WO2022102693A1 - Conductive aid for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery - Google Patents

Conductive aid for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2022102693A1
WO2022102693A1 PCT/JP2021/041478 JP2021041478W WO2022102693A1 WO 2022102693 A1 WO2022102693 A1 WO 2022102693A1 JP 2021041478 W JP2021041478 W JP 2021041478W WO 2022102693 A1 WO2022102693 A1 WO 2022102693A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary agent
conductive auxiliary
aqueous electrolyte
electrolyte secondary
graphite
Prior art date
Application number
PCT/JP2021/041478
Other languages
French (fr)
Japanese (ja)
Inventor
優奈 國澤
裕樹 澤田
浩樹 増田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021572934A priority Critical patent/JPWO2022102693A1/ja
Publication of WO2022102693A1 publication Critical patent/WO2022102693A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductive auxiliary agent for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the conductive auxiliary agent for the non-aqueous electrolyte secondary battery.
  • the secondary battery when the non-aqueous electrolyte secondary battery is charged and discharged with a large current, the secondary battery itself may generate heat and ignite. This heat generation may be caused by a large electron resistance or ion diffusion resistance, which are resistances at the positive electrode of the secondary battery. Therefore, for the purpose of reducing the resistance in the positive electrode of the secondary battery, a carbon material such as graphite may be used as the conductive auxiliary agent for the positive electrode of the secondary battery.
  • graphite can reduce electron resistance because it exhibits good electron conductivity, but because it is a material having a two-dimensional spread, it inhibits the diffusion of ions such as lithium ions and battery resistance. There is a problem that the number increases.
  • Patent Document 1 discloses a lithium ion secondary battery provided with an electrode using conductive auxiliary agent particles having voids. Patent Document 1 describes that a sufficient amount of electrolytic solution can be retained in the vicinity of the active material particles by using the conductive auxiliary agent particles having voids.
  • An object of the present invention is a conductive auxiliary agent for a non-aqueous electrolyte secondary battery, which can suppress a temperature rise during charging and discharging of a non-aqueous electrolyte secondary electric current at a large current and can enhance safety.
  • Another object of the present invention is to provide a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the conductive auxiliary agent for the non-aqueous electrolyte secondary battery.
  • the conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to the present invention is a conductive auxiliary agent used for a positive electrode of a non-aqueous electrolyte secondary battery, and contains a carbon material having a graphene laminated structure and a resin, and is said to be conductive.
  • the amount of resin contained in the auxiliary agent is x0% by weight, the BET specific surface area of the conductive auxiliary agent is y0 m 2 / g, and the conductive auxiliary agent is heated at 600 ° C. for 5 hours before becoming the conductive auxiliary agent.
  • the amount of the resin contained is x 1 % by weight and the BET specific surface area of the conductive auxiliary agent after heating the conductive auxiliary agent at 600 ° C. for 5 hours is y 1 m 2 / g
  • the following formula (1) 3 ⁇ a ⁇ 100 is satisfied
  • b obtained by the following formula (2) satisfies 20 ⁇ b ⁇ 100
  • the conductive auxiliary agent is dispersed and dispersed in N-methyl-2-pyrrolidone.
  • the number of particles of the conductive auxiliary agent in the dispersion liquid is 1500 million / mgC or more.
  • the x 0 is 2 or more and 20 or less.
  • the y0 is 25 or more and 200 or less.
  • the conductive auxiliary agent for a non-aqueous electrolyte secondary battery when the conductive auxiliary agent is dispersed in N-methyl-2-pyrrolidone to obtain a dispersion liquid, the dispersion liquid is obtained.
  • the 50% particle size (D50) in the cumulative particle size distribution based on the volume of the conductive auxiliary agent is 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the carbon material is partially peelable flaky graphite having a structure in which graphite is partially peeled off.
  • the positive electrode for a non-aqueous electrolyte secondary battery according to the present invention contains a positive electrode active material and a conductive auxiliary agent for a non-aqueous electrolyte secondary battery configured according to the present invention.
  • the non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode for a non-aqueous electrolyte secondary battery configured according to the present invention.
  • a conductive auxiliary agent for a non-aqueous electrolyte secondary battery which can suppress a temperature rise during charging and discharging of a non-aqueous electrolyte secondary battery with a large current and can improve safety, Further, it is possible to provide a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the conductive auxiliary agent for the non-aqueous electrolyte secondary battery.
  • FIG. 1 is a schematic view showing an example of a resin residual type partially peeled thin-section graphite.
  • FIG. 2 is a schematic diagram showing an example of partially peeled thin-section graphite that has been activated.
  • FIG. 3 is a diagram showing the relationship between the amount of residual resin and the BET specific surface area in the partially peeled thin-section graphite.
  • the conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention (hereinafter, also referred to as a conductive auxiliary agent) is a conductive auxiliary agent used for a positive electrode of a non-aqueous electrolyte secondary battery.
  • the conductive auxiliary agent contains a carbon material having a graphene laminated structure and a resin.
  • the conductive auxiliary agent is preferably a composite of a carbon material having a graphene laminated structure and a resin.
  • the amount of the resin contained in the conductive auxiliary agent is x0% by weight, and the BET specific surface area of the conductive auxiliary agent is y0 m 2 / g. Further, the amount of resin contained in the conductive auxiliary agent after heating the conductive auxiliary agent at 600 ° C. for 5 hours is x1% by weight, and the BET specific surface area after heating the conductive auxiliary agent at 600 ° C. for 5 hours is y. It shall be 1 m 2 / g. In addition, x 1 may be 0% by weight.
  • the amount of resin contained in the conductive auxiliary agent is calculated by measuring the weight change with heating temperature by thermogravimetric analysis (hereinafter referred to as TG) and obtaining the weight change with respect to the weight of the conductive auxiliary agent as a percentage. can do. Further, the BET specific surface area of the conductive auxiliary agent can be measured from the adsorption isotherm of nitrogen in accordance with the BET method. As the measuring device, for example, a product number "ASAP-2000" manufactured by Shimadzu Corporation can be used.
  • the particles of the conductive auxiliary agent in the obtained dispersion liquid are obtained.
  • the number is 1500 million / mgC or more.
  • the dispersion can be obtained, for example, by diluting the conductive auxiliary agent with NMP to adjust the concentration to a concentration of 30 ppm to 50 ppm, and then subjecting it to ultrasonic treatment for 1 hour.
  • the number of particles of the conductive auxiliary agent (carbon material) can be obtained by calculation using the obtained NMP dispersion liquid, for example, from the particle concentration obtained by measuring with a flow particle image analyzer manufactured by Simex. ..
  • the concentration obtained from the measurement is X / ⁇ L
  • the concentration of the diluted conductive auxiliary agent dispersion is Y ⁇ g / g
  • the specific gravity of NMP is Zg / cc.
  • the number of particles A / mgC is obtained from the following formula (3).
  • the concentration of the conductive auxiliary agent dispersion liquid is Y ⁇ g / g, when the weight of the conductive auxiliary agent contained in the dispersion liquid is Y' ⁇ g and the weight of the entire dispersion liquid is Y''g. Obtained from 4).
  • the concentration of the conductive auxiliary agent is as small as several tens of ppm in the NMP dispersion used in the measurement, an approximation of solution specific density ⁇ NMP specific gravity can be used.
  • the conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention since a in the above formula (1) and b in the above formula (2) are within the above range, BET is used even when a small amount of resin is used.
  • the specific surface area can be increased. Therefore, since the amount of the resin having a large resistance can be reduced, the electron conductivity of the carbon material having the graphene laminated structure is unlikely to decrease. Further, since the BET specific surface area can be increased, the holding property of the electrolytic solution can be enhanced, and the diffusivity of ions such as lithium ions can be enhanced.
  • the number of particles of the carbon material measured by the above method is at least the above lower limit value, the diffusivity of ions such as lithium ions can be enhanced from this point as well. Therefore, since the conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention is excellent in both electron conductivity and ion diffusivity, the battery resistance of the non-aqueous electrolyte secondary battery can be effectively reduced. Therefore, it is possible to suppress the temperature rise during charging / discharging of the non-aqueous electrolyte secondary electric current with a large current, and it is possible to improve the safety.
  • a (slope) in the above formula (1) is more than 3, preferably 4 or more, more preferably 5 or more, 100 or less, preferably 80 or less, and more preferably 70 or less.
  • the BET specific surface area can be further increased, so that the electrolyte retention property can be further improved and the diffusivity of ions such as lithium ions can be further improved. It can be further enhanced.
  • the decomposition reaction of the non-aqueous electrolyte secondary battery with the electrolytic solution can be made more difficult to occur.
  • b (intercept) in the above formula (2) is 20 or more, preferably 25 or more, more preferably 30 or more, 100 or less, preferably 90 or less, and more preferably 80 or less.
  • the BET specific surface area can be further increased, so that the electrolyte retention property can be further improved and the diffusivity of ions such as lithium ions can be improved. It can be further enhanced.
  • the decomposition reaction of the non-aqueous electrolyte secondary battery with the electrolytic solution can be made more difficult to occur.
  • x 0 (resin amount) in the above formulas (1) and (2) is preferably 2 (% by weight) or more, more preferably 5 (% by weight) or more, and further preferably 8 (weight). %) Or more, preferably 35 (% by weight) or less, more preferably 30 (% by weight) or less, still more preferably 20 (% by weight) or less.
  • the electrolyte retention property can be further enhanced, and the diffusivity of ions such as lithium ions can be further enhanced.
  • the above x 0 is not more than the above upper limit value, the battery resistance of the non-aqueous electrolyte secondary battery can be further reduced.
  • y 0 (BET specific surface area) in the above formulas (1) and (2) is preferably 20 (m 2 / g) or more, more preferably 25 (m 2 / g) or more, preferably 25 (m 2 / g) or more. Is 500 (m 2 / g) or less, more preferably 300 (m 2 / g) or less, still more preferably 200 (m 2 / g) or less.
  • the electrolyte retention property can be further enhanced, and the diffusivity of ions such as lithium ions can be further enhanced. Further, in this case, the contact point with the active material can be further sufficiently secured. Further, when the y 0 is not more than the upper limit value, the handleability can be further improved.
  • the number of particles of the conductive auxiliary agent measured by the above method is preferably 3000 million / mgC or more, more preferably 4000 million / mgC or more, still more preferably 5000 million / mgC or more. Is. In this case, the diffusivity of ions such as lithium ions can be further enhanced.
  • the upper limit of the number of particles of the carbon material measured by the above method is not particularly limited, but is, for example, 50,000 million particles / mgC or less.
  • the 50% particle size (D50) in the cumulative particle size distribution based on the volume of the conductive auxiliary agent is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, preferably 5 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the particle size of the conductive auxiliary agent is within the above range, the battery resistance of the non-aqueous electrolyte secondary battery can be further effectively reduced.
  • the particle size may be measured, for example, by using an NMP dispersion obtained by diluting the conductive auxiliary agent with NMP to adjust the concentration to 800 ppm to 1000 ppm and then applying ultrasonic treatment for 1 hour. can. Further, the particle size can be measured by using the obtained NMP dispersion liquid, for example, by a laser diffraction / scattering type particle size distribution measuring device manufactured by Microtrac Bell.
  • the conductive auxiliary agent may be added as a powder at the time of producing the positive electrode, or may be added as, for example, an NMP dispersion liquid in order to improve the handling property.
  • the X-ray diffraction spectrum can be measured by wide-angle X-ray diffraction.
  • SmartLab manufactured by Rigaku Co., Ltd.
  • the shape of the carbon material is not particularly limited, and examples thereof include a shape that spreads in two dimensions, a spherical shape, a fibrous shape, and an indefinite shape.
  • the shape of the carbon material is preferably a shape that spreads two-dimensionally. Examples of the shape spreading in two dimensions include a scale-like shape or a plate-like shape (flat plate shape). When having such a two-dimensionally expanding shape, electron conductivity can be further enhanced. Above all, the shape of the carbon material is preferably scaly. Since the carbon material is scaly, the electron conductivity can be further enhanced.
  • Graphite is a laminate of multiple graphene sheets.
  • the number of laminated graphene sheets of graphite is usually about 100,000 to 1,000,000.
  • As the graphite for example, natural graphite, artificial graphite, expanded graphite or the like can be used. Expanded graphite has a higher ratio of the interlayer distance between graphene layers being larger than that of ordinary graphite, and can be more preferably used as a raw material for flaky graphite.
  • the flaky graphite is obtained by exfoliating the original graphite, and refers to a graphene sheet laminate thinner than the original graphite.
  • the number of graphene sheets laminated in the flaky graphite may be smaller than that of the original graphite.
  • the flaky graphite may be flaky oxide graphite.
  • the number of laminated graphene sheets is not particularly limited, but is preferably 2 or more, more preferably 5 or more, preferably 3000 or less, more preferably 1000 or less, still more preferably 500 or less. be.
  • the conductivity of the flaky graphite can be further enhanced.
  • the specific surface area of the flaky graphite can be further increased.
  • the flaky graphite is preferably a partially peelable flaky graphite having a structure in which graphite is partially peeled off.
  • the graphene layers are opened from the edge to the inside to some extent, that is, a part of graphite is peeled off at the edge.
  • a structure in which a graphite layer is laminated in the same manner as the original graphite or primary flaky graphite can be mentioned. Therefore, the portion where a part of graphite is peeled off at the edge is connected to the central portion.
  • the partially exfoliated thin-section graphite may include those in which the graphite at the edge is exfoliated and flaked.
  • the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary thin-section graphite. Therefore, the degree of graphitization is higher than that of conventional graphene oxide or carbon black, and the conductivity is excellent. In addition, it has a structure in which graphite is partially peeled off, so that the specific surface area is large. Therefore, the electrolyte retention property can be further improved.
  • a resin residual type partially peelable flaky graphite as the conductive auxiliary agent.
  • the resin residual type partially peeled thin-section graphite will be described in detail.
  • FIG. 1 is a schematic view showing an example of a resin residual type partially peeled thin-section graphite.
  • the resin residual type partially peelable thinned graphite 10 (hereinafter, also simply referred to as simply partially peeled thinned graphite) has a structure in which the edge portion 11 is peeled off.
  • the central portion 12 has a graphite structure similar to that of the original graphite or the primary flaky graphite.
  • the resin 13 is arranged between the graphene layers that have been peeled off. Therefore, the resin residual type partially peeled thinned graphite 10 is a complex of the partially peeled thinned graphite and the resin.
  • the resin 13 may be partially or wholly carbonized.
  • the number of laminated graphite layers in the partially peeled thin-section graphite is preferably 5 or more and 3000 or less, more preferably 5 or more and 1000 or less, and 5 or more and 500 or less. Is even more preferable.
  • the battery resistance of the non-aqueous electrolyte secondary battery can be reduced even more effectively.
  • the electron conduction path in the positive electrode may be interrupted, and the rate characteristics and cycle characteristics may deteriorate.
  • the number of laminated graphite layers is too large, the size of one partially peeled thinned graphite becomes extremely large, and the distribution of the partially peeled thinned graphite in the positive electrode may be biased. Therefore, the electron conduction path in the positive electrode may be underdeveloped, and the rate characteristics and cycle characteristics may deteriorate.
  • the method for calculating the number of laminated graphite layers is not particularly limited, but it can be calculated by, for example, visually observing with a transmission electron microscope (TEM) or the like.
  • TEM transmission electron microscope
  • the resin residual type partially peelable flake graphite contains, for example, graphite or primary flake graphite and a resin, and a composition in which the resin is grafted or adsorbed to graphite or primary flake graphite is prepared. It can be obtained by thermally decomposing the resin contained in the composition. When the resin is thermally decomposed, it is thermally decomposed while a part of the resin remains.
  • the partially peelable thinned graphite can be produced, for example, by the same method as the method for producing a thinned graphite / resin composite material described in International Publication No. 2014/034156. That is, for example, it can be produced by going through a step of producing a composition containing graphite or primary flaky graphite and a resin, and a step of thermally decomposing the composition in an open system.
  • the present invention differs from the above manufacturing method in that the ranges of a and b in the above formula (1) are adjusted by the method described later.
  • the primary flaky graphite broadly includes flaky graphite obtained by exfoliating graphite by various methods.
  • the primary flaky graphite may be a partially peelable flaky graphite. Since the primary flaky graphite is obtained by exfoliating graphite, its specific surface area may be larger than that of graphite.
  • the graphite or primary flaky graphite used may be one that has been subjected to a thinning treatment.
  • the device used for the thinning process include a high-pressure emulsifying device, a vacuum emulsifying device, a vacuum bead mill, and a stirring device. From the viewpoint of further increasing the number of particles, a high-pressure emulsifying device and a stirring device are particularly preferable.
  • the heating temperature in the thermal decomposition of the resin is not particularly limited depending on the type of resin, but can be, for example, 250 ° C to 1000 ° C.
  • the heating time can be, for example, 20 minutes to 5 hours. Since the amount of the remaining resin can be adjusted more easily, the heating temperature is preferably 350 ° C. to 600 ° C., and the heating time is preferably 40 minutes to 3 hours.
  • the heating may be performed in the atmosphere or in an atmosphere of an inert gas such as nitrogen gas. However, from the viewpoint of further enhancing the conductivity of the obtained partially peeled thinned graphite, it is desirable to perform the above heating in an atmosphere of an inert gas such as nitrogen gas. Further, the heating step may be performed a plurality of times.
  • the resin is not particularly limited, but is preferably a polymer of a radically polymerizable monomer. In this case, it may be a homopolymer of one kind of radically polymerizable monomer or a copolymer of a plurality of kinds of radically polymerizable monomers.
  • the radically polymerizable monomer is not particularly limited as long as it is a monomer having a radically polymerizable functional group.
  • radically polymerizable monomer examples include styrene, methyl ⁇ -ethyl acrylate, methyl ⁇ -benzyl acrylate, ⁇ - [2,2-bis (carbomethoxy) ethyl] methyl acrylate, dibutyl itaconate, and dimethyl itaconate.
  • ⁇ -substituted acrylic acid ester consisting of dicyclohexylitaconate, ⁇ -methylene- ⁇ -valerolactone, ⁇ -methylstyrene, ⁇ -acetoxystyrene, glycidylmethacrylate, 3,4-epoxycyclohexylmethylmethacrylate, hydroxyethylmethacrylate, hydroxy Vinyl monomers with glycidyl groups and hydroxyl groups such as ethyl acrylates, hydroxypropyl acrylates and 4-hydroxybutyl methacrylate; vinyl monomers with amino groups such as allylamine, diethylaminoethyl (meth) acrylates and dimethylaminoethyl (meth) acrylates, methacryl Monomers with carboxyl groups such as acid, maleic anhydride, maleic acid, itaconic acid, acrylic acid, crotonic acid, 2-acryloyloxyethyl succinate, 2-methacryl
  • Examples of the resin used include polyethylene glycol, polypropylene glycol, polyglycidyl methacrylate, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral (butyral resin), poly (meth) acrylate, polystyrene, polyester and the like.
  • polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, and polyester are particularly preferable because the BET specific surface area can be secured with a smaller amount of residual resin.
  • the resin type can be appropriately selected in consideration of the affinity with the solvent used.
  • the content of the resin before thermal decomposition fixed to graphite or primary flake graphite is preferably 0.1 part by weight or more, more preferably 0, with respect to 1 part by weight of graphite or primary flake graphite excluding the resin content. It is 3 parts by weight or more, preferably 30 parts by weight or less, and more preferably 20 parts by weight or less.
  • the content of the resin before thermal decomposition is within the above range, it is easier to control the content of the residual resin after thermal decomposition. Further, when the content of the resin before thermal decomposition is not more than the above upper limit value, it is more advantageous in terms of cost.
  • the content of the residual resin after thermal decomposition is preferably 2 parts by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, based on 100 parts by weight of the partially peelable flake graphite containing the resin content. It is preferably 20 parts by weight or less.
  • the content of the residual resin after thermal decomposition is at least the above lower limit value, the BET specific surface area can be further increased. Further, when the content of the residual resin after thermal decomposition is not more than the above upper limit value, the battery resistance can be further lowered.
  • the resin content before thermal decomposition and the amount of residual resin remaining in the partially peeled thin-section graphite shall be calculated by measuring the weight change with heating temperature by, for example, thermogravimetric analysis (hereinafter referred to as TG). Can be done.
  • TG thermogravimetric analysis
  • the amount of resin may be reduced after producing the complex with the positive electrode active material.
  • a method of heat treatment at a temperature equal to or higher than the decomposition temperature of the resin and lower than the decomposition temperature of the positive electrode active material is preferable.
  • This heat treatment may be performed in the atmosphere, under an inert gas atmosphere, under a low oxygen atmosphere, or under vacuum.
  • the method for producing partially peeled thin-section graphite may be one in which pores are formed by performing a gas activation treatment in addition to the above-mentioned production method.
  • gas activation treatment include steam activation, carbon dioxide activation, and oxygen activation. Of these, carbon dioxide activation is more preferable.
  • the temperature of the gas activation treatment can be, for example, 700 ° C to 950 ° C.
  • the holding time at that temperature can be, for example, 15 minutes to 2 hours.
  • the temperature of the gas activation treatment is preferably 800 ° C. to 900 ° C., and the holding time at that temperature is preferably 30 minutes to 1 hour.
  • FIG. 2 is a diagram showing an example of partially peeled thin-section graphite that has been activated. As shown in FIG. 2, it can be seen that in the partially peeled thin-section graphite 20 that has been activated, the pores 24 are formed in the resin 23. When such pores 24 are formed, the electrolytic solution retention property can be further enhanced, and the ion diffusivity of lithium ions and the like can be further enhanced.
  • the obtained partially peelable flaky graphite can be pulverized or classified by a mill such as a mill mixer, a blender mill, a jet mill or a ball mill, or water, methanol, ethanol, N-methyl-2-pyrrolidone ( It may be used after being placed in an organic solvent typified by NMP) and then subjected to sonication. For example, when crushing with a mixer, the particle size can be adjusted by the crushing time.
  • the ranges of a in the above formula (1) and b in the above formula (2) are adjusted when producing the partially peelable flaky graphite.
  • the range of a in the above formula (1) and b in the above formula (2) can be adjusted, for example, by adjusting the blending amount of the resin, adjusting the firing temperature and firing time, activating treatment, or pre-thinning treatment. can.
  • the solid line in FIG. 3 it is possible to obtain a partially peelable thinned graphite having a large BET specific surface area with respect to the amount of residual resin even when compared with the conventional partially peeled thinned graphite (broken line). can.
  • the peak ratio c / d is preferably 0.20 or more, more preferably 0.20 or more. Is 0.25 or more.
  • the peak ratio c / d is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 5.0 or less.
  • the above c is the height of the highest peak in the range where 2 ⁇ is 24 ° or more and less than 28 °.
  • the above d is the height of the highest peak in the range where 2 ⁇ is 28 ° or more and less than 30 °.
  • the X-ray diffraction spectrum can be measured by a wide-angle X-ray diffraction method.
  • X-rays CuK ⁇ rays (wavelength 1.541 ⁇ ) can be used.
  • the X-ray diffractometer for example, SmartLab (manufactured by Rigaku Co., Ltd.) can be used.
  • the partially peeled flake graphite has a D / G ratio of 0.8 or less when the peak intensity ratio between the D band and the G band is the D / G ratio in the Raman spectrum obtained by Raman spectroscopy. It is preferably 0.7 or less, and more preferably 0.7 or less. When the D / G ratio is within this range, the conductivity of the partially peeled thin-section graphite itself can be further increased, and the amount of gas generated can be further reduced. Further, the D / G ratio is preferably 0.05 or more. When the D / G ratio is at least the above lower limit value, the amount of gas generated by the reaction with the decomposition of the electrolytic solution can be further suppressed.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode active material and the above-mentioned conductive auxiliary agent for a non-aqueous electrolyte secondary battery. Therefore, it is possible to suppress the temperature rise during charging / discharging of the non-aqueous electrolyte secondary electric current with a large current, and it is possible to enhance the safety.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention may have a general positive electrode configuration, composition, and manufacturing method, or may be a composite of a positive electrode active material and a conductive auxiliary agent. May be used.
  • the positive electrode active material used in the present invention may be any one in which the desorption and insertion reactions of ions such as lithium ions proceed, and may be noble than the battery reaction potential of the negative electrode active material.
  • the battery reaction may involve Group 1 or Group 2 ions. Examples of such ions include H ion, Li ion, Na ion, K ion, Mg ion, Ca ion, or Al ion.
  • H ion Li ion, Na ion, K ion, Mg ion, Ca ion, or Al ion.
  • examples of the positive electrode active material include lithium metal oxide, lithium sulfide, and sulfur.
  • lithium metal oxide examples include those having a spinel structure, a layered rock salt structure, an olivine structure, or a mixture thereof.
  • lithium metal oxide having a spinel structure examples include lithium manganate.
  • lithium metal oxide having a layered rock salt structure examples include lithium cobalt oxide, lithium nickel oxide, and a ternary system.
  • lithium metal oxide having an olivine structure examples include lithium iron phosphate, lithium manganese iron phosphate, and lithium manganese phosphate.
  • the positive electrode active material may contain a so-called dope element.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the average particle size of the positive electrode active material is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the average particle size of the positive electrode active material is a value obtained by measuring the size of each particle from an SEM (scanning electron microscope) and a TEM image and calculating the average particle size.
  • the particles may be primary particles or granulated materials in which the primary particles are aggregated.
  • the BET specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, preferably 50 m 2 / g or less. In this case, the desired output density can be obtained more easily.
  • the BET specific surface area can be measured by the method described above.
  • the content of the positive electrode active material is preferably 70% by weight or more, more preferably 75% by weight or more, preferably 98% by weight or less, and more preferably 95% by weight or less with respect to the total amount of the positive electrode material.
  • the content of the positive electrode active material is within the above range, the battery resistance can be lowered more effectively, and the battery capacity can be further increased.
  • the conductive auxiliary agent is the above-mentioned conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention.
  • the content of the conductive auxiliary agent is preferably 1.5% by weight or more, more preferably 2% by weight or more, preferably 20% by weight or less, more preferably 15% by weight, based on the total amount of the positive electrode material for the non-aqueous electrolyte secondary battery. % Or less.
  • the content of the conductive auxiliary agent is within the above range, the battery resistance can be lowered more effectively.
  • a second conductive auxiliary agent different from the first conductive auxiliary agent may be further used. ..
  • the second conductive auxiliary agent is preferably a carbon material different from the partially peeled thinned graphite.
  • the second conductive auxiliary agent is not particularly limited, and examples thereof include graphene, granular graphite compounds, fibrous graphite compounds, carbon black, and activated carbon.
  • the second conductive auxiliary agent is preferably carbon black from the viewpoint of further lowering the electrolyte retention.
  • the graphene may be graphene oxide or reduced graphene oxide.
  • the granular graphite compound is not particularly limited, and examples thereof include natural graphite, artificial graphite, and expanded graphite.
  • the carbon black is not particularly limited, and examples thereof include furnace black, ketjen black, and acetylene black.
  • one type may be used alone, or a plurality of types may be used in combination.
  • the BET specific surface area of the second conductive auxiliary agent is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, and further preferably 25 m 2 / g or more.
  • the BET specific surface area of the second conductive auxiliary agent is at least the above lower limit value, the electrolyte retention property of the non-aqueous electrolyte secondary battery can be further enhanced.
  • the BET specific surface area of the second conductive auxiliary agent is preferably 2500 m 2 / g or less.
  • the first conductive auxiliary agent and the second conductive auxiliary agent can be distinguished from each other by, for example, SEM or TEM.
  • the second conductive auxiliary agent may have a functional group on its surface.
  • the positive electrode can be manufactured more easily.
  • the ratio A / B is preferably 0.01 ⁇ A / B ⁇ 100.
  • the resistance of the positive electrode may increase.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention may be formed of a positive electrode active material, a first conductive auxiliary agent, and a second conductive auxiliary agent, but the positive electrode is made more easily. From the point of view, a binder may be included. A complex of a positive electrode active material, a first conductive auxiliary agent, and a second conductive auxiliary agent may be used.
  • the solid content concentration of the dispersion liquid of the first conductive auxiliary agent and the second conductive auxiliary agent is 0.5 when the weight of the conductive auxiliary agent is 1. As mentioned above, it is preferably 1000 or less. From the viewpoint of further improving the handleability, it is more preferably 1 or more and 750 or less. Further, from the viewpoint of further enhancing the dispersibility, it is particularly preferably 2 or more and 500 or less. If the weight of the solvent is less than the above lower limit value, the conductive auxiliary agent may not be able to be dispersed to a desired dispersion state, while if it is larger than the above upper limit value, the manufacturing cost may increase.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention may contain a binder from the viewpoint of forming the positive electrode more easily.
  • the binder is not particularly limited, and for example, at least one resin selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof. Can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • styrene-butadiene rubber polyimide, and derivatives thereof.
  • the binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of more easily producing a positive electrode.
  • the non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylethylketone, methyl acetate, ethyl acetate, and tetrahydrofuran.
  • NMP N-methyl-2-pyrrolidone
  • dimethylformamide dimethylacetamide
  • methylethylketone methyl acetate
  • ethyl acetate tetrahydrofuran
  • a dispersant or a thickener may be added to these.
  • the amount of the binder contained in the positive electrode is preferably 0.3 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. be.
  • the amount of the binder is within the above range, the adhesiveness between the positive electrode active material and the conductive auxiliary agent can be maintained, and the adhesiveness with the current collector can be further enhanced.
  • Examples of the method for producing a positive electrode include a method for producing a positive electrode by forming a mixture of a positive electrode active material, a conductive auxiliary agent, and a binder on a current collector.
  • a slurry is prepared by adding a binder solution or a dispersion liquid to the positive electrode active material and the conductive auxiliary agent and mixing them.
  • the prepared slurry is applied onto the current collector, and finally the solvent is removed to prepare a positive electrode.
  • the positive electrode may be produced after forming a complex of the positive electrode active material and the conductive auxiliary agent.
  • an existing method can be used.
  • a method of mixing using a mixer or the like can be mentioned.
  • the mixer used for mixing is not particularly limited, and examples thereof include a planetary mixer, a disper, a thin film swirl type mixer, a jet mixer, and a self-public rotation type mixer.
  • the solid content concentration of the slurry is preferably 30% by weight or more and 95% by weight or less from the viewpoint of making coating easier. From the viewpoint of further enhancing the storage stability, the solid content concentration of the slurry is more preferably 35% by weight or more and 90% by weight or less. Further, from the viewpoint of further suppressing the production cost, the solid content concentration of the slurry is more preferably 40% by weight or more and 85% by weight or less.
  • the solid content concentration can be controlled by a diluting solvent.
  • a diluting solvent it is preferable to use a binder solution or a solvent of the same type as the dispersion liquid. Further, another solvent may be used as long as it is compatible with the solvent.
  • the current collector used for the positive electrode is preferably aluminum or an alloy containing aluminum.
  • Aluminum is not particularly limited because it is stable in a positive electrode reaction atmosphere, but is preferably high-purity aluminum represented by JIS standards 1030, 1050, 1085, 1N90, 1N99 and the like.
  • the thickness of the current collector is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less. If the thickness of the current collector is less than 10 ⁇ m, it may be difficult to handle from the viewpoint of production. On the other hand, if the thickness of the current collector is thicker than 100 ⁇ m, it may be disadvantageous from an economic point of view.
  • the current collector may be a metal other than aluminum (copper, SUS, nickel, titanium, and alloys thereof) coated with aluminum.
  • the method of applying the slurry to the current collector is not particularly limited, and for example, a method of applying the slurry with a doctor blade, a die coater, a comma coater, or the like and then removing the solvent, or a method of applying the slurry with a spray and then removing the solvent. Examples thereof include a method and a method of removing the solvent after application by screen printing.
  • the method for removing the solvent is even simpler, drying using a blower oven or a vacuum oven is preferable.
  • the atmosphere for removing the solvent include an air atmosphere, an inert gas atmosphere, and a vacuum state.
  • the temperature for removing the solvent is not particularly limited, but is preferably 60 ° C. or higher and 250 ° C. or lower. If the temperature at which the solvent is removed is less than 60 ° C., it may take time to remove the solvent. On the other hand, if the temperature at which the solvent is removed is higher than 250 ° C., the binder may deteriorate.
  • the positive electrode may be compressed to a desired thickness and density.
  • the compression is not particularly limited, but can be performed by using, for example, a roll press, a hydraulic press, or the like.
  • the thickness of the positive electrode after compression is not particularly limited, but is preferably 10 ⁇ m or more and 1000 ⁇ m or less. If the thickness is less than 10 ⁇ m, it may be difficult to obtain the desired capacity. On the other hand, when the thickness is thicker than 1000 ⁇ m, it may be difficult to obtain a desired output density.
  • the density of the positive electrode is preferably 1.0 g / cm 3 or more and 4.0 g / cm 3 or less. If it is less than 1.0 g / cm 3 , the contact with the positive electrode active material and the conductive auxiliary agent may be insufficient and the electronic conductivity may decrease. On the other hand, if it is larger than 4.0 g / cm 3 , it becomes difficult for the electrolytic solution described later to permeate into the positive electrode, and the conductivity of ions such as lithium ions may decrease.
  • the positive electrode preferably has an electric capacity of 0.5 mAh or more and 10.0 mAh or less per 1 cm 2 of the positive electrode. If the electric capacity is less than 0.5 mAh, the size of the battery with the desired capacity may be large. On the other hand, when the electric capacity is larger than 10.0 mAh, it may be difficult to obtain a desired output density.
  • the electric capacity per 1 cm 2 of the positive electrode may be calculated by manufacturing a half cell made of lithium metal as a counter electrode after manufacturing the positive electrode and measuring the charge / discharge characteristics.
  • the electric capacity per 1 cm 2 of the positive electrode is not particularly limited, but can be controlled by the weight of the positive electrode formed per unit area of the current collector. For example, it can be controlled by the coating thickness at the time of slurry coating described above.
  • the non-aqueous electrolyte secondary battery of the present invention may be any one using a compound that promotes the insertion and desorption reaction of alkali metal ions or alkaline earth metal ions.
  • alkali metal ion include lithium ion, sodium ion, and potassium ion.
  • alkaline earth metal ion include calcium ion and magnesium ion. In particular, it can be suitably used for those using lithium ions (lithium ion secondary batteries).
  • the non-aqueous electrolyte secondary battery of the present invention includes the positive electrode for the non-aqueous electrolyte secondary battery of the present invention. Therefore, it is possible to suppress the temperature rise during charging / discharging of the non-aqueous electrolyte secondary electric current with a large current, and it is possible to improve the safety.
  • the negative electrode used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but one containing a negative electrode active material such as natural graphite, artificial graphite, hard carbon, metal oxide, lithium titanate, or silicon-based material is used. be able to.
  • the separator used in the non-aqueous electrolyte secondary battery of the present invention may have a structure that is installed between the positive electrode and the negative electrode and is insulating and can contain the non-aqueous electrolyte described later.
  • Examples of such a separator include nylon, cellulose, polysulfone, polyethylene, polyporopylene, polybutene, polyacrylonitrile, polyimide, polyamide, and polyethylene terephthalate.
  • woven fabrics, non-woven fabrics, microporous membranes, etc., which are composites of two or more of these, can be mentioned.
  • the separator may contain various plasticizers, antioxidants, flame retardants, or may be coated with a metal oxide or the like.
  • the thickness of the separator is not particularly limited, but is preferably 5 ⁇ m or more and 100 ⁇ m or less. If the thickness of the separator is less than 5 ⁇ m, the positive electrode and the negative electrode may come into contact with each other. If the thickness of the separator is thicker than 100 ⁇ m, the resistance of the battery may increase. From the viewpoint of economy and handleability, it is more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and for example, an electrolytic solution in which a solute is dissolved in a non-aqueous solvent can be used. Further, using a gel electrolyte in which a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a non-aqueous solvent, a polymer solid electrolyte such as polyethylene oxide or polypropylene oxide, or an inorganic solid electrolyte such as sulfate glass or oxynitride is used. May be good.
  • the non-aqueous solvent preferably contains a cyclic aprotic solvent and / or a chain aprotic solvent because the solute described later can be more easily dissolved.
  • cyclic aprotic solvent examples include cyclic carbonates, cyclic esters, cyclic sulfones, and cyclic ethers.
  • chain aprotic solvent examples include chain carbonate, chain carboxylic acid ester, and chain ether.
  • a solvent generally used as a solvent for a non-aqueous electrolyte such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyl lactone, 1,2-dimethoxyethane, sulforane, dioxolane, propion. Methyl acid acid and the like can be used. These solvents may be used alone, or a mixture of two or more kinds of solvents may be used. However, from the viewpoint of more easily dissolving the solute described later and further enhancing the conductivity of lithium ions, it is preferable to use a solvent in which two or more kinds of solvents are mixed.
  • the solute is not particularly limited, but it is preferable to use LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), or LiN (SO 2 CF 3 ) 2 . .. In this case, it can be more easily dissolved with a non-aqueous solvent.
  • the concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If the concentration of the solute is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if the concentration of the solute is higher than 2.0 mol / L, the solute may not dissolve any more.
  • non-aqueous electrolyte may further contain additives such as flame retardants and stabilizers.
  • the positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery of the present invention may have the same electrodes formed on both sides of the current collector, and the positive electrode is formed on one side of the current collector and the negative electrode is formed on the other side of the current collector. That is, it may be a bipolar electrode.
  • the non-aqueous electrolyte secondary battery may be a battery in which a separator is arranged between the positive electrode side and the negative electrode side, or may be a laminated battery.
  • the positive electrode, negative electrode and separator contain a non-aqueous electrolyte responsible for lithium ion conduction.
  • the non-aqueous electrolyte secondary battery may be exteriorized with a laminate film after the laminates have been squeezed or laminated, or a square, oval, cylindrical, coin-shaped, button-shaped, or sheet-shaped metal. It may be exteriorized with a can. The exterior may be equipped with a mechanism for releasing the generated gas.
  • the number of laminated bodies is not particularly limited, and the laminated bodies can be laminated until a desired voltage value and battery capacity are exhibited.
  • the non-aqueous electrolyte secondary battery can be an assembled battery connected in series or in parallel as appropriate depending on the desired size, capacity, and voltage.
  • a control circuit is attached to the assembled battery in order to confirm the charge state of each battery and improve safety.
  • Example 1 Production Example 1 of Conductive Auxiliary Agent; First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L”), 22 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., trade name "PEG-600”). ”) 70 g (10 times with respect to graphite) was mixed to prepare a raw material composition.
  • artificial graphite manufactured by IMERIS, trade name "KS6L”
  • CMC carboxymethyl cellulose
  • Aidrich polyethylene glycol
  • the above raw material composition was heat-treated with a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP”) at 370 ° C. for 1 hour in a nitrogen (N 2 ) atmosphere for the first time.
  • a fired product (1st fired product) was obtained.
  • the 1st fired product is activated by an activation experimental device (manufactured by Asahi Rika Seisakusho, product number "ARF-50KC”) at 800 ° C. for 30 minutes under a carbon dioxide (CO 2 ) atmosphere (flow rate 0.3 L / min).
  • the activated product was obtained by doing.
  • a conductive auxiliary agent which is a carbon material (partially peeling type flaky graphite) having a structure in which graphite is partially peeled off. ) was produced.
  • the positive electrode of Example 1 was produced as follows.
  • a dispersion liquid of partially peelable thinned graphite prepared in Production Example 1 (hereinafter, a dispersion liquid 2 of a carbon material of Example 1) was prepared.
  • the negative electrode was prepared as follows.
  • a binder PVdF, solid content concentration 12% by weight, NMP solution
  • the negative electrode active material artificial graphite
  • the slurry was applied to a copper foil (20 ⁇ m), heated in a blower oven at 120 ° C. for 1 hour to remove the solvent, and then vacuum dried at 120 ° C. for 12 hours.
  • the slurry was also applied and dried on the back surface of the copper foil in the same manner.
  • a negative electrode was produced by pressing with a roll press machine.
  • the capacity of the negative electrode was calculated from the electrode weight per unit area and the theoretical capacity (350 mAh / g) of the negative electrode active material. As a result, the capacity of the negative electrode (per one side) was 1.5 mAh / cm 2 .
  • the steps up to this point were carried out in an atmosphere (dry box) having a dew point of ⁇ 40 ° C. or lower.
  • the non-aqueous electrolyte secondary battery After charging the non-aqueous electrolyte secondary battery to 4.25 V, it is left at 25 ° C. for 100 hours, and the gas generated in an atmosphere (dry box) having a dew point of -40 ° C. or less, and excessive electrolysis.
  • the non-aqueous electrolyte secondary battery of Example 1 was prepared by sealing while reducing the pressure again.
  • Example 2 The same as in Example 1 except that the conductive auxiliary agent (partially peelable flake graphite) of Production Example 2 shown below was used instead of the conductive auxiliary agent (partially peelable flake graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
  • the prepared raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 430 ° C. for 2 hours in an N2 atmosphere to produce the first fired product. (1st fired product) was obtained. Furthermore, the activated product is obtained by activating the 1st fired product in a CO 2 atmosphere (flow rate 0.3 L / min) for 30 minutes at 900 ° C. using an activation experimental device (ARF-50KC manufactured by Asahi Rika Seisakusho). rice field.
  • a muffle heating device manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP”
  • a conductive auxiliary agent which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. ) was produced.
  • Example 3 The same as in Example 1 except that the conductive auxiliary agent (partially peelable thinned graphite) of Production Example 3 shown below was used instead of the conductive auxiliary agent (partially peeled thinned graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
  • the above raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 430 ° C. for 2 hours in an N2 atmosphere, whereby the first fired product (1st fired product (manufactured by Motoyama). 1st fired product) was obtained. Further, the 1st fired product was heat-treated at 450 ° C. for 100 minutes in an N 2 atmosphere containing 5% O 2 in the same muffle heating device to obtain a second fired product (2nd fired product).
  • a muffle heating device manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP”
  • a conductive auxiliary agent which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. was produced.
  • Example 4 The same as in Example 1 except that the conductive auxiliary agent (partially peelable flake graphite) of Production Example 4 shown below was used instead of the conductive auxiliary agent (partially peelable flake graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
  • the above raw material composition is heat-treated at 370 ° C. for 1 hour in an N2 atmosphere with a muffle heating device (manufactured by Motoyama Co., Ltd., trade name “MBA-2040D-SP”) to produce a first fired product. (1st fired product) was obtained. Further, the 1st fired product was heat-treated at 390 ° C. for 20 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product). Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. was produced.
  • a conductive auxiliary agent first conductive auxiliary agent which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off.
  • Example 5 The same as in Example 1 except that the conductive auxiliary agent (partially peelable flake graphite) of Production Example 5 shown below was used instead of the conductive auxiliary agent (partially peelable flake graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
  • a conductive auxiliary agent which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. was produced.
  • Example 1 The same as in Example 1 except that the conductive auxiliary agent (partially peelable flake graphite) of Production Example 6 shown below was used instead of the conductive auxiliary agent (partially peelable flake graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
  • the raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., trade name "MBA-2040D-SP") at 370 ° C. for 1 hour in an N2 atmosphere, whereby the first fired product (1st fired product (). 1st fired product) was obtained. Further, the 1st fired product was heat-treated at 390 ° C. for 30 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product).
  • a muffle heating device manufactured by Motoyama Co., Ltd., trade name "MBA-2040D-SP”
  • a conductive auxiliary agent which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. was produced.
  • Example 2 The same as in Example 1 except that the conductive auxiliary agent (partially peelable thinned graphite) of Production Example 7 shown below was used instead of the conductive auxiliary agent (partially peeled thinned graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
  • the obtained raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 370 ° C. for 1 hour in an N2 atmosphere to perform the first firing.
  • a product (1st fired product) was obtained.
  • the 1st fired product was heat-treated at 390 ° C. for 30 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product).
  • a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. was produced.
  • Example 3 The same as in Example 1 except that the conductive auxiliary agent (partially peelable thinned graphite) of Production Example 8 shown below was used instead of the conductive auxiliary agent (partially peeled thinned graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
  • Production Example 8 of Conductive Auxiliary Agent First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L”), 22 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., trade name "PEG-600”). ”) 21 g (3 times with respect to graphite) was mixed to prepare a raw material composition.
  • artificial graphite manufactured by IMERIS, trade name "KS6L
  • CMC carboxymethyl cellulose
  • Aidrich polyethylene glycol
  • the obtained raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 370 ° C. for 1 hour in an N2 atmosphere to perform the first firing.
  • a product (1st fired product) was obtained.
  • the 1st fired product was heat-treated at 390 ° C. for 40 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product).
  • a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. was produced.
  • Example 4 The same as in Example 1 except that the conductive auxiliary agent (partially peelable thinned graphite) of Production Example 9 shown below was used instead of the conductive auxiliary agent (partially peeled thinned graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
  • the obtained raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 370 ° C. for 1 hour in an N2 atmosphere to perform the first firing.
  • a product (1st fired product) was obtained.
  • the 1st fired product was heat-treated at 390 ° C. for 10 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product).
  • a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. was produced.
  • the conductive auxiliaries (first conductive auxiliaries) obtained in Production Examples 1 to 9 were diluted with NMP and adjusted to a concentration of 30 ppm to 50 ppm, respectively, and then ultrasonic cleaners (28 kHz, VS-100III, AS ONE).
  • a dispersion was obtained by subjecting it to ultrasonic treatment for 1 hour using (manufactured by the same company). Further, the number of particles of the conductive auxiliary agent was determined by measuring with a flow particle image analyzer (manufactured by Sysmex Corporation) using the obtained NMP dispersion liquid.
  • the number of particles is A / mgC
  • the concentration of particles obtained from the measurement is X / ⁇ L
  • the concentration of the diluted conductive auxiliary agent dispersion is Y ⁇ g / g
  • the specific gravity of NMP is Zg / ⁇ L.
  • the number of particles A / mgC was calculated from the following formula (3).
  • the concentration of the conductive auxiliary agent dispersion liquid is Y ⁇ g / g, where the weight of the conductive auxiliary agent contained in the dispersion liquid is Y' ⁇ g and the weight of the entire dispersion liquid is Y''g, from the following formula (4). I asked. Since the NMP dispersion used in the measurement has a small conductive auxiliary agent concentration of several tens of ppm, an approximation of solution specific density ⁇ NMP specific gravity was used.
  • Battery evaluation was carried out as follows. First, the battery was connected to a charge / discharge tester (manufactured by Toyo System Co., Ltd., trade name "TOSCAT3100"), and left for 12 hours without passing current. Next, 0.2C CCCV charging (charging end voltage: 4.25V, CV STOP: 3 hours or 0.02C, rest time after charging: 1 minute), -0.2C CC discharge (discharging end voltage 2.5V, Post-discharge pause time: 1 minute), charging and discharging were repeated 5 times. Subsequently, resistance measurement was performed.
  • a charge / discharge tester manufactured by Toyo System Co., Ltd., trade name "TOSCAT3100”
  • the evaluation of the temperature rise during charging and discharging with a large current was carried out as follows. First, the non-aqueous electrolyte secondary batteries produced in Examples 1 to 5 and Comparative Examples 1 to 4 were placed in a constant temperature bath at 25 ° C. and connected to a charging / discharging device (manufactured by Hokuto Denko Co., Ltd., product number "HJ1005SD8"). .. Next, the non-aqueous electrolyte secondary battery was charged with a constant current (current value 0.2C, charge termination voltage 4.25V).
  • thermocouple K type was attached to the central portion of the non-aqueous electrolyte secondary battery with an imide tape, measured with a data logger (Graphtec, GL900APS), and the maximum temperature was recorded.
  • the difference between the maximum temperature and 25 ° C. was calculated, and a temperature rise of less than 10 ° C. was regarded as acceptable ( ⁇ ), and a temperature rise of 10 ° C. or higher was regarded as rejected ( ⁇ ).
  • Table 1 The results of the non-aqueous electrolyte secondary batteries prepared in Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1 below.

Abstract

Provided is a conductive aid for non-aqueous electrolyte secondary batteries which is capable of improving safety and suppressing a temperature increase during high-current charging/discharging of a non-aqueous electrolyte secondary battery. A conductive aid which contains a resin and a carbon material having a graphene layer structure, and is to be used in non-aqueous electrolyte secondary batteries, wherein: a obtained via formula (1) satisfies 3<a≤100 and b obtained via formula (2) satisfies 20≤b≤100 when the amount of resin contained in the conductive aid is x0 wt%, the BET specific surface area of the conductive aid is y0m2/g, the amount of resin contained in the conductive aid after heating said conductive aid for five hours at 600°C is x1 wt%, and the BET specific surface area of the conductive aid after heating said conductive aid for five hours at 600°C is y1m2/g; and the number of particles of the conductive aid in a fluid dispersion is 15 million particles/mgC or higher when obtaining the fluid dispersion by dispersing the conductive aid in N-methyl-2-pyrrolidone. Formula (1): a=(y0-y1)/(x0-x1). Formula (2): b=y0-(y0-y1)x0/(x0-x1)

Description

非水電解質二次電池用導電助剤、非水電解質二次電池用正極、及び非水電解質二次電池Conductive aid for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
 本発明は、非水電解質二次電池用導電助剤、並びに該非水電解質二次電池用導電助剤を用いた非水電解質二次電池用正極及び非水電解質二次電池に関する。 The present invention relates to a conductive auxiliary agent for a non-aqueous electrolyte secondary battery, and a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the conductive auxiliary agent for the non-aqueous electrolyte secondary battery.
 近年、携帯機器、ハイブリット自動車、電気自動車、家庭用蓄電用途等に向けて、非水電解質二次電池の研究開発が盛んに行われている。なかでも、ハイブリット自動車や電気自動車向けの用途においては、大電流での充放電が必要とされている。 In recent years, research and development of non-aqueous electrolyte secondary batteries have been actively carried out for mobile devices, hybrid vehicles, electric vehicles, household power storage applications, etc. In particular, in applications for hybrid automobiles and electric automobiles, charging / discharging with a large current is required.
 しかしながら、非水電解質二次電池を大電流で充放電した際、二次電池そのものが発熱し発火する恐れがある。この発熱は、二次電池の正極における抵抗である電子抵抗やイオン拡散抵抗が大きいことが原因となる場合がある。そこで、二次電池の正極における抵抗を低減させることを目的として、二次電池の正極用導電助剤には、黒鉛のような炭素材料が用いられる場合がある。しかしながら、黒鉛は、良好な電子伝導性を発現することから電子抵抗を低減することができる一方、2次元的広がりを有する材料であることから、リチウムイオン等のイオンの拡散を阻害し、電池抵抗が増大するという問題がある。 However, when the non-aqueous electrolyte secondary battery is charged and discharged with a large current, the secondary battery itself may generate heat and ignite. This heat generation may be caused by a large electron resistance or ion diffusion resistance, which are resistances at the positive electrode of the secondary battery. Therefore, for the purpose of reducing the resistance in the positive electrode of the secondary battery, a carbon material such as graphite may be used as the conductive auxiliary agent for the positive electrode of the secondary battery. However, graphite can reduce electron resistance because it exhibits good electron conductivity, but because it is a material having a two-dimensional spread, it inhibits the diffusion of ions such as lithium ions and battery resistance. There is a problem that the number increases.
 この点に関し、下記の特許文献1には、空隙部を有する導電助剤粒子を用いた電極を備えるリチウムイオン二次電池が開示されている。特許文献1では、空隙部を有する導電助剤粒子を用いることにより、活物質粒子の近傍に十分な量の電解液を保液することができると記載されている。 In this regard, Patent Document 1 below discloses a lithium ion secondary battery provided with an electrode using conductive auxiliary agent particles having voids. Patent Document 1 describes that a sufficient amount of electrolytic solution can be retained in the vicinity of the active material particles by using the conductive auxiliary agent particles having voids.
特許第5501137号公報Japanese Patent No. 5501137
 しかしながら、特許文献1のような導電助剤粒子を用いた場合においても、電解液の保持性向上と電子伝導性の向上とを高いレベルで両立させることが困難であった。そのため、十分に電池抵抗を低めることができず、大電流での充放電時における発熱を抑制することができないという問題がある。 However, even when the conductive auxiliary agent particles as in Patent Document 1 are used, it is difficult to achieve both the improvement of the holding property of the electrolytic solution and the improvement of the electronic conductivity at a high level. Therefore, there is a problem that the battery resistance cannot be sufficiently lowered and heat generation during charging / discharging with a large current cannot be suppressed.
 本発明の目的は、非水電解質二次電地の大電流での充放電時における温度上昇を抑制することができ、安全性を高めることができる、非水電解質二次電池用導電助剤、並びに該非水電解質二次電池用導電助剤を用いた非水電解質二次電池用正極及び非水電解質二次電池を提供することにある。 An object of the present invention is a conductive auxiliary agent for a non-aqueous electrolyte secondary battery, which can suppress a temperature rise during charging and discharging of a non-aqueous electrolyte secondary electric current at a large current and can enhance safety. Another object of the present invention is to provide a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the conductive auxiliary agent for the non-aqueous electrolyte secondary battery.
 本発明に係る非水電解質二次電池用導電助剤は、非水電解質二次電池の正極に用いられる導電助剤であって、グラフェン積層構造を有する炭素材料と、樹脂とを含み、前記導電助剤に含まれる樹脂量をx重量%とし、前記導電助剤のBET比表面積をy/gとし、前記導電助剤を600℃で5時間加熱した後の前記導電助剤に含まれる樹脂量をx重量%とし、前記導電助剤を600℃で5時間加熱した後の前記導電助剤のBET比表面積をy/gとしたときに、下記式(1)により求められるaが、3<a≦100を満たし、下記式(2)により求められるbが、20≦b≦100を満たし、前記導電助剤をN-メチル-2-ピロリドンに分散させて分散液を得たときに、前記分散液中における前記導電助剤の粒子数が、1500百万個/mgC以上である。 The conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to the present invention is a conductive auxiliary agent used for a positive electrode of a non-aqueous electrolyte secondary battery, and contains a carbon material having a graphene laminated structure and a resin, and is said to be conductive. The amount of resin contained in the auxiliary agent is x0% by weight, the BET specific surface area of the conductive auxiliary agent is y0 m 2 / g, and the conductive auxiliary agent is heated at 600 ° C. for 5 hours before becoming the conductive auxiliary agent. When the amount of the resin contained is x 1 % by weight and the BET specific surface area of the conductive auxiliary agent after heating the conductive auxiliary agent at 600 ° C. for 5 hours is y 1 m 2 / g, the following formula (1) 3 <a ≦ 100 is satisfied, b obtained by the following formula (2) satisfies 20 ≦ b ≦ 100, and the conductive auxiliary agent is dispersed and dispersed in N-methyl-2-pyrrolidone. When the liquid is obtained, the number of particles of the conductive auxiliary agent in the dispersion liquid is 1500 million / mgC or more.
 a=(y-y)/(x-x) …式(1)
 b=y-(y-y)x/(x-x) …式(2)
a = (y 0 -y 1 ) / (x 0 -x 1 ) ... Equation (1)
b = y 0- (y 0 -y 1 ) x 0 / (x 0 -x 1 ) ... Equation (2)
 本発明に係る非水電解質二次電池用導電助剤のある特定の局面では、前記xが、2以上、20以下である。 In a specific aspect of the conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to the present invention, the x 0 is 2 or more and 20 or less.
 本発明に係る非水電解質二次電池用導電助剤の他の特定の局面では、前記yが、25以上、200以下である。 In another specific aspect of the conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to the present invention, the y0 is 25 or more and 200 or less.
 本発明に係る非水電解質二次電池用導電助剤のさらに他の特定の局面では、前記導電助剤をN-メチル-2-ピロリドンに分散させて分散液を得たときに、前記分散液中において、前記導電助剤の体積基準による累積粒度分布における50%粒径(D50)が、0.1μm以上、5μm以下である。 In still another specific aspect of the conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to the present invention, when the conductive auxiliary agent is dispersed in N-methyl-2-pyrrolidone to obtain a dispersion liquid, the dispersion liquid is obtained. Among them, the 50% particle size (D50) in the cumulative particle size distribution based on the volume of the conductive auxiliary agent is 0.1 μm or more and 5 μm or less.
 本発明に係る非水電解質二次電池用導電助剤のさらに他の特定の局面では、前記炭素材料が、部分的にグラファイトが剥離している構造を有する、部分剥離型薄片化黒鉛である。 In yet another specific aspect of the conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to the present invention, the carbon material is partially peelable flaky graphite having a structure in which graphite is partially peeled off.
 本発明に係る非水電解質二次電池用正極は、正極活物質と、本発明に従って構成される非水電解質二次電池用導電助剤とを含む。 The positive electrode for a non-aqueous electrolyte secondary battery according to the present invention contains a positive electrode active material and a conductive auxiliary agent for a non-aqueous electrolyte secondary battery configured according to the present invention.
 本発明に係る非水電解質二次電池は、本発明に従って構成される非水電解質二次電池用正極を備える。 The non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode for a non-aqueous electrolyte secondary battery configured according to the present invention.
 本発明によれば、非水電解質二次電地の大電流での充放電時における温度上昇を抑制することができ、安全性を高めることができる、非水電解質二次電池用導電助剤、並びに該非水電解質二次電池用導電助剤を用いた非水電解質二次電池用正極及び非水電解質二次電池を提供することができる。 According to the present invention, a conductive auxiliary agent for a non-aqueous electrolyte secondary battery, which can suppress a temperature rise during charging and discharging of a non-aqueous electrolyte secondary battery with a large current and can improve safety, Further, it is possible to provide a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the conductive auxiliary agent for the non-aqueous electrolyte secondary battery.
図1は、樹脂残存型の部分剥離型薄片化黒鉛の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a resin residual type partially peeled thin-section graphite. 図2は、賦活処理が施された部分剥離型薄片化黒鉛の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of partially peeled thin-section graphite that has been activated. 図3は、部分剥離型薄片化黒鉛における残存樹脂量とBET比表面積の関係を示す図である。FIG. 3 is a diagram showing the relationship between the amount of residual resin and the BET specific surface area in the partially peeled thin-section graphite.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 [非水電解質二次電池用導電助剤]
 本発明の非水電解質二次電池用導電助剤(以下、導電助剤ともいう)は、非水電解質二次電池の正極に用いられる導電助剤である。上記導電助剤は、グラフェン積層構造を有する炭素材料と、樹脂とを含む。なお、上記導電助剤は、グラフェン積層構造を有する炭素材料と、樹脂との複合体であることが望ましい。
[Conductive aid for non-aqueous electrolyte secondary batteries]
The conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention (hereinafter, also referred to as a conductive auxiliary agent) is a conductive auxiliary agent used for a positive electrode of a non-aqueous electrolyte secondary battery. The conductive auxiliary agent contains a carbon material having a graphene laminated structure and a resin. The conductive auxiliary agent is preferably a composite of a carbon material having a graphene laminated structure and a resin.
 本発明では、式:y=ax+bにおいて、下記式(1)により求められるaが、3<a≦100を満たし、下記式(2)により求められるbが、20≦b≦100を満たしている。 In the present invention, in the formula: y = ax + b, a obtained by the following formula (1) satisfies 3 <a ≦ 100, and b obtained by the following formula (2) satisfies 20 ≦ b ≦ 100. ..
 a=(y-y)/(x-x) …式(1)
 b=y-(y-y)x/(x-x) …式(2)
a = (y 0 -y 1 ) / (x 0 -x 1 ) ... Equation (1)
b = y 0- (y 0 -y 1 ) x 0 / (x 0 -x 1 ) ... Equation (2)
 なお、式(1)及び(2)においては、上記導電助剤に含まれる樹脂量をx重量%とし、上記導電助剤のBET比表面積をy/gとする。また、上記導電助剤を600℃で5時間加熱した後の導電助剤に含まれる樹脂量をx重量%とし、上記導電助剤を600℃で5時間加熱した後のBET比表面積をy/gとする。なお、xは0重量%であってもよい。 In the formulas (1) and (2), the amount of the resin contained in the conductive auxiliary agent is x0% by weight, and the BET specific surface area of the conductive auxiliary agent is y0 m 2 / g. Further, the amount of resin contained in the conductive auxiliary agent after heating the conductive auxiliary agent at 600 ° C. for 5 hours is x1% by weight, and the BET specific surface area after heating the conductive auxiliary agent at 600 ° C. for 5 hours is y. It shall be 1 m 2 / g. In addition, x 1 may be 0% by weight.
 なお、上記導電助剤に含まれる樹脂量は、熱重量分析(以下、TG)によって加熱温度に伴う重量変化を測定し、上記導電助剤の重量に対する重量変化を百分率にて求めることで、算出することができる。また、上記導電助剤のBET比表面積は、BET法に準拠して、窒素の吸着等温線から測定することができる。測定装置としては、例えば、島津製作所社製、品番「ASAP-2000」を用いることができる。 The amount of resin contained in the conductive auxiliary agent is calculated by measuring the weight change with heating temperature by thermogravimetric analysis (hereinafter referred to as TG) and obtaining the weight change with respect to the weight of the conductive auxiliary agent as a percentage. can do. Further, the BET specific surface area of the conductive auxiliary agent can be measured from the adsorption isotherm of nitrogen in accordance with the BET method. As the measuring device, for example, a product number "ASAP-2000" manufactured by Shimadzu Corporation can be used.
 また、本発明においては、上記導電助剤をN-メチル-2-ピロリドン(以下、NMPともいう)に分散させて分散液を得たときに、得られた分散液中における導電助剤の粒子数が、1500百万個/mgC以上である。 Further, in the present invention, when the above-mentioned conductive auxiliary agent is dispersed in N-methyl-2-pyrrolidone (hereinafter, also referred to as NMP) to obtain a dispersion liquid, the particles of the conductive auxiliary agent in the obtained dispersion liquid are obtained. The number is 1500 million / mgC or more.
 なお、分散液は、例えば、導電助剤をNMPで希釈し30ppm~50ppmの濃度に調整した後、超音波処理を1時間施すことにより得ることができる。また、導電助剤(炭素材料)の粒子数は、得られたNMP分散液を用いて、例えば、シメックス社製、フロー粒子像分析装置で測定し得られた粒子濃度から計算により求めることができる。粒子数をA個/mgCとし、測定から得られる粒子濃度をX個/μLとし、希釈し得られた導電助剤分散液濃度をYμg/gとし、NMPの比重をZg/ccとしたときに、粒子数A個/mgCは下記式(3)から求められる。なお、導電助剤分散液濃度Yμg/gは、分散液中に含まれる導電助剤の重さをY’μgとし、分散液全体の重さをY’’gとしたときに、下記式(4)から求められる。なお、例えば、測定で用いるNMP分散液は導電助剤濃度が数十ppmと小さい場合は、溶液比重≒NMP比重の近似を用いることができる。 The dispersion can be obtained, for example, by diluting the conductive auxiliary agent with NMP to adjust the concentration to a concentration of 30 ppm to 50 ppm, and then subjecting it to ultrasonic treatment for 1 hour. Further, the number of particles of the conductive auxiliary agent (carbon material) can be obtained by calculation using the obtained NMP dispersion liquid, for example, from the particle concentration obtained by measuring with a flow particle image analyzer manufactured by Simex. .. When the number of particles is A / mgC, the particle concentration obtained from the measurement is X / μL, the concentration of the diluted conductive auxiliary agent dispersion is Yμg / g, and the specific gravity of NMP is Zg / cc. , The number of particles A / mgC is obtained from the following formula (3). The concentration of the conductive auxiliary agent dispersion liquid is Y μg / g, when the weight of the conductive auxiliary agent contained in the dispersion liquid is Y'μg and the weight of the entire dispersion liquid is Y''g. Obtained from 4). For example, when the concentration of the conductive auxiliary agent is as small as several tens of ppm in the NMP dispersion used in the measurement, an approximation of solution specific density ≈ NMP specific gravity can be used.
 A=X/(Y×Z) …式(3)
 Y=Y’/Y’’ …式(4)
A = X / (Y × Z)… Equation (3)
Y = Y'/ Y'' ... Equation (4)
 本発明の非水電解質二次電池用導電助剤では、上記式(1)におけるa及び上記式(2)におけるbが上記範囲内にあることから、少量の樹脂を用いた場合にも、BET比表面積を大きくすることができる。従って、抵抗の大きい樹脂量を削減できることから、グラフェン積層構造を有する炭素材料による電子伝導性が低下し難い。また、BET比表面積を大きくすることができるので、電解液保持性を高めることができ、リチウムイオンなどのイオンの拡散性を高めることができる。また、上記の方法で測定した炭素材料の粒子数が上記下限値以上であるので、この点からもリチウムイオンなどのイオンの拡散性を高めることができる。よって、本発明の非水電解質二次電池用導電助剤は、電子伝導性及びイオン拡散性の双方に優れるので、非水電解質二次電池の電池抵抗を効果的に低めることができる。そのため、非水電解質二次電地の大電流での充放電時における温度上昇を抑制することができ、安全性を高めることができる。 In the conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention, since a in the above formula (1) and b in the above formula (2) are within the above range, BET is used even when a small amount of resin is used. The specific surface area can be increased. Therefore, since the amount of the resin having a large resistance can be reduced, the electron conductivity of the carbon material having the graphene laminated structure is unlikely to decrease. Further, since the BET specific surface area can be increased, the holding property of the electrolytic solution can be enhanced, and the diffusivity of ions such as lithium ions can be enhanced. Further, since the number of particles of the carbon material measured by the above method is at least the above lower limit value, the diffusivity of ions such as lithium ions can be enhanced from this point as well. Therefore, since the conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention is excellent in both electron conductivity and ion diffusivity, the battery resistance of the non-aqueous electrolyte secondary battery can be effectively reduced. Therefore, it is possible to suppress the temperature rise during charging / discharging of the non-aqueous electrolyte secondary electric current with a large current, and it is possible to improve the safety.
 本発明においては、上記式(1)中におけるa(傾き)は、3を超え、好ましくは4以上、より好ましくは5以上、100以下、好ましくは80以下、より好ましくは70以下である。上記式(1)中におけるaが上記下限値を超える場合、BET比表面積をより大きくすることができるので、電解液保持性をより一層高めることができ、リチウムイオンなどのイオンの拡散性をより一層高めることができる。また、上記式(1)中におけるaが上記上限値以下である場合、非水電解質二次電池の電解液との分解反応をより一層生じ難くすることができる。 In the present invention, a (slope) in the above formula (1) is more than 3, preferably 4 or more, more preferably 5 or more, 100 or less, preferably 80 or less, and more preferably 70 or less. When a in the above formula (1) exceeds the above lower limit value, the BET specific surface area can be further increased, so that the electrolyte retention property can be further improved and the diffusivity of ions such as lithium ions can be further improved. It can be further enhanced. Further, when a in the above formula (1) is not more than the above upper limit value, the decomposition reaction of the non-aqueous electrolyte secondary battery with the electrolytic solution can be made more difficult to occur.
 本発明においては、上記式(2)中におけるb(切片)が、20以上、好ましくは25以上、より好ましくは30以上、100以下、好ましくは90以下、より好ましくは80以下である。上記式(2)中におけるbが上記下限値以上である場合、BET比表面積をより大きくすることができるので、電解液保持性をより一層高めることができ、リチウムイオンなどのイオンの拡散性をより一層高めることができる。また、上記式(2)中におけるbが上記上限値以下である場合、非水電解質二次電池の電解液との分解反応をより一層生じ難くすることができる。 In the present invention, b (intercept) in the above formula (2) is 20 or more, preferably 25 or more, more preferably 30 or more, 100 or less, preferably 90 or less, and more preferably 80 or less. When b in the above formula (2) is at least the above lower limit value, the BET specific surface area can be further increased, so that the electrolyte retention property can be further improved and the diffusivity of ions such as lithium ions can be improved. It can be further enhanced. Further, when b in the above formula (2) is not more than the above upper limit value, the decomposition reaction of the non-aqueous electrolyte secondary battery with the electrolytic solution can be made more difficult to occur.
 本発明においては、上記式(1)及び式(2)中におけるx(樹脂量)が、好ましくは2(重量%)以上、より好ましくは5(重量%)以上、さらに好ましくは8(重量%)以上、好ましくは35(重量%)以下、より好ましくは30(重量%)以下、さらに好ましくは20(重量%)以下である。上記xが上記下限値以上である場合、電解液保持性をより一層高めることができ、リチウムイオンなどのイオンの拡散性をより一層高めることができる。また、上記xが上記上限値以下である場合、非水電解質二次電池の電池抵抗をより一層低めることができる。 In the present invention, x 0 (resin amount) in the above formulas (1) and (2) is preferably 2 (% by weight) or more, more preferably 5 (% by weight) or more, and further preferably 8 (weight). %) Or more, preferably 35 (% by weight) or less, more preferably 30 (% by weight) or less, still more preferably 20 (% by weight) or less. When the above x 0 is at least the above lower limit value, the electrolyte retention property can be further enhanced, and the diffusivity of ions such as lithium ions can be further enhanced. Further, when the above x 0 is not more than the above upper limit value, the battery resistance of the non-aqueous electrolyte secondary battery can be further reduced.
 本発明においては、上記式(1)及び式(2)中におけるy(BET比表面積)が、好ましくは20(m/g)以上、より好ましくは25(m/g)以上、好ましくは500(m/g)以下、より好ましくは300(m/g)以下、さらに好ましくは200(m/g)以下である。上記yが上記下限値以上である場合、電解液保持性をより一層高めることができ、リチウムイオンなどのイオンの拡散性をより一層高めることができる。さらに、この場合、活物質との接触点をより一層十分に確保することができる。また、上記yが上記上限値以下である場合、取り扱い性をより一層高めることができる。 In the present invention, y 0 (BET specific surface area) in the above formulas (1) and (2) is preferably 20 (m 2 / g) or more, more preferably 25 (m 2 / g) or more, preferably 25 (m 2 / g) or more. Is 500 (m 2 / g) or less, more preferably 300 (m 2 / g) or less, still more preferably 200 (m 2 / g) or less. When the y 0 is equal to or greater than the lower limit, the electrolyte retention property can be further enhanced, and the diffusivity of ions such as lithium ions can be further enhanced. Further, in this case, the contact point with the active material can be further sufficiently secured. Further, when the y 0 is not more than the upper limit value, the handleability can be further improved.
 本発明においては、上記の方法で測定した導電助剤の粒子数が、好ましくは3000百万個/mgC以上、より好ましくは4000百万個/mgC以上、さらに好ましくは5000百万個/mgC以上である。この場合、リチウムイオンなどのイオンの拡散性をより一層高めることができる。また、上記の方法で測定した炭素材料の粒子数の上限値は、特に限定されないが、例えば、50000百万個/mgC以下である。 In the present invention, the number of particles of the conductive auxiliary agent measured by the above method is preferably 3000 million / mgC or more, more preferably 4000 million / mgC or more, still more preferably 5000 million / mgC or more. Is. In this case, the diffusivity of ions such as lithium ions can be further enhanced. The upper limit of the number of particles of the carbon material measured by the above method is not particularly limited, but is, for example, 50,000 million particles / mgC or less.
 また、導電助剤の体積基準による累積粒度分布における50%粒径(D50)が、好ましくは0.1μm以上、より好ましくは0.3μm以上、好ましくは5μm以下、より好ましくは3μm以下である。導電助剤の粒径が上記範囲内にある場合、非水電解質二次電池の電池抵抗をより一層効果的に低めることができる。 Further, the 50% particle size (D50) in the cumulative particle size distribution based on the volume of the conductive auxiliary agent is preferably 0.1 μm or more, more preferably 0.3 μm or more, preferably 5 μm or less, and more preferably 3 μm or less. When the particle size of the conductive auxiliary agent is within the above range, the battery resistance of the non-aqueous electrolyte secondary battery can be further effectively reduced.
 なお、粒径の測定に際しては、例えば、導電助剤をNMPで希釈し800ppm~1000ppmの濃度に調整した後、超音波処理を1時間施すことにより得られたNMP分散液を用いて行うことができる。また、粒径は、得られたNMP分散液を用いて、例えば、マイクロトラックベル社製、レーザー回折・散乱式粒子径分布測定装置により測定することができる。 The particle size may be measured, for example, by using an NMP dispersion obtained by diluting the conductive auxiliary agent with NMP to adjust the concentration to 800 ppm to 1000 ppm and then applying ultrasonic treatment for 1 hour. can. Further, the particle size can be measured by using the obtained NMP dispersion liquid, for example, by a laser diffraction / scattering type particle size distribution measuring device manufactured by Microtrac Bell.
 なお、導電助剤は、正極作製時には粉体として加えてもよいし、ハンドリング性向上のため、例えばNMP分散液として加えてもよい。 The conductive auxiliary agent may be added as a powder at the time of producing the positive electrode, or may be added as, for example, an NMP dispersion liquid in order to improve the handling property.
 本発明において、グラフェン積層構造を有する炭素材料としては、例えば、黒鉛又は薄片化黒鉛などが挙げられる。なお、グラフェン積層構造を有するか否かは、炭素材料のX線回折スペクトルについて、CuKα線(波長1.541Å)を用いて測定したときに、2θ=26°付近のピーク(グラフェン積層構造に由来するピーク)が観察されるか否かにより確認することができる。X線回折スペクトルは、広角X線回折法によって測定することができる。X線回折装置としては、例えば、SmartLab(リガク社製)を用いることができる。 In the present invention, examples of the carbon material having a graphene laminated structure include graphite and flaky graphite. Whether or not it has a graphene laminated structure is determined by a peak near 2θ = 26 ° (derived from the graphene laminated structure) when the X-ray diffraction spectrum of the carbon material is measured using CuKα rays (wavelength 1.541 Å). It can be confirmed by whether or not the peak) is observed. The X-ray diffraction spectrum can be measured by wide-angle X-ray diffraction. As the X-ray diffractometer, for example, SmartLab (manufactured by Rigaku Co., Ltd.) can be used.
 炭素材料の形状としては、特に限定されず、二次元に広がっている形状、球状、繊維状、又は不定形状等が挙げられる。上記炭素材料の形状としては、二次元に広がっている形状であることが好ましい。二次元に広がっている形状としては、例えば、鱗片状又は板状(平板状)が挙げられる。このような二次元的に広がっている形状を有する場合、電子伝導性をより一層高めることができる。なかでも、炭素材料の形状としては、鱗片状であることが好ましい。炭素材料が、鱗片状であることにより、電子伝導性をさらに一層高めることができる。 The shape of the carbon material is not particularly limited, and examples thereof include a shape that spreads in two dimensions, a spherical shape, a fibrous shape, and an indefinite shape. The shape of the carbon material is preferably a shape that spreads two-dimensionally. Examples of the shape spreading in two dimensions include a scale-like shape or a plate-like shape (flat plate shape). When having such a two-dimensionally expanding shape, electron conductivity can be further enhanced. Above all, the shape of the carbon material is preferably scaly. Since the carbon material is scaly, the electron conductivity can be further enhanced.
 黒鉛とは、複数のグラフェンシートの積層体である。黒鉛のグラフェンシートの積層数は、通常、10万層~100万層程度である。黒鉛としては、例えば、天然黒鉛、人造黒鉛又は膨張黒鉛などを用いることができる。膨張黒鉛は、通常の黒鉛よりもグラフェン層同士の層間距離が大きくなっている割合が高く、薄片化黒鉛の原料としてより好適に用いることができる。 Graphite is a laminate of multiple graphene sheets. The number of laminated graphene sheets of graphite is usually about 100,000 to 1,000,000. As the graphite, for example, natural graphite, artificial graphite, expanded graphite or the like can be used. Expanded graphite has a higher ratio of the interlayer distance between graphene layers being larger than that of ordinary graphite, and can be more preferably used as a raw material for flaky graphite.
 薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよい。なお、薄片化黒鉛は、酸化薄片化黒鉛であってもよい。 The flaky graphite is obtained by exfoliating the original graphite, and refers to a graphene sheet laminate thinner than the original graphite. The number of graphene sheets laminated in the flaky graphite may be smaller than that of the original graphite. The flaky graphite may be flaky oxide graphite.
 薄片化黒鉛において、グラフェンシートの積層数は、特に限定されないが、好ましくは2層以上、より好ましくは5層以上、好ましくは3000層以下、より好ましくは1000層以下、さらに好ましくは500層以下である。グラフェンシートの積層数が上記下限以上である場合、薄片化黒鉛の導電性をより一層高めることができる。グラフェンシートの積層数が上記上限以下である場合、薄片化黒鉛の比表面積をより一層大きくすることができる。 In the flaky graphite, the number of laminated graphene sheets is not particularly limited, but is preferably 2 or more, more preferably 5 or more, preferably 3000 or less, more preferably 1000 or less, still more preferably 500 or less. be. When the number of laminated graphene sheets is at least the above lower limit, the conductivity of the flaky graphite can be further enhanced. When the number of laminated graphene sheets is not more than the above upper limit, the specific surface area of the flaky graphite can be further increased.
 また、薄片化黒鉛は、部分的にグラファイトが剥離されている構造を有する部分剥離型薄片化黒鉛であることが好ましい。 Further, the flaky graphite is preferably a partially peelable flaky graphite having a structure in which graphite is partially peeled off.
 「部分的にグラファイトが剥離されている」構造の一例としては、グラフェンの積層体において、端縁からある程度内側までグラフェン層間が開いており、すなわち端縁にてグラファイトの一部が剥離しており、中央側の部分ではグラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層している構造が挙げられる。従って、端縁にてグラファイトの一部が剥離している部分は、中央側の部分に連なっている。さらに、部分剥離型薄片化黒鉛には、端縁のグラファイトが剥離され薄片化したものが含まれていてもよい。 As an example of the structure in which the graphite is "partially peeled off", in the graphene laminate, the graphene layers are opened from the edge to the inside to some extent, that is, a part of graphite is peeled off at the edge. In the central portion, a structure in which a graphite layer is laminated in the same manner as the original graphite or primary flaky graphite can be mentioned. Therefore, the portion where a part of graphite is peeled off at the edge is connected to the central portion. Further, the partially exfoliated thin-section graphite may include those in which the graphite at the edge is exfoliated and flaked.
 部分剥離型薄片化黒鉛は、中央側の部分において、グラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層している。そのため、従来の酸化グラフェンやカーボンブラックより黒鉛化度が高く、導電性に優れている。また、部分的にグラファイトが剥離されている構造を有することから、比表面積が大きい。そのため、電解液保持性をより一層向上させることができる。 In the partially peeled thin-section graphite, the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary thin-section graphite. Therefore, the degree of graphitization is higher than that of conventional graphene oxide or carbon black, and the conductivity is excellent. In addition, it has a structure in which graphite is partially peeled off, so that the specific surface area is large. Therefore, the electrolyte retention property can be further improved.
 本発明においては、導電助剤として、樹脂残存型の部分剥離型薄片化黒鉛を用いることが好ましい。以下、樹脂残存型の部分剥離型薄片化黒鉛について詳細に説明する。 In the present invention, it is preferable to use a resin residual type partially peelable flaky graphite as the conductive auxiliary agent. Hereinafter, the resin residual type partially peeled thin-section graphite will be described in detail.
 (樹脂残存型の部分剥離型薄片化黒鉛)
 図1は、樹脂残存型の部分剥離型薄片化黒鉛の一例を示す模式図である。図1に示すように、樹脂残存型の部分剥離型薄片化黒鉛10(以下、単に部分剥離型薄片化黒鉛ともいう)では、エッジ部11が剥離されている構造を有する。一方、中央部12では、元の黒鉛又は一次薄片化黒鉛と同様のグラファイト構造を有する。また、エッジ部11において、剥離されているグラフェン層間に樹脂13が配置されている。従って、樹脂残存型の部分剥離型薄片化黒鉛10は、部分剥離型薄片化黒鉛と、樹脂との複合体である。なお、樹脂13は、一部又は全部が炭化されていてもよい。
(Remaining resin type partially peeled thin-section graphite)
FIG. 1 is a schematic view showing an example of a resin residual type partially peeled thin-section graphite. As shown in FIG. 1, the resin residual type partially peelable thinned graphite 10 (hereinafter, also simply referred to as simply partially peeled thinned graphite) has a structure in which the edge portion 11 is peeled off. On the other hand, the central portion 12 has a graphite structure similar to that of the original graphite or the primary flaky graphite. Further, in the edge portion 11, the resin 13 is arranged between the graphene layers that have been peeled off. Therefore, the resin residual type partially peeled thinned graphite 10 is a complex of the partially peeled thinned graphite and the resin. The resin 13 may be partially or wholly carbonized.
 部分剥離型薄片化黒鉛におけるグラファイト層の積層数は、5層以上、3000層以下であることが好ましく、5層以上、1000層以下であることがより好ましく、5層以上、500層以下であることがさらに好ましい。 The number of laminated graphite layers in the partially peeled thin-section graphite is preferably 5 or more and 3000 or less, more preferably 5 or more and 1000 or less, and 5 or more and 500 or less. Is even more preferable.
 グラファイト層の積層数が上記範囲内にある場合、非水電解質二次電池の電池抵抗をより一層効果的に低減させることができる。 When the number of laminated graphite layers is within the above range, the battery resistance of the non-aqueous electrolyte secondary battery can be reduced even more effectively.
 グラファイト層の積層数が少なすぎると、後述の非水電解二次電池用正極内の各々の正極活物質間をつなげることができない場合がある。その結果、正極内の電子伝導経路が断絶され、レート特性及びサイクル特性が低下するおそれがある。また、グラファイト層の積層数が多すぎると、部分剥離型薄片化黒鉛1つの大きさが極端に大きくなり、正極内の部分剥離型薄片化黒鉛の分布に偏りが生じるおそれがある。従って、正極内の電子伝導経路が未発達となり、レート特性及びサイクル特性が低下するおそれがある。 If the number of laminated graphite layers is too small, it may not be possible to connect the active materials of each positive electrode in the positive electrode for a non-aqueous electrolytic secondary battery, which will be described later. As a result, the electron conduction path in the positive electrode may be interrupted, and the rate characteristics and cycle characteristics may deteriorate. Further, if the number of laminated graphite layers is too large, the size of one partially peeled thinned graphite becomes extremely large, and the distribution of the partially peeled thinned graphite in the positive electrode may be biased. Therefore, the electron conduction path in the positive electrode may be underdeveloped, and the rate characteristics and cycle characteristics may deteriorate.
 グラファイト層の積層数の算出方法は、特に限定されないが、例えば、透過型電子顕微鏡(TEM)等で目視観察することによって算出することができる。 The method for calculating the number of laminated graphite layers is not particularly limited, but it can be calculated by, for example, visually observing with a transmission electron microscope (TEM) or the like.
 樹脂残存型の部分剥離型薄片化黒鉛は、例えば、黒鉛または一次薄片化黒鉛と、樹脂とを含み、樹脂が黒鉛または一次薄片化黒鉛にグラフトまたは吸着により固定されている組成物を用意し、該組成物中に含まれている樹脂を、熱分解することにより得ることができる。なお、樹脂を熱分解させる際には、樹脂の一部を残存させながら熱分解する。 The resin residual type partially peelable flake graphite contains, for example, graphite or primary flake graphite and a resin, and a composition in which the resin is grafted or adsorbed to graphite or primary flake graphite is prepared. It can be obtained by thermally decomposing the resin contained in the composition. When the resin is thermally decomposed, it is thermally decomposed while a part of the resin remains.
 部分剥離型薄片化黒鉛は、例えば、国際公開第2014/034156号に記載の薄片化黒鉛・樹脂複合材料の製造方法と同様の方法で製造することができる。すなわち、例えば、黒鉛または一次薄片化黒鉛と、樹脂とを含む組成物を作製する工程と、上記組成物を開放系にて熱分解する工程とを経ることにより、製造することができる。もっとも、本発明においては、後述する方法により、上記式(1)におけるa及びbの範囲を調整する点で上記製造方法と異なっている。 The partially peelable thinned graphite can be produced, for example, by the same method as the method for producing a thinned graphite / resin composite material described in International Publication No. 2014/034156. That is, for example, it can be produced by going through a step of producing a composition containing graphite or primary flaky graphite and a resin, and a step of thermally decomposing the composition in an open system. However, the present invention differs from the above manufacturing method in that the ranges of a and b in the above formula (1) are adjusted by the method described later.
 黒鉛としては、より一層容易にグラファイトを剥離することが可能であることから、膨張黒鉛を使用することが好ましい。また、一次薄片化黒鉛とは、各種方法により黒鉛を剥離することにより得られた薄片化黒鉛を広く含むものとする。一次薄片化黒鉛は、部分剥離型薄片化黒鉛であってもよい。一次薄片化黒鉛は、黒鉛を剥離することにより得られるものであるため、その比表面積は、黒鉛よりも大きいものであればよい。 As the graphite, it is preferable to use expanded graphite because the graphite can be peeled off more easily. Further, the primary flaky graphite broadly includes flaky graphite obtained by exfoliating graphite by various methods. The primary flaky graphite may be a partially peelable flaky graphite. Since the primary flaky graphite is obtained by exfoliating graphite, its specific surface area may be larger than that of graphite.
 また、使用する黒鉛又は一次薄片化黒鉛は、薄層化処理を施したものであってもよい。薄層化処理に用いる装置の例としては、高圧乳化装置、真空乳化装置、真空ビーズミル、撹拌装置が挙げられる。より一層粒子数を増大させる観点からは、高圧乳化装置、撹拌装置が特に好ましい。 Further, the graphite or primary flaky graphite used may be one that has been subjected to a thinning treatment. Examples of the device used for the thinning process include a high-pressure emulsifying device, a vacuum emulsifying device, a vacuum bead mill, and a stirring device. From the viewpoint of further increasing the number of particles, a high-pressure emulsifying device and a stirring device are particularly preferable.
 上記樹脂の熱分解における加熱の温度としては、樹脂の種類にもより特に限定されないが、例えば、250℃~1000℃とすることができる。加熱時間としては、例えば、20分~5時間とすることができる。残存する樹脂量の調整がより一層容易であることから、加熱の温度としては、350℃~600℃であることが好ましく、加熱時間としては、40分~3時間であることが好ましい。また、上記加熱は、大気中で行ってもよく、窒素ガスなどの不活性ガス雰囲気下で行ってもよい。もっとも、得られる部分剥離型薄片化黒鉛の導電性をより一層高める観点からは、上記加熱を窒素ガスなどの不活性ガス雰囲気下で行うことが望ましい。また、上記加熱工程を複数回行ってもよい。 The heating temperature in the thermal decomposition of the resin is not particularly limited depending on the type of resin, but can be, for example, 250 ° C to 1000 ° C. The heating time can be, for example, 20 minutes to 5 hours. Since the amount of the remaining resin can be adjusted more easily, the heating temperature is preferably 350 ° C. to 600 ° C., and the heating time is preferably 40 minutes to 3 hours. Further, the heating may be performed in the atmosphere or in an atmosphere of an inert gas such as nitrogen gas. However, from the viewpoint of further enhancing the conductivity of the obtained partially peeled thinned graphite, it is desirable to perform the above heating in an atmosphere of an inert gas such as nitrogen gas. Further, the heating step may be performed a plurality of times.
 樹脂としては、特に限定されないが、ラジカル重合性モノマーの重合体であることが好ましい。この場合、1種のラジカル重合性モノマーの単独重合体であってもよく、複数種のラジカル重合性モノマーの共重合体であってもよい。ラジカル重合性モノマーは、ラジカル重合性の官能基を有するモノマーである限り、特に限定されない。 The resin is not particularly limited, but is preferably a polymer of a radically polymerizable monomer. In this case, it may be a homopolymer of one kind of radically polymerizable monomer or a copolymer of a plurality of kinds of radically polymerizable monomers. The radically polymerizable monomer is not particularly limited as long as it is a monomer having a radically polymerizable functional group.
 ラジカル重合性モノマーとしては、例えば、スチレン、α-エチルアクリル酸メチル、α-ベンジルアクリル酸メチル、α-[2,2-ビス(カルボメトキシ)エチル]アクリル酸メチル、イタコン酸ジブチル、イタコン酸ジメチル、イタコン酸ジシクロヘキシル、α-メチレン-δ-バレロラクトン、α-メチルスチレン、α-アセトキシスチレンからなるα-置換アクリル酸エステル、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルメタアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、4-ヒドロキシブチルメタクリレートなどのグリシジル基や水酸基を持つビニルモノマー;アリルアミン、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレートのようなアミノ基を有するビニルモノマー、メタクリル酸、無水マレイン酸、マレイン酸、イタコン酸、アクリル酸、クロトン酸、2-アクリロイルオキシエチルサクシネート、2-メタクリロイルオキシエチルサクシネート、2-メタクリロイロキシエチルフタル酸などのカルボキシル基を有するモノマー;ユニケミカル社製、ホスマー(登録商標)M、ホスマー(登録商標)CL、ホスマー(登録商標)PE、ホスマー(登録商標)MH、ホスマー(登録商標)PPなどのリン酸基を有するモノマー;ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシランなどのアルコキシシリル基を有するモノマー;アルキル基やベンジル基などを有する(メタ)アクリレート系モノマーなどが挙げられる。 Examples of the radically polymerizable monomer include styrene, methyl α-ethyl acrylate, methyl α-benzyl acrylate, α- [2,2-bis (carbomethoxy) ethyl] methyl acrylate, dibutyl itaconate, and dimethyl itaconate. , Α-substituted acrylic acid ester consisting of dicyclohexylitaconate, α-methylene-δ-valerolactone, α-methylstyrene, α-acetoxystyrene, glycidylmethacrylate, 3,4-epoxycyclohexylmethylmethacrylate, hydroxyethylmethacrylate, hydroxy Vinyl monomers with glycidyl groups and hydroxyl groups such as ethyl acrylates, hydroxypropyl acrylates and 4-hydroxybutyl methacrylate; vinyl monomers with amino groups such as allylamine, diethylaminoethyl (meth) acrylates and dimethylaminoethyl (meth) acrylates, methacryl Monomers with carboxyl groups such as acid, maleic anhydride, maleic acid, itaconic acid, acrylic acid, crotonic acid, 2-acryloyloxyethyl succinate, 2-methacryloyloxyethyl succinate, 2-methacryloyloxyethyl phthalic acid; Monomer having a phosphate group such as Hosmer (registered trademark) M, Hosmer (registered trademark) CL, Hosmer (registered trademark) PE, Hosmer (registered trademark) MH, Hosmer (registered trademark) PP manufactured by Unichemical Co., Ltd .; Monomers having an alkoxysilyl group such as methoxysilane and 3-methacryloxypropyltrimethoxysilane; (meth) acrylate-based monomers having an alkyl group, a benzyl group and the like can be mentioned.
 用いられる樹脂の例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリグリシジルメタクリレート、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルブチラール(ブチラール樹脂)、ポリ(メタ)アクリレート、ポリスチレン、ポリエステルなどが挙げられる。 Examples of the resin used include polyethylene glycol, polypropylene glycol, polyglycidyl methacrylate, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral (butyral resin), poly (meth) acrylate, polystyrene, polyester and the like.
 上記樹脂の中でも、より少量の残存樹脂量でBET比表面積を確保できることから、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルブチラール、ポリエステルが特に好ましい。 Among the above resins, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, and polyester are particularly preferable because the BET specific surface area can be secured with a smaller amount of residual resin.
 なお、樹脂種は使用する溶媒との親和性を鑑み、適宜選定を行うことが可能である。 The resin type can be appropriately selected in consideration of the affinity with the solvent used.
 黒鉛または一次薄片化黒鉛に固定される熱分解前の樹脂の含有量は、樹脂分を除く黒鉛または一次薄片化黒鉛1重量部に対し、好ましくは0.1重量部以上、より好ましくは0.3重量部以上、好ましくは30重量部以下、より好ましくは20重量部以下である。熱分解前の樹脂の含有量が上記範囲内である場合、熱分解後の残存樹脂の含有量をより一層制御しやすい。また、熱分解前の樹脂の含有量が上記上限値以下である場合、コスト的により一層有利である。 The content of the resin before thermal decomposition fixed to graphite or primary flake graphite is preferably 0.1 part by weight or more, more preferably 0, with respect to 1 part by weight of graphite or primary flake graphite excluding the resin content. It is 3 parts by weight or more, preferably 30 parts by weight or less, and more preferably 20 parts by weight or less. When the content of the resin before thermal decomposition is within the above range, it is easier to control the content of the residual resin after thermal decomposition. Further, when the content of the resin before thermal decomposition is not more than the above upper limit value, it is more advantageous in terms of cost.
 熱分解後の残存樹脂の含有量は、樹脂分を含む部分剥離型薄片化黒鉛100重量部に対し、好ましくは2重量部以上、より好ましくは5重量部以上、好ましくは50重量部以下、より好ましくは20重量部以下である。熱分解後の残存樹脂の含有量が上記下限値以上である場合、BET比表面積をより一層大きくすることができる。また、熱分解後の残存樹脂の含有量が上記上限値以下である場合、電池抵抗をより一層低めることができる。 The content of the residual resin after thermal decomposition is preferably 2 parts by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, based on 100 parts by weight of the partially peelable flake graphite containing the resin content. It is preferably 20 parts by weight or less. When the content of the residual resin after thermal decomposition is at least the above lower limit value, the BET specific surface area can be further increased. Further, when the content of the residual resin after thermal decomposition is not more than the above upper limit value, the battery resistance can be further lowered.
 なお、熱分解前の樹脂の含有量及び部分剥離型薄片化黒鉛に残存している残存樹脂量は、例えば熱重量分析(以下、TG)によって加熱温度に伴う重量変化を測定し、算出することができる。 The resin content before thermal decomposition and the amount of residual resin remaining in the partially peeled thin-section graphite shall be calculated by measuring the weight change with heating temperature by, for example, thermogravimetric analysis (hereinafter referred to as TG). Can be done.
 また、正極活物質との複合体を作製する場合は、正極活物質との複合体を作製した後に、樹脂量を低減してもよい。 Further, in the case of producing a complex with a positive electrode active material, the amount of resin may be reduced after producing the complex with the positive electrode active material.
 上記樹脂量を低減する方法としては、樹脂の分解温度以上、正極活物質の分解温度未満で加熱処理する方法が好ましい。この加熱処理は、大気中、不活性ガス雰囲気下、低酸素雰囲気下、又は真空下のいずれで行ってもよい。 As a method for reducing the amount of the resin, a method of heat treatment at a temperature equal to or higher than the decomposition temperature of the resin and lower than the decomposition temperature of the positive electrode active material is preferable. This heat treatment may be performed in the atmosphere, under an inert gas atmosphere, under a low oxygen atmosphere, or under vacuum.
 部分剥離型薄片化黒鉛の製造方法は、上記製造方法に加えて、ガス賦活処理を施し細孔を形成したものであってもよい。ガス賦活処理の例としては、水蒸気賦活、二酸化炭素賦活、酸素賦活が挙げられる。なかでも、二酸化炭素賦活がより好ましい。 The method for producing partially peeled thin-section graphite may be one in which pores are formed by performing a gas activation treatment in addition to the above-mentioned production method. Examples of gas activation treatment include steam activation, carbon dioxide activation, and oxygen activation. Of these, carbon dioxide activation is more preferable.
 また、ガス賦活処理の温度としては、例えば、700℃~950℃とすることができる。また、その温度における保持時間は、例えば、15分~2時間とすることができる。なかでも、ガス賦活処理の温度としては、800℃~900℃であることが好ましく、その温度における保持時間は、30分~1時間であることが好ましい。 Further, the temperature of the gas activation treatment can be, for example, 700 ° C to 950 ° C. The holding time at that temperature can be, for example, 15 minutes to 2 hours. Among them, the temperature of the gas activation treatment is preferably 800 ° C. to 900 ° C., and the holding time at that temperature is preferably 30 minutes to 1 hour.
 図2は、賦活処理を施した部分剥離型薄片黒鉛の一例を示す図である。図2に示すように、賦活処理を施した部分剥離型薄片化黒鉛20では、樹脂23に細孔24が形成されていることがわかる。このような細孔24が形成されている場合、電解液保持性をより一層高めることができ、リチウムイオンなどのイオン拡散性をより一層高めることができる。 FIG. 2 is a diagram showing an example of partially peeled thin-section graphite that has been activated. As shown in FIG. 2, it can be seen that in the partially peeled thin-section graphite 20 that has been activated, the pores 24 are formed in the resin 23. When such pores 24 are formed, the electrolytic solution retention property can be further enhanced, and the ion diffusivity of lithium ions and the like can be further enhanced.
 また、得られた部分剥離型薄片化黒鉛は、例えば、ミルミキサー、ブレンダーミル、ジェットミルやボールミルなどのミルによる粉砕、分級、あるいは、水や、メタノール、エタノール、N-メチル-2-ピロリドン(NMP)に代表される有機溶媒に入れた後に超音波処理をして用いてもよい。例えば、ミキサーで粉砕する場合は、粉砕時間により粒径を調整することができる。 Further, the obtained partially peelable flaky graphite can be pulverized or classified by a mill such as a mill mixer, a blender mill, a jet mill or a ball mill, or water, methanol, ethanol, N-methyl-2-pyrrolidone ( It may be used after being placed in an organic solvent typified by NMP) and then subjected to sonication. For example, when crushing with a mixer, the particle size can be adjusted by the crushing time.
 なお、本発明においては、部分剥離型薄片化黒鉛を製造するに際して、上記式(1)におけるa及び上記式(2)におけるbの範囲を調整している。上記式(1)におけるa及び上記式(2)におけるbの範囲は、例えば、樹脂の配合量の調整、焼成温度及び焼成時間の調製、賦活処理、又は薄層化前処理により調整することができる。それによって、図3に実線で示すように、従来の部分剥離型薄片化黒鉛(破線)と比較しても、残存樹脂量に対してBET比表面積が大きい部分剥離型薄片化黒鉛を得ることができる。よって、このような部分剥離型薄片化黒鉛である導電助剤を用いた場合、電子伝導性及びイオン拡散性の双方に優れるので、非水電解質二次電池の電池抵抗を効果的に低めることができる。 In the present invention, the ranges of a in the above formula (1) and b in the above formula (2) are adjusted when producing the partially peelable flaky graphite. The range of a in the above formula (1) and b in the above formula (2) can be adjusted, for example, by adjusting the blending amount of the resin, adjusting the firing temperature and firing time, activating treatment, or pre-thinning treatment. can. As a result, as shown by the solid line in FIG. 3, it is possible to obtain a partially peelable thinned graphite having a large BET specific surface area with respect to the amount of residual resin even when compared with the conventional partially peeled thinned graphite (broken line). can. Therefore, when such a conductive auxiliary agent which is a partially peelable fragmented graphite is used, it is excellent in both electron conductivity and ion diffusivity, so that the battery resistance of the non-aqueous electrolyte secondary battery can be effectively reduced. can.
 本発明においては、上記部分剥離型薄片化黒鉛とSiとの重量比1:1における混合物のX線回折スペクトルを測定したときに、ピーク比c/dが、好ましくは0.20以上、より好ましくは0.25以上である。また、ピーク比c/dは、好ましくは10.0以下、より好ましくは8.0以下、さらに好ましくは5.0以下である。上記cは、2θが、24°以上、28°未満の範囲における最も高いピークの高さである。上記dは、2θが、28°以上、30°未満の範囲における最も高いピークの高さである。なお、Siとしては、例えば、φ=100nm以下のシリコン粉末を用いることができる。 In the present invention, when the X-ray diffraction spectrum of the mixture of the partially peeled thin section graphite and Si at a weight ratio of 1: 1 is measured, the peak ratio c / d is preferably 0.20 or more, more preferably 0.20 or more. Is 0.25 or more. The peak ratio c / d is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 5.0 or less. The above c is the height of the highest peak in the range where 2θ is 24 ° or more and less than 28 °. The above d is the height of the highest peak in the range where 2θ is 28 ° or more and less than 30 °. As Si, for example, silicon powder having φ = 100 nm or less can be used.
 上記X線回折スペクトルは、広角X線回折法によって測定することができる。X線としては、CuKα線(波長1.541Å)を用いることができる。X線回折装置としては、例えば、SmartLab(リガク社製)を用いることができる。 The X-ray diffraction spectrum can be measured by a wide-angle X-ray diffraction method. As X-rays, CuKα rays (wavelength 1.541 Å) can be used. As the X-ray diffractometer, for example, SmartLab (manufactured by Rigaku Co., Ltd.) can be used.
 X線回折スペクトルにおいて、グラファイト構造に由来するピークは、2θ=26.4°付近に現れる。一方、シリコン粉末になどのSiに由来するピークは、2θ=28.5°付近に現れる。従って、上記比c/dは、2θ=26.4°付近のピークと2θ=28.5°付近のピークとのピーク比(2θ=26.4°付近のピーク/2θ=28.5°付近のピーク)により求めることができる。 In the X-ray diffraction spectrum, the peak derived from the graphite structure appears near 2θ = 26.4 °. On the other hand, peaks derived from Si such as silicon powder appear in the vicinity of 2θ = 28.5 °. Therefore, the ratio c / d is the peak ratio between the peak near 2θ = 26.4 ° and the peak near 2θ = 28.5 ° (peak around 2θ = 26.4 ° / around 2θ = 28.5 °). It can be obtained from the peak of).
 なお、上記c/dが小さすぎると、部分剥離型薄片化黒鉛自身における黒鉛構造の形成が未熟であり、電子伝導性が低いことに加え、欠陥を有するので、正極の抵抗値が増大し、電池特性が低下する場合がある。 If the c / d is too small, the formation of the graphite structure in the partially peeled thin-section graphite itself is immature, the electron conductivity is low, and there are defects, so that the resistance value of the positive electrode increases. Battery characteristics may deteriorate.
 上記c/dが大きすぎると、部分剥離型薄片化黒鉛自身が剛直となり、正極内に分散し難くなり、電子伝導性が低下する場合がある。 If the above c / d is too large, the partially peeled thin-section graphite itself becomes rigid, it becomes difficult to disperse it in the positive electrode, and the electron conductivity may decrease.
 上記部分剥離型薄片化黒鉛は、ラマン分光法によって得られるラマンスペクトルにおいて、Dバンドと、Gバンドとのピーク強度比をD/G比としたときに、D/G比が、0.8以下であることが好ましく、0.7以下であることがより好ましい。D/G比がこの範囲内の場合、上記部分剥離型薄片化黒鉛そのものの導電性をより一層高めることができ、しかもガス発生量をより一層低減することができる。また、D/G比は、0.05以上であることが好ましい。D/G比が、上記下限値以上である場合、電解液分解との反応によって生じるガス発生量をより一層抑制することができる。 The partially peeled flake graphite has a D / G ratio of 0.8 or less when the peak intensity ratio between the D band and the G band is the D / G ratio in the Raman spectrum obtained by Raman spectroscopy. It is preferably 0.7 or less, and more preferably 0.7 or less. When the D / G ratio is within this range, the conductivity of the partially peeled thin-section graphite itself can be further increased, and the amount of gas generated can be further reduced. Further, the D / G ratio is preferably 0.05 or more. When the D / G ratio is at least the above lower limit value, the amount of gas generated by the reaction with the decomposition of the electrolytic solution can be further suppressed.
 [非水電解質二次電池用正極]
 本発明の非水電解質二次電池用正極は、正極活物質と、上記非水電解質二次電池用導電助剤を備える。従って、非水電解質二次電地の大電流での充放電時における温度上昇を抑制することができ、安全性を高めることができる。
[Positive electrode for non-aqueous electrolyte secondary battery]
The positive electrode for a non-aqueous electrolyte secondary battery of the present invention comprises a positive electrode active material and the above-mentioned conductive auxiliary agent for a non-aqueous electrolyte secondary battery. Therefore, it is possible to suppress the temperature rise during charging / discharging of the non-aqueous electrolyte secondary electric current with a large current, and it is possible to enhance the safety.
 本発明の非水電解質二次電池用正極(以下、単に正極ともいう)は、一般的な正極構成、組成、及び製造方法のものでもよいし、正極活物質と、導電助剤との複合体を用いてもよい。 The positive electrode for a non-aqueous electrolyte secondary battery of the present invention (hereinafter, also simply referred to as a positive electrode) may have a general positive electrode configuration, composition, and manufacturing method, or may be a composite of a positive electrode active material and a conductive auxiliary agent. May be used.
 (正極活物質)
 本発明に用いる正極活物質は、リチウムイオンなどのイオンの脱離、挿入反応が進行するものであればよく、負極活物質の電池反応電位よりも、貴であればよい。その際、電池反応は、1族若しくは2族のイオンが関与していればよい。そのようなイオンとしては、例えば、Hイオン、Liイオン、Naイオン、Kイオン、Mgイオン、Caイオン、又はAlイオンが挙げられる。以下、Liイオンが電池反応に関与する系について詳細を例示する。
(Positive electrode active material)
The positive electrode active material used in the present invention may be any one in which the desorption and insertion reactions of ions such as lithium ions proceed, and may be noble than the battery reaction potential of the negative electrode active material. At that time, the battery reaction may involve Group 1 or Group 2 ions. Examples of such ions include H ion, Li ion, Na ion, K ion, Mg ion, Ca ion, or Al ion. Hereinafter, the details of the system in which Li ions are involved in the battery reaction will be illustrated.
 この場合、上記正極活物質としては、例えば、リチウム金属酸化物、リチウム硫化物、又は硫黄が挙げられる。 In this case, examples of the positive electrode active material include lithium metal oxide, lithium sulfide, and sulfur.
 リチウム金属酸化物としては、スピネル構造、層状岩塩構造、若しくはオリビン構造を有するもの、又はこれらの混合物が挙げられる。 Examples of the lithium metal oxide include those having a spinel structure, a layered rock salt structure, an olivine structure, or a mixture thereof.
 スピネル構造を有するリチウム金属酸化物としては、マンガン酸リチウムなどが例示される。 Examples of the lithium metal oxide having a spinel structure include lithium manganate.
 層状岩塩構造を有するリチウム金属酸化物としては、コバルト酸リチウム、ニッケル酸リチウム、三元系などが例示される。 Examples of the lithium metal oxide having a layered rock salt structure include lithium cobalt oxide, lithium nickel oxide, and a ternary system.
 オリビン構造を有するリチウム金属酸化物としては、リン酸鉄リチウム、リン酸マンガン鉄リチウム、リン酸マンガンリチウムなどが例示される。 Examples of the lithium metal oxide having an olivine structure include lithium iron phosphate, lithium manganese iron phosphate, and lithium manganese phosphate.
 正極活物質は、所謂ドープ元素が含まれてもよい。上記正極活物質は、単独で用いてもよいし、2種類以上を併用してもよい。 The positive electrode active material may contain a so-called dope element. The positive electrode active material may be used alone or in combination of two or more.
 正極活物質の平均粒子径は、好ましくは0.5μm以上、より好ましくは1.0μm以上、好ましくは20μm以下、より好ましくは10μm以下である。正極活物質の平均粒子径が上記範囲内にある場合、電池抵抗をより一層効果的に低めることができ、電池容量をより一層高めることができる。なお、正極活物質の平均粒子径は、SEM(走査型電子顕微鏡)、TEM像から各粒子の大きさを測定し、平均粒子径を算出した値である。なお、上記粒子は、一次粒子でもよいし、一次粒子を凝集させた造粒体でもよい。 The average particle size of the positive electrode active material is preferably 0.5 μm or more, more preferably 1.0 μm or more, preferably 20 μm or less, and more preferably 10 μm or less. When the average particle size of the positive electrode active material is within the above range, the battery resistance can be lowered more effectively, and the battery capacity can be further increased. The average particle size of the positive electrode active material is a value obtained by measuring the size of each particle from an SEM (scanning electron microscope) and a TEM image and calculating the average particle size. The particles may be primary particles or granulated materials in which the primary particles are aggregated.
 正極活物質のBET比表面積は、好ましくは0.1m/g以上、好ましくは50m/g以下である。この場合、より一層容易に所望の出力密度を得ることができる。BET比表面積は、上述した方法により測定することができる。 The BET specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, preferably 50 m 2 / g or less. In this case, the desired output density can be obtained more easily. The BET specific surface area can be measured by the method described above.
 正極活物質の含有量は、正極材料全量に対し、好ましくは70重量%以上、より好ましくは75重量%以上、好ましくは98重量%以下、より好ましくは95重量%以下である。正極活物質の含有量が上記範囲内にある場合、電池抵抗をより一層効果的に低めることができ、電池容量をより一層高めることができる。 The content of the positive electrode active material is preferably 70% by weight or more, more preferably 75% by weight or more, preferably 98% by weight or less, and more preferably 95% by weight or less with respect to the total amount of the positive electrode material. When the content of the positive electrode active material is within the above range, the battery resistance can be lowered more effectively, and the battery capacity can be further increased.
 (導電助剤)
 導電助剤は、上述した本発明の非水電解質二次電池用導電助剤である。導電助剤の含有量は、非水電解質二次電池用正極材料全量に対し、好ましくは1.5重量%以上、より好ましくは2重量%以上、好ましくは20重量%以下、より好ましくは15重量%以下である。導電助剤の含有量が上記範囲内にある場合、電池抵抗をより一層効果的に低めることができる。また、上述した本発明の非水電解質二次電池用導電助剤を第1の導電助剤としたときに、第1の導電助剤とは異なる第2の導電助剤をさらに用いてもよい。
(Conductive aid)
The conductive auxiliary agent is the above-mentioned conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention. The content of the conductive auxiliary agent is preferably 1.5% by weight or more, more preferably 2% by weight or more, preferably 20% by weight or less, more preferably 15% by weight, based on the total amount of the positive electrode material for the non-aqueous electrolyte secondary battery. % Or less. When the content of the conductive auxiliary agent is within the above range, the battery resistance can be lowered more effectively. Further, when the above-mentioned conductive auxiliary agent for a non-aqueous electrolyte secondary battery of the present invention is used as the first conductive auxiliary agent, a second conductive auxiliary agent different from the first conductive auxiliary agent may be further used. ..
 第2の導電助剤は、部分剥離型薄片化黒鉛とは異なる炭素材料であることが好ましい。第2の導電助剤は、特に限定されないが、例えば、グラフェン、粒状黒鉛化合物、繊維状黒鉛化合物、カーボンブラック、又は活性炭が挙げられる。なかでも、電解液保持性をより一層低める観点から、第2の導電助剤は、カーボンブラックであることが好ましい。 The second conductive auxiliary agent is preferably a carbon material different from the partially peeled thinned graphite. The second conductive auxiliary agent is not particularly limited, and examples thereof include graphene, granular graphite compounds, fibrous graphite compounds, carbon black, and activated carbon. Among them, the second conductive auxiliary agent is preferably carbon black from the viewpoint of further lowering the electrolyte retention.
 上記グラフェンは、酸化グラフェンであってもよいし、酸化グラフェンを還元したものであってもよい。 The graphene may be graphene oxide or reduced graphene oxide.
 上記粒状黒鉛化合物としては、特に限定されず、例えば、天然黒鉛、人造黒鉛、又は膨張黒鉛などが挙げられる。 The granular graphite compound is not particularly limited, and examples thereof include natural graphite, artificial graphite, and expanded graphite.
 上記カーボンブラックとしては、特に限定されず、例えば、ファーネスブラック、ケッチェンブラック、又はアセチレンブラックなどが挙げられる。 The carbon black is not particularly limited, and examples thereof include furnace black, ketjen black, and acetylene black.
 これらの第2の導電助剤は、1種を単独で用いてもよく、複数種を併用してもよい。 As these second conductive aids, one type may be used alone, or a plurality of types may be used in combination.
 第2の導電助剤のBET比表面積は、好ましくは5m/g以上、より好ましくは10m/g以上、さらに好ましくは25m/g以上である。第2の導電助剤のBET比表面積が上記下限値以上である場合、非水電解質二次電池の電解液保持性をより一層高めることができる。また、正極作製時の取り扱い性をより一層高める観点から、第2の導電助剤のBET比表面積は、2500m/g以下であることが好ましい。 The BET specific surface area of the second conductive auxiliary agent is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, and further preferably 25 m 2 / g or more. When the BET specific surface area of the second conductive auxiliary agent is at least the above lower limit value, the electrolyte retention property of the non-aqueous electrolyte secondary battery can be further enhanced. Further, from the viewpoint of further improving the handleability at the time of producing the positive electrode, the BET specific surface area of the second conductive auxiliary agent is preferably 2500 m 2 / g or less.
 なお、第1の導電助剤と、第2の導電助剤とは、例えば、SEMやTEMなどにより区別することができる。 The first conductive auxiliary agent and the second conductive auxiliary agent can be distinguished from each other by, for example, SEM or TEM.
 第2の導電助剤には、表面に官能基が存在していてもよい。この場合、より一層容易に正極を作製することができる。 The second conductive auxiliary agent may have a functional group on its surface. In this case, the positive electrode can be manufactured more easily.
 第1の導電助剤の重量をAgとし、第2の導電助剤の重量をBgとしたとき、比A/Bは、0.01≦A/B≦100であることが好ましい。比A/Bが上記下限値未満又は上記上限値より大きい場合、正極の抵抗が増大するおそれがある。 When the weight of the first conductive auxiliary agent is Ag and the weight of the second conductive auxiliary agent is Bg, the ratio A / B is preferably 0.01 ≦ A / B ≦ 100. When the ratio A / B is less than the above lower limit value or larger than the above upper limit value, the resistance of the positive electrode may increase.
 本発明の非水電解質二次電池用正極は、正極活物質と、第1の導電助剤と、第2の導電助剤とで形成されていてもよいが、正極をより一層容易に作製する観点から、バインダーが含まれてもよい。正極活物質と、第1の導電助剤と、第2の導電助剤との複合体を用いてもよい。 The positive electrode for a non-aqueous electrolyte secondary battery of the present invention may be formed of a positive electrode active material, a first conductive auxiliary agent, and a second conductive auxiliary agent, but the positive electrode is made more easily. From the point of view, a binder may be included. A complex of a positive electrode active material, a first conductive auxiliary agent, and a second conductive auxiliary agent may be used.
 第1の導電助剤と、第2の導電助剤(以下、あわせて導電助剤)の分散液の固形分濃度は、導電助剤の重量を1とした場合、溶媒の重量が0.5以上、1000以下であることが好ましい。取り扱い性をより一層高める観点から、1以上、750以下であることがさらに好ましい。また、分散性をより一層高める観点から、2以上、500以下であることが特に好ましい。溶媒の重量が上記下限値未満の場合は、導電助剤を所望の分散状態まで分散をおこなうことができないおそれがあり、一方、上記上限値より大きい場合は、製造費用が増大するおそれがある。 The solid content concentration of the dispersion liquid of the first conductive auxiliary agent and the second conductive auxiliary agent (hereinafter collectively referred to as the conductive auxiliary agent) is 0.5 when the weight of the conductive auxiliary agent is 1. As mentioned above, it is preferably 1000 or less. From the viewpoint of further improving the handleability, it is more preferably 1 or more and 750 or less. Further, from the viewpoint of further enhancing the dispersibility, it is particularly preferably 2 or more and 500 or less. If the weight of the solvent is less than the above lower limit value, the conductive auxiliary agent may not be able to be dispersed to a desired dispersion state, while if it is larger than the above upper limit value, the manufacturing cost may increase.
 (バインダー)
 本発明の非水電解質二次電池用正極は、正極をより一層容易に形成する観点から、バインダーを含んでいてもよい。
(binder)
The positive electrode for a non-aqueous electrolyte secondary battery of the present invention may contain a binder from the viewpoint of forming the positive electrode more easily.
 上記バインダーとしては、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム、ポリイミド、及びそれらの誘導体からなる群から選ばれる少なくとも1種の樹脂を用いることができる。 The binder is not particularly limited, and for example, at least one resin selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof. Can be used.
 上記バインダーは、正極をより一層容易に作製する観点から、非水溶媒又は水に溶解又は分散されていることが好ましい。 The binder is preferably dissolved or dispersed in a non-aqueous solvent or water from the viewpoint of more easily producing a positive electrode.
 非水溶媒は、特に限定されないが、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、酢酸エチル又はテトラヒドロフランなどを挙げることができる。これらに、分散剤や、増粘剤を加えてもよい。 The non-aqueous solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylethylketone, methyl acetate, ethyl acetate, and tetrahydrofuran. A dispersant or a thickener may be added to these.
 正極に含まれるバインダーの量は、正極活物質100重量部に対して、好ましくは0.3重量部以上、30重量部以下であり、より好ましくは0.5重量部以上、15重量部以下である。バインダーの量が上記範囲内にある場合、正極活物質と導電助剤との接着性を維持することができ、集電体との接着性をより一層高めることができる。 The amount of the binder contained in the positive electrode is preferably 0.3 parts by weight or more and 30 parts by weight or less, and more preferably 0.5 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. be. When the amount of the binder is within the above range, the adhesiveness between the positive electrode active material and the conductive auxiliary agent can be maintained, and the adhesiveness with the current collector can be further enhanced.
 (正極の作製方法)
 正極の作製方法としては、例えば、正極活物質、導電助剤、並びにバインダーの混合物を、集電体上に形成させることによって作製する方法が挙げられる。
(Method for manufacturing positive electrode)
Examples of the method for producing a positive electrode include a method for producing a positive electrode by forming a mixture of a positive electrode active material, a conductive auxiliary agent, and a binder on a current collector.
 正極をより一層容易に作製する観点から、以下のようにして作製することが好ましい。まず、正極活物質及び導電助剤にバインダー溶液又は分散液を加えて混合することによりスラリーを作製する。次に、作製したスラリーを集電体上に塗布し、最後に溶媒を除去することによって正極を作製する。また、正極活物質と、導電助剤との複合体を作製してから正極を作製してもよい。 From the viewpoint of making the positive electrode even easier, it is preferable to make it as follows. First, a slurry is prepared by adding a binder solution or a dispersion liquid to the positive electrode active material and the conductive auxiliary agent and mixing them. Next, the prepared slurry is applied onto the current collector, and finally the solvent is removed to prepare a positive electrode. Further, the positive electrode may be produced after forming a complex of the positive electrode active material and the conductive auxiliary agent.
 上記スラリーの作製方法としては、既存の方法を用いることができる。例えば、ミキサー等を用いて混合する方法が挙げられる。混合に用いられるミキサーとしては、特に限定されないが、プラネタリミキサー、ディスパー、薄膜旋回型ミキサー、ジェットミキサー、又は自公回転型ミキサー等が挙げられる。 As the method for producing the above slurry, an existing method can be used. For example, a method of mixing using a mixer or the like can be mentioned. The mixer used for mixing is not particularly limited, and examples thereof include a planetary mixer, a disper, a thin film swirl type mixer, a jet mixer, and a self-public rotation type mixer.
 上記スラリーの固形分濃度は、塗工をより一層容易に行う観点から、30重量%以上、95重量%以下が好ましい。貯蔵安定性をより一層高める観点から、上記スラリーの固形分濃度は、35重量%以上、90重量%以下であることがより好ましい。また、より一層製造費用を抑制する観点から、上記スラリーの固形分濃度は、40重量%以上、85重量%以下であることがさらに好ましい。 The solid content concentration of the slurry is preferably 30% by weight or more and 95% by weight or less from the viewpoint of making coating easier. From the viewpoint of further enhancing the storage stability, the solid content concentration of the slurry is more preferably 35% by weight or more and 90% by weight or less. Further, from the viewpoint of further suppressing the production cost, the solid content concentration of the slurry is more preferably 40% by weight or more and 85% by weight or less.
 なお、上記固形分濃度は、希釈溶媒によって制御することができる。希釈溶媒としては、バインダー溶液、又は分散液と同じ種類の溶媒を用いることが好ましい。また、溶媒の相溶性があれば、他の溶媒を用いてもよい。 The solid content concentration can be controlled by a diluting solvent. As the diluting solvent, it is preferable to use a binder solution or a solvent of the same type as the dispersion liquid. Further, another solvent may be used as long as it is compatible with the solvent.
 正極に用いる集電体は、アルミニウム又はアルミニウムを含む合金であることが好ましい。アルミニウムは、正極反応雰囲気下で安定であることから、特に限定されないが、JIS規格1030、1050、1085、1N90、1N99等に代表される高純度アルミニウムであることが好ましい。 The current collector used for the positive electrode is preferably aluminum or an alloy containing aluminum. Aluminum is not particularly limited because it is stable in a positive electrode reaction atmosphere, but is preferably high-purity aluminum represented by JIS standards 1030, 1050, 1085, 1N90, 1N99 and the like.
 集電体の厚みは、特に限定されないが、10μm以上、100μm以下であることが好ましい。集電体の厚みが10μm未満の場合、作製の観点から取り扱いが困難となることがある。一方、集電体の厚みが100μmより厚い場合は、経済的観点から不利になることがある。 The thickness of the current collector is not particularly limited, but is preferably 10 μm or more and 100 μm or less. If the thickness of the current collector is less than 10 μm, it may be difficult to handle from the viewpoint of production. On the other hand, if the thickness of the current collector is thicker than 100 μm, it may be disadvantageous from an economic point of view.
 なお、集電体は、アルミニウム以外の金属(銅、SUS、ニッケル、チタン、及びそれらの合金)の表面に、アルミニウムを被覆させたものであってもよい。 The current collector may be a metal other than aluminum (copper, SUS, nickel, titanium, and alloys thereof) coated with aluminum.
 上記スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、上記スラリーをドクターブレード、ダイコータ又はコンマコータ等により塗布した後に溶剤を除去する方法や、スプレーにより塗布した後に溶剤を除去する方法、又はスクリーン印刷によって塗布した後に溶媒を除去する方法等が挙げられる。 The method of applying the slurry to the current collector is not particularly limited, and for example, a method of applying the slurry with a doctor blade, a die coater, a comma coater, or the like and then removing the solvent, or a method of applying the slurry with a spray and then removing the solvent. Examples thereof include a method and a method of removing the solvent after application by screen printing.
 上記溶媒を除去する方法は、より一層簡便であることから、送風オーブンや真空オーブンを用いた乾燥が好ましい。溶媒を除去する雰囲気としては、空気雰囲気、不活性ガス雰囲気、又は真空状態などが挙げられる。また、溶媒を除去する温度は、特に限定されないが、60℃以上、250℃以下であることが好ましい。溶媒を除去する温度が60℃未満では、溶媒の除去に時間を要する場合がある。一方、溶媒を除去する温度が250℃より高いと、バインダーが劣化する場合がある。 Since the method for removing the solvent is even simpler, drying using a blower oven or a vacuum oven is preferable. Examples of the atmosphere for removing the solvent include an air atmosphere, an inert gas atmosphere, and a vacuum state. The temperature for removing the solvent is not particularly limited, but is preferably 60 ° C. or higher and 250 ° C. or lower. If the temperature at which the solvent is removed is less than 60 ° C., it may take time to remove the solvent. On the other hand, if the temperature at which the solvent is removed is higher than 250 ° C., the binder may deteriorate.
 正極は、所望の厚み、密度まで圧縮させてもよい。圧縮は、特に限定されないが、例えば、ロールプレスや、油圧プレス等を用いて行うことができる。 The positive electrode may be compressed to a desired thickness and density. The compression is not particularly limited, but can be performed by using, for example, a roll press, a hydraulic press, or the like.
 圧縮後における正極の厚みは、特に限定されないが、10μm以上、1000μm以下であることが好ましい。厚みが10μm未満では、所望の容量を得ることが難しい場合がある。一方、厚みが1000μmより厚い場合は、所望の出力密度を得ることが難しい場合がある。 The thickness of the positive electrode after compression is not particularly limited, but is preferably 10 μm or more and 1000 μm or less. If the thickness is less than 10 μm, it may be difficult to obtain the desired capacity. On the other hand, when the thickness is thicker than 1000 μm, it may be difficult to obtain a desired output density.
 正極の密度は、1.0g/cm以上、4.0g/cm以下であることが好ましい。1.0g/cm未満であると、正極活物質、導電助剤との接触が不十分となり電子伝導性が低下する場合がある。一方、4.0g/cmより大きいと、後述の電解液が正極内に浸透しにくくなり、リチウムイオンなどのイオンの伝導性が低下する場合がある。 The density of the positive electrode is preferably 1.0 g / cm 3 or more and 4.0 g / cm 3 or less. If it is less than 1.0 g / cm 3 , the contact with the positive electrode active material and the conductive auxiliary agent may be insufficient and the electronic conductivity may decrease. On the other hand, if it is larger than 4.0 g / cm 3 , it becomes difficult for the electrolytic solution described later to permeate into the positive electrode, and the conductivity of ions such as lithium ions may decrease.
 正極は、正極1cm当たりの電気容量が、0.5mAh以上、10.0mAh以下であることが好ましい。電気容量が0.5mAh未満である場合は、所望する容量の電池の大きさが大きくなる場合がある。一方、電気容量が10.0mAhより大きい場合は、所望の出力密度を得ることが難しくなる場合がある。なお、正極1cm当たりの電気容量の算出は、正極作製後、リチウム金属を対極とした半電池を作製し、充放電特性を測定することによって算出してもよい。 The positive electrode preferably has an electric capacity of 0.5 mAh or more and 10.0 mAh or less per 1 cm 2 of the positive electrode. If the electric capacity is less than 0.5 mAh, the size of the battery with the desired capacity may be large. On the other hand, when the electric capacity is larger than 10.0 mAh, it may be difficult to obtain a desired output density. The electric capacity per 1 cm 2 of the positive electrode may be calculated by manufacturing a half cell made of lithium metal as a counter electrode after manufacturing the positive electrode and measuring the charge / discharge characteristics.
 正極1cm当たりの電気容量は、特に限定されないが、集電体単位面積あたりに形成させる正極の重量で制御することができる。例えば、前述のスラリー塗工時の塗工厚みで制御することができる。 The electric capacity per 1 cm 2 of the positive electrode is not particularly limited, but can be controlled by the weight of the positive electrode formed per unit area of the current collector. For example, it can be controlled by the coating thickness at the time of slurry coating described above.
 [非水電解質二次電池]
 本発明の非水電解質二次電池は、アルカリ金属イオン又はアルカリ土類金属イオンの挿入及び脱離反応が進行する化合物を用いられたものであればよい。アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン、又はカリウムイオンが例示される。アルカリ土類金属イオンとしては、カルシウムイオン又はマグネシウムイオンが例示される。特に、リチウムイオンを用いたもの(リチウムイオン二次電池)に好適に用いることができる。
[Non-water electrolyte secondary battery]
The non-aqueous electrolyte secondary battery of the present invention may be any one using a compound that promotes the insertion and desorption reaction of alkali metal ions or alkaline earth metal ions. Examples of the alkali metal ion include lithium ion, sodium ion, and potassium ion. Examples of the alkaline earth metal ion include calcium ion and magnesium ion. In particular, it can be suitably used for those using lithium ions (lithium ion secondary batteries).
 (正極)
 本発明の非水電解質二次電池は、上記本発明の非水電解質二次電池用正極を備える。そのため、非水電解質二次電地の大電流での充放電時における温度上昇を抑制することができ、安全性を高めることができる。
(Positive electrode)
The non-aqueous electrolyte secondary battery of the present invention includes the positive electrode for the non-aqueous electrolyte secondary battery of the present invention. Therefore, it is possible to suppress the temperature rise during charging / discharging of the non-aqueous electrolyte secondary electric current with a large current, and it is possible to improve the safety.
 (負極)
 本発明の非水電解質二次電池に用いられる負極は、特に限定されないが、天然黒鉛、人造黒鉛、ハードカーボン、金属酸化物、チタン酸リチウム、又はシリコン系などの負極活物質を含むものを用いることができる。
(Negative electrode)
The negative electrode used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but one containing a negative electrode active material such as natural graphite, artificial graphite, hard carbon, metal oxide, lithium titanate, or silicon-based material is used. be able to.
 (セパレータ)
 本発明の非水電解質二次電池に用いるセパレータは、正極と負極との間に設置され、絶縁性かつ後述の非水電解質を含むことができる構造であればよい。このようなセパレータとしては、例えば、ナイロン、セルロース、ポリスルホン、ポリエチレン、ポリポロピレン、ポリブテン、ポリアクリロニトリル、ポリイミド、ポリアミド、ポリエチレンテレフタラートが挙げられる。また、これらを2種類以上複合したものの織布、不織布、微多孔膜などが挙げられる。
(Separator)
The separator used in the non-aqueous electrolyte secondary battery of the present invention may have a structure that is installed between the positive electrode and the negative electrode and is insulating and can contain the non-aqueous electrolyte described later. Examples of such a separator include nylon, cellulose, polysulfone, polyethylene, polyporopylene, polybutene, polyacrylonitrile, polyimide, polyamide, and polyethylene terephthalate. In addition, woven fabrics, non-woven fabrics, microporous membranes, etc., which are composites of two or more of these, can be mentioned.
 セパレータには、各種可塑剤、酸化防止剤、難燃剤が含まれてもよいし、金属酸化物等で被覆されていてもよい。 The separator may contain various plasticizers, antioxidants, flame retardants, or may be coated with a metal oxide or the like.
 セパレータの厚みは、特に限定されないが、5μm以上、100μm以下であることが好ましい。セパレータの厚みが5μm未満の場合、正極と負極とが接触する恐れがある。セパレータの厚みが100μmより厚い場合、電池の抵抗が高くなる恐れがある。経済性、取り扱い性の観点から、10μm以上、50μm以下であることがさらに好ましい。 The thickness of the separator is not particularly limited, but is preferably 5 μm or more and 100 μm or less. If the thickness of the separator is less than 5 μm, the positive electrode and the negative electrode may come into contact with each other. If the thickness of the separator is thicker than 100 μm, the resistance of the battery may increase. From the viewpoint of economy and handleability, it is more preferably 10 μm or more and 50 μm or less.
 (非水電解質)
 本発明の非水電解質二次電池に用いる非水電解質は、特に限定されないが、例えば、非水溶媒に溶質を溶解させた電解液を用いることができる。また、非水溶媒に溶質を溶解させた電解液を高分子に含浸させたゲル電解質、ポリエチレンオキシド、ポリプロピレンオキシドなどの高分子固体電解質、又はサルファイドガラス、オキシナイトライドなどの無機固体電解質を用いてもよい。
(Non-water electrolyte)
The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and for example, an electrolytic solution in which a solute is dissolved in a non-aqueous solvent can be used. Further, using a gel electrolyte in which a polymer is impregnated with an electrolytic solution in which a solute is dissolved in a non-aqueous solvent, a polymer solid electrolyte such as polyethylene oxide or polypropylene oxide, or an inorganic solid electrolyte such as sulfate glass or oxynitride is used. May be good.
 非水溶媒としては、後述の溶質をより一層溶解させやすいことから、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。 The non-aqueous solvent preferably contains a cyclic aprotic solvent and / or a chain aprotic solvent because the solute described later can be more easily dissolved.
 環状の非プロトン性溶媒としては、環状カーボネート、環状エステル、環状スルホン又は環状エーテルなどが例示される。 Examples of the cyclic aprotic solvent include cyclic carbonates, cyclic esters, cyclic sulfones, and cyclic ethers.
 鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル又は鎖状エーテルなどが例示される。 Examples of the chain aprotic solvent include chain carbonate, chain carboxylic acid ester, and chain ether.
 また、アセトニトリルなどの一般的に非水電解質の溶媒として用いられる溶媒を用いてもよい。より具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、スルホラン、ジオキソラン、プロピオン酸メチルなどを用いることができる。これら溶媒は単独で用いてもよいし、2種類以上の溶媒を混合しても用いてもよい。もっとも、後述の溶質をより一層容易に溶解させ、リチウムイオンの伝導性をより一層高める観点から、2種類以上の溶媒を混合した溶媒を用いることが好ましい。 Further, a solvent generally used as a solvent for a non-aqueous electrolyte such as acetonitrile may be used. More specifically, dimethyl carbonate, methyl ethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyl lactone, 1,2-dimethoxyethane, sulforane, dioxolane, propion. Methyl acid acid and the like can be used. These solvents may be used alone, or a mixture of two or more kinds of solvents may be used. However, from the viewpoint of more easily dissolving the solute described later and further enhancing the conductivity of lithium ions, it is preferable to use a solvent in which two or more kinds of solvents are mixed.
 溶質としては、特に限定されないが、LiClO、LiBF、LiPF、LiAsF、LiCFSO、LiBOB(Lithium Bis (Oxalato) Borate)、又はLiN(SOCFを用いることが好ましい。この場合、非水溶媒により一層容易に溶解させることができる。 The solute is not particularly limited, but it is preferable to use LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiBOB (Lithium Bis (Oxalato) Borate), or LiN (SO 2 CF 3 ) 2 . .. In this case, it can be more easily dissolved with a non-aqueous solvent.
 電解液に含まれる溶質の濃度は、0.5mol/L以上、2.0mol/L以下であることが好ましい。溶質の濃度が0.5mol/L未満では、所望のリチウムイオン伝導性が発現しない場合がある。一方、溶質の濃度が2.0mol/Lより高いと、溶質がそれ以上溶解しない場合がある。 The concentration of the solute contained in the electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less. If the concentration of the solute is less than 0.5 mol / L, the desired lithium ion conductivity may not be exhibited. On the other hand, if the concentration of the solute is higher than 2.0 mol / L, the solute may not dissolve any more.
 また、非水電解質には、難燃剤、安定化剤などの添加剤がさらに含まれていてもよい。 Further, the non-aqueous electrolyte may further contain additives such as flame retardants and stabilizers.
 (非水電解質二次電池)
 本発明の非水電解質二次電池の正極及び負極は、集電体の両面に同じ電極を形成させた形態であってもよく、集電体の片面に正極、他方の面に負極を形成させた形態、すなわち、バイポーラ電極であってもよい。
(Non-water electrolyte secondary battery)
The positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery of the present invention may have the same electrodes formed on both sides of the current collector, and the positive electrode is formed on one side of the current collector and the negative electrode is formed on the other side of the current collector. That is, it may be a bipolar electrode.
 上記非水電解質二次電池は、正極側と負極側との間にセパレータを配置したものを倦回したものであってもよいし、積層したものであってもよい。正極、負極及びセパレータには、リチウムイオン伝導を担う非水電解質が含まれている。 The non-aqueous electrolyte secondary battery may be a battery in which a separator is arranged between the positive electrode side and the negative electrode side, or may be a laminated battery. The positive electrode, negative electrode and separator contain a non-aqueous electrolyte responsible for lithium ion conduction.
 上記非水電解質二次電池は、上記積層体を倦回、又は複数積層した後にラミネートフィルムで外装してもよいし、角形、楕円形、円筒形、コイン形、ボタン形、又はシート形の金属缶で外装してもよい。外装には発生したガスを放出するための機構が備わっていてもよい。積層体の積層数は、特に限定されず、所望の電圧値、電池容量を発現するまで積層させることができる。 The non-aqueous electrolyte secondary battery may be exteriorized with a laminate film after the laminates have been squeezed or laminated, or a square, oval, cylindrical, coin-shaped, button-shaped, or sheet-shaped metal. It may be exteriorized with a can. The exterior may be equipped with a mechanism for releasing the generated gas. The number of laminated bodies is not particularly limited, and the laminated bodies can be laminated until a desired voltage value and battery capacity are exhibited.
 上記非水電解質二次電池は、所望の大きさ、容量、電圧によって、適宜直列、並列に接続した組電池とすることができる。上記組電池においては、各電池の充電状態の確認、安全性向上のため、組電池に制御回路が付属されていることが好ましい。 The non-aqueous electrolyte secondary battery can be an assembled battery connected in series or in parallel as appropriate depending on the desired size, capacity, and voltage. In the above-mentioned assembled battery, it is preferable that a control circuit is attached to the assembled battery in order to confirm the charge state of each battery and improve safety.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更可能である。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples and can be appropriately changed without changing the gist thereof.
 (実施例1)
 導電助剤の製造例1;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)7gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液22gと、ポリエチレングリコール(三洋化成工業社製、商品名「PEG-600」)70g(黒鉛に対して10倍)とを混合し、原料組成物を用意した。
(Example 1)
Production Example 1 of Conductive Auxiliary Agent;
First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 22 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., trade name "PEG-600"). ”) 70 g (10 times with respect to graphite) was mixed to prepare a raw material composition.
 次に、上記原料組成物をマッフル加熱装置(モトヤマ社製、品番「MBA-2040D-SP」)にて、370℃で1時間、窒素(N)雰囲気下で加熱処理することにより、1回目焼成品(1st焼成品)を得た。さらに、1st焼成品を賦活実験装置(アサヒ理化製作所製、品番「ARF-50KC」)にて、800℃で30分間、二酸化炭素(CO)雰囲気下(流量0.3L/分)で賦活処理をすることにより賦活品を得た。最後に粉砕機を用いて、3分間粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Next, the above raw material composition was heat-treated with a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 370 ° C. for 1 hour in a nitrogen (N 2 ) atmosphere for the first time. A fired product (1st fired product) was obtained. Furthermore, the 1st fired product is activated by an activation experimental device (manufactured by Asahi Rika Seisakusho, product number "ARF-50KC") at 800 ° C. for 30 minutes under a carbon dioxide (CO 2 ) atmosphere (flow rate 0.3 L / min). The activated product was obtained by doing. Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeling type flaky graphite) having a structure in which graphite is partially peeled off. ) Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。これにより、全重量に対して18重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=18重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、品番「ASAP-2000」、窒素ガス)を用いて測定した結果、200m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. As a result, it was confirmed that a partially peelable flaky graphite containing 18% by weight of the resin could be produced (resin amount x 0 = 18% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, product number "ASAP-2000", nitrogen gas) and found to be 200 m 2 / g. ..
 正極の製造例;
 実施例1の正極は次のとおりにして作製した。
Manufacturing example of positive electrode;
The positive electrode of Example 1 was produced as follows.
 最初に、上記第1の導電助剤とは異なる第2の導電助剤としてのカーボンブラック2gにN-メチル-2-ピロリドン(NMP、キシダ化学社製、LiB用グレード)を10g加え、5時間超音波洗浄機(AS ONE社製)で処理し、カーボンブラックの分散液(以下、実施例1の炭素材料の分散液1)を調製した。 First, 10 g of N-methyl-2-pyrrolidone (NMP, manufactured by Kishida Chemical Co., Ltd., grade for LiB) was added to 2 g of carbon black as a second conductive auxiliary agent different from the above first conductive auxiliary agent for 5 hours. It was treated with an ultrasonic cleaner (manufactured by AS ONE) to prepare a carbon black dispersion (hereinafter, carbon material dispersion 1 of Example 1).
 次に、上記製造例1で作製した第1の導電助剤としての部分剥離型薄片化黒鉛0.2gに、NMP3.8gを加え、5時間超音波洗浄機(AS ONE社製)で処理し、製造例1で作製した部分剥離型薄片化黒鉛の分散液(以下、実施例1の炭素材料の分散液2)を調製した。 Next, 3.8 g of NMP was added to 0.2 g of partially peelable thinned graphite as the first conductive auxiliary agent produced in Production Example 1, and the treatment was performed with an ultrasonic cleaner (manufactured by AS ONE) for 5 hours. , A dispersion liquid of partially peelable thinned graphite prepared in Production Example 1 (hereinafter, a dispersion liquid 2 of a carbon material of Example 1) was prepared.
 続けて、正極活物質(LiNi0.5Mn0.3Co0.2(NMC)、日本化学社製)を8.8gと、バインダー(PVdF、固形分濃度12重量%、NMP溶液)を2.0gと、分散液1を4.75gと、分散液2を1.0g(10重量部)とをこの配合比で軟膏容器(馬野化学社製、UG 35mL)に入れ、自動公転ミキサー(シンキー社製、あわとり錬太郎、AR-250)にて、2200rpm/分で2回撹拌し、電極スラリーを作製した。続けて、電極スラリーをAl箔(UACJ社製、1N30、片艶、20μm)上に、アプリケーター(クリアランス:120μm~135μm)で塗工した後、送風オーブン80℃/8分で乾燥させ、真空オーブンで150℃/12時間の条件にて残存する溶媒を除去した。さらに、ホットロールプレス機にてプレスした。最後に、ドライルーム内に設置した真空オーブンにより150℃/12時間の条件で真空乾燥を行い、正極を得た。電極の重量から算出した設計容量は、1.00±0.05mAhcm-2であり、厚みから算出した電極密度は、2.95±0.10gcc-1であった。 Subsequently, 8.8 g of the positive electrode active material (LiNi 0.5 Mn 0.3 Co 0.2 O 2 (NMC), manufactured by Nippon Kagaku Co., Ltd.) and a binder (PVdF, solid content concentration 12% by weight, NMP solution) were added. 2.0 g, dispersion liquid 1 4.75 g, and dispersion liquid 2 1.0 g (10 parts by weight) were placed in an ointment container (manufactured by Mano Chemical Co., Ltd., UG 35 mL) at this mixing ratio, and an automatic revolving mixer. (Awatori Rentaro, AR-250, manufactured by Shinky Co., Ltd.) was stirred twice at 2200 rpm / min to prepare an electrode slurry. Subsequently, the electrode slurry is applied onto an Al foil (UACJ, 1N30, single gloss, 20 μm) with an applicator (clearance: 120 μm to 135 μm), dried in a blower oven at 80 ° C./8 minutes, and vacuum oven. The remaining solvent was removed under the conditions of 150 ° C./12 hours. Further, it was pressed by a hot roll press machine. Finally, vacuum drying was performed at 150 ° C. for 12 hours in a vacuum oven installed in a dry room to obtain a positive electrode. The design capacity calculated from the weight of the electrode was 1.00 ± 0.05 mAhcm -2 , and the electrode density calculated from the thickness was 2.95 ± 0.10 gcc -1 .
 負極の製造例;
 負極は、次の通りに作製した。
Manufacturing example of negative electrode;
The negative electrode was prepared as follows.
 最初に、負極活物質(人造黒鉛)100重量部にバインダー(PVdF、固形分濃度12重量%、NMP溶液)を固形分が5重量部となるように混合し、スラリーを作製した。次に、上記スラリーを銅箔(20μm)に塗工した後に、送風オーブンにて120℃で1時間加熱し、溶媒を除去した後、120℃で12時間真空乾燥した。次に、同様にして銅箔の裏面にもスラリーを塗工及び乾燥させた。 First, a binder (PVdF, solid content concentration 12% by weight, NMP solution) was mixed with 100 parts by weight of the negative electrode active material (artificial graphite) so that the solid content was 5 parts by weight to prepare a slurry. Next, the slurry was applied to a copper foil (20 μm), heated in a blower oven at 120 ° C. for 1 hour to remove the solvent, and then vacuum dried at 120 ° C. for 12 hours. Next, the slurry was also applied and dried on the back surface of the copper foil in the same manner.
 最後に、ロールプレス機にて、プレスし、負極を作製した。負極の容量は、単位面積当たりの電極重量、及び負極活物質の理論容量(350mAh/g)から算出した。その結果、負極の容量(片面あたり)は、1.5mAh/cmであった。 Finally, a negative electrode was produced by pressing with a roll press machine. The capacity of the negative electrode was calculated from the electrode weight per unit area and the theoretical capacity (350 mAh / g) of the negative electrode active material. As a result, the capacity of the negative electrode (per one side) was 1.5 mAh / cm 2 .
 非水電解質二次電池の製造;
 最初に、作製した正極(電極部分:40mm×50mm)、負極(電極部分:45mm×55mm)及びセパレータ(ポリオレフィン系の微多孔膜、25μm、50mm×60mm)を、負極/セパレータ/正極/セパレータ/負極の順に、正極の容量が200mAh(正極5枚、負極6枚)となるように積層した。次に、両端の正極及び負極にそれぞれアルミニウムタブ及びニッケルめっき銅タブを振動溶着させた後に、袋状のアルミラミネートシートに入れ、3方を熱溶着させ、電解液封入前の非水電解質二次電池を作製した。さらに、上記電解液封入前の非水電解質二次電池を60℃で3時間真空乾燥した後に、非水電解質(エチレンカーボネート/ジメチルカーボネート=1/2体積%、LiPF 1mol/L)を20g入れ、減圧しながら封止することによって非水電解質二次電池を作製した。なお、ここまでの工程は、露点が-40℃以下の雰囲気(ドライボックス)で実施した。最後に、非水電解質二次電池を、4.25Vまで充電させた後に、25℃で100時間放置し、露点が-40℃以下の雰囲気(ドライボックス)にて発生したガス、及び過剰な電解液を除去した後に、再度減圧しながら封止することによって実施例1の非水電解質二次電池を作製した。
Manufacture of non-aqueous electrolyte secondary batteries;
First, the prepared positive electrode (electrode part: 40 mm × 50 mm), negative electrode (electrode part: 45 mm × 55 mm) and separator (polyforme-based microporous film, 25 μm, 50 mm × 60 mm) were subjected to negative electrode / separator / positive electrode / separator /. The electrodes were laminated in this order so that the capacity of the positive electrode was 200 mAh (5 positive electrodes and 6 negative electrodes). Next, aluminum tabs and nickel-plated copper tabs were vibration-welded to the positive and negative electrodes at both ends, and then placed in a bag-shaped aluminum laminate sheet, and three sides were heat-welded to the non-aqueous electrolyte secondary before filling the electrolyte. A battery was made. Further, after vacuum-drying the non-aqueous electrolyte secondary battery before filling with the electrolytic solution at 60 ° C. for 3 hours, 20 g of the non-aqueous electrolyte (ethylene carbonate / dimethyl carbonate = 1/2 volume%, LiPF 61 mol / L) is added. A non-aqueous electrolyte secondary battery was prepared by sealing while reducing the pressure. The steps up to this point were carried out in an atmosphere (dry box) having a dew point of −40 ° C. or lower. Finally, after charging the non-aqueous electrolyte secondary battery to 4.25 V, it is left at 25 ° C. for 100 hours, and the gas generated in an atmosphere (dry box) having a dew point of -40 ° C. or less, and excessive electrolysis. After removing the liquid, the non-aqueous electrolyte secondary battery of Example 1 was prepared by sealing while reducing the pressure again.
 (実施例2)
 製造例1の導電助剤(部分剥離型薄片化黒鉛)の代わりに、以下に示す製造例2の導電助剤(部分剥離型薄片化黒鉛)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を得た。
(Example 2)
The same as in Example 1 except that the conductive auxiliary agent (partially peelable flake graphite) of Production Example 2 shown below was used instead of the conductive auxiliary agent (partially peelable flake graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
 導電助剤の製造例2;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)7gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液22gと、ポリ酢酸ビニル56%水溶液(日本カーバイド社製、品番「ニカゾール」)62.5g(黒鉛に対して5倍)とを混合し、原料組成物を用意した。
Production Example 2 of Conductive Auxiliary;
First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 22 g of 1% aqueous solution of carboxymethyl cellulose (CMC, manufactured by Aidrich), and 56% aqueous solution of polyvinyl acetate (manufactured by Nippon Carbide, product number "Nicazole"). ") 62.5 g (5 times with respect to graphite) was mixed to prepare a raw material composition.
 次に、用意した原料組成物をマッフル加熱装置(モトヤマ社製、品番「MBA-2040D-SP」)にて、430℃で2時間、N雰囲気下で加熱処理することで、1回目焼成品(1st焼成品)を得た。さらに1st焼成品を賦活実験装置(アサヒ理化製作所製、ARF-50KC)にて、900℃で30分間、CO雰囲気下(流量0.3L/分)で賦活処理をすることで賦活品を得た。最後に粉砕機を用いて3分間、粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Next, the prepared raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 430 ° C. for 2 hours in an N2 atmosphere to produce the first fired product. (1st fired product) was obtained. Furthermore, the activated product is obtained by activating the 1st fired product in a CO 2 atmosphere (flow rate 0.3 L / min) for 30 minutes at 900 ° C. using an activation experimental device (ARF-50KC manufactured by Asahi Rika Seisakusho). rice field. Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. ) Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。全重量に対して3.5重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=3.5重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、品番「ASAP-2000」、窒素ガス)を用いて測定した結果、95m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. It was confirmed that a partially peelable flaky graphite containing 3.5% by weight of the total weight could be produced (resin amount x 0 = 3.5% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, product number "ASAP-2000", nitrogen gas) and found to be 95 m 2 / g. ..
 (実施例3)
 製造例1の導電助剤(部分剥離型薄片化黒鉛)の代わりに、以下に示す製造例3の導電助剤(部分剥離型薄片化黒鉛)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を得た。
(Example 3)
The same as in Example 1 except that the conductive auxiliary agent (partially peelable thinned graphite) of Production Example 3 shown below was used instead of the conductive auxiliary agent (partially peeled thinned graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
 導電助剤の製造例3;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)7gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液22gと、ポリ酢酸ビニル56%水溶液(日本カーバイド社製、商品名「ニカゾール」)37.5g(黒鉛に対して3倍)とを混合し、原料組成物を用意した。
Production Example 3 of Conductive Auxiliary Agent;
First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 22 g of a 1% aqueous solution of carboxymethyl cellulose (CMC, manufactured by Aidrich), and a 56% aqueous solution of polyvinyl acetate (manufactured by Nippon Carbide, trade name "". Nikazole ”) 37.5 g (3 times with respect to graphite) was mixed to prepare a raw material composition.
 次に、上記原料組成物をマッフル加熱装置(モトヤマ社製、品番「MBA-2040D-SP」)にて、430℃で2時間、N雰囲気下で加熱処理することで、1回目焼成品(1st焼成品)を得た。さらに、1st焼成品を同じマッフル加熱装置にて、450℃で100分間、5%Oを含むN雰囲気下で加熱処理することで、2回目焼成品(2nd焼成品)を得た。最後に粉砕機を用いて3分間粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Next, the above raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 430 ° C. for 2 hours in an N2 atmosphere, whereby the first fired product (1st fired product (manufactured by Motoyama). 1st fired product) was obtained. Further, the 1st fired product was heat-treated at 450 ° C. for 100 minutes in an N 2 atmosphere containing 5% O 2 in the same muffle heating device to obtain a second fired product (2nd fired product). Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。全重量に対して10重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=10重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、品番「ASAP-2000」、窒素ガス)を用いて測定した結果、105m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. It was confirmed that a partially peelable flaky graphite containing 10% by weight of resin could be produced with respect to the total weight (resin amount x 0 = 10% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, product number "ASAP-2000", nitrogen gas) and found to be 105 m 2 / g. ..
 (実施例4)
 製造例1の導電助剤(部分剥離型薄片化黒鉛)の代わりに、以下に示す製造例4の導電助剤(部分剥離型薄片化黒鉛)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を得た。
(Example 4)
The same as in Example 1 except that the conductive auxiliary agent (partially peelable flake graphite) of Production Example 4 shown below was used instead of the conductive auxiliary agent (partially peelable flake graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
 導電助剤の製造例4;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)30gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液90gと、超純水810gとを混合し作製した黒鉛分散液を、衝突型高圧乳化装置にて、200MPaの圧力で300回衝突を繰り返し、黒鉛前処理品を作製した。
Production Example 4 of Conductive Auxiliary Agent;
First, a graphite dispersion prepared by mixing 30 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 90 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and 810 g of ultrapure water was prepared. A graphite pretreated product was prepared by repeating collisions 300 times at a pressure of 200 MPa with a collision-type high-pressure emulsifier.
 続けて、得られた黒鉛前処理品(黒鉛濃度3%)233gと、ポリエチレングリコール(三洋化成工業社製、商品名「PEG-600」)21g(黒鉛に対して3倍)とを混合し、原料組成物を用意した。 Subsequently, 233 g of the obtained graphite pretreated product (graphite concentration 3%) and 21 g of polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., trade name "PEG-600") (3 times with respect to graphite) were mixed. A raw material composition was prepared.
 次に、上記原料組成物をマッフル加熱装置(モトヤマ社製、商品名「MBA-2040D-SP」)にて、370℃で1時間、N雰囲気下で加熱処理することで、1回目焼成品(1st焼成品)を得た。さらに1st焼成品を同じマッフル加熱装置にて、390℃で20分間、5%Oを含むN雰囲気下で加熱処理することで、2回目焼成品(2nd焼成品)を得た。最後に粉砕機を用いて3分間粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Next, the above raw material composition is heat-treated at 370 ° C. for 1 hour in an N2 atmosphere with a muffle heating device (manufactured by Motoyama Co., Ltd., trade name “MBA-2040D-SP”) to produce a first fired product. (1st fired product) was obtained. Further, the 1st fired product was heat-treated at 390 ° C. for 20 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product). Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。全重量に対して10重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=10重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、ASAP-2000、窒素ガス)を用いて測定した結果、98m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. It was confirmed that a partially peelable flaky graphite containing 10% by weight of resin could be produced with respect to the total weight (resin amount x 0 = 10% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, ASAP-2000, nitrogen gas) and found to be 98 m 2 / g.
 (実施例5)
 製造例1の導電助剤(部分剥離型薄片化黒鉛)の代わりに、以下に示す製造例5の導電助剤(部分剥離型薄片化黒鉛)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を得た。
(Example 5)
The same as in Example 1 except that the conductive auxiliary agent (partially peelable flake graphite) of Production Example 5 shown below was used instead of the conductive auxiliary agent (partially peelable flake graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
 導電助剤の製造例5;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)30gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液90gと、超純水810gとを混合し作製した黒鉛分散液を、衝突型高圧乳化装置にて、200MPaの圧力で300回衝突を繰り返し、黒鉛前処理品を作製した。
Production Example 5 of Conductive Auxiliary Agent;
First, a graphite dispersion prepared by mixing 30 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 90 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and 810 g of ultrapure water was prepared. A graphite pretreated product was prepared by repeating collisions 300 times at a pressure of 200 MPa with a collision-type high-pressure emulsifier.
 続けて、上記黒鉛前処理品233gと、ポリエチレングリコール(三洋化成工業社製、品番「PEG-600」)21g(黒鉛に対して3倍)とを混合し、原料組成物を用意した。次に、上記原料組成物をマッフル加熱装置(モトヤマ社製、商品名「MBA-2040D-SP」)にて、370℃で1時間、N雰囲気下で加熱処理することで、1回目焼成品(1st焼成品)を得た。さらに1st焼成品を同じマッフル加熱装置にて、390℃で10分間、5%Oを含むN雰囲気下で加熱処理することで、2回目焼成品(2nd焼成品)を得た。最後に粉砕機を用いて3分間粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Subsequently, 233 g of the above-mentioned graphite pretreated product and 21 g of polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., product number "PEG-600") (3 times with respect to graphite) were mixed to prepare a raw material composition. Next, the above raw material composition is heat-treated at 370 ° C. for 1 hour in an N2 atmosphere with a muffle heating device (manufactured by Motoyama Co., Ltd., trade name “MBA-2040D-SP”) to produce a first fired product. (1st fired product) was obtained. Further, the 1st fired product was heat-treated at 390 ° C. for 10 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product). Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。全重量に対して20重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=20重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、ASAP-2000、窒素ガス)を用いて測定した結果、215m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. It was confirmed that a partially peelable flaky graphite containing 20% by weight of resin could be produced with respect to the total weight (resin amount x 0 = 20% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, ASAP-2000, nitrogen gas) and found to be 215 m 2 / g.
 (比較例1)
 製造例1の導電助剤(部分剥離型薄片化黒鉛)の代わりに、以下に示す製造例6の導電助剤(部分剥離型薄片化黒鉛)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を得た。
(Comparative Example 1)
The same as in Example 1 except that the conductive auxiliary agent (partially peelable flake graphite) of Production Example 6 shown below was used instead of the conductive auxiliary agent (partially peelable flake graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
 導電助剤の製造例6;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)7gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液22gと、ポリエチレングリコール(三洋化成工業社製、「PEG-600」)21g(黒鉛に対して3倍)とを混合し、原料組成物を用意した。
Production Example 6 of Conductive Auxiliary Agent;
First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 22 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., "PEG-600"). A raw material composition was prepared by mixing with 21 g (3 times with respect to graphite).
 次に、原料組成物をマッフル加熱装置(モトヤマ社製、商品名「MBA-2040D-SP」)にて、370℃で1時間、N雰囲気下で加熱処理することで、1回目焼成品(1st焼成品)を得た。さらに1st焼成品をマッフル加熱装置にて、390℃で30分間、5%Oを含むN雰囲気下で加熱処理することで、2回目焼成品(2nd焼成品)を得た。最後に粉砕機を用いて3分間粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Next, the raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., trade name "MBA-2040D-SP") at 370 ° C. for 1 hour in an N2 atmosphere, whereby the first fired product (1st fired product (). 1st fired product) was obtained. Further, the 1st fired product was heat-treated at 390 ° C. for 30 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product). Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。全重量に対して4.2重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=4.2重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、ASAP-2000、窒素ガス)を用いて測定した結果、34m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. It was confirmed that a partially peelable flaky graphite containing 4.2% by weight of resin could be produced with respect to the total weight (resin amount x 0 = 4.2% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, ASAP-2000, nitrogen gas) and found to be 34 m 2 / g.
 (比較例2)
 製造例1の導電助剤(部分剥離型薄片化黒鉛)の代わりに、以下に示す製造例7の導電助剤(部分剥離型薄片化黒鉛)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を得た。
(Comparative Example 2)
The same as in Example 1 except that the conductive auxiliary agent (partially peelable thinned graphite) of Production Example 7 shown below was used instead of the conductive auxiliary agent (partially peeled thinned graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
 導電助剤の製造例7;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)7gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液22gと、ポリエチレングリコール(三洋化成工業社製、PEG-600)35g(黒鉛に対して5倍)とを混合し、原料組成物を用意した。
Production Example 7 of Conductive Auxiliary Agent;
First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 22 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and 35 g of polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., PEG-600) ( 5 times with respect to graphite) was mixed to prepare a raw material composition.
 次に、得られた原料組成物をマッフル加熱装置(モトヤマ社製、品番「MBA-2040D-SP」)にて、370℃で1時間、N雰囲気下で加熱処理することで、1回目焼成品(1st焼成品)を得た。さらに1st焼成品を同じマッフル加熱装置にて、390℃で30分間、5%Oを含むN雰囲気下で加熱処理することで、2回目焼成品(2nd焼成品)を得た。最後に粉砕機を用いて3分間粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Next, the obtained raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 370 ° C. for 1 hour in an N2 atmosphere to perform the first firing. A product (1st fired product) was obtained. Further, the 1st fired product was heat-treated at 390 ° C. for 30 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product). Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。全重量に対して10重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=10重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、ASAP-2000、窒素ガス)を用いて測定した結果、60m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. It was confirmed that a partially peelable flaky graphite containing 10% by weight of resin could be produced with respect to the total weight (resin amount x 0 = 10% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, ASAP-2000, nitrogen gas) and found to be 60 m 2 / g.
 (比較例3)
 製造例1の導電助剤(部分剥離型薄片化黒鉛)の代わりに、以下に示す製造例8の導電助剤(部分剥離型薄片化黒鉛)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を得た。
(Comparative Example 3)
The same as in Example 1 except that the conductive auxiliary agent (partially peelable thinned graphite) of Production Example 8 shown below was used instead of the conductive auxiliary agent (partially peeled thinned graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
 導電助剤の製造例8;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)7gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液22gと、ポリエチレングリコール(三洋化成工業社製、商品名「PEG-600」)21g(黒鉛に対して3倍)とを混合し、原料組成物を用意した。
Production Example 8 of Conductive Auxiliary Agent;
First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 22 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., trade name "PEG-600"). ") 21 g (3 times with respect to graphite) was mixed to prepare a raw material composition.
 次に、得られた原料組成物をマッフル加熱装置(モトヤマ社製、品番「MBA-2040D-SP」)にて、370℃で1時間、N雰囲気下で加熱処理することで、1回目焼成品(1st焼成品)を得た。さらに1st焼成品を同じマッフル加熱装置にて、390℃で40分間、5%Oを含むN雰囲気下で加熱処理することで、2回目焼成品(2nd焼成品)を得た。最後に粉砕機を用いて3分間粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Next, the obtained raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 370 ° C. for 1 hour in an N2 atmosphere to perform the first firing. A product (1st fired product) was obtained. Further, the 1st fired product was heat-treated at 390 ° C. for 40 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product). Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。全重量に対して1重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=1重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、品番「ASAP-2000」、窒素ガス)を用いて測定した結果、19m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. It was confirmed that a partially peelable flaky graphite containing 1% by weight of resin could be produced with respect to the total weight (resin amount x 0 = 1% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, product number "ASAP-2000", nitrogen gas) and found to be 19 m 2 / g. ..
 (比較例4)
 製造例1の導電助剤(部分剥離型薄片化黒鉛)の代わりに、以下に示す製造例9の導電助剤(部分剥離型薄片化黒鉛)を用いたこと以外は、実施例1と同様にして、非水電解質二次電池を得た。
(Comparative Example 4)
The same as in Example 1 except that the conductive auxiliary agent (partially peelable thinned graphite) of Production Example 9 shown below was used instead of the conductive auxiliary agent (partially peeled thinned graphite) of Production Example 1. A non-aqueous electrolyte secondary battery was obtained.
 導電助剤の製造例9;
 最初に、人造黒鉛(IMERIS社製、商品名「KS6L」)7gと、カルボキシメチルセルロース(CMC、Aidrich社製)の1%水溶液22gと、ポリエチレングリコール(三洋化成工業社製、商品名「PEG-600」)21g(黒鉛に対して3倍)とを混合し、原料組成物を用意した。
Production Example 9 of Conductive Auxiliary Agent;
First, 7 g of artificial graphite (manufactured by IMERIS, trade name "KS6L"), 22 g of a 1% aqueous solution of carboxymethyl cellulose (manufactured by CMC, Aidrich), and polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., trade name "PEG-600"). ") 21 g (3 times with respect to graphite) was mixed to prepare a raw material composition.
 次に、得られた原料組成物をマッフル加熱装置(モトヤマ社製、品番「MBA-2040D-SP」)にて、370℃で1時間、N雰囲気下で加熱処理することで、1回目焼成品(1st焼成品)を得た。さらに1st焼成品を同じマッフル加熱装置にて、390℃で10分間、5%Oを含むN雰囲気下で加熱処理することで、2回目焼成品(2nd焼成品)を得た。最後に粉砕機を用いて3分間粉砕する工程を経て、部分的にグラファイトが剥離されている構造を有する炭素材料(部分剥離型薄片化黒鉛)である導電助剤(第1の導電助剤)を作製した。 Next, the obtained raw material composition was heat-treated in a muffle heating device (manufactured by Motoyama Co., Ltd., product number "MBA-2040D-SP") at 370 ° C. for 1 hour in an N2 atmosphere to perform the first firing. A product (1st fired product) was obtained. Further, the 1st fired product was heat-treated at 390 ° C. for 10 minutes in an N 2 atmosphere containing 5% O 2 to obtain a second fired product (2nd fired product). Finally, after a step of crushing for 3 minutes using a crusher, a conductive auxiliary agent (first conductive auxiliary agent) which is a carbon material (partially peeled thin-section graphite) having a structure in which graphite is partially peeled off. Was produced.
 なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、350℃~600℃の範囲で重量減少した分を樹脂量として算出した。全重量に対して24重量%樹脂が含まれる部分剥離型薄片化黒鉛を作製できていることが確認された(樹脂量x=24重量%)。また、部分剥離型薄片化黒鉛のBET比表面積yを、比表面積測定装置(島津製作所社製、品番「ASAP-2000」、窒素ガス)を用いて測定した結果、154m/gであった。 The amount of resin was calculated using TG (manufactured by Hitachi High-Tech Science Corporation, product number "STA7300") as the amount of resin whose weight was reduced in the range of 350 ° C. to 600 ° C. It was confirmed that a partially peelable flaky graphite containing 24% by weight of resin could be produced with respect to the total weight (resin amount x 0 = 24% by weight). Further, the BET specific surface area y0 of the partially peelable flaky graphite was measured using a specific surface area measuring device (manufactured by Shimadzu Corporation, product number "ASAP-2000", nitrogen gas) and found to be 154 m 2 / g. ..
 <評価>
 (樹脂量とBET比表面積との関係)
 製造例1~9で得られた導電助剤(第1の導電助剤)を、それぞれ、600℃で5時間焼成し、加熱した後の導電助剤に含まれる樹脂量x重量%と、BET比表面積y/gとを求めた。また、下記式(1)によりaを算出し、下記式(2)によりbを算出した。なお、導電助剤の樹脂量は、TGを用いて上記と同様の方法で算出し、BET比表面積は、比表面積測定装置を用いて上記と同様の方法で算出した。
<Evaluation>
(Relationship between resin amount and BET specific surface area)
The conductive auxiliaries (first conductive auxiliaries) obtained in Production Examples 1 to 9 were each fired at 600 ° C. for 5 hours, and the amount of resin contained in the conductive auxiliaries after heating x 1 % by weight. The BET specific surface area y 1 m 2 / g was determined. Further, a was calculated by the following formula (1), and b was calculated by the following formula (2). The resin amount of the conductive auxiliary agent was calculated by the same method as described above using TG, and the BET specific surface area was calculated by the same method as described above using a specific surface area measuring device.
 a=(y-y)/(x-x) …式(1)
 b=y-(y-y)x/(x-x) …式(2)
a = (y 0 -y 1 ) / (x 0 -x 1 ) ... Equation (1)
b = y 0- (y 0 -y 1 ) x 0 / (x 0 -x 1 ) ... Equation (2)
 (粒子数)
 製造例1~9で得られた導電助剤(第1の導電助剤)を、それぞれ、NMPで希釈し30ppm~50ppmの濃度に調整した後、超音波洗浄機(28kHz、VS-100III、ASONE社製)を用いて超音波処理を1時間施すことにより分散液を得た。また、得られたNMP分散液を用いて、フロー粒子像分析装置(シメックス社製)で測定することにより導電助剤の粒子数を求めた。具体的には、粒子数をA個/mgCとし、測定から得られる粒子濃度をX個/μLとし、希釈し得られた導電助剤分散液濃度をYμg/gとし、NMPの比重をZg/ccとして、粒子数A個/mgCを下記式(3)から求めた。なお、導電助剤分散液濃度Yμg/gは、分散液中に含まれる導電助剤の重さをY’μgとし、分散液全体の重さをY’’gとして、下記式(4)から求めた。なお、測定で用いるNMP分散液は導電助剤濃度が数十ppmと小さいため、溶液比重≒NMP比重の近似を用いた。
(Number of particles)
The conductive auxiliaries (first conductive auxiliaries) obtained in Production Examples 1 to 9 were diluted with NMP and adjusted to a concentration of 30 ppm to 50 ppm, respectively, and then ultrasonic cleaners (28 kHz, VS-100III, AS ONE). A dispersion was obtained by subjecting it to ultrasonic treatment for 1 hour using (manufactured by the same company). Further, the number of particles of the conductive auxiliary agent was determined by measuring with a flow particle image analyzer (manufactured by Sysmex Corporation) using the obtained NMP dispersion liquid. Specifically, the number of particles is A / mgC, the concentration of particles obtained from the measurement is X / μL, the concentration of the diluted conductive auxiliary agent dispersion is Yμg / g, and the specific gravity of NMP is Zg / μL. As cc, the number of particles A / mgC was calculated from the following formula (3). The concentration of the conductive auxiliary agent dispersion liquid is Y μg / g, where the weight of the conductive auxiliary agent contained in the dispersion liquid is Y'μg and the weight of the entire dispersion liquid is Y''g, from the following formula (4). I asked. Since the NMP dispersion used in the measurement has a small conductive auxiliary agent concentration of several tens of ppm, an approximation of solution specific density ≈ NMP specific gravity was used.
 A=X/(Y×Z) …式(3)
 Y=Y’/Y’’ …式(4)
A = X / (Y × Z)… Equation (3)
Y = Y'/ Y'' ... Equation (4)
 (非水電解質二次電池の電池抵抗評価)
 電池評価は、次の通り実施した。最初に、電池を充放電試験機(東洋システム社製、商品名「TOSCAT3100」)に接続し、電流を流さずに、12時間放置した。次に、0.2C CCCV充電(充電終止電圧:4.25V、CV STOP:3時間又は0.02C、充電後休止時間:1分)、-0.2C CC放電(放電終止電圧2.5V、放電後休止時間:1分)の条件で充放電を5回繰り返した。続けて、抵抗測定を行った。放電側では、満充電状態から0.2Cで50%放電した状態(SOD50%)から、それぞれ0.5C、1.0C、2.0Cで10秒間放電した際の電圧値を読み取り、オームの法則:V=I×Rから抵抗値Rを算出した。
(Battery resistance evaluation of non-aqueous electrolyte secondary battery)
Battery evaluation was carried out as follows. First, the battery was connected to a charge / discharge tester (manufactured by Toyo System Co., Ltd., trade name "TOSCAT3100"), and left for 12 hours without passing current. Next, 0.2C CCCV charging (charging end voltage: 4.25V, CV STOP: 3 hours or 0.02C, rest time after charging: 1 minute), -0.2C CC discharge (discharging end voltage 2.5V, Post-discharge pause time: 1 minute), charging and discharging were repeated 5 times. Subsequently, resistance measurement was performed. On the discharge side, the voltage values when discharged at 0.5C, 1.0C, and 2.0C for 10 seconds from the fully charged state and 50% discharged at 0.2C (SOD50%) are read, and Ohm's law is used. : The resistance value R was calculated from V = I × R.
 なお、電池抵抗は、上記のようにして算出した放電の抵抗値Rの平均値が、0.5Ω未満を合格(〇)とし、0.5Ω以上を不合格(×)とした。実施例1~5及び比較例1~4で作製した非水電解質二次電池における結果を表1に示した。 As for the battery resistance, when the average value of the discharge resistance value R calculated as described above is less than 0.5Ω, it is regarded as acceptable (〇), and when it is 0.5Ω or more, it is regarded as rejected (×). Table 1 shows the results of the non-aqueous electrolyte secondary batteries prepared in Examples 1 to 5 and Comparative Examples 1 to 4.
 (大電流での充放電時の温度上昇の評価)
 大電流での充放電時の温度上昇の評価は、次の通り実施した。最初に、実施例1~5及び比較例1~4で作製した非水電解質二次電池を、25℃の恒温槽に入れ、充放電装置(北斗電工社製、品番「HJ1005SD8」)に接続した。次に、非水電解質二次電池を、定電流充電(電流値0.2C、充電終止電圧4.25V)した。さらに、充電後、1分間休止し、20C(大電流)で2.5Vまで放電し、温度上昇を測定した。温度は、非水電解質二次電池の中央部分に熱電対(Kタイプ)を、イミドテープで貼り付け、データロガー(グラフテック、GL900APS)で測定し、最高温度を記録した。なお、温度上昇は、最高温度と25℃との差を算出し、10℃未満の温度上昇を合格(〇)とし、10℃以上の温度上昇を不合格(×)とした。実施例1~5及び比較例1~4で作製した非水電解質二次電池における結果を下記の表1に示した。
(Evaluation of temperature rise during charging and discharging with large current)
The evaluation of the temperature rise during charging and discharging with a large current was carried out as follows. First, the non-aqueous electrolyte secondary batteries produced in Examples 1 to 5 and Comparative Examples 1 to 4 were placed in a constant temperature bath at 25 ° C. and connected to a charging / discharging device (manufactured by Hokuto Denko Co., Ltd., product number "HJ1005SD8"). .. Next, the non-aqueous electrolyte secondary battery was charged with a constant current (current value 0.2C, charge termination voltage 4.25V). Further, after charging, the battery was rested for 1 minute, discharged to 2.5 V at 20 C (large current), and the temperature rise was measured. As for the temperature, a thermocouple (K type) was attached to the central portion of the non-aqueous electrolyte secondary battery with an imide tape, measured with a data logger (Graphtec, GL900APS), and the maximum temperature was recorded. For the temperature rise, the difference between the maximum temperature and 25 ° C. was calculated, and a temperature rise of less than 10 ° C. was regarded as acceptable (◯), and a temperature rise of 10 ° C. or higher was regarded as rejected (×). The results of the non-aqueous electrolyte secondary batteries prepared in Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
10,20…部分剥離型薄片化黒鉛
11…エッジ部
12…中央部
13,23…樹脂
24…細孔
10, 20 ... Partially peelable flaky graphite 11 ... Edge portion 12 ... Central portion 13, 23 ... Resin 24 ... Pore

Claims (7)

  1.  非水電解質二次電池の正極に用いられる導電助剤であって、
     グラフェン積層構造を有する炭素材料と、樹脂とを含み、
     前記導電助剤に含まれる樹脂量をx重量%とし、前記導電助剤のBET比表面積をy/gとし、前記導電助剤を600℃で5時間加熱した後の前記導電助剤に含まれる樹脂量をx重量%とし、前記導電助剤を600℃で5時間加熱した後の前記導電助剤のBET比表面積をy/gとしたときに、
     下記式(1)により求められるaが、3<a≦100を満たし、
     下記式(2)により求められるbが、20≦b≦100を満たし、
     前記導電助剤をN-メチル-2-ピロリドンに分散させて分散液を得たときに、前記分散液中における前記導電助剤の粒子数が、1500百万個/mgC以上である、非水電解質二次電池用導電助剤。
     a=(y-y)/(x-x) …式(1)
     b=y-(y-y)x/(x-x) …式(2)
    A conductive auxiliary agent used for the positive electrode of a non-aqueous electrolyte secondary battery.
    Contains a carbon material having a graphene laminated structure and a resin,
    The amount of resin contained in the conductive auxiliary agent is x0% by weight, the BET specific surface area of the conductive auxiliary agent is y0 m 2 / g, and the conductive auxiliary agent is heated at 600 ° C. for 5 hours. When the amount of resin contained in the agent is x 1 % by weight and the BET specific surface area of the conductive auxiliary agent after heating the conductive auxiliary agent at 600 ° C. for 5 hours is y 1 m 2 / g.
    A obtained by the following equation (1) satisfies 3 <a≤100, and
    B obtained by the following formula (2) satisfies 20 ≦ b ≦ 100, and
    When the conductive auxiliary agent is dispersed in N-methyl-2-pyrrolidone to obtain a dispersion liquid, the number of particles of the conductive auxiliary agent in the dispersion liquid is 1500 million particles / mgC or more, which is non-water. Electrolyte A conductive auxiliary agent for secondary batteries.
    a = (y 0 -y 1 ) / (x 0 -x 1 ) ... Equation (1)
    b = y 0- (y 0 -y 1 ) x 0 / (x 0 -x 1 ) ... Equation (2)
  2.  前記xが、2以上、20以下である、請求項1に記載の非水電解質二次電池用導電助剤。 The conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to claim 1, wherein x 0 is 2 or more and 20 or less.
  3.  前記yが、25以上、200以下である、請求項1又は2に記載の非水電解質二次電池用導電助剤。 The conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein y 0 is 25 or more and 200 or less.
  4.  前記導電助剤をN-メチル-2-ピロリドンに分散させて分散液を得たときに、前記分散液中において、前記導電助剤の体積基準による累積粒度分布における50%粒径(D50)が、0.1μm以上、5μm以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池用導電助剤。 When the conductive auxiliary agent was dispersed in N-methyl-2-pyrrolidone to obtain a dispersion liquid, the 50% particle size (D50) in the cumulative particle size distribution based on the volume of the conductive auxiliary agent was obtained in the dispersion liquid. The conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, which is 0.1 μm or more and 5 μm or less.
  5.  前記炭素材料が、部分的にグラファイトが剥離している構造を有する、部分剥離型薄片化黒鉛である、請求項1~4のいずれか1項に記載の非水電解質二次電池用導電助剤。 The conductive auxiliary agent for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the carbon material is a partially peelable flaky graphite having a structure in which graphite is partially peeled off. ..
  6.  正極活物質と、請求項1~5のいずれか1項に記載の非水電解質二次電池用導電助剤とを含む、非水電解質二次電池用正極。 A positive electrode for a non-aqueous electrolyte secondary battery containing the positive electrode active material and the conductive auxiliary agent for the non-aqueous electrolyte secondary battery according to any one of claims 1 to 5.
  7.  請求項6に記載の非水電解質二次電池用正極を備える、非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the positive electrode for the non-aqueous electrolyte secondary battery according to claim 6.
PCT/JP2021/041478 2020-11-13 2021-11-11 Conductive aid for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery WO2022102693A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021572934A JPWO2022102693A1 (en) 2020-11-13 2021-11-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-189611 2020-11-13
JP2020189611 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022102693A1 true WO2022102693A1 (en) 2022-05-19

Family

ID=81601302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041478 WO2022102693A1 (en) 2020-11-13 2021-11-11 Conductive aid for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JPWO2022102693A1 (en)
TW (1) TW202230858A (en)
WO (1) WO2022102693A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279998A (en) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same
WO2015012375A1 (en) * 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
WO2018225670A1 (en) * 2017-06-05 2018-12-13 積水化学工業株式会社 Carbon material-containing dispersion liquid, slurry for electrode formation, and method for producing electrode for nonaqueous electrolyte secondary batteries
WO2018230080A1 (en) * 2017-06-15 2018-12-20 積水化学工業株式会社 Carbon material and method for producing same, electrode material for electricity storage device, and electricity storage device
JP2019091586A (en) * 2017-11-14 2019-06-13 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019189284A1 (en) * 2018-03-27 2019-10-03 積水化学工業株式会社 Composite material and method for producing same
JP2020087903A (en) * 2018-11-21 2020-06-04 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
JP2020145144A (en) * 2019-03-08 2020-09-10 積水化学工業株式会社 Electrode material for power storage device, electrode for power storage device, power storage device, and carbon material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279998A (en) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd Positive electrode for non-aqueous secondary battery and the non-aqueous secondary battery using the same
WO2015012375A1 (en) * 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
WO2018225670A1 (en) * 2017-06-05 2018-12-13 積水化学工業株式会社 Carbon material-containing dispersion liquid, slurry for electrode formation, and method for producing electrode for nonaqueous electrolyte secondary batteries
WO2018230080A1 (en) * 2017-06-15 2018-12-20 積水化学工業株式会社 Carbon material and method for producing same, electrode material for electricity storage device, and electricity storage device
JP2019091586A (en) * 2017-11-14 2019-06-13 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019189284A1 (en) * 2018-03-27 2019-10-03 積水化学工業株式会社 Composite material and method for producing same
JP2020087903A (en) * 2018-11-21 2020-06-04 セイコーインスツル株式会社 Nonaqueous electrolyte secondary battery
JP2020145144A (en) * 2019-03-08 2020-09-10 積水化学工業株式会社 Electrode material for power storage device, electrode for power storage device, power storage device, and carbon material

Also Published As

Publication number Publication date
TW202230858A (en) 2022-08-01
JPWO2022102693A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
JP6947637B2 (en) Electrode material for power storage device, electrode for power storage device and power storage device
JP6641538B1 (en) Carbon material, conductive assistant, electrode for power storage device, and power storage device
JP2020145144A (en) Electrode material for power storage device, electrode for power storage device, power storage device, and carbon material
JP2020145143A (en) Electrode for power storage device, laminate electrode for power storage device, positive electrode for power storage device, power storage device, and carbon material
JP2018041710A (en) Active material-carbon material composite, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and carbon material
WO2022102693A1 (en) Conductive aid for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2021172105A1 (en) Composite particle for electrochemical element, production method therefor, electrode for electrochemical element, and electrochemical element
WO2022102692A1 (en) Positive electrode material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7164517B2 (en) Carbon material, electrode for power storage device, power storage device, and non-aqueous electrolyte secondary battery
JP7335809B2 (en) Negative electrode material for secondary battery, negative electrode for secondary battery, and secondary battery
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US20220158187A1 (en) Composite material, electrode material for electricity storage devices, and electricity storage device
JP2018159059A (en) Carbon material-resin composite material
JP6981854B2 (en) A method for manufacturing a carbon material for a power storage device, an electrode for a power storage device, a power storage device, and a carbon material for a power storage device.
JP2019091586A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2021051882A (en) Carbon material composite, electrode material for power storage device, and power storage device
WO2021060108A1 (en) Negative electrode material for secondary batteries, negative electrode for secondary batteries, and secondary battery
WO2018225670A1 (en) Carbon material-containing dispersion liquid, slurry for electrode formation, and method for producing electrode for nonaqueous electrolyte secondary batteries
WO2021141014A1 (en) Carbon material-coated silicon particles, electrode for electricity storage devices, and electricity storage device
JP2023027578A (en) Current collector for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2023027672A (en) Electrode for all-solid battery, and all-solid battery
JP2024030716A (en) Fluorine-containing carbon particles
JP2018163756A (en) Active material-carbon material composite, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and carbon material
JP2018037254A (en) Active substance-carbon material composite, positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and carbon material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021572934

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891938

Country of ref document: EP

Kind code of ref document: A1