WO2022102671A1 - Titanium oxide-cellulose fiber composite material and method for producing same - Google Patents

Titanium oxide-cellulose fiber composite material and method for producing same Download PDF

Info

Publication number
WO2022102671A1
WO2022102671A1 PCT/JP2021/041393 JP2021041393W WO2022102671A1 WO 2022102671 A1 WO2022102671 A1 WO 2022102671A1 JP 2021041393 W JP2021041393 W JP 2021041393W WO 2022102671 A1 WO2022102671 A1 WO 2022102671A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
cellulose fiber
composite material
fiber composite
nanocellulose
Prior art date
Application number
PCT/JP2021/041393
Other languages
French (fr)
Japanese (ja)
Inventor
光裕 本田
洋 市川
Original Assignee
国立大学法人名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋工業大学 filed Critical 国立大学法人名古屋工業大学
Priority to JP2022561970A priority Critical patent/JPWO2022102671A1/ja
Publication of WO2022102671A1 publication Critical patent/WO2022102671A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/70Inorganic compounds forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with other substances added separately
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • the present invention relates to a titanium oxide / cellulose fiber composite material and a method for producing the same.
  • Nanocellulose obtained by nanoscaled cellulose which has been used as paper and cotton, has new functions such as high strength, viscosity, and thermal stability, and is expected to be used in various applications such as food, packaging, and diaphragms. There is.
  • nanocellulose there is a composite material having a photocatalytic function by titanium oxide and cellulose fiber.
  • Patent Document 1 a polymer nanofiber sheet produced by an electrospinning method is alternately dipped in a positive electrolyte polymer aqueous solution in which TiO 2 fine particles are dispersed and a negative electrolytic polymer aqueous solution in which TiO 2 fine particles are dispersed.
  • the TiO 2 fine particles fixed to the surface of each nanofiber constituting the sheet by the first charged polymer layer having a positive charge and the second charged polymer layer having a negative charge are fixed to the surface.
  • Described is a nanofiber sheet having a laminated TiO 2 fine particle coating layer formed by alternately laminating the TiO 2 fine particles.
  • Non-Patent Document 1 has a TiO 2 fine particle coating layer obtained by ultrasonically dispersing TiO 2 fine particles and algae-derived cellulose in acetone and drying them in an environment of 70 ° C. using an oven. Fiber sheets are listed.
  • the conventional method for producing a composite material described above is a method of synthesizing a titanium oxide material having a photocatalytic function and then physically adsorbing the titanium oxide material to the cellulose material. Since the titanium oxide material is adsorbed to the cellulose material, the titanium oxide material is easily peeled off from the cellulose material. For this reason, conventional composite materials have low durability. Further, the synthesis of titanium oxide is carried out by a high temperature process such as 1000 ° C. at normal pressure or a high pressure process such as a hydrothermal synthesis method in which the pressure is higher than normal pressure. Therefore, the conventional method for manufacturing a composite material requires a large amount of energy and has a large environmental load. These things can be said not only when nanocellulose is used as the cellulose material, but also when cellulose fibers other than nanocellulose are used.
  • An object of the present invention is to provide a titanium oxide / cellulose fiber composite material which is more durable than a conventional composite material and has a photocatalytic function. Further, the present invention is a method for producing a titanium oxide / cellulose fiber composite material having a photocatalytic function, wherein a composite material having higher durability than a conventional composite material can be obtained, and titanium oxide / cellulose oxide is a low environmental load process. Another object is to provide a method for producing a fiber composite material.
  • the titanium oxide / cellulose fiber composite material includes cellulose fiber and titanium oxide that covers at least a part of the surface of the cellulose fiber. Titanium oxide coats the surface of the cellulose fiber by being synthesized directly with respect to the surface of the cellulose fiber. According to this, since titanium oxide is synthesized directly on the surface of the cellulose fiber, it is possible to provide a titanium oxide-cellulose fiber composite material which is more durable than the conventional composite material and has a photocatalytic function. can.
  • the titanium oxide / cellulose fiber composite material includes cellulose fiber and titanium oxide that covers at least a part of the surface of the cellulose fiber.
  • the adsorption force of titanium oxide on the cellulose fiber is 4.4 N / 10 mm or more. According to this, since the adsorption force of titanium oxide to the cellulose fiber is 4.4 N / 10 mm or more, the titanium oxide / cellulose fiber composite material having higher durability than the conventional composite material and having a photocatalytic function is provided. be able to.
  • the method for producing the titanium oxide / cellulose fiber composite material is a method of directly synthesizing titanium oxide on the surface of the cellulose fiber by the liquid phase precipitation method.
  • titanium oxide is directly synthesized on the surface of the cellulose fiber.
  • titanium oxide can be synthesized at low temperature and normal pressure by the liquid phase precipitation method, and the energy required for the synthesis of titanium oxide can be suppressed to a small value. Therefore, a composite material having higher durability than the conventional composite material can be obtained, and a method for producing a titanium oxide / cellulose fiber composite material, which is a low environmental load process, can be provided.
  • the method for producing the titanium oxide / cellulose fiber composite material is to prepare an aqueous solution containing titanium fluoride ammonium fluoride, boric acid and water, cellulose fiber (P1), and an aqueous solution. Among them, the precipitation of titanium oxide on the surface of the cellulose fiber (P2, P3) is included. According to this, titanium oxide is directly synthesized on the surface of the cellulose fiber. Furthermore, titanium oxide can be synthesized at low temperature and normal pressure by the liquid phase precipitation method, and the energy required for the synthesis of titanium oxide can be suppressed to a small value. Therefore, a composite material having higher durability than the conventional composite material can be obtained, and a method for producing a titanium oxide / cellulose fiber composite material, which is a low environmental load process, can be provided.
  • FIG. 5A is an enlarged view of titanium oxide covering the titanium oxide / nanocellulose fiber of FIG. 5A.
  • 6 is an SEM image of a titanium oxide / nanocellulose fiber composite material derived from a hardwood of Example 1 before being subjected to ultrasonic waves. It is an SEM image of the titanium oxide / nanocellulose fiber composite material derived from the hardwood of Example 1 after being subjected to ultrasonic waves. 6 is an SEM image of the TiO 2 / nanocellulose fiber composite material of Comparative Example 1 before being subjected to ultrasonic waves. It is an SEM image of the TiO 2 / nanocellulose fiber composite material of Comparative Example 1 after being subjected to ultrasonic waves. It is an SEM image of the nanocellulose fiber / titanium oxide composite material derived from the coniferous tree of Example 2.
  • FIG. 7A is an enlarged view of a part of FIG. 7A. It is an SEM image of the titanium oxide / nanocellulose fiber composite material derived from the chemical pulp of Example 3. A part of FIG. 9A is enlarged. It is a figure which showed the photocatalytic effect for each of the nanocellulose fiber, the titanium oxide / nanocellulose fiber composite material of chemical pulp, and the titanium oxide / nanocellulose fiber composite material derived from coniferous tree. It is an SEM image of cotton as a cellulose fiber. 6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4.
  • 6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4. It is a schematic diagram which shows the state of the peeling test. 6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4 before the peeling test. 6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4 after the peeling test using the first tape. 6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4 before the peeling test using the second tape. 6 is an SEM image of the TiO 2 / cellulose fiber composite material of Comparative Example 2 before the peeling test. 6 is an SEM image of the TiO 2 / cellulose fiber composite material of Comparative Example 2 after the peeling test using the first tape. It is an SEM image of the TiO 2 / cellulose fiber composite material of Comparative Example 2 before the peeling test using the second tape.
  • the titanium oxide / cellulose fiber composite material 2 includes the cellulose fiber 1 shown in FIG. 1A and the titanium oxide nano-titanium oxide that covers at least a part of the surface of the cellulose fiber 1.
  • the particle 3 is provided.
  • the cellulose fiber 1 is not particularly limited as long as the cellulose has a fiber shape. From the viewpoint of increasing the effective area of the photocatalyst, it is preferable to use nanocellulose fiber having a large specific surface area as the cellulose fiber 1.
  • Nanocellulose fiber is a general term for cellulose having a diameter of 1 nm or more and 100 nm or less. Nanocellulose fibers are obtained by finely loosening cellulose fibers that are the source of plant origin, etc., using various physical and chemical methods. Nanocellulose fibers are characterized by having a large surface area (specific surface area) per unit mass (120-150 m 2 / g), a low coefficient of thermal expansion, and transparency as compared with cellulose fibers.
  • the titanium oxide nanoparticles 3 have a photocatalytic function.
  • the titanium oxide nanoparticles 3 are particles having a spherical outer shape. Sphere shapes include spheres, ellipsoids, and similar shapes. The particle size of the particles is 90 nm or more and 400 nm or less.
  • the titanium oxide nanoparticles 3 have a plurality of protrusions. The shape of each of the plurality of protrusions is a cone shape having a width of 20 nm or more and 40 nm or less and a length of 20 nm or more and 60 nm or less.
  • the titanium oxide that covers the surface of the cellulose fiber 1 is not limited to the shape of the particles, and may be in the shape of a plate.
  • the nanocellulose fiber composite material can be synthesized by the typical synthesis procedure shown in FIG. 2A.
  • step P1 ammonium titanium fluoride ((NH 4 ) 2 TiF 6 ) and boric acid (H 3 BO 3 ) are mixed in equal volumes to prepare a mixed solution.
  • the molar concentration ratio is not limited to this.
  • the molar concentration ratio of ammonium titanium fluoride: boric acid is preferably 0.05 to 0.2: 0.05 to 0.3 from the viewpoint of obtaining anatase-type titanium oxide having excellent crystallinity and a high photocatalytic effect. , 0.1: 0.1 to 0.1: 0.3 are more preferable.
  • step P1 an aqueous solution containing ammonium titanium fluoride, boric acid and water is prepared. Further, in step P1, a nanocellulose fiber dispersion solution in which nanocellulose fibers are dispersed in water is prepared.
  • the nanocellulose fiber dispersion solution is added to the prepared mixed solution.
  • the nanocellulose fiber dispersion solution to be added is, for example, 20 mL.
  • the concentration of the cellulose fiber is preferably 0.02 to 0.2% by mass from the viewpoint of the dispersibility of the cellulose fiber.
  • step P3 the mixture containing the nanocellulose fibers according to step P2 is stirred at a heating temperature of, for example, 60 ° C. for 3 hours.
  • the heating temperature is preferably 45 to 75 ° C.
  • the stirring time is preferably 3 hours from the viewpoint of obtaining uniform nano-sized TiO 2 crystals.
  • Steps P2 and P3 deposit titanium oxide on the surface of the nanocellulose fiber in an aqueous solution. That is, titanium oxide is directly synthesized on the surface of the nanocellulose fiber by the liquid phase precipitation method.
  • step P4 following step P3, stirring is performed at room temperature for 24 hours.
  • the TIO 2 / nanocellulose fiber composite material and the titanium oxide particles in the aqueous solution are separated.
  • the TiO 2 / nanocellulose fiber composite material is synthesized.
  • step P5 the TiO2 / nanocellulose fiber composite material is washed with water.
  • the liquid phase precipitation method (LPD synthesis method) is used as in the above step, synthesis at low temperature and normal pressure is possible.
  • the low temperature is a temperature equal to or lower than the boiling point of water. In this way, the energy required for the synthesis of titanium oxide can be kept small. Therefore, the method for producing the titanium oxide / nanocellulose fiber composite material of the present embodiment is a low environmental load process.
  • step P2 not only the nanocellulose fiber but also other cellulose fibers may be used.
  • the cellulose fiber cotton, mechanical pulp or the like can be used.
  • cellulose fibers such as cotton and mechanical pulp may be immersed in the prepared mixed solution.
  • the cellulose fiber used is preferably nanocellulose fiber having a large specific surface area.
  • step P3 it is not necessary to heat the mixed solution containing the nanocellulose fiber. Even in this case, titanium oxide can be deposited on the surface of the nanocellulose fiber, although it takes longer than in the case of heating. However, from the viewpoint of enhancing the photocatalytic function, it is preferable to heat in step P3.
  • the mechanism by which TiO 2 is synthesized on the surface of the cellulose fiber is presumed as follows. As shown in FIG. 2B, the hydroxyl group on the surface of the cellulose fiber and the water in the solution cause hydrolysis of titanium fluoride ion. That is, the fluorine atom in the titanium fluoride ion is replaced with the oxygen atom in the hydroxyl group and the oxygen atom in the water molecule on the surface of the cellulose fiber by the ligand exchange reaction. At this time, the generated fluorine ions are consumed by the reaction with boric acid. As a result, it is presumed that the titanium oxide precipitation reaction proceeds and titanium oxide nucleation and nanostructure formation are formed on the cellulose surface. In the synthesized TiO 2 and the cellulose fiber, it is presumed that the Ti atom of TiO 2 and the O atom of the cellulose fiber are covalently bonded.
  • titanium oxide coats the surface of the cellulose fiber by being directly synthesized with respect to the surface of the cellulose fiber. According to this, titanium oxide is chemically bonded to the surface of the cellulose fiber by being directly synthesized with respect to the surface of the cellulose fiber. Therefore, it is possible to provide a titanium oxide / cellulose fiber composite material which is more durable than the conventional composite material and has a photocatalytic function.
  • Titanium fluoride ammonium fluoride manufactured by Fujifilm Wako Junyaku Co., Ltd., first-class reagent
  • boric acid manufactured by Fujifilm Wako Junyaku Co., Ltd., special reagent grade
  • nanocellulose fiber derived from broadleaf tree as a nanocellulose fiber dispersion solution.
  • a washed nanocellulose fiber composite derived from broadleaf tree was obtained using a dispersed nanocellulose fiber dispersion solution (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 15.57% by mass) according to FIG.
  • Example 1 (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 15.57% by mass).
  • Example 1 it may be simply referred to as "a reagent derived from a broad - leaved tree and a nanocellulose fiber composite material").
  • a nanocellulose fiber washed with a nanocellulose fiber dispersion solution (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 3.5% by mass) in which nanocellulose fiber derived from coniferous tree is dispersed instead of nanocellulose fiber derived from broadleaf tree.
  • a derived TiO2 / nanocellulose fiber composite was obtained (Example 2, may be simply referred to as “a conifer-derived TiO2 / nanocellulose fiber composite material”).
  • TiO 2 -nanocellulose fiber composite of pulp was obtained (Example 3, may be simply referred to as "TiO 2 -nanocellulose fiber composite material of chemical pulp").
  • the nanocellulose fibers derived from hardwood are as follows. Fibrous cellulose has a form in which each is entangled and aggregated. For example, when compared with a scale of 1 ⁇ m, it can be seen that the diameter of one bundle is 50 nm or less. Since the sample of the SEM image is a dry-prepared nanocellulose fiber, it is an aggregate as shown in the figure, but it is considered that each fiber is isolated and dispersed in the aqueous dispersion.
  • anatase-type titanium oxide nanoparticles (sometimes referred to as "TIO 2 A") was detected after LPD (liquid phase precipitation method) synthesis.
  • LPD liquid phase precipitation method
  • anatase-type titanium oxide nanoparticles were precipitated on the surface of TiO2 / nanocellulose fibers derived from broad-leaved trees, and at least a part of the surface was covered with anatase-type titanium oxide nanoparticles.
  • the measurement conditions and equipment for the Raman spectrum were as follows.
  • the device used was an NRS-3300 micro-Raman spectroscope (RAMAN) manufactured by JASCO Corporation.
  • the excitation laser wavelength was 532 nm and the spectrum acquisition time was 60 seconds.
  • TiO 2 / nanocellulose fiber composite material derived from broadleaf tree Example 1
  • TiO 2 / nanocellulose fiber composite material derived from coniferous tree Example 2
  • TiO 2 of chemical pulp Example 3
  • the anatase - type titanium oxide (TiO 2A) peaks are those found at 170 cm -1 and 400-650 cm -1 .
  • the measurement conditions and equipment for the Raman spectrum were as follows.
  • the device used was an NRS-3300 micro-Raman spectroscope (RAMAN) manufactured by JASCO Corporation.
  • the excitation laser wavelength was 532 nm and the spectrum acquisition time was 60 seconds.
  • the nanocellulose fiber aggregate fiber 16 in which the TiO 2 layer is loosely bonded, and the TiO 2 are bonded at high density.
  • the TiO 2 are bonded at high density.
  • the anatase-type titanium oxide nanoparticles 13a had a spherical shape close to the shape of a sphere or an ellipsoid, and an uneven shape was observed on the surface thereof. In other words, the anatase-type titanium oxide nanoparticles 13a have protrusions on the outside thereof.
  • anatase-type titanium oxide nanoparticles such as anatase-type titanium oxide nanoparticles 13a gather to form a small aggregate, and a plurality of the small aggregates gather on nanocellulose to form an aggregate.
  • the particle size of the anatase-type titanium oxide nanoparticles 13a was 100 to 400 nm. The particle size here is the maximum width of the particles.
  • anatase-type titanium oxide nanoparticles such as anatase-type titanium oxide nanoparticles 23 was investigated for the hardwood-derived TiO2 -nanocellulose fiber composite material 22 shown in FIG. 6A as follows.
  • the dio 2 / nanocellulose fiber composite material 22 derived from hardwood was immersed in water and ultrasonically applied at 40 KHz and 300 W for 5 hours (ultrasonic device: SHARP, UT-304F). Nevertheless, as shown in FIG.
  • anatase-type titanium oxide nanoparticles and anatase-type titanium oxide nanoparticles after being subjected to ultrasonic waves such as anatase-type titanium oxide nanoparticles 23a of the TiO2 / nanocellulose fiber composite material 22a derived from broadleaf trees. Even if the anatase-type titanium oxide nanoparticles 23 before applying ultrasonic waves like the particles 23 are compared, no change can be observed between them, and the durability of the anatase-type titanium oxide nanoparticles such as the anatase-type titanium oxide nanoparticles 23 cannot be observed. I was able to confirm the sex.
  • the particle size of the spherical anatase-type titanium oxide nanoparticles 23 is 100 nm at the smallest and 400 nm at the maximum.
  • the size of the protrusions is several tens of nm for any anatase-type titanium oxide nanoparticles 23.
  • the present inventor produced the TiO2 / nanocellulose fiber composite material of Comparative Example 1 with reference to the production method described in Non-Patent Document 1. Specifically, anatase-type titanium oxide (Evonik (Degussa) P25) is added to distilled water, and ultrasonic treatment is performed for 15 minutes using an ultrasonic device (SHARP, UT-304F) to disperse anatase-type titanium oxide. I let you. Nanocellulose (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 15.57% by mass) was added thereto, subjected to ultrasonic treatment for 1 hour, allowed to stand at room temperature for 1 minute, and the supernatant titanium oxide was removed and precipitated.
  • anatase-type titanium oxide Evonik (Degussa) P25
  • SHARP ultrasonic device
  • TiO 2 / nanocellulose fiber composite material As shown in FIG. 6C, in the TiO 2 / nanocellulose fiber composite material of Comparative Example 1, titanium oxide nanoparticles are attached to the surface of the fibers, but the individual fibers are covered with the titanium oxide nanoparticles. It wasn't.
  • the present inventor investigated the durability of anatase-type titanium oxide nanoparticles in the TiO2 / nanocellulose fiber composite material of Comparative Example 1 by a durability test by ultrasonic cleaning treatment.
  • the ultrasonic apparatus and treatment conditions used are the same as the durability test for the above-mentioned hardwood - derived TIM2 / nanocellulose fiber composite material 22 except that the treatment time is 1 hour.
  • the coverage of the titanium oxide nanoparticles before applying the ultrasonic wave shown in FIG. 6C was 77.6%.
  • the coverage of the titanium oxide nanoparticles after applying the ultrasonic wave shown in FIG. 6D was 66.7%.
  • the titanium oxide nanoparticles were reduced as compared with the composite material before the ultrasonic wave was applied. As described above, it was confirmed that the titanium oxide nanoparticles had low durability in the TiO2 / nanocellulose fiber composite material of Comparative Example 1.
  • the durability of the TiO2 / nanocellulose fiber composite material of Example 1 is high. From this, it is presumed that in the TiO2 / nanocellulose fiber composite material of Example 1, the titanium oxide nanoparticles are chemically adsorbed, that is, chemically bonded to the nanocellulose fiber.
  • the TiO 2 / nanocellulose fiber composite material 32 derived from the coniferous tree comprises anatase-type titanium oxide nanoparticles such as anatase-type titanium oxide nanoparticles 33, and anatase-type such as anatase-type titanium oxide nanoparticles 33.
  • Titanium oxide nanoparticles covered the surface of nanocellulose fibers derived from coniferous trees.
  • the particle size of the anatase-type titanium oxide nanoparticles 33 was 100-300 nm as compared with the scale of 1 ⁇ m.
  • the TiO2 / nanocellulose fiber composite material 36 shown in FIG. 7B was as follows.
  • the TiO2 / nanocellulose fiber composite material 36 in Non-Patent Document 1 contains titanium oxide nanoparticles 35 aggregated on the surface of cellulose. In addition, there are some places where the cellulose surface is exposed.
  • anatase-type titanium oxide nanoparticles such as the anatase-type titanium oxide nanoparticles 33 in FIG. 7A.
  • the anatase-type titanium oxide nanoparticles 33a covering the surface of the nanocellulose fiber derived from coniferous trees were composed of aggregates of needle-shaped crystals, and no part where the cellulose was exposed was found. Comparing the anatase-type titanium oxide nanoparticles 33a with a scale of, for example, 1 ⁇ m, it can be seen that the width of the protrusions is several tens of nm.
  • the TiO 2 / nanocellulose fiber composite material 42 of the chemical pulp comprises anatase titanium oxide nanoparticles such as anatase-type titanium oxide nanoparticles 43 and anatase-type oxidation such as anatase-type titanium oxide nanoparticles 43.
  • the titanium nanoparticles covered the surface of the nanocellulose fibers of the chemical pulp.
  • the outer shape of the anatase-type titanium oxide nanoparticles 43 was spherical.
  • the particle size of the anatase-type titanium oxide nanoparticles 43 was about 100 nm as compared with the scale of 1 ⁇ m.
  • Titanium oxide nanoparticles are composed of aggregates of smaller titanium oxide needle-like crystals.
  • the single titanium oxide nanoparticles were an aggregate of crystals that grew radially from the surface of the nanocellulose fiber.
  • the anatase-type titanium oxide nanoparticles 43a had a spherical outer shape and had protrusions. Comparing the anatase-type titanium oxide nanoparticles 43a to a scale of, for example, 1 ⁇ m, the protrusions were 60 nm long and 25 nm wide.
  • Photocatalytic effect on nanocellulose fiber (Comparative Example 1, cellulose only), TiO2 / nanocellulose fiber composite material derived from coniferous tree (Example 2) and TiO2 / nanocellulose fiber of chemical pulp (Example 3). Evaluation was performed. The evaluation of the photocatalytic effect was performed as follows. An aqueous solution of methylene blue (200 mM) was applied to the above sample and dried. Then, the absorbance of the methylene blue dye was measured for 80 seconds while irradiating with ultraviolet light. The measurement conditions and equipment for evaluating the photocatalytic effect were as follows. The measuring device was set up using a homemade ultraviolet laser light source.
  • a He-Cd laser (wavelength 325 nm, 5 mW) manufactured by Kinmon Konami Co., Ltd. was used as an ultraviolet light source.
  • a red laser (wavelength 650 nm) was used to measure the absorbance, and the light intensity transmitted through the sample was detected by a photodetector.
  • nanocellulose fiber did not show a photocatalytic effect, but both the TiO 2 / nanocellulose fiber composite material of chemical pulp and the TiO2 / nanocellulose fiber composite material derived from coniferous trees were photocatalyst.
  • the effect was shown. That is, in the TiO 2 / nanocellulose fiber composite material of chemical pulp, the concentration of the dye standardized at the initial concentration was reduced by the ultraviolet irradiation time of 10 sec. In addition, in the conifer-derived TiO2 / nanocellulose fiber composite material, the concentration of the dye standardized at the initial concentration decreased until the ultraviolet irradiation time was up to 80 sec, and the decrease in the dye concentration was particularly large when the ultraviolet irradiation time was up to 20 sec. rice field.
  • the TiO 2 / nanocellulose fiber composite material derived from coniferous trees has a greater photocatalytic effect than the TiO2 / nanocellulose fiber composite material of chemical pulp.
  • Example 4 (Manufacturing and Evaluation of TIO 2 / Cellulose Fiber Composite Material of Example 4 and Comparative Example 2) Instead of the nanocellulose fiber dispersion solution of Example 1, the present inventor used a cloth obtained by cutting bleached small-width cotton (100% cotton) into 50 mm squares as cellulose fibers.
  • FIG. 11 is an SEM image of this cellulose fiber. The diameter of this cellulose fiber is micro size.
  • This cellulose fiber was immersed in a mixed solution, and each step P3, P4, P5 was carried out under the same synthetic conditions as in Example 1 to obtain a TiO2 / cellulose fiber composite material of Example 4.
  • Titanium oxide that coats the cellulose fiber is a particle having a spherical outer shape in a place where the coverage is not 100%.
  • the particle size of the particles is 100 nm or more and 400 nm or less.
  • the particles have a plurality of protrusions.
  • the shape of each of the plurality of protrusions is a cone shape having a width of 30 nm or more and 40 nm or less and a length of 40 nm or more and 60 nm or less.
  • the present inventor produced the TiO2 / cellulose fiber composite material of Comparative Example 2 with reference to the production method described in Non-Patent Document 1. Specifically, anatase-type titanium oxide (Evonik (Degussa) P25) is added to distilled water, and ultrasonic treatment is performed for 15 minutes using an ultrasonic device (SHARP, UT-304F) to disperse anatase-type titanium oxide. I let you. A cloth of the same type as that used in Example 4 was immersed therein as a cellulose fiber, and ultrasonic treatment was performed for 1 hour. Then, it was dried at room temperature for 48 hours to obtain the TiO 2 / cellulose fiber composite material of Comparative Example 2. The TiO2 / cellulose fiber composite material of Comparative Example 2 was obtained by physically adsorbing titanium oxide nanoparticles to the cellulose fiber.
  • anatase-type titanium oxide Evonik (Degussa) P25
  • SHARP ultrasonic device
  • each TiO2 / cellulose fiber composite material was fixed to a glass substrate with double-sided tape, and the following two different types of tapes (that is, the first and second tapes) were used as test tapes.
  • the first tape is product name: NITOMS masking tape (manufactured by NITOMS), product number: J8102, adhesive strength: 2.06N / 10 mm.
  • the second tape is a cloth adhesive tape manufactured by TRUSCO, product number: GNT-50, adhesive strength: 4.4 N / 10 mm.
  • the tape 101 was fixed to the roller 102, and the tape 101 was brought into contact with the sample 103 and moved horizontally to perform a peeling test.
  • 14A, 14B and 14C show SEM images of the TiO2 / cellulose fiber composite material of Example 4 before and after the test.
  • 15A, 15B and 15C show SEM images of the TiO2 / cellulose fiber composite material of Comparative Example 2 before and after the test.
  • 14A and 15A are SEM images before the peeling test.
  • 14B and 15B are SEM images after the first tape is peeled off.
  • 14C and 15C are SEM images after the second tape is peeled off.
  • the present inventor obtained the area of the particle portion in each SEM image using the Bi-modal Fit algorithm, and calculated the coverage of the particles.
  • the software used in this calculation is Igor Pro (Version: 8.04, WaveMetrics). Table 1 shows the values of the coverage before and after the test.
  • Example 4 As shown in Table 1, in Example 4, the difference between the average value of the coverage before peeling and the average value of the coverage after peeling is 2.6% in the first tape, and the second It was 2.4% on tape. These are in the range of 3.51% (ie, 1.95 ⁇ SE) or less. SE is the sample standard error. Therefore, in Example 4, it can be determined that the titanium oxide nanoparticles have not been desorbed after the peeling test in either the first tape or the second tape. From this, it can be seen that in the TiO 2 / cellulose fiber composite material of Example 4, the adsorption force of the titanium oxide nanoparticles on the cellulose fiber is 4.4 N / 10 mm or more.
  • Comparative Example 2 the standard error before the peeling test was large, and the coverage was not normally distributed. That is, the titanium oxide nanoparticles were non-uniformly attached. Since the error in the average value of the coverage after peeling off the first tape and the second tape was reduced, it is inferred that the aggregate of large-sized titanium oxide nanoparticles was desorbed. From this, it can be seen that in the TiO 2 / cellulose fiber composite material of Comparative Example 2, the adsorption force of the titanium oxide nanoparticles on the cellulose fiber is smaller than 2.06 N / 10 mm.
  • the TiO 2 / cellulose fiber composite material obtained by the production method of the present invention has higher durability than the TiO 2 / cellulose fiber composite material obtained by physical adsorption of titanium oxide particles. have understood.
  • the present inventor conducted an antibacterial property test on each of the TiO 2 / cellulose fiber composite material of Example 4 and the cellulose fiber of Comparative Example 3 in accordance with JIS R 1702: 2020.
  • the cellulose fiber of Comparative Example 3 is the same type of cloth as the cloth used in Example 4 without the composite of titanium oxide.
  • the test product was inoculated with bacteria and then irradiated with light to detect the number of bacteria.
  • the number of bacteria in each test product after washing was detected.
  • the test strain, irradiance, test bacterial solution intake, and washing method in the antibacterial test are as follows.
  • Test bacterial strain Yellow coccus ⁇ Irradiance: 0.10 mW / cm 2.8 hours ⁇ Test bacterial solution intake: 0.2 mL [Use test bacterial solution to which 0.05% of surfactant (Tween80) is added] -Washing method: (one company) Textile Evaluation Technology Council "Washing method for SEK mark textile products" -Standard washing method
  • Table 2 shows the antibacterial test results of the cellulose fiber of Comparative Example 3. As shown in Table 2, the viable cell count after light irradiation and the viable cell count in the dark were increased as compared with the viable cell count immediately after inoculation.
  • Table 3 shows the antibacterial test results of the TiO 2 / cellulose fiber composite material of Example 4.
  • the viable cell count immediately after inoculation of the TiO 2 / cellulose fiber composite material of Example 4 is the same as the viable cell count immediately after inoculation of the cellulose fiber of Comparative Example 3.
  • the common logarithmic value of the viable cell count after light irradiation of 0 times of washing decreased from the common logarithmic value of 4.4 immediately after inoculation to 1.3. From this, it was confirmed that it had a photocatalytic antibacterial effect.
  • the viable cell count after light irradiation after repeated washing 10 times was the same as the usual logarithmic value of the viable cell count after light irradiation 0 times of washing. From this, it was confirmed that the photocatalytic antibacterial effect was maintained.
  • the regular logarithmic value of the viable cell count in the dark place after no washing was reduced from 4.4 to 1.3 of the viable cell count immediately after inoculation. From this, it was confirmed that the TiO 2 / cellulose fiber composite material of Example 4 has antibacterial properties even without irradiation with light. Furthermore, the viable cell count in the dark after repeated washing 10 times was 2.8, which was lower than the usual logarithmic value 4.4 of the viable cell count immediately after inoculation. From this, it was confirmed that the antibacterial effect was maintained even without irradiation with light.
  • the present inventor conducted an anti-virus performance evaluation test using a virus for each of the TiO 2 / cellulose fiber composite material of Example 4 and the cellulose fiber of Comparative Example 3 in accordance with JIS R 1706: 2020 and ISO 18184. gone.
  • the test product was inoculated with the virus and then irradiated with light to detect the number of viruses.
  • the test conditions are as follows.
  • Table 4 shows the test results. “ ⁇ 2.0 ⁇ 10 2 ” in Table 4 indicates that the value is lower than the detection limit. In the TiO 2 / cellulose fiber composite material of Example 4, the virus infectivity after light irradiation was lower than the detection limit. From this, it was confirmed that the TiO2 -cellulose fiber composite material of Example 4 had a photocatalytic antiviral effect.
  • the virus infectivity titer after 8 hours in the dark was lower than the detection limit. From this, it was confirmed that the TiO2 / cellulose fiber composite material of Example 4 had an antiviral effect even without irradiation with light.
  • the TiO2 / cellulose fiber composite material of Example 4 has an antibacterial effect and an antiviral effect even without irradiation with light. It is considered that this is because the titanium oxide that coats the surface of the cellulose fiber is spherical particles, and the plurality of protrusions of these particles are present.
  • the titanium oxide / cellulose fiber composite material according to the present invention can be applied as a package or wall material having an environmental purification / antibacterial function, a household mask, a medical mask, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Catalysts (AREA)

Abstract

The present invention addresses the problem of providing a method which is for producing a titanium oxide-cellulose fiber composite material and is a low environmental load process, and by which a composite material having higher durability than conventional composite materials is obtained. A method for producing a titanium oxide-cellulose fiber composite material according to the present invention comprises: (P1) preparing a cellulose fiber, and an aqueous solution containing ammonium fluorotitanate, boric acid, and water; and (P2, P3) precipitating titanium oxide on the surface of the cellulose fiber in the aqueous solution.

Description

酸化チタン・セルロースファイバー複合材料とその製造方法Titanium oxide / cellulose fiber composite material and its manufacturing method 関連出願への相互参照Cross-reference to related applications
 本出願は、2020年11月10日に出願された日本特許出願番号2020-187264号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2020-187264 filed on November 10, 2020, the contents of which are incorporated herein by reference.
 本発明は、酸化チタン・セルロースファイバー複合材料とその製造方法に関する。 The present invention relates to a titanium oxide / cellulose fiber composite material and a method for producing the same.
 紙や綿として利用されてきたセルロースをナノスケール化することで得られるナノセルロースは、高強度、粘性、熱安定性といった新しい機能を持ち、食品・パッケージ・振動板など様々な応用が期待されている。 Nanocellulose obtained by nanoscaled cellulose, which has been used as paper and cotton, has new functions such as high strength, viscosity, and thermal stability, and is expected to be used in various applications such as food, packaging, and diaphragms. There is.
 ナノセルロースの応用例として、酸化チタンとセルロースファイバーによる光触媒機能を有する複合材料がある。特許文献1には、エレクトロスピニング法で作製されたポリマー質ナノファイバーシートを、TiO微粒子を分散した正の電解質ポリマー水溶液とTiO微粒子を分散した負の電解質ポリマー水溶液とに交互に複数回浸すことにより、シートを構成する個々のナノファイバー表面に、正の電荷をもった第1の帯電ポリマー層で固着されたTiO微粒子と、負の電荷をもった第2の帯電ポリマー層で固着されたTiO微粒子とが交互に積層されて形成された積層TiO微粒子コーティング層を有するナノファイバーシートが記載されている。 As an application example of nanocellulose, there is a composite material having a photocatalytic function by titanium oxide and cellulose fiber. In Patent Document 1, a polymer nanofiber sheet produced by an electrospinning method is alternately dipped in a positive electrolyte polymer aqueous solution in which TiO 2 fine particles are dispersed and a negative electrolytic polymer aqueous solution in which TiO 2 fine particles are dispersed. Thereby, the TiO 2 fine particles fixed to the surface of each nanofiber constituting the sheet by the first charged polymer layer having a positive charge and the second charged polymer layer having a negative charge are fixed to the surface. Described is a nanofiber sheet having a laminated TiO 2 fine particle coating layer formed by alternately laminating the TiO 2 fine particles.
 非特許文献1には、TiO微粒子と藻類由来のセルロースをアセトン中で超音波分散処理を行い、オーブンを用いて70℃の環境下で乾燥して得られた、TiO微粒子コーティング層を有するファイバーシートが記載されている。 Non-Patent Document 1 has a TiO 2 fine particle coating layer obtained by ultrasonically dispersing TiO 2 fine particles and algae-derived cellulose in acetone and drying them in an environment of 70 ° C. using an oven. Fiber sheets are listed.
特開2005-264386号公報Japanese Unexamined Patent Publication No. 2005-264386
 しかしながら、上記した従来の複合材料の製造方法は、光触媒機能を有する酸化チタン材料を合成した後、酸化チタン材料をセルロース材料に対して物理的に吸着させる方法である。酸化チタン材料はセルロース材料に対して吸着されているため、酸化チタン材料がセルロース材料から剥離しやすい。このため、従来の複合材料は、耐久性が低い。また、酸化チタンの合成は、常圧で1000℃等の高温プロセスまたは水熱合成法等の常圧よりも圧力が高い高圧プロセスで行なわれる。このため、従来の複合材料の製造方法には、大きなエネルギーが必要であり、環境負荷が大きい。これらのことは、セルロース材料として、ナノセルロースを用いた場合に限らず、ナノセルロース以外のセルロースファイバーを用いた場合にも言えることである。 However, the conventional method for producing a composite material described above is a method of synthesizing a titanium oxide material having a photocatalytic function and then physically adsorbing the titanium oxide material to the cellulose material. Since the titanium oxide material is adsorbed to the cellulose material, the titanium oxide material is easily peeled off from the cellulose material. For this reason, conventional composite materials have low durability. Further, the synthesis of titanium oxide is carried out by a high temperature process such as 1000 ° C. at normal pressure or a high pressure process such as a hydrothermal synthesis method in which the pressure is higher than normal pressure. Therefore, the conventional method for manufacturing a composite material requires a large amount of energy and has a large environmental load. These things can be said not only when nanocellulose is used as the cellulose material, but also when cellulose fibers other than nanocellulose are used.
 本発明は、従来の複合材料よりも耐久性が高く、光触媒機能を有する酸化チタン・セルロースファイバー複合材料を提供することを目的とする。また、本発明は、光触媒機能を有する酸化チタン・セルロースファイバー複合材料の製造方法であって、従来の複合材料よりも高耐久性の複合材料が得られ、低環境負荷プロセスである酸化チタン・セルロースファイバー複合材料の製造方法を提供することを他の目的とする。 An object of the present invention is to provide a titanium oxide / cellulose fiber composite material which is more durable than a conventional composite material and has a photocatalytic function. Further, the present invention is a method for producing a titanium oxide / cellulose fiber composite material having a photocatalytic function, wherein a composite material having higher durability than a conventional composite material can be obtained, and titanium oxide / cellulose oxide is a low environmental load process. Another object is to provide a method for producing a fiber composite material.
 請求項1に記載の発明によれば、酸化チタン・セルロースファイバー複合材料は、セルロースファイバーと、セルロースファイバーの表面の少なくても一部分を被覆する酸化チタンと、を備える。酸化チタンは、セルロースファイバーの表面に対して直接合成されることにより、セルロースファイバーの表面を被覆する。これによれば、酸化チタンは、セルロースファイバーの表面に対して直接合成されているので、従来の複合材料よりも耐久性が高く、光触媒機能を有する酸化チタン・セルロースファイバー複合材料を提供することができる。 According to the invention of claim 1, the titanium oxide / cellulose fiber composite material includes cellulose fiber and titanium oxide that covers at least a part of the surface of the cellulose fiber. Titanium oxide coats the surface of the cellulose fiber by being synthesized directly with respect to the surface of the cellulose fiber. According to this, since titanium oxide is synthesized directly on the surface of the cellulose fiber, it is possible to provide a titanium oxide-cellulose fiber composite material which is more durable than the conventional composite material and has a photocatalytic function. can.
 請求項3に記載の発明によれば、酸化チタン・セルロースファイバー複合材料は、セルロースファイバーと、セルロースファイバーの表面の少なくても一部分を被覆する酸化チタンと、を備える。セルロースファイバーに対する酸化チタンの吸着力は、4.4N/10mm以上である。これによれば、セルロースファイバーに対する酸化チタンの吸着力は、4.4N/10mm以上であるので、従来の複合材料よりも耐久性が高く、光触媒機能を有する酸化チタン・セルロースファイバー複合材料を提供することができる。 According to the invention of claim 3, the titanium oxide / cellulose fiber composite material includes cellulose fiber and titanium oxide that covers at least a part of the surface of the cellulose fiber. The adsorption force of titanium oxide on the cellulose fiber is 4.4 N / 10 mm or more. According to this, since the adsorption force of titanium oxide to the cellulose fiber is 4.4 N / 10 mm or more, the titanium oxide / cellulose fiber composite material having higher durability than the conventional composite material and having a photocatalytic function is provided. be able to.
 請求項7に記載の発明によれば、酸化チタン・セルロースファイバー複合材料の製造方法は、液相析出法によりセルロースファイバーの表面に酸化チタンを直接合成する方法である。これによれば、セルロースファイバーの表面に酸化チタンが直接合成される。さらに、液相析出法によって低温常圧で酸化チタンを合成することができ、酸化チタンの合成に必要なエネルギーを小さく抑えることができる。よって、従来の複合材料よりも高耐久性の複合材料が得られ、低環境負荷プロセスである酸化チタン・セルロースファイバー複合材料の製造方法を提供することができる。 According to the invention of claim 7, the method for producing the titanium oxide / cellulose fiber composite material is a method of directly synthesizing titanium oxide on the surface of the cellulose fiber by the liquid phase precipitation method. According to this, titanium oxide is directly synthesized on the surface of the cellulose fiber. Furthermore, titanium oxide can be synthesized at low temperature and normal pressure by the liquid phase precipitation method, and the energy required for the synthesis of titanium oxide can be suppressed to a small value. Therefore, a composite material having higher durability than the conventional composite material can be obtained, and a method for producing a titanium oxide / cellulose fiber composite material, which is a low environmental load process, can be provided.
 請求項8に記載の発明によれば、酸化チタン・セルロースファイバー複合材料の製造方法は、チタンフッ化アンモニウムとホウ酸と水とを含む水溶液と、セルロースファイバーとを準備すること(P1)と、水溶液中で、セルロースファイバーの表面に酸化チタンを析出させること(P2、P3)と、を含む。これによれば、セルロースファイバーの表面に酸化チタンが直接合成される。さらに、液相析出法によって低温常圧で酸化チタンを合成することができ、酸化チタンの合成に必要なエネルギーを小さく抑えることができる。よって、従来の複合材料よりも高耐久性の複合材料が得られ、低環境負荷プロセスである酸化チタン・セルロースファイバー複合材料の製造方法を提供することができる。 According to the invention of claim 8, the method for producing the titanium oxide / cellulose fiber composite material is to prepare an aqueous solution containing titanium fluoride ammonium fluoride, boric acid and water, cellulose fiber (P1), and an aqueous solution. Among them, the precipitation of titanium oxide on the surface of the cellulose fiber (P2, P3) is included. According to this, titanium oxide is directly synthesized on the surface of the cellulose fiber. Furthermore, titanium oxide can be synthesized at low temperature and normal pressure by the liquid phase precipitation method, and the energy required for the synthesis of titanium oxide can be suppressed to a small value. Therefore, a composite material having higher durability than the conventional composite material can be obtained, and a method for producing a titanium oxide / cellulose fiber composite material, which is a low environmental load process, can be provided.
セルロースファイバーを模式的に示した図である。It is a figure which showed the cellulose fiber schematically. セルロースファイバーと、セルロースファイバーの表面の少なくても一部分を被覆する酸化チタンと、を備える酸化チタン・セルロースファイバー複合材料を模式的に示した図である。It is a figure which shows schematically the titanium oxide-cellulose fiber composite material which comprises a cellulose fiber and titanium oxide which covers at least a part of the surface of the cellulose fiber. 酸化チタン・ナノセルロースファイバー複合材料の合成手順例を示した図である。It is a figure which showed the example of the synthesis procedure of the titanium oxide / nanocellulose fiber composite material. セルロースファイバーの表面にTiOが合成されるメカニズムを模式的に示した図である。It is a figure which showed schematically the mechanism which TiO 2 is synthesized on the surface of a cellulose fiber. 広葉樹由来のナノセルロースファイバーのSEM画像である。It is an SEM image of the nanocellulose fiber derived from a broad-leaved tree. 広葉樹由来のナノセルロースファイバーのXRDパターンと、広葉樹由来のナノセルロースファイバーおよびアナターゼ型酸化チタンナノ粒子を有する酸化チタン・ナノセルロースファイバー複合材料のXRDパターンとを示した図である。It is a figure which showed the XRD pattern of the nanocellulose fiber derived from a broad-leaved tree, and the XRD pattern of a titanium oxide / nanocellulose fiber composite material which has a nanocellulose fiber derived from a broad-leaved tree and anatase type titanium oxide nanoparticles. 広葉樹由来、針葉樹由来又は化学パルプの酸化チタン・ナノセルロースファイバー複合材料のそれぞれのラマンスペクトルを示した図である。It is a figure which showed the Raman spectrum of each of the titanium oxide / nanocellulose fiber composite material derived from broad-leaved tree, derived from coniferous tree, or chemical pulp. 広葉樹由来の酸化チタン・ナノセルロースファイバー複合材料のSEM画像である。It is an SEM image of the titanium oxide / nanocellulose fiber composite material derived from hardwood. 図5Aの酸化チタン・ナノセルロースファイバーを被覆する酸化チタンを拡大した図である。FIG. 5A is an enlarged view of titanium oxide covering the titanium oxide / nanocellulose fiber of FIG. 5A. 超音波にかける前の実施例1の広葉樹由来の酸化チタン・ナノセルロースファイバー複合材料のSEM画像である。6 is an SEM image of a titanium oxide / nanocellulose fiber composite material derived from a hardwood of Example 1 before being subjected to ultrasonic waves. 超音波にかけた後の実施例1の広葉樹由来の酸化チタン・ナノセルロースファイバー複合材料のSEM画像である。It is an SEM image of the titanium oxide / nanocellulose fiber composite material derived from the hardwood of Example 1 after being subjected to ultrasonic waves. 超音波にかける前の比較例1のTiO・ナノセルロースファイバー複合材料のSEM画像である。6 is an SEM image of the TiO 2 / nanocellulose fiber composite material of Comparative Example 1 before being subjected to ultrasonic waves. 超音波にかけた後の比較例1のTiO・ナノセルロースファイバー複合材料のSEM画像である。It is an SEM image of the TiO 2 / nanocellulose fiber composite material of Comparative Example 1 after being subjected to ultrasonic waves. 実施例2の針葉樹由来のナノセルロースファイバー・酸化チタン複合材料のSEM画像である。It is an SEM image of the nanocellulose fiber / titanium oxide composite material derived from the coniferous tree of Example 2. 非特許文献1における海藻由来の酸化チタン・ナノセルロースファイバー複合材料のSEM画像である。6 is an SEM image of a titanium oxide / nanocellulose fiber composite material derived from seaweed in Non-Patent Document 1. 図7Aの一部分を拡大した図である。FIG. 7A is an enlarged view of a part of FIG. 7A. 実施例3の化学パルプ由来の酸化チタン・ナノセルロースファイバー複合材料のSEM画像である。It is an SEM image of the titanium oxide / nanocellulose fiber composite material derived from the chemical pulp of Example 3. 図9Aの一部分を拡大したである。A part of FIG. 9A is enlarged. ナノセルロースファイバーと、化学パルプの酸化チタン・ナノセルロースファイバー複合材料と、針葉樹由来の酸化チタン・ナノセルロースファイバー複合材料のそれぞれに対する光触媒効果を示した図である。It is a figure which showed the photocatalytic effect for each of the nanocellulose fiber, the titanium oxide / nanocellulose fiber composite material of chemical pulp, and the titanium oxide / nanocellulose fiber composite material derived from coniferous tree. セルロースファイバーとしての綿のSEM画像である。It is an SEM image of cotton as a cellulose fiber. 実施例4のTiO・セルロースファイバー複合材料のSEM画像である。6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4. 実施例4のTiO・セルロースファイバー複合材料のSEM画像である。6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4. 引き剥がし試験の様子を示す模式図である。It is a schematic diagram which shows the state of the peeling test. 引き剥がし試験前の実施例4のTiO・セルロースファイバー複合材料のSEM画像である。6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4 before the peeling test. 第1テープを用いた引き剥がし試験後の実施例4のTiO・セルロースファイバー複合材料のSEM画像である。6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4 after the peeling test using the first tape. 第2テープを用いた引き剥がし試験前の実施例4のTiO・セルロースファイバー複合材料のSEM画像である。6 is an SEM image of the TiO 2 / cellulose fiber composite material of Example 4 before the peeling test using the second tape. 引き剥がし試験前の比較例2のTiO・セルロースファイバー複合材料のSEM画像である。6 is an SEM image of the TiO 2 / cellulose fiber composite material of Comparative Example 2 before the peeling test. 第1テープを用いた引き剥がし試験後の比較例2のTiO・セルロースファイバー複合材料のSEM画像である。6 is an SEM image of the TiO 2 / cellulose fiber composite material of Comparative Example 2 after the peeling test using the first tape. 第2テープを用いた引き剥がし試験前の比較例2のTiO・セルロースファイバー複合材料のSEM画像である。It is an SEM image of the TiO 2 / cellulose fiber composite material of Comparative Example 2 before the peeling test using the second tape.
 以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be made without departing from the scope of the invention.
 図1Bに示したように、本発明の一実施形態である酸化チタン・セルロースファイバー複合材料2は、図1Aに示すセルロースファイバー1と、セルロースファイバー1の表面の少なくても一部分を被覆する酸化チタンナノ粒子3と、を備える。 As shown in FIG. 1B, the titanium oxide / cellulose fiber composite material 2 according to the embodiment of the present invention includes the cellulose fiber 1 shown in FIG. 1A and the titanium oxide nano-titanium oxide that covers at least a part of the surface of the cellulose fiber 1. The particle 3 is provided.
 セルロースファイバー1は、セルロースをファイバー形状としたものであれば特に限定はされない。光触媒の有効面積を増加させる観点から、セルロースファイバー1として、比表面積が大きいナノセルロースファイバーを用いることが好ましい。ナノセルロースファイバーとは、直径が1nm以上100nm以下のサイズを有するセルロースの総称である。ナノセルロースファイバーは、様々な物理的・化学的手法を用いて、植物由来等のもととなるセルロース繊維を細かくほぐすことで得られる。ナノセルロースファイバーには、セルロース繊維と比較して単位質量当たりの表面積(比表面積)が大きく(120-150m/g)、熱膨張率が低く透明性を有するという特徴がある。 The cellulose fiber 1 is not particularly limited as long as the cellulose has a fiber shape. From the viewpoint of increasing the effective area of the photocatalyst, it is preferable to use nanocellulose fiber having a large specific surface area as the cellulose fiber 1. Nanocellulose fiber is a general term for cellulose having a diameter of 1 nm or more and 100 nm or less. Nanocellulose fibers are obtained by finely loosening cellulose fibers that are the source of plant origin, etc., using various physical and chemical methods. Nanocellulose fibers are characterized by having a large surface area (specific surface area) per unit mass (120-150 m 2 / g), a low coefficient of thermal expansion, and transparency as compared with cellulose fibers.
 酸化チタンナノ粒子3は、光触媒機能を有する。酸化チタンナノ粒子3は、外形が球形状の粒子である。球形状には、球、楕円体およびそれらに近い形状が含まれる。粒子の粒径は、90nm以上400nm以下である。酸化チタンナノ粒子3は、複数の突起を有する。複数の突起のそれぞれの形状は、幅が20nm以上40nm以下、長さが20nm以上60nm以下の錐体形状である。なお、セルロースファイバー1の表面を被覆する酸化チタンは、粒子の形状に限られず、板形状であってもよい。 The titanium oxide nanoparticles 3 have a photocatalytic function. The titanium oxide nanoparticles 3 are particles having a spherical outer shape. Sphere shapes include spheres, ellipsoids, and similar shapes. The particle size of the particles is 90 nm or more and 400 nm or less. The titanium oxide nanoparticles 3 have a plurality of protrusions. The shape of each of the plurality of protrusions is a cone shape having a width of 20 nm or more and 40 nm or less and a length of 20 nm or more and 60 nm or less. The titanium oxide that covers the surface of the cellulose fiber 1 is not limited to the shape of the particles, and may be in the shape of a plate.
 図2Aに示した代表的な合成手順によって、ナノセルロースファイバー複合材料を合成することができる。工程P1では、チタンフッ化アンモニウム((NHTiF)とホウ酸(HBO)とを等体積量で混合して混合液を調製する。モル濃度比は、チタンフッ化アンモニウム:ホウ酸=0.1:0.3である。モル濃度比は、これに限られない。チタンフッ化アンモニウム:ホウ酸のモル濃度比は、結晶性が優れ、かつ高い光触媒効果を有するアナターゼ型酸化チタンを得るという観点から、0.05~0.2:0.05~0.3が好ましく、0.1:0.1~0.1:0.3がさらに好ましい。 The nanocellulose fiber composite material can be synthesized by the typical synthesis procedure shown in FIG. 2A. In step P1, ammonium titanium fluoride ((NH 4 ) 2 TiF 6 ) and boric acid (H 3 BO 3 ) are mixed in equal volumes to prepare a mixed solution. The molar concentration ratio is ammonium titanium fluoride: boric acid = 0.1: 0.3. The molar concentration ratio is not limited to this. The molar concentration ratio of ammonium titanium fluoride: boric acid is preferably 0.05 to 0.2: 0.05 to 0.3 from the viewpoint of obtaining anatase-type titanium oxide having excellent crystallinity and a high photocatalytic effect. , 0.1: 0.1 to 0.1: 0.3 are more preferable.
 このように、工程P1では、チタンフッ化アンモニウムとホウ酸と水とを含む水溶液が準備することが行われる。また、工程P1では、ナノセルロースファイバーが水に分散されたナノセルロースファイバー分散溶液を準備することが行われる。 As described above, in step P1, an aqueous solution containing ammonium titanium fluoride, boric acid and water is prepared. Further, in step P1, a nanocellulose fiber dispersion solution in which nanocellulose fibers are dispersed in water is prepared.
 工程P2では、調製された混合液にナノセルロースファイバー分散溶液を添加する。例えば添加するナノセルロースファイバー分散溶液は例えば20mLである。セルロースファイバーの濃度として、セルロースファイバーの分散性の観点から、0.02~0.2質量パーセントが好ましい。 In step P2, the nanocellulose fiber dispersion solution is added to the prepared mixed solution. For example, the nanocellulose fiber dispersion solution to be added is, for example, 20 mL. The concentration of the cellulose fiber is preferably 0.02 to 0.2% by mass from the viewpoint of the dispersibility of the cellulose fiber.
 工程P3では、工程P2によるナノセルロースファイバーを含む混合液を、加熱温度が例えば60℃で3時間撹拌する。高い結晶性のアナターゼ酸化チタンを再現性良く合成する観点から、加熱温度は45~75℃が好ましい。また、撹拌時間は、均一なナノサイズのTiO結晶を得る観点から3時間であることが好ましい。工程P2と工程P3とにより、水溶液中で、ナノセルロースファイバーの表面に酸化チタンを析出させることが行われる。すなわち、液相析出法によりナノセルロースファイバーの表面に酸化チタンを直接合成することが行われる。 In step P3, the mixture containing the nanocellulose fibers according to step P2 is stirred at a heating temperature of, for example, 60 ° C. for 3 hours. From the viewpoint of synthesizing highly crystalline anatase titanium oxide with good reproducibility, the heating temperature is preferably 45 to 75 ° C. The stirring time is preferably 3 hours from the viewpoint of obtaining uniform nano-sized TiO 2 crystals. Steps P2 and P3 deposit titanium oxide on the surface of the nanocellulose fiber in an aqueous solution. That is, titanium oxide is directly synthesized on the surface of the nanocellulose fiber by the liquid phase precipitation method.
 工程P4では、工程P3に続いて室温で24時間撹拌する。これにより、TiO・ナノセルロースファイバー複合材料と水溶液中の酸化チタン粒子とが、分離する。工程P4までによりTiO・ナノセルロースファイバー複合材料が合成される。そして、工程P5において、TiO・ナノセルロースファイバー複合材料は水によって洗浄される。 In step P4, following step P3, stirring is performed at room temperature for 24 hours. As a result, the TIO 2 / nanocellulose fiber composite material and the titanium oxide particles in the aqueous solution are separated. By the process up to step P4, the TiO 2 / nanocellulose fiber composite material is synthesized. Then, in step P5, the TiO2 / nanocellulose fiber composite material is washed with water.
 上記工程のように、液相析出法(LPD合成法)を用いるため、低温常圧での合成が可能となった。低温とは、水の沸点以下の温度である。このように、酸化チタンの合成に必要なエネルギーを小さく抑えることができる。このため、本実施形態の酸化チタン・ナノセルロースファイバー複合材料の製造方法は、低環境負荷プロセスである。 Since the liquid phase precipitation method (LPD synthesis method) is used as in the above step, synthesis at low temperature and normal pressure is possible. The low temperature is a temperature equal to or lower than the boiling point of water. In this way, the energy required for the synthesis of titanium oxide can be kept small. Therefore, the method for producing the titanium oxide / nanocellulose fiber composite material of the present embodiment is a low environmental load process.
 工程P2では、ナノセルロースファイバーに限られず、他のセルロースファイバーが用いられてもよい。セルロースファイバーとしては、綿や機械パルプ等を用いることができる。また、工程P2では、綿や機械パルプ等のセルロースファイバーが、調製された混合液に浸漬されてもよい。一方、光触媒の有効面積を増加させる観点から、用いるセルロースファイバーとしては、比表面積が大きいナノセルロースファイバーが好ましい。 In step P2, not only the nanocellulose fiber but also other cellulose fibers may be used. As the cellulose fiber, cotton, mechanical pulp or the like can be used. Further, in step P2, cellulose fibers such as cotton and mechanical pulp may be immersed in the prepared mixed solution. On the other hand, from the viewpoint of increasing the effective area of the photocatalyst, the cellulose fiber used is preferably nanocellulose fiber having a large specific surface area.
 工程P3では、ナノセルロースファイバーを含む混合液を加熱しなくてもよい。この場合であっても、加熱した場合と比較して時間がかかるが、ナノセルロースファイバーの表面に酸化チタンを析出させることができる。ただし、光触媒機能を高めるという観点では、工程P3で加熱することが好ましい。 In step P3, it is not necessary to heat the mixed solution containing the nanocellulose fiber. Even in this case, titanium oxide can be deposited on the surface of the nanocellulose fiber, although it takes longer than in the case of heating. However, from the viewpoint of enhancing the photocatalytic function, it is preferable to heat in step P3.
 セルロースファイバーの表面にTiOが合成されるメカニズムは、次のように推定される。図2Bに示すように、セルロースファイバー表面の水酸基と溶液中の水とにより、フッ化チタンイオンの加水分解が生じる。すなわち、配位子交換反応によって、フッ化チタンイオン中のフッ素原子が、セルロースファイバー表面の水酸基中の酸素原子および水分子中の酸素原子と入れ替わる。このとき、生じたフッ素イオンは、ホウ酸との反応によって消費される。これらにより、酸化チタン析出反応が進行し、セルロース表面に酸化チタン核形成及びナノ構造形成が成されると推定される。合成されたTiOとセルロースファイバーとにおいては、TiOのTi原子とセルロースファイバーのO原子とが共有結合していると推定される。 The mechanism by which TiO 2 is synthesized on the surface of the cellulose fiber is presumed as follows. As shown in FIG. 2B, the hydroxyl group on the surface of the cellulose fiber and the water in the solution cause hydrolysis of titanium fluoride ion. That is, the fluorine atom in the titanium fluoride ion is replaced with the oxygen atom in the hydroxyl group and the oxygen atom in the water molecule on the surface of the cellulose fiber by the ligand exchange reaction. At this time, the generated fluorine ions are consumed by the reaction with boric acid. As a result, it is presumed that the titanium oxide precipitation reaction proceeds and titanium oxide nucleation and nanostructure formation are formed on the cellulose surface. In the synthesized TiO 2 and the cellulose fiber, it is presumed that the Ti atom of TiO 2 and the O atom of the cellulose fiber are covalently bonded.
 以上の説明の通り、酸化チタンは、セルロースファイバーの表面に対して直接合成されることにより、セルロースファイバーの表面を被覆する。これによれば、酸化チタンは、セルロースファイバーの表面に対して直接合成されることで、セルロースファイバーの表面に対して化学的に結合している。よって、従来の複合材料よりも耐久性が高く、光触媒機能を有する酸化チタン・セルロースファイバー複合材料を提供することができる。 As described above, titanium oxide coats the surface of the cellulose fiber by being directly synthesized with respect to the surface of the cellulose fiber. According to this, titanium oxide is chemically bonded to the surface of the cellulose fiber by being directly synthesized with respect to the surface of the cellulose fiber. Therefore, it is possible to provide a titanium oxide / cellulose fiber composite material which is more durable than the conventional composite material and has a photocatalytic function.
(実施例1~3、比較例1のTiO・ナノセルロースファイバー複合材料の製造および評価)
 チタンフッ化アンモニウム(富士フイルム和光純薬(株)製、一級試薬)、ホウ酸(富士フイルム和光純薬(株)製、試薬特級)と、ナノセルロースファイバー分散溶液として、広葉樹由来のナノセルロースファイバーが分散したナノセルロースファイバー分散溶液(大王製紙株式会社製、ナノセルロースファイバー濃度:15.57質量%)を用い、図2に従って、広葉樹由来の洗浄されたTiO・ナノセルロースファイバー複合物を得た(実施例1、単に「広葉樹由来のTiO・ナノセルロースファイバー複合材料」と言う場合がある)。
(Manufacturing and evaluation of TiO 2 / nanocellulose fiber composite material of Examples 1 to 3 and Comparative Example 1)
Titanium fluoride ammonium fluoride (manufactured by Fujifilm Wako Junyaku Co., Ltd., first-class reagent), boric acid (manufactured by Fujifilm Wako Junyaku Co., Ltd., special reagent grade), and nanocellulose fiber derived from broadleaf tree as a nanocellulose fiber dispersion solution. A washed nanocellulose fiber composite derived from broadleaf tree was obtained using a dispersed nanocellulose fiber dispersion solution (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 15.57% by mass) according to FIG. 2 (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 15.57% by mass). Example 1, it may be simply referred to as "a reagent derived from a broad - leaved tree and a nanocellulose fiber composite material").
 広葉樹由来のナノセルロースファイバーの代わりに、針葉樹由来のナノセルロースファイバーが分散したナノセルロースファイバー分散溶液(大王製紙株式会社製、ナノセルロースファイバー濃度:3.5質量%)を用いて、洗浄された針葉樹由来のTiO・ナノセルロースファイバー複合物を得た(実施例2、単に「針葉樹由来のTiO・ナノセルロースファイバー複合材料」と言う場合がある)。 A nanocellulose fiber washed with a nanocellulose fiber dispersion solution (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 3.5% by mass) in which nanocellulose fiber derived from coniferous tree is dispersed instead of nanocellulose fiber derived from broadleaf tree. A derived TiO2 / nanocellulose fiber composite was obtained (Example 2, may be simply referred to as “a conifer-derived TiO2 / nanocellulose fiber composite material”).
 広葉樹由来のナノセルロースファイバーの代わりに、化学パルプのナノセルロースファイバーが分散したナノセルロースファイバー分散溶液(大王製紙株式会社製、ナノセルロースファイバー濃度:2.9質量%)を用いて、洗浄された化学パルプのTiO・ナノセルロースファイバー複合物を得た(実施例3、単に「化学パルプのTiO・ナノセルロースファイバー複合材料」と言う場合がある)。 Chemistry washed using a nanocellulose fiber dispersion solution (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 2.9% by mass) in which nanocellulose fibers of chemical pulp are dispersed instead of nanocellulose fibers derived from broadleaf trees. A TiO 2 -nanocellulose fiber composite of pulp was obtained (Example 3, may be simply referred to as "TiO 2 -nanocellulose fiber composite material of chemical pulp").
 図3AのSEM画像により、広葉樹由来のナノセルロースファイバーは次のようであることが分かった。繊維状のセルロースが、各々絡み合って凝集した形態を持つ。例えば1μmのスケールと比較すると、一本の束の直径は50nm以下であることが分かる。SEM画像の試料は乾燥調製したナノセルロースファイバーであるため、図に見られるような凝集体となっているが、水分散液においては、各々のファイバーが単離分散されていると考えられる。 From the SEM image of FIG. 3A, it was found that the nanocellulose fibers derived from hardwood are as follows. Fibrous cellulose has a form in which each is entangled and aggregated. For example, when compared with a scale of 1 μm, it can be seen that the diameter of one bundle is 50 nm or less. Since the sample of the SEM image is a dry-prepared nanocellulose fiber, it is an aggregate as shown in the figure, but it is considered that each fiber is isolated and dispersed in the aqueous dispersion.
 また、図3BのXRDパターンにより、LPD(液相析出法)合成後にはアナターゼ型酸化チタンナノ粒子(「TiO A」と言う場合がある)のピークが検出された。それにより、広葉樹由来のTiO・ナノセルロースファイバーの表面には、アナターゼ型酸化チタンナノ粒子が析出し、その表面の少なくても一部分がアナターゼ型酸化チタンナノ粒子によって被覆されたことが分かった。なお、ラマンスペクトルの測定条件や装置は次のようであった。使用した装置は、日本分光製 NRS―3300 顕微ラマン分光装置(RAMAN)であった。励起レーザー波長は532nm、スペクトル取得時間は60秒であった。 Further, from the XRD pattern of FIG. 3B, a peak of anatase-type titanium oxide nanoparticles (sometimes referred to as "TIO 2 A") was detected after LPD (liquid phase precipitation method) synthesis. As a result, it was found that anatase-type titanium oxide nanoparticles were precipitated on the surface of TiO2 / nanocellulose fibers derived from broad-leaved trees, and at least a part of the surface was covered with anatase-type titanium oxide nanoparticles. The measurement conditions and equipment for the Raman spectrum were as follows. The device used was an NRS-3300 micro-Raman spectroscope (RAMAN) manufactured by JASCO Corporation. The excitation laser wavelength was 532 nm and the spectrum acquisition time was 60 seconds.
 図4のラマンスペクトルに示したように、広葉樹由来のTiO・ナノセルロースファイバー複合材料(実施例1)、針葉樹由来のTiO・ナノセルロースファイバー複合材料(実施例2)、化学パルプのTiO・ナノセルロースファイバー複合材料(実施例3)には、それぞれアナターゼ型酸化チタンのピークが検出された。アナターゼ型の酸化チタン(TiO A)のピークとは、170cm-1と400~650cm-1に見られるピークのことである。なお、ラマンスペクトルの測定条件や装置は次のようであった。使用した装置は、日本分光製NRS―3300 顕微ラマン分光装置(RAMAN)であった。励起レーザー波長は532nm、スペクトル取得時間は60秒であった。 As shown in the Raman spectrum of FIG. 4, TiO 2 / nanocellulose fiber composite material derived from broadleaf tree (Example 1), TiO 2 / nanocellulose fiber composite material derived from coniferous tree (Example 2), TiO 2 of chemical pulp. -A peak of anatase-type titanium oxide was detected in each of the nanocellulose fiber composite materials (Example 3). The anatase - type titanium oxide (TiO 2A) peaks are those found at 170 cm -1 and 400-650 cm -1 . The measurement conditions and equipment for the Raman spectrum were as follows. The device used was an NRS-3300 micro-Raman spectroscope (RAMAN) manufactured by JASCO Corporation. The excitation laser wavelength was 532 nm and the spectrum acquisition time was 60 seconds.
 図5Aに示したように、広葉樹由来のTiO・ナノセルロースファイバー複合材料12は、ナノセルロースファイバー凝集繊維16、TiO層が疎に結合したナノセルロースファイバー17及びTiOが高密度に結合した・ナノセルロースファイバー複合材料13を含む。また、図5Bに示したように、アナターゼ型酸化チタンナノ粒子13aは、球や楕円体の形状に近い球形状であって、その表面には凹凸形状様が観察された。換言すると、アナターゼ型酸化チタンナノ粒子13aは、その外側に突起を有する。また、アナターゼ型酸化チタンナノ粒子13aのようなアナターゼ型酸化チタンナノ粒子が複数個集まって小集合体をつくり、さらにその小集合体がナノセルロース上に複数個集まって集合体を作っていることが観察できた。例えば1μmのスケールと比較すると、アナターゼ型酸化チタンナノ粒子13aの粒径は、100~400nmであることが分かった。ここでいう粒径は、粒子の最大幅である。 As shown in FIG. 5A, in the TiO 2 / nanocellulose fiber composite material 12 derived from broadleaf tree, the nanocellulose fiber aggregate fiber 16, the nanocellulose fiber 17 in which the TiO 2 layer is loosely bonded, and the TiO 2 are bonded at high density. -Contains nanocellulose fiber composite material 13. Further, as shown in FIG. 5B, the anatase-type titanium oxide nanoparticles 13a had a spherical shape close to the shape of a sphere or an ellipsoid, and an uneven shape was observed on the surface thereof. In other words, the anatase-type titanium oxide nanoparticles 13a have protrusions on the outside thereof. It was also observed that a plurality of anatase-type titanium oxide nanoparticles such as anatase-type titanium oxide nanoparticles 13a gather to form a small aggregate, and a plurality of the small aggregates gather on nanocellulose to form an aggregate. did it. For example, when compared with a scale of 1 μm, it was found that the particle size of the anatase-type titanium oxide nanoparticles 13a was 100 to 400 nm. The particle size here is the maximum width of the particles.
 図6Aに示した広葉樹由来のTiO・ナノセルロースファイバー複合材料22について、アナターゼ型酸化チタンナノ粒子23のようなアナターゼ型酸化チタンナノ粒子の耐久性を次のようにして調べた。広葉樹由来のTiO・ナノセルロースファイバー複合材料22を水に浸漬して40KHz、300Wで5時間超音波をかけた(超音波装置:SHARP、UT-304F)。それでも、図6Bに示したように、広葉樹由来のTiO・ナノセルロースファイバー複合材料22aのアナターゼ型酸化チタンナノ粒子23aのような超音波をかけた後のアナターゼ型酸化チタンナノ粒子と、アナターゼ型酸化チタンナノ粒子23のように超音波をかける前のアナターゼ型酸化チタンナノ粒子23を対比しても、両者に変化を観察することができず、アナターゼ型酸化チタンナノ粒子23のようなアナターゼ型酸化チタンナノ粒子の耐久性を確認することができた。なお、例えば1μmのスケールと比較すると、球形状のアナターゼ型酸化チタンナノ粒子23の粒径は、小さいものでは100nm、最大のもので400nmである。突起のサイズは、どのアナターゼ型酸化チタンナノ粒子23でも数十nmである。 The durability of anatase-type titanium oxide nanoparticles such as anatase-type titanium oxide nanoparticles 23 was investigated for the hardwood-derived TiO2 -nanocellulose fiber composite material 22 shown in FIG. 6A as follows. The dio 2 / nanocellulose fiber composite material 22 derived from hardwood was immersed in water and ultrasonically applied at 40 KHz and 300 W for 5 hours (ultrasonic device: SHARP, UT-304F). Nevertheless, as shown in FIG. 6B, anatase-type titanium oxide nanoparticles and anatase-type titanium oxide nanoparticles after being subjected to ultrasonic waves, such as anatase-type titanium oxide nanoparticles 23a of the TiO2 / nanocellulose fiber composite material 22a derived from broadleaf trees. Even if the anatase-type titanium oxide nanoparticles 23 before applying ultrasonic waves like the particles 23 are compared, no change can be observed between them, and the durability of the anatase-type titanium oxide nanoparticles such as the anatase-type titanium oxide nanoparticles 23 cannot be observed. I was able to confirm the sex. Compared with a scale of, for example, 1 μm, the particle size of the spherical anatase-type titanium oxide nanoparticles 23 is 100 nm at the smallest and 400 nm at the maximum. The size of the protrusions is several tens of nm for any anatase-type titanium oxide nanoparticles 23.
 本発明者は、非特許文献1に記載の製造方法を参考にして、比較例1のTiO・ナノセルロースファイバー複合材料を製造した。具体的には、アナターゼ型酸化チタン(Evonik(Degussa)P25)を蒸留水中に加え、超音波装置(SHARP、UT-304F)を用いて、超音波処理15分を行い、アナターゼ型酸化チタンを分散させた。そこに、ナノセルロース(大王製紙株式会社製、ナノセルロースファイバー濃度:15.57質量%)を加え、超音波処理1時間を行い、1分常温で静置し、上澄みの酸化チタンを取り除き、沈殿物を室温中で48時間以上乾燥させて、TiO・ナノセルロースファイバー複合材料を得た。図6Cに示したように、比較例1のTiO・ナノセルロースファイバー複合材料では、繊維の面に対して酸化チタンナノ粒子が付着しているが、個々の繊維が酸化チタンナノ粒子で覆われているわけではなかった。 The present inventor produced the TiO2 / nanocellulose fiber composite material of Comparative Example 1 with reference to the production method described in Non-Patent Document 1. Specifically, anatase-type titanium oxide (Evonik (Degussa) P25) is added to distilled water, and ultrasonic treatment is performed for 15 minutes using an ultrasonic device (SHARP, UT-304F) to disperse anatase-type titanium oxide. I let you. Nanocellulose (manufactured by Daio Paper Co., Ltd., nanocellulose fiber concentration: 15.57% by mass) was added thereto, subjected to ultrasonic treatment for 1 hour, allowed to stand at room temperature for 1 minute, and the supernatant titanium oxide was removed and precipitated. The material was dried at room temperature for 48 hours or more to obtain a TiO 2 / nanocellulose fiber composite material. As shown in FIG. 6C, in the TiO 2 / nanocellulose fiber composite material of Comparative Example 1, titanium oxide nanoparticles are attached to the surface of the fibers, but the individual fibers are covered with the titanium oxide nanoparticles. It wasn't.
 さらに、本発明者は、比較例1のTiO・ナノセルロースファイバー複合材料についてのアナターゼ型酸化チタンナノ粒子の耐久性を、超音波洗浄処理による耐久性試験によって調べた。用いた超音波装置および処理条件は、処理時間が1時間であることを除いて、上記した広葉樹由来のTiO・ナノセルロースファイバー複合材料22についての耐久性試験と同じである。 Furthermore, the present inventor investigated the durability of anatase-type titanium oxide nanoparticles in the TiO2 / nanocellulose fiber composite material of Comparative Example 1 by a durability test by ultrasonic cleaning treatment. The ultrasonic apparatus and treatment conditions used are the same as the durability test for the above-mentioned hardwood - derived TIM2 / nanocellulose fiber composite material 22 except that the treatment time is 1 hour.
 図6Cに示した超音波をかける前の酸化チタンナノ粒子の被覆率は、77.6%であった。これに対して、図6Dに示した超音波をかけた後の酸化チタンナノ粒子の被覆率は、66.7%であった。超音波をかけた後の複合材料では、超音波をかける前の複合材料と比較して、酸化チタンナノ粒子が減少していた。このように、比較例1のTiO・ナノセルロースファイバー複合材料では、酸化チタンナノ粒子の耐久性が低いことが確認された。 The coverage of the titanium oxide nanoparticles before applying the ultrasonic wave shown in FIG. 6C was 77.6%. On the other hand, the coverage of the titanium oxide nanoparticles after applying the ultrasonic wave shown in FIG. 6D was 66.7%. In the composite material after the ultrasonic wave was applied, the titanium oxide nanoparticles were reduced as compared with the composite material before the ultrasonic wave was applied. As described above, it was confirmed that the titanium oxide nanoparticles had low durability in the TiO2 / nanocellulose fiber composite material of Comparative Example 1.
 ナノセルロースファイバーに対して酸化チタンナノ粒子が物理吸着している比較例1のTiO・ナノセルロースファイバー複合材料と比較して、実施例1のTiO・ナノセルロースファイバー複合材料の耐久性は高い。このことから、実施例1のTiO・ナノセルロースファイバー複合材料では、ナノセルロースファイバーに対して酸化チタンナノ粒子が、化学吸着、すなわち、化学的に結合していることが推定される。 Compared with the TiO 2 / nanocellulose fiber composite material of Comparative Example 1 in which titanium oxide nanoparticles are physically adsorbed to the nanocellulose fiber, the durability of the TiO2 / nanocellulose fiber composite material of Example 1 is high. From this, it is presumed that in the TiO2 / nanocellulose fiber composite material of Example 1, the titanium oxide nanoparticles are chemically adsorbed, that is, chemically bonded to the nanocellulose fiber.
 図7Aに示したように、針葉樹由来のTiO・ナノセルロースファイバー複合材料32は、アナターゼ型酸化チタンナノ粒子33のようなアナターゼ型酸化チタンナノ粒子を備え、アナターゼ型酸化チタンナノ粒子33のようなアナターゼ型酸化チタンナノ粒子は、針葉樹由来のナノセルロースファイバーの表面を被覆していた。例えば1μmのスケールと比較すると、アナターゼ型酸化チタンナノ粒子33の粒径は100-300nmであった。 As shown in FIG. 7A, the TiO 2 / nanocellulose fiber composite material 32 derived from the coniferous tree comprises anatase-type titanium oxide nanoparticles such as anatase-type titanium oxide nanoparticles 33, and anatase-type such as anatase-type titanium oxide nanoparticles 33. Titanium oxide nanoparticles covered the surface of nanocellulose fibers derived from coniferous trees. For example, the particle size of the anatase-type titanium oxide nanoparticles 33 was 100-300 nm as compared with the scale of 1 μm.
 一方、図7Bに示したTiO・ナノセルロースファイバー複合材料36については、次のようであった。非特許文献1におけるTiO・ナノセルロースファイバー複合材料36は、セルロース表面に凝集した酸化チタンナノ粒子35を含む。また、セルロース表面が露出する箇所も見られる。 On the other hand, the TiO2 / nanocellulose fiber composite material 36 shown in FIG. 7B was as follows. The TiO2 / nanocellulose fiber composite material 36 in Non-Patent Document 1 contains titanium oxide nanoparticles 35 aggregated on the surface of cellulose. In addition, there are some places where the cellulose surface is exposed.
 図7Aと図7Bを対比すると、次のことが分かった。非特許文献1で報告されるTiO・ナノセルロースファイバー複合材料36では、セルロース表面が一部露出しており、また、凝集した酸化チタンナノ粒子が固着している。一方、針葉樹由来のTiO・ナノセルロースファイバー複合材料32は、セルロース表面が完全に酸化チタンナノ粒子で覆われており、凝集体も見られない。 Comparing FIGS. 7A and 7B, the following was found. In the TiO2 / nanocellulose fiber composite material 36 reported in Non-Patent Document 1, the cellulose surface is partially exposed and aggregated titanium oxide nanoparticles are adhered to the composite material 36. On the other hand, in the TiO2 / nanocellulose fiber composite material 32 derived from coniferous trees, the cellulose surface is completely covered with titanium oxide nanoparticles, and no aggregates are observed.
 図7Aのアナターゼ型酸化チタンナノ粒子33のようなアナターゼ型酸化チタンナノ粒子は、図8で示した拡大図によって、次のことが観察できた。針葉樹由来のナノセルロースファイバーの表面を被覆しているアナターゼ型酸化チタンナノ粒子33aは、針状の結晶が集まった集合体で構成されており、セルロースが露出した箇所は見られなかった。アナターゼ型酸化チタンナノ粒子33aを例えば1μmのスケールと比較すると、突起の幅は数十nmであることが分かる。 The following can be observed from the enlarged view shown in FIG. 8 for the anatase-type titanium oxide nanoparticles such as the anatase-type titanium oxide nanoparticles 33 in FIG. 7A. The anatase-type titanium oxide nanoparticles 33a covering the surface of the nanocellulose fiber derived from coniferous trees were composed of aggregates of needle-shaped crystals, and no part where the cellulose was exposed was found. Comparing the anatase-type titanium oxide nanoparticles 33a with a scale of, for example, 1 μm, it can be seen that the width of the protrusions is several tens of nm.
 図9Aに示したように、化学パルプのTiO・ナノセルロースファイバー複合材料42は、アナターゼ型酸化チタンナノ粒子43のようなアナターゼ酸化チタンナノ粒子を備え、アナターゼ型酸化チタンナノ粒子43のようなアナターゼ型酸化チタンナノ粒子は、化学パルプのナノセルロースファイバーの表面を被覆していた。アナターゼ型酸化チタンナノ粒子43の外形は球形状であった。例えば1μmのスケールと比較すると、アナターゼ型酸化チタンナノ粒子43の粒径は約100nmであった。 As shown in FIG. 9A, the TiO 2 / nanocellulose fiber composite material 42 of the chemical pulp comprises anatase titanium oxide nanoparticles such as anatase-type titanium oxide nanoparticles 43 and anatase-type oxidation such as anatase-type titanium oxide nanoparticles 43. The titanium nanoparticles covered the surface of the nanocellulose fibers of the chemical pulp. The outer shape of the anatase-type titanium oxide nanoparticles 43 was spherical. For example, the particle size of the anatase-type titanium oxide nanoparticles 43 was about 100 nm as compared with the scale of 1 μm.
 アナターゼ型酸化チタンナノ粒子43のようなアナターゼ型酸化チタンナノ粒子は、図9Bで示した拡大図によって、次のことが観察できた。酸化チタンナノ粒子は、より小さい酸化チタンの針状結晶が集まった集合体によって構成されている。単一の酸化チタンナノ粒子は、ナノセルロースファイバー表面から放射状に成長した結晶が集まった集合体であった。換言すると、アナターゼ型酸化チタンナノ粒子43aは、外形が球形状であって、突起を有する形状であった。アナターゼ型酸化チタンナノ粒子43aを例えば1μmのスケールと比較すると、突起は長さ60nm、幅25nmであった。 The following can be observed from the enlarged view shown in FIG. 9B for the anatase-type titanium oxide nanoparticles such as the anatase-type titanium oxide nanoparticles 43. Titanium oxide nanoparticles are composed of aggregates of smaller titanium oxide needle-like crystals. The single titanium oxide nanoparticles were an aggregate of crystals that grew radially from the surface of the nanocellulose fiber. In other words, the anatase-type titanium oxide nanoparticles 43a had a spherical outer shape and had protrusions. Comparing the anatase-type titanium oxide nanoparticles 43a to a scale of, for example, 1 μm, the protrusions were 60 nm long and 25 nm wide.
 ナノセルロースファイバー(比較例1、セルロースのみ)、針葉樹由来のTiO・ナノセルロースファイバー複合材料(実施例2)及び化学パルプのTiO・ナノセルロースファイバー(実施例3)に対して、光触媒効果の評価を行った。光触媒効果の評価はつぎのようにして行った。メチレンブルー水溶液(200mM)を上記の試料に塗布して乾燥した。そして、紫外光を照射しながらメチレンブルー色素の吸光度を80秒間計測した。なお、光触媒効果の評価の測定条件や装置は次のようであった。測定装置は自家製の紫外レーザー光源を使用したセットアップであった。紫外光源として、金門光波社製He-Cdレーザー(波長325nm,5mW)を使用した。吸光度の計測には赤色レーザー(波長650nm)を使用し、試料を透過した光強度をフォトディテクターで検出した。 Photocatalytic effect on nanocellulose fiber (Comparative Example 1, cellulose only), TiO2 / nanocellulose fiber composite material derived from coniferous tree (Example 2) and TiO2 / nanocellulose fiber of chemical pulp (Example 3). Evaluation was performed. The evaluation of the photocatalytic effect was performed as follows. An aqueous solution of methylene blue (200 mM) was applied to the above sample and dried. Then, the absorbance of the methylene blue dye was measured for 80 seconds while irradiating with ultraviolet light. The measurement conditions and equipment for evaluating the photocatalytic effect were as follows. The measuring device was set up using a homemade ultraviolet laser light source. A He-Cd laser (wavelength 325 nm, 5 mW) manufactured by Kinmon Konami Co., Ltd. was used as an ultraviolet light source. A red laser (wavelength 650 nm) was used to measure the absorbance, and the light intensity transmitted through the sample was detected by a photodetector.
 図10に示したように、ナノセルロースファイバー(セルロースのみ)は光触媒効果を示さなかったが、化学パルプのTiO・ナノセルロースファイバー複合材料と針葉樹由来のTiO・ナノセルロースファイバー複合材料は共に光触媒効果を示した。すなわち、化学パルプのTiO・ナノセルロースファイバー複合材料では、紫外線照射時間が10secまでに初期濃度で規格化した色素の濃度が減少した。また、針葉樹由来のTiO・ナノセルロースファイバー複合材料では、紫外線照射時間が80secまでの間初期濃度で規格化した色素の濃度が減少し、特に紫外線照射時間が20secまでにおける色素濃度の減少が大きかった。化学パルプのTiO・ナノセルロースファイバー複合材料よりも、針葉樹由来のTiO・ナノセルロースファイバー複合材料の方が、光触媒効果が大きい。 As shown in FIG. 10, nanocellulose fiber (cellulose only) did not show a photocatalytic effect, but both the TiO 2 / nanocellulose fiber composite material of chemical pulp and the TiO2 / nanocellulose fiber composite material derived from coniferous trees were photocatalyst. The effect was shown. That is, in the TiO 2 / nanocellulose fiber composite material of chemical pulp, the concentration of the dye standardized at the initial concentration was reduced by the ultraviolet irradiation time of 10 sec. In addition, in the conifer-derived TiO2 / nanocellulose fiber composite material, the concentration of the dye standardized at the initial concentration decreased until the ultraviolet irradiation time was up to 80 sec, and the decrease in the dye concentration was particularly large when the ultraviolet irradiation time was up to 20 sec. rice field. The TiO 2 / nanocellulose fiber composite material derived from coniferous trees has a greater photocatalytic effect than the TiO2 / nanocellulose fiber composite material of chemical pulp.
(実施例4、比較例2のTiO・セルロースファイバー複合材料の製造および評価)
 本発明者は、実施例1のナノセルロースファイバー分散溶液の代わりに、セルロースファイバーとして、晒し小巾木綿(綿100%)を50mm四方に裁断した布を用いた。図11は、このセルロースファイバーのSEM画像である。このセルロースファイバーの直径は、マイクロサイズである。このセルロースファイバーを混合液に浸漬し、実施例1と同じ合成条件で、各工程P3、P4、P5を行い、実施例4のTiO・セルロースファイバー複合材料を得た。
(Manufacturing and Evaluation of TIO 2 / Cellulose Fiber Composite Material of Example 4 and Comparative Example 2)
Instead of the nanocellulose fiber dispersion solution of Example 1, the present inventor used a cloth obtained by cutting bleached small-width cotton (100% cotton) into 50 mm squares as cellulose fibers. FIG. 11 is an SEM image of this cellulose fiber. The diameter of this cellulose fiber is micro size. This cellulose fiber was immersed in a mixed solution, and each step P3, P4, P5 was carried out under the same synthetic conditions as in Example 1 to obtain a TiO2 / cellulose fiber composite material of Example 4.
 図12A、12Bは、実施例4のTiO・セルロースファイバー複合材料のSEM像である。セルロースファイバーを被覆する酸化チタンは、被覆率が100%の箇所においては、粒子の境目が見られず、平板状の集合体を形成すると推察される。セルロースファイバーを被覆する酸化チタンは、被覆率が100%ではない箇所では、外形が球形状の粒子である。粒子の粒径は、100nm以上400nm以下である。図12A、12Bには示されていないが、粒子は、複数の突起を有する。複数の突起のそれぞれの形状は、幅が30nm以上40nm以下、長さが40nm以上60nm以下の錐体形状である。 12A and 12B are SEM images of the TiO 2 / cellulose fiber composite material of Example 4. It is presumed that the titanium oxide that coats the cellulose fiber does not show the boundary of particles at the place where the coverage is 100%, and forms a flat plate-like aggregate. Titanium oxide that coats the cellulose fiber is a particle having a spherical outer shape in a place where the coverage is not 100%. The particle size of the particles is 100 nm or more and 400 nm or less. Although not shown in FIGS. 12A, 12B, the particles have a plurality of protrusions. The shape of each of the plurality of protrusions is a cone shape having a width of 30 nm or more and 40 nm or less and a length of 40 nm or more and 60 nm or less.
 また、本発明者は、非特許文献1に記載の製造方法を参考にして、比較例2のTiO・セルロースファイバー複合材料を製造した。具体的には、アナターゼ型酸化チタン(Evonik(Degussa)P25)を蒸留水中に加え、超音波装置(SHARP、UT-304F)を用いて、超音波処理15分を行い、アナターゼ型酸化チタンを分散させた。そこに、セルロースファイバーとして、実施例4で用いたものと同じ種類の布を浸漬し、超音波処理1時間を行った。その後、室温で48時間乾燥させて、比較例2のTiO・セルロースファイバー複合材料を得た。比較例2のTiO・セルロースファイバー複合材料は、セルロースファイバーに対して酸化チタンナノ粒子が物理吸着して得られたものである。 Further, the present inventor produced the TiO2 / cellulose fiber composite material of Comparative Example 2 with reference to the production method described in Non-Patent Document 1. Specifically, anatase-type titanium oxide (Evonik (Degussa) P25) is added to distilled water, and ultrasonic treatment is performed for 15 minutes using an ultrasonic device (SHARP, UT-304F) to disperse anatase-type titanium oxide. I let you. A cloth of the same type as that used in Example 4 was immersed therein as a cellulose fiber, and ultrasonic treatment was performed for 1 hour. Then, it was dried at room temperature for 48 hours to obtain the TiO 2 / cellulose fiber composite material of Comparative Example 2. The TiO2 / cellulose fiber composite material of Comparative Example 2 was obtained by physically adsorbing titanium oxide nanoparticles to the cellulose fiber.
 そして、実施例4のTiO・セルロースファイバー複合材料と、比較例2のTiO・セルロースファイバー複合材料とのそれぞれに対して、引き剥がし試験による酸化チタンナノ粒子の耐久性試験を行った。引き剥がし試験では、各TiO・セルロースファイバー複合材料を、ガラス基板に両面テープで固定し、試験用テープとして以下の二種類の異なるテープ(すなわち、第1、第2テープ)を用いた。第1テープは、製品名:NITOMS マスキングテープ(NITOMS社製)、品番:J8102、粘着力:2.06N /10 mmである。第2テープは、TRUSCO社製の布粘着テープ、品番:GNT-50、粘着力:4.4 N/10 mmである。 Then, the durability test of the titanium oxide nanoparticles by the peeling test was performed on each of the TiO 2 / cellulose fiber composite material of Example 4 and the TiO 2 / cellulose fiber composite material of Comparative Example 2. In the peeling test, each TiO2 / cellulose fiber composite material was fixed to a glass substrate with double-sided tape, and the following two different types of tapes (that is, the first and second tapes) were used as test tapes. The first tape is product name: NITOMS masking tape (manufactured by NITOMS), product number: J8102, adhesive strength: 2.06N / 10 mm. The second tape is a cloth adhesive tape manufactured by TRUSCO, product number: GNT-50, adhesive strength: 4.4 N / 10 mm.
 図13に示すように、テープ101をローラー102に固定して、テープ101を試料103に接触させて水平に動かすことにより、引き剥がし試験を行った。図14A、14B、14Cに、試験前後の実施例4のTiO・セルロースファイバー複合材料のSEM画像を示す。図15A、15B、図15Cに、試験前後の比較例2のTiO・セルロースファイバー複合材料のSEM画像を示す。図14A、15Aは、引き剥がし試験前のSEM画像である。図14B、15Bは、第1テープの引き剥がし後のSEM画像である。図14C、15Cは、第2テープの引き剥がし後のSEM画像である。 As shown in FIG. 13, the tape 101 was fixed to the roller 102, and the tape 101 was brought into contact with the sample 103 and moved horizontally to perform a peeling test. 14A, 14B and 14C show SEM images of the TiO2 / cellulose fiber composite material of Example 4 before and after the test. 15A, 15B and 15C show SEM images of the TiO2 / cellulose fiber composite material of Comparative Example 2 before and after the test. 14A and 15A are SEM images before the peeling test. 14B and 15B are SEM images after the first tape is peeled off. 14C and 15C are SEM images after the second tape is peeled off.
 本発明者は、各SEM画像において、Bi-modal Fitのアルゴリズムを用いて、粒子部分の面積を求め、粒子の被覆率を算出した。この算出でで使用したソフトウェアは、Igor Pro (Version: 8.04、WaveMetrics社)である。表1に、試験前後の被覆率の値を示す。 The present inventor obtained the area of the particle portion in each SEM image using the Bi-modal Fit algorithm, and calculated the coverage of the particles. The software used in this calculation is Igor Pro (Version: 8.04, WaveMetrics). Table 1 shows the values of the coverage before and after the test.
Figure JPOXMLDOC01-appb-T000001
 引き剥がし前の被覆率の平均値に対する、引き剥がし後の被覆率の平均値の差が、正規分布の95%信頼区間に基づく誤差の範囲内であれば、脱離していない、と判断することができる。
Figure JPOXMLDOC01-appb-T000001
If the difference between the average value of the coverage before peeling and the average value of the coverage after peeling is within the error range based on the 95% confidence interval of the normal distribution, it is judged that the stripping has not occurred. Can be done.
 表1に示されるように、実施例4において、引き剥がし前の被覆率の平均値に対する、引き剥がし後の被覆率の平均値の差は、第1テープでは2.6%であり、第2テープでは2.4%であった。これらは、3.51%(すなわち、1.95×SE)以下の範囲内である。SEは標本標準誤差である。このため、実施例4では、第1テープ、第2テープのどちらの場合においても、引き剥がし試験後に、酸化チタンナノ粒子は脱離していないと判断することができる。このことから、実施例4のTiO・セルロースファイバー複合材料では、セルロースファイバーに対する酸化チタンナノ粒子の吸着力は、4.4N/10mm以上であることがわかる。 As shown in Table 1, in Example 4, the difference between the average value of the coverage before peeling and the average value of the coverage after peeling is 2.6% in the first tape, and the second It was 2.4% on tape. These are in the range of 3.51% (ie, 1.95 × SE) or less. SE is the sample standard error. Therefore, in Example 4, it can be determined that the titanium oxide nanoparticles have not been desorbed after the peeling test in either the first tape or the second tape. From this, it can be seen that in the TiO 2 / cellulose fiber composite material of Example 4, the adsorption force of the titanium oxide nanoparticles on the cellulose fiber is 4.4 N / 10 mm or more.
 一方、比較例2では、引き剥がし試験前の標準誤差が大きく、被覆率が正規分布をしていなかった。すなわち、酸化チタンナノ粒子が不均一に付着していた。そして、第1テープ、第2テープ引き剥がし後の被覆率の平均値の誤差が減少していたことから、大きいサイズの酸化チタンナノ粒子の集合体が脱離したことが推察される。このことから、比較例2のTiO・セルロースファイバー複合材料では、セルロースファイバーに対する酸化チタンナノ粒子の吸着力は、2.06N/10mmよりも小さいことがわかる。 On the other hand, in Comparative Example 2, the standard error before the peeling test was large, and the coverage was not normally distributed. That is, the titanium oxide nanoparticles were non-uniformly attached. Since the error in the average value of the coverage after peeling off the first tape and the second tape was reduced, it is inferred that the aggregate of large-sized titanium oxide nanoparticles was desorbed. From this, it can be seen that in the TiO 2 / cellulose fiber composite material of Comparative Example 2, the adsorption force of the titanium oxide nanoparticles on the cellulose fiber is smaller than 2.06 N / 10 mm.
 以上から、本発明の製造方法によって得られたTiO・セルロースファイバー複合材料は、酸化チタン粒子の物理吸着により得られたTiO・セルロースファイバー複合材料と比較して、高い耐久性を有することがわかった。 From the above, the TiO 2 / cellulose fiber composite material obtained by the production method of the present invention has higher durability than the TiO 2 / cellulose fiber composite material obtained by physical adsorption of titanium oxide particles. have understood.
 また、本発明者は、実施例4のTiO・セルロースファイバー複合材料と、比較例3のセルロースファイバーとのそれぞれについて、JIS R 1702:2020に従って、抗菌性試験を行った。比較例3のセルロースファイバーは、酸化チタンの複合化がされていない、実施例4で用いた布と同じ種類の布である。抗菌性試験では、試験品に対して菌を接種した後、光を照射して、菌の個数を検出した。また、洗濯後の各試験品における菌の個数を検出した。抗菌性試験における試験菌株、放射照度、試験菌液摂取量、洗濯方法は、次の通りである。 In addition, the present inventor conducted an antibacterial property test on each of the TiO 2 / cellulose fiber composite material of Example 4 and the cellulose fiber of Comparative Example 3 in accordance with JIS R 1702: 2020. The cellulose fiber of Comparative Example 3 is the same type of cloth as the cloth used in Example 4 without the composite of titanium oxide. In the antibacterial test, the test product was inoculated with bacteria and then irradiated with light to detect the number of bacteria. In addition, the number of bacteria in each test product after washing was detected. The test strain, irradiance, test bacterial solution intake, and washing method in the antibacterial test are as follows.
・試験菌株:黄色ぶどう球菌
・放射照度:0.10mW/cm・8時間
・試験菌液摂取量:0.2mL[界面活性剤(Tween80)0.05%を添加した試験菌液を使用]
・洗濯方法:(一社)繊維評価技術協議会「SEKマーク繊維製品の洗濯方法」-標準洗濯法
・ Test bacterial strain: Yellow coccus ・ Irradiance: 0.10 mW / cm 2.8 hours ・ Test bacterial solution intake: 0.2 mL [Use test bacterial solution to which 0.05% of surfactant (Tween80) is added]
-Washing method: (one company) Textile Evaluation Technology Council "Washing method for SEK mark textile products" -Standard washing method
 表2に、比較例3のセルロースファイバーの抗菌性試験結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、接種直後の生菌数と比較して、光照射後の生菌数および暗所での生菌数は増加していた。
Table 2 shows the antibacterial test results of the cellulose fiber of Comparative Example 3.
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, the viable cell count after light irradiation and the viable cell count in the dark were increased as compared with the viable cell count immediately after inoculation.
 表3に、実施例4のTiO・セルロースファイバー複合材料の抗菌性試験結果を示す。
Figure JPOXMLDOC01-appb-T000003
 実施例4のTiO・セルロースファイバー複合材料の接種直後の生菌数は、比較例3のセルロースファイバーの接種直後の生菌数と同じである。表3に示されるように、洗濯0回の光照射後の生菌数の常用対数値は、接種直後の生菌数の常用対数値4.4から1.3へ減少していた。このことから、光触媒抗菌効果を有することが認められた。さらに、洗濯を10回繰り返し行った後の光照射後の生菌数は、洗濯0回の光照射後の生菌数の常用対数値と同じであった。このことから、光触媒抗菌効果が維持されることが確認された。
Table 3 shows the antibacterial test results of the TiO 2 / cellulose fiber composite material of Example 4.
Figure JPOXMLDOC01-appb-T000003
The viable cell count immediately after inoculation of the TiO 2 / cellulose fiber composite material of Example 4 is the same as the viable cell count immediately after inoculation of the cellulose fiber of Comparative Example 3. As shown in Table 3, the common logarithmic value of the viable cell count after light irradiation of 0 times of washing decreased from the common logarithmic value of 4.4 immediately after inoculation to 1.3. From this, it was confirmed that it had a photocatalytic antibacterial effect. Furthermore, the viable cell count after light irradiation after repeated washing 10 times was the same as the usual logarithmic value of the viable cell count after light irradiation 0 times of washing. From this, it was confirmed that the photocatalytic antibacterial effect was maintained.
 また、洗濯0回の暗所の生菌数の常用対数値は、接種直後の生菌数の常用対数値4.4から1.3へ減少していた。このことから、光を照射しなくても、実施例4のTiO・セルロースファイバー複合材料は、抗菌性を有することが確認された。さらに、洗濯を10回繰り返し行った後の暗所の生菌数は、接種直後の生菌数の常用対数値4.4よりも低い2.8であった。このことから、光を照射しなくても、抗菌効果が維持されることが確認された。 In addition, the regular logarithmic value of the viable cell count in the dark place after no washing was reduced from 4.4 to 1.3 of the viable cell count immediately after inoculation. From this, it was confirmed that the TiO 2 / cellulose fiber composite material of Example 4 has antibacterial properties even without irradiation with light. Furthermore, the viable cell count in the dark after repeated washing 10 times was 2.8, which was lower than the usual logarithmic value 4.4 of the viable cell count immediately after inoculation. From this, it was confirmed that the antibacterial effect was maintained even without irradiation with light.
 また、本発明者は、実施例4のTiO・セルロースファイバー複合材料と、比較例3のセルロースファイバーとのそれぞれについて、JIS R 1706:2020及びISO18184に従って、ウイルスを用いた抗ウイルス性能評価試験を行った。この評価試験では、試験品に対してウイルスを接種した後、光を照射して、ウイルスの個数を検出した。試験条件は、次の通りである。 In addition, the present inventor conducted an anti-virus performance evaluation test using a virus for each of the TiO 2 / cellulose fiber composite material of Example 4 and the cellulose fiber of Comparative Example 3 in accordance with JIS R 1706: 2020 and ISO 18184. gone. In this evaluation test, the test product was inoculated with the virus and then irradiated with light to detect the number of viruses. The test conditions are as follows.
・試験品の大きさ:50 mm × 50 mm
・n数:n = 1
・試験ファージ:Influenza A virus (H3N2) A/Hong Kong/8/68株(A型インフルエンザウイルス、ATCC VR-1679)宿主細胞:MDCK細胞(ATCC CCL-34)
・予備照射条件:紫外光(FL20S・BLB)1.0 mW/cm2、24 時間
・試験品の無菌化:殺菌灯照射
・光源の種類:ブラックライト蛍光灯 FL20S・BLB
・照射条件:暗所並びに紫外光 0.1 mW/cm2、照射時間 0, 8時間
・照度計:紫外線積算光量計 (C9536-01及びH9958, Hamamatsu Photonics)
・密着フィルム:ポリプロピレンフィルム(VF-10, KOKUYO)、 40 mm×40 mm
・保湿用ガラス:硼珪酸ガラス
・接種ウイルス液の濃度:3.2×106 pfu/ml
・接種量:0.2 ml/sample
-Test product size: 50 mm x 50 mm
・ Number of n: n = 1
-Test phage: Influenza A virus (H3N2) A / Hong Kong / 8/68 strain (influenza A virus, ATCC VR-1679) Host cell: MDCK cell (ATCC CCL-34)
・ Preliminary irradiation conditions: Ultraviolet light (FL20S / BLB) 1.0 mW / cm 2 , 24 hours ・ Sterilization of test product: Germicidal lamp irradiation ・ Light source type: Black light fluorescent lamp FL20S / BLB
・ Irradiation conditions: dark place and ultraviolet light 0.1 mW / cm 2 , irradiation time 0, 8 hours ・ Illuminance meter: UV integrated photometer (C9536-01 and H9958, Hamamatsu Photonics)
・ Adhesive film: Polypropylene film (VF-10, KOKUYO), 40 mm × 40 mm
・ Moisturizing glass: borosilicate glass ・ Concentration of inoculated virus solution: 3.2 × 10 6 pfu / ml
・ Inoculation amount: 0.2 ml / sample
 表4に、試験結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4中の「<2.0×10」は、検出限界よりも低い値であることを示す。実施例4のTiO・セルロースファイバー複合材料では、光照射後のウイルス感染価は、検出限界よりも低い値であった。このことから、実施例4のTiO・セルロースファイバー複合材料は、光触媒抗ウイルス効果を有することが認められた。
Table 4 shows the test results.
Figure JPOXMLDOC01-appb-T000004
“<2.0 × 10 2 ” in Table 4 indicates that the value is lower than the detection limit. In the TiO 2 / cellulose fiber composite material of Example 4, the virus infectivity after light irradiation was lower than the detection limit. From this, it was confirmed that the TiO2 -cellulose fiber composite material of Example 4 had a photocatalytic antiviral effect.
 また、実施例4のTiO・セルロースファイバー複合材料では、暗所8時間後のウイルス感染価は、検出限界よりも低い値であった。このことから、実施例4のTiO・セルロースファイバー複合材料は、光を照射しなくても、抗ウイルス効果を有することが認められた。 Further, in the TiO 2 / cellulose fiber composite material of Example 4, the virus infectivity titer after 8 hours in the dark was lower than the detection limit. From this, it was confirmed that the TiO2 / cellulose fiber composite material of Example 4 had an antiviral effect even without irradiation with light.
 上記の説明の通り、実施例4のTiO・セルロースファイバー複合材料は、光を照射しなくても、抗菌効果および抗ウイルス効果を有する。これは、セルロースファイバーの表面を被覆する酸化チタンが球形状の粒子であり、この粒子が有する複数の突起によるものと考えられる。 As described above, the TiO2 / cellulose fiber composite material of Example 4 has an antibacterial effect and an antiviral effect even without irradiation with light. It is considered that this is because the titanium oxide that coats the surface of the cellulose fiber is spherical particles, and the plurality of protrusions of these particles are present.
 本発明による酸化チタン・セルロースファイバー複合材料は、環境浄化・抗菌機能を持ったパッケージや壁材、家庭用マスク、医療用マスク等として、応用することができる。 The titanium oxide / cellulose fiber composite material according to the present invention can be applied as a package or wall material having an environmental purification / antibacterial function, a household mask, a medical mask, or the like.
1: セルロースファイバー
2: 酸化チタン・セルロースファイバー複合材料
3: 酸化チタン(TiO)ナノ粒子
12、22:広葉樹由来のTiO・ナノセルロースファイバー複合材料
13、13a、23、23a、33、33a、43、43a:アナターゼ型酸化チタンナノ粒子
16:ナノセルロースファイバー凝集繊維
17:ナノセルロースファイバー
32:針葉樹由来のTiO・ナノセルロースファイバー複合材料
35:酸化チタンナノ粒子
36:非特許文献1で報告されるTiO・ナノセルロースファイバー複合材料
42:化学パルプのTiO・ナノセルロースファイバー複合材料
1: Cellulose fiber 2: Titanium oxide-cellulose fiber composite material 3: Titanium oxide (TiO 2 ) nanoparticles 12, 22: TiO2 / nanocellulose fiber composite material derived from broadleaf trees 13, 13a, 23, 23a, 33, 33a, 43, 43a: Anatase-type titanium oxide nanoparticles 16: Nanocellulose fiber aggregated fiber 17: Nanocellulose fiber 32: TiO2 / nanocellulose fiber composite material derived from coniferous tree 35: Titanium oxide nanoparticles 36: TiO reported in Non-Patent Document 1. 2. Nanocellulose fiber composite material 42: TiO of chemical pulp 2. Nanocellulose fiber composite material

Claims (8)

  1.  酸化チタン・セルロースファイバー複合材料であって、
     セルロースファイバーと、
     前記セルロースファイバーの表面の少なくても一部分を被覆する酸化チタンと、を備え、
     前記酸化チタンは、前記セルロースファイバーの表面に対して直接合成されることにより、前記セルロースファイバーの表面を被覆する、酸化チタン・セルロースファイバー複合材料。
    Titanium oxide / cellulose fiber composite material
    Cellulose fiber and
    Titanium oxide, which covers at least a part of the surface of the cellulose fiber, is provided.
    The titanium oxide is a titanium oxide / cellulose fiber composite material that covers the surface of the cellulose fiber by being directly synthesized with respect to the surface of the cellulose fiber.
  2.  前記合成は、チタンフッ化アンモニウムとホウ酸と水とを含む水溶液を用いた液相析出法による合成である、請求項1に記載の酸化チタン・セルロースファイバー複合材料。 The titanium oxide / cellulose fiber composite material according to claim 1, wherein the synthesis is a synthesis by a liquid phase precipitation method using an aqueous solution containing ammonium titanium fluoride, boric acid and water.
  3.  酸化チタン・セルロースファイバー複合材料であって、
     セルロースファイバーと、
     前記セルロースファイバーの表面の少なくても一部分を被覆する酸化チタンと、を備え、
     前記セルロースファイバーに対する前記酸化チタンの吸着力は、4.4N/10mm以上である、酸化チタン・セルロースファイバー複合材料。
    Titanium oxide / cellulose fiber composite material
    Cellulose fiber and
    Titanium oxide, which covers at least a part of the surface of the cellulose fiber, is provided.
    A titanium oxide / cellulose fiber composite material having an adsorption force of titanium oxide on the cellulose fiber of 4.4 N / 10 mm or more.
  4.  前記酸化チタンは、外形が球形状の粒子であり、
     前記粒子の粒径は、90nm以上400nm以下であり、
     前記粒子は、複数の突起を有し、
     前記複数の突起のそれぞれの形状は、幅が20nm以上40nm以下、長さが20nm以上60nm以下の錐体形状である、請求項1ないし3のいずれか1つに記載の酸化チタン・セルロースファイバー複合材料。
    The titanium oxide is a particle having a spherical outer shape and has a spherical shape.
    The particle size of the particles is 90 nm or more and 400 nm or less.
    The particles have a plurality of protrusions and have a plurality of protrusions.
    The titanium oxide / cellulose fiber composite according to any one of claims 1 to 3, wherein each of the plurality of protrusions has a cone shape having a width of 20 nm or more and 40 nm or less and a length of 20 nm or more and 60 nm or less. material.
  5.  前記セルロースファイバーは、直径が1nm以上100nm以下のナノセルロースファイバーである、請求項1ないし4のいずれか1つに記載の酸化チタン・セルロースファイバー複合材料。 The titanium oxide / cellulose fiber composite material according to any one of claims 1 to 4, wherein the cellulose fiber is a nanocellulose fiber having a diameter of 1 nm or more and 100 nm or less.
  6.  前記酸化チタンはアナターゼ型である、請求項1ないし5のいずれか1つに記載の酸化チタン・セルロースファイバー複合材料。 The titanium oxide / cellulose fiber composite material according to any one of claims 1 to 5, wherein the titanium oxide is an anatase type.
  7.  液相析出法によりセルロースファイバーの表面に酸化チタンを直接合成する、酸化チタン・セルロースファイバー複合材料の製造方法。 A method for manufacturing a titanium oxide / cellulose fiber composite material that directly synthesizes titanium oxide on the surface of cellulose fiber by the liquid phase precipitation method.
  8.  酸化チタン・セルロースファイバー複合材料の製造方法であって、
     チタンフッ化アンモニウムとホウ酸と水とを含む水溶液と、セルロースファイバーとを準備すること(P1)と、
     前記水溶液中で、前記セルロースファイバーの表面に酸化チタンを析出させること(P2、P3)と、を含む、酸化チタン・セルロースファイバー複合材料の製造方法。
    A method for manufacturing a titanium oxide / cellulose fiber composite material.
    Preparing an aqueous solution containing ammonium titanium fluoride, boric acid and water, and cellulose fiber (P1),
    A method for producing a titanium oxide / cellulose fiber composite material, which comprises precipitating titanium oxide on the surface of the cellulose fiber in the aqueous solution (P2, P3).
PCT/JP2021/041393 2020-11-10 2021-11-10 Titanium oxide-cellulose fiber composite material and method for producing same WO2022102671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022561970A JPWO2022102671A1 (en) 2020-11-10 2021-11-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020187264 2020-11-10
JP2020-187264 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102671A1 true WO2022102671A1 (en) 2022-05-19

Family

ID=81601235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041393 WO2022102671A1 (en) 2020-11-10 2021-11-10 Titanium oxide-cellulose fiber composite material and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2022102671A1 (en)
WO (1) WO2022102671A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201668A (en) * 2001-12-28 2003-07-18 Konoshima Chemical Co Ltd Photocatalytic cellulose fiber and method for producing the same
JP2006509118A (en) * 2002-12-09 2006-03-16 スペシャルティ ミネラルズ (ミシガン) インク. Filler-fiber composite
WO2018151050A1 (en) * 2017-02-14 2018-08-23 日本製紙株式会社 Composition
JP2019501313A (en) * 2016-01-05 2019-01-17 ストラ エンソ オーワイジェイ Method for producing a composite comprising MFC and composite produced by this method
WO2019087694A1 (en) * 2017-10-31 2019-05-09 日本製紙株式会社 Titanium oxide composite fibers and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201668A (en) * 2001-12-28 2003-07-18 Konoshima Chemical Co Ltd Photocatalytic cellulose fiber and method for producing the same
JP2006509118A (en) * 2002-12-09 2006-03-16 スペシャルティ ミネラルズ (ミシガン) インク. Filler-fiber composite
JP2019501313A (en) * 2016-01-05 2019-01-17 ストラ エンソ オーワイジェイ Method for producing a composite comprising MFC and composite produced by this method
WO2018151050A1 (en) * 2017-02-14 2018-08-23 日本製紙株式会社 Composition
WO2019087694A1 (en) * 2017-10-31 2019-05-09 日本製紙株式会社 Titanium oxide composite fibers and method for producing same

Also Published As

Publication number Publication date
JPWO2022102671A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN107486110B (en) A kind of method of efficient degradation methylene blue
KR100639719B1 (en) High Active Photocatalyst Particle, Method For Production Thereof And Use Thereof
JP6520934B2 (en) Method of manufacturing fine fiber and fine fiber-containing sheet, sheet obtained thereby, and resin composite laminated with resin
Ming et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property
US7060643B2 (en) Photo-functional powder and applications thereof
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
Gupta et al. Sol-gel derived titanium dioxide finishing of cotton fabric for self cleaning
Rajendran et al. Enhancement of thermal stability, flame retardancy, and antimicrobial properties of cotton fabrics functionalized by inorganic nanocomposites
Lee et al. Titanium dioxide-coated nanofibers for advanced filters
JP2013505187A (en) Stable nanotitania sols and their preparation
CN107311227B (en) A kind of preparation method and product of the titanium dioxide nanoplate mixing crystal form
TW201016611A (en) Method for making metal/titania pulp and photocatalyst
CA2436747C (en) High activity photo-catalyst
Veronovski et al. Characterization of TiO2/TiO2—SiO2 coated cellulose textiles
Verhovšek et al. The Synthesis of Anatase Nanoparticles and the Preparation of Photocatalytically Active Coatings Based on Wet Chemical Methods for Self‐Cleaning Applications
CN104870386B (en) It is coated with the transparent base of at least one at least difunctional porous layer, especially glass baseplate, Manufacturing approach and use
US20090123769A1 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
WO2022102671A1 (en) Titanium oxide-cellulose fiber composite material and method for producing same
Moafi et al. Semiconductor‐assisted self‐cleaning polymeric fibers based on zinc oxide nanoparticles
EP1354628B1 (en) Powder exhibiting optical function and use thereof
Pstrowska et al. The Properties and Activity of TiO2/beta‐SiC Nanocomposites in Organic Dyes Photodegradation
JP4566586B2 (en) Method for producing photocatalyst body
JP2006083033A (en) Rutile-type titanium oxide sol
CN103521247B (en) A kind of preparation method of self assembly Silver-phosphate-bascomposite composite visible light photocatalytic material
Matsuda et al. Hot-water treatment of sol–gel derived SiO 2–TiO 2 microparticles and application to electrophoretic deposition for thick films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891917

Country of ref document: EP

Kind code of ref document: A1