WO2022102878A1 - Human body dummy device having adjustable mechanical impedance - Google Patents

Human body dummy device having adjustable mechanical impedance Download PDF

Info

Publication number
WO2022102878A1
WO2022102878A1 PCT/KR2021/003539 KR2021003539W WO2022102878A1 WO 2022102878 A1 WO2022102878 A1 WO 2022102878A1 KR 2021003539 W KR2021003539 W KR 2021003539W WO 2022102878 A1 WO2022102878 A1 WO 2022102878A1
Authority
WO
WIPO (PCT)
Prior art keywords
human body
muscle
coupled
dummy
simulating
Prior art date
Application number
PCT/KR2021/003539
Other languages
French (fr)
Korean (ko)
Inventor
강상훈
강현아
민석준
권순철
Original Assignee
울산과학기술원
대한민국(국립재활원장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원, 대한민국(국립재활원장) filed Critical 울산과학기술원
Publication of WO2022102878A1 publication Critical patent/WO2022102878A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/32Anatomical models with moving parts

Definitions

  • the present invention relates to a human body dummy, and more particularly, to a human body dummy device that can be used to verify reliability and accuracy of an impedance estimation robot because mechanical impedance can be adjusted.
  • Stroke causes a change in muscle stiffness in the patient, which leads to physical disability such as upper extremity stiffness.
  • the mechanical impedance measurement of the upper extremity is performed by a human measurer applying a force to the tip of the patient's upper extremity with his/her hand and sensing the resistance. Since this method relies on the senses of the measurer, it may vary depending on the skill and experience of the measurer, and even the same measurer may change from time to time, so there is a limit to objective diagnosis.
  • the mechanical impedance estimation robot is a robot that measures the mechanical impedance of the upper extremities for rehabilitation.
  • a body connection part connected to a body such as a human hand, a driving part driving the body connection part, and a force applied to the body connection part are sensed
  • a force sensor and a position sensor for detecting the position of the body connection part are provided, and the mechanical impedance of the subject is calculated by using the data measured by the force sensor and the position sensor.
  • a human body dummy device capable of adjusting mechanical impedance, comprising: a support structure; and an upper limb dummy coupled to the support structure to simulate an upper limb of a human body, wherein the upper limb dummy includes an humerus imitation body simulating an upper arm bone of a human body, and a forearm bone imitation body simulating a forearm bone of the human body;
  • a shoulder joint replica that simulates the shoulder joint of a human body and rotatably couples the upper arm bone model to the support structure in three degrees of freedom, and the upper arm bone model and the forearm bone model by simulating the elbow joint of the human body
  • a human body dummy device comprising: an elbow joint simulating part for rotatably coupling between them in one degree of freedom;
  • a human body dummy device capable of adjusting mechanical impedance, comprising: a support structure; and an upper extremity dummy coupled to the supporting structure and having a muscle simulating structure simulating muscles constituting the upper extremities of the human body, wherein the supporting structure adjusts a three-dimensional position of the upper extremity dummy, a human body dummy device is provided .
  • the human body dummy device includes an upper arm bone base body that simulates the upper arm bone of the human body, a forearm bone base body that simulates the forearm bone of the human body, and the upper arm bone base body that simulates a shoulder joint of a human body a shoulder joint imitation part for rotatably coupling to the support structure in 3 degrees of freedom; It includes an upper extremity dummy having a joint mimicking part and a muscle mimicking structure that mimics the muscles constituting the upper extremities of the human body, wherein the muscle mimicking structure is provided with an elastic member whose elastic force is controlled, so that the mechanical impedance of the upper extremity dummy can be adjusted It is suitable for verifying the reliability and accuracy of the robot estimating the mechanical impedance of the upper extremity.
  • FIG. 1 and 2 are perspective views of a human body dummy device capable of adjusting mechanical impedance according to an embodiment of the present invention.
  • FIGS. 3 and 4 are perspective views showing the upper extremity dummy in the human body dummy device capable of adjusting the mechanical impedance shown in FIGS. 1 and 2 .
  • FIGS. 5 to 9 are perspective views illustrating a shoulder joint simulating part and its periphery in the human body dummy device capable of adjusting the mechanical impedance shown in FIGS. 1 and 2 .
  • FIG. 1 and 2 are perspective views of a human upper extremity dummy device capable of adjusting mechanical impedance according to an embodiment of the present invention.
  • a human body dummy device 100 (hereinafter, abbreviated as 'human body dummy device') capable of controlling mechanical impedance according to an embodiment of the present invention includes a support structure 110 and a supporting structure. and an upper limb dummy 150 coupled to the structure 110 .
  • the support structure 110 includes a foundation coupling plate 120 , a pillar 130 extending upward from the foundation coupling plate 120 in a height direction, and a dummy assembly 140 positioned at the upper end of the pillar 130 . do.
  • the support structure 110 has a structure capable of moving the position of the upper extremity dummy 150 in three dimensions.
  • an x-y-z orthogonal system is introduced, wherein the x-axis and the y-axis extend on a horizontal plane, and the z-axis is set to extend in the height direction.
  • the base coupling plate 120 is generally a plate-shaped member, and is fixed to a base (not shown) on which the human body dummy device 100 is installed.
  • a plurality of bottom fastening holes 121 are formed in the base coupling plate 120 .
  • the plurality of bottom fastening holes 121 are in the form of a slot extending long and thin, and all extend parallel to the x-axis.
  • the base coupling plate 120 may be fixed to the base (not shown) by bolts to enable position adjustment along the x-axis.
  • a female screw hole to which a bolt is fastened is formed on the upper surface of the base (not shown). Accordingly, the x-axis position of the upper extremity dummy 150 coupled to the support structure 110 is adjusted.
  • the pillar 130 is coupled to the base coupling plate 120 .
  • the pillar 130 extends upward from the foundation coupling plate 120 in the height direction (vertical direction).
  • the pillar 130 includes a fixed pillar 131 fixed to the base coupling plate 120 and a movable pillar 135 that is movably coupled to the fixed pillar 131 .
  • the fixed pillar 131 extends along the height direction, and the lower end of the fixed pillar 131 is coupled to the base coupling plate 120 to be fixed.
  • a movable pillar 135 is movably coupled to the fixed pillar 131 in the height direction.
  • the movable pillar 135 is movably coupled to the fixed pillar 131 along the height direction so that the overall height of the pillar 130 is adjusted. Accordingly, the z-axis position of the upper extremity dummy 150 is adjusted.
  • a plurality of pillar fastening holes 136 are formed in the movable pillar part 135 .
  • the plurality of pillar fastening holes 136 are in the form of a slot that is elongated and thin, and all extend parallel to the z-axis.
  • the movable pillar 135 may be fixed to the fixed pillar 135 by a bolt to enable height adjustment along the z-axis.
  • a female screw hole to which a bolt is fastened is formed in a side surface of the fixing pillar 135 .
  • the pillar fastening hole 136 is formed in the movable pillar 135 , but it may be formed in the fixed pillar 131 differently from this, and this also falls within the scope of the present invention.
  • a dummy assembly 140 is coupled to the upper end of the movable pillar 135 .
  • the dummy assembly 140 is fixed to the upper end of the movable pillar 135 so as to be movable in parallel with the y-axis.
  • the upper extremity dummy 150 is coupled to the dummy assembly 140 .
  • Upper limb dummy coupled to the dummy assembly 140 by the base coupling plate 120 whose position is adjusted in the x-axis direction, the column 130 whose height is adjusted, and the dummy assembly 140 whose position is adjusted in the y-axis direction ( 150) is adjusted.
  • the dummy coupling body 140 includes a basic coupling part 141 and a dummy coupling part 145 forming an integral body.
  • the base coupling part 141 is generally plate-shaped, and is coupled to the movable pillar part 135 in a form that covers the upper end of the movable pillar part 135 .
  • a plurality of upper fastening holes 142 are formed in the base coupling part 141 .
  • the plurality of upper fastening holes 142 are in the form of a slot extending long and thin, and all extend parallel to the y-axis. Through the plurality of upper fastening holes 142 , the dummy assembly 140 may be fixed to the upper end of the movable pillar 135 by a bolt to enable position adjustment along the y-axis.
  • a female screw hole to which a bolt is fastened is formed at the upper end of the movable pillar part 135 . Accordingly, the y-axis position of the upper extremity dummy 150 coupled to the dummy assembly 140 is adjusted.
  • the upper fastening hole 142 is described as being formed in the foundation coupling portion 141, but may be formed in the movable pillar portion 135 differently from this, which also falls within the scope of the present invention.
  • the dummy coupling part 145 is in the form of a bar extending laterally from the foundation coupling part 141 , and is integrally formed with the foundation coupling part 141 .
  • the upper extremity dummy 150 is coupled to the dummy coupling part 145 .
  • the dummy coupling part 145 may be understood to correspond to the shoulder blade of the human body.
  • the upper limb dummy 150 is coupled to the dummy coupling part 145 of the dummy coupler 140 .
  • the three-dimensional position of the upper extremity dummy 150 may be changed by the base structure 110 so that the upper extremity dummy 150 can take various postures.
  • the upper limb dummy 150 mimics the upper limb of the human body, and includes an upper arm bone base 160 and a forearm bone base body. (165), and a shoulder joint imitation unit 170, and an elbow joint imitation unit 175, and a muscle imitation structure 180.
  • the upper extremity dummy 150 is positioned to be spaced apart from one side of the pillar 130, and for convenience of explanation, the side of the pillar 130 with respect to the upper extremity dummy 150 is referred to as the inner side, and the opposite side of the pillar 130 is referred to as the inner side. This is called the outer side.
  • the humerus base body 160 simulates the humerus of the human body, and has a bar shape extending in a substantially straight line.
  • the first end 161 of the humerus base body 160 is coupled to the dummy assembly 140 by the shoulder joint imitation unit 170, and the second end 162 of the humerus base body 160 is the elbow joint. It is coupled with the forearm base body 165 by the base part 175.
  • the muscle mimic structure 180 is coupled to the humerus base body 160 .
  • the forearm base body 165 mimics the forearm bone of the human body, and has a bar shape extending in a substantially straight line.
  • the first end 166 of the forearm base 165 is coupled to the second end 162 of the forearm base 160 by the elbow joint simulant 175 .
  • the muscle mimic structure 180 is coupled to the forearm base body 165 .
  • a robot coupling member 168 connected to a mechanical impedance estimation robot (not shown) is coupled and fixed to the forearm base body 165 .
  • the robotic coupling member 168 extends further along the longitudinal direction of the forearm base member 165 from the second end 167 of the forearm base member 165 in a state coupled to the forearm base member 165 .
  • a portion 169 is provided.
  • a mechanical impedance estimating robot (not shown) and a connecting device (not shown) for mechanically connecting the extension 169 are coupled to the extension 169 . That is, it can be understood that the extension 169 corresponds to the hand of the human body.
  • the upper extremity dummy 150 is described as being connected to the mechanical impedance estimation robot (not shown) through the robot coupling member 168, but unlike this, the mechanical impedance estimation robot (not shown) directly to the forearm base body 165 time) may be connected, which also falls within the scope of the present invention.
  • the shoulder joint imitation unit 170 is a simulating the shoulder joint of the human body, and the first end 161 of the humerus imitation body 160 is coupled to the dummy coupling unit 145 of the dummy coupler 140 . Due to the shoulder joint imitation unit 170 , the upper arm bone imitation body 160 is capable of rotation in 3 degrees of freedom with respect to the dummy assembly 140 . In this embodiment, a structure in which a universal joint and a bearing are combined as the shoulder joint imitation unit 170 is described as being used so that three degrees of freedom rotation of the humerus imitation body 160 with respect to the dummy assembly 140 is possible.
  • the shoulder joint simulating part 170 is generally located at the end of the dummy coupling part 145 .
  • the elbow joint mimic part 175 is a simulating the elbow joint of the human body, and couples the second end 162 of the upper arm bone base 160 and the first end 166 of the forearm base body 165 to each other.
  • the forearm bone base 165 by the elbow joint mimetic part 175 can rotate one degree of freedom with respect to the upper arm bone base body 160 about the axis of rotation (A).
  • a hinge providing one degree of freedom of rotation is used as the elbow joint replica 175 .
  • the muscle imitation structure 180 is a simulating the main muscles constituting the upper extremities of the human body, the first muscle imitation unit 181 , the second muscle imitation unit 182 , the third muscle imitation unit 183 , and the fourth muscle Simulating unit 184 , fifth muscle mimicking unit 185 , sixth muscle mimicking unit 186 , seventh muscle simulating unit 187 , eighth muscle simulating unit 188 , ninth muscle simulating unit 189 . to provide
  • the first muscle simulating unit 181 is a simulating the brachioradialis of the human body, and is coupled to the upper arm bone base 160 and the forearm bone base body 165 .
  • the first muscle imitation unit 181 includes a first elastic member 1811 providing an elastic force corresponding to a tensile load, and a first elastic member 1811 for the upper arm bone base body 160 and the forearm bone base body 165 .
  • a first elastic force adjusting means 1814 for adjusting the elastic force by the first and second A coupling wires 1812 and 1813 and the first elastic member 1811 for coupling to each other are provided.
  • the first elastic member 1811 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the stiffness of the radial brachial muscle of the human body is simulated by the elastic force generated by the first elastic member 1811 .
  • the elastic force generated by the first elastic member 1811 is adjusted by the first elastic force adjusting means 1814 .
  • the 1A bonding wire 1812 and the 2A bonding wire 1813 are respectively connected.
  • Each of the 1A bonding wire 1812 and the 2A bonding wire 1813 is connected to both ends of the first elastic member 1811 .
  • the end of the 1A bonding wire 1812 is coupled to and fixed to the humerus base body 160 by a coupling means such as a bolt, and the end of the 2A coupling wire 1813 is fixed to the forearm by coupling means such as a bolt. It is coupled to and fixed to the first coupling aid 1815 protruding from the body 165 .
  • the position where the end of the 1A bonding wire 1812 and the end of the 2A bonding wire 1813 are coupled is determined so that the first muscle simulating unit 181 can simulate the brachial radial muscle of the human body.
  • the elastic force by the first elastic member 1811 coupled to the forearm base body 160 and the forearm base body 165 by the 1A coupling wire 1812 and the 2A coupling wire 1813 is the forearm bone base body
  • a rotational force is generated to rotate the 165 in the first rotational direction (the rotational direction indicated by the solid line) with respect to the rotational axis A of the elbow joint simulating part 175 with respect to the humerus base body 160 .
  • the 1A coupling wire 1812 is coupled to the humerus base 160 at a position P11 between the elbow joint imitation part 175 and the longitudinal center of the humerus base body 160 .
  • the first coupling aid 1815 is positioned adjacent to the second end 167 of the forearm base body 165
  • the 2A coupling wire 1813 is at the end of the first coupling aid 1815 . coupled to position P12.
  • the first elastic force adjusting means 1814 adjusts the elastic force by the first elastic member 1811 .
  • the first elastic force adjusting means 1814 is described as adjusting the elastic force by the first elastic member 1811 by adjusting the length of the 1A bonding wire 1812 or the 2A bonding wire 1813.
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the first elastic force adjusting means ( When the length of the 1A bonding wire 1812 or the 2A bonding wire 1813 is changed using the 1814), the length of the first elastic member 1811, which is a tension coil spring, is changed to adjust the elastic force.
  • the second muscle mimicking unit 182 is a simulating the brachialis of the human body, and is coupled to the upper arm bone base 160 and the forearm bone base body 165 .
  • the second muscle imitation unit 182 includes a second elastic member 1821 that provides an elastic force corresponding to a tensile load, and a second elastic member 1821 for the upper arm bone base 160 and the forearm bone base body 165 .
  • a second elastic force adjusting means 1824 for adjusting the elastic force by the first and second B bonding wires 1822 and 1823 and the second elastic member 1821 for coupling to each other is provided.
  • the second elastic member 1821 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the hardness of the brachial muscle of the human body is simulated by the elastic force generated by the second elastic member 1821 .
  • the elastic force generated by the second elastic member 1821 is adjusted by the second elastic force adjusting means 1824 .
  • the 1B bonding wire 1822 and the 2B bonding wire 1823 are respectively connected.
  • Each of the 1B bonding wire 1822 and the 2B bonding wire 1823 is connected to both ends of the second elastic member 1821 .
  • the end of the 1B bonding wire 1822 is coupled to and fixed to the humerus base body 160 by a coupling means such as a bolt, and the end of the 2B coupling wire 1823 is fixed by a coupling means such as a bolt. It is coupled to the body 165 and fixed.
  • the position where the end of the 1B bonding wire 1822 and the end of the 2B bonding wire 1823 are coupled is determined so that the second muscle simulating unit 182 can simulate the brachial muscle of the human body.
  • the elastic force by the second elastic member 1821 coupled to the forearm base body 160 and the forearm base body 165 by the 1B coupling wire 1822 and the 2B coupling wire 1823 is the forearm base body.
  • a rotational force is generated to rotate the 165 in the first rotational direction (the rotational direction indicated by the solid line) with respect to the rotational axis A of the elbow joint simulating part 175 with respect to the humerus base body 160 .
  • the 1B coupling wire 1822 is coupled to the humerus base 160 at a position P21 between the elbow joint simulant 175 and the longitudinal center of the humerus base 160 .
  • the position (P21) where the 1B coupling wire 1822 is coupled to the humerus base body 160 is higher than the position where the 1A coupling wire 1812 is coupled to the humerus base body 160, the elbow joint mimetic part 175.
  • the 2B coupling wire 1823 is a forearm base at a position (P22) between the forearm base part 175 and the longitudinal center of the forearm base body 165 to the forearm base body 165. coupled adjacent to the first end 166 of 165 .
  • the second elastic force adjusting means 1824 adjusts the elastic force by the second elastic member 1821 .
  • the second elastic force adjusting means 1824 is described as adjusting the elastic force by the second elastic member 1821 by adjusting the length of the 1B bonding wire 1822 or the 2B bonding wire 1823.
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the second elastic force adjusting means ( When the length of the 1B bonding wire 1822 or the 2B bonding wire 1823 is changed using 1824), the length of the second elastic member 1821, which is a tension coil spring, is changed to control the elastic force.
  • the third muscle simulating unit 183 simulates the long head of biceps brachii of the human body, and is coupled to the dummy coupling part 145 and the forearm base body 165 .
  • the third muscle simulating unit 183 includes a third elastic member 1831 that provides an elastic force corresponding to a tensile load, and the third elastic member 1831 to the dummy coupling part 145 and the forearm base body 165 .
  • 1C and 2C coupling wires 1832 and 1833 for coupling, respectively, and a third elastic force adjusting means 1834 for adjusting the elastic force by the third elastic member 1831 is provided.
  • the third elastic member 1831 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the hardness of the long head of the biceps brachii of the human body is simulated by the elastic force generated by the third elastic member 1831 .
  • the elastic force generated by the third elastic member 1831 is adjusted by the third elastic force adjusting means 1834 .
  • a 1C bonding wire 1832 and a 2C bonding wire 1833 are respectively connected to both ends of the third elastic member 1831 .
  • Each of the 1C bonding wire 1832 and the 2C bonding wire 1833 is connected to both ends of the third elastic member 1831 .
  • the end of the 1C bonding wire 1832 is fixed by being coupled to the dummy coupling part 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2C coupling wire 1833 is coupled to the coupling means such as bolts. It is fixed by being coupled to the forearm base body (165).
  • the position where the end of the 1C coupling wire 1832 and the end of the 2C coupling wire 1833 are coupled is determined so that the third muscle simulating unit 183 can simulate the long head of the biceps brachii muscle of the human body.
  • the elastic force by the third elastic member 1831 coupled to the dummy coupling part 145 and the forearm base body 165 by the 1C coupling wire 1832 and the 2C coupling wire 1833 is the forearm base body ( 165) generates a rotational force for rotating the upper arm bone base 160 in the first rotational direction (rotational direction indicated by a solid line) with respect to the rotation axis A of the elbow joint model 175.
  • the 1C coupling wire 1832 is located opposite the first end 161 of the humerus body 160 with the shoulder joint imitation unit 170 interposed between the dummy coupling unit 145 (P31).
  • the first end 161 of the humerus base 160 has a 1C coupling wire 1832)
  • a support roller 1835 for supporting the is installed.
  • the 2C coupling wire 1833 is coupled to the forearm base 165 at a position P32 between the elbow joint base 175 and the longitudinal center of the forearm base 165 .
  • the position (P32) where the 2C coupling wire 1833 is coupled to the forearm base body 165 is higher than the position (P22) where the 2B coupling wire 1823 is coupled to the forearm base body 165, the elbow joint mimetic part Slightly further from (175).
  • the third elastic force adjusting means 1834 adjusts the elastic force by the third elastic member 1831 .
  • the third elastic force adjusting means 1834 is described as adjusting the elastic force by the third elastic member 1831 by adjusting the length of the 1C bonding wire 1832 or the 2C bonding wire 1833.
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the third elastic force adjusting means ( When the length of the 1C coupling wire 1832 or the 2C coupling wire 1833 is changed using 1834), the length of the third elastic member 1831, which is a tension coil spring, is changed to control the elastic force.
  • the fourth muscle simulating unit 184 is a simulating the short head of biceps brachi of the human body, and is coupled to the dummy coupling part 145 and the forearm base body 165 .
  • the fourth muscle imitation unit 184 includes a fourth elastic member 1841 that provides an elastic force corresponding to a tensile load, and the fourth elastic member 1841 to the dummy coupling part 145 and the forearm base body 165 .
  • 1D and 2D coupling wires 1842 and 1843 for coupling, respectively, and a fourth elastic force adjusting means 1844 for adjusting the elastic force by the fourth elastic member 1841 is provided.
  • the fourth elastic member 1841 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the hardness of the short head of the biceps brachii of the human body is simulated by the elastic force generated by the fourth elastic member 1841 .
  • the elastic force generated by the fourth elastic member 1841 is adjusted by the fourth elastic force adjusting means 1844 .
  • a 1D coupling wire 1842 and a 2D coupling wire 1843 are respectively connected to both ends of the fourth elastic member 1841 .
  • Each of the 1D bonding wire 1842 and the 2D bonding wire 1843 is connected to both ends of the fourth elastic member 1841 .
  • the end of the 1D bonding wire 1842 is coupled to and fixed to the dummy coupling part 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2D coupling wire 1843 is coupled to the coupling means such as bolts. It is fixed by being coupled to the forearm base body (165).
  • the position where the end of the 1D coupling wire 1842 and the end of the 2D coupling wire 1843 are coupled is determined so that the fourth muscle simulating unit 184 can simulate the short head of the biceps brachii muscle of the human body.
  • the elastic force by the fourth elastic member 1841 coupled to the dummy coupling part 145 and the forearm base body 165 by the 1D coupling wire 1842 and the 2D coupling wire 1843 is the forearm base body ( 165) generates a rotational force for rotating the upper arm bone base 160 in the first rotational direction (rotational direction indicated by a solid line) with respect to the rotation axis A of the elbow joint model 175.
  • the 1D coupling wire 1842 is coupled to the dummy coupling part 145 at a position P41 spaced apart from the shoulder joint simulating part 170 and the inner side.
  • the 2D coupling wire 1843 is coupled to the forearm base body 165 at the same position as the position P32 at which the 2C coupling wire 1833 is coupled.
  • the fourth elastic force adjusting means 1844 adjusts the elastic force by the fourth elastic member 1841 .
  • the fourth elastic force adjusting means 1844 is described as adjusting the elastic force by the fourth elastic member 1841 by adjusting the length of the 1D coupling wire 1842 or the 2D coupling wire 1843 .
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the fourth elastic force adjusting means ( When the length of the 1D coupling wire 1842 or the 2D coupling wire 1843 is changed using 1844), the length of the fourth elastic member 1841, which is a tension coil spring, is changed to control the elastic force.
  • the fifth muscle simulating unit 185 is a simulating the posterior deltoid muscle of the human body, and is coupled to the dummy coupling part 145 and the upper arm bone base 160 .
  • the fifth muscle simulating unit 185 includes a fifth elastic member 1851 that provides an elastic force corresponding to a tensile load, and a fifth elastic member 1851 to the dummy coupling part 145 and the upper arm bone base 160 .
  • 1E and 2E coupling wires 1852 and 1853 for coupling, respectively, and a fifth elastic force adjusting means 1844 for adjusting the elastic force by the fifth elastic member 1851 is provided.
  • the fifth elastic member 1851 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the hardness of the rear deltoid muscle of the human body is simulated by the elastic force generated by the fifth elastic member 1851 .
  • the elastic force generated by the fifth elastic member 1851 is adjusted by the fifth elastic force adjusting means 1854 .
  • a first coupling wire 1852 and a second coupling wire 1853 are connected to both ends of the fifth elastic member 1851 , respectively.
  • Each of the 1E bonding wire 1852 and the 2E bonding wire 1853 is connected to both ends of the fifth elastic member 1851 .
  • the end of the 1E bonding wire 1852 is coupled to and fixed to the dummy coupling portion 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2E coupling wire 1853 is coupled to the coupling means such as bolts. It is coupled to and fixed to the humerus base body 160 by the The position where the end of the 1E coupling wire 1852 and the end of the 2E coupling wire 1853 are coupled is determined so that the fifth muscle simulating unit 185 can simulate the rear deltoid of the human body.
  • the 1E coupling wire 1852 is coupled at a position P51 spaced apart from the back of the shoulder joint simulation unit 170 in the dummy coupling unit 145 .
  • the 2E coupling wire 1853 is coupled to the humerus base 160 at a position P52 between the shoulder joint base 170 and the longitudinal center of the humerus base 160 .
  • the fifth elastic force adjusting means 1854 adjusts the elastic force by the fifth elastic member 1851 .
  • the fifth elastic force adjusting means 1854 is described as adjusting the elastic force by the fifth elastic member 1851 by adjusting the length of the 1E coupling wire 1852 or the 2E coupling wire 1853.
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the fifth elastic force adjusting means ( When the length of the 1E coupling wire 1852 or the 2E coupling wire 1853 is changed using the 1854), the length of the fifth elastic member 1851, which is a tension coil spring, is changed to control the elastic force.
  • the sixth muscle simulating unit 186 simulates the triceps of the human body, and is coupled to the dummy coupling part 145 and the forearm base 165 .
  • the sixth muscle simulating unit 186 includes a sixth elastic member 1861 that provides an elastic force corresponding to a tensile load, and a sixth elastic member 1861 to the dummy coupling part 145 and the forearm base body 165 .
  • 1F and 2F coupling wires 1862 and 1863 for coupling, respectively, and a sixth elastic force adjusting means 1864 for adjusting the elastic force by the sixth elastic member 1861 is provided.
  • the sixth elastic member 1861 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the hardness of the triceps brachii of the human body is simulated by the elastic force generated by the sixth elastic member 1861 .
  • the elastic force generated by the sixth elastic member 1861 is adjusted by the sixth elastic force adjusting means 1864 .
  • a 1F coupling wire 1862 and a 2F coupling wire 1863 are connected to both ends of the sixth elastic member 1861 , respectively.
  • Each of the 1F bonding wire 1862 and the 2F bonding wire 1863 is connected to both ends of the sixth elastic member 1861 .
  • the end of the 1F bonding wire 1862 is coupled to and fixed to the dummy coupling part 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2F coupling wire 1863 is coupled to the coupling means such as bolts. It is coupled to and fixed to the second coupling aid 1865 protruding from the forearm base body 165 by the The position where the end of the 1F coupling wire 1862 and the end of the 2F coupling wire 1863 are coupled is determined so that the sixth muscle simulating unit 186 can simulate the triceps brachii of the human body.
  • the elastic force by the sixth elastic member 1861 coupled to the dummy coupling part 145 and the forearm base body 165 by the 1F coupling wire 1862 and the 2F coupling wire 1863 is the forearm bone base body ( 165) with respect to the upper arm bone base 160, the second direction of rotation (shown by a broken line) opposite to the first direction of rotation (the direction of rotation indicated by a solid line) with respect to the axis of rotation A of the base of the elbow joint 175. rotational direction) to generate rotational force.
  • the 1F coupling wire 1862 is coupled at a position P61 spaced apart from the back of the shoulder joint simulating part 170 in the dummy coupling part 145 .
  • the second coupling aid 1865 is positioned adjacent to the first end 166 of the forearm base body 165, and the 2F coupling wire 1863 is the end of the second coupling aid 1865. coupled to position P62.
  • the sixth elastic force adjusting means 1864 adjusts the elastic force by the sixth elastic member 1861 .
  • the sixth elastic force adjusting means 1864 is described as adjusting the elastic force by the sixth elastic member 1861 by adjusting the length of the 1F bonding wire 1862 or the 2F bonding wire 1863.
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the sixth elastic force adjusting means ( When the length of the 1F coupling wire 1862 or the 2F coupling wire 1863 is changed using 1864), the length of the sixth elastic member 1861, which is a tension coil spring, is changed to control the elastic force.
  • the seventh muscle simulating unit 187 simulates the supraspinatus muscle of the human body, and is coupled to the dummy coupling part 145 and the humerus body 160 .
  • the seventh muscle simulating unit 187 includes a seventh elastic member 1871 that provides an elastic force corresponding to a tensile load, and a seventh elastic member 1871 to the dummy coupling part 145 and the upper arm bone base 160 .
  • 1G and 2G coupling wires 1872 and 1873 for coupling, respectively, and a seventh elastic force adjusting means 1874 for adjusting the elastic force by the seventh elastic member 1871 is provided.
  • the seventh elastic member 1871 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the hardness of the supraspinatus muscle of the human body is simulated by the elastic force generated by the seventh elastic member 1871 .
  • the elastic force generated by the seventh elastic member 1871 is adjusted by the seventh elastic force adjusting means 1874 .
  • a 1G bonding wire 1872 and a 2G bonding wire 1873 are connected to both ends of the seventh elastic member 1871 , respectively.
  • the elastic force of the seventh elastic member 1871 applies a force in the direction in which the humerus base body 160 rotates outwardly with respect to the shoulder joint base part 170 .
  • Each of the 1G bonding wire 1872 and the 2G bonding wire 1873 is connected to both ends of the seventh elastic member 1871 .
  • the end of the 1st G coupling wire 1872 is fixed to the dummy coupling part 145 of the dummy coupling body 140 by coupling means such as a bolt, and the end of the 2G coupling wire 1873 is coupled to the coupling means such as a bolt. It is coupled to and fixed to the humerus base body 160 by the The position where the end of the 1G coupling wire 1872 and the end of the 2G coupling wire 1873 are coupled is determined so that the seventh muscle simulating unit 187 can simulate the supraspinatus of the human body.
  • the 1G coupling wire 1872 is coupled at an inwardly spaced position P71 of the shoulder joint simulation unit 170 in the dummy coupling unit 145 .
  • the 2G coupling wire 1873 is coupled at a location P72 near the first end 161 of the humerus base body 160 .
  • the seventh elastic force adjusting means 1874 adjusts the elastic force by the seventh elastic member 1871 .
  • the seventh elastic force adjusting means 1874 is described as adjusting the elastic force by the seventh elastic member 1871 by adjusting the length of the 1G bonding wire 1872 or the 2G bonding wire 1873 .
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the seventh elastic force adjusting means ( When the length of the 1G coupling wire 1872 or the 2G coupling wire 1873 is changed using the 1874), the length of the seventh elastic member 1871, which is a tension coil spring, is changed to control the elastic force.
  • the eighth muscle simulating unit 188 is a simulating the subscapularis of the human body, and is coupled to the dummy coupling part 145 and the upper arm bone base 160 .
  • the eighth muscle simulating unit 188 includes an eighth elastic member 1881 that provides an elastic force corresponding to a tensile load and an eighth elastic member 1881 to the dummy coupling part 145 and the upper arm bone base 160.
  • 1H and 2H coupling wires 1882 and 1883 for coupling, respectively, and an eighth elastic force adjusting means 1884 for adjusting the elastic force by the eighth elastic member 1881 is provided.
  • the eighth elastic member 1881 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the hardness of the subscapularis muscle of the human body is simulated by the elastic force generated by the eighth elastic member 1871 .
  • the elastic force generated by the eighth elastic member 1881 is adjusted by the eighth elastic force adjusting means 1884 .
  • a first H coupling wire 1882 and a second H coupling wire 1883 are connected to both ends of the eighth elastic member 1881 , respectively.
  • Each of the 1H bonding wire 1882 and the 2H bonding wire 1883 is connected to both ends of the eighth elastic member 1881 .
  • the end of the 1H bonding wire 1882 is coupled to and fixed to the dummy coupling portion 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2H coupling wire 1883 is coupled to the coupling means such as bolts. It is coupled to and fixed to the humerus base body 160 by the The position where the end of the 1H bonding wire 1882 and the end of the 2H bonding wire 1883 are coupled is determined so that the eighth muscle simulating unit 185 can simulate the subscapularis muscle of the human body.
  • the first H coupling wire 1882 is coupled at a position P81 spaced apart from the front of the shoulder joint simulating unit 170 in the dummy coupling unit 145 .
  • the 2H coupling wire 1883 is coupled at a location P82 near the first end 161 of the humerus base body 160 .
  • the eighth elastic force adjusting means 1884 adjusts the elastic force by the eighth elastic member 1881 .
  • the eighth elastic force adjusting means 1884 is described as adjusting the elastic force by the eighth elastic member 1881 by adjusting the length of the first H-coupled wire 1882 or the second H-coupled wire 1883 .
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the eighth elastic force adjusting means ( When the length of the first H coupling wire 1882 or the second H coupling wire 1883 is changed using 1884), the length of the eighth elastic member 1881, which is a tension coil spring, is changed to adjust the elastic force.
  • the ninth muscle mimicking unit 189 is a simulating the infraspinatus of the human body, and is coupled to the dummy coupling part 145 and the upper arm bone base 160 .
  • the ninth muscle simulating unit 189 includes a ninth elastic member 1891 that provides an elastic force corresponding to a tensile load, and a ninth elastic member 1891 to the dummy coupling part 145 and the upper arm bone base 160 .
  • a ninth elastic force adjusting means 1894 for adjusting the elastic force by the first and second J coupling wires 1892 and 1893 for coupling, respectively, and the ninth elastic member 1891 is provided.
  • the ninth elastic member 1891 is a tensile coil spring and provides an elastic force corresponding to a tensile load.
  • the hardness of the infraspinatus of the human body is simulated by the elastic force generated by the ninth elastic member 1891 .
  • the elastic force generated by the ninth elastic member 1891 is adjusted by the ninth elastic force adjusting means 1894 .
  • the 1J bonding wire 1892 and the 2J bonding wire 1893 are respectively connected.
  • the elastic force of the ninth elastic member 1891 applies a force in a direction in which the humerus base body 160 rotates outwardly with respect to the shoulder joint base part 170 .
  • Each of the 1J bonding wire 1892 and the 2J bonding wire 1893 is connected to both ends of the ninth elastic member 1891 .
  • the end of the 1J bonding wire 1892 is fixed by being coupled to the dummy coupling portion 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2J coupling wire 1893 is coupled to the coupling means such as bolts. It is coupled to and fixed to the humerus base body 160 by the The position where the end of the 1J bonding wire 1892 and the end of the 2J bonding wire 1893 are coupled is determined so that the ninth muscle simulating unit 189 can simulate the infraspinatus of the human body.
  • the 1J coupling wire 1892 is coupled at an inwardly spaced position (P91) of the shoulder joint simulating part 170 in the dummy coupling part 145.
  • the 2J coupling wire 1893 is coupled at a location P92 near the first end 161 of the humerus base body 160 .
  • the ninth elastic force adjusting means 1894 adjusts the elastic force by the ninth elastic member 1871 .
  • the ninth elastic force adjusting means 1894 is described as adjusting the elastic force by the ninth elastic member 1891 by adjusting the length of the 1J bonding wire 1892 or the 2J bonding wire 1893 .
  • the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the ninth elastic force adjusting means ( When the length of the 1J coupling wire 1892 or the 2J coupling wire 1893 is changed using the 1894), the length of the ninth elastic member 1891 that is a tension coil spring is changed to control the elastic force.
  • all of the plurality of muscle simulating units (181, 182, 183, 184, 185, 186, 187, 188, 189) are described as hardness-adjustable muscle simulating units that can adjust the elastic force, but differently Only some muscle-simulating units may be hardness-adjustable muscle-simulating units capable of adjusting elastic force, and this also falls within the scope of the present invention.
  • the human body dummy device according to the present invention can be used to verify the reliability and accuracy of the impedance estimation robot because the mechanical impedance can be adjusted.
  • the human body dummy device according to the present invention can measure stiffness according to a change in mechanical impedance, and thus can be used for education of clinical evaluation related practitioners.

Abstract

According to the present invention, provided is a human body dummy device having an adjustable mechanical impedance, comprising: a support structure; and an upper limb dummy coupled to the support structure to simulate the upper limbs of the human body, wherein the upper limb dummy comprises: a humerus mimic simulating the humerus of the human body; a forearm bone mimic simulating the forearm bone of the human body; a shoulder joint mimic part simulating the shoulder joint of the human body and coupling the humerus mimic to the support structure so as to be rotatable at three degrees of freedom; an elbow joint mimic part simulating the elbow joint of the human body and coupling the forearm bone mimic to the humerus mimic so as to be rotatable at one degree of freedom; and a muscle mimic structure simulating muscles constituting the upper limbs of the human body.

Description

기계적 임피던스 조절이 가능한 인체 더미 장치Human body dummy device with adjustable mechanical impedance
본 발명은 인체 더미에 관한 것으로서, 더욱 상세하게는 기계적 임피던스의 조절이 가능하여 임피던스 추정 로봇의 신뢰도 및 정확도 검증에 사용될 수 있는 인체 더미 장치에 관한 것이다.The present invention relates to a human body dummy, and more particularly, to a human body dummy device that can be used to verify reliability and accuracy of an impedance estimation robot because mechanical impedance can be adjusted.
뇌졸중은 환자에게 근육 경도(muscle stiffness)의 변화를 초래하며, 이는 상지 경직과 같은 신체적 장애로 이어진다. 뇌졸중 환자의 상지 재활을 위해서는 상지의 기계적 임피던스(mechanical impedance)를 측정할 필요가 있다. 일반적으로 상지의 기계적 임피던스 측정은 사람인 측정자가 손으로 환자의 상지 끝단에 힘을 가하고 이에 대한 저항력을 감각적으로 확인함으로써 이루어진다. 이러한 방식은 측정자의 감각에 의존하기 때문에 측정자의 숙련도 및 경험에 따라 달라질 수 있고 동일한 측정자라도 때에 따라 달라질 수 있기 때문에 객관적인 진단에 한계가 있다.Stroke causes a change in muscle stiffness in the patient, which leads to physical disability such as upper extremity stiffness. For upper extremity rehabilitation of stroke patients, it is necessary to measure the mechanical impedance of the upper extremities. In general, the mechanical impedance measurement of the upper extremity is performed by a human measurer applying a force to the tip of the patient's upper extremity with his/her hand and sensing the resistance. Since this method relies on the senses of the measurer, it may vary depending on the skill and experience of the measurer, and even the same measurer may change from time to time, so there is a limit to objective diagnosis.
상기와 같은 사람의 감각에 의존한 상지의 기계적 임피던스 평가 방식에 따른 문제를 해결하고자 최근에는 공개특허 제10-2018-0035669호에 개시된 바와 같이 기계적 임피던스 추정 로봇이 개발되었다. 상기 기계적 임피던스 추정 로봇은 재활을 위해 상지의 기계적 임피던스를 측정하는 로봇으로서, 사람의 손과 같은 신체와 연결되는 신체 연결부와, 신체 연결부를 구동시키는 구동부와, 신체 연결부에 가해지는 힘의 크기를 감지하는 힘 센서와, 신체 연결부의 위치를 감지하는 위치 센서를 구비하며, 힘 센서와 위치 센서에서 측정된 데이터를 이용하여 피측정자의 기계적 임피던스를 산출하게 된다.In order to solve the problem of the mechanical impedance evaluation method of the upper extremity depending on the human sense as described above, a robot for estimating mechanical impedance as disclosed in Korean Patent Application Laid-Open No. 10-2018-0035669 was recently developed. The mechanical impedance estimation robot is a robot that measures the mechanical impedance of the upper extremities for rehabilitation. A body connection part connected to a body such as a human hand, a driving part driving the body connection part, and a force applied to the body connection part are sensed A force sensor and a position sensor for detecting the position of the body connection part are provided, and the mechanical impedance of the subject is calculated by using the data measured by the force sensor and the position sensor.
기계적 임피던스 추정 로봇에 의해 측정된 상지의 기계적 임피던스의 정확성을 향상시키기 위해서는 기계적 임피던스 추정 로봇의 신뢰도 및 정확도를 검증하기 위해 기계적 임피던스의 조절이 가능한 인체 더미가 요구되는데, 종래의 인체 더미는 대부분 충돌 실험이나 CRP(심폐소생술) 실습을 위한 것이어서 기계적 임피던스 추정 로봇의 신뢰도 및 정확도 검증에 적합하지 않다.In order to improve the accuracy of the mechanical impedance of the upper extremity measured by the mechanical impedance estimation robot, a human body dummy with adjustable mechanical impedance is required to verify the reliability and accuracy of the mechanical impedance estimation robot. However, since it is for CRP (cardiopulmonary resuscitation) practice, it is not suitable for verifying the reliability and accuracy of the mechanical impedance estimation robot.
본 발명의 목적은 기계적 임피던스의 조절이 가능하여 임피던스 추정 로봇의 신뢰도 및 정확도 검증에 인체 더미 장치를 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a human body dummy device for verifying reliability and accuracy of an impedance estimating robot because mechanical impedance can be adjusted.
상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 기계적 임피던스의 조절이 가능한 인체 더미 장치로서, 지지 구조물; 및 상기 지지 구조물에 결합되어서 인체의 상지를 모사하는 상지 더미를 포함하며, 상기 상지 더미는, 인체의 위팔뼈를 모사하는 위팔뼈 모사체와, 인체의 아래팔뼈를 모사하는 아래팔뼈 모사체와, 인체의 어깨관절을 모사하고 상기 위팔뼈 모사체를 상기 지지 구조물에 3자유도로 회전이 가능하게 결합시키는 어깨관절 모사부와, 인체의 팔꿉관절을 모사하고 상기 위팔뼈 모사체와 상기 아래팔뼈 모사체 사이를 1자유도로 회전이 가능하게 결합시키는 팔꿉관절 모사부와, 인체의 상지를 구성하는 근육들을 모사하는 근육 모사 구조물을 구비하는, 인체 더미 장치가 제공된다.In order to achieve the above object of the present invention, according to one aspect of the present invention, there is provided a human body dummy device capable of adjusting mechanical impedance, comprising: a support structure; and an upper limb dummy coupled to the support structure to simulate an upper limb of a human body, wherein the upper limb dummy includes an humerus imitation body simulating an upper arm bone of a human body, and a forearm bone imitation body simulating a forearm bone of the human body; A shoulder joint replica that simulates the shoulder joint of a human body and rotatably couples the upper arm bone model to the support structure in three degrees of freedom, and the upper arm bone model and the forearm bone model by simulating the elbow joint of the human body A human body dummy device is provided, comprising: an elbow joint simulating part for rotatably coupling between them in one degree of freedom;
상기한 본 발명의 목적을 달성하기 위하여, 본 발명의 다른 측면에 따르면, 기계적 임피던스의 조절이 가능한 인체 더미 장치로서, 지지 구조물; 및 상기 지지 구조물에 결합되어서 인체의 상지를 구성하는 근육들을 모사하는 근육 모사 구조물을 구비하는 상지 더미를 포함하며, 상기 지지 구조물은 상기 상지 더미의 3차원 위치를 조절하는, 인체 더미 장치가 제공된다.In order to achieve the above object of the present invention, according to another aspect of the present invention, there is provided a human body dummy device capable of adjusting mechanical impedance, comprising: a support structure; and an upper extremity dummy coupled to the supporting structure and having a muscle simulating structure simulating muscles constituting the upper extremities of the human body, wherein the supporting structure adjusts a three-dimensional position of the upper extremity dummy, a human body dummy device is provided .
본 발명에 의하면 앞서서 기재한 본 발명의 목적을 모두 달성할 수 있다. 구체적으로는, 본 발명에 따른 인체 더미 장치는 인체의 위팔뼈를 모사하는 위팔뼈 모사체와, 인체의 아래팔뼈를 모사하는 아래팔뼈 모사체와, 인체의 어깨관절을 모사하고 상기 위팔뼈 모사체를 상기 지지 구조물에 3자유도로 회전이 가능하게 결합시키는 어깨관절 모사부와, 인체의 팔꿉관절을 모사하고 상기 위팔뼈 모사체와 상기 아래팔뼈 모사체 사이를 1자유도로 회전이 가능하게 결합시키는 팔꿉관절 모사부와, 인체의 상지를 구성하는 근육들을 모사하는 근육 모사 구조물을 구비하는 상지 더미를 포함하며, 상기 근육 모사 구조물은 탄성력이 조절되는 탄성부재를 구비하므로, 상지 더미의 기계적 임피던스의 조절이 가능하여 상지의 기계적 임피던스를 추정하는 로봇의 신뢰도 및 정확도를 검증하기에 적합하다.According to the present invention, all of the objects of the present invention described above can be achieved. Specifically, the human body dummy device according to the present invention includes an upper arm bone base body that simulates the upper arm bone of the human body, a forearm bone base body that simulates the forearm bone of the human body, and the upper arm bone base body that simulates a shoulder joint of a human body a shoulder joint imitation part for rotatably coupling to the support structure in 3 degrees of freedom; It includes an upper extremity dummy having a joint mimicking part and a muscle mimicking structure that mimics the muscles constituting the upper extremities of the human body, wherein the muscle mimicking structure is provided with an elastic member whose elastic force is controlled, so that the mechanical impedance of the upper extremity dummy can be adjusted It is suitable for verifying the reliability and accuracy of the robot estimating the mechanical impedance of the upper extremity.
도 1 및 도 2는 본 발명의 일 실시예에 따른 기계적 임피던스 조절이 가능한 인체 더미 장치의 사시도이다.1 and 2 are perspective views of a human body dummy device capable of adjusting mechanical impedance according to an embodiment of the present invention.
도 3 및 도 4는 도 1 및 도 2에 도시된 기계적 임피던스 조절이 가능한 인체 더미 장치에서 상지 더미를 중심으로 도시한 사시도이다.3 and 4 are perspective views showing the upper extremity dummy in the human body dummy device capable of adjusting the mechanical impedance shown in FIGS. 1 and 2 .
도 5 내지 도 9는 도 1 및 도 2에 도시된 기계적 임피던스 조절이 가능한 인체 더미 장치에서 어깨관절 모사부와 그 주변부를 도시한 사시도이다.5 to 9 are perspective views illustrating a shoulder joint simulating part and its periphery in the human body dummy device capable of adjusting the mechanical impedance shown in FIGS. 1 and 2 .
이하, 도면을 참조하여 본 발명의 실시예의 구성 및 작용을 상세하게 설명한다.Hereinafter, the configuration and operation of the embodiment of the present invention will be described in detail with reference to the drawings.
도 1 및 도 2에는 본 발명의 일 실시예에 따른 기계적 임피던스 조절이 가능한 인체 상지 더미 장치가 사시도로서 도시되어 있다. 도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 기계적 임피던스 조절이 가능한 인체 더미 장치(100)(이하, '인체 더미 장치'로 약칭함)는, 지지 구조물(110)과, 지지 구조물(110)에 결합되는 상지 더미(150)를 포함한다.1 and 2 are perspective views of a human upper extremity dummy device capable of adjusting mechanical impedance according to an embodiment of the present invention. 1 and 2 , a human body dummy device 100 (hereinafter, abbreviated as 'human body dummy device') capable of controlling mechanical impedance according to an embodiment of the present invention includes a support structure 110 and a supporting structure. and an upper limb dummy 150 coupled to the structure 110 .
지지 구조물(110)은 기초 결합판(120)과, 기초 결합판(120)으로부터 높이방향을 따라서 위로 연장되는 기둥(130)과, 기둥(130)의 상단에 위치하는 더미 결합체(140)를 구비한다. 지지 구조물(110)은 상지 더미(150)의 위치를 3차원으로 이동시킬 수 있는 구조를 갖는다. 설명의 편의를 위하여 x-y-z 직교계를 도입하는데, x축과 y축은 수평면 상에서 연장되고 z축은 높이방향 연장되는 것으로 설정된다.The support structure 110 includes a foundation coupling plate 120 , a pillar 130 extending upward from the foundation coupling plate 120 in a height direction, and a dummy assembly 140 positioned at the upper end of the pillar 130 . do. The support structure 110 has a structure capable of moving the position of the upper extremity dummy 150 in three dimensions. For convenience of explanation, an x-y-z orthogonal system is introduced, wherein the x-axis and the y-axis extend on a horizontal plane, and the z-axis is set to extend in the height direction.
기초 결합판(120)은 대체로 판상의 부재로서, 인체 더미 장치(100)가 설치되는 기초부(미도시)에 고정된다. 기초 결합판(120)에는 복수개의 바닥 체결 홀(121)들이 형성된다. 복수개의 바닥 체결 홀(121)들은 가늘고 길게 연장되는 슬롯 형태이며, 모두 x축과 평행하게 연장된다. 복수개의 바닥 체결 홀(121)들을 통해 기초 결합판(120)은 x축을 따라 위치 조절이 가능하게 볼트에 의해 기초부(미도시)에 고정될 수 있다. 이를 위하여 기초부(미도시)의 윗면에는 볼트가 체결되는 암나사 구멍이 형성된다. 그에 따라 지지 구조물(110)에 결합되는 상지 더미(150)의 x축 위치가 조절된다. 기초 결합판(120)에는 기둥(130)이 결합된다.The base coupling plate 120 is generally a plate-shaped member, and is fixed to a base (not shown) on which the human body dummy device 100 is installed. A plurality of bottom fastening holes 121 are formed in the base coupling plate 120 . The plurality of bottom fastening holes 121 are in the form of a slot extending long and thin, and all extend parallel to the x-axis. Through the plurality of bottom fastening holes 121, the base coupling plate 120 may be fixed to the base (not shown) by bolts to enable position adjustment along the x-axis. To this end, a female screw hole to which a bolt is fastened is formed on the upper surface of the base (not shown). Accordingly, the x-axis position of the upper extremity dummy 150 coupled to the support structure 110 is adjusted. The pillar 130 is coupled to the base coupling plate 120 .
기둥(130)은 기초 결합판(120)으로부터 높이방향(연직방향)을 따라서 위로 연장된다. 기둥(130)은 기초 결합판(120)에 고정되는 고정 기둥부(131)와, 고정 기둥부(131)에 이동이 가능하게 결합되는 이동 기둥부(135)를 구비한다.The pillar 130 extends upward from the foundation coupling plate 120 in the height direction (vertical direction). The pillar 130 includes a fixed pillar 131 fixed to the base coupling plate 120 and a movable pillar 135 that is movably coupled to the fixed pillar 131 .
고정 기둥부(131)는 높이방향을 따라 연장되며, 고정 기둥부(131)의 하단은 기초 결합판(120)에 고정되도록 결합된다. 고정 기둥부(131)에는 이동 기둥부(135)가 높이방향을 따라서 이동이 가능하게 결합된다.The fixed pillar 131 extends along the height direction, and the lower end of the fixed pillar 131 is coupled to the base coupling plate 120 to be fixed. A movable pillar 135 is movably coupled to the fixed pillar 131 in the height direction.
이동 기둥부(135)는 고정 기둥부(131)에 높이방향을 따라서 이동이 가능하게 결합되어서 기둥(130)의 전체 높이가 조절된다. 그에 따라, 상지 더미(150)의 z축 위치가 조절된다. 이동 기둥부(135)에는 복수개의 기둥 체결 홀(136)들이 형성된다. 복수개의 기둥 체결 홀(136)들은 가늘고 길게 연장되는 슬롯 형태이며, 모두 z축과 평행하게 연장된다. 복수개의 기둥 체결 홀(136)들을 통해 이동 기둥부(135)는 z축을 따라 높이 조절이 가능하게 볼트에 의해 고정 기둥부(135)에 고정될 수 있다. 이를 위하여 고정 기둥부(135)의 측면에는 볼트가 체결되는 암나사 구멍이 형성된다. 본 실시예에서는 기둥 체결 홀(136)이 이동 기둥부(135)에 형성되는 것으로 설명하지만, 이와는 달리 고정 기둥부(131)에 형성될 수도 있으며 이 또한 본 발명의 범위에 속하는 것이다. 이동 기둥부(135)의 상단에는 더미 결합체(140)가 결합된다.The movable pillar 135 is movably coupled to the fixed pillar 131 along the height direction so that the overall height of the pillar 130 is adjusted. Accordingly, the z-axis position of the upper extremity dummy 150 is adjusted. A plurality of pillar fastening holes 136 are formed in the movable pillar part 135 . The plurality of pillar fastening holes 136 are in the form of a slot that is elongated and thin, and all extend parallel to the z-axis. Through the plurality of pillar fastening holes 136 , the movable pillar 135 may be fixed to the fixed pillar 135 by a bolt to enable height adjustment along the z-axis. To this end, a female screw hole to which a bolt is fastened is formed in a side surface of the fixing pillar 135 . In the present embodiment, it is described that the pillar fastening hole 136 is formed in the movable pillar 135 , but it may be formed in the fixed pillar 131 differently from this, and this also falls within the scope of the present invention. A dummy assembly 140 is coupled to the upper end of the movable pillar 135 .
더미 결합체(140)는 이동 기둥부(135)의 상단에 y축과 평행하게 이동이 가능하게 결합되어서 고정된다. 더미 결합체(140)에는 상지 더미(150)가 결합된다. x축 방향으로 위치가 조절되는 기초 결합판(120), 높이가 조절되는 기둥(130) 및 y축 방향으로 위치가 조절되는 더미 결합체(140)에 의해 더미 결합체(140)에 결합된 상지 더미(150)의 3차원 위치가 조절된다. 더미 결합체(140)는 일체를 이루는 기초 결합부(141)와 더미 결합부(145)를 구비한다.The dummy assembly 140 is fixed to the upper end of the movable pillar 135 so as to be movable in parallel with the y-axis. The upper extremity dummy 150 is coupled to the dummy assembly 140 . Upper limb dummy coupled to the dummy assembly 140 by the base coupling plate 120 whose position is adjusted in the x-axis direction, the column 130 whose height is adjusted, and the dummy assembly 140 whose position is adjusted in the y-axis direction ( 150) is adjusted. The dummy coupling body 140 includes a basic coupling part 141 and a dummy coupling part 145 forming an integral body.
기초 결합부(141)는 대체로 판상으로서, 이동 기둥부(135)의 상단을 덮는 형태로 이동 기둥부(135)에 결합된다. 기초 결합부(141)에는 복수개의 상부 체결 홀(142)들이 형성된다. 복수개의 상부 체결 홀(142)들은 가늘고 길게 연장되는 슬롯 형태이며, 모두 y축과 평행하게 연장된다. 복수개의 상부 체결 홀(142)들을 통해 더미 결합체(140)은 y축을 따라 위치 조절이 가능하게 볼트에 의해 이동 기둥부(135)의 상단에 고정될 수 있다. 이를 위하여 이동 기둥부(135)의 상단에는 볼트가 체결되는 암나사 구멍이 형성된다. 그에 따라 더미 결합체(140)에 결합되는 상지 더미(150)의 y축 위치가 조절된다. 본 실시예에서는 상부 체결 홀(142)이 기초 결합부(141)에 형성되는 것으로 설명하지만, 이와는 달리 이동 기둥부(135)에 형성될 수도 있으며, 이 또한 본 발명의 범위에 속하는 것이다.The base coupling part 141 is generally plate-shaped, and is coupled to the movable pillar part 135 in a form that covers the upper end of the movable pillar part 135 . A plurality of upper fastening holes 142 are formed in the base coupling part 141 . The plurality of upper fastening holes 142 are in the form of a slot extending long and thin, and all extend parallel to the y-axis. Through the plurality of upper fastening holes 142 , the dummy assembly 140 may be fixed to the upper end of the movable pillar 135 by a bolt to enable position adjustment along the y-axis. To this end, a female screw hole to which a bolt is fastened is formed at the upper end of the movable pillar part 135 . Accordingly, the y-axis position of the upper extremity dummy 150 coupled to the dummy assembly 140 is adjusted. In this embodiment, the upper fastening hole 142 is described as being formed in the foundation coupling portion 141, but may be formed in the movable pillar portion 135 differently from this, which also falls within the scope of the present invention.
더미 결합부(145)는 기초 결합부(141)로부터 측면으로 연장되는 바아(bar) 형태로서, 기초 결합부(141)와 일체로 이루어진다. 더미 결합부(145)에는 상지 더미(150)가 결합된다. 더미 결합부(145)는 인체의 어깨뼈에 해당하는 것으로 이해될 수 있다.The dummy coupling part 145 is in the form of a bar extending laterally from the foundation coupling part 141 , and is integrally formed with the foundation coupling part 141 . The upper extremity dummy 150 is coupled to the dummy coupling part 145 . The dummy coupling part 145 may be understood to correspond to the shoulder blade of the human body.
상지 더미(150)는 더미 결합체(140)의 더미 결합부(145)에 결합된다. 상지 더미(150)가 다양한 자세를 취할 수 있도록 상지 더미(150)의 3차원 위치는 기초 구조물(110)에 의해 변경될 수 있다. 상지 더미(150)를 중심으로 도시된 도 3 및 도 4를 참조하면, 상지 더미(150)는 인체의 상지(upper limb)를 모사한 것으로서, 위팔뼈 모사체(160)와, 아래팔뼈 모사체(165)와, 어깨관절 모사부(170)와, 팔꿉관절 모사부(175)와, 근육 모사 구조물(180)을 구비한다. 상지 더미(150)는 기둥(130)의 일측에 이격되어서 위치하며, 설명의 편의를 위하여 상지 더미(150)를 기준으로 기둥(130) 쪽을 안쪽 측면이라 하고, 기둥(130)의 반대 쪽을 바깥쪽 측면이라 한다.The upper limb dummy 150 is coupled to the dummy coupling part 145 of the dummy coupler 140 . The three-dimensional position of the upper extremity dummy 150 may be changed by the base structure 110 so that the upper extremity dummy 150 can take various postures. Referring to FIGS. 3 and 4 centered on the upper limb dummy 150, the upper limb dummy 150 mimics the upper limb of the human body, and includes an upper arm bone base 160 and a forearm bone base body. (165), and a shoulder joint imitation unit 170, and an elbow joint imitation unit 175, and a muscle imitation structure 180. The upper extremity dummy 150 is positioned to be spaced apart from one side of the pillar 130, and for convenience of explanation, the side of the pillar 130 with respect to the upper extremity dummy 150 is referred to as the inner side, and the opposite side of the pillar 130 is referred to as the inner side. This is called the outer side.
위팔뼈 모사체(160)는 인체의 위팔뼈를 모사한 것으로서, 대체로 직선으로 연장되는 막대 형상이다. 위팔뼈 모사체(160)의 제1 단부(161)는 어깨관절 모사부(170)에 의해 더미 결합체(140)와 결합되고, 위팔뼈 모사체(160)의 제2 단부(162)는 팔꿉관절 모사부(175)에 의해 아래팔뼈 모사체(165)와 결합된다. 위팔뼈 모사체(160)에는 근육 모사 구조물(180)이 결합된다.The humerus base body 160 simulates the humerus of the human body, and has a bar shape extending in a substantially straight line. The first end 161 of the humerus base body 160 is coupled to the dummy assembly 140 by the shoulder joint imitation unit 170, and the second end 162 of the humerus base body 160 is the elbow joint. It is coupled with the forearm base body 165 by the base part 175. The muscle mimic structure 180 is coupled to the humerus base body 160 .
아래팔뼈 모사체(165)는 인체의 아래팔뼈를 모사한 것으로서, 대체로 직선으로 연장되는 막대 형상이다. 아래팔뼈 모사체(165)의 제1 단부(166)는 팔꿉관절 모사부(175)에 의해 위팔뼈 모사체(160)의 제2 단부(162)와 결합된다. 아래팔뼈 모사체(165)에는 근육 모사 구조물(180)이 결합된다. 아래팔뼈 모사체(165)에는 기계적 임피던스 추정 로봇(미도시)과 연결되는 로봇 결합 부재(168)가 결합되어서 고정된다. 로봇 결합 부재(168)는 아래팔뼈 모사체(165)에 결합된 상태에서 아래팔뼈 모사체(165)의 제2 단부(167)로부터 아래팔뼈 모사체(165)의 길이방향을 따라서 더 연장되는 연장부(169)를 구비한다. 연장부(169)에 기계적 임피던스 추정 로봇(미도시)과 연장부(169)를 기계적으로 연결하는 연결 장치(미도시)가 결합된다. 즉, 연장부(169)는 인체의 손에 해당하는 것으로 이해할 수 있다. 본 실시예에서는 로봇 결합 부재(168)를 통해 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 연결되는 것으로 설명하지만, 이와는 달리 아래팔뼈 모사체(165)에 직접 기계적 임피던스 추정 로봇(미도시)이 연결될 수도 있으며, 이 또한 본 발명의 범위에 속하는 것이다.The forearm base body 165 mimics the forearm bone of the human body, and has a bar shape extending in a substantially straight line. The first end 166 of the forearm base 165 is coupled to the second end 162 of the forearm base 160 by the elbow joint simulant 175 . The muscle mimic structure 180 is coupled to the forearm base body 165 . A robot coupling member 168 connected to a mechanical impedance estimation robot (not shown) is coupled and fixed to the forearm base body 165 . The robotic coupling member 168 extends further along the longitudinal direction of the forearm base member 165 from the second end 167 of the forearm base member 165 in a state coupled to the forearm base member 165 . A portion 169 is provided. A mechanical impedance estimating robot (not shown) and a connecting device (not shown) for mechanically connecting the extension 169 are coupled to the extension 169 . That is, it can be understood that the extension 169 corresponds to the hand of the human body. In this embodiment, the upper extremity dummy 150 is described as being connected to the mechanical impedance estimation robot (not shown) through the robot coupling member 168, but unlike this, the mechanical impedance estimation robot (not shown) directly to the forearm base body 165 time) may be connected, which also falls within the scope of the present invention.
어깨관절 모사부(170)는 인체의 어깨관절을 모사한 것으로서, 위팔뼈 모사체(160)의 제1 단부(161)를 더미 결합체(140)의 더미 결합부(145)에 결합시킨다. 어깨관절 모사부(170)에 의해 위팔뼈 모사체(160)는 더미 결합체(140)에 대해 3자유도의 회전이 가능하다. 더미 결합체(140)에 대한 위팔뼈 모사체(160)의 3자유도 회전이 가능하도록, 본 실시예에서는 어깨관절 모사부(170)로 유니버설 조인트와 베어링을 결합한 구조가 사용되는 것으로 설명한다. 어깨관절 모사부(170)는 대체로 더미 결합부(145)의 끝단에 위치한다.The shoulder joint imitation unit 170 is a simulating the shoulder joint of the human body, and the first end 161 of the humerus imitation body 160 is coupled to the dummy coupling unit 145 of the dummy coupler 140 . Due to the shoulder joint imitation unit 170 , the upper arm bone imitation body 160 is capable of rotation in 3 degrees of freedom with respect to the dummy assembly 140 . In this embodiment, a structure in which a universal joint and a bearing are combined as the shoulder joint imitation unit 170 is described as being used so that three degrees of freedom rotation of the humerus imitation body 160 with respect to the dummy assembly 140 is possible. The shoulder joint simulating part 170 is generally located at the end of the dummy coupling part 145 .
팔꿉관절 모사부(175)는 인체의 팔꿉관절을 모사한 것으로서, 위팔뼈 모사체(160)의 제2 단부(162)와 아래팔뼈 모사체(165)의 제1 단부(166)를 결합시킨다. 팔꿉관절 모사부(175)에 의해 아래팔뼈 모사체(165)는 회전축선(A)을 중심으로 위팔뼈 모사체(160)에 대한 1자유도의 회전이 가능하다. 팔꿉관절 모사부(175)로는 1자유도 회전을 제공하는 힌지가 사용된다.The elbow joint mimic part 175 is a simulating the elbow joint of the human body, and couples the second end 162 of the upper arm bone base 160 and the first end 166 of the forearm base body 165 to each other. The forearm bone base 165 by the elbow joint mimetic part 175 can rotate one degree of freedom with respect to the upper arm bone base body 160 about the axis of rotation (A). A hinge providing one degree of freedom of rotation is used as the elbow joint replica 175 .
근육 모사 구조물(180)은 인체의 상지를 구성하는 주요 근육들을 모사한 것으로서, 제1 근육 모사 유닛(181), 제2 근육 모사 유닛(182), 제3 근육 모사 유닛(183), 제4 근육 모사 유닛(184), 제5 근육 모사 유닛(185), 제6 근육 모사 유닛(186), 제7 근육 모사 유닛(187), 제8 근육 모사 유닛(188), 제9 근육 모사 유닛(189)을 구비한다.The muscle imitation structure 180 is a simulating the main muscles constituting the upper extremities of the human body, the first muscle imitation unit 181 , the second muscle imitation unit 182 , the third muscle imitation unit 183 , and the fourth muscle Simulating unit 184 , fifth muscle mimicking unit 185 , sixth muscle mimicking unit 186 , seventh muscle simulating unit 187 , eighth muscle simulating unit 188 , ninth muscle simulating unit 189 . to provide
제1 근육 모사 유닛(181)은 인체의 상완요골근(Brachioradialis)을 모사한 것으로서, 위팔뼈 모사체(160)와 아래팔뼈 모사체(165)에 결합된다. 제1 근육 모사 유닛(181)은 인장 하중에 대응하는 탄성력을 제공하는 제1 탄성부재(1811)와, 제1 탄성부재(1811)를 위팔뼈 모사체(160)와 아래팔뼈 모사체(165)에 각각 결합시키는 제1A, 제2A 결합 와이어(1812, 1813)와, 제1 탄성부재(1811)에 의한 탄성력을 조절하는 제1 탄성력 조절 수단(1814)을 구비한다.The first muscle simulating unit 181 is a simulating the brachioradialis of the human body, and is coupled to the upper arm bone base 160 and the forearm bone base body 165 . The first muscle imitation unit 181 includes a first elastic member 1811 providing an elastic force corresponding to a tensile load, and a first elastic member 1811 for the upper arm bone base body 160 and the forearm bone base body 165 . A first elastic force adjusting means 1814 for adjusting the elastic force by the first and second A coupling wires 1812 and 1813 and the first elastic member 1811 for coupling to each other are provided.
제1 탄성부재(1811)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제1 탄성부재(1811)에 의해 발생하는 탄성력에 의해 인체의 상완요골근의 경도(stiffness)가 모사된다. 제1 탄성부재(1811)에 의해 발생하는 탄성력은 제1 탄성력 조절 수단(1814)에 의해 조절된다. 제1 탄성부재(1811)의 양단에는 각각 제1A 결합 와이어(1812)와 제2A 결합 와이어(1813)가 연결된다.The first elastic member 1811 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The stiffness of the radial brachial muscle of the human body is simulated by the elastic force generated by the first elastic member 1811 . The elastic force generated by the first elastic member 1811 is adjusted by the first elastic force adjusting means 1814 . At both ends of the first elastic member 1811, the 1A bonding wire 1812 and the 2A bonding wire 1813 are respectively connected.
제1A 결합 와이어(1812)와 제2A 결합 와이어(1813) 각각은 제1 탄성부재(1811)의 양단과 연결된다. 제1A 결합 와이어(1812)의 끝단은 볼트와 같은 결합 수단에 의해 위팔뼈 모사체(160)에 결합되어서 고정되고, 제2A 결합 와이어(1813)의 끝단은 볼트와 같은 결합 수단에 의해 아래팔뼈 모사체(165)로부터 돌출되는 제1 결합 보조물(1815)에 결합되어서 고정된다. 제1A 결합 와이어(1812)의 끝단과 제2A 결합 와이어(1813)의 끝단이 결합되는 위치는 제1 근육 모사 유닛(181)이 인체의 상완요골근을 모사할 수 있도록 결정된다. 제1A 결합 와이어(1812)와 제2A 결합 와이어(1813)에 의해 위팔뼈 모사체(160)와 아래팔뼈 모사체(165)에 결합된 제1 탄성부재(1811)에 의한 탄성력은 아래팔뼈 모사체(165)를 위팔뼈 모사체(160)에 대해 팔꿉관절 모사부(175)의 회전축선(A)에 대한 제1 회전방향(실선으로 표시된 회전방향)으로 회전시키는 회전력을 발생시킨다. 본 실시예에서 제1A 결합 와이어(1812)는 위팔뼈 모사체(160)에 팔꿉관절 모사부(175)와 위팔뼈 모사체(160)의 길이방향 중심 사이의 위치(P11)에서 결합된다. 본 실시예에서 제1 결합 보조물(1815)은 아래팔뼈 모사체(165)의 제2 단부(167)에 인접하여 위치하며, 제2A 결합 와이어(1813)는 제1 결합 보조물(1815)의 끝단의 위치(P12)에 결합된다.Each of the 1A bonding wire 1812 and the 2A bonding wire 1813 is connected to both ends of the first elastic member 1811 . The end of the 1A bonding wire 1812 is coupled to and fixed to the humerus base body 160 by a coupling means such as a bolt, and the end of the 2A coupling wire 1813 is fixed to the forearm by coupling means such as a bolt. It is coupled to and fixed to the first coupling aid 1815 protruding from the body 165 . The position where the end of the 1A bonding wire 1812 and the end of the 2A bonding wire 1813 are coupled is determined so that the first muscle simulating unit 181 can simulate the brachial radial muscle of the human body. The elastic force by the first elastic member 1811 coupled to the forearm base body 160 and the forearm base body 165 by the 1A coupling wire 1812 and the 2A coupling wire 1813 is the forearm bone base body A rotational force is generated to rotate the 165 in the first rotational direction (the rotational direction indicated by the solid line) with respect to the rotational axis A of the elbow joint simulating part 175 with respect to the humerus base body 160 . In this embodiment, the 1A coupling wire 1812 is coupled to the humerus base 160 at a position P11 between the elbow joint imitation part 175 and the longitudinal center of the humerus base body 160 . In this embodiment, the first coupling aid 1815 is positioned adjacent to the second end 167 of the forearm base body 165 , and the 2A coupling wire 1813 is at the end of the first coupling aid 1815 . coupled to position P12.
제1 탄성력 조절 수단(1814)은 제1 탄성부재(1811)에 의한 탄성력을 조절한다. 제1 탄성력 조절 수단(1814)은 제1A 결합 와이어(1812) 또는 제2A 결합 와이어 (1813)의 길이를 조절함으로써, 제1 탄성부재(1811)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제1 탄성력 조절 수단(1814)을 이용하여 제1A 결합 와이어(1812) 또는 제2A 결합 와이어(1813)의 길이를 변화시키면, 인장코일스프링인 제1 탄성부재(1811)의 길이가 변하여 탄성력이 조절되는 것이다.The first elastic force adjusting means 1814 adjusts the elastic force by the first elastic member 1811 . The first elastic force adjusting means 1814 is described as adjusting the elastic force by the first elastic member 1811 by adjusting the length of the 1A bonding wire 1812 or the 2A bonding wire 1813. In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the first elastic force adjusting means ( When the length of the 1A bonding wire 1812 or the 2A bonding wire 1813 is changed using the 1814), the length of the first elastic member 1811, which is a tension coil spring, is changed to adjust the elastic force.
제2 근육 모사 유닛(182)은 인체의 상완근(Brachialis)을 모사한 것으로서, 위팔뼈 모사체(160)와 아래팔뼈 모사체(165)에 결합된다. 제2 근육 모사 유닛(182)은 인장 하중에 대응하는 탄성력을 제공하는 제2 탄성부재(1821)와, 제2 탄성부재(1821)를 위팔뼈 모사체(160)와 아래팔뼈 모사체(165)에 각각 결합시키는 제1B, 제2B 결합 와이어(1822, 1823)와, 제2 탄성부재(1821)에 의한 탄성력을 조절하는 제2 탄성력 조절 수단(1824)을 구비한다.The second muscle mimicking unit 182 is a simulating the brachialis of the human body, and is coupled to the upper arm bone base 160 and the forearm bone base body 165 . The second muscle imitation unit 182 includes a second elastic member 1821 that provides an elastic force corresponding to a tensile load, and a second elastic member 1821 for the upper arm bone base 160 and the forearm bone base body 165 . A second elastic force adjusting means 1824 for adjusting the elastic force by the first and second B bonding wires 1822 and 1823 and the second elastic member 1821 for coupling to each other is provided.
제2 탄성부재(1821)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제2 탄성부재(1821)에 의해 발생하는 탄성력에 의해 인체의 상완근의 경도가 모사된다. 제2 탄성부재(1821)에 의해 발생하는 탄성력은 제2 탄성력 조절 수단(1824)에 의해 조절된다. 제2 탄성부재(1821)의 양단에는 각각 제1B 결합 와이어(1822)와 제2B 결합 와이어(1823)가 연결된다.The second elastic member 1821 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The hardness of the brachial muscle of the human body is simulated by the elastic force generated by the second elastic member 1821 . The elastic force generated by the second elastic member 1821 is adjusted by the second elastic force adjusting means 1824 . At both ends of the second elastic member 1821, the 1B bonding wire 1822 and the 2B bonding wire 1823 are respectively connected.
제1B 결합 와이어(1822)와 제2B 결합 와이어(1823) 각각은 제2 탄성부재(1821)의 양단과 연결된다. 제1B 결합 와이어(1822)의 끝단은 볼트와 같은 결합 수단에 의해 위팔뼈 모사체(160)에 결합되어서 고정되고, 제2B 결합 와이어(1823)의 끝단은 볼트와 같은 결합 수단에 의해 아래팔뼈 모사체(165)에 결합되어서 고정된다. 제1B 결합 와이어(1822)의 끝단과 제2B 결합 와이어(1823)의 끝단이 결합되는 위치는 제2 근육 모사 유닛(182)이 인체의 상완근을 모사할 수 있도록 결정된다. 제1B 결합 와이어(1822)와 제2B 결합 와이어(1823)에 의해 위팔뼈 모사체(160)와 아래팔뼈 모사체(165)에 결합된 제2 탄성부재(1821)에 의한 탄성력은 아래팔뼈 모사체(165)를 위팔뼈 모사체(160)에 대해 팔꿉관절 모사부(175)의 회전축선(A)에 대한 제1 회전방향(실선으로 표시된 회전방향)으로 회전시키는 회전력을 발생시킨다. 본 실시예에서 제1B 결합 와이어(1822)는 위팔뼈 모사체(160)에 팔꿉관절 모사부(175)와 위팔뼈 모사체(160)의 길이방향 중심 사이의 위치(P21)에서 결합된다. 제1B 결합 와이어(1822)가 위팔뼈 모사체(160)에 결합되는 위치(P21)는 제1A 결합 와이어(1812)가 위팔뼈 모사체(160)에 결합되는 위치보다 팔꿉관절 모사부(175)로부터 약간 더 멀다. 본 실시예에서 제2B 결합 와이어(1823)는 아래팔뼈 모사체(165)에 팔꿉관절 모사부(175)와 아래팔뼈 모사체(165)의 길이방향 중심 사이의 위치(P22)에서 아래팔뼈 모사체(165)의 제1 단부(166)에 인접하여 결합된다.Each of the 1B bonding wire 1822 and the 2B bonding wire 1823 is connected to both ends of the second elastic member 1821 . The end of the 1B bonding wire 1822 is coupled to and fixed to the humerus base body 160 by a coupling means such as a bolt, and the end of the 2B coupling wire 1823 is fixed by a coupling means such as a bolt. It is coupled to the body 165 and fixed. The position where the end of the 1B bonding wire 1822 and the end of the 2B bonding wire 1823 are coupled is determined so that the second muscle simulating unit 182 can simulate the brachial muscle of the human body. The elastic force by the second elastic member 1821 coupled to the forearm base body 160 and the forearm base body 165 by the 1B coupling wire 1822 and the 2B coupling wire 1823 is the forearm base body. A rotational force is generated to rotate the 165 in the first rotational direction (the rotational direction indicated by the solid line) with respect to the rotational axis A of the elbow joint simulating part 175 with respect to the humerus base body 160 . In this embodiment, the 1B coupling wire 1822 is coupled to the humerus base 160 at a position P21 between the elbow joint simulant 175 and the longitudinal center of the humerus base 160 . The position (P21) where the 1B coupling wire 1822 is coupled to the humerus base body 160 is higher than the position where the 1A coupling wire 1812 is coupled to the humerus base body 160, the elbow joint mimetic part 175. slightly further from In this embodiment, the 2B coupling wire 1823 is a forearm base at a position (P22) between the forearm base part 175 and the longitudinal center of the forearm base body 165 to the forearm base body 165. coupled adjacent to the first end 166 of 165 .
제2 탄성력 조절 수단(1824)은 제2 탄성부재(1821)에 의한 탄성력을 조절한다. 제2 탄성력 조절 수단(1824)은 제1B 결합 와이어(1822) 또는 제2B 결합 와이어 (1823)의 길이를 조절함으로써, 제2 탄성부재(1821)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제2 탄성력 조절 수단(1824)을 이용하여 제1B 결합 와이어(1822) 또는 제2B 결합 와이어(1823)의 길이를 변화시키면, 인장코일스프링인 제2 탄성부재(1821)의 길이가 변하여 탄성력이 조절되는 것이다.The second elastic force adjusting means 1824 adjusts the elastic force by the second elastic member 1821 . The second elastic force adjusting means 1824 is described as adjusting the elastic force by the second elastic member 1821 by adjusting the length of the 1B bonding wire 1822 or the 2B bonding wire 1823. In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the second elastic force adjusting means ( When the length of the 1B bonding wire 1822 or the 2B bonding wire 1823 is changed using 1824), the length of the second elastic member 1821, which is a tension coil spring, is changed to control the elastic force.
제3 근육 모사 유닛(183)은 인체의 상완이두근의 장두(Long head of biceps brachii)를 모사한 것으로서, 더미 결합부(145)와 아래팔뼈 모사체(165)에 결합된다. 제3 근육 모사 유닛(183)은 인장 하중에 대응하는 탄성력을 제공하는 제3 탄성부재(1831)와, 제3 탄성부재(1831)를 더미 결합부(145)와 아래팔뼈 모사체(165)에 각각 결합시키는 제1C, 제2C 결합 와이어(1832, 1833)와, 제3 탄성부재(1831)에 의한 탄성력을 조절하는 제3 탄성력 조절 수단(1834)을 구비한다.The third muscle simulating unit 183 simulates the long head of biceps brachii of the human body, and is coupled to the dummy coupling part 145 and the forearm base body 165 . The third muscle simulating unit 183 includes a third elastic member 1831 that provides an elastic force corresponding to a tensile load, and the third elastic member 1831 to the dummy coupling part 145 and the forearm base body 165 . 1C and 2C coupling wires 1832 and 1833 for coupling, respectively, and a third elastic force adjusting means 1834 for adjusting the elastic force by the third elastic member 1831 is provided.
제3 탄성부재(1831)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제3 탄성부재(1831)에 의해 발생하는 탄성력에 의해 인체의 상완이두근의 장두의 경도가 모사된다. 제3 탄성부재(1831)에 의해 발생하는 탄성력은 제3 탄성력 조절 수단(1834)에 의해 조절된다. 제3 탄성부재(1831)의 양단에는 각각 제1C 결합 와이어(1832)와 제2C 결합 와이어(1833)가 연결된다.The third elastic member 1831 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The hardness of the long head of the biceps brachii of the human body is simulated by the elastic force generated by the third elastic member 1831 . The elastic force generated by the third elastic member 1831 is adjusted by the third elastic force adjusting means 1834 . A 1C bonding wire 1832 and a 2C bonding wire 1833 are respectively connected to both ends of the third elastic member 1831 .
제1C 결합 와이어(1832)와 제2C 결합 와이어(1833) 각각은 제3 탄성부재(1831)의 양단과 연결된다. 제1C 결합 와이어(1832)의 끝단은 볼트와 같은 결합 수단에 의해 더미 결합체(140)의 더미 결합부(145)에 결합되어서 고정되고, 제2C 결합 와이어(1833)의 끝단은 볼트와 같은 결합 수단에 의해 아래팔뼈 모사체(165)에 결합되어서 고정된다. 제1C 결합 와이어(1832)의 끝단과 제2C 결합 와이어(1833)의 끝단이 결합되는 위치는 제3 근육 모사 유닛(183)이 인체의 상완이두근의 장두를 모사할 수 있도록 결정된다. 제1C 결합 와이어(1832)와 제2C 결합 와이어(1833)에 의해 더미 결합부(145)와 아래팔뼈 모사체(165)에 결합된 제3 탄성부재(1831)에 의한 탄성력은 아래팔뼈 모사체(165)를 위팔뼈 모사체(160)에 대해 팔꿉관절 모사부(175)의 회전축선(A)에 대한 제1 회전방향(실선으로 표시된 회전방향)으로 회전시키는 회전력을 발생시킨다. 본 실시예에서 제1C 결합 와이어(1832)는 더미 결합부(145)에 어깨관절 모사부(170)를 사이에 두고 위팔뼈 모사체(160)의 제1 단부(161)의 반대편 위치(P31)에서 결합된다. 제1C 결합 와이어(1832)와 위팔뼈 모사체(160)의 제1 단부(161)의 간섭을 방지하기 위하여 위팔뼈 모사체(160)의 제1 단부(161)에는 제1C 결합 와이어(1832)를 지지하는 지지 롤러(1835)가 설치된다. 본 실시예에서 제2C 결합 와이어(1833)는 아래팔뼈 모사체(165)에 팔꿉관절 모사부(175)와 아래팔뼈 모사체(165)의 길이방향 중심 사이의 위치(P32)에서 결합된다. 제2C 결합 와이어(1833)가 아래팔뼈 모사체(165)에 결합되는 위치(P32)는 제2B 결합 와이어(1823)가 아래팔뼈 모사체(165)에 결합되는 위치(P22)보다 팔꿉관절 모사부(175)로부터 약간 더 멀다.Each of the 1C bonding wire 1832 and the 2C bonding wire 1833 is connected to both ends of the third elastic member 1831 . The end of the 1C bonding wire 1832 is fixed by being coupled to the dummy coupling part 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2C coupling wire 1833 is coupled to the coupling means such as bolts. It is fixed by being coupled to the forearm base body (165). The position where the end of the 1C coupling wire 1832 and the end of the 2C coupling wire 1833 are coupled is determined so that the third muscle simulating unit 183 can simulate the long head of the biceps brachii muscle of the human body. The elastic force by the third elastic member 1831 coupled to the dummy coupling part 145 and the forearm base body 165 by the 1C coupling wire 1832 and the 2C coupling wire 1833 is the forearm base body ( 165) generates a rotational force for rotating the upper arm bone base 160 in the first rotational direction (rotational direction indicated by a solid line) with respect to the rotation axis A of the elbow joint model 175. In this embodiment, the 1C coupling wire 1832 is located opposite the first end 161 of the humerus body 160 with the shoulder joint imitation unit 170 interposed between the dummy coupling unit 145 (P31). is combined in In order to prevent interference between the 1C coupling wire 1832 and the first end 161 of the humerus base 160, the first end 161 of the humerus base 160 has a 1C coupling wire 1832) A support roller 1835 for supporting the is installed. In this embodiment, the 2C coupling wire 1833 is coupled to the forearm base 165 at a position P32 between the elbow joint base 175 and the longitudinal center of the forearm base 165 . The position (P32) where the 2C coupling wire 1833 is coupled to the forearm base body 165 is higher than the position (P22) where the 2B coupling wire 1823 is coupled to the forearm base body 165, the elbow joint mimetic part Slightly further from (175).
제3 탄성력 조절 수단(1834)은 제3 탄성부재(1831)에 의한 탄성력을 조절한다. 제3 탄성력 조절 수단(1834)은 제1C 결합 와이어(1832) 또는 제2C 결합 와이어 (1833)의 길이를 조절함으로써, 제3 탄성부재(1831)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제3 탄성력 조절 수단(1834)을 이용하여 제1C 결합 와이어(1832) 또는 제2C 결합 와이어(1833)의 길이를 변화시키면, 인장코일스프링인 제3 탄성부재(1831)의 길이가 변하여 탄성력이 조절되는 것이다.The third elastic force adjusting means 1834 adjusts the elastic force by the third elastic member 1831 . The third elastic force adjusting means 1834 is described as adjusting the elastic force by the third elastic member 1831 by adjusting the length of the 1C bonding wire 1832 or the 2C bonding wire 1833. In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the third elastic force adjusting means ( When the length of the 1C coupling wire 1832 or the 2C coupling wire 1833 is changed using 1834), the length of the third elastic member 1831, which is a tension coil spring, is changed to control the elastic force.
제4 근육 모사 유닛(184)은 인체의 상완이두근의 단두(Short head of biceps brachi)를 모사한 것으로서, 더미 결합부(145)와 아래팔뼈 모사체(165)에 결합된다. 제4 근육 모사 유닛(184)은 인장 하중에 대응하는 탄성력을 제공하는 제4 탄성부재(1841)와, 제4 탄성부재(1841)를 더미 결합부(145)와 아래팔뼈 모사체(165)에 각각 결합시키는 제1D, 제2D 결합 와이어(1842, 1843)와, 제4 탄성부재(1841)에 의한 탄성력을 조절하는 제4 탄성력 조절 수단(1844)을 구비한다.The fourth muscle simulating unit 184 is a simulating the short head of biceps brachi of the human body, and is coupled to the dummy coupling part 145 and the forearm base body 165 . The fourth muscle imitation unit 184 includes a fourth elastic member 1841 that provides an elastic force corresponding to a tensile load, and the fourth elastic member 1841 to the dummy coupling part 145 and the forearm base body 165 . 1D and 2D coupling wires 1842 and 1843 for coupling, respectively, and a fourth elastic force adjusting means 1844 for adjusting the elastic force by the fourth elastic member 1841 is provided.
제4 탄성부재(1841)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제4 탄성부재(1841)에 의해 발생하는 탄성력에 의해 인체의 상완이두근의 단두의 경도가 모사된다. 제4 탄성부재(1841)에 의해 발생하는 탄성력은 제4 탄성력 조절 수단(1844)에 의해 조절된다. 제4 탄성부재(1841)의 양단에는 각각 제1D 결합 와이어(1842)와 제2D 결합 와이어(1843)가 연결된다.The fourth elastic member 1841 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The hardness of the short head of the biceps brachii of the human body is simulated by the elastic force generated by the fourth elastic member 1841 . The elastic force generated by the fourth elastic member 1841 is adjusted by the fourth elastic force adjusting means 1844 . A 1D coupling wire 1842 and a 2D coupling wire 1843 are respectively connected to both ends of the fourth elastic member 1841 .
제1D 결합 와이어(1842)와 제2D 결합 와이어(1843) 각각은 제4 탄성부재(1841)의 양단과 연결된다. 제1D 결합 와이어(1842)의 끝단은 볼트와 같은 결합 수단에 의해 더미 결합체(140)의 더미 결합부(145)에 결합되어서 고정되고, 제2D 결합 와이어(1843)의 끝단은 볼트와 같은 결합 수단에 의해 아래팔뼈 모사체(165)에 결합되어서 고정된다. 제1D 결합 와이어(1842)의 끝단과 제2D 결합 와이어(1843)의 끝단이 결합되는 위치는 제4 근육 모사 유닛(184)이 인체의 상완이두근의 단두를 모사할 수 있도록 결정된다. 제1D 결합 와이어(1842)와 제2D 결합 와이어(1843)에 의해 더미 결합부(145)와 아래팔뼈 모사체(165)에 결합된 제4 탄성부재(1841)에 의한 탄성력은 아래팔뼈 모사체(165)를 위팔뼈 모사체(160)에 대해 팔꿉관절 모사부(175)의 회전축선(A)에 대한 제1 회전방향(실선으로 표시된 회전방향)으로 회전시키는 회전력을 발생시킨다. 본 실시예에서 제1D 결합 와이어(1842)는 더미 결합부(145)에 어깨관절 모사부(170)와 안쪽 측면으로 이격된 위치(P41)에서 결합된다. 본 실시예에서 제2D 결합 와이어(1843)는 아래팔뼈 모사체(165)에 제2C 결합 와이어(1833)가 결합되는 위치(P32)와 동일한 위치에서 결합된다.Each of the 1D bonding wire 1842 and the 2D bonding wire 1843 is connected to both ends of the fourth elastic member 1841 . The end of the 1D bonding wire 1842 is coupled to and fixed to the dummy coupling part 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2D coupling wire 1843 is coupled to the coupling means such as bolts. It is fixed by being coupled to the forearm base body (165). The position where the end of the 1D coupling wire 1842 and the end of the 2D coupling wire 1843 are coupled is determined so that the fourth muscle simulating unit 184 can simulate the short head of the biceps brachii muscle of the human body. The elastic force by the fourth elastic member 1841 coupled to the dummy coupling part 145 and the forearm base body 165 by the 1D coupling wire 1842 and the 2D coupling wire 1843 is the forearm base body ( 165) generates a rotational force for rotating the upper arm bone base 160 in the first rotational direction (rotational direction indicated by a solid line) with respect to the rotation axis A of the elbow joint model 175. In this embodiment, the 1D coupling wire 1842 is coupled to the dummy coupling part 145 at a position P41 spaced apart from the shoulder joint simulating part 170 and the inner side. In this embodiment, the 2D coupling wire 1843 is coupled to the forearm base body 165 at the same position as the position P32 at which the 2C coupling wire 1833 is coupled.
제4 탄성력 조절 수단(1844)은 제4 탄성부재(1841)에 의한 탄성력을 조절한다. 제4 탄성력 조절 수단(1844)은 제1D 결합 와이어(1842) 또는 제2D 결합 와이어 (1843)의 길이를 조절함으로써, 제4 탄성부재(1841)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제4 탄성력 조절 수단(1844)을 이용하여 제1D 결합 와이어(1842) 또는 제2D 결합 와이어(1843)의 길이를 변화시키면, 인장코일스프링인 제4 탄성부재(1841)의 길이가 변하여 탄성력이 조절되는 것이다.The fourth elastic force adjusting means 1844 adjusts the elastic force by the fourth elastic member 1841 . The fourth elastic force adjusting means 1844 is described as adjusting the elastic force by the fourth elastic member 1841 by adjusting the length of the 1D coupling wire 1842 or the 2D coupling wire 1843 . In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the fourth elastic force adjusting means ( When the length of the 1D coupling wire 1842 or the 2D coupling wire 1843 is changed using 1844), the length of the fourth elastic member 1841, which is a tension coil spring, is changed to control the elastic force.
제5 근육 모사 유닛(185)은 인체의 후면삼각근(Deltoid Posterior)을 모사한 것으로서, 더미 결합부(145)와 위팔뼈 모사체(160)에 결합된다. 제5 근육 모사 유닛(185)은 인장 하중에 대응하는 탄성력을 제공하는 제5 탄성부재(1851)와, 제5 탄성부재(1851)를 더미 결합부(145)와 위팔뼈 모사체(160)에 각각 결합시키는 제1E, 제2E 결합 와이어(1852, 1853)와, 제5 탄성부재(1851)에 의한 탄성력을 조절하는 제5 탄성력 조절 수단(1844)을 구비한다.The fifth muscle simulating unit 185 is a simulating the posterior deltoid muscle of the human body, and is coupled to the dummy coupling part 145 and the upper arm bone base 160 . The fifth muscle simulating unit 185 includes a fifth elastic member 1851 that provides an elastic force corresponding to a tensile load, and a fifth elastic member 1851 to the dummy coupling part 145 and the upper arm bone base 160 . 1E and 2E coupling wires 1852 and 1853 for coupling, respectively, and a fifth elastic force adjusting means 1844 for adjusting the elastic force by the fifth elastic member 1851 is provided.
제5 탄성부재(1851)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제5 탄성부재(1851)에 의해 발생하는 탄성력에 의해 인체의 후면삼각근의 경도가 모사된다. 제5 탄성부재(1851)에 의해 발생하는 탄성력은 제5 탄성력 조절 수단(1854)에 의해 조절된다. 제5 탄성부재(1851)의 양단에는 각각 제1E 결합 와이어(1852)와 제2E 결합 와이어(1853)가 연결된다.The fifth elastic member 1851 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The hardness of the rear deltoid muscle of the human body is simulated by the elastic force generated by the fifth elastic member 1851 . The elastic force generated by the fifth elastic member 1851 is adjusted by the fifth elastic force adjusting means 1854 . A first coupling wire 1852 and a second coupling wire 1853 are connected to both ends of the fifth elastic member 1851 , respectively.
제1E 결합 와이어(1852)와 제2E 결합 와이어(1853) 각각은 제5 탄성부재(1851)의 양단과 연결된다. 제1E 결합 와이어(1852)의 끝단은 볼트와 같은 결합 수단에 의해 더미 결합체(140)의 더미 결합부(145)에 결합되어서 고정되고, 제2E 결합 와이어(1853)의 끝단은 볼트와 같은 결합 수단에 의해 위팔뼈 모사체(160)에 결합되어서 고정된다. 제1E 결합 와이어(1852)의 끝단과 제2E 결합 와이어(1853)의 끝단이 결합되는 위치는 제5 근육 모사 유닛(185)이 인체의 후면삼각근을 모사할 수 있도록 결정된다. 본 실시예에서 제1E 결합 와이어(1852)는 더미 결합부(145)에서 어깨관절 모사부(170)의 뒤쪽으로 이격된 위치(P51)에서 결합된다. 본 실시예에서 제2E 결합 와이어(1853)는 위팔뼈 모사체(160)에 어깨관절 모사부(170)와 위팔뼈 모사체(160)의 길이방향 중심 사이의 위치(P52)에서 결합된다.Each of the 1E bonding wire 1852 and the 2E bonding wire 1853 is connected to both ends of the fifth elastic member 1851 . The end of the 1E bonding wire 1852 is coupled to and fixed to the dummy coupling portion 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2E coupling wire 1853 is coupled to the coupling means such as bolts. It is coupled to and fixed to the humerus base body 160 by the The position where the end of the 1E coupling wire 1852 and the end of the 2E coupling wire 1853 are coupled is determined so that the fifth muscle simulating unit 185 can simulate the rear deltoid of the human body. In this embodiment, the 1E coupling wire 1852 is coupled at a position P51 spaced apart from the back of the shoulder joint simulation unit 170 in the dummy coupling unit 145 . In this embodiment, the 2E coupling wire 1853 is coupled to the humerus base 160 at a position P52 between the shoulder joint base 170 and the longitudinal center of the humerus base 160 .
제5 탄성력 조절 수단(1854)은 제5 탄성부재(1851)에 의한 탄성력을 조절한다. 제5 탄성력 조절 수단(1854)은 제1E 결합 와이어(1852) 또는 제2E 결합 와이어 (1853)의 길이를 조절함으로써, 제5 탄성부재(1851)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제5 탄성력 조절 수단(1854)을 이용하여 제1E 결합 와이어(1852) 또는 제2E 결합 와이어(1853)의 길이를 변화시키면, 인장코일스프링인 제5 탄성부재(1851)의 길이가 변하여 탄성력이 조절되는 것이다.The fifth elastic force adjusting means 1854 adjusts the elastic force by the fifth elastic member 1851 . The fifth elastic force adjusting means 1854 is described as adjusting the elastic force by the fifth elastic member 1851 by adjusting the length of the 1E coupling wire 1852 or the 2E coupling wire 1853. In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the fifth elastic force adjusting means ( When the length of the 1E coupling wire 1852 or the 2E coupling wire 1853 is changed using the 1854), the length of the fifth elastic member 1851, which is a tension coil spring, is changed to control the elastic force.
제6 근육 모사 유닛(186)은 인체의 상완삼두근(triceps)을 모사한 것으로서, 더미 결합부(145)와 아래팔뼈 모사체(165)에 결합된다. 제6 근육 모사 유닛(186)은 인장 하중에 대응하는 탄성력을 제공하는 제6 탄성부재(1861)와, 제6 탄성부재(1861)를 더미 결합부(145)와 아래팔뼈 모사체(165)에 각각 결합시키는 제1F, 제2F 결합 와이어(1862, 1863)와, 제6 탄성부재(1861)에 의한 탄성력을 조절하는 제6 탄성력 조절 수단(1864)을 구비한다.The sixth muscle simulating unit 186 simulates the triceps of the human body, and is coupled to the dummy coupling part 145 and the forearm base 165 . The sixth muscle simulating unit 186 includes a sixth elastic member 1861 that provides an elastic force corresponding to a tensile load, and a sixth elastic member 1861 to the dummy coupling part 145 and the forearm base body 165 . 1F and 2F coupling wires 1862 and 1863 for coupling, respectively, and a sixth elastic force adjusting means 1864 for adjusting the elastic force by the sixth elastic member 1861 is provided.
제6 탄성부재(1861)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제6 탄성부재(1861)에 의해 발생하는 탄성력에 의해 인체의 상완삼두근의 경도가 모사된다. 제6 탄성부재(1861)에 의해 발생하는 탄성력은 제6 탄성력 조절 수단(1864)에 의해 조절된다. 제6 탄성부재(1861)의 양단에는 각각 제1F 결합 와이어(1862)와 제2F 결합 와이어(1863)가 연결된다.The sixth elastic member 1861 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The hardness of the triceps brachii of the human body is simulated by the elastic force generated by the sixth elastic member 1861 . The elastic force generated by the sixth elastic member 1861 is adjusted by the sixth elastic force adjusting means 1864 . A 1F coupling wire 1862 and a 2F coupling wire 1863 are connected to both ends of the sixth elastic member 1861 , respectively.
제1F 결합 와이어(1862)와 제2F 결합 와이어(1863) 각각은 제6 탄성부재(1861)의 양단과 연결된다. 제1F 결합 와이어(1862)의 끝단은 볼트와 같은 결합 수단에 의해 더미 결합체(140)의 더미 결합부(145)에 결합되어서 고정되고, 제2F 결합 와이어(1863)의 끝단은 볼트와 같은 결합 수단에 의해 아래팔뼈 모사체(165)로부터 돌출되는 제2 결합 보조물(1865)에 결합되어서 고정된다. 제1F 결합 와이어(1862)의 끝단과 제2F 결합 와이어(1863)의 끝단이 결합되는 위치는 제6 근육 모사 유닛(186)이 인체의 상완삼두근을 모사할 수 있도록 결정된다. 제1F 결합 와이어(1862)와 제2F 결합 와이어(1863)에 의해 더미 결합부(145)와 아래팔뼈 모사체(165)에 결합된 제6 탄성부재(1861)에 의한 탄성력은 아래팔뼈 모사체(165)를 위팔뼈 모사체(160)에 대해 팔꿉관절 모사부(175)의 회전축선(A)에 대한 제1 회전방향(실선으로 표시된 회전방향)의 반대방향인 제2 회전방향(파선으로 표시된 회전방향)으로 회전시키는 회전력을 발생시킨다. 본 실시예에서 제1F 결합 와이어(1862)는 더미 결합부(145)에서 어깨관절 모사부(170)의 뒤쪽으로 이격된 위치(P61)에서 결합된다. 본 실시예에서 제2 결합 보조물(1865)은 아래팔뼈 모사체(165)의 제1 단부(166)에 인접하여 위치하며, 제2F 결합 와이어(1863)는 제2 결합 보조물(1865)의 끝단의 위치(P62)에 결합된다.Each of the 1F bonding wire 1862 and the 2F bonding wire 1863 is connected to both ends of the sixth elastic member 1861 . The end of the 1F bonding wire 1862 is coupled to and fixed to the dummy coupling part 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2F coupling wire 1863 is coupled to the coupling means such as bolts. It is coupled to and fixed to the second coupling aid 1865 protruding from the forearm base body 165 by the The position where the end of the 1F coupling wire 1862 and the end of the 2F coupling wire 1863 are coupled is determined so that the sixth muscle simulating unit 186 can simulate the triceps brachii of the human body. The elastic force by the sixth elastic member 1861 coupled to the dummy coupling part 145 and the forearm base body 165 by the 1F coupling wire 1862 and the 2F coupling wire 1863 is the forearm bone base body ( 165) with respect to the upper arm bone base 160, the second direction of rotation (shown by a broken line) opposite to the first direction of rotation (the direction of rotation indicated by a solid line) with respect to the axis of rotation A of the base of the elbow joint 175. rotational direction) to generate rotational force. In this embodiment, the 1F coupling wire 1862 is coupled at a position P61 spaced apart from the back of the shoulder joint simulating part 170 in the dummy coupling part 145 . In this embodiment, the second coupling aid 1865 is positioned adjacent to the first end 166 of the forearm base body 165, and the 2F coupling wire 1863 is the end of the second coupling aid 1865. coupled to position P62.
제6 탄성력 조절 수단(1864)은 제6 탄성부재(1861)에 의한 탄성력을 조절한다. 제6 탄성력 조절 수단(1864)은 제1F 결합 와이어(1862) 또는 제2F 결합 와이어 (1863)의 길이를 조절함으로써, 제6 탄성부재(1861)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제6 탄성력 조절 수단(1864)을 이용하여 제1F 결합 와이어(1862) 또는 제2F 결합 와이어(1863)의 길이를 변화시키면, 인장코일스프링인 제6 탄성부재(1861)의 길이가 변하여 탄성력이 조절되는 것이다.The sixth elastic force adjusting means 1864 adjusts the elastic force by the sixth elastic member 1861 . The sixth elastic force adjusting means 1864 is described as adjusting the elastic force by the sixth elastic member 1861 by adjusting the length of the 1F bonding wire 1862 or the 2F bonding wire 1863. In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the sixth elastic force adjusting means ( When the length of the 1F coupling wire 1862 or the 2F coupling wire 1863 is changed using 1864), the length of the sixth elastic member 1861, which is a tension coil spring, is changed to control the elastic force.
제7 근육 모사 유닛(187)은 인체의 극상근(Supraspinatus)을 모사한 것으로서, 더미 결합부(145)와 위팔뼈 모사체(160)에 결합된다. 제7 근육 모사 유닛(187)은 인장 하중에 대응하는 탄성력을 제공하는 제7 탄성부재(1871)와, 제7 탄성부재(1871)를 더미 결합부(145)와 위팔뼈 모사체(160)에 각각 결합시키는 제1G, 제2G 결합 와이어(1872, 1873)와, 제7 탄성부재(1871)에 의한 탄성력을 조절하는 제7 탄성력 조절 수단(1874)을 구비한다.The seventh muscle simulating unit 187 simulates the supraspinatus muscle of the human body, and is coupled to the dummy coupling part 145 and the humerus body 160 . The seventh muscle simulating unit 187 includes a seventh elastic member 1871 that provides an elastic force corresponding to a tensile load, and a seventh elastic member 1871 to the dummy coupling part 145 and the upper arm bone base 160 . 1G and 2G coupling wires 1872 and 1873 for coupling, respectively, and a seventh elastic force adjusting means 1874 for adjusting the elastic force by the seventh elastic member 1871 is provided.
제7 탄성부재(1871)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제7 탄성부재(1871)에 의해 발생하는 탄성력에 의해 인체의 극상근의 경도가 모사된다. 제7 탄성부재(1871)에 의해 발생하는 탄성력은 제7 탄성력 조절 수단(1874)에 의해 조절된다. 제7 탄성부재(1871)의 양단에는 각각 제1G 결합 와이어(1872)와 제2G 결합 와이어(1873)가 연결된다. 제7 탄성부재(1871)의 탄성력은 위팔뼈 모사체(160)가 어깨관절 모사부(170)를 중심으로 바깥쪽으로 회전하는 방향으로 힘을 가한다.The seventh elastic member 1871 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The hardness of the supraspinatus muscle of the human body is simulated by the elastic force generated by the seventh elastic member 1871 . The elastic force generated by the seventh elastic member 1871 is adjusted by the seventh elastic force adjusting means 1874 . A 1G bonding wire 1872 and a 2G bonding wire 1873 are connected to both ends of the seventh elastic member 1871 , respectively. The elastic force of the seventh elastic member 1871 applies a force in the direction in which the humerus base body 160 rotates outwardly with respect to the shoulder joint base part 170 .
제1G 결합 와이어(1872)와 제2G 결합 와이어(1873) 각각은 제7 탄성부재(1871)의 양단과 연결된다. 제1G 결합 와이어(1872)의 끝단은 볼트와 같은 결합 수단에 의해 더미 결합체(140)의 더미 결합부(145)에 결합되어서 고정되고, 제2G 결합 와이어(1873)의 끝단은 볼트와 같은 결합 수단에 의해 위팔뼈 모사체(160)에 결합되어서 고정된다. 제1G 결합 와이어(1872)의 끝단과 제2G 결합 와이어(1873)의 끝단이 결합되는 위치는 제7 근육 모사 유닛(187)이 인체의 극상근을 모사할 수 있도록 결정된다. 본 실시예에서 제1G 결합 와이어(1872)는 더미 결합부(145)에서 어깨관절 모사부(170)의 안쪽으로 이격된 위치(P71)에서 결합된다. 본 실시예에서 제2G 결합 와이어(1873)는 위팔뼈 모사체(160)의 제1 단부(161)의 근처의 위치(P72)에서 결합된다.Each of the 1G bonding wire 1872 and the 2G bonding wire 1873 is connected to both ends of the seventh elastic member 1871 . The end of the 1st G coupling wire 1872 is fixed to the dummy coupling part 145 of the dummy coupling body 140 by coupling means such as a bolt, and the end of the 2G coupling wire 1873 is coupled to the coupling means such as a bolt. It is coupled to and fixed to the humerus base body 160 by the The position where the end of the 1G coupling wire 1872 and the end of the 2G coupling wire 1873 are coupled is determined so that the seventh muscle simulating unit 187 can simulate the supraspinatus of the human body. In this embodiment, the 1G coupling wire 1872 is coupled at an inwardly spaced position P71 of the shoulder joint simulation unit 170 in the dummy coupling unit 145 . In this embodiment, the 2G coupling wire 1873 is coupled at a location P72 near the first end 161 of the humerus base body 160 .
제7 탄성력 조절 수단(1874)은 제7 탄성부재(1871)에 의한 탄성력을 조절한다. 제7 탄성력 조절 수단(1874)은 제1G 결합 와이어(1872) 또는 제2G 결합 와이어 (1873)의 길이를 조절함으로써, 제7 탄성부재(1871)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제7 탄성력 조절 수단(1874)을 이용하여 제1G 결합 와이어(1872) 또는 제2G 결합 와이어(1873)의 길이를 변화시키면, 인장코일스프링인 제7 탄성부재(1871)의 길이가 변하여 탄성력이 조절되는 것이다.The seventh elastic force adjusting means 1874 adjusts the elastic force by the seventh elastic member 1871 . The seventh elastic force adjusting means 1874 is described as adjusting the elastic force by the seventh elastic member 1871 by adjusting the length of the 1G bonding wire 1872 or the 2G bonding wire 1873 . In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the seventh elastic force adjusting means ( When the length of the 1G coupling wire 1872 or the 2G coupling wire 1873 is changed using the 1874), the length of the seventh elastic member 1871, which is a tension coil spring, is changed to control the elastic force.
제8 근육 모사 유닛(188)은 인체의 견갑하근(Subscapularis)을 모사한 것으로서, 더미 결합부(145)와 위팔뼈 모사체(160)에 결합된다. 제8 근육 모사 유닛(188)은 인장 하중에 대응하는 탄성력을 제공하는 제8 탄성부재(1881)와, 제8 탄성부재(1881)를 더미 결합부(145)와 위팔뼈 모사체(160)에 각각 결합시키는 제1H, 제2H 결합 와이어(1882, 1883)와, 제8 탄성부재(1881)에 의한 탄성력을 조절하는 제8 탄성력 조절 수단(1884)을 구비한다.The eighth muscle simulating unit 188 is a simulating the subscapularis of the human body, and is coupled to the dummy coupling part 145 and the upper arm bone base 160 . The eighth muscle simulating unit 188 includes an eighth elastic member 1881 that provides an elastic force corresponding to a tensile load and an eighth elastic member 1881 to the dummy coupling part 145 and the upper arm bone base 160. 1H and 2H coupling wires 1882 and 1883 for coupling, respectively, and an eighth elastic force adjusting means 1884 for adjusting the elastic force by the eighth elastic member 1881 is provided.
제8 탄성부재(1881)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제8 탄성부재(1871)에 의해 발생하는 탄성력에 의해 인체의 견갑하근의 경도가 모사된다. 제8 탄성부재(1881)에 의해 발생하는 탄성력은 제8 탄성력 조절 수단(1884)에 의해 조절된다. 제8 탄성부재(1881)의 양단에는 각각 제1H 결합 와이어(1882)와 제2H 결합 와이어(1883)가 연결된다.The eighth elastic member 1881 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The hardness of the subscapularis muscle of the human body is simulated by the elastic force generated by the eighth elastic member 1871 . The elastic force generated by the eighth elastic member 1881 is adjusted by the eighth elastic force adjusting means 1884 . A first H coupling wire 1882 and a second H coupling wire 1883 are connected to both ends of the eighth elastic member 1881 , respectively.
제1H 결합 와이어(1882)와 제2H 결합 와이어(1883) 각각은 제8 탄성부재(1881)의 양단과 연결된다. 제1H 결합 와이어(1882)의 끝단은 볼트와 같은 결합 수단에 의해 더미 결합체(140)의 더미 결합부(145)에 결합되어서 고정되고, 제2H 결합 와이어(1883)의 끝단은 볼트와 같은 결합 수단에 의해 위팔뼈 모사체(160)에 결합되어서 고정된다. 제1H 결합 와이어(1882)의 끝단과 제2H 결합 와이어(1883)의 끝단이 결합되는 위치는 제8 근육 모사 유닛(185)이 인체의 견갑하근을 모사할 수 있도록 결정된다. 본 실시예에서 제1H 결합 와이어(1882)는 더미 결합부(145)에서 어깨관절 모사부(170)의 앞쪽으로 이격된 위치(P81)에서 결합된다. 본 실시예에서 제2H 결합 와이어(1883)는 위팔뼈 모사체(160)의 제1 단부(161)의 근처의 위치(P82)에서 결합된다.Each of the 1H bonding wire 1882 and the 2H bonding wire 1883 is connected to both ends of the eighth elastic member 1881 . The end of the 1H bonding wire 1882 is coupled to and fixed to the dummy coupling portion 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2H coupling wire 1883 is coupled to the coupling means such as bolts. It is coupled to and fixed to the humerus base body 160 by the The position where the end of the 1H bonding wire 1882 and the end of the 2H bonding wire 1883 are coupled is determined so that the eighth muscle simulating unit 185 can simulate the subscapularis muscle of the human body. In this embodiment, the first H coupling wire 1882 is coupled at a position P81 spaced apart from the front of the shoulder joint simulating unit 170 in the dummy coupling unit 145 . In this embodiment, the 2H coupling wire 1883 is coupled at a location P82 near the first end 161 of the humerus base body 160 .
제8 탄성력 조절 수단(1884)은 제8 탄성부재(1881)에 의한 탄성력을 조절한다. 제8 탄성력 조절 수단(1884)은 제1H 결합 와이어(1882) 또는 제2H 결합 와이어 (1883)의 길이를 조절함으로써, 제8 탄성부재(1881)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제8 탄성력 조절 수단(1884)을 이용하여 제1H 결합 와이어(1882) 또는 제2H 결합 와이어(1883)의 길이를 변화시키면, 인장코일스프링인 제8 탄성부재(1881)의 길이가 변하여 탄성력이 조절되는 것이다.The eighth elastic force adjusting means 1884 adjusts the elastic force by the eighth elastic member 1881 . The eighth elastic force adjusting means 1884 is described as adjusting the elastic force by the eighth elastic member 1881 by adjusting the length of the first H-coupled wire 1882 or the second H-coupled wire 1883 . In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the eighth elastic force adjusting means ( When the length of the first H coupling wire 1882 or the second H coupling wire 1883 is changed using 1884), the length of the eighth elastic member 1881, which is a tension coil spring, is changed to adjust the elastic force.
제9 근육 모사 유닛(189)은 인체의 극하근(Infraspinatus)을 모사한 것으로서, 더미 결합부(145)와 위팔뼈 모사체(160)에 결합된다. 제9 근육 모사 유닛(189)은 인장 하중에 대응하는 탄성력을 제공하는 제9 탄성부재(1891)와, 제9 탄성부재(1891)를 더미 결합부(145)와 위팔뼈 모사체(160)에 각각 결합시키는 제1J, 제2J 결합 와이어(1892, 1893)와, 제9 탄성부재(1891)에 의한 탄성력을 조절하는 제9 탄성력 조절 수단(1894)을 구비한다.The ninth muscle mimicking unit 189 is a simulating the infraspinatus of the human body, and is coupled to the dummy coupling part 145 and the upper arm bone base 160 . The ninth muscle simulating unit 189 includes a ninth elastic member 1891 that provides an elastic force corresponding to a tensile load, and a ninth elastic member 1891 to the dummy coupling part 145 and the upper arm bone base 160 . A ninth elastic force adjusting means 1894 for adjusting the elastic force by the first and second J coupling wires 1892 and 1893 for coupling, respectively, and the ninth elastic member 1891 is provided.
제9 탄성부재(1891)는 인장코일스프링으로서, 인장 하중에 대응하는 탄성력을 제공한다. 제9 탄성부재(1891)에 의해 발생하는 탄성력에 의해 인체의 극하근의 경도가 모사된다. 제9 탄성부재(1891)에 의해 발생하는 탄성력은 제9 탄성력 조절 수단(1894)에 의해 조절된다. 제9 탄성부재(1891)의 양단에는 각각 제1J 결합 와이어(1892)와 제2J 결합 와이어(1893)가 연결된다. 제9 탄성부재(1891)의 탄성력은 위팔뼈 모사체(160)가 어깨관절 모사부(170)를 중심으로 바깥쪽으로 회전하는 방향으로 힘을 가한다.The ninth elastic member 1891 is a tensile coil spring and provides an elastic force corresponding to a tensile load. The hardness of the infraspinatus of the human body is simulated by the elastic force generated by the ninth elastic member 1891 . The elastic force generated by the ninth elastic member 1891 is adjusted by the ninth elastic force adjusting means 1894 . At both ends of the ninth elastic member 1891, the 1J bonding wire 1892 and the 2J bonding wire 1893 are respectively connected. The elastic force of the ninth elastic member 1891 applies a force in a direction in which the humerus base body 160 rotates outwardly with respect to the shoulder joint base part 170 .
제1J 결합 와이어(1892)와 제2J 결합 와이어(1893) 각각은 제9 탄성부재(1891)의 양단과 연결된다. 제1J 결합 와이어(1892)의 끝단은 볼트와 같은 결합 수단에 의해 더미 결합체(140)의 더미 결합부(145)에 결합되어서 고정되고, 제2J 결합 와이어(1893)의 끝단은 볼트와 같은 결합 수단에 의해 위팔뼈 모사체(160)에 결합되어서 고정된다. 제1J 결합 와이어(1892)의 끝단과 제2J 결합 와이어(1893)의 끝단이 결합되는 위치는 제9 근육 모사 유닛(189)이 인체의 극하근을 모사할 수 있도록 결정된다. 본 실시예에서 제1J 결합 와이어(1892)는 더미 결합부(145)에서 어깨관절 모사부(170)의 안쪽으로 이격된 위치(P91)에서 결합된다. 본 실시예에서 제2J 결합 와이어(1893)는 위팔뼈 모사체(160)의 제1 단부(161)의 근처의 위치(P92)에서 결합된다.Each of the 1J bonding wire 1892 and the 2J bonding wire 1893 is connected to both ends of the ninth elastic member 1891 . The end of the 1J bonding wire 1892 is fixed by being coupled to the dummy coupling portion 145 of the dummy coupling body 140 by coupling means such as bolts, and the end of the 2J coupling wire 1893 is coupled to the coupling means such as bolts. It is coupled to and fixed to the humerus base body 160 by the The position where the end of the 1J bonding wire 1892 and the end of the 2J bonding wire 1893 are coupled is determined so that the ninth muscle simulating unit 189 can simulate the infraspinatus of the human body. In this embodiment, the 1J coupling wire 1892 is coupled at an inwardly spaced position (P91) of the shoulder joint simulating part 170 in the dummy coupling part 145. In this embodiment, the 2J coupling wire 1893 is coupled at a location P92 near the first end 161 of the humerus base body 160 .
제9 탄성력 조절 수단(1894)은 제9 탄성부재(1871)에 의한 탄성력을 조절한다. 제9 탄성력 조절 수단(1894)은 제1J 결합 와이어(1892) 또는 제2J 결합 와이어 (1893)의 길이를 조절함으로써, 제9 탄성부재(1891)에 의한 탄성력을 조절하는 것으로 설명한다. 상지 더미(150)가 기계적 임피던스 추정 로봇(미도시)에 결합된 상태에서는, 어깨관절 모사부(170) 및 팔꿉관절 모사부(175)가 고정되며, 이 상태에서 이용자가 제9 탄성력 조절 수단(1894)을 이용하여 제1J 결합 와이어(1892) 또는 제2J 결합 와이어(1893)의 길이를 변화시키면, 인장코일스프링인 제9 탄성부재(1891)의 길이가 변하여 탄성력이 조절되는 것이다.The ninth elastic force adjusting means 1894 adjusts the elastic force by the ninth elastic member 1871 . The ninth elastic force adjusting means 1894 is described as adjusting the elastic force by the ninth elastic member 1891 by adjusting the length of the 1J bonding wire 1892 or the 2J bonding wire 1893 . In a state in which the upper extremity dummy 150 is coupled to the mechanical impedance estimation robot (not shown), the shoulder joint imitation unit 170 and the elbow joint imitation unit 175 are fixed, and in this state, the user uses the ninth elastic force adjusting means ( When the length of the 1J coupling wire 1892 or the 2J coupling wire 1893 is changed using the 1894), the length of the ninth elastic member 1891 that is a tension coil spring is changed to control the elastic force.
상기 실시예에서는, 복수개의 근육 모사 유닛(181, 182, 183, 184, 185, 186, 187, 188, 189)들 모두가 탄성력을 조절할 수 있는 경도 조절 가능 근육 모사 유닛인 것으로 설명하지만, 이와는 달리 일부의 근육 모사 유닛만이 탄성력을 조절할 수 있는 경도 조절 가능 근육 모사 유닛일 수 있으며, 이 또한 본 발명의 범위에 속하는 것이다.In the above embodiment, all of the plurality of muscle simulating units (181, 182, 183, 184, 185, 186, 187, 188, 189) are described as hardness-adjustable muscle simulating units that can adjust the elastic force, but differently Only some muscle-simulating units may be hardness-adjustable muscle-simulating units capable of adjusting elastic force, and this also falls within the scope of the present invention.
이상 실시예를 통해 본 발명을 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 상기 실시예는 본 발명의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 발명에 속하는 것임을 알 수 있을 것이다.Although the present invention has been described through the above examples, the present invention is not limited thereto. The above embodiments may be modified or changed without departing from the spirit and scope of the present invention, and those skilled in the art will recognize that such modifications and changes also belong to the present invention.
본 발명에 의한 인체 더미 장치는, 기계적 임피던스의 조절이 가능하여 임피던스 추정 로봇의 신뢰도 및 정확도 검증에 사용될 수 있다.The human body dummy device according to the present invention can be used to verify the reliability and accuracy of the impedance estimation robot because the mechanical impedance can be adjusted.
또한, 본 발명에 의한 인체 더미 장치는, 기계적 임피던스 변화에 따라 경직도 등의 측정이 가능하여 임상평가 관련 종사자들의 교육에 사용될 수 있다.In addition, the human body dummy device according to the present invention can measure stiffness according to a change in mechanical impedance, and thus can be used for education of clinical evaluation related practitioners.

Claims (20)

  1. 기계적 임피던스의 조절이 가능한 인체 더미 장치로서,A human body dummy device capable of adjusting mechanical impedance, comprising:
    지지 구조물; 및support structures; and
    상기 지지 구조물에 결합되어서 인체의 상지를 모사하는 상지 더미를 포함하며,It is coupled to the support structure and includes an upper limb dummy simulating the upper limbs of the human body,
    상기 상지 더미는,The upper extremity dummy,
    인체의 위팔뼈를 모사하는 위팔뼈 모사체와,An upper arm bone mimetic body that mimics the upper arm bone of the human body;
    인체의 아래팔뼈를 모사하는 아래팔뼈 모사체와,A forearm bone mimetic body that mimics the forearm bone of the human body,
    인체의 어깨관절을 모사하고 상기 위팔뼈 모사체를 상기 지지 구조물에 3자유도로 회전이 가능하게 결합시키는 어깨관절 모사부와,a shoulder joint simulating part simulating the shoulder joint of the human body and rotatably coupled to the upper arm bone imitation body to the support structure in three degrees of freedom;
    인체의 팔꿉관절을 모사하고 상기 위팔뼈 모사체와 상기 아래팔뼈 모사체 사이를 1자유도로 회전이 가능하게 결합시키는 팔꿉관절 모사부와,an elbow joint mimicking part that simulates the elbow joint of the human body and rotatably connects the upper arm bone base body and the forearm bone base body to one degree of freedom;
    인체의 상지를 구성하는 근육들을 모사하는 근육 모사 구조물을 구비하는,Having a muscle mimicking structure that mimics the muscles constituting the upper extremities of the human body,
    인체 더미 장치.human body dummy device.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 인체의 상지를 구성하는 근육들 각각을 모사하는 복수개의 근육 모사 유닛들을 구비하며,The muscle mimicking structure is provided with a plurality of muscle mimicking units that mimic each of the muscles constituting the upper extremities of the human body,
    상기 복수개의 근육 모사 유닛들 각각은 근육의 경도를 모사하는 탄성부재를 구비하는,Each of the plurality of muscle simulating units is provided with an elastic member that simulates the hardness of the muscle,
    인체 더미 장치.human body dummy device.
  3. 청구항 2에 있어서,3. The method according to claim 2,
    상기 복수개의 근육 모사 유닛들 중 적어도 하나는 상기 탄성부재의 탄성력을 조절하는 탄성력 조절 수단을 더 구비하는 경도 조절 가능 근육 모사 유닛인,At least one of the plurality of muscle simulating units is a hardness-adjustable muscle simulating unit further comprising an elastic force adjusting means for adjusting the elastic force of the elastic member,
    인체 더미 장치.human body dummy device.
  4. 청구항 3에 있어서,4. The method according to claim 3,
    상기 경도 조절 가능 근육 모사 유닛은 상기 탄성부재의 일단과 연결되는 결합 와이어를 더 구비하며,The hardness controllable muscle simulating unit further includes a coupling wire connected to one end of the elastic member,
    상기 탄성력 조절 수단은 상기 결합 와이어의 길이를 조절하는,The elastic force adjusting means for adjusting the length of the bonding wire,
    인체 더미 장치.human body dummy device.
  5. 청구항 2에 있어서,3. The method according to claim 2,
    상기 탄성부재는 인장코일스프링인,The elastic member is a tension coil spring,
    인체 더미 장치.human body dummy device.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 위팔뼈 모사체와 상기 아래팔뼈 모사체에 결합되어서 인체의 상완요골근(Brachioradialis)을 모사하는 제1 근육 모사 유닛을 구비하는,The muscle mimic structure comprises a first muscle mimic unit coupled to the forearm mimetic body and the forearm bone mimetic body to mimic the brachioradialis of the human body,
    인체 더미 장치.human body dummy device.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 위팔뼈 모사체와 상기 아래팔뼈 모사체에 결합되어서 인체의 상완근(Brachialis)을 모사하는 제2 근육 모사 유닛을 구비하는,The muscle mimic structure is coupled to the forearm mimetic body and the forearm bone mimetic body and includes a second muscle mimicry unit that mimics the brachial muscle of the human body,
    인체 더미 장치.human body dummy device.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 지지 구조물과 상기 아래팔뼈 모사체에 결합되어서 인체의 상완이두근의 장두(Long head of biceps brachii)를 모사를 모사하는 제3 근육 모사 유닛을 구비하는,The muscle mimicry structure is coupled to the support structure and the forearm mimetic body to include a third muscle mimicking unit for simulating the long head of biceps brachii of the human body,
    인체 더미 장치.human body dummy device.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 지지 구조물과 상기 아래팔뼈 모사체에 결합되어서 인체의 상완이두근의 단두(Short head of biceps brachi)를 모사하는 제4 근육 모사 유닛을 구비하는,The muscle mimic structure is coupled to the support structure and the forearm mimetic body and includes a fourth muscle mimic unit that simulates the short head of biceps brachi of the human body,
    인체 더미 장치.human body dummy device.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 지지 구조물과 상기 위팔뼈 모사체에 결합되어서 인체의 후면삼각근(Deltoid Posterior)을 모사하는 제5 근육 모사 유닛을 구비하는,The muscle mimicry structure is coupled to the support structure and the humerus mimetic body and comprising a fifth muscle mimicking unit simulating the posterior deltoid muscle (Deltoid Posterior) of the human body,
    인체 더미 장치.human body dummy device.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 지지 구조물과 상기 아래팔뼈 모사체에 결합되어서 인체의 상완삼두근(triceps)을 모사하는 제6 근육 모사 유닛을 구비하는,The muscle mimicry structure is coupled to the support structure and the forearm mimetic body and includes a sixth muscle mimicking unit for simulating the triceps of the human body,
    인체 더미 장치.human body dummy device.
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 지지 구조물과 상기 위팔뼈 모사체에 결합되어서 인체의 극상근(Supraspinatus)을 모사하는 제7 근육 모사 유닛을 구비하는,The muscle mimicry structure is coupled to the support structure and the humerus mimetic body and comprises a seventh muscle mimicking unit simulating the supraspinatus muscle of the human body,
    인체 더미 장치.human body dummy device.
  13. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 지지 구조물과 상기 위팔뼈 모사체에 결합되어서 인체의 견갑하근(Subscapularis)을 모사하는 제8 근육 모사 유닛을 구비하는,The muscle mimicry structure is coupled to the support structure and the humerus mimetic body, and comprising an eighth muscle mimicking unit simulating the subscapularis muscle of the human body,
    인체 더미 장치.human body dummy device.
  14. 청구항 1에 있어서,The method according to claim 1,
    상기 근육 모사 구조물은 상기 지지 구조물과 상기 위팔뼈 모사체에 결합되어서 인체의 극하근(Infraspinatus)을 모사하는 제9 근육 모사 유닛을 구비하는,The muscle mimicry structure is coupled to the support structure and the humerus mimetic body to include a ninth muscle mimicking unit simulating the infraspinatus of the human body,
    인체 더미 장치.human body dummy device.
  15. 청구항 1에 있어서,The method according to claim 1,
    상기 지지 구조물은 상기 상지 더미의 3차원 위치를 조절하는,The support structure controls the three-dimensional position of the upper extremity dummy,
    인체 더미 장치.human body dummy device.
  16. 청구항 15에 있어서,16. The method of claim 15,
    상기 지지 구조물은 기초에 이동 가능하게 결합되는 기초 결합판과, 상기 기초 결합판으로부터 위로 연장되고 높이가 조절되는 기둥과, 상기 기둥의 상단에 위치하고 상기 기둥에 대해 이동 가능하게 결합되며 상기 상지 더미가 결합되는 더미 결합체를 구비하는,The support structure includes a foundation coupling plate movably coupled to the foundation, a pillar extending upward from the foundation coupling plate and having a height adjusted, located at the top of the pillar and movably coupled with respect to the pillar, and the upper extremity dummy is Having a dummy assembly to be coupled,
    인체 더미 장치.human body dummy device.
  17. 청구항 1에 있어서,The method according to claim 1,
    상기 어깨관절 모사부는 유니버설 조인트와 베어링을 구비하는,The shoulder joint simulating part having a universal joint and a bearing,
    인체 더미 장치.human body dummy device.
  18. 기계적 임피던스의 조절이 가능한 인체 더미 장치로서,A human body dummy device capable of adjusting mechanical impedance, comprising:
    지지 구조물; 및support structures; and
    상기 지지 구조물에 결합되어서 인체의 상지를 구성하는 근육들을 모사하는 근육 모사 구조물을 구비하는 상지 더미를 포함하며,It is coupled to the support structure and includes an upper extremity dummy having a muscle mimicking structure that mimics the muscles constituting the upper extremities of the human body,
    상기 지지 구조물은 상기 상지 더미의 3차원 위치를 조절하는,The support structure controls the three-dimensional position of the upper extremity dummy,
    인체 더미 장치.human body dummy device.
  19. 청구항 18에 있어서,19. The method of claim 18,
    상기 지지 구조물은 기초에 이동 가능하게 결합되는 기초 결합판과, 상기 기초 결합판으로부터 위로 연장되고 높이가 조절되는 기둥과, 상기 기둥의 상단에 위치하고 상기 기둥에 대해 이동 가능하게 결합되며 상기 상지 더미가 결합되는 더미 결합체를 구비하는,The support structure includes a foundation coupling plate movably coupled to the foundation, a pillar extending upward from the foundation coupling plate and having a height adjusted, located at the top of the pillar and movably coupled with respect to the pillar, and the upper extremity dummy is Having a dummy assembly to be coupled,
    인체 더미 장치.human body dummy device.
  20. 청구항 19에 있어서,20. The method of claim 19,
    상기 기둥은 상기 기초 결합판와 결합되는 고정 기둥부와, 상기 더미 결합체와 결합되고 상기 고정 기둥부에 이동 가능하게 결합되는 이동 기둥부를 구비하는,The pillar includes a fixed pillar portion coupled to the base coupling plate, and a movable pillar portion coupled to the dummy assembly and movably coupled to the fixed pillar portion,
    인체 더미 장치.human body dummy device.
PCT/KR2021/003539 2020-11-13 2021-03-23 Human body dummy device having adjustable mechanical impedance WO2022102878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0151976 2020-11-13
KR1020200151976A KR102376055B1 (en) 2020-11-13 2020-11-13 Human dummy apparatus capable of changing mechanical impedance

Publications (1)

Publication Number Publication Date
WO2022102878A1 true WO2022102878A1 (en) 2022-05-19

Family

ID=80936662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003539 WO2022102878A1 (en) 2020-11-13 2021-03-23 Human body dummy device having adjustable mechanical impedance

Country Status (2)

Country Link
KR (1) KR102376055B1 (en)
WO (1) WO2022102878A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281926A (en) * 2007-05-14 2008-11-20 Oki Electric Ind Co Ltd Robot for rehabilitation education
KR20170130647A (en) * 2016-05-18 2017-11-29 한국기계연구원 Artificial muscle module, Manufacturing method for the artificial muscle module and Control system of the artificial muscle module
KR101854539B1 (en) * 2016-11-23 2018-05-04 건양대학교산학협력단 Continuous passive motion machine for easy changing of left arm and right arm
KR102022537B1 (en) * 2018-05-17 2019-09-18 성균관대학교 산학협력단 Bidirectional soft actuating module
KR102176061B1 (en) * 2018-12-31 2020-11-10 경북대학교 산학협력단 Rehabilitation simulator with tremoring function

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9514659B2 (en) 2013-01-07 2016-12-06 Humanetics Innovative Solutions, Inc. Upper arm assembly for crash test dummy
KR102013854B1 (en) 2016-09-29 2019-08-23 울산과학기술원 upper limb multi-joint impedance measurement method and apparatus thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281926A (en) * 2007-05-14 2008-11-20 Oki Electric Ind Co Ltd Robot for rehabilitation education
KR20170130647A (en) * 2016-05-18 2017-11-29 한국기계연구원 Artificial muscle module, Manufacturing method for the artificial muscle module and Control system of the artificial muscle module
KR101854539B1 (en) * 2016-11-23 2018-05-04 건양대학교산학협력단 Continuous passive motion machine for easy changing of left arm and right arm
KR102022537B1 (en) * 2018-05-17 2019-09-18 성균관대학교 산학협력단 Bidirectional soft actuating module
KR102176061B1 (en) * 2018-12-31 2020-11-10 경북대학교 산학협력단 Rehabilitation simulator with tremoring function

Also Published As

Publication number Publication date
KR102376055B1 (en) 2022-03-18

Similar Documents

Publication Publication Date Title
US20030115954A1 (en) Upper extremity exoskeleton structure and method
WO2015133762A1 (en) Joint apparatus, and training device, ring type joint structure, construction toy, and artificial joint using same
WO2018052226A1 (en) Medical stand
CN100459929C (en) Posture stability evaluating and training device having dynamic interference and physiological feedback
US9238137B2 (en) Neuromuscular stimulation
WO2018105866A1 (en) Freefall training apparatus and training method using same
EP2262573A2 (en) Training apparatus and method based on motion content
WO2014189336A1 (en) Stand having counterbalance part
CN110394784A (en) A kind of manipulator drive lacking structure and design method applied to Piano Teaching
WO2019231263A1 (en) Virtual reality-based rehabilitation system and method
WO2022102878A1 (en) Human body dummy device having adjustable mechanical impedance
WO2019039680A1 (en) Apparatus for checking golf divot
WO2019240410A1 (en) Swimming technique coaching service management server and system therefor
KR100362733B1 (en) Semi-direct drive hand exoskeleton
McCann et al. In-Situ Measurement of Multi-Axis Torques Applied by Wearable Soft Robots for Shoulder Assistance
Rues et al. Forces and motor control mechanisms during biting in a realistically balanced experimental occlusion
Payeur et al. Human gesture quantification: An evaluation tool for somatic training and piano performance
KR102077737B1 (en) Three degree of freedom balance training system generating various force
WO2020116698A1 (en) Motion platform using weight compensation mechanism and control method thereof
WO2017150758A1 (en) Apparatus for training and correcting golf shots
WO2023234481A1 (en) Shoulder training device
JP7317276B2 (en) Posture Reproduction Freestanding or Posture Change Freestanding Anthropomorphic Dummy
Berthonnaud et al. Biomechanical model predicting values of muscle forces in the shoulder girdle during arm elevation
WO2023113240A1 (en) Lower extremity rehabilitation exercise system and lower extremity exercise evaluation method using same
Kuo et al. Design of a motor-driven mechanism to conduct experiments to determine the passive joint properties of the human index finger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892048

Country of ref document: EP

Kind code of ref document: A1