the PDCCH for scheduling two PDSCHs is repeated. For example, the terminal may set the enableTwoDefaultTCIStates parameter in the RRC configuration message. In a scenario in which the PDCCH in which the UE schedules two PDSCHs is repeated, each codepoint of the TCI field described above through the MAC CE may be mapped to two different activated TCI states.
실시예 6-1)Example 6-1)
단말에게 상기 enableTwoDefaultTCIStates가 설정되면, 단말은 두 개의 다른 TCI states와 매핑된 각 TCI codepoint들 중에서, 가장 낮은(lowest) codepoint에 대응하는 두 개의 TCI states를 참조할 수 있다. 단말은 상기 참조된 TCI states와 각각 연계된 RS의 QCL 파라미터를 적용할 수 있다. 단말은 각 PDSCH 또는 PDSCH transmission occasion의 DMRS 포트가 상기 연계된 RS와 QCL 된 것으로 가정할 수 있다. 예를 들어, 단말은 상기 참조된 TCI states와 각각 연계된 2개의 QCL 파라미터를 적용하여 PDSCH #1 (1815, 1925) 및 PDSCH #2 (1820, 1930)를 수신할 수 있다.When the enableTwoDefaultTCIStates is set in the terminal, the terminal may refer to two TCI states corresponding to the lowest codepoint among TCI codepoints mapped to two different TCI states. The UE may apply the QCL parameter of the RS associated with each of the referenced TCI states. The UE may assume that the DMRS port of each PDSCH or PDSCH transmission occasion is QCL with the associated RS. For example, the UE may receive PDSCH #1 (1815, 1925) and PDSCH #2 (1820, 1930) by applying two QCL parameters respectively associated with the referenced TCI states.
실시예 6-2)Example 6-2)
상술한 실시예 1-1)가 적용된 경우를 가정한다. PDCCH #1 (1805)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1815) 또는 PDSCH #2 (1820) 수신 간의 time offset (1825, 1830)이 상기 timeDurationForQCL 보다 작은 경우, 기지국과 단말은 default QCL을 적용할 수 있다.It is assumed that the above-described embodiment 1-1) is applied. When the time offset (1825, 1830) between the reception of DCI based on PDCCH #1 (1805) and the reception of the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) is less than the timeDurationForQCL, the base station and the terminal have a default QCL can be applied.
단말은 PDSCH#1 (1815)및 PDSCH #2 (1820)를 수신하기 위한 빔으로 MAC CE에서 미리 설정된 두 개의 TCI states(2개의 다른 TCI states를 포함하는 TCI codepoints 중에서 가장 낮은(lowest) codepoint에 대응하는 TCI states)에서 지정된 QCL 파라미터를 적용하여 각각 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다.The UE corresponds to the lowest codepoint among TCI codepoints including two TCI states (two different TCI states) preset in MAC CE as a beam for receiving PDSCH#1 (1815) and PDSCH #2 (1820). TCI states), PDSCH#1 (1815) and PDSCH#2 (1820) may be received by applying the specified QCL parameter.
다른 예를 들어 상술한 실시예 1-2)가 적용된 경우를 가정하면, PDCCH #2 (1810)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1815) 또는 PDSCH #2 (1820) 수신 간의 time offset (1835, 1840)이 상기 timeDurationForQCL 보다 작은 경우, 기지국과 단말은 default QCL을 적용할 수 있다. 이후 상기 default QCL을 적용하는 방법은 위와 동일하다.For another example, assuming that the above-described embodiment 1-2) is applied, the time between DCI reception and the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) reception based on PDCCH #2 1810 When the offset (1835, 1840) is smaller than the timeDurationForQCL, the base station and the terminal may apply the default QCL. Thereafter, the method of applying the default QCL is the same as above.
실시예 6-3)Example 6-3)
상술한 실시예 1-3)이 적용된 경우를 가정한다. 단말이 가장 먼저 디코딩에 성공한 PDCCH를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1 또는 PDSCH #2 수신 간의 time offset이 상기 timeDurationForQCL 보다 작은 경우, 기지국과 단말은 default QCL을 적용할 수 있다.It is assumed that the above-described embodiment 1-3) is applied. When the time offset between DCI reception and the corresponding PDSCH #1 or PDSCH #2 reception is smaller than the timeDurationForQCL based on the PDCCH that the UE first successfully decoded, the base station and the UE may apply the default QCL.
단말은 PDSCH#1 (1815)및 PDSCH #2 (1820)를 수신하기 위한 빔으로 MAC CE에서 CORESET #0 또는 CORESET #1을 위해 미리 설정된 2개의 TCI states(2개의 다른 TCI states를 포함하는 TCI codepoints 중에서 가장 낮은(lowest) codepoint에 대응하는 TCI states)에서 지정된 QCL 파라미터를 적용하여 각각 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다. The UE is a beam for receiving PDSCH#1 (1815) and PDSCH #2 (1820), and two TCI states (TCI codepoints including two different TCI states) preset for CORESET #0 or CORESET #1 in MAC CE PDSCH#1 (1815) and PDSCH#2 (1820) may be received by applying the QCL parameter specified in the TCI states corresponding to the lowest codepoint among them.
예를 들어, 단말이 PDCCH#1 (1805)의 수신 및 디코딩을 성공한 경우, 기지국과 단말은 PDCCH#2 (1810)가 반복되는지 여부에 상관없이 PDCCH #1 (1805)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1815) 또는 PDSCH #2 (1820) 수신 간의 time offset (1825, 1830)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용(CORESET #0을 위한 lowest codepoint에 매핑된 두 개의TCI states 적용)하여 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다. 한편, 만약 상기 time offset이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #1 (1805)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다.For example, if the terminal succeeds in receiving and decoding the PDCCH#1 1805, the base station and the terminal receive DCI based on the PDCCH#1 1805 and receive it regardless of whether the PDCCH#2 1810 is repeated. If the time offset (1825, 1830) between the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) reception is less than the timeDurationForQCL value, apply the default QCL described above (CORESET #0 for two mapped to the lowest codepoint) TCI states are applied) to receive PDSCH#1 (1815) and PDSCH #2 (1820). On the other hand, if the time offset is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #1 (1805) to PDSCH#1 (1815), PDSCH #2 1820 may be received.
다른 예를 들어, 단말이 PDCCH#1 (1805)의 수신 및 디코딩을 실패하고, PDCCH#2 (1810)의 수신 및 디코딩을 성공한 경우, 기지국과 단말은 PDCCH #2 (1810)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1815) 또는 PDSCH #2 (1820) 수신 간의 time offset (1835, 1840)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용(CORESET #1을 위한 lowest codepoint에 매핑된 두 개의TCI states 적용)하여 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다. 한편, 만약 상기 time offset이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #2 (1810)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다.For another example, if the terminal fails to receive and decode PDCCH#1 1805 and succeeds in receiving and decoding PDCCH#2 1810, the base station and the terminal receive DCI based on PDCCH #2 1810 And if the time offset (1835, 1840) between the reception of the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) is less than the timeDurationForQCL value, apply the default QCL described above (CORESET #1 mapped to the lowest codepoint) Two TCI states are applied) to receive PDSCH#1 (1815) and PDSCH#2 (1820). On the other hand, if the time offset is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1810) to PDSCH#1 (1815), PDSCH #2 1820 may be received.
실시예 6-4)Example 6-4)
상술한 실시예 1-4)가 적용된 경우를 가정한다. 단말이 가장 마지막으로 디코딩에 성공한 PDCCH를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1 또는 PDSCH #2 수신 간의 time offset이 상기 timeDurationForQCL 보다 작은 경우, 기지국과 단말은 default QCL을 적용할 수 있다.It is assumed that the above-described embodiment 1-4) is applied. When the time offset between the DCI reception and the corresponding PDSCH #1 or PDSCH #2 reception is smaller than the timeDurationForQCL based on the PDCCH that the terminal has decoded most recently, the base station and the terminal may apply the default QCL.
단말은 PDSCH#1 (1815)및 PDSCH #2 (1820)를 수신하기 위한 빔으로 MAC CE에서 CORESET #0 또는 CORESET #1을 위해 미리 설정된 2개의 TCI states(2개의 다른 TCI states를 포함하는 TCI codepoints 중에서 가장 낮은(lowest) codepoint에 대응하는 TCI states)에서 지정된 QCL 파라미터를 적용하여 각각 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다. The UE is a beam for receiving PDSCH#1 (1815) and PDSCH #2 (1820), and two TCI states (TCI codepoints including two different TCI states) preset for CORESET #0 or CORESET #1 in MAC CE PDSCH#1 (1815) and PDSCH#2 (1820) may be received by applying the QCL parameter specified in the TCI states corresponding to the lowest codepoint among them.
예를 들어, 단말이 PDCCH#1 (1805)의 수신 및 디코딩을 성공하면, 단말은 PDCCH #2 (1810)의 수신 및 디코딩을 성공하여 DCI 정보가 반복되는지 확인할 수 있다. 이후 기지국과 단말은 PDCCH #2 (1810)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1815) 또는 PDSCH #2 (1820) 수신 간의 time offset (1835, 1840)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용(CORESET #1을 위한 lowest codepoint에 매핑된 두 개의TCI states 적용)하여 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다. 한편, 만약 상기 time offset이 timeDurationForQCL 값보다 같거나 크면, 단말은 PDCCH #2 (1810)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다.For example, if the UE succeeds in receiving and decoding the PDCCH#1 1805, the UE may succeed in receiving and decoding the PDCCH #2 1810 to check whether DCI information is repeated. Thereafter, the base station and the terminal receive DCI based on PDCCH #2 (1810) and the time offset (1835, 1840) between the reception of the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) is less than the timeDurationForQCL value. By applying the described default QCL (two TCI states mapped to the lowest codepoint for CORESET #1), PDSCH#1 (1815) and PDSCH #2 (1820) can be received. On the other hand, if the time offset is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1810) to PDSCH#1 (1815) , PDSCH #2 1820 may be received.
다른 예를 들어, 단말이 PDCCH#1 (1805)의 수신 및 디코딩을 실패하고, PDCCH #2 (1810)의 수신 및 디코딩을 성공한 경우, 기지국과 단말은 PDCCH #2 (1810)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1815) 또는 PDSCH #2 (1820) 수신 간의 time offset (1835, 1840)이 timeDurationForQCL 값보다 작으면, 상기 설명한 default QCL을 적용(CORESET #1을 위한 lowest codepoint에 매핑된 두 개의TCI states 적용)하여 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다. 한편, 만약 상기 time offset이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #2 (1810)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1815), PDSCH #2 (1820)를 수신할 수 있다.As another example, if the terminal fails to receive and decode PDCCH#1 1805 and succeeds in receiving and decoding PDCCH #2 1810, the base station and the terminal receive DCI based on PDCCH #2 1810 And if the time offset (1835, 1840) between the reception of the corresponding PDSCH #1 (1815) or PDSCH #2 (1820) is less than the timeDurationForQCL value, apply the default QCL described above (CORESET #1 mapped to the lowest codepoint) Two TCI states are applied) to receive PDSCH#1 (1815) and PDSCH#2 (1820). On the other hand, if the time offset is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1810) to PDSCH#1 (1815), PDSCH #2 1820 may be received.
실시예 6-5)Example 6-5)
상술한 실시예 2-5)가 적용된 경우를 가정한다. 이 경우 복수의 PDCCH (PDCCH #1 내지 PDCCH #4)의 디코딩 성공 여부에 따라 다르게 동작할 수 있다. It is assumed that the above-described embodiment 2-5) is applied. In this case, a different operation may be performed depending on whether decoding of a plurality of PDCCHs (PDCCH #1 to PDCCH #4) is successful.
예를 들어 단말이 PDCCH #1 (1905), PDCCH #2 (1910)의 디코딩은 실패하고, PDCCH #3 (1915), PDCCH #4 (1920)의 디코딩은 성공한 경우, 단말은 가장 먼저 디코딩에 성공한 PDCCH #3 (1915)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1925) 또는 PDSCH #2 (1930) 수신 간의 time offset (1955, 1960)을 확인할 수 있다. 상기 time offset (1955, 1960)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1, PDSCH #2 (1925, 1930)를 수신하기 위한 빔으로, 상기 설명한 default QCL을 적용(CORESET #1을 위한 lowest codepoint에 매핑된 두 개의TCI states 적용)하여 PDSCH#1 (1925), PDSCH #2 (1930)를 수신할 수 있다. 한편, 만약 상기 time offset (1955, 1960)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #3 (1915)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1925), PDSCH #2 (1930)를 수신할 수 있다.For example, if the UE fails to decode PDCCH #1 (1905), PDCCH #2 (1910), and decodes PDCCH #3 (1915), PDCCH #4 (1920) is successful, the UE first succeeds in decoding Based on PDCCH #3 (1915), a time offset (1955, 1960) between DCI reception and the corresponding PDSCH #1 (1925) or PDSCH #2 (1930) reception can be checked. When the time offset (1955, 1960) is smaller than the timeDurationForQCL, the terminal applies the default QCL described above as a beam for receiving PDSCH #1 and PDSCH #2 (1925, 1930) (lowest codepoint for CORESET #1) PDSCH#1 (1925) and PDSCH#2 (1930) may be received by applying two TCI states mapped to . On the other hand, if the time offset (1955, 1960) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #3 (1915) to PDSCH# 1 (1925), PDSCH #2 (1930) may be received.
다른 예를 들어 단말이 PDCCH #1 (1905), PDCCH #2 (1910), PDCCH #4 (1920)의 디코딩은 실패하고, PDCCH #3 (1915)의 디코딩은 성공한 경우, 위와 동일한 동작이 수행될 수 있다.For another example, if the UE fails to decode PDCCH #1 (1905), PDCCH #2 (1910), and PDCCH #4 (1920), and decoding of PDCCH #3 (1915) is successful, the same operation as above will be performed can
또 다른 예를 들어 단말이 PDCCH #1 (1905), PDCCH #4 (1920)의 디코딩은 실패하고, PDCCH #2 (1910), PDCCH #3 (1915)의 디코딩은 성공한 경우, 단말은 가장 먼저 디코딩에 성공한 PDCCH #3 (1915)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1925) 또는 PDSCH #2 (1930) 수신 간의 time offset (1955, 1960)을 확인할 수 있다. 상기 time offset (1955, 1960)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1, PDSCH #2 (1925, 1930)를 수신하기 위한 빔으로, 상기 설명한 default QCL을 적용(CORESET #1을 위한 lowest codepoint에 매핑된 두 개의TCI states 적용)하여 PDSCH#1 (1925), PDSCH #2 (1930)를 수신할 수 있다. 한편, 만약 상기 time offset (1955, 1960)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #3 (1915)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1925), PDSCH #2 (1930)를 수신할 수 있다.For another example, if decoding of PDCCH #1 (1905) and PDCCH #4 (1920) fails, and decoding of PDCCH #2 (1910) and PDCCH #3 (1915) is successful, the terminal decodes first Based on the successful PDCCH #3 (1915), the time offset (1955, 1960) between the DCI reception and the corresponding PDSCH #1 (1925) or PDSCH #2 (1930) reception can be checked. When the time offset (1955, 1960) is smaller than the timeDurationForQCL, the terminal applies the default QCL described above as a beam for receiving PDSCH #1 and PDSCH #2 (1925, 1930) (lowest codepoint for CORESET #1) PDSCH#1 (1925) and PDSCH#2 (1930) can be received by applying two TCI states mapped to . On the other hand, if the time offset (1955, 1960) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #3 (1915) to PDSCH# 1 (1925), PDSCH #2 (1930) may be received.
실시예 6-6)Example 6-6)
상술한 실시예 2-6)이 적용된 경우를 가정한다. 이 경우 복수의 PDCCH (PDCCH #1 내지 PDCCH #4)의 디코딩 성공 여부에 따라 다르게 동작할 수 있다. It is assumed that the above-described embodiment 2-6) is applied. In this case, a different operation may be performed depending on whether decoding of a plurality of PDCCHs (PDCCH #1 to PDCCH #4) is successful.
예를 들어 단말이 PDCCH #1 (1905), PDCCH #2 (1910)의 디코딩은 성공하고, PDCCH #3 (1915), PDCCH #4 (1920)의 디코딩은 실패한 경우, 단말은 가장 마지막으로 디코딩에 성공한 PDCCH #2 (1910)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1925) 또는 PDSCH #2 (1930) 수신 간의 time offset (1945, 1950)을 확인할 수 있다. 상기 time offset (1945, 1950)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1, PDSCH #2 (1925, 1930)를 수신하기 위한 빔으로, 상기 설명한 default QCL을 적용(CORESET #0을 위한 lowest codepoint에 매핑된 두 개의TCI states 적용)하여 PDSCH#1 (1925), PDSCH #2 (1930)를 수신할 수 있다. 한편, 만약 상기 time offset (1945, 1950)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #2 (1910)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1925), PDSCH #2 (1930)를 수신할 수 있다.For example, if the UE succeeds in decoding PDCCH #1 (1905) and PDCCH #2 (1910), and decoding of PDCCH #3 (1915) and PDCCH #4 (1920) fails, the UE is the last to decode Based on the successful PDCCH #2 (1910), the time offset (1945, 1950) between the DCI reception and the corresponding PDSCH #1 (1925) or PDSCH #2 (1930) reception can be checked. When the time offset (1945, 1950) is smaller than the timeDurationForQCL, the terminal applies the default QCL described above as a beam for receiving PDSCH #1 and PDSCH #2 (1925, 1930) (lowest codepoint for CORESET #0) PDSCH#1 (1925) and PDSCH#2 (1930) may be received by applying two TCI states mapped to . On the other hand, if the time offset (1945, 1950) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #2 (1910) to PDSCH# 1 (1925), PDSCH #2 (1930) may be received.
다른 예를 들어 단말이 PDCCH #1 (1905), PDCCH #4 (1920)의 디코딩은 성공하고, PDCCH #2 (1910), PDCCH #3 (1915)의 디코딩은 실패한 경우, 단말은 가장 마지막으로 디코딩에 성공한 PDCCH #4 (1920)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH #1(1925) 또는 PDSCH #2 (1930) 수신 간의 time offset (1965, 1970)을 확인할 수 있다. 상기 time offset (1965, 1970)이 상기 timeDurationForQCL 보다 작은 경우, 단말은 PDSCH #1, PDSCH #2 (1925, 1930)를 수신하기 위한 빔으로, 상기 설명한 default QCL을 적용(CORESET #1을 위한 lowest codepoint에 매핑된 두 개의TCI states 적용)하여 PDSCH#1 (1925), PDSCH #2 (1930)를 수신할 수 있다. 한편, 만약 상기 time offset (1965, 1970)이 timeDurationForQCL 값보다 같거나 크면 단말은 PDCCH #4 (1920)에서 지시한 DCI 필드 내 TCI codepoint에서 지시하는 두 개의 TCI states에 따라 빔포밍을 적용하여 PDSCH#1 (1925), PDSCH #2 (1930)를 수신할 수 있다.For another example, if the UE succeeds in decoding PDCCH #1 (1905) and PDCCH #4 (1920), and decoding of PDCCH #2 (1910) and PDCCH #3 (1915) fails, the UE decodes the last Based on the successful PDCCH #4 (1920), a time offset (1965, 1970) between DCI reception and the corresponding PDSCH #1 (1925) or PDSCH #2 (1930) reception can be checked. When the time offset (1965, 1970) is smaller than the timeDurationForQCL, the terminal applies the default QCL described above as a beam for receiving PDSCH #1 and PDSCH #2 (1925, 1930) (lowest codepoint for CORESET #1) PDSCH#1 (1925) and PDSCH#2 (1930) can be received by applying two TCI states mapped to . On the other hand, if the time offset (1965, 1970) is equal to or greater than the timeDurationForQCL value, the UE applies beamforming according to two TCI states indicated by the TCI codepoint in the DCI field indicated by PDCCH #4 (1920) to PDSCH# 1 (1925), PDSCH #2 (1930) may be received.
한편 본 개시에서 서술하는 각 실시예들은 선택적으로 조합되어 실시될 수 있다. 예를 들어 반복되는 PDCCH의 DCI가 스케쥴링하는 PDSCH가 전송되는 빔의 변경이 상기 DCI내 TCI field를 통해 지시된 경우, DCI 수신 및 이와 상응하는 PDSCH간의 time offset을 확인하기 위해 기준이 되는 PDCCH는 실시예 1-1) 내지 실시예 2-6) 중 어느 하나의 실시예에 기반하여 결정될 수 있다. 또한 단말 또는 기지국이 PDCCH가 지시하는 TCI state에 따라 빔포밍을 수행하거나 상술한 default QCL을 적용하는 것은 여러 가지 시나리오에 따라 실시예 3-1) 내지 실시예 6-6)중 어느 하나의 실시예에 기반하여 수행될 수 있다.Meanwhile, each of the embodiments described in the present disclosure may be selectively combined and implemented. For example, when a change in a beam through which a PDSCH scheduled by DCI of a repeated PDCCH is transmitted is indicated through the TCI field in the DCI, the PDCCH serving as a reference is implemented to check the time offset between DCI reception and the corresponding PDSCH. It may be determined based on any one of Examples 1-1) to 2-6). In addition, the UE or the base station performs beamforming according to the TCI state indicated by the PDCCH or applies the default QCL described above according to various scenarios according to any one of embodiments 3-1) to 6-6) can be performed based on
도 20은 본 개시의 일 실시예에 따른 단말의 동작을 도시한 순서도이다.20 is a flowchart illustrating an operation of a terminal according to an embodiment of the present disclosure.
단말은 S2010단계에서, 기지국과 설정메시지 (예를 들면 RRC 메시지)를 송수신할 수 있다. In step S2010, the terminal may transmit and receive a configuration message (eg, an RRC message) with the base station.
단말은 제어 채널과 관련된 설정 정보(예를 들면 ControlResourceSet, SearchSpace 등), 데이터 채널과 관련된 설정 정보 (PDSCH-Config 등), 또는 빔포밍에 관련된 파라미터 (예를 들면 tci-PresentinDCI 등)중 적어도 하나가 포함된 RRC 메시지를 기지국으로부터 수신할 수 있다. At least one of configuration information related to the control channel (eg, ControlResourceSet, SearchSpace, etc.), configuration information related to the data channel (PDSCH-Config, etc.), or parameters related to beamforming (eg, tci-PresentinDCI, etc.) The included RRC message may be received from the base station.
또한 단말은 RRC 메시지를 통해 기지국으로부터 UE capability를 요청하는 메시지를 수신하고, 기지국으로 UE capability를 보고하는 메시지를 전송할 수 있다. 일 실시예에 따르면, 상기 UE capability는 서브캐리어 간격 (sub-carrier spacing, SCS) 마다 단말이 PDSCH 수신 빔 변경을 위해 필요한 시간의 임계값 (threshold) 정보 또는 SCS마다 PDSCH가 전송되는 빔이 변경되어 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값 정보 (timeDurationForQCL)가 포함될 수 있다. 상기 SCS는 예를 들면 60kHz, 120kHz를 포함할 수 있다. 상기 timeDurationForQCL은, 단말이 PDCCH를 수신하고, 상기 PDCCH가 스케쥴링하는 PDSCH 수신 빔을 변경하는데 필요한 OFDM 심볼의 최소 개수일 수 있다. 또는, 상기 timeDurationForQCL은 단말이 PDCCH를 수신하고 DCI에 포함된 공간 QCL 정보 (spatial QCL information)을 적용하는데 필요한 OFDM 심볼의 최소 개수일 수 있다. In addition, the terminal may receive a message for requesting UE capability from the base station through the RRC message, and may transmit a message for reporting UE capability to the base station. According to an embodiment, the UE capability includes threshold information of the time required for the UE to change the PDSCH reception beam for each sub-carrier spacing (SCS) or the beam through which the PDSCH is transmitted for each SCS. Time threshold information (timeDurationForQCL) required for the UE to receive the PDSCH may be included. The SCS may include, for example, 60 kHz or 120 kHz. The timeDurationForQCL may be the minimum number of OFDM symbols required for a UE to receive a PDCCH and change a PDSCH reception beam scheduled by the PDCCH. Alternatively, the timeDurationForQCL may be the minimum number of OFDM symbols required for the UE to receive the PDCCH and apply spatial QCL information included in DCI.
단말은 S2020 단계에서, time domain, frequency domain 또는 spatial domain 측면에서 반복되는 복수의 PDCCH를 수신할 수 있다. 상기 반복되는 복수의 PDCCH는, 적어도 일부의 동일한 DCI를 포함하는 복수의 PDCCH들이 time domain, frequency domain 또는 spatial domain 측면에서 반복하여 전송 또는 수신되는 것을 의미할 수 있다. In step S2020, the UE may receive a plurality of PDCCHs that are repeated in terms of time domain, frequency domain, or spatial domain. The repeated plurality of PDCCHs may mean that a plurality of PDCCHs including at least some of the same DCI are repeatedly transmitted or received in terms of time domain, frequency domain, or spatial domain.
이때 빔의 방향 (TCI), 할당되는 PDSCH의 FDRA(Frequency domain resource allocation) 정보, TDRA(Time domain resource allocation), HARQ ACK 전송 시점, PUCCH resource indicator 등의 정보는 전송되는 PDCCH의 타이밍에 따라서 동일하거나 변경될 수도 있다. 따라서 상기 반복되는 PDCCH 중에서 동일한 DCI 정보는 Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization 중 적어도 하나 이상을 포함할 수 있다.At this time, information such as beam direction (TCI), frequency domain resource allocation (FDRA) information of the allocated PDSCH, time domain resource allocation (TDRA), HARQ ACK transmission time, PUCCH resource indicator, etc. are the same depending on the timing of the transmitted PDCCH or It may be changed. Therefore, the same DCI information among the repeated PDCCHs is Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, It may include at least one or more of DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, and DMRS sequence initialization.
단말은 S2030 단계에서, 상기 복수의 PDCCH들 중 어느 하나의 PDCCH를 기준으로, 상기 PDCCH와 상응하는 PDSCH간의 time offset과 상기timeDurationForQCL를 비교할 수 있다.In step S2030, the UE may compare the timeDurationForQCL with the time offset between the PDCCH and the corresponding PDSCH based on any one of the plurality of PDCCHs.
이때 상기 반복되는 PDCCH의 DCI가 스케쥴링하는 PDSCH가 전송되는 빔의 변경이 상기 DCI내 TCI field를 통해 지시된 경우, 상기 time offset을 확인하기 위해 기준이 되는 PDCCH는 특정 기준에 따라 결정될 수 있다. In this case, when a change in a beam through which a PDSCH scheduled by DCI of the repeated PDCCH is transmitted is indicated through the TCI field in the DCI, the PDCCH serving as a reference for checking the time offset may be determined according to a specific criterion.
상술한 실시예 1-2)와 실시예 2-2)를 예를 들면, 단말이 하나의 slot 내 또는 복수의 slot에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들의 디코딩을 모두 성공한 경우를 가정할 수 있다. 이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 서빙셀 내 설정된 동일한 CORESETPoolIndex 내 가장 마지막으로 전송되는 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다.For example, in the above-described embodiments 1-2) and 2-2), it is assumed that the terminal succeeds in decoding all PDCCHs in which at least some of the same DCI are repeated in one slot or in a plurality of slots. can At this time, the UE, from among the PDCCHs indicating the change of the PDSCH transmission beam, based on the last PDCCH (or CORESET, Search space set) transmitted in the same CORESETPoolIndex set in the serving cell, the time between DCI reception and the corresponding PDSCH reception You can check the offset.
상술한 실시예 2-6)을 예를 들면, 단말이 복수의 slot에서, 적어도 일부가 동일한 DCI가 반복되는 PDCCH들 중 일부만 디코딩에 성공한 경우를 가정할 수 있다. 이때 단말은, PDSCH 전송 빔의 변경을 지시하는 PDCCH들 중에서, 가장 마지막으로 디코딩에 성공한 PDCCH (또는 CORESET, Search space set)를 기준으로 DCI 수신 및 이와 상응하는 PDSCH 수신 간의 time offset을 확인할 수 있다.For example, in the above-described embodiment 2-6), it may be assumed that the terminal succeeds in decoding only some of the PDCCHs in which at least some of the same DCI is repeated in a plurality of slots. At this time, the UE may check the time offset between DCI reception and the corresponding PDSCH reception based on the last successfully decoded PDCCH (or CORESET, search space set) among the PDCCHs indicating the change of the PDSCH transmission beam.
다만 상술한 실시예는 예시에 불과하고 이에 한정되지 않으며 상기 time offset을 확인하기 위해 기준이 되는 PDCCH는 실시예 1-1) 내지 실시예 2-6) 중 어느 하나에 기반하여 결정될 수 있다.However, the above-described embodiment is merely an example and is not limited thereto, and the PDCCH serving as a reference for confirming the time offset may be determined based on any one of embodiments 1-1) to 2-6).
단말은 S2040 단계에서, 만약 상기 time offset이 상기 timeDurationForQCL보다 같거나 큰 경우에는, 상기 PDCCH가 지시하는 TCI state와 연계된 RS와 같은 빔으로 PDSCH가 전송된다고 가정할 수 있다.In step S2040, if the time offset is equal to or greater than the timeDurationForQCL, the UE may assume that the PDSCH is transmitted through the same beam as the RS associated with the TCI state indicated by the PDCCH.
예를 들어, PDCCH를 디코딩하여 PDSCH를 스케쥴링하는 DCI를 수신할 수 있다. 상기 DCI는 TCI field를 포함할 수 있다. 상기 TCI field는 빔 변경을 지시하지 않는 경우 0bit 일 수 있으며 빔 변경을 지시하기 위해 특정 길이의 bit (예를 들면 3bits)의 길이를 가질 수 있다. 이때 MAC CE를 통해 상기 TCI field의 각 codepoint는 적어도 하나의 활성화된 (activated) TCI state와 매핑되어 있을 수 있다. 단말은 상기 TCI field가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔을 통해 상기 PDSCH가 전송된다고 가정할 수 있다. 또는, 단말은 PDSCH의 DM-RS는 TCI state와 연계되어 설정된 RS와 QCLed됨을 가정할 수 있다.For example, the DCI for scheduling the PDSCH may be received by decoding the PDCCH. The DCI may include a TCI field. The TCI field may be 0 bits when not indicating a beam change, and may have a length of bits (eg, 3 bits) of a specific length to indicate a beam change. In this case, each codepoint of the TCI field may be mapped to at least one activated TCI state through the MAC CE. The UE may assume that the PDSCH is transmitted through the same beam as the RS configured in association with the TCI state indicated by the TCI field. Alternatively, the UE may assume that the DM-RS of the PDSCH is QCLed with the RS configured in association with the TCI state.
단말은 S2050 단계에서, 만약 상기 time offset이 상기 timeDurationForQCL보다 작은 경우에는, 상술한 default QCL 적용 동작을 수행할 수 있다. In step S2050, if the time offset is smaller than the timeDurationForQCL, the terminal may perform the above-described default QCL application operation.
구체적으로, 단말은 PDSCH 수신 빔을 상기 DCI에서 지시하는 PDSCH 전송 빔 (TCI)에 상응하는 수신 빔으로 변경이 불가능할 수 있다. 따라서 기지국과 단말이 특정 기준 (또는 미리 정해진 약속)에 따라 상기 DCI가 스케쥴링하는 PDSCH 송수신을 위한 빔을 결정할 수 있다.Specifically, the UE may not be able to change the PDSCH reception beam to a reception beam corresponding to the PDSCH transmission beam (TCI) indicated by the DCI. Accordingly, the base station and the terminal can determine a beam for PDSCH transmission and reception scheduled by the DCI according to a specific criterion (or a predetermined appointment).
상술한 실시예 5-2)를 예를 들면, 단말은 PDSCH를 수신하기 위한 빔으로 서빙셀 내 설정된 동일한 CORESETPoolIndex 내 복수의 CORESET들 중에서 가장 낮은(lowest) controlResourceSetId에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH의 QCL parameter를 적용할 수 있다. 즉 단말은 상기 PDCCH의 QCL parameter 와 연계된 RS와 PDSCH 수신을 위한 DMRS 포트가 서로 QCLed 된 것으로 간주할 수 있다. 여기서 상기 복수의 CORESET들은 서빙셀의 active BWP 내 PDSCH를 스케줄링하는 PDCCH로서 동일한 CORESETPoolIndex로 설정된 CORESET들을 의미할 수 있다.Taking the above-described embodiment 5-2) as an example, the UE uses the lowest controlResourceSetId among a plurality of CORESETs in the same CORESETPoolIndex set in the serving cell as a beam for receiving the PDSCH, the CORESET associated with the monitored search space. The QCL parameter of the PDCCH transmitted through the PDCCH may be applied. That is, the UE may consider that the RS associated with the QCL parameter of the PDCCH and the DMRS port for receiving the PDSCH are QCLed to each other. Here, the plurality of CORESETs may refer to CORESETs set to the same CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
다만 상술한 실시예는 예시에 불과하고 이에 한정되지 않으며 단말은 default QCL 적용 동작을 위해 상술한 실시예 3-1) 내지 실시예 6-6) 중 어느 하나에 기반하여 동작할 수 있다.However, the above-described embodiment is merely an example and is not limited thereto, and the terminal may operate based on any one of the above-described embodiments 3-1) to 6-6) for the default QCL application operation.
단말은 S2060 단계에서, 상술한 S2040 단계 또는 S2050 단계에 기반하여, 변경되는 빔을 통해 상기 기지국으로부터 적어도 하나의 PDSCH를 수신할 수 있다.In step S2060, the UE may receive at least one PDSCH from the base station through the changed beam based on the above-described step S2040 or S2050.
도 21은 본 개시의 일 실시예에 따른 기지국의 동작을 도시한 순서도이다.21 is a flowchart illustrating an operation of a base station according to an embodiment of the present disclosure.
기지국은 S2110단계에서, 단말과 설정메시지 (예를 들면 RRC 메시지)를 송수신할 수 있다. The base station may transmit and receive a configuration message (eg, an RRC message) with the terminal in step S2110.
기지국은 제어 채널과 관련된 설정 정보(예를 들면 ControlResourceSet, SearchSpace 등), 데이터 채널과 관련된 설정 정보 (PDSCH-Config 등), 또는 빔포밍에 관련된 파라미터 (예를 들면 tci-PresentinDCI 등)중 적어도 하나가 포함된 RRC 메시지를 단말로 전송할 수 있다. The base station has at least one of configuration information related to the control channel (eg, ControlResourceSet, SearchSpace, etc.), configuration information related to the data channel (PDSCH-Config, etc.), or parameters related to beamforming (eg, tci-PresentinDCI, etc.) The included RRC message may be transmitted to the terminal.
또한 기지국은 RRC 메시지를 통해 단말로 UE capability를 요청하는 메시지를 전송하고, 단말로부터 UE capability를 보고하는 메시지를 수신할 수 있다. 일 실시예에 따르면, 상기 UE capability는 서브캐리어 간격 (sub-carrier spacing, SCS) 마다 단말이 PDSCH 수신 빔 변경을 위해 필요한 시간의 임계값 (threshold) 정보 또는 SCS마다 PDSCH가 전송되는 빔이 변경되어 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값 정보 (timeDurationForQCL)가 포함될 수 있다. 상기 SCS는 예를 들면 60kHz, 120kHz를 포함할 수 있다. 상기 timeDurationForQCL은, 단말이 PDCCH를 수신하고, 상기 PDCCH가 스케쥴링하는 PDSCH 수신 빔을 변경하는데 필요한 OFDM 심볼의 최소 개수일 수 있다. 또는, 상기 timeDurationForQCL은 단말이 PDCCH를 수신하고 DCI에 포함된 공간 QCL 정보 (spatial QCL information)을 적용하는데 필요한 OFDM 심볼의 최소 개수일 수 있다. In addition, the base station may transmit a message for requesting UE capability to the terminal through an RRC message, and receive a message reporting UE capability from the terminal. According to an embodiment, the UE capability includes threshold information of the time required for the UE to change the PDSCH reception beam for each sub-carrier spacing (SCS) or the beam through which the PDSCH is transmitted for each SCS. Time threshold information (timeDurationForQCL) required for the UE to receive the PDSCH may be included. The SCS may include, for example, 60 kHz and 120 kHz. The timeDurationForQCL may be the minimum number of OFDM symbols required for a UE to receive a PDCCH and change a PDSCH reception beam scheduled by the PDCCH. Alternatively, the timeDurationForQCL may be the minimum number of OFDM symbols required for the UE to receive the PDCCH and apply spatial QCL information included in the DCI.
기지국은 S2120 단계에서, time domain, frequency domain 또는 spatial domain 측면에서 반복되는 복수의 PDCCH를 전송할 수 있다. 상기 반복되는 복수의 PDCCH는, 적어도 일부의 동일한 DCI를 포함하는 복수의 PDCCH들이 time domain, frequency domain 또는 spatial domain 측면에서 반복하여 전송 또는 수신되는 것을 의미할 수 있다. In step S2120, the base station may transmit a plurality of PDCCHs that are repeated in a time domain, a frequency domain, or a spatial domain. The repeated plurality of PDCCHs may mean that a plurality of PDCCHs including at least some of the same DCI are repeatedly transmitted or received in terms of time domain, frequency domain, or spatial domain.
이때 빔의 방향 (TCI), 할당되는 PDSCH의 FDRA(Frequency domain resource allocation) 정보, TDRA(Time domain resource allocation), HARQ ACK 전송 시점, PUCCH resource indicator 등의 정보는 전송되는 PDCCH의 타이밍에 따라서 동일하거나 변경될 수도 있다. 따라서 상기 반복되는 PDCCH 중에서 동일한 DCI 정보는 Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, Antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, DMRS sequence initialization 중 적어도 하나 이상을 포함할 수 있다.At this time, information such as beam direction (TCI), frequency domain resource allocation (FDRA) information of the allocated PDSCH, time domain resource allocation (TDRA), HARQ ACK transmission time, PUCCH resource indicator, etc. are the same depending on the timing of the transmitted PDCCH or It may be changed. Therefore, the same DCI information among the repeated PDCCHs is Carrier indicator, identifier for DCI format, BWP indicator, TDRA, VRB to PRB mapping, PRB bundling, size indicator, rate matching indicator, ZP CSI-RS Triggering, MCS, NDI, RV, It may include at least one or more of DAI, TPC command, PUCCH resource indicator, PDSCH to HARQ feedback timing indicator, antenna port and number of layers, TCI, SRS request, CBGTI, CGGFI, and DMRS sequence initialization.
기지국은 S2130 단계에서, 상기 복수의 PDCCH들 중 어느 하나의 PDCCH를 기준으로, 상기 PDCCH와 상응하는 PDSCH간의 time offset과 timeDurationForQCL를 비교할 수 있다.In step S2130, the base station may compare timeDurationForQCL with a time offset between the PDCCH and the corresponding PDSCH based on any one of the plurality of PDCCHs.
예를 들어 기지국은 단말이 보고한 UE capability에 포함된 timeDurationForQCL을 저장하고 있을 수 있다. 또한 기지국은 자원의 할당 및 스케줄링 알고리즘을 통해 상술한 실시예 1-1) 내지 실시예 2-6) 중 어느 하나에 기반하여 결정된 PDCCH와, 단말이 상기 PDCCH 내 DCI가 스케쥴링하는 PDSCH를 수신 시점을 알 수 있다. 따라서 기지국은 상기 결정된 PDCCH와 상응하는 PDSCH간의 time offset과 timeDurationForQCL를 비교할 수 있다.For example, the base station may store timeDurationForQCL included in the UE capability reported by the terminal. In addition, the base station receives the PDCCH determined based on any one of the above-described embodiments 1-1) to 2-6) through the resource allocation and scheduling algorithm, and the terminal receives the PDSCH scheduled by the DCI in the PDCCH. Able to know. Accordingly, the base station can compare the time offset between the determined PDCCH and the corresponding PDSCH and timeDurationForQCL.
기지국은 S2140 단계에서, 만약 상기 time offset이 상기 timeDurationForQCL보다 같거나 큰 경우에는, 상기 PDCCH가 지시하는 TCI state와 연계된 RS와 같은 빔으로 PDSCH 전송 빔을 변경할 수 있다.In step S2140, if the time offset is equal to or greater than the timeDurationForQCL, the base station may change the PDSCH transmission beam to the same beam as the RS associated with the TCI state indicated by the PDCCH.
예를 들어, 상기 PDCCH에 포함된 DCI는 TCI field를 포함할 수 있다. 상기 TCI field는 빔 변경을 지시하지 않는 경우 0bit 일 수 있으며 빔 변경을 지시하기 위해 특정 길이의 bit (예를 들면 3bits)의 길이를 가질 수 있다. 이때 MAC CE를 통해 상기 TCI field의 각 codepoint는 적어도 하나의 활성화된 (activated) TCI state와 매핑되어 있을 수 있다. 기지국은 단말이 상기 TCI field가 지시하는 TCI state와 연계되어 설정된 RS와 같은 빔을 통해 상기 PDSCH가 전송된다고 가정함을 전제로 PDSCH 전송 빔을 변경할 수 있다, 또는, 기지국은 단말이 PDSCH의 DM-RS는 TCI state와 연계되어 설정된 RS와 QCLed됨을 가정함을 전제로 PDSCH 전송 빔을 변경할 수 있다.For example, DCI included in the PDCCH may include a TCI field. The TCI field may be 0 bits when not indicating a beam change, and may have a length of bits (eg, 3 bits) of a specific length to indicate a beam change. In this case, each codepoint of the TCI field may be mapped to at least one activated TCI state through the MAC CE. The base station may change the PDSCH transmission beam on the premise that the UE assumes that the PDSCH is transmitted through the same beam as RS configured in association with the TCI state indicated by the TCI field. The RS may change the PDSCH transmission beam on the assumption that it is QCLed with the RS configured in association with the TCI state.
기지국은 S2150 단계에서, 만약 상기 time offset이 상기 timeDurationForQCL보다 작은 경우에는, 상술한 default QCL 적용 동작을 수행할 수 있다. In step S2150, if the time offset is smaller than the timeDurationForQCL, the base station may perform the above-described default QCL application operation.
구체적으로, 단말은 PDSCH 수신 빔을 상기 DCI에서 지시하는 PDSCH 전송 빔 (TCI)에 상응하는 수신 빔으로 변경이 불가능할 수 있다. 따라서 기지국과 단말이 특정 기준 (또는 미리 정해진 약속)에 따라 상기 DCI가 스케쥴링하는 PDSCH 송수신을 위한 빔을 결정할 수 있다.Specifically, the UE may not be able to change the PDSCH reception beam to a reception beam corresponding to the PDSCH transmission beam (TCI) indicated by the DCI. Accordingly, the base station and the terminal can determine a beam for PDSCH transmission and reception scheduled by the DCI according to a specific criterion (or a predetermined appointment).
상술한 실시예 5-2)를 예를 들면, 기지국은 PDSCH를 전송하기 위한 빔으로 단말과 연결된 서빙셀 내 복수의 CORESET들 중에서 가장 낮은(lowest) controlResourceSetId에서 모니터된 search space와 연계된 CORESET을 통해 전송되는 PDCCH의 QCL parameter를 적용할 수 있다. 즉 기지국은 단말이 상기 PDCCH의 QCL parameter 와 연계된 RS와 PDSCH 수신을 위한 DMRS 포트가 서로 QCLed 된 것으로 간주함을 전제로 PDSCH 전송 빔을 변경할 수 있다. 여기서 상기 복수의 CORESET들은 서빙셀의 active BWP 내 PDSCH를 스케줄링하는 PDCCH로서 동일한 CORESETPoolIndex로 설정된 CORESET들을 의미할 수 있다.Taking the above-described embodiment 5-2) as an example, the base station is a beam for transmitting the PDSCH, and among a plurality of CORESETs in the serving cell connected to the terminal, the lowest (lowest) controlResourceSetId through the CORESET associated with the monitored search space. The QCL parameter of the transmitted PDCCH may be applied. That is, the base station may change the PDSCH transmission beam on the premise that the terminal considers that the RS associated with the QCL parameter of the PDCCH and the DMRS port for PDSCH reception are QCLed to each other. Here, the plurality of CORESETs may refer to CORESETs set to the same CORESETPoolIndex as a PDCCH for scheduling a PDSCH in the active BWP of a serving cell.
다만 상술한 실시예는 예시에 불과하고 이에 한정되지 않으며 기지국은 default QCL 적용 동작을 위해 상술한 실시예 3-1) 내지 실시예 6-6) 중 어느 하나에 기반하여 동작할 수 있다.However, the above-described embodiment is merely an example and is not limited thereto, and the base station may operate based on any one of the above-described embodiments 3-1) to 6-6) for the default QCL application operation.
기지국은 S2160 단계에서, 상술한 S2140 단계 또는 S2150 단계에 기반하여, 변경되는 빔을 통해 상기 단말로 적어도 하나의 PDSCH를 전송할 수 있다.In step S2160, the base station may transmit at least one PDSCH to the terminal through the changed beam based on the above-described step S2140 or S2150.
도 22는 본 개시의 일 실시예에 따른 단말의 구조를 도시한 도면이다.22 is a diagram illustrating a structure of a terminal according to an embodiment of the present disclosure.
도 22를 참고하면, 단말은 송수신부 (2205), 제어부 (2210), 저장부 (2215)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 22 , the terminal may include a transceiver 2205 , a controller 2210 , and a storage 2215 . In the present invention, the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
송수신부 (2205)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(2205)는 예를 들어, 기지국으로부터 시스템 정보를 수신할 수 있으며, 동기 신호 또는 기준 신호를 수신할 수 있다. The transceiver 2205 may transmit/receive a signal to/from another network entity. The transceiver 2205 may receive, for example, system information from a base station, and may receive a synchronization signal or a reference signal.
제어부 (2210)은 본 발명에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (2210)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 구체적으로, 제어부(2210)는 본 발명의 실시예에 따른 적어도 일부의 DCI를 포함하는 PDCCH 반복 수신하고 PDSCH 수신 빔 방향을 결정하기 위해 본 발명에서 제안하는 동작을 제어할 수 있다. The controller 2210 may control the overall operation of the terminal according to the embodiment proposed in the present invention. For example, the controller 2210 may control a signal flow between blocks to perform an operation according to the above-described flowchart. Specifically, the controller 2210 may control the operation proposed by the present invention to repeatedly receive a PDCCH including at least some DCI according to an embodiment of the present invention and to determine a PDSCH receive beam direction.
저장부(2215)는 상기 송수신부 (2205)를 통해 송수신되는 정보 및 제어부 (2210)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부 (2215)는 단말이 PDSCH 수신 빔 변경을 위해 필요한 시간의 임계값 (threshold) 정보 등을 저장할 수 있다.The storage 2215 may store at least one of information transmitted and received through the transceiver 2205 and information generated through the control unit 2210 . For example, the storage unit 2215 may store threshold information of a time required for the UE to change the PDSCH reception beam.
도 23는 본 발명의 일 실시예에 따른 기지국의 구조를 도시한 도면이다. 23 is a diagram illustrating a structure of a base station according to an embodiment of the present invention.
도 23를 참고하면, 기지국은 송수신부 (2305), 제어부 (2310), 저장부 (2315)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 23 , the base station may include a transceiver 2305 , a control unit 2310 , and a storage unit 2315 . In the present invention, the controller may be defined as a circuit or an application specific integrated circuit or at least one processor.
송수신부 (2305)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(2305)는 예를 들어, 단말에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다. The transceiver 2305 may transmit/receive signals to and from other network entities. The transceiver 2305 may transmit, for example, system information to the terminal, and may transmit a synchronization signal or a reference signal.
제어부 (2310)은 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (2310)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 구체적으로, 제어부(2310)는 본 발명의 실시예에 따른 적어도 일부의 DCI를 포함하는 PDCCH 반복 전송하고 PDSCH 전송 빔 방향을 결정하기 위해 본 발명에서 제안하는 동작을 제어할 수 있다. The controller 2310 may control the overall operation of the base station according to the embodiment proposed in the present invention. For example, the controller 2310 may control a signal flow between blocks to perform an operation according to the above-described flowchart. Specifically, the controller 2310 may control the operation proposed by the present invention to repeatedly transmit a PDCCH including at least a part of DCI according to an embodiment of the present invention and to determine a PDSCH transmission beam direction.
저장부(2315)는 상기 송수신부 (2305)를 통해 송수신되는 정보 및 제어부 (2310을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부 (2215)는 단말이 PDSCH 수신 빔 변경을 위해 필요한 시간의 임계값 (threshold) 정보 등을 저장할 수 있다.The storage unit 2315 may store at least one of information transmitted/received through the transceiver 2305 and information generated through the control unit 2310. For example, the storage unit 2215 may be configured such that the terminal changes the PDSCH reception beam. It is possible to store threshold information of the time required for the .
본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.The embodiments of the present invention disclosed in the present specification and drawings are merely provided for specific examples to easily explain the technical content of the present invention and help the understanding of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those of ordinary skill in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein.

Claims (15)

  1. 무선 통신 시스템의 단말의 방법에 있어서,In the method of a terminal of a wireless communication system,
    적어도 하나의 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)의 반복 송수신을 설정하기 위한 설정메시지를 수신하는 단계;Receiving a configuration message for configuring repeated transmission and reception of at least one physical downlink control channel (PDCCH);
    물리적 하향링크 공유 채널 (physical downlink shared channel, PDSCH)을 스케쥴링하는 상기 적어도 하나의 PDCCH를 수신하는 단계;Receiving the at least one PDCCH scheduling a physical downlink shared channel (PDSCH);
    상기 적어도 하나의 PDCCH 중, 상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH를 결정하는 단계;determining, among the at least one PDCCH, a PDCCH related to a change in a beam through which the PDSCH is transmitted;
    상기 결정된 PDCCH에 포함된 하향링크 제어 정보 (downlink control information, DCI)에 기반하여, 상기 PDSCH가 전송되는 빔의 변경을 확인하는 단계를 포함하는 것을 특징으로 하는 방법.Based on downlink control information (DCI) included in the determined PDCCH, the method comprising the step of confirming a change in the beam through which the PDSCH is transmitted.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 확인 결과에 기반하여, 상기 PDSCH를 수신하기 위한 빔을 결정하는 단계; 및determining a beam for receiving the PDSCH based on a result of the identification; and
    상기 결정된 빔을 통해 상기 PDSCH를 수신하는 단계를 더 포함하고, Further comprising the step of receiving the PDSCH through the determined beam,
    상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH는, 상기 설정메시지에 기반하여 결정되는 것을 특징으로 하는 방법.The PDCCH related to the change of the beam through which the PDSCH is transmitted is determined based on the configuration message.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 단말의 능력 정보를 요청하는 메시지를 수신하는 단계; 및receiving a message requesting capability information of the terminal; and
    상기 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값에 대한 정보를 포함하는 상기 단말의 능력 정보를 보고하는 메시지를 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.The method further comprising the step of transmitting, by the terminal, a message reporting capability information of the terminal including information on a time threshold required for receiving the PDSCH.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 PDSCH가 전송되는 빔의 변경을 확인하는 단계는,The step of confirming the change of the beam through which the PDSCH is transmitted comprises:
    상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH의 자원의 마지막 심볼부터, 상기 PDSCH의 자원의 첫 심볼까지의 시간 차이 (time offset)를 확인하는 단계; 및 checking a time offset from a last symbol of a resource of a PDCCH related to a change in a beam through which the PDSCH is transmitted to a first symbol of a resource of the PDSCH; and
    상기 확인된 시간 차이 및 상기 단말의 능력 정보에 기반하여, 상기 PDSCH가 전송되는 빔의 변경을 확인하는 단계를 포함하는 것을 특징으로 하는 방법.Based on the confirmed time difference and the capability information of the terminal, the method comprising the step of confirming a change in the beam through which the PDSCH is transmitted.
  5. 무선 통신 시스템의 기지국의 방법에 있어서,In the method of a base station of a wireless communication system,
    적어도 하나의 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)의 반복 송수신을 설정하기 위한 설정메시지를 전송하는 단계;transmitting a configuration message for configuring repeated transmission/reception of at least one physical downlink control channel (PDCCH);
    물리적 하향링크 공유 채널 (physical downlink shared channel, PDSCH)을 스케쥴링하는 상기 적어도 하나의 PDCCH를 전송하는 단계;transmitting the at least one PDCCH scheduling a physical downlink shared channel (PDSCH);
    상기 적어도 하나의 PDCCH 중, 상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH를 결정하는 단계;determining, among the at least one PDCCH, a PDCCH related to a change in a beam through which the PDSCH is transmitted;
    상기 결정된 PDCCH에 포함된 하향링크 제어 정보 (downlink control information, DCI)에 기반하여, 상기 PDSCH가 전송되는 빔을 결정하는 단계를 포함하는 것을 특징으로 하는 방법.and determining a beam through which the PDSCH is transmitted based on downlink control information (DCI) included in the determined PDCCH.
  6. 제 5 항에 있어서, 6. The method of claim 5,
    상기 결정된 빔을 통해 상기 PDSCH를 전송하는 단계를 더 포함하고,Further comprising the step of transmitting the PDSCH through the determined beam,
    상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH는, 상기 설정메시지에 기반하여 결정되는 것을 특징으로 하는 방법.The PDCCH related to the change of the beam through which the PDSCH is transmitted is determined based on the configuration message.
  7. 제 5 항에 있어서, 6. The method of claim 5,
    단말의 능력 정보를 요청하는 메시지를 전송하는 단계; 및transmitting a message requesting capability information of the terminal; and
    상기 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값에 대한 정보를 포함하는 상기 단말의 능력 정보를 보고하는 메시지를 수신하는 단계를 더 포함하고,Receiving, by the terminal, a message reporting capability information of the terminal including information on a time threshold required for receiving the PDSCH,
    상기 PDSCH가 전송되는 빔을 결정하는 단계는,The step of determining the beam through which the PDSCH is transmitted comprises:
    상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH의 자원의 마지막 심볼부터, 상기 PDSCH의 자원의 첫 심볼까지의 시간 차이 (time offset)를 확인하는 단계; 및 checking a time offset from a last symbol of a resource of a PDCCH related to a change in a beam through which the PDSCH is transmitted to a first symbol of a resource of the PDSCH; and
    상기 확인된 시간 차이 및 상기 단말의 능력 정보에 기반하여, 상기 PDSCH가 전송되는 빔을 결정하는 단계를 포함하는 것을 특징으로 하는 방법.and determining a beam through which the PDSCH is transmitted based on the identified time difference and the capability information of the terminal.
  8. 무선 통신 시스템의 단말에 있어서,In the terminal of a wireless communication system,
    송수신부; 및transceiver; and
    적어도 하나의 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)의 반복 송수신을 설정하기 위한 설정메시지를 수신하도록 상기 송수신부를 제어하고, 물리적 하향링크 공유 채널 (physical downlink shared channel, PDSCH)을 스케쥴링하는 상기 적어도 하나의 PDCCH를 수신하도록 상기 송수신부를 제어하고, 상기 적어도 하나의 PDCCH 중, 상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH를 결정하도록 제어하고, 상기 결정된 PDCCH에 포함된 하향링크 제어 정보 (downlink control information, DCI)에 기반하여, 상기 PDSCH가 전송되는 빔의 변경을 확인하도록 제어하는 제어부를 포함하는 것을 특징으로 하는 단말.Controls the transceiver to receive a configuration message for configuring repeated transmission/reception of at least one physical downlink control channel (PDCCH), and scheduling a physical downlink shared channel (PDSCH) Controls the transceiver to receive the at least one PDCCH, controls to determine a PDCCH related to a change in a beam through which the PDSCH is transmitted from among the at least one PDCCH, and downlink control information (downlink) included in the determined PDCCH. control information, DCI), the terminal comprising a control unit for controlling to check the change of the beam through which the PDSCH is transmitted.
  9. 제 8 항에 있어서, 9. The method of claim 8,
    상기 제어부는,The control unit is
    상기 확인 결과에 기반하여, 상기 PDSCH를 수신하기 위한 빔을 결정하도록 제어하고, 상기 결정된 빔을 통해 상기 PDSCH를 수신하도록 상기 송수신부를 제어하고,Based on the confirmation result, control to determine a beam for receiving the PDSCH, and control the transceiver to receive the PDSCH through the determined beam,
    상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH는, 상기 설정메시지에 기반하여 결정되는 것을 특징으로 하는 단말.The PDCCH related to the change of the beam through which the PDSCH is transmitted is determined based on the configuration message.
  10. 제 8 항에 있어서,9. The method of claim 8,
    상기 제어부는,The control unit is
    상기 단말의 능력 정보를 요청하는 메시지를 수신하도록 상기 송수신부를 제어하고, 상기 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값에 대한 정보를 포함하는 상기 단말의 능력 정보를 보고하는 메시지를 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 단말.The transceiver controls the transceiver to receive a message requesting the capability information of the terminal, and the terminal transmits and receives a message reporting the capability information of the terminal including information on a time threshold required for the PDSCH reception A terminal, characterized in that for controlling the unit.
  11. 제 10 항에 있어서,11. The method of claim 10,
    상기 제어부는,The control unit is
    상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH의 자원의 마지막 심볼부터, 상기 PDSCH의 자원의 첫 심볼까지의 시간 차이 (time offset)를 확인하도록 제어하고, 상기 확인된 시간 차이 및 상기 단말의 능력 정보에 기반하여, 상기 PDSCH가 전송되는 빔의 변경을 확인하도록 제어하는 것을 특징으로 하는 단말.Control to check a time offset from the last symbol of the resource of the PDCCH related to the change of the beam in which the PDSCH is transmitted to the first symbol of the resource of the PDSCH, the checked time difference and the capability information of the terminal Based on , the terminal, characterized in that the control to confirm the change of the beam through which the PDSCH is transmitted.
  12. 무선 통신 시스템의 기지국에 있어서,In a base station of a wireless communication system,
    송수신부; 및transceiver; and
    적어도 하나의 물리적 하향링크 제어 채널 (physical downlink control channel, PDCCH)의 반복 송수신을 설정하기 위한 설정메시지를 전송하도록 상기 송수신부를 제어하고, 물리적 하향링크 공유 채널 (physical downlink shared channel, PDSCH)을 스케쥴링하는 상기 적어도 하나의 PDCCH를 전송하도록 상기 송수신부를 제어하고, 상기 적어도 하나의 PDCCH 중, 상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH를 결정하도록 제어하고, 상기 결정된 PDCCH에 포함된 하향링크 제어 정보 (downlink control information, DCI)에 기반하여, 상기 PDSCH가 전송되는 빔을 결정하도록 제어하는 제어부를 포함하는 것을 특징으로 하는 기지국.Controls the transceiver to transmit a configuration message for configuring repeated transmission/reception of at least one physical downlink control channel (PDCCH), and scheduling a physical downlink shared channel (PDSCH) Controls the transceiver to transmit the at least one PDCCH, controls to determine a PDCCH related to a change in a beam through which the PDSCH is transmitted, from among the at least one PDCCH, and downlink control information included in the determined PDCCH. control information, DCI), the base station comprising a control unit for controlling to determine the beam through which the PDSCH is transmitted.
  13. 제 12 항에 있어서,13. The method of claim 12,
    상기 제어부는,The control unit is
    상기 결정된 빔을 통해 상기 PDSCH를 전송하도록 상기 송수신부를 제어하고,controlling the transceiver to transmit the PDSCH through the determined beam;
    상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH는, 상기 설정메시지에 기반하여 결정되는 것을 특징으로 하는 기지국.The PDCCH related to the change of the beam through which the PDSCH is transmitted is determined based on the configuration message.
  14. 제 12 항에 있어서,13. The method of claim 12,
    상기 제어부는, The control unit is
    단말의 능력 정보를 요청하는 메시지를 전송하도록 상기 송수신부를 제어하고, 상기 단말이 상기 PDSCH 수신을 위해 필요한 시간 임계값에 대한 정보를 포함하는 상기 단말의 능력 정보를 보고하는 메시지를 수신하도록 상기 송수신부를 제어하는 것을 특징으로 하는 기지국.The transceiver unit controls the transceiver to transmit a message requesting the capability information of the terminal, and the transceiver unit to receive a message reporting the capability information of the terminal including information on a time threshold required for the PDSCH reception by the terminal Base station, characterized in that the control.
  15. 제 14 항에 있어서,15. The method of claim 14,
    상기 제어부는,The control unit is
    상기 PDSCH가 전송되는 빔의 변경과 관련된 PDCCH의 자원의 마지막 심볼부터, 상기 PDSCH의 자원의 첫 심볼까지의 시간 차이 (time offset)를 확인하도록 제어하고, 상기 확인된 시간 차이 및 상기 단말의 능력 정보에 기반하여, 상기 PDSCH가 전송되는 빔을 결정하도록 제어하는 것을 특징으로 하는 기지국.Control to check a time offset from the last symbol of the resource of the PDCCH related to the change of the beam in which the PDSCH is transmitted to the first symbol of the resource of the PDSCH, the checked time difference and the capability information of the terminal Based on the base station, characterized in that the control to determine the beam through which the PDSCH is transmitted.
PCT/KR2021/016345 2020-11-13 2021-11-10 Method and device for pdcch repeated reception and transmission in wireless communication system WO2022103151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0152260 2020-11-13
KR1020200152260A KR20220065972A (en) 2020-11-13 2020-11-13 Method and apparatus for repetitive pdcch transmission and reception in a wireless communication system

Publications (1)

Publication Number Publication Date
WO2022103151A1 true WO2022103151A1 (en) 2022-05-19

Family

ID=81602551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016345 WO2022103151A1 (en) 2020-11-13 2021-11-10 Method and device for pdcch repeated reception and transmission in wireless communication system

Country Status (2)

Country Link
KR (1) KR20220065972A (en)
WO (1) WO2022103151A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012665A1 (en) * 2013-07-26 2015-01-29 엘지전자 주식회사 Method for transmitting signal for mtc and apparatus for same
WO2019066618A1 (en) * 2017-09-29 2019-04-04 엘지전자 주식회사 Method for transmitting and receiving data on basis of qcl in wireless communication system, and device therefor
US20200229161A1 (en) * 2019-05-01 2020-07-16 Manasa Raghavan Transmission configuration indication (tci) state switching for 5g nr

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012665A1 (en) * 2013-07-26 2015-01-29 엘지전자 주식회사 Method for transmitting signal for mtc and apparatus for same
WO2019066618A1 (en) * 2017-09-29 2019-04-04 엘지전자 주식회사 Method for transmitting and receiving data on basis of qcl in wireless communication system, and device therefor
US20200229161A1 (en) * 2019-05-01 2020-07-16 Manasa Raghavan Transmission configuration indication (tci) state switching for 5g nr

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on TCI State Switching Requirements", 3GPP DRAFT; R4-1902937 TCI STATE SWITCHING REQT, vol. RAN WG4, 1 April 2019 (2019-04-01), Xi'an, China, pages 1 - 6, XP051713432 *
MEDIATEK INC.: "Blind/HARQ-less repetitions for scheduled DL-SCH in LTE HRLLC", 3GPP DRAFT; R1-1805993-MEDIATEK-SCHEDULED DL-SCH IN LTE HRLLC, vol. RAN WG1, 10 May 2018 (2018-05-10), BuSan, South Korea, pages 1 - 7, XP051461552 *

Also Published As

Publication number Publication date
KR20220065972A (en) 2022-05-23

Similar Documents

Publication Publication Date Title
WO2021034120A1 (en) Method and apparatus for indicating beam failure recovery operation of terminal in wireless communication system
WO2020017893A1 (en) Adaptation of communication parameters for a user equipment
WO2018169320A1 (en) Method and apparatus for downlink control information design for network coordination
WO2021182837A1 (en) Method and apparatus for transmitting and receiving pdcch in wireless communication system
WO2021040338A1 (en) Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system
WO2021172942A1 (en) Method and apparatus for supporting beam indication channel
WO2018097586A1 (en) Method and apparatus for multiplexing uplink channels in wireless cellular communication system
WO2021206485A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2016175486A1 (en) Method and lc apparatus for receiving downlink control channel
WO2018062976A1 (en) Method and apparatus for transmitting uplink control signal in wireless cellular communication system
WO2018030783A1 (en) Method and device for channel transmission in wireless cellular communication system
WO2021162483A1 (en) Method and apparatus for transmitting or receiving downlink channel from multiple transmission/reception points in wireless communication system
WO2018016904A1 (en) Method and device for setting plurality of dmrs structures in wireless cellular communication system
WO2021025362A1 (en) Antenna adaptation method and device in wireless communication system
WO2019194664A1 (en) Method for transmitting and receiving data in wireless communication system, and device therefor
WO2021133121A1 (en) Method and apparatus for repeatedly transmitting uplink data for network cooperative communication
WO2020067828A1 (en) Detecting method and transmitting method of physical downlink control channel, and corresponding equipments
EP3583734A1 (en) Method and apparatus for downlink control information design for network coordination
WO2021075939A1 (en) Method and apparatus for transmitting and receiving multiple data in wireless cooperative communication system
WO2022025628A1 (en) Method and device for transmitting/receiving control information in wireless cooperative communication system
WO2022154582A1 (en) Method and apparatus for configuration of repetitive transmission and reception of downlink control information in wireless communication system
WO2021066536A1 (en) Method and apparatus for transmitting data for wireless communication
WO2023068709A1 (en) Method and device for estimating self-interference channel in full-duplex communication system
WO2023055217A1 (en) Device and method for transmitting or receiving control information and data in communication system
WO2018174606A1 (en) Method and apparatus for transmitting uplink control channel in wireless cellular communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892318

Country of ref document: EP

Kind code of ref document: A1