WO2022102664A1 - Grain saccharified liquid and method of producing same - Google Patents

Grain saccharified liquid and method of producing same Download PDF

Info

Publication number
WO2022102664A1
WO2022102664A1 PCT/JP2021/041370 JP2021041370W WO2022102664A1 WO 2022102664 A1 WO2022102664 A1 WO 2022102664A1 JP 2021041370 W JP2021041370 W JP 2021041370W WO 2022102664 A1 WO2022102664 A1 WO 2022102664A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
saccharified
saccharified solution
dietary fiber
solution
Prior art date
Application number
PCT/JP2021/041370
Other languages
French (fr)
Japanese (ja)
Inventor
舜 渡辺
亮平 福本
真也 木村
Original Assignee
群栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群栄化学工業株式会社 filed Critical 群栄化学工業株式会社
Publication of WO2022102664A1 publication Critical patent/WO2022102664A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/60Sweeteners
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/06Glucose; Glucose-containing syrups obtained by saccharification of starch or raw materials containing starch

Definitions

  • the present invention relates to a cereal saccharified liquid and a method for producing the cereal saccharified liquid.
  • the saccharified solution is obtained from a reaction of converting high molecular weight carbohydrates such as starch and cellulose into low molecular weight saccharides by the action of enzymes and the like, and is widely used as a sweetener for foods.
  • grains are often used as a raw material for saccharified liquids, and methods for treating grains are being studied.
  • Patent Document 1 contains a large amount of starch and insoluble fiber in brown rice. Therefore, the insoluble component of brown rice is decomposed by enzymatic treatment to make brown rice water-soluble as a raw material.
  • An invention aimed at providing a beverage composition according to the above is described. Specifically, in Patent Document 1, protease, cellulase and pectinase are mixed with an aqueous dispersion of finely crushed brown rice, enzymatically decomposed, and then heated to obtain a pregelatinized swollen rice powder liquid, and then amylases are mixed.
  • a method of enzymatic decomposition has been proposed, and it is described that the liquid derived from brown rice obtained by the method contains extremely few substances insoluble in water.
  • Patent Document 2 describes a method for producing a rice saccharified solution.
  • water is added to raw rice, and the raw rice is subjected to high-temperature and high-pressure treatment to sterilize the raw material microorganisms, pregelatinize starch, promote swelling of rice, and then cool to 45 to 50 ° C. suitable for enzymatic reaction.
  • the enzyme as amylase center
  • the homogenizer micronization
  • Patent Document 3 grains are used as raw materials, and amylase is charged into a pulverizer as the raw materials, hot water and liquefied enzyme, and the raw materials are pulverized in a mixed solution obtained in the pulverizer. ⁇ Dispersion, dissolution, pregelatinization, and liquefaction are performed all at once, and the obtained fluid treatment liquid flows through the liquid passage tube connected to the crusher and is provided in front of the treatment liquid by a heating device.
  • a method for continuously producing a cereal stock solution which is characterized by deactivating the enzymes in the grain, is described, whereby a stable grain stock solution suitable for beverages and the like can be continuously produced in a short time from the input of raw materials with high efficiency. Can be done.
  • Japanese Unexamined Patent Publication No. 5-137545 Japanese Patent Application Laid-Open No. 2003-250485 Japanese Unexamined Patent Publication No. 2009-207359
  • the present inventor used oats or barley as a raw material and diligently studied the treatment method thereof.
  • the contents of insoluble dietary fiber, water-soluble dietary fiber and isomaltooligosaccharide were high, and the intestine was regulated. It has been found that it is possible to provide a grain saccharified solution with less roughness by adjusting the particle size distribution of insoluble components in the grain saccharified solution, in addition to being expected to have an effect and an intestinal regulating effect.
  • the content of insoluble dietary fiber contained in the solid content in the cereal saccharified solution is 1.0 wt% or more, and the content of water-soluble dietary fiber contained in the solid content in the grain saccharified solution is contained.
  • a cereal saccharified solution which is a cereal saccharified solution characterized in that the grain that is the raw material of the grain saccharified solution contains at least one of oat and barley.
  • the grain is oat.
  • the water-soluble dietary fiber content is 2.0 wt% or more.
  • a second aspect of the present invention is a method for producing a saccharified liquid from a grain, wherein the grain contains at least one of oats and barley, and the saccharified liquid is contained in the solid content in the grain saccharified liquid.
  • the content of insoluble dietary fiber contained is 1.0 wt% or more
  • the content of water-soluble dietary fiber contained in the solid content of the grain saccharified solution is 0.6 wt% or more
  • It is a method for producing a cereal saccharified liquid, characterized in that the ratio of sugar is 10.0 wt% or more and the average particle size of insoluble components in the cereal saccharified liquid is 30 to 70 ⁇ m.
  • the liquefied enzyme and the saccharified enzyme used for producing the saccharified solution each have a ⁇ -glucanase activity of 0 to 80%.
  • the homogenizer treatment is performed on the saccharified liquid at a pressure of 10 MPa or more.
  • the cereal is oat.
  • the water-soluble dietary fiber content is 2.0 wt% or more.
  • the third aspect of the present invention is a beverage using the above-mentioned grain saccharified liquid.
  • the fourth aspect of the present invention is a sweet product using the above-mentioned grain saccharified liquid.
  • the first and second aspects of the present invention it is possible to provide a cereal saccharified solution having a novel composition expected to have an intestinal regulating effect and an intestinal regulating effect and having less roughness. Further, according to the third and fourth aspects of the present invention, it is possible to provide a beverage and a sweet product using such a saccharified solution.
  • the "cereal saccharified liquid” is a liquid produced by using grains as a raw material and undergoing liquefaction and saccharification of grains, and can be used as, for example, a sweetener.
  • the main raw materials for the grain saccharified liquid are grains and water (preferably pure water).
  • the grain is not particularly limited as long as it is a grain capable of containing insoluble dietary fiber, water-soluble dietary fiber and isomaltooligosaccharide in the saccharified solution, and is not particularly limited, and is, for example, rice, wheat, corn, and the like. Examples include great millet, hie, corn, millet, barley, oats, and rye.
  • the grain as a raw material preferably contains at least one of oats and barley, and more preferably oats.
  • Oats and barley contain a large amount of ⁇ -glucan, which is a water-soluble dietary fiber, and are preferable from the viewpoint of providing a health-oriented saccharified solution. While barley has acidity and bitterness, oats have no habit, so oats are suitable from the viewpoint of providing a delicious saccharified solution.
  • the total amount of oats and barley in the grain is preferably at least 50 wt% or more, more preferably 80 to 100 wt%.
  • the grain saccharified solution of the present invention contains dietary fiber.
  • Dietary fiber is a substance contained in food that cannot be digested by human digestive enzymes, and is usually roughly classified into insoluble dietary fiber that is insoluble in water and water-soluble dietary fiber that is soluble in water.
  • the effectiveness of dietary fiber is explained, for example, in the revised and expanded edition of the Handbook of Functional Food Materials (Yakuji Nippo Co., Ltd., published in 2006).
  • Insoluble dietary fiber has the effect of adjusting bowel movements and preventing constipation, and ingestion of insoluble dietary fiber increases bifidobacteria and improves the intestinal environment.
  • the grain saccharified solution of the present invention can be expected to have an intestinal regulating effect by containing insoluble dietary fiber.
  • the insoluble dietary fiber include cellulose, hemicellulose, chitin, chitosan and the like.
  • the insoluble dietary fiber is preferably the insoluble dietary fiber derived from the above-mentioned grains.
  • a grain saccharified liquid having a high content of insoluble dietary fiber can be obtained by producing the saccharified liquid without removing the insoluble dietary fiber after the liquefaction step and the saccharification step. Further, by using oats as a raw material of the grain saccharified liquid, the content of insoluble dietary fiber can be increased.
  • the content of insoluble dietary fiber contained in the solid content in the grain saccharified liquid is preferably 1.0 wt% or more, more preferably 2.0 wt% or more, still more preferably 4.0 wt% or more.
  • the content of insoluble dietary fiber contained in the solid content in the grain saccharified liquid is, for example, 8.0 wt% or less, preferably 6.0 wt% or less.
  • Water-soluble dietary fiber has the effect of increasing blood glucose level and reducing cholesterol, slowing down the absorption of carbohydrates, suppressing the rapid increase of postprandial blood glucose level, and also having an intestinal regulation effect.
  • the grain saccharified solution of the present invention can also be expected to have an intestinal regulating effect even if it contains water-soluble dietary fiber.
  • the water-soluble dietary fiber include glucan, pectin, glucomannan, alginic acid, agarose, agaropectin, carrageenan, polydextrose and the like.
  • the water-soluble dietary fiber is preferably the water-soluble dietary fiber derived from the above-mentioned grains.
  • the water-soluble dietary fiber derived from oats and barley is preferable from the viewpoint of providing a health-oriented saccharified solution.
  • the content of water-soluble dietary fiber is high by liquefying and saccharifying the water-soluble dietary fiber contained in the raw material, particularly ⁇ -glucan, without enzymatically decomposing it. A grain saccharified solution is obtained. Further, by using oats as a raw material for the grain saccharified liquid, the content of water-soluble dietary fiber can be increased.
  • the content of water-soluble dietary fiber contained in the solid content in the grain saccharified liquid is preferably 0.6 wt% or more, more preferably 1.0 wt% or more, still more preferably 2.0 wt% or more.
  • the content of water-soluble dietary fiber contained in the solid content in the grain saccharified liquid is, for example, 6.0 wt% or less, preferably 4.0 wt% or less.
  • the grain saccharified solution of the present invention contains isomaltooligosaccharide.
  • Isomaltose oligosaccharides are saccharides having a degree of polymerization of 2 to 10, in which glucose is bound by ⁇ -1,4 bonds and ⁇ -1,6 bonds, and glucose is bound only by ⁇ -1,6 bonds. , Isomaltose, Panose, Isomaltotriose, Isomalttetraose, Isopanose and the like.
  • Isomaltooligosaccharides are less likely to cause diarrhea than sugar alcohols and can be expected to have an intestinal regulating effect.
  • the effectiveness of isomaltooligosaccharides is explained, for example, in the revised and expanded edition of the Handbook of Functional Food Materials (Yakuji Nippo Co., Ltd., published in 2006).
  • a cereal saccharified solution having a high proportion of isomaltooligosaccharide can be obtained.
  • the ratio of isomaltooligosaccharides to the total saccharides contained in the grain saccharified solution is preferably 10.0 wt% or more, more preferably 13.0 wt% or more, still more preferably 15.0 wt% or more.
  • the ratio of isomaltooligosaccharides to the total saccharides contained in the grain saccharified solution is, for example, 30.0 wt% or less, preferably 25.0 wt% or less.
  • the "solid content in the grain saccharified solution” is a component obtained by removing water from the components constituting the grain saccharified solution, and is mainly composed of dietary fiber and sugar.
  • the content of insoluble dietary fiber contained in the solid content of the cereal saccharified solution and “the content of water-soluble dietary fiber contained in the solid content of the grain saccharified solution” are appropriately measured by known measurement methods. Can be measured using. For example, it can be measured by the modified Proski method of the Standard Tables of Food Composition in Japan 2015 (7th edition) Analysis Manual (published by the Ministry of Education, Culture, Sports, Science and Technology).
  • the "ratio of isomaltooligosaccharides to the total saccharides contained in the cereal saccharified solution" can be measured by appropriately using a known measuring method.
  • the monosaccharide, maltose, maltooligosaccharide, and sucrose contents obtained by liquid chromatography using an exclusion type ion exchange column and a normal layer column from the total sugar content obtained by liquid chromatography using an exclusion type ion exchange column. can be obtained by subtracting.
  • the grain saccharified solution is pretreated with activated carbon, ion exchange resin, solid layer extraction, membrane filter, etc., and high performance liquid chromatography (HPLC: trade name “Alliance (registered trademark) HPLC system” (Japan Waters). )) was used to analyze the total sugar content under the following conditions, and high performance liquid chromatography (HPLC: trade name “Promindence” (manufactured by Shimadzu GLC)) was used to perform simple sugar under the following conditions. , Martose, maltooligosaccharide, sucrose content can be analyzed.
  • the grain saccharified solution of the present invention contains various saccharides such as monosaccharides, disaccharides, trisaccharides, and tetrasaccharides and above.
  • the total content of saccharides contained in the solid content in the grain saccharified solution of the present invention is, for example, 30 to 95 wt%.
  • the cereal saccharified solution of the present invention contains a large amount of isomaltooligosaccharides, in many cases, the proportion of trisaccharides or more in the sugar composition is high.
  • the ratio of saccharides of trisaccharides or more to the total saccharides contained in the grain saccharified solution of the present invention is preferably 30 wt% or more, more preferably 40 wt% or more, still more preferably 50 wt% or more. ..
  • the ratio of saccharides of trisaccharides or more to the total saccharides contained in the grain saccharified solution of the present invention is, for example, 70.0 wt% or less, preferably 60.0 wt% or less.
  • the ratio of monosaccharides and disaccharides to the total saccharides contained in the grain saccharified solution of the present invention is in the range of 15 to 30 wt%, respectively.
  • the composition of saccharides contained in the grain saccharified solution can be appropriately measured by using a known measuring method.
  • a known measuring method As an example, after purifying the grain saccharified solution by activated carbon, ion exchange resin, solid layer extraction, membrane filter, etc., high performance liquid chromatography (HPLC: for example, trade name "Alliance (registered trademark) HPLC system” (Nippon Waters Co., Ltd.) Can be measured by)).
  • HPLC high performance liquid chromatography
  • An example of the analysis conditions is as follows. (Analysis conditions) Column: ULTRON PS80-N (manufactured by Shimadzu GLC) Solvent: Pure water Temperature: 60 ° C Flow velocity: 0.6 ml / min Detection: RI (Differential Refractometer)
  • the average particle size of the insoluble component in the grain saccharified solution is preferably 30 to 70 ⁇ m, more preferably 50 to 70 ⁇ m, and even more preferably 55 to 65 ⁇ m. Since the grain saccharified solution of the present invention contains a relatively large amount of dietary fiber, it is preferable to adjust the particle size distribution in the grain saccharified solution.
  • the average particle size of the insoluble component in the grain saccharified liquid is within the above-specified range, it is possible to provide a grain saccharified liquid having less roughness.
  • the saccharified liquid can be adjusted to a desired particle size distribution by subjecting the saccharified liquid to a homogenizer treatment after the liquefaction step and the saccharification step.
  • the "insoluble component in the grain saccharified solution” is a component that is not dissolved in the saccharified solution among the components constituting the grain saccharified solution, and is a component for which the particle size distribution is to be measured.
  • the "insoluble component in the grain saccharified solution” is mainly composed of insoluble dietary fiber.
  • the "average particle size of the insoluble component in the grain saccharified solution” refers to the 50% particle size (D50) of the volume-based particle size distribution, and is based on the particle size distribution measured by the laser diffraction / scattering method (microtrack method). You can ask.
  • the particle size distribution of the microtrack method is to obtain the particle size and its frequency close to a sphere by irradiating a non-spherical substance with a laser and detecting and arithmetically processing the scattered light at regular angles.
  • the grain saccharified solution of the present invention has a Brix of, for example, 15.0 to 25.0.
  • Brix is a soluble solid content concentration (%), and in the present specification, the refractive index of the sucrose solution at 20 ° C. is measured, and the conversion table provided by ICUMSA (International Communication for Uniform Methods of Sugar Analysis) is used. Based on this, it is a value converted into mass / mass percent of a pure sucrose solution.
  • Brix is measured in order to adjust the concentration when concentrating or diluting the saccharified solution.
  • Brix can be measured by appropriately using a known measuring method that is already known, and generally, a commercially available sugar content meter (for example, a digital refractometer trade name "RX-5000 ⁇ " (manufactured by Atago)) can be used. Can be measured using.
  • a commercially available sugar content meter for example, a digital refractometer trade name "RX-5000 ⁇ " (manufactured by Atago)
  • RX-5000 ⁇ manufactured by Atago
  • the cereal saccharified solution of the present invention has a pH at 25 ° C., for example, 3.5 to 7.0, preferably 4.5 to 6.5.
  • the pH of the saccharified solution is measured by appropriately using a known measuring method.
  • a commercially available pH meter for example, a desktop pH meter model: F-74 (manufactured by HORIBA) can be used for measurement.
  • Another aspect of the present invention is a method for producing a cereal saccharified liquid.
  • the method for producing a cereal saccharified liquid of the present invention is a method for producing a saccharified liquid from grains using grains as a raw material, and is a method for producing a saccharified liquid from the grains.
  • the content of insoluble dietary fiber contained in the grain is 1.0 wt% or more
  • the content of water-soluble dietary fiber contained in the solid content of the grain saccharified solution is 0.6 wt% or more
  • the content of the water-soluble dietary fiber is 0.6 wt% or more.
  • the production method of the present invention typically includes a preparation step, a liquefaction step, and a saccharification step, and the saccharified liquid can be produced from grains as a raw material through these steps.
  • the main raw materials of the grain saccharified liquid are grains and water.
  • the grain used as a raw material preferably contains at least one of oats and barley, and is more preferably oats.
  • the crushed grain is used as a raw material, and the crushed product of the grain is mixed with an aqueous medium such as pure water to obtain a preparation liquid.
  • an aqueous medium such as pure water
  • the ratio of the grain and the water medium at that time can be appropriately selected according to the ratio of the desired sugar.
  • the amount of water medium such as pure water is adjusted so that the ratio of grain to the total of grain and water is 10 to 50 wt%, preferably 15 to 40 wt%, and more preferably 20 to 30 wt%.
  • ⁇ -glucan which is a water-soluble dietary fiber
  • ⁇ -glucan degrading enzyme for example, before the liquefaction step.
  • enzymatic decomposition is performed under the product name "Fizym 250L” (manufactured by Novozymes Japan Co., Ltd.).
  • a liquefaction step is carried out in order to obtain a liquefied liquid containing low molecular weight saccharides by cleaving the sugar chain of starch contained in the above-mentioned preparation liquid.
  • the step is performed by adding a liquefying enzyme to the charging liquid.
  • the concentration of the grain in the charging liquid is preferably 5 to 35 wt%, particularly preferably 15 to 25 wt% in consideration of the yield and the like.
  • the pH of the charged liquid is preferably 3.5 to 7.0, and particularly preferably 4.5 to 6.5, from the optimum pH range of the liquefiing enzyme. Since a general charged liquid has a pH in the range of 3.5 to 7.0, the liquefaction reaction can proceed without intentionally adjusting the pH of the charged liquid. Further, in one embodiment of the production method of the present invention, it is not necessary to adjust the pH of the liquefied liquid before the saccharification step described later. That is, since most of the saccharifying enzymes used in the saccharification step also have an optimum pH in the range of pH 3.5 to 7.0, the pH conditions of the liquefaction step and the saccharification step can be set in the same range.
  • the liquefiing enzyme has an optimum pH of 3.5 to 7.0, particularly 4.5 to 6.5, and can cleave a sugar chain such as starch to decompose it into a small molecule saccharide. If there is, any of them can be preferably used, and among them, ⁇ -amylase (EC 3.2.1.1) is preferable. Enzymes with high heat resistance are preferable, and specific examples thereof include the product name "Crystase SD8", the product name "Crystase T10S" (above, manufactured by Amano Enzyme), and the product name "Tarmamil SC” (Novozymes Japan).
  • the ⁇ -glucanase activity of the liquefied enzyme is preferably 0 to 80%, more preferably 0 to 40%, still more preferably 0 to 20%. , 0-10% is particularly preferred.
  • a grain saccharified solution having a high content of water-soluble dietary fiber can be obtained, especially when grains containing a large amount of ⁇ -glucan (oats, barley, etc.) are used as raw materials. Can be done. Details of the method for measuring ⁇ -glucanase activity will be described later.
  • the amount of the liquefiing enzyme added is, for example, 1 unit to 150 units, preferably 10 units to 100 units, more preferably 1 unit, with respect to 1 g of the raw material grain, when the 1 liquefaction force unit (JLU) measured by JIS K7001: 1990 is 1 unit. Is 20 units to 70 units. If it is 1 unit or more, the liquefaction reaction proceeds sufficiently, and if it is 150 units or less, it is economical.
  • JLU liquefaction force unit
  • the reaction temperature and reaction time in the liquefaction step can be appropriately adjusted depending on the type of liquefiing enzyme to be added.
  • the reaction temperature is 65 ° C. to 120 ° C., preferably 80 ° C. to 110 ° C.
  • the reaction time is 0.01 to 24 hours, preferably 0.1 to 12 hours. More preferably, the reaction time can be 0.1 to 2 hours.
  • endogenous enzymes such as ⁇ -amylase that acts on starch to liquefy, dextrinase that acts on dextrin to produce oligosaccharides, and enzymes that act on polysaccharides such as ⁇ -glucan.
  • the action of these endogenous enzymes can optionally lead to the loss of all or any of the preferred components of the invention: insoluble dietary fiber, water-soluble dietary fiber and isomaltooligosaccharides. Therefore, it may be a preferable aspect that the endogenous enzyme is not allowed to act in the liquefaction step.
  • the charged liquid is heated to the reaction temperature range and then the liquefied enzyme is added to keep the charged liquid within the reaction temperature range during the reaction.
  • the liquefaction reaction is carried out in a temperature range.
  • the charging liquid is heated to the reaction temperature range as quickly as possible to inactivate the endogenous enzyme and suppress its action as much as possible.
  • a jet cooker capable of instantly heating and mixing by directly applying a steam jet to the charging liquid can be used.
  • a trade name "Noritake Cooker / Steam Mixer” (manufactured by Noritake Co., Ltd.), a trade name “Jet Cooker” (manufactured by Hydrothermal Co., Ltd.) and the like are commercially available, and can also be used in the present embodiment.
  • the added liquefied enzyme can be sufficiently allowed to act by mixing under high pressure.
  • the liquefied liquid after the liquefaction reaction by the jet cooker is maintained in a batch tank, for example, in a temperature range optimum for the liquefied enzyme, and the liquefaction reaction is further aged. It is also possible to make it.
  • the liquefied liquid after the liquefaction reaction may be appropriately filtered using diatomaceous earth or the like as an auxiliary agent to remove impurities as appropriate.
  • Saccharification step A saccharification step is carried out in order to further decompose the low molecular weight saccharides in the liquefied solution to obtain a saccharified solution containing monosaccharides, disaccharides, trisaccharides, tetrasaccharides and the like.
  • the step is performed by adding a saccharifying enzyme to the liquefied liquid.
  • saccharifying enzymes examples include ⁇ -amylase (EC 3.2.1.2), saccharified ⁇ -amylase (EC 3.2.1.1), glucoamylase (EC 3.2.2.13), and pullulanase (ECEC 3. 2.1.41), transglucosidase (EC 3.2.1.20), glucanase (EC 3.2.1.6) and the like can be mentioned. Although these enzymes can be used alone, it is also preferable to use a combination of a plurality of enzymes.
  • the saccharifying enzyme may be commercially available, and specific examples thereof include the trade name " ⁇ -amylase L / R" (manufactured by Nagase ChemteX Corporation) and the trade name " ⁇ -amylase F Amano” (Amano Enzyme). ), Product name "Hymaltocin GL” (manufactured by HBI), etc., and saccharified ⁇ -amylase, product name "Fangamil” (manufactured by Novozymes), etc.
  • Examples of commercially available pullulanase include the trade name “pullanase” Amano "3” (manufactured by Amano Enzyme), and examples of transglucosidase include the trade name “transglucosidase L” Amano "” (manufactured by Amano Enzyme).
  • the product name “transglucosidase L-500” (manufactured by Genecoa) and the like can be mentioned, and the trade name “Fizym250L” (manufactured by Novozymes Japan) and the like can be mentioned as glucanase.
  • These enzymes are generally active at pH 3.5-7.0 and have an optimum pH of pH 4.5-6.5.
  • the ⁇ -glucanase activity of the saccharifying enzyme is preferably 0 to 80%, more preferably 0 to 40%, still more preferably 0 to 20%. , 0-10% is particularly preferred.
  • a saccharifying enzyme having a low ⁇ -glucanase activity is used, a grain saccharified solution having a high content of water-soluble dietary fiber can be obtained, especially when a grain containing a large amount of ⁇ -glucan (oat, barley, etc.) is used as a raw material. Can be done.
  • the ⁇ -glucanase activity of each saccharifying enzyme is within the above-specified range, but the ⁇ -glucanase activity of some of the saccharifying enzymes is preferable. Even when the degree is low, it is possible to suppress the decomposition of ⁇ -glucan. For example, if the ⁇ -glucanase activity of one of the plurality of saccharifying enzymes is 0 to 10%, it is possible to sufficiently suppress the decomposition of ⁇ -glucan.
  • ⁇ -glucanase activity for saccharifying enzymes and liquefiing enzymes is measured by the following method.
  • a ⁇ -glucan solution is prepared by dissolving the ⁇ -glucan standard in pure water so as to be 5 mg / ml.
  • a ⁇ -glucan solution was prepared using ⁇ -glucan derived from barley manufactured by Sigma.
  • the enzyme sample is diluted with pure water to 10 mg / ml.
  • the ⁇ -glucan solution and the diluted enzyme sample are mixed in a test tube, incubated in a constant temperature bath at 60 ° C. for 3 hours, and then ice-cooled.
  • the ⁇ - glucan concentration in the solution having a molecular weight of 105 or more is measured by the Congo red method (Tochigi Agricultural Experiment Research Bulletin, No. 47, 57-64, 1998). Instead of the enzyme sample, the one obtained by performing the same operation with pure water is used as a blank.
  • Table 1 below shows the ⁇ -glucanase activity for some liquefied and saccharifying enzymes.
  • the ⁇ -glucanase activity can be obtained from the following equation.
  • ⁇ -Glucanase activity (%) (1-B / B0) ⁇ 100
  • B ⁇ -glucan concentration in the case of enzyme sample diluent
  • B0 ⁇ -glucan concentration in the case of blank
  • the amount of the saccharifying enzyme added is, for example, relative to 1 g of the raw material grain when the amount of the enzyme that produces 1 mg of glucose as a result of adding and reacting with amylose at pH 4.5 at 40 ° C. for 30 minutes is 1 unit. It is 10 units to 1000 units, preferably 20 units to 900 units, and more preferably 500 units to 700 units. If it is 1000 units or less, the unpleasant flavor can be suppressed, and if it is 10 units or more, the saccharification reaction proceeds sufficiently.
  • the reaction temperature and reaction time in the saccharification step can be appropriately adjusted depending on the type of saccharifying enzyme to be added.
  • the reaction temperature is 30 ° C. to 65 ° C., preferably 40 ° C. to 65 ° C., more preferably 45 ° C. to 65 ° C.
  • the reaction time is 1 hour to 24 hours, preferably 1.
  • the reaction time can be from 5 hours to 10 hours, more preferably from 2 hours to 4 hours.
  • enzymes such as protease and lipase may be added together as desired during the saccharification step.
  • the insoluble dietary fiber contained in the saccharified solution is refined by shearing, and the desired particle size distribution can be adjusted.
  • the treatment conditions by the homogenizer are not particularly limited as long as it is possible to smooth the texture when the saccharified solution is eaten by refining the insoluble dietary fiber, and the treatment pressure is, for example, 5 MPa or more, preferably 5 MPa or more. It is 10 MPa or more.
  • the processing pressure is typically 90 MPa or less, preferably 20 MPa or less.
  • the homogenizer a commercially available product can be used, and examples thereof include the trade name “homogenizer H20 type” (manufactured by Sanwa Engineering Co., Ltd.).
  • the saccharified solution may be appropriately filtered using diatomaceous earth or the like as an auxiliary agent to remove impurities as appropriate.
  • the cereal saccharified solution obtained by the production method of the present invention has an insoluble dietary fiber content of 1.0 wt% in the solid content of the cereal saccharified solution of the present invention, specifically, the grain saccharified solution.
  • the content of water-soluble dietary fiber contained in the solid content of the grain saccharified liquid is 0.6 wt% or more, and the ratio of isomaltooligosaccharide to the total saccharides contained in the grain saccharified liquid is 10.0 wt% or more.
  • the cereal saccharified solution has an average particle size of an insoluble component in the grain saccharified solution of 30 to 70 ⁇ m.
  • the grain as a raw material preferably contains at least one of oats and barley, and is more preferably oats.
  • the content of insoluble dietary fiber contained in the solid content of the grain saccharified liquid is preferably 1.0 wt% or more, more preferably 2.0 wt% or more, still more preferably 4.0 wt% or more.
  • the content of water-soluble dietary fiber contained in the solid content in the grain saccharified liquid is preferably 0.6 wt% or more, more preferably 1.0 wt% or more, still more preferably 2.0 wt% or more.
  • the ratio of isomaltooligosaccharides to the total saccharides contained in the grain saccharified solution is preferably 10.0 wt% or more, more preferably 13.0 wt% or more, still more preferably 15.0 wt% or more.
  • the average particle size of the insoluble component in the grain saccharified solution is preferably 30 to 70 ⁇ m, more preferably 50 to 70 ⁇ m, and even more preferably 55 to 65 ⁇ m.
  • Another aspect of the present invention is a beverage using the grain saccharified solution of the present invention.
  • the beverage of the present invention typically, the above-mentioned grain saccharified solution of the present invention is used as a sweetener, and a beverage containing the grain saccharified solution of the present invention can be mentioned.
  • Another aspect of the present invention is a sweetened product using the grain saccharified solution of the present invention.
  • the sweetener of the present invention typically, the above-mentioned grain saccharified solution of the present invention is used as a sweetener, and a sweetened substance containing the grain saccharified solution of the present invention can be mentioned, and as a specific example thereof, jelly. , Pudding, ice cream, candy, soft candy, gum and other sweets.
  • Example 1 This is an example in which oats are used as the raw material grain.
  • the mixture was added at a concentration of 0.3% (3930 unit / 100 g raw material) based on the mass of the grain as a raw material, and reacted at 90 ° C. for 1 hour to obtain a reaction solution.
  • the above reaction solution is cooled to 60 ° C.
  • the product name "Transglucosidase L Amano” (manufactured by Amano Enzyme), which is a transglucosidase, is 0.20% based on the mass of the grain as a raw material (W / W). It was added to the above reaction solution at a concentration of (60000unit / 100g raw material). Then, the saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme. Next, after cooling to room temperature, homogenizer treatment was performed at 15 MPa to obtain an oat-derived saccharified solution. The obtained saccharified solution had a Brix of 20.2 and a pH of 6.1.
  • Example 2 This is an example in which barley is used as a raw material grain.
  • the water was charged into the reaction tank so that the weight ratio of pure water and barley (manufactured by Kyoto Grain) was 75:25, and the trade name "Crystase T10S" (manufactured by Amano Enzyme) was used as the raw material for ⁇ -amylase, which is a liquefiing enzyme.
  • the mixture was added at a concentration of 0.3% (3930 unit / 100 g raw material) based on the mass of the grain (W / W), and reacted at 90 ° C. for 1 hour to obtain a reaction solution.
  • the above reaction solution is cooled to 60 ° C.
  • the product name "Transglucosidase L Amano” (manufactured by Amano Enzyme), which is a transglucosidase, is 0.20% based on the mass of the grain as a raw material (W / W). It was added to the above reaction solution at a concentration of (60000unit / 100g raw material). Then, a saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme. Next, after cooling to room temperature, a homogenizer treatment was performed at 15 MPa to obtain a saccharified solution derived from barley. The obtained saccharified solution had a Brix of 22.1 and a pH of 5.5.
  • the product name "Transglucosidase L Amano” (manufactured by Amano Enzyme), which is a transglucosidase, is 0.20% based on the mass of the grain as a raw material (W / W). It was added to the above reaction solution at a concentration of (60000unit / 100g raw material). Then, a saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme. Next, after cooling to room temperature, homogenizer treatment was performed at 15 MPa to obtain an oat-derived saccharified solution. The obtained saccharified solution had a Brix of 20.2 and a pH of 6.1.
  • a saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme.
  • homogenizer treatment was performed at 15 MPa to obtain an oat-derived saccharified solution.
  • the obtained saccharified solution had a Brix of 20.3 and a pH of 6.1.
  • the product name "Transglucosidase L Amano” (manufactured by Amano Enzyme), which is a transglucosidase, is 0.20% based on the mass of the grain as a raw material (W / W). It was added to the above reaction solution at a concentration of (60000unit / 100g raw material). Then, a saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme, and after cooling, a saccharified solution derived from oats was obtained. No homogenizer treatment was performed. The obtained saccharified solution had a Brix of 20.2 and a pH of 6.1.
  • the obtained saccharified solution Brix, pH, the content of insoluble dietary fiber contained in the solid content, the amount of water-soluble dietary fiber contained in the solid content, the ratio of isomaltooligosaccharide to the total sugar, and the average particle size of the insoluble component.
  • the sugar composition was measured by the following method.
  • the obtained saccharified solution was subjected to a sensory test when eaten by the following method. Table 2 shows the measurement results and evaluation results.
  • the total sugar content of the saccharified solution purified by the pretreatment is analyzed under the following conditions using high performance liquid chromatography (Alliance, manufactured by Japan Waters), and high performance liquid chromatography (Prominence, Shimadzu) is performed.
  • the contents of monosaccharide, maltose, maltooligosaccharide, and sucrose were analyzed under the following conditions using (manufactured by GLC).
  • GLC glycolity
  • the average particle size of the insoluble component in the obtained saccharified solution was measured using Microtrac MT3000II (manufactured by Microtrac Bell Co., Ltd.). Pure water was used as the measurement solvent, and a few drops of the sample were sucked up with a dropper or the like, placed in the sample inlet, and subjected to ultrasonic treatment before measurement.
  • the measurement conditions are distribution display: volume, particle size classification selection: standard, measurement range: 0.021 to 2,000 ⁇ m, number of channels: 132, measurement time: 10 seconds, number of measurements: 1 time, particle permeability: transmission,
  • the refractive index of the particles was 1.81, the shape of the particles was non-spherical, and the refractive index of the solvent was 1.333.
  • the insoluble dietary fiber content contained in the solid content in the saccharified solution As can be seen from Table 2, according to the examples, the insoluble dietary fiber content contained in the solid content in the saccharified solution, the water-soluble dietary fiber content contained in the solid content in the saccharified solution, and the saccharified solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Confectionery (AREA)
  • Cereal-Derived Products (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

The present invention pertains to a grain saccharified liquid having a novel composition that is expected to exhibit an antiflatulent effect and regulate the function of the intestines and that has a less coarse texture. More particularly, the present invention pertains to a grain saccharified liquid wherein: the content of insoluble dietary fiber contained in the solid matters in the grain saccharified liquid is 1.0 wt% or more; the content of water-soluble dietary fiber contained in the solid matters in the grain saccharified liquid is 0.6 wt% or more; the ratio of isomaltooligosaccharides relative to the total saccharides contained in the grain saccharified liquid is 10.0 wt% or more; and the average particle size of the insoluble components in the grain saccharified liquid is 30-70 μm. This grain saccharified liquid is characterized in that the grain that is the starting material thereof comprises oat and/or barley.

Description

穀物糖化液およびその製造方法Grain saccharified liquid and its manufacturing method
 本発明は、穀物糖化液および該穀物糖化液の製造方法に関する。 The present invention relates to a cereal saccharified liquid and a method for producing the cereal saccharified liquid.
 糖化液は、デンプン、セルロース等の高分子量の炭水化物を酵素等の作用により低分子量の糖類に変化させる反応から得られ、食品への甘味料として幅広く利用されている。また、糖化液の原料としては穀物を使用することも多く、穀物の処理方法についての検討がなされている。 The saccharified solution is obtained from a reaction of converting high molecular weight carbohydrates such as starch and cellulose into low molecular weight saccharides by the action of enzymes and the like, and is widely used as a sweetener for foods. In addition, grains are often used as a raw material for saccharified liquids, and methods for treating grains are being studied.
 特開平5-137545号公報(特許文献1)には、玄米に澱粉や不溶性の繊維質が多く含まれることから、玄米の不溶性成分を酵素処理することにより分解し、水溶性化した玄米を原料とする飲料組成物を提供することを目的とした発明が記載されている。具体的に、特許文献1では、細かく粉砕した玄米の水分散液にプロテアーゼ、セルラーゼおよびペクチナーゼを混合し、酵素分解した後、加熱することによってα化した膨化米粉液を得、次いで、アミラーゼを混合し、酵素分解する方法が提案されており、該方法により得た玄米由来の液には、水に不溶性の物質が極めて少ないことが記載されている。 Japanese Patent Application Laid-Open No. 5-137545 (Patent Document 1) contains a large amount of starch and insoluble fiber in brown rice. Therefore, the insoluble component of brown rice is decomposed by enzymatic treatment to make brown rice water-soluble as a raw material. An invention aimed at providing a beverage composition according to the above is described. Specifically, in Patent Document 1, protease, cellulase and pectinase are mixed with an aqueous dispersion of finely crushed brown rice, enzymatically decomposed, and then heated to obtain a pregelatinized swollen rice powder liquid, and then amylases are mixed. However, a method of enzymatic decomposition has been proposed, and it is described that the liquid derived from brown rice obtained by the method contains extremely few substances insoluble in water.
 特開2003-250485号公報(特許文献2)には、米糖化液の製造方法が記載されている。特許文献2では、生米に水を加え、高温高圧処理により、原料の微生物の殺菌、澱粉のアルファー化、米の膨潤促進を行った後、酵素反応に適した45~50℃に冷却し、次に、酵素(アミラーゼ中心)を添加するとともにホモジナイザー(微細化)処理を行うと、短時間(数分)内に酵素反応は平衡状態に達し、糖化・液化が終了することが記載され、これにより、米の糖化時間を著しく短縮する方法が提供できるとしている。 Japanese Patent Application Laid-Open No. 2003-250485 (Patent Document 2) describes a method for producing a rice saccharified solution. In Patent Document 2, water is added to raw rice, and the raw rice is subjected to high-temperature and high-pressure treatment to sterilize the raw material microorganisms, pregelatinize starch, promote swelling of rice, and then cool to 45 to 50 ° C. suitable for enzymatic reaction. Next, it was described that when the enzyme (amylase center) was added and the homogenizer (micronization) treatment was performed, the enzyme reaction reached an equilibrium state within a short time (several minutes), and saccharification / liquefaction was completed. Therefore, it is possible to provide a method for significantly shortening the saccharification time of rice.
 特開2009-207359号公報(特許文献3)には、穀物を原料とし、該原料と温水と液化酵素としてアミラーゼを粉砕機に投入し、該粉砕機内に得られる混合液中の該原料の粉砕・分散・溶解・α化・液化の各処理を一挙に行い、得られる流動性の処理液を、該粉砕機に接続せしめた通液管内を流れてその前方に設けた加熱装置により該処理液中の酵素の失活処理を行うことを特徴とする穀物原液の連続製造法が記載され、これにより、飲料などに適した安定した穀物原液を原料投入から短時間で高能率に連続製造することができるとしている。 In Japanese Unexamined Patent Publication No. 2009-207359 (Patent Document 3), grains are used as raw materials, and amylase is charged into a pulverizer as the raw materials, hot water and liquefied enzyme, and the raw materials are pulverized in a mixed solution obtained in the pulverizer.・ Dispersion, dissolution, pregelatinization, and liquefaction are performed all at once, and the obtained fluid treatment liquid flows through the liquid passage tube connected to the crusher and is provided in front of the treatment liquid by a heating device. A method for continuously producing a cereal stock solution, which is characterized by deactivating the enzymes in the grain, is described, whereby a stable grain stock solution suitable for beverages and the like can be continuously produced in a short time from the input of raw materials with high efficiency. Can be done.
 一方、近年、消費者の健康志向が高まるにつれ、食品に含まれる栄養素や機能性成分への要求を満たすことも重要になっている。しかし、特許文献1~3では、原料として穀物を利用しているものの、消費者の健康志向を考慮した上で糖化液が提案されているとは認められず、糖化液中での栄養素や機能性成分についての検討が十分になされているとはいえない。 On the other hand, in recent years, as consumers have become more health conscious, it has become important to meet the demands for nutrients and functional ingredients contained in foods. However, although grains are used as raw materials in Patent Documents 1 to 3, it is not recognized that the saccharified solution is proposed in consideration of the health consciousness of consumers, and the nutrients and functions in the saccharified solution are not recognized. It cannot be said that sufficient studies have been conducted on the sex components.
特開平5-137545号公報Japanese Unexamined Patent Publication No. 5-137545 特開2003-250485号公報Japanese Patent Application Laid-Open No. 2003-250485 特開2009-207359号公報Japanese Unexamined Patent Publication No. 2009-207359
 そこで、本発明は、整腸効果、整腸作用が期待される新規な組成であり且つざらつきの少ない穀物糖化液を提供することを課題とする。 Therefore, it is an object of the present invention to provide a cereal saccharified solution having a novel composition expected to have an intestinal regulating effect and an intestinal regulating effect and having less roughness.
 本発明者は、上記課題を解決するために、オーツ麦または大麦を原料とし、その処理方法について鋭意検討したところ、不溶性食物繊維、水溶性食物繊維およびイソマルトオリゴ糖の含有量が高く、整腸効果、整腸作用に期待できる上、穀物糖化液中の不溶性成分の粒度分布を調整することで、ざらつきの少ない穀物糖化液を提供できることを見出した。 In order to solve the above problems, the present inventor used oats or barley as a raw material and diligently studied the treatment method thereof. As a result, the contents of insoluble dietary fiber, water-soluble dietary fiber and isomaltooligosaccharide were high, and the intestine was regulated. It has been found that it is possible to provide a grain saccharified solution with less roughness by adjusting the particle size distribution of insoluble components in the grain saccharified solution, in addition to being expected to have an effect and an intestinal regulating effect.
 したがって、本発明の第1の態様は、穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量が1.0wt%以上、穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量が0.6wt%以上、穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合が10.0wt%以上であり、穀物糖化液中の不溶性成分の平均粒径が30~70μmである穀物糖化液であって、該穀物糖化液の原料である穀物がオーツ麦および大麦の少なくとも一方を含むことを特徴とする穀物糖化液である。 Therefore, in the first aspect of the present invention, the content of insoluble dietary fiber contained in the solid content in the cereal saccharified solution is 1.0 wt% or more, and the content of water-soluble dietary fiber contained in the solid content in the grain saccharified solution is contained. Grains with an amount of 0.6 wt% or more, a ratio of isomaltooligosaccharide to the total saccharides contained in the cereal saccharified solution of 10.0 wt% or more, and an average particle size of insoluble components in the cereal saccharified solution of 30 to 70 μm. A cereal saccharified solution, which is a cereal saccharified solution characterized in that the grain that is the raw material of the grain saccharified solution contains at least one of oat and barley.
 本発明の穀物糖化液の好適例においては、前記穀物がオーツ麦である。 In a preferred example of the grain saccharified solution of the present invention, the grain is oat.
 本発明の穀物糖化液の他の好適例においては、前記水溶性食物繊維含有量が2.0wt%以上である。 In another preferred example of the cereal saccharified liquid of the present invention, the water-soluble dietary fiber content is 2.0 wt% or more.
 また、本発明の第2の態様は、穀物より糖化液を製造する方法であって、前記穀物がオーツ麦および大麦の少なくとも一方を含み、前記糖化液が、穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量が1.0wt%以上、穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量が0.6wt%以上、穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合が10.0wt%以上であり、穀物糖化液中の不溶性成分の平均粒径が30~70μmである穀物糖化液であることを特徴とする穀物糖化液の製造方法である。 A second aspect of the present invention is a method for producing a saccharified liquid from a grain, wherein the grain contains at least one of oats and barley, and the saccharified liquid is contained in the solid content in the grain saccharified liquid. The content of insoluble dietary fiber contained is 1.0 wt% or more, the content of water-soluble dietary fiber contained in the solid content of the grain saccharified solution is 0.6 wt% or more, and the isomaltooligoe with respect to the total sugar contained in the grain saccharified solution. It is a method for producing a cereal saccharified liquid, characterized in that the ratio of sugar is 10.0 wt% or more and the average particle size of insoluble components in the cereal saccharified liquid is 30 to 70 μm.
 本発明の穀物糖化液の製造方法の好適例においては、糖化液の製造に使用される液化酵素および糖化酵素はそれぞれのβ-グルカナーゼ活性度が0~80%である。 In a preferred example of the method for producing a cereal saccharified solution of the present invention, the liquefied enzyme and the saccharified enzyme used for producing the saccharified solution each have a β-glucanase activity of 0 to 80%.
 本発明の穀物糖化液の製造方法の他の好適例においては、糖化液に対して10MPa以上の圧力でホモゲナイザー処理を行う。 In another preferred example of the method for producing a grain saccharified liquid of the present invention, the homogenizer treatment is performed on the saccharified liquid at a pressure of 10 MPa or more.
 本発明の穀物糖化液の製造方法の他の好適例においては、前記穀物がオーツ麦である。 In another preferred example of the method for producing a cereal saccharified liquid of the present invention, the cereal is oat.
 本発明の穀物糖化液の製造方法の他の好適例においては、前記水溶性食物繊維含有量が2.0wt%以上である。 In another preferred example of the method for producing a cereal saccharified liquid of the present invention, the water-soluble dietary fiber content is 2.0 wt% or more.
 また、本発明の第3の態様は、上記の穀物糖化液を用いた飲料である。 Further, the third aspect of the present invention is a beverage using the above-mentioned grain saccharified liquid.
 また、本発明の第4の態様は、上記の穀物糖化液を用いた甘味物である。 Further, the fourth aspect of the present invention is a sweet product using the above-mentioned grain saccharified liquid.
 本発明の第1および第2の態様によれば、整腸効果、整腸作用が期待される新規な組成であり且つざらつきの少ない穀物糖化液を提供することができる。また、本発明の第3および第4の態様によれば、かかる糖化液を用いた飲料および甘味物を提供することができる。 According to the first and second aspects of the present invention, it is possible to provide a cereal saccharified solution having a novel composition expected to have an intestinal regulating effect and an intestinal regulating effect and having less roughness. Further, according to the third and fourth aspects of the present invention, it is possible to provide a beverage and a sweet product using such a saccharified solution.
 以下に、本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明の1つの態様は、穀物糖化液である。本明細書において「穀物糖化液」とは、穀物を原料として用い、穀物の液化および糖化を経て製造される液であり、例えば、甘味料等として利用可能である。 One aspect of the present invention is a grain saccharified solution. In the present specification, the "cereal saccharified liquid" is a liquid produced by using grains as a raw material and undergoing liquefaction and saccharification of grains, and can be used as, for example, a sweetener.
 穀物糖化液の主な原料は、穀物および水(好ましくは、純水)である。ここで、穀物としては、糖化液中に不溶性食物繊維、水溶性食物繊維およびイソマルトオリゴ糖を含有させることのできる穀物であれば、特に制限されるものではなく、例えば、米、小麦、トウモロコシ、モロコシ、ヒエ、アワ、キビ、大麦、オーツ麦、ライ麦等が挙げられる。本発明の穀物糖化液において、原料である穀物は、オーツ麦および大麦の少なくとも一方を含むことが好ましく、オーツ麦であることが更に好ましい。オーツ麦および大麦は、水溶性食物繊維であるβ-グルカンが多く含まれており、健康志向の糖化液を提供する観点から好ましい。なお、大麦は酸味や苦味がある一方で、オーツ麦には癖がないため、美味しい糖化液を提供する観点からもオーツ麦は好適である。 The main raw materials for the grain saccharified liquid are grains and water (preferably pure water). Here, the grain is not particularly limited as long as it is a grain capable of containing insoluble dietary fiber, water-soluble dietary fiber and isomaltooligosaccharide in the saccharified solution, and is not particularly limited, and is, for example, rice, wheat, corn, and the like. Examples include great millet, hie, corn, millet, barley, oats, and rye. In the grain saccharified solution of the present invention, the grain as a raw material preferably contains at least one of oats and barley, and more preferably oats. Oats and barley contain a large amount of β-glucan, which is a water-soluble dietary fiber, and are preferable from the viewpoint of providing a health-oriented saccharified solution. While barley has acidity and bitterness, oats have no habit, so oats are suitable from the viewpoint of providing a delicious saccharified solution.
 本発明の穀物糖化液においては、オーツ麦および/または大麦に加えて他の穀物を原料として用いてもよい。この場合、穀物中におけるオーツ麦および大麦の合計は、少なくとも50wt%以上であることが好ましく、80~100wt%であることがより好ましい。 In the grain saccharified solution of the present invention, other grains may be used as raw materials in addition to oats and / or barley. In this case, the total amount of oats and barley in the grain is preferably at least 50 wt% or more, more preferably 80 to 100 wt%.
 本発明の穀物糖化液は、食物繊維を含む。食物繊維は、食物中に含まれている、人の消化酵素で消化することのできない物質であり、通常、水に溶けない不溶性食物繊維と水に溶ける水溶性食物繊維に大別される。食物繊維の有効性については、例えば、改訂増補版 機能性食品素材便覧(薬事日報社、2006年発行)において説明されている。 The grain saccharified solution of the present invention contains dietary fiber. Dietary fiber is a substance contained in food that cannot be digested by human digestive enzymes, and is usually roughly classified into insoluble dietary fiber that is insoluble in water and water-soluble dietary fiber that is soluble in water. The effectiveness of dietary fiber is explained, for example, in the revised and expanded edition of the Handbook of Functional Food Materials (Yakuji Nippo Co., Ltd., published in 2006).
 不溶性食物繊維は、便通を整えて便秘を防ぐ効果があり、また、不溶性食物繊維を摂ることでビフィズス菌などが増えて腸内環境が改善される。本発明の穀物糖化液は、不溶性食物繊維を含むことで、整腸効果が期待できる。不溶性食物繊維としては、セルロース、ヘミセルロース、キチン、キトサン等が挙げられる。本発明の穀物糖化液において、不溶性食物繊維は、上述した穀物に由来する不溶性食物繊維であることが好ましい。例えば、後述する穀物糖化液の製造方法において、液化工程、糖化工程後、不溶性食物繊維を除去せずに糖化液を製造することで、不溶性食物繊維の含有量が高い穀物糖化液が得られる。また、穀物糖化液の原料としてオーツ麦を用いることで、不溶性食物繊維の含有量を高めることができる。穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量は、1.0wt%以上が好ましく、2.0wt%以上がより好ましく、4.0wt%以上が更に好ましい。一方、穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量は、例えば8.0wt%以下であり、6.0wt%以下が好ましい。 Insoluble dietary fiber has the effect of adjusting bowel movements and preventing constipation, and ingestion of insoluble dietary fiber increases bifidobacteria and improves the intestinal environment. The grain saccharified solution of the present invention can be expected to have an intestinal regulating effect by containing insoluble dietary fiber. Examples of the insoluble dietary fiber include cellulose, hemicellulose, chitin, chitosan and the like. In the grain saccharified solution of the present invention, the insoluble dietary fiber is preferably the insoluble dietary fiber derived from the above-mentioned grains. For example, in the method for producing a grain saccharified liquid described later, a grain saccharified liquid having a high content of insoluble dietary fiber can be obtained by producing the saccharified liquid without removing the insoluble dietary fiber after the liquefaction step and the saccharification step. Further, by using oats as a raw material of the grain saccharified liquid, the content of insoluble dietary fiber can be increased. The content of insoluble dietary fiber contained in the solid content in the grain saccharified liquid is preferably 1.0 wt% or more, more preferably 2.0 wt% or more, still more preferably 4.0 wt% or more. On the other hand, the content of insoluble dietary fiber contained in the solid content in the grain saccharified liquid is, for example, 8.0 wt% or less, preferably 6.0 wt% or less.
 水溶性食物繊維は、血糖値の上昇やコレステロールを減らす効果、糖質の吸収を緩やかにして、食後血糖値の急激な上昇を抑える効果、さらには整腸効果もある。本発明の穀物糖化液は、水溶性食物繊維を含むことでも、整腸効果が期待できる。水溶性食物繊維としては、グルカン、ペクチン、グルコマンナン、アルギン酸、アガロース、アガロペクチン、カラギーナン、ポリデキストロース等が挙げられる。本発明の穀物糖化液において、水溶性食物繊維は、上述した穀物に由来する水溶性食物繊維であることが好ましい。特に、オーツ麦および大麦には水溶性食物繊維としてβ-グルカンが多く含まれているため、オーツ麦および大麦に由来する水溶性食物繊維は、健康志向の糖化液を提供する観点から好ましい。例えば、後述する穀物糖化液の製造方法において、原料中に含まれる水溶性食物繊維、特にはβ-グルカンを酵素分解しないまま、液化・糖化を行うことで、水溶性食物繊維の含有量が高い穀物糖化液が得られる。また、穀物糖化液の原料としてオーツ麦を用いることで、水溶性食物繊維の含有量を高めることができる。穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量は、0.6wt%以上が好ましく、1.0wt%以上がより好ましく、2.0wt%以上が更に好ましい。一方、穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量は、例えば6.0wt%以下であり、4.0wt%以下が好ましい。 Water-soluble dietary fiber has the effect of increasing blood glucose level and reducing cholesterol, slowing down the absorption of carbohydrates, suppressing the rapid increase of postprandial blood glucose level, and also having an intestinal regulation effect. The grain saccharified solution of the present invention can also be expected to have an intestinal regulating effect even if it contains water-soluble dietary fiber. Examples of the water-soluble dietary fiber include glucan, pectin, glucomannan, alginic acid, agarose, agaropectin, carrageenan, polydextrose and the like. In the grain saccharified solution of the present invention, the water-soluble dietary fiber is preferably the water-soluble dietary fiber derived from the above-mentioned grains. In particular, since oats and barley contain a large amount of β-glucan as a water-soluble dietary fiber, the water-soluble dietary fiber derived from oats and barley is preferable from the viewpoint of providing a health-oriented saccharified solution. For example, in the method for producing a cereal saccharified liquid described later, the content of water-soluble dietary fiber is high by liquefying and saccharifying the water-soluble dietary fiber contained in the raw material, particularly β-glucan, without enzymatically decomposing it. A grain saccharified solution is obtained. Further, by using oats as a raw material for the grain saccharified liquid, the content of water-soluble dietary fiber can be increased. The content of water-soluble dietary fiber contained in the solid content in the grain saccharified liquid is preferably 0.6 wt% or more, more preferably 1.0 wt% or more, still more preferably 2.0 wt% or more. On the other hand, the content of water-soluble dietary fiber contained in the solid content in the grain saccharified liquid is, for example, 6.0 wt% or less, preferably 4.0 wt% or less.
 本発明の穀物糖化液は、イソマルトオリゴ糖を含む。イソマルトオリゴ糖は、グルコースがα-1,4結合およびα-1,6結合で結合したもの、並びにグルコースがα-1,6結合のみで結合したもので、重合度2から10の糖類であり、イソマルトース、パノース、イソマルトトリオース、イソマルトテトラオース、イソパノース等がある。イソマルトオリゴ糖は、糖アルコールに比べて下痢を起しにくく、整腸作用が期待できる。イソマルトオリゴ糖の有効性については、例えば、改訂増補版 機能性食品素材便覧(薬事日報社、2006年発行)において説明されている。例えば、後述する穀物糖化液の製造方法において、糖組成における三糖類以上の割合を高くすることで、イソマルトオリゴ糖の割合が高い穀物糖化液が得られる。穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合は、10.0wt%以上が好ましく、13.0wt%以上がより好ましく、15.0wt%以上が更に好ましい。一方、穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合は、例えば30.0wt%以下であり、25.0wt%以下が好ましい。 The grain saccharified solution of the present invention contains isomaltooligosaccharide. Isomaltose oligosaccharides are saccharides having a degree of polymerization of 2 to 10, in which glucose is bound by α-1,4 bonds and α-1,6 bonds, and glucose is bound only by α-1,6 bonds. , Isomaltose, Panose, Isomaltotriose, Isomalttetraose, Isopanose and the like. Isomaltooligosaccharides are less likely to cause diarrhea than sugar alcohols and can be expected to have an intestinal regulating effect. The effectiveness of isomaltooligosaccharides is explained, for example, in the revised and expanded edition of the Handbook of Functional Food Materials (Yakuji Nippo Co., Ltd., published in 2006). For example, in the method for producing a cereal saccharified solution described later, by increasing the proportion of trisaccharides or more in the sugar composition, a cereal saccharified solution having a high proportion of isomaltooligosaccharide can be obtained. The ratio of isomaltooligosaccharides to the total saccharides contained in the grain saccharified solution is preferably 10.0 wt% or more, more preferably 13.0 wt% or more, still more preferably 15.0 wt% or more. On the other hand, the ratio of isomaltooligosaccharides to the total saccharides contained in the grain saccharified solution is, for example, 30.0 wt% or less, preferably 25.0 wt% or less.
 本明細書において「穀物糖化液中の固形分」とは、穀物糖化液を構成する成分から水を除いた成分であり、主として食物繊維及び糖類から構成される。 In the present specification, the "solid content in the grain saccharified solution" is a component obtained by removing water from the components constituting the grain saccharified solution, and is mainly composed of dietary fiber and sugar.
 本明細書において「穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量」および「穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量」は、公知の測定法を適宜用いて測定することができる。例えば、日本食品標準成分表2015年版(七訂)分析マニュアル(文部科学省発行)のプロスキー変法により測定することができる。 In the present specification, "the content of insoluble dietary fiber contained in the solid content of the cereal saccharified solution" and "the content of water-soluble dietary fiber contained in the solid content of the grain saccharified solution" are appropriately measured by known measurement methods. Can be measured using. For example, it can be measured by the modified Proski method of the Standard Tables of Food Composition in Japan 2015 (7th edition) Analysis Manual (published by the Ministry of Education, Culture, Sports, Science and Technology).
 本明細書において「穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合」は、公知の測定法を適宜用いて測定することができる。例えば、排除型イオン交換カラムを用いた液体クロマトグラフィーにより求めた総糖含量から、排除型イオン交換カラムおよび順層カラムを用いた液体クロマトグラフィーにより求めた単糖、マルトース、マルトオリゴ糖、ショ糖含量を差し引くことにより求めることができる。具体例として、活性炭、イオン交換樹脂、固層抽出、メンブレンフィルター等により穀物糖化液に対して前処理を行い、高速液体クロマトグラフィー(HPLC:商品名「Alliance(登録商標)HPLCシステム」(日本ウォーターズ社製))を使用して以下の条件で総糖含量の分析を行い、高速液体クロマトグラフィー(HPLC:商品名「Prominence」(島津ジーエルシー社製))を使用して以下の条件で単糖、マルトース、マルトオリゴ糖、ショ糖含量の分析を行うことができる。
(総糖含量の分析条件)
カラム:ULTRON PS80-N(島津ジーエルシー社製)
溶媒:純水
温度:60℃
流速:0.6ml/min
検出:RI(示差屈折率)
(単糖・マルトース・ショ糖・マルトオリゴ糖含量の分析条件)
カラム:Amide-80(東ソー製)
溶媒:70%アセトニトリル
温度:65℃
流速:0.6ml/min
検出:RI(示差屈折率)
In the present specification, the "ratio of isomaltooligosaccharides to the total saccharides contained in the cereal saccharified solution" can be measured by appropriately using a known measuring method. For example, the monosaccharide, maltose, maltooligosaccharide, and sucrose contents obtained by liquid chromatography using an exclusion type ion exchange column and a normal layer column from the total sugar content obtained by liquid chromatography using an exclusion type ion exchange column. Can be obtained by subtracting. As a specific example, the grain saccharified solution is pretreated with activated carbon, ion exchange resin, solid layer extraction, membrane filter, etc., and high performance liquid chromatography (HPLC: trade name "Alliance (registered trademark) HPLC system" (Japan Waters). )) Was used to analyze the total sugar content under the following conditions, and high performance liquid chromatography (HPLC: trade name “Promindence” (manufactured by Shimadzu GLC)) was used to perform simple sugar under the following conditions. , Martose, maltooligosaccharide, sucrose content can be analyzed.
(Analysis conditions for total sugar content)
Column: ULTRON PS80-N (manufactured by Shimadzu GLC)
Solvent: Pure water Temperature: 60 ° C
Flow velocity: 0.6 ml / min
Detection: RI (Differential Refractometer)
(Analysis conditions for monosaccharide, maltose, sucrose, and maltooligosaccharide content)
Column: Amide-80 (manufactured by Tosoh)
Solvent: 70% acetonitrile Temperature: 65 ° C
Flow velocity: 0.6 ml / min
Detection: RI (Differential Refractometer)
 本発明の穀物糖化液には、単糖類、二糖類、三糖類、四糖類以上の各種糖類が含まれる。本発明の穀物糖化液中の固形分中に含まれる糖類全体の含有量は、例えば30~95wt%である。ここで、本発明の穀物糖化液は、イソマルトオリゴ糖を多く含むことから、多くの場合、糖組成における三糖類以上の割合が高い。本発明の穀物糖化液中に含まれる糖類全体に対する三糖類以上の糖類の割合は、30wt%以上であることが好ましく、40wt%以上であることがより好ましく、50wt%以上であることが更に好ましい。一方、本発明の穀物糖化液中に含まれる糖類全体に対する三糖類以上の糖類の割合は、例えば70.0wt%以下であり、60.0wt%以下が好ましい。また、単糖類および二糖類については、例えば、本発明の穀物糖化液中に含まれる糖類全体に対する割合がそれぞれ15~30wt%の範囲内にある。 The grain saccharified solution of the present invention contains various saccharides such as monosaccharides, disaccharides, trisaccharides, and tetrasaccharides and above. The total content of saccharides contained in the solid content in the grain saccharified solution of the present invention is, for example, 30 to 95 wt%. Here, since the cereal saccharified solution of the present invention contains a large amount of isomaltooligosaccharides, in many cases, the proportion of trisaccharides or more in the sugar composition is high. The ratio of saccharides of trisaccharides or more to the total saccharides contained in the grain saccharified solution of the present invention is preferably 30 wt% or more, more preferably 40 wt% or more, still more preferably 50 wt% or more. .. On the other hand, the ratio of saccharides of trisaccharides or more to the total saccharides contained in the grain saccharified solution of the present invention is, for example, 70.0 wt% or less, preferably 60.0 wt% or less. Regarding monosaccharides and disaccharides, for example, the ratio of monosaccharides and disaccharides to the total saccharides contained in the grain saccharified solution of the present invention is in the range of 15 to 30 wt%, respectively.
 本明細書において、穀物糖化液中に含まれる糖類の組成は、公知の測定法を適宜用いて測定することができる。一例としては、活性炭、イオン交換樹脂、固層抽出、メンブレンフィルター等により穀物糖化液を精製したのち、高速液体クロマトグラフィー(HPLC:例えば、商品名「Alliance(登録商標)HPLCシステム」(日本ウォーターズ社製))によって測定することができる。分析条件の一例としては、以下のとおりである。
(分析条件)
カラム:ULTRON PS80-N(島津ジーエルシー社製)
溶媒:純水
温度:60℃
流速:0.6ml/min
検出:RI(示差屈折率)
In the present specification, the composition of saccharides contained in the grain saccharified solution can be appropriately measured by using a known measuring method. As an example, after purifying the grain saccharified solution by activated carbon, ion exchange resin, solid layer extraction, membrane filter, etc., high performance liquid chromatography (HPLC: for example, trade name "Alliance (registered trademark) HPLC system" (Nippon Waters Co., Ltd.) Can be measured by)). An example of the analysis conditions is as follows.
(Analysis conditions)
Column: ULTRON PS80-N (manufactured by Shimadzu GLC)
Solvent: Pure water Temperature: 60 ° C
Flow velocity: 0.6 ml / min
Detection: RI (Differential Refractometer)
 本発明の穀物糖化液は、穀物糖化液中の不溶性成分の平均粒径が、30~70μmであることが好ましく、50~70μmであることがより好ましく、55~65μmであることが更に好ましい。本発明の穀物糖化液は、食物繊維を比較的多く含むため、穀物糖化液中の粒度分布を調整することが好ましい。穀物糖化液中の不溶性成分の平均粒径が上記特定した範囲内にあると、ざらつきの少ない穀物糖化液を提供することができる。例えば、後述する穀物糖化液の製造方法において、液化工程、糖化工程後、糖化液にホモゲナイザー処理を行うことで、所望の粒度分布に調整することができる。 In the grain saccharified solution of the present invention, the average particle size of the insoluble component in the grain saccharified solution is preferably 30 to 70 μm, more preferably 50 to 70 μm, and even more preferably 55 to 65 μm. Since the grain saccharified solution of the present invention contains a relatively large amount of dietary fiber, it is preferable to adjust the particle size distribution in the grain saccharified solution. When the average particle size of the insoluble component in the grain saccharified liquid is within the above-specified range, it is possible to provide a grain saccharified liquid having less roughness. For example, in the method for producing a grain saccharified liquid described later, the saccharified liquid can be adjusted to a desired particle size distribution by subjecting the saccharified liquid to a homogenizer treatment after the liquefaction step and the saccharification step.
 本明細書において「穀物糖化液中の不溶性成分」とは、穀物糖化液を構成する成分のうち糖化液中で溶解していない成分であり、粒度分布の測定対象となる成分である。本発明の穀物糖化液において「穀物糖化液中の不溶性成分」は、主として不溶性食物繊維から構成される。 In the present specification, the "insoluble component in the grain saccharified solution" is a component that is not dissolved in the saccharified solution among the components constituting the grain saccharified solution, and is a component for which the particle size distribution is to be measured. In the cereal saccharified solution of the present invention, the "insoluble component in the grain saccharified solution" is mainly composed of insoluble dietary fiber.
 本明細書において「穀物糖化液中の不溶性成分の平均粒径」は、体積基準粒度分布の50%粒子径(D50)を指し、レーザー回折・散乱法(マイクロトラック法)により測定した粒度分布から求めることができる。マイクロトラック法の粒度分布は、非球状の物質にレーザーを当てて散乱される光を一定角度毎に検出・演算処理することにより、球に近似した粒径とその頻度を求めるものである。 In the present specification, the "average particle size of the insoluble component in the grain saccharified solution" refers to the 50% particle size (D50) of the volume-based particle size distribution, and is based on the particle size distribution measured by the laser diffraction / scattering method (microtrack method). You can ask. The particle size distribution of the microtrack method is to obtain the particle size and its frequency close to a sphere by irradiating a non-spherical substance with a laser and detecting and arithmetically processing the scattered light at regular angles.
 本発明の穀物糖化液は、Brixが、例えば15.0~25.0である。Brixとは、可溶性固形分濃度(%)のことであり、本明細書においては、糖化液の20℃における屈折率を測定し、ICUMSA(International Commission for Uniform Methods of Sugar Analysis)提供の換算表に基づいて、純蔗糖溶液の質量/質量パーセントに換算した値のことである。本発明の穀物糖化液の一実施形態では、糖化液を濃縮や希釈するときの濃度を調整するためにBrixが測定される。Brixは、既に知られている公知の測定法を適宜用いて測定することができ、一般的には市販の糖度計(例えば、デジタル屈折計 商品名「RX-5000α」(アタゴ社製))を用いて測定することができる。 The grain saccharified solution of the present invention has a Brix of, for example, 15.0 to 25.0. Brix is a soluble solid content concentration (%), and in the present specification, the refractive index of the sucrose solution at 20 ° C. is measured, and the conversion table provided by ICUMSA (International Communication for Uniform Methods of Sugar Analysis) is used. Based on this, it is a value converted into mass / mass percent of a pure sucrose solution. In one embodiment of the cereal saccharified solution of the present invention, Brix is measured in order to adjust the concentration when concentrating or diluting the saccharified solution. Brix can be measured by appropriately using a known measuring method that is already known, and generally, a commercially available sugar content meter (for example, a digital refractometer trade name "RX-5000α" (manufactured by Atago)) can be used. Can be measured using.
 本発明の穀物糖化液は、25℃におけるpHが、例えば3.5~7.0であり、好ましくは4.5~6.5である。本明細書において、糖化液のpHは、公知の測定法を適宜用いて測定される。一例としては、市販のpH測定器(例えば、卓上型pHメータ 型式:F-74(HORIBA社製)を用いて測定することができる。 The cereal saccharified solution of the present invention has a pH at 25 ° C., for example, 3.5 to 7.0, preferably 4.5 to 6.5. In the present specification, the pH of the saccharified solution is measured by appropriately using a known measuring method. As an example, a commercially available pH meter (for example, a desktop pH meter model: F-74 (manufactured by HORIBA) can be used for measurement.
 本発明の別の態様は、穀物糖化液の製造方法である。本発明の穀物糖化液の製造方法は、原料として穀物を用い、穀物から糖化液を製造する方法であって、上述した本発明の穀物糖化液、具体的には、穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量が1.0wt%以上、穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量が0.6wt%以上、穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合が10.0wt%以上であり、穀物糖化液中の不溶性成分の平均粒径が30~70μmである穀物糖化液を製造することが可能である。本明細書においては、本発明の穀物糖化液の製造方法を本発明の製造方法とも称する。 Another aspect of the present invention is a method for producing a cereal saccharified liquid. The method for producing a cereal saccharified liquid of the present invention is a method for producing a saccharified liquid from grains using grains as a raw material, and is a method for producing a saccharified liquid from the grains. The content of insoluble dietary fiber contained in the grain is 1.0 wt% or more, the content of water-soluble dietary fiber contained in the solid content of the grain saccharified solution is 0.6 wt% or more, and the content of the water-soluble dietary fiber is 0.6 wt% or more. It is possible to produce a cereal saccharified solution in which the proportion of isomaltooligosaccharide is 10.0 wt% or more and the average particle size of the insoluble component in the grain saccharified solution is 30 to 70 μm. In the present specification, the method for producing a cereal saccharified solution of the present invention is also referred to as the method for producing the present invention.
 本発明の製造方法は、典型的には、仕込み工程、液化工程、および糖化工程を含み、これらの工程を経て、原料である穀物から糖化液を製造することができる。本発明の穀物糖化液の説明において記載したとおり、穀物糖化液の主な原料は、穀物および水である。また、原料として用いる穀物は、オーツ麦および大麦の少なくとも一方を含むことが好ましく、オーツ麦であることが更に好ましい。 The production method of the present invention typically includes a preparation step, a liquefaction step, and a saccharification step, and the saccharified liquid can be produced from grains as a raw material through these steps. As described in the description of the grain saccharified liquid of the present invention, the main raw materials of the grain saccharified liquid are grains and water. The grain used as a raw material preferably contains at least one of oats and barley, and is more preferably oats.
1.仕込み工程
 本発明の製造方法の典型的な実施形態においては、粉砕処理した穀物を原材料として用い、当該穀物の粉砕物を純水等の水媒体と混合して仕込み液を得る。その際の穀物と水媒体の割合は、所望する糖類の割合に応じて適宜選択することが可能である。一例としては、穀物と水の合計に対する穀物の割合が10~50wt%、好ましくは15~40wt%、より好ましくは20~30wt%となるように純水等の水媒体の量が調整される。
1. 1. Preparation Step In a typical embodiment of the production method of the present invention, the crushed grain is used as a raw material, and the crushed product of the grain is mixed with an aqueous medium such as pure water to obtain a preparation liquid. The ratio of the grain and the water medium at that time can be appropriately selected according to the ratio of the desired sugar. As an example, the amount of water medium such as pure water is adjusted so that the ratio of grain to the total of grain and water is 10 to 50 wt%, preferably 15 to 40 wt%, and more preferably 20 to 30 wt%.
 なお、原料としての穀物がβ-グルカンを多く含む穀物(オーツ麦、大麦など)である場合、液化工程を行う前に、水溶性食物繊維であるβ-グルカンをβ-グルカン分解酵素(例えば、商品名「Finizym250L」(ノボザイムズジャパン社製))により酵素分解を行うことも多い。しかしながら、本発明の製造方法においては、水溶性食物繊維の含有量が高い穀物糖化液を得るために、仕込み液に対してβ-グルカンの酵素分解を行わずに液化工程を行うことが好ましい。仕込み液に対してβ-グルカンの酵素分解を行うと、ざらつきを感じる傾向が確認されたが、これは、β-グルカンの酵素分解により、液の粘度が低下し、粒子が明確に感じられるようになったためと推測される。 When the grain as a raw material is a grain containing a large amount of β-glucan (oat, barley, etc.), β-glucan, which is a water-soluble dietary fiber, is converted into a β-glucan degrading enzyme (for example, before the liquefaction step). In many cases, enzymatic decomposition is performed under the product name "Fizym 250L" (manufactured by Novozymes Japan Co., Ltd.). However, in the production method of the present invention, in order to obtain a grain saccharified liquid having a high content of water-soluble dietary fiber, it is preferable to carry out a liquefaction step without enzymatically decomposing β-glucan in the charged liquid. It was confirmed that when β-glucan was enzymatically decomposed in the charged liquid, it tended to feel grainy, but this was because the viscosity of the liquid decreased due to the enzymatic decomposition of β-glucan, and the particles were clearly felt. It is presumed that it became.
2.液化工程
 上記仕込み液中に含まれるデンプンの糖鎖を切断して、低分子化された糖類を含む液化液を得るために、液化工程を実施する。当該工程は、仕込み液に液化酵素を添加することで行われる。液化工程時において、仕込み液中における穀物の濃度は、歩留まり等を考慮して、5~35wt%であることが好ましく、15~25wt%であることが特に好ましい。
2. 2. Liquefaction step A liquefaction step is carried out in order to obtain a liquefied liquid containing low molecular weight saccharides by cleaving the sugar chain of starch contained in the above-mentioned preparation liquid. The step is performed by adding a liquefying enzyme to the charging liquid. At the time of the liquefaction step, the concentration of the grain in the charging liquid is preferably 5 to 35 wt%, particularly preferably 15 to 25 wt% in consideration of the yield and the like.
 液化工程においては、液化酵素の至適pHの範囲から、仕込み液のpHは、3.5~7.0であることが好ましく、4.5~6.5であることが特に好ましい。なお、一般的な仕込み液であれば3.5~7.0の範囲内のpHを示すので、当該仕込み液のpHを敢えて調整しなくても液化反応を進行させることができる。また、本発明の製造方法の一実施形態では、後述の糖化工程の前に液化液のpH調整を行わなくてもよい。すなわち、糖化工程で用いる糖化酵素の多くもpH3.5~7.0の範囲内に至適pHを有するので、液化工程と糖化工程のpH条件を同等の範囲に設定し得る。よって、得られた液化液のpHを糖化工程のために改めて調整し直さなくてもよい。したがって、本発明の製造方法の特に好適な実施形態では、仕込み工程から糖化工程までpHの調整を全く行わなくてもよいので、穀物糖化液の製造を更に簡素化ができる。 In the liquefaction step, the pH of the charged liquid is preferably 3.5 to 7.0, and particularly preferably 4.5 to 6.5, from the optimum pH range of the liquefiing enzyme. Since a general charged liquid has a pH in the range of 3.5 to 7.0, the liquefaction reaction can proceed without intentionally adjusting the pH of the charged liquid. Further, in one embodiment of the production method of the present invention, it is not necessary to adjust the pH of the liquefied liquid before the saccharification step described later. That is, since most of the saccharifying enzymes used in the saccharification step also have an optimum pH in the range of pH 3.5 to 7.0, the pH conditions of the liquefaction step and the saccharification step can be set in the same range. Therefore, it is not necessary to readjust the pH of the obtained liquefied liquid for the saccharification step. Therefore, in a particularly preferable embodiment of the production method of the present invention, it is not necessary to adjust the pH at all from the charging step to the saccharification step, so that the production of the grain saccharified solution can be further simplified.
 液化酵素としては、至適pHが3.5~7.0、特には4.5~6.5であり且つデンプン等の糖鎖を切断して低分子の糖類に分解することができるものであれば、いずれのものも好適に利用でき、中でもα-アミラーゼ(EC3.2.1.1)が好ましい。また、耐熱性が高い酵素が好ましく、その具体例として、商品名「クライスターゼSD8」、商品名「クライスターゼT10S」(以上、天野エンザイム社製)、商品名「ターマミルSC」(ノボザイムズジャパン社製)、商品名「スピターゼHK」(長瀬産業社製)等が挙げられる。更に、本発明の製造方法において、液化酵素は、β-グルカナーゼ活性度が0~80%であることが好ましく、0~40%であることがより好ましく、0~20%であることが更に好ましく、0~10%であることが特に好ましい。β-グルカナーゼ活性度の低い液化酵素を用いると、特に原料としてβ-グルカンを多く含む穀物(オーツ麦、大麦など)を用いる場合に、水溶性食物繊維の含有量が高い穀物糖化液を得ることができる。β-グルカナーゼ活性度の測定方法の詳細については後述する。 The liquefiing enzyme has an optimum pH of 3.5 to 7.0, particularly 4.5 to 6.5, and can cleave a sugar chain such as starch to decompose it into a small molecule saccharide. If there is, any of them can be preferably used, and among them, α-amylase (EC 3.2.1.1) is preferable. Enzymes with high heat resistance are preferable, and specific examples thereof include the product name "Crystase SD8", the product name "Crystase T10S" (above, manufactured by Amano Enzyme), and the product name "Tarmamil SC" (Novozymes Japan). (Manufactured by Nagase & Co., Ltd.), trade name "Spitzase HK" (manufactured by Nagase & Co., Ltd.) and the like. Further, in the production method of the present invention, the β-glucanase activity of the liquefied enzyme is preferably 0 to 80%, more preferably 0 to 40%, still more preferably 0 to 20%. , 0-10% is particularly preferred. When a liquefiing enzyme having a low β-glucanase activity is used, a grain saccharified solution having a high content of water-soluble dietary fiber can be obtained, especially when grains containing a large amount of β-glucan (oats, barley, etc.) are used as raw materials. Can be done. Details of the method for measuring β-glucanase activity will be described later.
 液化酵素の添加量は、JIS K7001:1990により測定した1液化力単位(JLU)を1unitとした場合に、原料である穀物1gに対して、例えば1unit~150unit、好ましくは10unit~100unit、より好ましくは20unit~70unitである。1unit以上であれば、液化反応は十分に進み、150unit以下であれば経済的である。 The amount of the liquefiing enzyme added is, for example, 1 unit to 150 units, preferably 10 units to 100 units, more preferably 1 unit, with respect to 1 g of the raw material grain, when the 1 liquefaction force unit (JLU) measured by JIS K7001: 1990 is 1 unit. Is 20 units to 70 units. If it is 1 unit or more, the liquefaction reaction proceeds sufficiently, and if it is 150 units or less, it is economical.
 液化工程における反応温度および反応時間は、添加する液化酵素の種類によって適宜調整することが可能である。一例として、65℃~120℃の反応温度、好ましくは80℃~110℃の反応温度であって、0.01時間~24時間の反応時間、好ましくは0.1時間~12時間の反応時間、より好ましくは0.1時間~2時間の反応時間とすることが可能である。 The reaction temperature and reaction time in the liquefaction step can be appropriately adjusted depending on the type of liquefiing enzyme to be added. As an example, the reaction temperature is 65 ° C. to 120 ° C., preferably 80 ° C. to 110 ° C., and the reaction time is 0.01 to 24 hours, preferably 0.1 to 12 hours. More preferably, the reaction time can be 0.1 to 2 hours.
 穀物中には、デンプンに働いて液化するα-アミラーゼ、デキストリンに働いてオリゴ糖を生成するデキストリナーゼ、β-グルカン等の多糖類に作用する酵素等の内在性酵素が存在する。これら内在性酵素が働くと、場合により、本発明の好適な成分、すなわち不溶性食物繊維、水溶性食物繊維およびイソマルトオリゴ糖の全てまたはいずれかの損失につながり得る。したがって、液化工程においては内在性酵素を働かせないことが好ましい一態様であり得る。 In the grain, there are endogenous enzymes such as α-amylase that acts on starch to liquefy, dextrinase that acts on dextrin to produce oligosaccharides, and enzymes that act on polysaccharides such as β-glucan. The action of these endogenous enzymes can optionally lead to the loss of all or any of the preferred components of the invention: insoluble dietary fiber, water-soluble dietary fiber and isomaltooligosaccharides. Therefore, it may be a preferable aspect that the endogenous enzyme is not allowed to act in the liquefaction step.
 この目的のために、本発明の製造方法の好適な一実施形態では、仕込み液を前記反応温度範囲に昇温した後に液化酵素を加え、反応中も前記反応温度範囲内に維持し、そのような温度域で液化反応を行うことである。 For this purpose, in a preferred embodiment of the production method of the present invention, the charged liquid is heated to the reaction temperature range and then the liquefied enzyme is added to keep the charged liquid within the reaction temperature range during the reaction. The liquefaction reaction is carried out in a temperature range.
 また、本発明の製造方法の一実施形態においては、仕込み液をできるだけ速やかに前記反応温度範囲に昇温することで、前記内在性酵素を失活させて、その働きを可能な限り抑制することが好ましい。例えば、仕込み液を速やかに昇温して、少なくとも5分以内、好ましくは1分以内、より好ましくは10秒以内に、前記内在性酵素が働く温度域を通過させることが好ましい。このような急速な昇温が可能な装置として、仕込み液に直接スチームジェットを当て、瞬時に加熱・ミキシングすることが可能なジェットクッカーを用いることができる。そのようなジェットクッカーとして、商品名「ノリタケクッカー・スチームミキサー」(ノリタケ社製)、商品名「ジェットクッカー」(ハイドロサーマル社)等が市販されており、本実施形態でも使用することができる。また、高圧下でミキシングにより、添加した液化酵素を十分に作用させることもできる。 Further, in one embodiment of the production method of the present invention, the charging liquid is heated to the reaction temperature range as quickly as possible to inactivate the endogenous enzyme and suppress its action as much as possible. Is preferable. For example, it is preferable to rapidly raise the temperature of the charged liquid and allow it to pass through the temperature range in which the endogenous enzyme works within at least 5 minutes, preferably within 1 minute, and more preferably within 10 seconds. As a device capable of such a rapid temperature rise, a jet cooker capable of instantly heating and mixing by directly applying a steam jet to the charging liquid can be used. As such a jet cooker, a trade name "Noritake Cooker / Steam Mixer" (manufactured by Noritake Co., Ltd.), a trade name "Jet Cooker" (manufactured by Hydrothermal Co., Ltd.) and the like are commercially available, and can also be used in the present embodiment. In addition, the added liquefied enzyme can be sufficiently allowed to act by mixing under high pressure.
 なお、本発明の製造方法の別の実施形態においては、上記ジェットクッカーによる液化反応後の液化液を、例えばバッチタンク内で、液化酵素に最適な温度域に維持して、更に液化反応を熟成させることも可能である。 In another embodiment of the production method of the present invention, the liquefied liquid after the liquefaction reaction by the jet cooker is maintained in a batch tank, for example, in a temperature range optimum for the liquefied enzyme, and the liquefaction reaction is further aged. It is also possible to make it.
 また、液化反応後の液化液は、適宜必要に応じて、珪藻土等を助剤とする濾過を行い、適宜不純物を除去してもよい。 Further, the liquefied liquid after the liquefaction reaction may be appropriately filtered using diatomaceous earth or the like as an auxiliary agent to remove impurities as appropriate.
3.糖化工程
 上記液化液中の低分子化された糖類を更に分解して、単糖類、二糖類、三糖類、四糖類等を含む糖化液を得るために、糖化工程を実施する。当該工程は、液化液に糖化酵素を添加することで行われる。
3. 3. Saccharification step A saccharification step is carried out in order to further decompose the low molecular weight saccharides in the liquefied solution to obtain a saccharified solution containing monosaccharides, disaccharides, trisaccharides, tetrasaccharides and the like. The step is performed by adding a saccharifying enzyme to the liquefied liquid.
 糖化酵素の例として、β-アミラーゼ(EC3.2.1.2)や糖化型α-アミラーゼ(EC3.2.1.1)、グルコアミラーゼ(EC3.2.1.3)、プルラナーゼ(ECEC3.2.1.41)、トランスグルコシダーゼ(EC3.2.1.20)、グルカナーゼ(EC3.2.1.6)等を挙げることができる。これらの酵素は単独でも使用できるが、複数の酵素を組み合わせて使用することも好ましい。糖化酵素は、市販のものでもよく、具体例としては、β-アミラーゼとして、商品名「β-アミラーゼL/R」(ナガセケムテックス社製)、商品名「β-アミラーゼFアマノ」(天野エンザイム社製)、商品名「ハイマルトシンGL」(エイチビィアイ社製)等が挙げられ、糖化型α-アミラーゼとして、商品名「ファンガミル」(ノボザイムズ社製)等が挙げられ、グルコアミラーゼとして、商品名「グルコチーム#20000」、商品名「デナチームGSA/R」(以上、長瀬産業社製);商品名「グルクザイムAF6」(天野エンザイム社製);商品名「スミチーム」(新日本化学工業社製);商品名「グルターゼAN」(エイチビィアイ社製);商品名「AMG」(ノボザイムズジャパン社製);商品名「AMG300L」(ノボザイムズジャパン社製);商品名「GODO-ANGH」(合同酒精社製);および商品名「ユニアーゼ30」(ヤクルト薬品工業社製)等が挙げられる。また、市販のプルラナーゼとしては、商品名「プルラナーゼ「アマノ」3」(天野エンザイム社製)等が挙げられ、トランスグルコシダーゼとしては、商品名「トランスグルコシダーゼL「アマノ」」(天野エンザイム社製)、商品名「トランスグルコシダーゼL-500」(ジェネンコア社製)等が挙げられ、グルカナーゼとして商品名「Finizym250L」(ノボザイムズジャパン社製)等が挙げられる。これらの酵素は、概ね、pH3.5~7.0で活性を示し、pH4.5~6.5の至適pHを有している。 Examples of saccharifying enzymes include β-amylase (EC 3.2.1.2), saccharified α-amylase (EC 3.2.1.1), glucoamylase (EC 3.2.2.13), and pullulanase (ECEC 3. 2.1.41), transglucosidase (EC 3.2.1.20), glucanase (EC 3.2.1.6) and the like can be mentioned. Although these enzymes can be used alone, it is also preferable to use a combination of a plurality of enzymes. The saccharifying enzyme may be commercially available, and specific examples thereof include the trade name "β-amylase L / R" (manufactured by Nagase ChemteX Corporation) and the trade name "β-amylase F Amano" (Amano Enzyme). ), Product name "Hymaltocin GL" (manufactured by HBI), etc., and saccharified α-amylase, product name "Fangamil" (manufactured by Novozymes), etc. Team # 20000 ”, product name“ Dena Team GSA / R ”(above, manufactured by Nagase Sangyo Co., Ltd.); product name“ Gluczyme AF6 ”(manufactured by Amylase Enzyme); Name "Glutase AN" (manufactured by HBI); Product name "AMG" (manufactured by Novozymes Japan); Product name "AMG300L" (manufactured by Novozymes Japan); Product name "GODO-ANGH" (Joint Sake Seisha) (Manufactured by); and the trade name "Uniase 30" (manufactured by Yakult Pharmaceutical Co., Ltd.) and the like. Examples of commercially available pullulanase include the trade name "pullanase" Amano "3" (manufactured by Amano Enzyme), and examples of transglucosidase include the trade name "transglucosidase L" Amano "" (manufactured by Amano Enzyme). The product name "transglucosidase L-500" (manufactured by Genecoa) and the like can be mentioned, and the trade name "Fizym250L" (manufactured by Novozymes Japan) and the like can be mentioned as glucanase. These enzymes are generally active at pH 3.5-7.0 and have an optimum pH of pH 4.5-6.5.
 更に、本発明の製造方法において、糖化酵素は、β-グルカナーゼ活性度が0~80%であることが好ましく、0~40%であることがより好ましく、0~20%であることが更に好ましく、0~10%であることが特に好ましい。β-グルカナーゼ活性度の低い糖化酵素を用いると、特に原料としてβ-グルカンを多く含む穀物(オーツ麦、大麦など)を用いる場合に、水溶性食物繊維の含有量が高い穀物糖化液を得ることができる。糖化工程において複数の糖化酵素を組み合わせて用いる場合には、それぞれの糖化酵素のβ-グルカナーゼ活性度が上記特定した範囲内にあることが好ましいものの、そのうちの一部の糖化酵素のβ-グルカナーゼ活性度が低い場合であっても、β-グルカンの分解を抑えることが可能である。例えば、複数の糖化酵素のうちの一つの糖化酵素のβ-グルカナーゼ活性度が0~10%であれば、β-グルカンの分解を十分に抑えることも可能である。 Further, in the production method of the present invention, the β-glucanase activity of the saccharifying enzyme is preferably 0 to 80%, more preferably 0 to 40%, still more preferably 0 to 20%. , 0-10% is particularly preferred. When a saccharifying enzyme having a low β-glucanase activity is used, a grain saccharified solution having a high content of water-soluble dietary fiber can be obtained, especially when a grain containing a large amount of β-glucan (oat, barley, etc.) is used as a raw material. Can be done. When a plurality of saccharifying enzymes are used in combination in the saccharification step, it is preferable that the β-glucanase activity of each saccharifying enzyme is within the above-specified range, but the β-glucanase activity of some of the saccharifying enzymes is preferable. Even when the degree is low, it is possible to suppress the decomposition of β-glucan. For example, if the β-glucanase activity of one of the plurality of saccharifying enzymes is 0 to 10%, it is possible to sufficiently suppress the decomposition of β-glucan.
<β-グルカナーゼ活性度の測定方法>
 本明細書において、糖化酵素および液化酵素についてのβ-グルカナーゼ活性度は、次の方法により測定される。
 β-グルカンの標準を5mg/mlとなるよう純水で溶解して、β-グルカン溶液を作製する。なお、以下の表1に示すデータでは、シグマ社製の大麦由来のβ-グルカンを用いてβ-グルカン溶液を作製した。
 酵素サンプルは、純水で10mg/mlとなるよう希釈する。β-グルカン溶液と希釈した酵素サンプルを試験管内で混ぜて、60℃恒温槽に3時間インキュベーションした後、氷冷する。コンゴレッド法(栃木農試研報、No47、57-64、1998年)により、溶液中の分子量10以上のβ-グルカン濃度を測定する。酵素サンプルのかわりに、純水で同様の操作を行ったものをブランクとする。以下の表1には、一部の液化酵素および糖化酵素についてのβ-グルカナーゼ活性度を示す。
 β-グルカナーゼ活性度は、次式より求められる。
   β-グルカナーゼ活性度(%)=(1-B/B0)×100
     B=酵素サンプル希釈液の場合でのβ-グルカン濃度
     B0=ブランクの場合でのβ-グルカン濃度
<Measurement method of β-glucanase activity>
As used herein, β-glucanase activity for saccharifying enzymes and liquefiing enzymes is measured by the following method.
A β-glucan solution is prepared by dissolving the β-glucan standard in pure water so as to be 5 mg / ml. In the data shown in Table 1 below, a β-glucan solution was prepared using β-glucan derived from barley manufactured by Sigma.
The enzyme sample is diluted with pure water to 10 mg / ml. The β-glucan solution and the diluted enzyme sample are mixed in a test tube, incubated in a constant temperature bath at 60 ° C. for 3 hours, and then ice-cooled. The β - glucan concentration in the solution having a molecular weight of 105 or more is measured by the Congo red method (Tochigi Agricultural Experiment Research Bulletin, No. 47, 57-64, 1998). Instead of the enzyme sample, the one obtained by performing the same operation with pure water is used as a blank. Table 1 below shows the β-glucanase activity for some liquefied and saccharifying enzymes.
The β-glucanase activity can be obtained from the following equation.
β-Glucanase activity (%) = (1-B / B0) × 100
B = β-glucan concentration in the case of enzyme sample diluent B0 = β-glucan concentration in the case of blank
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 糖化酵素の添加量は、pH4.5で40℃、30分間、アミロースに添加して反応させた結果グルコースを1mg生産する酵素量を1unitとした場合に、原料である穀物1gに対して、例えば10unit~1000unit、好ましくは20unit~900unit、より好ましくは500unit~700unitである。1000unit以下であれば不快な風味を抑制でき、10unit以上であれば、糖化反応は十分に進む。 The amount of the saccharifying enzyme added is, for example, relative to 1 g of the raw material grain when the amount of the enzyme that produces 1 mg of glucose as a result of adding and reacting with amylose at pH 4.5 at 40 ° C. for 30 minutes is 1 unit. It is 10 units to 1000 units, preferably 20 units to 900 units, and more preferably 500 units to 700 units. If it is 1000 units or less, the unpleasant flavor can be suppressed, and if it is 10 units or more, the saccharification reaction proceeds sufficiently.
 糖化工程における反応温度および反応時間は、添加する糖化酵素の種類によって適宜調整することが可能である。一例として、30℃~65℃の反応温度、好ましくは40℃~65℃の反応温度、より好ましくは45℃~65℃の反応温度であって、1時間~24時間の反応時間、好ましくは1.5時間~10時間の反応時間、より好ましくは2時間~4時間とすることが可能である。 The reaction temperature and reaction time in the saccharification step can be appropriately adjusted depending on the type of saccharifying enzyme to be added. As an example, the reaction temperature is 30 ° C. to 65 ° C., preferably 40 ° C. to 65 ° C., more preferably 45 ° C. to 65 ° C., and the reaction time is 1 hour to 24 hours, preferably 1. The reaction time can be from 5 hours to 10 hours, more preferably from 2 hours to 4 hours.
 なお、本発明の製造方法においては、糖化工程の際に、所望に応じてプロテアーゼやリパーゼ等の他の酵素を一緒に添加してもよい。 In the production method of the present invention, other enzymes such as protease and lipase may be added together as desired during the saccharification step.
 本発明の製造方法においては、上記糖化液に対してホモゲナイザー処理を行うことが好ましい。これにより、糖化液中に含まれる不溶性食物繊維がせん断により微細化され、所望の粒度分布に調整することができる。ホモゲナイザーによる処理条件は、不溶性食物繊維の微細化により糖化液を食したときの舌触りをなめらかにすることが可能であれば、特に制限されるものではなく、処理圧力として、例えば5MPa以上、好ましくは10MPa以上である。一方、処理圧力としては、典型的には90MPa以下であり、20MPa以下であることが好ましい。ホモゲナイザーは、市販のものを使用でき、例えば、商品名「ホモゲナイザーH20型」(三和エンジニアリング社製)等が挙げられる。 In the production method of the present invention, it is preferable to perform a homogenizer treatment on the saccharified solution. As a result, the insoluble dietary fiber contained in the saccharified solution is refined by shearing, and the desired particle size distribution can be adjusted. The treatment conditions by the homogenizer are not particularly limited as long as it is possible to smooth the texture when the saccharified solution is eaten by refining the insoluble dietary fiber, and the treatment pressure is, for example, 5 MPa or more, preferably 5 MPa or more. It is 10 MPa or more. On the other hand, the processing pressure is typically 90 MPa or less, preferably 20 MPa or less. As the homogenizer, a commercially available product can be used, and examples thereof include the trade name “homogenizer H20 type” (manufactured by Sanwa Engineering Co., Ltd.).
 上記糖化液は、適宜必要に応じて、珪藻土等を助剤とする濾過を行い、適宜不純物を除去してもよい。 The saccharified solution may be appropriately filtered using diatomaceous earth or the like as an auxiliary agent to remove impurities as appropriate.
 本発明の製造方法により得られる穀物糖化液は、上述のとおり、本発明の穀物糖化液、具体的には、穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量が1.0wt%以上、穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量が0.6wt%以上、穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合が10.0wt%以上であり、穀物糖化液中の不溶性成分の平均粒径が30~70μmである穀物糖化液であることが好ましい。 As described above, the cereal saccharified solution obtained by the production method of the present invention has an insoluble dietary fiber content of 1.0 wt% in the solid content of the cereal saccharified solution of the present invention, specifically, the grain saccharified solution. As described above, the content of water-soluble dietary fiber contained in the solid content of the grain saccharified liquid is 0.6 wt% or more, and the ratio of isomaltooligosaccharide to the total saccharides contained in the grain saccharified liquid is 10.0 wt% or more. It is preferable that the cereal saccharified solution has an average particle size of an insoluble component in the grain saccharified solution of 30 to 70 μm.
 本発明の穀物糖化液の説明において記載した好適な実施形態については、本発明の製造方法により得られる穀物糖化液にも当てはまることである。例えば、原料である穀物は、オーツ麦および大麦の少なくとも一方を含むことが好ましく、オーツ麦であることが更に好ましい。また、穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量は、1.0wt%以上が好ましく、2.0wt%以上がより好ましく、4.0wt%以上が更に好ましい。穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量は、0.6wt%以上が好ましく、1.0wt%以上がより好ましく、2.0wt%以上が更に好ましい。穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合は、10.0wt%以上が好ましく、13.0wt%以上がより好ましく、15.0wt%以上が更に好ましい。穀物糖化液中の不溶性成分の平均粒径は、30~70μmであることが好ましく、50~70μmであることがより好ましく、55~65μmであることが更に好ましい。 The preferred embodiment described in the description of the cereal saccharified solution of the present invention also applies to the cereal saccharified solution obtained by the production method of the present invention. For example, the grain as a raw material preferably contains at least one of oats and barley, and is more preferably oats. The content of insoluble dietary fiber contained in the solid content of the grain saccharified liquid is preferably 1.0 wt% or more, more preferably 2.0 wt% or more, still more preferably 4.0 wt% or more. The content of water-soluble dietary fiber contained in the solid content in the grain saccharified liquid is preferably 0.6 wt% or more, more preferably 1.0 wt% or more, still more preferably 2.0 wt% or more. The ratio of isomaltooligosaccharides to the total saccharides contained in the grain saccharified solution is preferably 10.0 wt% or more, more preferably 13.0 wt% or more, still more preferably 15.0 wt% or more. The average particle size of the insoluble component in the grain saccharified solution is preferably 30 to 70 μm, more preferably 50 to 70 μm, and even more preferably 55 to 65 μm.
 本発明の別の態様は、本発明の穀物糖化液を用いた飲料である。ここで、本発明の飲料として、典型的には、上述した本発明の穀物糖化液が甘味料として使用され、本発明の穀物糖化液を含む飲料が挙げられ、その具体例として、清涼飲料(炭酸飲料、果実飲料、スポーツ飲料、茶系飲料など)、アルコール飲料、シロップ等がある。 Another aspect of the present invention is a beverage using the grain saccharified solution of the present invention. Here, as the beverage of the present invention, typically, the above-mentioned grain saccharified solution of the present invention is used as a sweetener, and a beverage containing the grain saccharified solution of the present invention can be mentioned. Carbonated drinks, fruit drinks, sports drinks, tea-based drinks, etc.), alcoholic drinks, syrups, etc.
 本発明の別の態様は、本発明の穀物糖化液を用いた甘味物である。ここで、本発明の甘味物として、典型的には、上述した本発明の穀物糖化液が甘味料として使用され、本発明の穀物糖化液を含む甘味物が挙げられ、その具体例として、ゼリー、プリン、アイスクリーム、キャンディ、ソフトキャンディ、ガムなどの菓子等がある。 Another aspect of the present invention is a sweetened product using the grain saccharified solution of the present invention. Here, as the sweetener of the present invention, typically, the above-mentioned grain saccharified solution of the present invention is used as a sweetener, and a sweetened substance containing the grain saccharified solution of the present invention can be mentioned, and as a specific example thereof, jelly. , Pudding, ice cream, candy, soft candy, gum and other sweets.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
(実施例1)
 原料である穀物としてオーツ麦を用いた実施例である。
 純水とオーツフラワー(京都グレイン社製)の重量比率が75:25となるように反応槽へ仕込み、液化酵素であるα-アミラーゼとして商品名「クライスターゼT10S」(天野エンザイム社製)を、原料である穀物に対する質量基準(W/W)で0.3%(3930unit/100g原料)の濃度で添加し、90℃で1時間反応させ、反応液を得た。
 次に、上記反応液を反応槽中で60℃まで冷却し、糖化酵素としてβ-アミラーゼである商品名「β-アミラーゼL/R」(ナガセケムテックス社製)を原料である穀物に対する質量基準(W/W)で0.26%(6240unit/100g原料)の濃度で、プルラナーゼである商品名「プルラナーゼアマノ3」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.13%(390unit/100g原料)の濃度で、トランスグルコシダーゼである商品名「トランスグルコシダーゼLアマノ」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.20%(60000unit/100g原料)の濃度で上記反応液中に添加した。その後、60℃で3時間糖化反応を行ったのち、90℃まで加温して酵素を失活させた。
 次に、室温まで冷却後、15MPaでホモゲナイザー処理を施し、オーツ麦由来の糖化液を得た。得られた糖化液のBrixは20.2、pHは6.1であった。
(Example 1)
This is an example in which oats are used as the raw material grain.
Charge the reaction tank so that the weight ratio of pure water and oatsflower (manufactured by Kyoto Grain) is 75:25, and use the trade name "Crystase T10S" (manufactured by Amano Enzyme) as α-amylase, which is a liquefiing enzyme. The mixture was added at a concentration of 0.3% (3930 unit / 100 g raw material) based on the mass of the grain as a raw material, and reacted at 90 ° C. for 1 hour to obtain a reaction solution.
Next, the above reaction solution is cooled to 60 ° C. in a reaction vessel, and the mass standard for grains as a raw material using the trade name "β-amylase L / R" (manufactured by Nagase ChemteX), which is β-amylase as a saccharifying enzyme. At a concentration of 0.26% (6240unit / 100g raw material) at (W / W), the mass standard (W / W) for grains made from the trade name "Pluranase Amano 3" (manufactured by Amano Enzyme), which is a pluranase, is used. At a concentration of 0.13% (390unit / 100g raw material), the product name "Transglucosidase L Amano" (manufactured by Amano Enzyme), which is a transglucosidase, is 0.20% based on the mass of the grain as a raw material (W / W). It was added to the above reaction solution at a concentration of (60000unit / 100g raw material). Then, the saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme.
Next, after cooling to room temperature, homogenizer treatment was performed at 15 MPa to obtain an oat-derived saccharified solution. The obtained saccharified solution had a Brix of 20.2 and a pH of 6.1.
(実施例2)
 原料である穀物として大麦を用いた実施例である。
 純水と大麦(京都グレイン社製)の重量比率が75:25となるように反応槽へ仕込み、液化酵素であるα-アミラーゼとして商品名「クライスターゼT10S」(天野エンザイム社製)を、原料である穀物に対する質量基準(W/W)で0.3%(3930unit/100g原料)の濃度で添加し、90℃で1時間反応させ、反応液を得た。
 次に、上記反応液を反応槽中で60℃まで冷却し、糖化酵素としてβ-アミラーゼである商品名「β-アミラーゼL/R」(ナガセケムテックス社製)を原料である穀物に対する質量基準(W/W)で0.26%(6240unit/100g原料)の濃度で、プルラナーゼである商品名「プルラナーゼアマノ3」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.13%(390unit/100g原料)の濃度で、トランスグルコシダーゼである商品名「トランスグルコシダーゼLアマノ」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.20%(60000unit/100g原料)の濃度で上記反応液中に添加した。その後、60℃で3時間糖化反応を行ったのち、90℃まで加温して酵素を失活させた。
 次に、室温まで冷却後、15MPaでホモゲナイザー処理を施し、大麦由来の糖化液を得た。得られた糖化液のBrixは22.1、pHは5.5であった。
(Example 2)
This is an example in which barley is used as a raw material grain.
The water was charged into the reaction tank so that the weight ratio of pure water and barley (manufactured by Kyoto Grain) was 75:25, and the trade name "Crystase T10S" (manufactured by Amano Enzyme) was used as the raw material for α-amylase, which is a liquefiing enzyme. The mixture was added at a concentration of 0.3% (3930 unit / 100 g raw material) based on the mass of the grain (W / W), and reacted at 90 ° C. for 1 hour to obtain a reaction solution.
Next, the above reaction solution is cooled to 60 ° C. in a reaction vessel, and the mass standard for grains as a raw material using the trade name "β-amylase L / R" (manufactured by Nagase ChemteX), which is β-amylase as a saccharifying enzyme. At a concentration of 0.26% (6240unit / 100g raw material) at (W / W), the mass standard (W / W) for grains made from the trade name "Pluranase Amano 3" (manufactured by Amano Enzyme), which is a pluranase, is used. At a concentration of 0.13% (390unit / 100g raw material), the product name "Transglucosidase L Amano" (manufactured by Amano Enzyme), which is a transglucosidase, is 0.20% based on the mass of the grain as a raw material (W / W). It was added to the above reaction solution at a concentration of (60000unit / 100g raw material). Then, a saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme.
Next, after cooling to room temperature, a homogenizer treatment was performed at 15 MPa to obtain a saccharified solution derived from barley. The obtained saccharified solution had a Brix of 22.1 and a pH of 5.5.
(比較例1)
 純水とオーツフラワー(京都グレイン社製)の比率が75:25となるように反応槽へ仕込み、β-グルカン分解酵素である商品名「Finizym(登録商標)250L」(ノボザイムズジャパン社製)を、原料である穀物に対する質量基準(W/W)で0.10%(25unit/100g原料)の濃度で添加し、50℃で1時間反応させた。次に、液化酵素であるα-アミラーゼとして商品名「クライスターゼT10S」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.3%(3930unit/100g原料)の濃度で添加し、90℃で1時間反応させ、反応液を得た。
 次に、上記反応液を反応槽中で60℃まで冷却し、糖化酵素としてβ-アミラーゼである商品名「β-アミラーゼL/R」(ナガセケムテックス社製)を原料である穀物に対する質量基準(W/W)で0.26%(6240unit/100g原料)の濃度で、プルラナーゼである商品名「プルラナーゼアマノ3」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.13%(390unit/100g原料)の濃度で、トランスグルコシダーゼである商品名「トランスグルコシダーゼLアマノ」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.20%(60000unit/100g原料)の濃度で上記反応液中に添加した。その後、60℃で3時間糖化反応を行ったのち、90℃まで加温して酵素を失活させた。
 次に、室温まで冷却後、15MPaでホモゲナイザー処理を施し、オーツ麦由来の糖化液を得た。得られた糖化液のBrixは20.2、pHは6.1であった。
(Comparative Example 1)
The ratio of pure water and oats flower (manufactured by Kyoto Grain) is 75:25, and the product is charged into the reaction tank. ) Was added at a concentration of 0.10% (25 unit / 100 g raw material) on a mass basis (W / W) with respect to the grain as a raw material, and reacted at 50 ° C. for 1 hour. Next, as α-amylase, which is a liquefiing enzyme, the concentration of 0.3% (3930unit / 100g raw material) based on the mass standard (W / W) for grains made from the trade name "Crystase T10S" (manufactured by Amano Enzyme). Was added and reacted at 90 ° C. for 1 hour to obtain a reaction solution.
Next, the above reaction solution is cooled to 60 ° C. in a reaction vessel, and the mass standard for grains as a raw material using the trade name "β-amylase L / R" (manufactured by Nagase ChemteX), which is β-amylase as a saccharifying enzyme. At a concentration of 0.26% (6240unit / 100g raw material) at (W / W), the mass standard (W / W) for grains made from the trade name "Pluranase Amano 3" (manufactured by Amano Enzyme), which is a pluranase, is used. At a concentration of 0.13% (390unit / 100g raw material), the product name "Transglucosidase L Amano" (manufactured by Amano Enzyme), which is a transglucosidase, is 0.20% based on the mass of the grain as a raw material (W / W). It was added to the above reaction solution at a concentration of (60000unit / 100g raw material). Then, a saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme.
Next, after cooling to room temperature, homogenizer treatment was performed at 15 MPa to obtain an oat-derived saccharified solution. The obtained saccharified solution had a Brix of 20.2 and a pH of 6.1.
(比較例2)
 純水とオーツフラワー(京都グレイン社製)の比率が75:25となるように反応槽へ仕込み、液化酵素であるα-アミラーゼとして商品名「クライスターゼT10S」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.3%(3930unit/100g原料)の濃度で添加し、90℃で1時間反応させ、反応液を得た。
 次に、上記反応液を反応槽中で60℃まで冷却し、糖化酵素としてβ-アミラーゼである商品名「β-アミラーゼL/R」(ナガセケムテックス社製)を原料である穀物に対する質量基準(W/W)で0.26%(6240unit/100g原料)の濃度で、プルラナーゼである商品名「プルラナーゼアマノ3」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.13%(390unit/100g原料)の濃度で、グルコアミラーゼである商品名「AMG300L」(ノボザイムズジャパン社製)を原料である穀物に対する質量基準(W/W)で0.14%(42unit/100g原料)の濃度で上記反応液中に添加した。その後、60℃で3時間糖化反応を行ったのち、90℃まで加温して酵素を失活させた。
 次に、室温まで急速冷却後、15MPaでホモゲナイザー処理を施し、オーツ麦由来の糖化液を得た。得られた糖化液のBrixは20.3、pHは6.1であった。
(Comparative Example 2)
The ratio of pure water and oats flower (manufactured by Kyoto Grain) is 75:25, and the product is charged into the reaction tank. A grain was added at a concentration of 0.3% (3930 unit / 100 g raw material) on a mass basis (W / W) and reacted at 90 ° C. for 1 hour to obtain a reaction solution.
Next, the reaction solution is cooled to 60 ° C. in a reaction vessel, and the product name "β-amylase L / R" (manufactured by Nagase ChemteX Corporation), which is β-amylase as a saccharifying enzyme, is used as a raw material for grains. At a concentration of 0.26% (6240unit / 100g raw material) at (W / W), the product name "Pluranase Amylase 3" (manufactured by Amano Enzyme Co., Ltd.), which is a purulanase, is used as a raw material based on the mass standard (W / W). At a concentration of 0.13% (390unit / 100g raw material), the product name "AMG300L" (manufactured by Novozymes Japan), which is a glucoamylase, is 0.14% (W / W) based on the mass of the raw material. It was added to the above reaction solution at a concentration of 42 units / 100 g (raw material). Then, a saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme.
Next, after rapid cooling to room temperature, homogenizer treatment was performed at 15 MPa to obtain an oat-derived saccharified solution. The obtained saccharified solution had a Brix of 20.3 and a pH of 6.1.
(比較例3)
 純水とオーツフラワー(京都グレイン社製)の重量比率が75:25となるように反応槽へ仕込み、液化酵素であるα-アミラーゼとして商品名「クライスターゼT10S」(天野エンザイム社製)を、原料である穀物に対する質量基準(W/W)で0.3%(3930unit/100g原料)の濃度で添加し、90℃で1時間反応させ、反応液を得た。
 次に、上記反応液を反応槽中で60℃まで冷却し、糖化酵素としてβ-アミラーゼである商品名「β-アミラーゼL/R」(ナガセケムテックス社製)を原料である穀物に対する質量基準(W/W)で0.26%(6240unit/100g原料)の濃度で、プルラナーゼである商品名「プルラナーゼアマノ3」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.13%(390unit/100g原料)の濃度で、トランスグルコシダーゼである商品名「トランスグルコシダーゼLアマノ」(天野エンザイム社製)を原料である穀物に対する質量基準(W/W)で0.20%(60000unit/100g原料)の濃度で上記反応液中に添加した。その後、60℃で3時間糖化反応を行ったのち、90℃まで加温して酵素を失活させ、冷却後オーツ麦由来の糖化液を得た。ホモゲナイザー処理は行わなかった。得られた糖化液のBrixは20.2、pHは6.1であった。
(Comparative Example 3)
Charge the reaction tank so that the weight ratio of pure water and oatsflower (manufactured by Kyoto Grain) is 75:25, and use the trade name "Crystase T10S" (manufactured by Amano Enzyme) as α-amylase, which is a liquefiing enzyme. It was added at a concentration of 0.3% (3930 unit / 100 g raw material) to the grain as a raw material on a mass basis (W / W), and reacted at 90 ° C. for 1 hour to obtain a reaction solution.
Next, the above reaction solution is cooled to 60 ° C. in a reaction vessel, and the mass standard for grains as a raw material using the trade name "β-amylase L / R" (manufactured by Nagase ChemteX), which is β-amylase as a saccharifying enzyme. At a concentration of 0.26% (6240unit / 100g raw material) at (W / W), the mass standard (W / W) for grains made from the trade name "Pluranase Amano 3" (manufactured by Amano Enzyme), which is a pluranase, is used. At a concentration of 0.13% (390unit / 100g raw material), the product name "Transglucosidase L Amano" (manufactured by Amano Enzyme), which is a transglucosidase, is 0.20% based on the mass of the grain as a raw material (W / W). It was added to the above reaction solution at a concentration of (60000unit / 100g raw material). Then, a saccharification reaction was carried out at 60 ° C. for 3 hours, and then the mixture was heated to 90 ° C. to inactivate the enzyme, and after cooling, a saccharified solution derived from oats was obtained. No homogenizer treatment was performed. The obtained saccharified solution had a Brix of 20.2 and a pH of 6.1.
 得られた糖化液に関して、Brix、pH、固形分中に含まれる不溶性食物繊維含有量、固形分中に含まれる水溶性食物繊維量、糖類全体に対するイソマルトオリゴ糖の割合、不溶性成分の平均粒径、糖組成を以下の方法で測定した。また、得られた糖化液に関して、食した際の官能試験を以下の方法で行った。測定結果および評価結果を表2に示す。 Regarding the obtained saccharified solution, Brix, pH, the content of insoluble dietary fiber contained in the solid content, the amount of water-soluble dietary fiber contained in the solid content, the ratio of isomaltooligosaccharide to the total sugar, and the average particle size of the insoluble component. , The sugar composition was measured by the following method. In addition, the obtained saccharified solution was subjected to a sensory test when eaten by the following method. Table 2 shows the measurement results and evaluation results.
 なお、実施例、比較例に使用する際に選定した液化酵素、糖化酵素のβ-グルカナーゼ活性度については、表1を参照されたい。 Refer to Table 1 for the β-glucanase activity of the liquefiing enzyme and saccharifying enzyme selected when used in Examples and Comparative Examples.
[Brix]
 デジタル屈折計 商品名「RX-5000α」(アタゴ社製)を用いて、得られた糖化液のBrixを測定した。測定温度は20℃であった。
[Brix]
Brix of the obtained saccharified solution was measured using a digital refractometer trade name "RX-5000α" (manufactured by Atago Co., Ltd.). The measurement temperature was 20 ° C.
[pH]
 卓上型pHメータ 型式:F-74(HORIBA社製)を用いて、得られた糖化液のpHを測定した。測定温度は25℃であった。
[PH]
A tabletop pH meter model: F-74 (manufactured by HORIBA) was used to measure the pH of the obtained saccharified solution. The measurement temperature was 25 ° C.
[不溶性・水溶性食物繊維量]
 日本食品標準成分表2015年版(七訂)分析マニュアル(文部科学省発行)のプロスキー変法により、得られた糖化液中の固形分中に含まれる不溶性食物繊維含有量および水溶性食物繊維含有量を測定した。
[Amount of insoluble / water-soluble dietary fiber]
Insoluble dietary fiber content and water-soluble dietary fiber content contained in the solid content in the obtained saccharified solution by the Proski modified method of the Standard Tables of Food Composition in Japan 2015 (7th revision) Analysis Manual (published by the Ministry of Education, Culture, Sports, Science and Technology) The amount was measured.
[イソマルトオリゴ糖量]
 前処理:糖化液を純水でBrix5~10に希釈し、活性炭(太閤S-W50,フタムラ化学社製)を適量添加し、煮沸後、ろ紙(No.2、アドバンテック社製)でろ過し、イオン交換樹脂(PA408,PK218、三菱化学社製)、固相抽出カートリッジ(Bond Elute Jr-C18、アジレントテクノロジー社製)に順次通導して精製した。
 分析:前処理により精製された糖化液に対して、高速液体クロマトグラフィー(Alliance、日本ウォーターズ社製)を使用して以下の条件で総糖含量の分析を行い、高速液体クロマトグラフィー(Prominence、島津ジーエルシー社製)を使用して以下の条件で単糖、マルトース、マルトオリゴ糖、ショ糖含量の分析を行った。
 得られた総糖含量から単糖、マルトース、マルトオリゴ糖、ショ糖含量を差し引くことにより、得られた糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合を求めた。
(総糖含量の分析条件)
カラム:ULTRON PS80-N(島津ジーエルシー社製)
溶媒:純水
温度:60℃
流速:0.6ml/min
検出:RI(示差屈折率)
(単糖・マルトース・ショ糖・マルトオリゴ糖含量の分析条件)
カラム:Amide-80(東ソー製)
溶媒:70%アセトニトリル
温度:65℃
流速:0.6ml/min
検出:RI(示差屈折率)
[Amount of isomaltooligosaccharide]
Pretreatment: Dilute the saccharified solution with pure water to Brix 5-10, add an appropriate amount of activated carbon (Taiko SW50, manufactured by Futamura Chemical Co., Ltd.), boil, filter with filter paper (No. 2, manufactured by Advantech), and filter. The ion exchange resin (PA408, PK218, manufactured by Mitsubishi Chemical Corporation) and the solid-phase extraction cartridge (Bond Elute Jr-C18, manufactured by Azilent Technology Co., Ltd.) were sequentially introduced for purification.
Analysis: The total sugar content of the saccharified solution purified by the pretreatment is analyzed under the following conditions using high performance liquid chromatography (Alliance, manufactured by Japan Waters), and high performance liquid chromatography (Prominence, Shimadzu) is performed. The contents of monosaccharide, maltose, maltooligosaccharide, and sucrose were analyzed under the following conditions using (manufactured by GLC).
By subtracting the contents of monosaccharide, maltose, malto-oligosaccharide, and sucrose from the total sugar content obtained, the ratio of isomaltooligosaccharide to the total sugar contained in the obtained saccharified solution was determined.
(Analysis conditions for total sugar content)
Column: ULTRON PS80-N (manufactured by Shimadzu GLC)
Solvent: Pure water Temperature: 60 ° C
Flow velocity: 0.6 ml / min
Detection: RI (Differential Refractometer)
(Analysis conditions for monosaccharide, maltose, sucrose, and maltooligosaccharide content)
Column: Amide-80 (manufactured by Tosoh)
Solvent: 70% acetonitrile Temperature: 65 ° C
Flow velocity: 0.6 ml / min
Detection: RI (Differential Refractometer)
[平均粒径]
 マイクロトラックMT3000II(マイクロトラック・ベル株式会社製)を用いて、得られた糖化液中の不溶性成分の平均粒径を測定した。測定溶媒には純水を用い、サンプルはスポイト等にて数滴吸上げサンプル投入口に入れ、超音波処理した後に測定した。測定条件は、分布表示:体積、粒径区分選択:標準、測定範囲:0.021~2,000μm、チャンネル数:132、測定時間:10秒、測定回数:1回、粒子透過性:透過、粒子屈折率:1.81、粒子形状:非球形、溶媒屈折率:1.333とした。
[Average particle size]
The average particle size of the insoluble component in the obtained saccharified solution was measured using Microtrac MT3000II (manufactured by Microtrac Bell Co., Ltd.). Pure water was used as the measurement solvent, and a few drops of the sample were sucked up with a dropper or the like, placed in the sample inlet, and subjected to ultrasonic treatment before measurement. The measurement conditions are distribution display: volume, particle size classification selection: standard, measurement range: 0.021 to 2,000 μm, number of channels: 132, measurement time: 10 seconds, number of measurements: 1 time, particle permeability: transmission, The refractive index of the particles was 1.81, the shape of the particles was non-spherical, and the refractive index of the solvent was 1.333.
[糖組成]
 得られた糖化液の糖組成については、上記[イソマルトオリゴ糖量]で説明したように前処理を行った後、以下の測定条件下で、商品名「Alliance(登録商標)HPLCシステム」(日本ウォーターズ社製)を用いて分析を行った。
(測定条件)
  カラム:商品名「ULTRONPS-80N」(島津ジーエルシー社製)
  溶媒:純水
  温度:60℃
  流速:0.6mL/min
  検出:RI(示差屈折率)
[Sugar composition]
The sugar composition of the obtained saccharified solution is subjected to pretreatment as described in the above [Isomaltooligosaccharide amount], and then under the following measurement conditions, the trade name is "Alliance (registered trademark) HPLC system" (Japan). The analysis was performed using (manufactured by Waters).
(Measurement condition)
Column: Product name "ULTRONPS-80N" (manufactured by Shimadzu GLC)
Solvent: Pure water Temperature: 60 ° C
Flow velocity: 0.6 mL / min
Detection: RI (Differential Refractometer)
[官能試験]
 得られた糖化液を食した際の舌触りについて、成人のパネリスト7人による官能試験を行った。パネリストからは、ざらつきが気になる、または、ざらつきが気にならない、という2つの評価基準から回答を得た。ざらつきが気になると回答した人数を表2に示す。
[Sensory test]
A sensory test was conducted by seven adult panelists on the texture of the obtained saccharified solution when eaten. The panelists responded from two evaluation criteria: they were worried about the roughness or they were not worried about the roughness. Table 2 shows the number of people who answered that they were worried about roughness.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2から分かるように、実施例によれば、糖化液中の固形分中に含まれる不溶性食物繊維含有量、糖化液中の固形分中に含まれる水溶性食物繊維含有量および糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合が高く、整腸効果、整腸作用が期待され、且つ、糖化液中の不溶性成分の平均粒径の調整により、ざらつきの少ない穀物糖化液を提供することができる。 As can be seen from Table 2, according to the examples, the insoluble dietary fiber content contained in the solid content in the saccharified solution, the water-soluble dietary fiber content contained in the solid content in the saccharified solution, and the saccharified solution. To provide a grain saccharified solution having a high ratio of isomaltooligosaccharides to all contained saccharides, expected to have an intestinal regulating effect and an intestinal regulating effect, and by adjusting the average particle size of insoluble components in the saccharified solution to have less roughness. Can be done.

Claims (10)

  1.  穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量が1.0wt%以上、穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量が0.6wt%以上、穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合が10.0wt%以上であり、穀物糖化液中の不溶性成分の平均粒径が30~70μmである穀物糖化液であって、該穀物糖化液の原料である穀物がオーツ麦および大麦の少なくとも一方を含むことを特徴とする穀物糖化液。 The content of insoluble dietary fiber contained in the solid content of the grain saccharified liquid is 1.0 wt% or more, the content of water-soluble dietary fiber contained in the solid content of the grain saccharified liquid is 0.6 wt% or more, and the grain saccharified liquid. A cereal saccharified solution in which the ratio of isomaltooligosaccharide to the total saccharides contained therein is 10.0 wt% or more and the average particle size of the insoluble component in the grain saccharified solution is 30 to 70 μm. A cereal saccharified liquid characterized in that the grain as a raw material contains at least one of oat and barley.
  2.  前記穀物がオーツ麦であることを特徴とする請求項1に記載の穀物糖化液。 The grain saccharified solution according to claim 1, wherein the grain is oat.
  3.  前記水溶性食物繊維含有量が2.0wt%以上であることを特徴とする請求項1または2に記載の穀物糖化液。 The grain saccharified solution according to claim 1 or 2, wherein the water-soluble dietary fiber content is 2.0 wt% or more.
  4.  穀物より糖化液を製造する方法であって、前記穀物がオーツ麦および大麦の少なくとも一方を含み、前記糖化液が、穀物糖化液中の固形分中に含まれる不溶性食物繊維含有量が1.0wt%以上、穀物糖化液中の固形分中に含まれる水溶性食物繊維含有量が0.6wt%以上、穀物糖化液中に含まれる糖類全体に対するイソマルトオリゴ糖の割合が10.0wt%以上であり、穀物糖化液中の不溶性成分の平均粒径が30~70μmである穀物糖化液であることを特徴とする穀物糖化液の製造方法。 A method for producing a saccharified solution from grains, wherein the grain contains at least one of oat and barley, and the saccharified solution contains 1.0 wt of insoluble dietary fiber in the solid content of the grain saccharified solution. % Or more, the content of water-soluble dietary fiber contained in the solid content in the grain saccharified liquid is 0.6 wt% or more, and the ratio of isomaltooligosaccharide to the total saccharides contained in the grain saccharified liquid is 10.0 wt% or more. A method for producing a cereal saccharified solution, which comprises a cereal saccharified solution having an average particle size of an insoluble component in the cereal saccharified solution of 30 to 70 μm.
  5.  糖化液の製造に使用される液化酵素および糖化酵素はそれぞれのβ-グルカナーゼ活性度が0~80%であることを特徴とする請求項4に記載の穀物糖化液の製造方法。 The method for producing a cereal saccharified solution according to claim 4, wherein the liquefiing enzyme and the saccharifying enzyme used for producing the saccharified solution each have a β-glucanase activity of 0 to 80%.
  6.  糖化液に対して10MPa以上の圧力でホモゲナイザー処理を行うことを特徴とする請求項4または5に記載の穀物糖化液の製造方法。 The method for producing a cereal saccharified liquid according to claim 4 or 5, wherein the homogenizer treatment is performed on the saccharified liquid at a pressure of 10 MPa or more.
  7.  前記穀物がオーツ麦であることを特徴とする請求項4~6のいずれか一項に記載の穀物糖化液の製造方法。 The method for producing a cereal saccharified liquid according to any one of claims 4 to 6, wherein the grain is oat.
  8.  前記水溶性食物繊維含有量が2.0wt%以上であることを特徴とする請求項4~7のいずれか一項に記載の穀物糖化液の製造方法。 The method for producing a cereal saccharified liquid according to any one of claims 4 to 7, wherein the water-soluble dietary fiber content is 2.0 wt% or more.
  9.  請求項1~3のいずれか一項に記載の穀物糖化液を用いた飲料。 Beverage using the cereal saccharified liquid according to any one of claims 1 to 3.
  10.  請求項1~3のいずれか一項に記載の穀物糖化液を用いた甘味物。 A sweet product using the cereal saccharified liquid according to any one of claims 1 to 3.
PCT/JP2021/041370 2020-11-12 2021-11-10 Grain saccharified liquid and method of producing same WO2022102664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020188913A JP7002624B1 (en) 2020-11-12 2020-11-12 Grain saccharified liquid and its manufacturing method
JP2020-188913 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102664A1 true WO2022102664A1 (en) 2022-05-19

Family

ID=80560855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041370 WO2022102664A1 (en) 2020-11-12 2021-11-10 Grain saccharified liquid and method of producing same

Country Status (2)

Country Link
JP (1) JP7002624B1 (en)
WO (1) WO2022102664A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023074308A (en) * 2021-11-17 2023-05-29 群栄化学工業株式会社 Grain saccharified liquid and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035725A1 (en) * 2004-09-27 2006-04-06 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Isocyclomaltooligosaccharide, isocyclomaltooligosaccharide synthase, process for producing them and use thereof
JP2006519612A (en) * 2003-03-10 2006-08-31 ジェネンコー・インターナショナル・インク Grain composition containing prebiotic isomaltoligosaccharide, method for producing the same, and use thereof
JP2012044989A (en) * 2010-08-24 2012-03-08 Corn Products Internatl Inc Production of isomaltooligosaccharide and use therefor
CN105925550A (en) * 2016-06-23 2016-09-07 福州大学 Method for preparing isomaltooligosaccharides from alpha-glucosidase through synchronous saccharification and glucoside conversion
JP2018046762A (en) * 2016-09-21 2018-03-29 株式会社林原 BRANCHED α-GLUCAN MIXTURE SYRUP AND APPLICATION THEREOF
JP2020039283A (en) * 2018-09-10 2020-03-19 カゴメ株式会社 Method for producing cereal liquefied product, cereal liquefied product, and method for suppressing free sugar content in cereal liquefied product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756769A (en) 2003-03-10 2006-04-05 金克克国际有限公司 Grain compositions containing pre-biotic isomalto-oligosaccharides and methods of making and using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519612A (en) * 2003-03-10 2006-08-31 ジェネンコー・インターナショナル・インク Grain composition containing prebiotic isomaltoligosaccharide, method for producing the same, and use thereof
WO2006035725A1 (en) * 2004-09-27 2006-04-06 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Isocyclomaltooligosaccharide, isocyclomaltooligosaccharide synthase, process for producing them and use thereof
JP2012044989A (en) * 2010-08-24 2012-03-08 Corn Products Internatl Inc Production of isomaltooligosaccharide and use therefor
CN105925550A (en) * 2016-06-23 2016-09-07 福州大学 Method for preparing isomaltooligosaccharides from alpha-glucosidase through synchronous saccharification and glucoside conversion
JP2018046762A (en) * 2016-09-21 2018-03-29 株式会社林原 BRANCHED α-GLUCAN MIXTURE SYRUP AND APPLICATION THEREOF
JP2020039283A (en) * 2018-09-10 2020-03-19 カゴメ株式会社 Method for producing cereal liquefied product, cereal liquefied product, and method for suppressing free sugar content in cereal liquefied product

Also Published As

Publication number Publication date
JP2022077862A (en) 2022-05-24
JP7002624B1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
EP2489682B1 (en) Resistant starch-rich starch, food or drink using same, and method for producing resistant starch-rich starch
CN104160032B (en) Low sugar syrup and the method for preparation low sugar syrup
US20100099864A1 (en) Novel slowly digestible storage carbohydrate
Chockchaisawasdee et al. Production of isomaltooligosaccharides from banana flour
US11326194B2 (en) Method for producing dietary fiber
Michel et al. Fructosyltransferase sources, production, and applications for prebiotics production
US20100323063A1 (en) Process for the preparation of isomaltooligosaccharide-hydrogenated
JP2023530455A (en) Maltodextrin syrups with a DE of less than 20 but with corn syrup-like properties with a DE of 30-45
JP7002624B1 (en) Grain saccharified liquid and its manufacturing method
CN104204216A (en) Method for making high maltose syrup
JP6837584B2 (en) Plant-derived β-glucan-containing syrup
RU2425892C2 (en) Maltose syrup production method
JP2009142184A (en) beta-GLUCAN-CONTAINING BEVERAGE
JP4964710B2 (en) Process for producing β-glucan-containing cereal saccharified product
Wang et al. Deciphering the structural and functional characteristics of an innovative small cluster branched α–glucan produced by sequential enzymatic synthesis
WO2018123901A1 (en) Polymer glucan having low digestion rate
US20120231150A1 (en) Digestive Enzyme Inhibitor and Methods of Use
CN109068692A (en) Beverage containing barley beta-glucan
JP2018042521A (en) β-GLUCAN-CONTAINING BEVERAGE AND METHOD FOR PRODUCING THE SAME
WO2023090005A1 (en) Grain saccharified liquid and production method thereof
JP2840944B2 (en) How to make syrup
WO2015086027A1 (en) Stable haze for beverages
JP6823862B2 (en) How to make beer
US20240076414A1 (en) Dextrin with improved turbidity, and method for producing same
Sreenath et al. Effect of Pullulanase and α‐Amylase on Hydrolysis of Waxy Corn Starch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891910

Country of ref document: EP

Kind code of ref document: A1