WO2022102645A1 - Image display panel - Google Patents

Image display panel Download PDF

Info

Publication number
WO2022102645A1
WO2022102645A1 PCT/JP2021/041298 JP2021041298W WO2022102645A1 WO 2022102645 A1 WO2022102645 A1 WO 2022102645A1 JP 2021041298 W JP2021041298 W JP 2021041298W WO 2022102645 A1 WO2022102645 A1 WO 2022102645A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
polarizing film
image display
transparent protective
Prior art date
Application number
PCT/JP2021/041298
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 山下
佳史 ▲高▼見
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202180052097.9A priority Critical patent/CN115989434A/en
Priority to JP2022561954A priority patent/JPWO2022102645A1/ja
Priority to KR1020237000026A priority patent/KR20230098771A/en
Publication of WO2022102645A1 publication Critical patent/WO2022102645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to an image display panel.
  • a polarizing film used in various image display devices such as a liquid crystal display device and an organic EL display device
  • dyed such as iodine and dichroic dyes
  • a polyvinyl alcohol-based film (containing a dichroic substance) is used.
  • the polarizing film is produced by subjecting a polyvinyl alcohol-based film to various treatments such as swelling, dyeing, crosslinking, stretching, etc. in a bath, washing treatment, and then drying.
  • the polarizing film is usually used as a polarizing film (polarizing plate) in which a transparent protective film such as triacetyl cellulose is bonded to one side or both sides thereof using an adhesive.
  • the polarizing film is used as a laminated polarizing film (optical laminate) by laminating other optical layers as needed, and the polarizing film or the laminated polarizing film (optical laminate) is a liquid crystal cell or an organic. It is used as an image display panel attached to an image display cell such as an EL element (Patent Document 1).
  • a polarizing film with an antireflection layer provided on the visible side surface of an image display device for the purpose of preventing deterioration of image quality due to external light reflection or the like and improving contrast is known.
  • Patent Document 2-3 a polarizing film with an antireflection layer provided on the visible side surface of an image display device for the purpose of preventing deterioration of image quality due to external light reflection or the like and improving contrast is known.
  • an object of the present invention to provide an image display panel having excellent durability in a high temperature environment and a moist heat environment.
  • a first transparent protective film having an antireflection layer, a polarizing film having a polarizing film, and an image display cell are provided in this order via an adhesive layer or an adhesive layer.
  • the first transparent protective film having the antireflection layer which is a panel, has a moisture permeability of 50 g / ( m 2.24 h) or less, and has the adhesive layer or the adhesive layer on one side of the polarizing film.
  • a laminated body in which a first transparent protective film having the antireflection layer is bonded to the other surface of the polarizing film, and a glass plate is bonded to the other surface of the polarizing film via the adhesive layer or the adhesive layer.
  • the present invention relates to an image display panel in which the amount of change in the single-unit permeability is 0 to 3% before and after the heat resistance test under the conditions of 105 ° C. and 500 hours.
  • a first transparent protective film having an antireflection layer, a polarizing film having a polarizing film, and an image display cell are provided in this order via an adhesive layer or an adhesive layer.
  • the first transparent protective film having the antireflection layer has a moisture permeability of 50 g / ( m 2.24 h) or less, and the pressure-sensitive adhesive layer or the adhesive layer is interposed on one side of the polarizing film.
  • the laminate in which the first transparent protective film having the antireflection layer is bonded and the glass plate is bonded to the other surface of the polarizing film via the adhesive layer or the adhesive layer is 105 ° C.
  • the amount of change in the single-unit permeability is 0 to 3% before and after the heat resistance test under the condition of 500 hours. Since the glass plate corresponds to an image display cell, the laminated body corresponds to a pseudo image display panel. So far, there is no known laminated body (pseudo-image display panel) in which the amount of change in the simple substance transmittance is 0 to 3% under the above-mentioned heat resistance test conditions.
  • a polarizing film, a polarizing film for attaching to the first transparent protective film having the antireflection layer, an image display cell, a pressure-sensitive adhesive layer, a polarizing film with an adhesive layer, or the like is heated (aged).
  • the water content contained therein can be reduced, and as a result, the polyene formation of the polarizing film in a high temperature environment can be suppressed, so that the specifications of the above heat resistance test can be satisfied.
  • a water-soluble radical scavenger in the polarizing film, radicals generated in the polarizing film can be captured even in a high temperature environment and polyene formation can be suppressed. It can meet the specifications of the heat resistance test.
  • the moisture permeability of the first transparent protective film having the antireflection layer is 50 g / ( m 2.24 h) or less, so that the moisture from outside the system (visual side) of the image display panel is removed. Since the entry can be prevented, it is possible to prevent the polarizing film from peeling from the image display cell in a humid and thermal environment.
  • FIG. 1 is a schematic cross-sectional view showing a form of an image display panel of the present invention.
  • a first transparent protective film 12 having an antireflection layer, a polarizing film 1 having a polarizing film 11, and an image display cell 90 are interposed via an adhesive layer or an adhesive layer 20 and 30. And are provided in this order.
  • the polarizing film 1 may have at least a polarizing film 11, and the second transparent protective film 13 may be attached to the side of the first transparent protective film 12 having the antireflection layer of the polarizing film 11.
  • a third transparent protective film 14 may be attached to the image display cell 90 side of the polarizing film 11.
  • the first transparent protective film 12 having the antireflection layer has an antireflection layer 6 provided on the transparent film 81.
  • the antireflection layer is a laminated body of two or more thin films
  • FIG. 1 shows an antireflection layer 6 composed of a laminated body of four thin films 61, 62, 63, 64.
  • a hard coat layer 71 may be provided on the surface of the transparent film 81 on which the antireflection layer is formed.
  • a first transparent protective film having an antireflection layer, a polarizing film having a polarizing film, and an image display cell are provided in this order via an adhesive layer or an adhesive layer.
  • the first transparent protective film having the antireflection layer in the image display panel has a moisture permeability of 50 g / ( m 2.24 h) or less, and the adhesive layer or the adhesive is attached to one side of the polarizing film.
  • a first transparent protective film having the antireflection layer was bonded via the agent layer, and a glass plate was bonded to the other surface of the polarizing film via the pressure-sensitive adhesive layer or the adhesive layer.
  • the amount of change in the single permeability of the laminated body is 0 to 3% before and after the heat resistance test under the conditions of 105 ° C. and 500 hours.
  • first transparent protective film having the antireflection layer of the present invention an antireflection layer composed of two or more thin films is provided on the transparent film.
  • the optical film thickness (product of refractive index and thickness) of the thin film is adjusted so that the inverted phases of the incident light and the reflected light cancel each other out.
  • Examples of the thin film material constituting the antireflection layer include metal oxides, nitrides, and fluorides.
  • Examples of the low refractive index material having a refractive index of 1.6 or less at a wavelength of 550 nm include silicon oxide and magnesium fluoride.
  • Examples of the highly refracting material having a refractive index of 1.9 or more at a wavelength of 550 nm include titanium oxide, niobium oxide, zirconium oxide, tin-doped indium oxide (ITO), and antimony-doped tin oxide (ATO).
  • a medium refractive index layer having a refractive index of about 1.50 to 1.85 for example, a thin film made of titanium oxide or a mixture of the low refractive index material and the high refractive index material. May be formed.
  • the thin film constituting the antireflection layer it is preferable that the light absorption of visible light is small, and a material having an extinction coefficient of 0.5 or less at a wavelength of 550 nm is preferably used.
  • the laminated structure of the antireflection layer is, for example, a two-layer structure consisting of a high refractive index layer having an optical film thickness of about 240 nm to 260 nm and a low refractive index layer having an optical film thickness of about 120 nm to 140 nm from the transparent film side; A three-layer structure consisting of a medium refractive index layer having a film thickness of 170 nm to 180 nm, a high refractive index layer having an optical film thickness of 60 nm to 70 nm, and a low refractive index layer having an optical film thickness of 135 nm to 145 nm; an optical film thickness of 20 nm to A high refractive index layer having an optical thickness of about 55 nm, a low refractive index layer having an optical film thickness of about 15 nm to 70 nm, a high refractive index layer having an optical film thickness of about 60 nm to 330 nm, and a low refractive index layer
  • Examples thereof include a five-layer structure consisting of a high refractive index layer having an optical thickness of about 240 nm to 290 nm and a low refractive index layer having an optical film thickness of about 100 nm to 200 nm.
  • the range of the refractive index and the film thickness of the thin film constituting the antireflection layer is not limited to the above examples. Further, the antireflection layer may be a laminated body of six or more thin films.
  • the antireflection layer is preferably an alternating laminate of a low refractive index layer and a high refractive index layer.
  • the thin film for example, thin film 64
  • the outermost surface layer (the surface opposite to the transparent film) of the antireflection layer is preferably a low refractive index layer.
  • oxides are preferable as described above.
  • the antireflection layer is preferably an alternating laminate of a silicon oxide (SiO 2 ) thin film as a low refractive index layer and a niobium (Nb 2 O 5 ) thin film as a high refractive index layer.
  • the transparent film preferably has a visible light transmittance of 80% or more, and more preferably 90% or more.
  • the thickness of the transparent film is not particularly limited, but is preferably about 5 to 300 ⁇ m, more preferably 10 to 300 ⁇ m, and more preferably 20 to 20 to 300 ⁇ m from the viewpoint of workability such as strength and handleability, and thin layer property. It is more preferably 200 ⁇ m.
  • thermoplastic resin having excellent transparency, mechanical strength, and thermal stability.
  • thermoplastic resins include cellulose-based resins such as triacetyl cellulose, polyester-based resins, polyether sulfone-based resins, polysulfone-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, and polyolefin-based resins.
  • the transparent film contains any suitable additives such as UV absorbers, antioxidants, lubricants, plasticizers, mold release agents, color inhibitors, flame retardants, antistatic agents, pigments, colorants and the like. May be good.
  • the moisture permeability of the first transparent protective film having the antireflection layer is 50 g / ( m 2.24 h) or less.
  • the moisture permeability of the first transparent protective film having the antireflection layer is preferably 30 g / (m 2.24 h) or less, preferably 10 g / ( m 2. 24 h) or less, from the viewpoint of improving durability in a moist heat environment. It is more preferably 24 h) or less, and further preferably 5 g / (m 2.24 h) or less.
  • the moisture permeation is the weight of water vapor that permeates a sample having an area of 1 m 2 in 24 hours at a relative humidity difference of 40 ° C. and 90%, and is measured according to JIS K7129: 2008 Annex B.
  • the method for forming the antireflection layer on the transparent film is not particularly limited, and for example, the method described in Japanese Patent Application Laid-Open No. 2017-227898 can be referred to.
  • a hard coat layer is provided on the antireflection layer side of the transparent film from the viewpoint of improving mechanical properties such as hardness and elastic modulus of the antireflection layer.
  • the hard coat layer preferably has a high surface hardness and excellent scratch resistance, and can be formed by applying a solution containing a curable resin such as a thermosetting resin, an ultraviolet curable resin, or an electron beam curable resin. ..
  • the type of the curable resin examples include various resins such as polyester-based, acrylic-based, urethane-based, acrylic-urethane-based, amide-based, silicone-based, silicate-based, epoxy-based, melamine-based, oxetane-based, and acrylic urethane-based resins. Can be mentioned. Among these, acrylic resins, acrylic urethane resins, and epoxy resins are preferable because they have high hardness, can be cured by ultraviolet rays, and are excellent in productivity.
  • the UV curable resin includes UV curable monomers, oligomers, polymers and the like.
  • the hard coat layer may have antiglare properties.
  • the antiglare hard coat layer include those in which fine particles are dispersed in the above-mentioned curable resin.
  • the fine particles include various metal oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide and antimony oxide, glass fine particles, polymethylmethacrylate, polystyrene, polyurethane and acrylic.
  • Cross-linked or uncrosslinked organic fine particles made of various transparent polymers such as styrene copolymer, benzoguanamine, melamine, and polycarbonate, and transparent fine particles such as silicone fine particles can be used without particular limitation.
  • the average particle size of the fine particles is about 1 to 10 ⁇ m.
  • the ratio of the fine particles is not particularly limited, but is about 5 to 20 parts by weight with respect to 100 parts by weight of the matrix resin.
  • the thickness of the hard coat layer is not particularly limited, but is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more, from the viewpoint of achieving high hardness. From the viewpoint of ease of formation by coating, the thickness of the hard coat layer is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the surface of the transparent film or the hard coat layer is subjected to surface modification treatment such as corona treatment, plasma treatment, frame treatment, ozone treatment, primer treatment, glow treatment, saponification treatment, and treatment with a coupling agent. May be.
  • a primer layer such as a metal oxide or a nitride may be provided on the surface of the transparent film or the hard coat layer for the purpose of improving the adhesion to the antireflection layer or the like.
  • a transparent protective film is bonded to at least one surface of the polarizing film.
  • the transparent protective film bonded to the first transparent protective film side having the antireflection layer of the polarizing film is referred to as a second transparent protective film, and is bonded to the image display cell side of the polarizing film.
  • the transparent protective film is referred to as a third transparent protective film.
  • the polarizing film has a second transparent protective film bonded to the first transparent protective film side having the antireflection layer of the polarizing film.
  • the polarizing film and the transparent protective film are usually bonded to each other via an adhesive layer or an adhesive layer.
  • the polarizing film has a polarizing film formed by adsorbing and orienting a dichroic substance such as iodine or a dichroic dye on a polyvinyl alcohol-based film.
  • the polarizing film is preferably an iodine-based polarizing film containing iodine as the dichroic substance from the viewpoint of the initial polarization performance of the polarizing film.
  • the polyvinyl alcohol (PVA) -based film has translucency in the visible light region, and a film that disperses and adsorbs a dichroic substance such as iodine or a dichroic dye can be used without particular limitation.
  • a film that disperses and adsorbs a dichroic substance such as iodine or a dichroic dye
  • Examples of the material of the polyvinyl alcohol-based film include polyvinyl alcohol or a derivative thereof.
  • the polyvinyl alcohol derivative include polyvinyl formal, polyvinyl acetal; olefins such as ethylene and propylene; unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and alkyl esters thereof and those modified with acrylamide and the like. Can be mentioned.
  • the polyvinyl alcohol preferably has an average degree of polymerization of about 100 to 10,000, more preferably about 1,000 to 10,000, and even more preferably about 1,500 to 4,500. .. Further, the polyvinyl alcohol preferably has a saponification degree of about 80 to 100 mol%, more preferably about 95 mol% to 99.95 mol.
  • the average degree of polymerization and the saponification degree can be determined according to JIS K 6726.
  • the polarizing film preferably contains a water-soluble radical scavenger from the viewpoint of improving durability in a high temperature environment.
  • the water-soluble radical trapping agent is preferably a compound that can dissolve 1 part by weight or more with 100 parts by weight of water at 25 ° C. from the viewpoint of easy transfer to water in the polarizing film, and 100 parts by weight of water at 25 ° C. It is more preferable that the compound is soluble in 2 parts by weight or more, and more preferably 5 parts by weight or more in 100 parts by weight of water at 25 ° C.
  • the water-soluble radical scavenger may be used alone or in combination of two or more.
  • the water-soluble radical scavenger can suppress polyene formation of the polarizing film in a high temperature environment.
  • the water-soluble radical scavenger include radical scavengers such as hindered phenol-based, hindered amine-based, phosphorus-based, sulfur-based, benzotriazole-based, benzophenone-based, hydroxylamine-based, sulcylic acid ester-based, and triazine-based compounds. Examples thereof include compounds having a function.
  • the water-soluble radical scavenger is preferably, for example, a nitroxy radical or a compound having a nitroxide group from the viewpoint of radical species generated in the polarizing film.
  • an N-oxyl compound (as a functional group, CN (-C) -O. " Is used from the viewpoint of having a radical that is relatively stable in air at room temperature. Examples thereof include compounds having ( O. indicates an oxyrad)), and known compounds can be used.
  • the N-oxyl compound include compounds having an organic group having the following structure.
  • R 1 represents an oxy radical
  • R 2 to R 5 independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • n represents 0 or 1.
  • the left side of the dotted line indicates an arbitrary organic group.
  • the water-soluble radical scavenger preferably has a molecular weight of 1000 or less, more preferably 500 or less, and more preferably 300 or less, from the viewpoint of efficiently capturing radicals generated in the polarizing film. Is even more preferable.
  • the content of the water-soluble radical scavenger is 0.005% by weight or more from the viewpoint of improving durability in a high temperature environment when the polarizing film contains the water-soluble radical scavenger. Is more preferable, 0.01% by weight or more is more preferable, 0.1% by weight or more is further preferable, and 20% by weight or less is preferable, and 15% by weight or less is more preferable. It is preferably 10% by weight or less, and more preferably 10% by weight or less.
  • the polarizing film is obtained by a conventional method for producing a polarizing film, and is obtained, for example, by subjecting the polyvinyl alcohol-based film to an arbitrary swelling step and a washing step, and at least a dyeing step, a cross-linking step, and a stretching step. ..
  • the polarizing film contains the water-soluble radical scavenger
  • the treatment bath in any one or more of the swelling step, the washing step, the dyeing step, the cross-linking step, and the stretching step A water-soluble radical scavenger may be contained.
  • the thickness of the polarizing film is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and the moisture content in the polarizing film is reduced to create a high temperature environment. From the viewpoint of suppressing polyene formation underneath, it is preferably 20 ⁇ m or less.
  • a polarizing film having a thickness of about 8 ⁇ m or less a laminate containing a polyvinyl alcohol-based resin layer formed on a thermoplastic resin substrate is used as the polyvinyl alcohol-based film, and the following thin type is used. A method for manufacturing a polarizing film can be applied.
  • the polarizing film is obtained by a conventional method for manufacturing a polarizing film.
  • the polarizing film contains the water-soluble radical scavenger
  • one or more of the insolubilization treatment step, the cross-linking treatment step, the cleaning treatment step, the dyeing treatment step, and the underwater stretching treatment step may contain the water-soluble radical scavenger.
  • the transparent protective film is not particularly limited, and various transparent protective films used for the polarizing film can be used.
  • a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture barrier property, isotropic property, etc. is used.
  • the thermoplastic resin include a cell roll ester resin such as triacetyl cell roll, a polyester resin such as polyethylene terephthalate and polyethylene naphthalate, a polyether sulfone resin, a polysulfone resin, a polycarbonate resin, nylon and aroma.
  • Polyamide-based resin such as group polyamide, polyimide-based resin, polyethylene, polypropylene, polyolefin-based resin such as ethylene / propylene copolymer, (meth) acrylic-based resin, cyclo-based or cyclic polyolefin-based resin having norbornene structure (norbornene-based resin) ), Polyallylate-based resin, polystyrene-based resin, polyvinyl alcohol-based resin, and mixtures thereof.
  • a cured layer formed of a thermosetting resin such as (meth) acrylic, urethane, acrylic urethane, epoxy, silicone or the like or an ultraviolet curable resin can be used.
  • cell roll ester-based resin, polycarbonate-based resin, (meth) acrylic-based resin, cyclic polyolefin-based resin, and polyester-based resin are preferable.
  • the thickness of the transparent protective film can be appropriately determined, but is generally preferably about 1 to 500 ⁇ m, preferably about 1 to 300 ⁇ m, from the viewpoint of workability such as strength and handleability, and thin layerability. More preferably, it is more preferably about 5 to 100 ⁇ m.
  • the transparent protective films on both sides may be the same or different.
  • a retardation plate having a front retardation of 40 nm or more and / or a retardation of thickness direction of 80 nm or more can be used as the transparent protective film.
  • the frontal phase difference is usually controlled in the range of 40 to 200 nm
  • the thickness direction phase difference is usually controlled in the range of 80 to 300 nm.
  • the retardation plate also functions as a transparent protective film, so that the thickness can be reduced.
  • the retardation plate examples include a birefringent film formed by uniaxially or biaxially stretching a polymer material, an alignment film of a liquid crystal polymer, and a film in which an alignment layer of a liquid crystal polymer is supported by a film.
  • the thickness of the retardation plate is not particularly limited, but is generally about 20 to 150 ⁇ m.
  • the phase plate may be attached to a transparent protective film having no phase difference before use.
  • the transparent protective film contains any suitable additives such as UV absorbers, antioxidants, lubricants, plasticizers, mold release agents, color inhibitors, flame retardants, antistatic agents, pigments, colorants and the like. You may.
  • the third transparent protective film preferably has a moisture permeability of 300 g / (m 2.24 h) or less, preferably 200 g / ( m 2.24 h) or less, from the viewpoint of production efficiency in the drying step after bonding. Is more preferable.
  • the second transparent protective film has a first transparent protection having an antireflection layer in terms of moisture permeability from the viewpoint of durability of the polarizing film under high temperature and high humidity and production efficiency in the drying process after bonding.
  • the moisture permeability of the film is preferably larger than the moisture permeability of the film, more preferably 100 g / ( m 2.24 h) or more, further preferably 200 g / (m 2.24 h) or more, and the moisture permeability is 1000 g / (m 2.24 h) or more. It is preferably (m 2.24h ) or less, and more preferably 600 g / (m 2.24h ) or less.
  • the humidity permeability was determined according to the JIS Z0208 moisture permeability test (cup method), and a sample cut to a diameter of 60 mm was set in a moisture permeability cup containing about 15 g of calcium chloride, and the temperature was 40 ° C. and the humidity was 90%. H. It can be calculated by measuring the weight increase of calcium chloride before and after putting it in a constant temperature machine and leaving it for 24 hours.
  • a hard coat layer such as a hard coat layer, an anti-sticking layer, a diffusion layer, and an anti-glare layer can be provided on the surface of the transparent protective film to which the polarizing film is not bonded.
  • the other layers may be provided on the protective film itself, or may be provided separately from the protective film.
  • ⁇ Adhesive layer> As the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer, various pressure-sensitive adhesives used for polarizing films can be applied, for example, rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and vinyl. Examples thereof include an alkyl ether-based adhesive, a polyvinyl alcohol-based adhesive, a polyvinyl porolidone-based adhesive, a polyacrylamide-based adhesive, and a cellulose-based adhesive. Among these, acrylic adhesives are preferable.
  • the acrylic pressure-sensitive adhesive contains an acrylic polymer as a base polymer, and examples thereof include the acrylic pressure-sensitive adhesive described in JP-A-2017-75998.
  • the acrylic polymer in the acrylic pressure-sensitive adhesive has a monomer unit of (meth) acrylic acid alkyl ester as a main skeleton.
  • a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms is preferably used, and the content of the (meth) acrylic acid alkyl ester is the base polymer. It is preferably 40% by weight or more, more preferably 60% by weight or more, based on the total amount of the constituent monomer components.
  • a monomer unit such as a nitrogen-containing monomer unit or a hydroxy group-containing monomer may be contained.
  • a cross-linking agent may be used to form a cross-linked structure in the pressure-sensitive adhesive layer.
  • Commonly used substances such as a cross-linking agent and a metal chelate-based cross-linking agent can be used.
  • the amount of the cross-linking agent used is usually 10 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the base polymer.
  • the pressure-sensitive adhesive includes a silane coupling agent; a terpene-based pressure-sensitive adhesive, a styrene-based pressure-sensitive adhesive, a phenol-based pressure-sensitive adhesive, a rosin-based pressure-sensitive adhesive, an epoxy-based pressure-sensitive adhesive, and the like.
  • a tackifier may be added.
  • an ultraviolet absorber may be added.
  • the pressure-sensitive adhesives include additives such as plasticizers, softeners, deterioration inhibitors, fillers, colorants, antioxidants, surfactants, and antistatic agents, and the characteristics of the pressure-sensitive adhesives. Can be used as long as it does not impair.
  • the pressure-sensitive adhesive layer for example, a method in which the pressure-sensitive adhesive is applied to a separator or the like that has been peeled off and dried to form a pressure-sensitive adhesive layer and then transferred to a polarizing film or the like, or the pressure-sensitive adhesive is polarized. Examples thereof include a method of applying to a film or the like and drying to form an adhesive layer.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, and is preferably about 1 to 100 ⁇ m, preferably about 2 to 50 ⁇ m.
  • Adhesive layer As the adhesive forming the adhesive layer, various adhesives used for polarizing films can be applied, and for example, isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, and the like. Examples include water-based polyester. These adhesives are usually used as an adhesive consisting of an aqueous solution (water-based adhesive) and contain 0.5 to 60% by weight of a solid content. Among these, a polyvinyl alcohol-based adhesive is preferable, and an acetacetyl group-containing polyvinyl alcohol-based adhesive is more preferable.
  • the water-based adhesive may contain a cross-linking agent.
  • a cross-linking agent a compound having at least two functional groups in one molecule having reactivity with a component such as a polymer constituting the adhesive is usually used, and for example, alkylenediamines; isocyanates; epoxys; Aldehydes; Examples thereof include amino-formaldehydes such as methylol urea and methylol melamine.
  • the blending amount of the cross-linking agent in the adhesive is usually about 10 to 60 parts by weight with respect to 100 parts by weight of the components such as the polymer constituting the adhesive.
  • examples of the adhesive include active energy ray-curable adhesives such as ultraviolet curable adhesives and electron beam curable adhesives.
  • active energy ray-curable adhesive include (meth) acrylate-based adhesives.
  • examples of the curable component in the (meth) acrylate-based adhesive include a compound having a (meth) acryloyl group and a compound having a vinyl group.
  • examples of the compound having a (meth) acryloyl group include alkyl (meth) acrylates having 1 to 20 carbon atoms, such as chain alkyl (meth) acrylates, alicyclic alkyl (meth) acrylates, and polycyclic alkyl (meth) acrylates.
  • the (meth) acrylate adhesives are hydroxyethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, (meth) acrylamide, and (meth). It may contain a nitrogen-containing monomer such as acrylamide.
  • the (meth) acrylate-based adhesive has tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, cyclic trimethylolpropane formal acrylate, dioxane glycol diacrylate, and EO as cross-linking components. It may contain a polyfunctional monomer such as modified diglycerin tetraacrylate. Further, a compound having an epoxy group or an oxetanyl group can also be used as the cationic polymerization curable adhesive.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used.
  • the adhesive may contain an appropriate additive, if necessary.
  • the additive include a silane coupling agent, a coupling agent such as a titanium coupling agent, an adhesion promoter such as ethylene oxide, an ultraviolet absorber, a deterioration inhibitor, a dye, a processing aid, an ion trap agent, and an antioxidant.
  • the adhesive may be applied to either the transparent protective film side (or the functional layer side described later) or the polarizing film side, which will be described later, or both.
  • a drying step is performed to form an adhesive layer composed of a coated dry layer.
  • ultraviolet rays or electron beams can be irradiated as needed.
  • the thickness of the adhesive layer is not particularly limited, and when a water-based adhesive or the like is used, it is preferably about 30 to 5000 nm, more preferably about 100 to 1000 nm, and an ultraviolet curable adhesive. When an electron beam curable adhesive or the like is used, it is preferably about 0.1 to 100 ⁇ m, more preferably about 0.5 to 10 ⁇ m.
  • the transparent protective film and the polarizing film may be laminated via an intervening layer such as a surface modification treatment layer, an easy-adhesive layer, a block layer, and a refractive index adjusting layer.
  • an intervening layer such as a surface modification treatment layer, an easy-adhesive layer, a block layer, and a refractive index adjusting layer.
  • Examples of the surface modification treatment for forming the surface modification layer include corona treatment, plasma treatment, primer treatment, saponification treatment and the like.
  • Examples of the easy-adhesive for forming the easy-adhesive layer include a forming material containing various resins having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a silicone-based, a polyamide skeleton, a polyimide skeleton, a polyvinyl alcohol skeleton, and the like. Can be mentioned.
  • the easy-adhesive layer is usually provided in advance on a protective film, and the easy-adhesive layer side of the protective film and the polarizing film are laminated by the adhesive layer or the adhesive layer.
  • the block layer is a layer having a function to prevent impurities such as oligomers and ions eluted from the transparent protective film and the like from migrating (penetrating) into the polarizing film.
  • the block layer may be a layer having transparency and capable of preventing impurities eluted from the transparent protective film or the like, and examples of the material forming the block layer include urethane prepolymer-based forming materials and cyanoacrylates. Examples include system-forming materials and epoxy-based forming materials.
  • the refractive index adjusting layer is a layer provided to suppress a decrease in transmittance due to reflection between layers having different refractive indexes such as the transparent protective film and a polarizing film.
  • the refractive index adjusting material for forming the refractive index adjusting layer include a forming agent containing various resins and additives having a silica-based, acrylic-based, acrylic-styrene-based, melamine-based, and the like.
  • the polarizing film may be a laminated polarizing film (optical laminate) in which the polarizing film is bonded to an optical layer.
  • the optical layer is not particularly limited, but for example, a reflecting plate, a semi-transmissive plate, a retardation plate (including a wave plate such as 1/2 or 1/4), a liquid crystal display device such as a viewing angle compensation film, or the like is formed.
  • a reflecting plate a semi-transmissive plate
  • a retardation plate including a wave plate such as 1/2 or 1/4
  • a liquid crystal display device such as a viewing angle compensation film, or the like is formed.
  • One or two or more optical layers that may be used in the above can be used.
  • the polarizing film examples include a reflective polarizing film or a semi-transmissive polarizing film in which a reflecting plate or a semi-transmissive reflecting plate is further laminated on the polarizing film, and an ellipse formed by further laminating a retardation plate on the polarizing film.
  • Examples thereof include a polarizing film or a circular polarizing film, a wide viewing angle polarizing film in which a viewing angle compensating film is further laminated on the polarizing film, and a polarizing film in which a brightness improving film is further laminated on the polarizing film.
  • the pressure-sensitive adhesive layer is previously attached.
  • the adhesive layer may be attached.
  • the pressure-sensitive adhesive layer or the exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination or the like until it is put into practical use.
  • a separator for example, an appropriate thin leaf such as a plastic film, a rubber sheet, a paper, a cloth, a non-woven fabric, a net, a foamed sheet or a metal foil, or a laminate thereof can be used, and if necessary, a silicone-based or long-chain alkyl-based separator can be used.
  • Those coated with an appropriate release agent such as fluorine-based or molybdenum sulfide are used.
  • the thickness between the first transparent protective film having the antireflection layer and the polarizing film is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, from the viewpoint of heat durability.
  • the first transparent protective film having the antireflection layer, the polarizing film, and the image display cell are provided in this order via the adhesive layer or the adhesive layer. ..
  • Examples of the image display cell of the present invention include a liquid crystal cell and an organic EL cell.
  • Examples of the liquid crystal cell include a reflective liquid crystal cell that uses external light, a transmissive liquid crystal cell that uses light from a light source such as a backlight, and semi-transmissive that uses both external light and light from a light source. Any of the semi-reflective liquid crystal cells may be used.
  • the image display device liquid crystal display device
  • the image display device has a polarizing film arranged on the side opposite to the visual recognition side of the image display cell (liquid crystal cell), and the light source is further arranged. Be placed.
  • the polarizing film on the light source side and the liquid crystal cell are bonded to each other via an appropriate adhesive layer.
  • any type such as VA mode, IPS mode, TN mode, STN mode and bend orientation ( ⁇ type) can be used.
  • organic EL cell for example, a cell in which a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitting body (organic electroluminescence light emitting body) is preferably used.
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or these.
  • Various layer configurations can be adopted, such as a laminated body of an electron-injected layer composed of a light-emitting layer and a perylene derivative, or a laminated body of a hole-injected layer, a light-emitting layer, and an electron-injected layer.
  • the outermost surface (outermost surface layer) of the image display cell is usually a plastic substrate or a glass substrate, but from the viewpoint of heat resistance and moisture heat resistance, it is preferable that the outermost surface on the visual recognition side is a glass substrate.
  • polarization for bonding to a first transparent protective film or an image display cell having an antireflection layer When forming the image display panel, from the viewpoint of suppressing a decrease in the single transmittance of the polarizing film in a high temperature environment, polarization for bonding to a first transparent protective film or an image display cell having an antireflection layer.
  • a film, a pressure-sensitive adhesive layer, a polarizing film with an adhesive layer, or the like may be heated (aged).
  • the heating conditions in the heating (aging) treatment are not particularly limited as long as the moisture contained in the pressure-sensitive adhesive layer or the adhesive layer provided on both sides of the polarizing film and the polarizing film can be sufficiently reduced.
  • the heating temperature is 70.
  • the temperature is preferably about 90 ° C, more preferably about 75 to 85 ° C.
  • the heating time is preferably about 30 minutes to 5 hours, more preferably about 1 hour to 3 hours. Further, when the pressure-sensitive adhesive layer or the adhesive layer is attached to both sides of the polarizing film and the heat (aging) treatment is performed, it is effective that the pressure-sensitive adhesive layer or the adhesive layer has high moisture permeability, while it is effective on one side. When heat (aging) treatment is performed with the pressure-sensitive adhesive layer or the adhesive layer attached to the surface, the water content of the pressure-sensitive adhesive layer or the adhesive layer (the pressure-sensitive adhesive layer or the adhesive layer on the other surface) to be laminated later is The lower one is more effective.
  • ⁇ Example 1> ⁇ Preparation of polarizing film> A polyvinyl alcohol film having an average degree of polymerization of 2,400, a saponification degree of 99.9 mol%, and a thickness of 45 ⁇ m was prepared. The polyvinyl alcohol film was immersed in a swelling bath (water bath) at 30 ° C. for 30 seconds between rolls having different peripheral speed ratios and stretched 2.2 times in the transport direction while swelling (swelling step), followed by In a dyeing bath at 30 ° C. (an iodine aqueous solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water) so that the polarizing film has a predetermined permeability.
  • a swelling bath water bath
  • a dyeing bath an iodine aqueous solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water
  • the dyed polyvinyl alcohol film is placed in a cross-linked bath at 40 ° C. (an aqueous solution having a boric acid concentration of 3.5% by weight, a potassium iodide concentration of 3.0% by weight, and a zinc sulfate concentration of 3.6% by weight). It was soaked in for 28 seconds and stretched up to 3.6 times in the transport direction with respect to the original polyvinyl alcohol film (crosslinking step).
  • the obtained polyvinyl alcohol film is placed in a stretching bath at 64 ° C. (an aqueous solution having a boric acid concentration of 4.5% by weight, a potassium iodide concentration of 5.0% by weight, and a zinc sulfate concentration of 5.0% by weight).
  • a washing bath at 27 ° C. (potassium iodide concentration 2.3% by weight, water solubility).
  • the compound was immersed in an aqueous solution having a compound concentration of 1.0% by weight represented by the following general formula (2) for 10 seconds (cleaning step).
  • the washed polyvinyl alcohol film was dried at 40 ° C. for 30 seconds to prepare a polarizing film.
  • the content of the compound represented by the following general formula (2) in the polarizing film was 0.3% by weight, and the thickness of the polarizing film was 18 ⁇ m.
  • ⁇ Method for measuring the content (% by weight) of the water-soluble radical scavenger in the polarizing film Approximately 20 mg of the polarizing film is collected, quantified, heated and dissolved in 1 mL of water, diluted with 4.5 mL of methanol, the obtained extract is filtered through a membrane filter, and the filtrate is HPLC (ACQUITY UPLC manufactured by Waters). The concentration of the water-soluble radical trapping agent was measured using H-class Bio).
  • a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization of 1,200, saponification degree of 98.5 mol%, acetoacetylation degree of 5 mol%) and methylol melamine in a weight ratio of 3: The aqueous solution contained in 1 was used.
  • a cycloolefin-based transparent protective film having a thickness of 18 ⁇ m (manufactured by Nippon Zeon Co., Ltd.) was used as a third transparent protective film on one surface (image display cell side) of the polarizing film obtained above.
  • a second transparent protective film triacetyl cellulose film (manufactured by Fuji Film, trade name "TJ40UL").
  • a transparent protective film with a thickness of 48 ⁇ m (water permeability is 300 g / ( m 2.24 h)) on which HC is formed is bonded by a roll bonding machine, and then heat-dried in an oven (temperature is 90 ° C., time is 10). After a minute), a polarizing film was prepared in which a transparent protective film was bonded to both sides of the polarizing film.
  • an acrylic polymer having a weight average molecular weight (Mw) of 1.8 million was prepared. Then, with respect to 100 parts of the solid content of the obtained acrylic polymer solution, 0.02 part of an isocyanate cross-linking agent (manufactured by Tosoh Corporation, trade name "Takenate D110N", trimethylolpropane / xylylene diisocyanate adduct), silane.
  • a solution of the acrylic pressure-sensitive adhesive composition was prepared by blending 0.2 parts of a coupling agent (manufactured by Shin-Etsu Chemical Industry Co., Ltd., trade name "X-41-1056").
  • ⁇ Preparation of a first transparent protective film having an antireflection layer> After drying 100 parts by weight (solid content) of an ultraviolet curable acrylic resin (manufactured by DIC, trade name "GRANDIC PC-1070") on one side of a cellulose triacetate film (manufactured by Fuji Film, trade name "Fujitac”) having a thickness of 40 ⁇ m. was coated to a thickness of 5 ⁇ m and dried at 80 ° C. for 3 minutes. Then, using a high-pressure mercury lamp, ultraviolet rays having an integrated light amount of 200 mJ / cm 2 were applied to cure the coating layer and form a hard coat layer. The obtained triacetyl cellulose film was obtained.
  • an ultraviolet curable acrylic resin manufactured by DIC, trade name "GRANDIC PC-1070
  • Fuji Film trade name "Fujitac”
  • the triacetyl cellulose film on which the hard coat layer was formed was introduced into a roll-to-roll type spatter film forming apparatus, and the hard coat layer forming surface was bombarded while running the film.
  • a 3.5 nm silicon oxide layer was formed as a primer layer, and a 12 nm Nb 2 O 5 layer, a 28 nm SiO 2 layer, and a 100 nm Nb 2 were formed on the film.
  • the O5 layer and the 85 nm SiO 2 layer were sequentially formed to form a first transparent protective film (film A) having an antireflection layer.
  • the bombard treatment was carried out at a pressure of 0.5 Pa.
  • a Si target As the silicon oxide layer as a layer, a Si target was used, and spatter film formation was performed under the conditions of a substrate temperature of -8 ° C., an argon flow rate of 300 sccm, and a pressure of 0.2 Pa.
  • An Nb target was used to form the O5 layer , and the film was formed at a substrate temperature of -8 ° C , an argon flow rate of 200 sccm, and a pressure of 0.10 Pa. Adjusted the amount of oxygen introduced so that the film forming mode maintained the transition region by controlling the plasma emission monitoring (PEM).
  • PEM plasma emission monitoring
  • the moisture permeability of the first transparent protective film having the antireflection layer was described above. As per JIS K7129: 2008, it is measured according to Annex B.
  • the polarizing film with the first transparent protective film having the antireflection layer obtained above is cut into a size of 150 ⁇ 45 mm so that the absorption axis of the polarizing film is parallel to the long side, and is passed through the adhesive layer.
  • a glass plate (EG-XG manufactured by Hiraoka Special Glass Manufacturing Co., Ltd., 165 ⁇ 50 mm, thickness 0.7 mm) was laminated and autoclaved at 50 ° C. and 0.5 MPa for 15 minutes to prepare a pseudo image display panel.
  • the pseudo image display panel obtained above was allowed to stand in a hot air oven at a temperature of 105 ° C. for 500 hours, and the single transmittance ( ⁇ Ts) before and after charging (heating) was measured.
  • the single transmittance was measured using a spectrophotometer (LPF-200, manufactured by Otsuka Electronics Co., Ltd.).
  • the simple substance transmittance is a Y value corrected for luminosity factor by a double field of view (C light source) of JlS Z 8701-1982.
  • the measurement wavelength is 380 to 780 nm (every 5 nm).
  • ⁇ Ts (%) Ts 500 -Ts 0
  • Ts 0 is the initial (before heating) single transmittance
  • Ts 500 is the single transmittance after 500 hours of heating.
  • ⁇ Ts (%) is preferably 0% or more and 3% or less, and more preferably 0% or more and 2% or less. The results are shown in Table 1.
  • Example 2 In the production of the first transparent protective film having an antireflection layer, the argon flow rate in the film formation of the SiO 2 layer is 400 sccm and the pressure is 0.2 Pa, and the argon flow rate in the film formation of the Nb 2 O 5 layer is 1200 sccm and the pressure is 0.4 Pa.
  • a pseudo image display panel was produced by the same method as in Example 1 except that the polarizing film with the first transparent protective film (film B) having the antireflection layer formed under the above conditions was used.
  • Example 2 in the production of the first polarizing film with a transparent protective film having an antireflection layer, except that the polarizing film with an adhesive layer was allowed to stand in a hot air oven at 80 ° C. for 2 hours and was not aged.
  • a pseudo image display panel was produced by the same method as in the above.
  • Example 4 A pseudo image display panel was produced by the same method as in Example 2 except that the compound represented by the general formula (2) was not added to the washing bath in the production of the polarizing film.
  • Example 5 In the production of the first transparent protective film having an antireflection layer, the argon flow rate in the film formation of the SiO 2 layer is 800 sccm and the pressure is 0.3 Pa, and the argon flow rate in the film formation of the Nb 2 O 5 layer is 1300 sccm and the pressure is 0.4 Pa.
  • a pseudo image display panel was produced by the same method as in Example 3 except that the polarizing film with the first transparent protective film (film C) having the antireflection layer formed under the above conditions was used.
  • the argon flow rate in the film formation of the SiO 2 layer is 1100 sccm and the pressure is 0.4 Pa
  • the argon flow rate in the film formation of the Nb 2 O 5 layer is 1500 sccm and the pressure is 0.5 Pa.
  • a pseudo image display panel was produced by the same method as in Example 3 except that the polarizing film with the first transparent protective film (film D) having the antireflection layer formed under the above conditions was used.
  • Polarizing film with polarizing film 11 Polarizing film 12: First transparent protective film with antireflection layer 13: Second transparent protective film 14: Third transparent protective film 20, 30: Adhesive layer or adhesion Agent layer 81: Transparent film 6: Antireflection layer 61, 62, 63, 64: Thin film 71: Hard coat layer 90: Image display cell 100: Image display panel

Abstract

This image display panel comprises, in the stated order with adhesive layers or bonding layers provided therebetween: a first transparent protective film having an antireflective layer; a polarizing film having a polarizing membrane; and an image display cell. The first transparent protective film having the antireflective layer has a moisture permeability of 50 g/(m2⋅24h) or less, and a laminate, formed by bonding the first transparent protective film having the antireflective layer to one surface of the polarizing film via the adhesive layer or the bonding layer and bonding a glass plate to the other surface of the polarizing film via the adhesive layer or the bonding layer. The laminate has a change amount in single body transmittance of 0-3% before and after a heat resistance test performed at 105°C for 500 hours. The image display panel has excellent durability in a high temperature environment and in a wet heat environment.

Description

画像表示パネルImage display panel
 本発明は、画像表示パネルに関する。 The present invention relates to an image display panel.
 従来、液晶表示装置や有機EL表示装置等の各種画像表示装置に用いる偏光膜としては、高透過率と高偏光度を兼ね備えていることから、染色処理された(ヨウ素や二色性染料等の二色性物質を含有する)ポリビニルアルコール系フィルムが用いられている。当該偏光膜は、ポリビニルアルコール系フィルムに、浴中にて、例えば、膨潤、染色、架橋、延伸等の各処理を施した後に、洗浄処理を施してから、乾燥することにより製造される。また前記偏光膜は、通常、その片面または両面にトリアセチルセルロース等の透明保護フィルムが接着剤を用いて貼合された偏光フィルム(偏光板)として用いられている。 Conventionally, as a polarizing film used in various image display devices such as a liquid crystal display device and an organic EL display device, since it has both high transmittance and high degree of polarization, it has been dyed (such as iodine and dichroic dyes). A polyvinyl alcohol-based film (containing a dichroic substance) is used. The polarizing film is produced by subjecting a polyvinyl alcohol-based film to various treatments such as swelling, dyeing, crosslinking, stretching, etc. in a bath, washing treatment, and then drying. Further, the polarizing film is usually used as a polarizing film (polarizing plate) in which a transparent protective film such as triacetyl cellulose is bonded to one side or both sides thereof using an adhesive.
 前記偏光フィルムは、必要に応じ、他の光学層を積層して積層偏光フィルム(光学積層体)として用いられ、また、前記偏光フィルムあるいは前記積層偏光フィルム(光学積層体)は、液晶セルや有機EL素子等の画像表示セルに貼り合わされた画像表示パネルとして用いられる(特許文献1)。 The polarizing film is used as a laminated polarizing film (optical laminate) by laminating other optical layers as needed, and the polarizing film or the laminated polarizing film (optical laminate) is a liquid crystal cell or an organic. It is used as an image display panel attached to an image display cell such as an EL element (Patent Document 1).
 上記の積層偏光フィルムとしては、例えば、外光反射等による画質低下の防止、コントラスト向上等の目的として、画像表示装置の視認側表面に設けられる、反射防止層付き偏光フィルムが知られている(特許文献2-3)。 As the above-mentioned laminated polarizing film, for example, a polarizing film with an antireflection layer provided on the visible side surface of an image display device for the purpose of preventing deterioration of image quality due to external light reflection or the like and improving contrast is known. Patent Document 2-3).
特開2014-102353号公報Japanese Unexamined Patent Publication No. 2014-102353 特開2002-189211号公報Japanese Unexamined Patent Publication No. 2002-189211 特開2017-227898号公報Japanese Unexamined Patent Publication No. 2017-227898
 近年の自動運転技術の発展により、車載用の画像表示パネルにおいては、ディスプレイデザインの異形化や大型化等が進んでいる。このようなディスプレイデザインの変化に伴い、高温環境下や湿熱環境下における耐久性をさらに向上させる手段が求められている。 Due to the development of automated driving technology in recent years, the display design of in-vehicle image display panels is becoming more deformed and larger. With such changes in display design, there is a demand for means for further improving durability in a high temperature environment or a moist heat environment.
 以上のような事情に鑑み、本発明は、高温環境下および湿熱環境下における耐久性に優れる画像表示パネルを提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide an image display panel having excellent durability in a high temperature environment and a moist heat environment.
 すなわち、本発明は、反射防止層を有する第1の透明保護フィルム、偏光膜を有する偏光フィルム、および画像表示セルが、粘着剤層または接着剤層を介して、この順に設けられている画像表示パネルであって、前記反射防止層を有する第1の透明保護フィルムは、透湿度が50g/(m・24h)以下であり、前記偏光フィルムの片面に、前記粘着剤層または前記接着剤層を介して、前記反射防止層を有する第1の透明保護フィルムを貼り合わせ、かつ前記偏光フィルムの他面に、前記粘着剤層または前記接着剤層を介して、ガラス板を貼り合わせた積層体は、105℃、500時間の条件での耐熱性試験前後において、単体透過率の変化量が0~3%である画像表示パネルに関する。 That is, in the present invention, a first transparent protective film having an antireflection layer, a polarizing film having a polarizing film, and an image display cell are provided in this order via an adhesive layer or an adhesive layer. The first transparent protective film having the antireflection layer, which is a panel, has a moisture permeability of 50 g / ( m 2.24 h) or less, and has the adhesive layer or the adhesive layer on one side of the polarizing film. A laminated body in which a first transparent protective film having the antireflection layer is bonded to the other surface of the polarizing film, and a glass plate is bonded to the other surface of the polarizing film via the adhesive layer or the adhesive layer. The present invention relates to an image display panel in which the amount of change in the single-unit permeability is 0 to 3% before and after the heat resistance test under the conditions of 105 ° C. and 500 hours.
 本発明の画像表示パネルにおける効果の作用メカニズムの詳細は不明な部分があるが、以下のように推定される。ただし、本発明は、この作用メカニズムに限定して解釈されない。 The details of the action mechanism of the effect in the image display panel of the present invention are unknown, but it is presumed as follows. However, the present invention is not construed as being limited to this mechanism of action.
 本発明の画像表示パネルは、反射防止層を有する第1の透明保護フィルム、偏光膜を有する偏光フィルム、および画像表示セルが、粘着剤層または接着剤層を介して、この順に設けられており、前記反射防止層を有する第1の透明保護フィルムは、透湿度が50g/(m・24h)以下であり、前記偏光フィルムの片面に、前記粘着剤層または前記接着剤層を介して、前記反射防止層を有する第1の透明保護フィルムを貼り合わせ、かつ前記偏光フィルムの他面に、前記粘着剤層または前記接着剤層を介して、ガラス板を貼り合わせた積層体は、105℃、500時間の条件での耐熱性試験前後において、単体透過率の変化量が0~3%である。上記のガラス板は、画像表示セルに相当するため、上記の積層体は疑似画像表示パネルに相当する。これまで、上記の耐熱性試験の条件において、単体透過率の変化量が0~3%である積層体(疑似画像表示パネル)は知られていない。本発明では、例えば、上記の反射防止層を有する第1の透明保護フィルムや画像表示セルに貼り合わせるための、偏光フィルムや、粘着剤層または接着剤層付きの偏光フィルム等を加熱(エージング)処理することにより、これらに含まれる水分を低減できる結果、高温環境下での偏光膜のポリエン化を抑制できるため、上記の耐熱性試験のスペックを満たすことができる。また、本発明では、例えば、偏光膜に水溶性のラジカル捕捉剤を含有させることにより、高温環境下においても、偏光膜中に発生したラジカルを捕捉して、ポリエン化を抑制できるため、上記の耐熱性試験のスペックを満たすことができる。さらに、本発明では、前記反射防止層を有する第1の透明保護フィルムの透湿度が50g/(m・24h)以下であることにより、画像表示パネルの系外(視認側)からの水分の進入を防止することができるため、湿熱環境下で偏光フィルムが画像表示セルから剥離することを防止できる。 In the image display panel of the present invention, a first transparent protective film having an antireflection layer, a polarizing film having a polarizing film, and an image display cell are provided in this order via an adhesive layer or an adhesive layer. The first transparent protective film having the antireflection layer has a moisture permeability of 50 g / ( m 2.24 h) or less, and the pressure-sensitive adhesive layer or the adhesive layer is interposed on one side of the polarizing film. The laminate in which the first transparent protective film having the antireflection layer is bonded and the glass plate is bonded to the other surface of the polarizing film via the adhesive layer or the adhesive layer is 105 ° C. The amount of change in the single-unit permeability is 0 to 3% before and after the heat resistance test under the condition of 500 hours. Since the glass plate corresponds to an image display cell, the laminated body corresponds to a pseudo image display panel. So far, there is no known laminated body (pseudo-image display panel) in which the amount of change in the simple substance transmittance is 0 to 3% under the above-mentioned heat resistance test conditions. In the present invention, for example, a polarizing film, a polarizing film for attaching to the first transparent protective film having the antireflection layer, an image display cell, a pressure-sensitive adhesive layer, a polarizing film with an adhesive layer, or the like is heated (aged). By the treatment, the water content contained therein can be reduced, and as a result, the polyene formation of the polarizing film in a high temperature environment can be suppressed, so that the specifications of the above heat resistance test can be satisfied. Further, in the present invention, for example, by including a water-soluble radical scavenger in the polarizing film, radicals generated in the polarizing film can be captured even in a high temperature environment and polyene formation can be suppressed. It can meet the specifications of the heat resistance test. Further, in the present invention, the moisture permeability of the first transparent protective film having the antireflection layer is 50 g / ( m 2.24 h) or less, so that the moisture from outside the system (visual side) of the image display panel is removed. Since the entry can be prevented, it is possible to prevent the polarizing film from peeling from the image display cell in a humid and thermal environment.
画像表示パネルの一形態を示す模式的断面図である。It is a schematic cross-sectional view which shows one form of an image display panel.
 図1は、本発明の画像表示パネルの一形態を示す模式的断面図である。図1の画像表示パネル100では、反射防止層を有する第1の透明保護フィルム12、偏光膜11を有する偏光フィルム1、および画像表示セル90が、粘着剤層または接着剤層20,30を介して、この順に設けられている。また、偏光フィルム1は、少なくとも偏光膜11を有し、前記偏光膜11の前記反射防止層を有する第1の透明保護フィルム12側に、第2の透明保護フィルム13が貼り合わされてもよく、前記偏光膜11の前記画像表示セル90側に、第3の透明保護フィルム14が貼り合わされてもよい。 FIG. 1 is a schematic cross-sectional view showing a form of an image display panel of the present invention. In the image display panel 100 of FIG. 1, a first transparent protective film 12 having an antireflection layer, a polarizing film 1 having a polarizing film 11, and an image display cell 90 are interposed via an adhesive layer or an adhesive layer 20 and 30. And are provided in this order. Further, the polarizing film 1 may have at least a polarizing film 11, and the second transparent protective film 13 may be attached to the side of the first transparent protective film 12 having the antireflection layer of the polarizing film 11. A third transparent protective film 14 may be attached to the image display cell 90 side of the polarizing film 11.
 前記反射防止層を有する第1の透明保護フィルム12は、透明フィルム81上に、反射防止層6が設けられている。反射防止層は、2層以上の薄膜の積層体であり、図1では、4層の薄膜61,62,63,64の積層体からなる反射防止層6が図示されている。また、透明フィルム81の反射防止層の形成面には、ハードコート層71が設けられていてもよい。 The first transparent protective film 12 having the antireflection layer has an antireflection layer 6 provided on the transparent film 81. The antireflection layer is a laminated body of two or more thin films, and FIG. 1 shows an antireflection layer 6 composed of a laminated body of four thin films 61, 62, 63, 64. Further, a hard coat layer 71 may be provided on the surface of the transparent film 81 on which the antireflection layer is formed.
 本発明の画像表示パネルは、反射防止層を有する第1の透明保護フィルム、偏光膜を有する偏光フィルム、および画像表示セルが、粘着剤層または接着剤層を介して、この順に設けられている画像表示パネルであって、前記反射防止層を有する第1の透明保護フィルムは、透湿度が50g/(m・24h)以下であり、前記偏光フィルムの片面に、前記粘着剤層または前記接着剤層を介して、前記反射防止層を有する第1の透明保護フィルムを貼り合わせ、かつ前記偏光フィルムの他面に、前記粘着剤層または前記接着剤層を介して、ガラス板を貼り合わせた積層体は、105℃、500時間の条件での耐熱性試験前後において、単体透過率の変化量が0~3%である。 In the image display panel of the present invention, a first transparent protective film having an antireflection layer, a polarizing film having a polarizing film, and an image display cell are provided in this order via an adhesive layer or an adhesive layer. The first transparent protective film having the antireflection layer in the image display panel has a moisture permeability of 50 g / ( m 2.24 h) or less, and the adhesive layer or the adhesive is attached to one side of the polarizing film. A first transparent protective film having the antireflection layer was bonded via the agent layer, and a glass plate was bonded to the other surface of the polarizing film via the pressure-sensitive adhesive layer or the adhesive layer. The amount of change in the single permeability of the laminated body is 0 to 3% before and after the heat resistance test under the conditions of 105 ° C. and 500 hours.
<反射防止層を有する第1の透明保護フィルム>
 本発明の反射防止層を有する第1の透明保護フィルムは、2層以上の薄膜からなる反射防止層が、透明フィルム上に設けられている。一般に、反射防止層は、入射光と反射光の逆転した位相が互いに打ち消し合うように、薄膜の光学膜厚(屈折率と厚みの積)が調整される。反射防止層を、屈折率の異なる2層以上の薄膜の多層積層体とすることにより、可視光の広帯域の波長範囲において、反射率を小さくできる。
<First transparent protective film with antireflection layer>
In the first transparent protective film having the antireflection layer of the present invention, an antireflection layer composed of two or more thin films is provided on the transparent film. Generally, in the antireflection layer, the optical film thickness (product of refractive index and thickness) of the thin film is adjusted so that the inverted phases of the incident light and the reflected light cancel each other out. By forming the antireflection layer as a multi-layered laminate of two or more thin films having different refractive indexes, the reflectance can be reduced in a wide wavelength range of visible light.
 前記反射防止層を構成する薄膜の材料としては、例えば、金属の酸化物、窒化物、フッ化物等が挙げられる。波長550nmにおける屈折率が1.6以下の低屈折率材料としては、例えば、酸化シリコン、フッ化マグネシウム等が挙げられる。波長550nmにおける屈折率が1.9以上の高屈折材料としては、例えば、酸化チタン、酸化ニオブ、酸化ジルコニウム、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)等が挙げられる。低屈折率層と高屈折率層に加えて、屈折率1.50~1.85程度の中屈折率層として、例えば、酸化チタンや、上記低屈折率材料と高屈折材料の混合物からなる薄膜を形成してもよい。反射防止層を構成する薄膜は、可視光の光吸収が小さいことが好ましく、波長550nmにおける消衰係数が0.5以下である材料が好ましく用いられる。 Examples of the thin film material constituting the antireflection layer include metal oxides, nitrides, and fluorides. Examples of the low refractive index material having a refractive index of 1.6 or less at a wavelength of 550 nm include silicon oxide and magnesium fluoride. Examples of the highly refracting material having a refractive index of 1.9 or more at a wavelength of 550 nm include titanium oxide, niobium oxide, zirconium oxide, tin-doped indium oxide (ITO), and antimony-doped tin oxide (ATO). In addition to the low refractive index layer and the high refractive index layer, as a medium refractive index layer having a refractive index of about 1.50 to 1.85, for example, a thin film made of titanium oxide or a mixture of the low refractive index material and the high refractive index material. May be formed. As the thin film constituting the antireflection layer, it is preferable that the light absorption of visible light is small, and a material having an extinction coefficient of 0.5 or less at a wavelength of 550 nm is preferably used.
 前記反射防止層の積層構成としては、例えば、透明フィルム側から、光学膜厚240nm~260nm程度の高屈折率層と、光学膜厚120nm~140nm程度の低屈折率層との2層構成;光学膜厚170nm~180nm程度の中屈折率層と、光学膜厚60nm~70nm程度の高屈折率層と、光学膜厚135nm~145nm程度の低屈折率層との3層構成;光学膜厚20nm~55nm程度の高屈折率層と、光学膜厚15nm~70nm程度の低屈折率層と、光学膜厚60nm~330nm程度の高屈折率層と、光学膜厚100nm~160nm程度の低屈折率層との4層構成;光学膜厚15nm~30nm程度の低屈折率層と、光学膜厚20nm~40nm程度の高屈折率層と、光学膜厚20nm~40nm程度の低屈折率層と、光学膜厚240nm~290nm程度の高屈折率層と、光学膜厚100nm~200nm程度の低屈折率層との5層構成等が挙げられる。反射防止層を構成する薄膜の屈折率や膜厚の範囲は上記例示に限定されない。また、反射防止層は、6層以上の薄膜の積層体でもよい。 The laminated structure of the antireflection layer is, for example, a two-layer structure consisting of a high refractive index layer having an optical film thickness of about 240 nm to 260 nm and a low refractive index layer having an optical film thickness of about 120 nm to 140 nm from the transparent film side; A three-layer structure consisting of a medium refractive index layer having a film thickness of 170 nm to 180 nm, a high refractive index layer having an optical film thickness of 60 nm to 70 nm, and a low refractive index layer having an optical film thickness of 135 nm to 145 nm; an optical film thickness of 20 nm to A high refractive index layer having an optical thickness of about 55 nm, a low refractive index layer having an optical film thickness of about 15 nm to 70 nm, a high refractive index layer having an optical film thickness of about 60 nm to 330 nm, and a low refractive index layer having an optical film thickness of about 100 nm to 160 nm. A low refractive index layer having an optical thickness of about 15 nm to 30 nm, a high refractive index layer having an optical film thickness of about 20 nm to 40 nm, a low refractive index layer having an optical film thickness of about 20 nm to 40 nm, and an optical film thickness. Examples thereof include a five-layer structure consisting of a high refractive index layer having an optical thickness of about 240 nm to 290 nm and a low refractive index layer having an optical film thickness of about 100 nm to 200 nm. The range of the refractive index and the film thickness of the thin film constituting the antireflection layer is not limited to the above examples. Further, the antireflection layer may be a laminated body of six or more thin films.
 前記反射防止層は、低屈折率層と高屈折率層との交互積層体であることが好ましい。空気界面での反射を低減するために、反射防止層の最表面層(透明フィルムと反対側の面)として設けられる薄膜(例えば、薄膜64)は、低屈折率層であることが好ましい。低屈折率層および高屈折率層の材料としては、上記のように酸化物が好ましい。中でも、反射防止層は、低屈折率層としての酸化シリコン(SiO)薄膜と、高屈折率層としての酸化ニオブ(Nb)薄膜との交互積層体であることが好ましい。 The antireflection layer is preferably an alternating laminate of a low refractive index layer and a high refractive index layer. In order to reduce reflection at the air interface, the thin film (for example, thin film 64) provided as the outermost surface layer (the surface opposite to the transparent film) of the antireflection layer is preferably a low refractive index layer. As the material of the low refractive index layer and the high refractive index layer, oxides are preferable as described above. Above all, the antireflection layer is preferably an alternating laminate of a silicon oxide (SiO 2 ) thin film as a low refractive index layer and a niobium (Nb 2 O 5 ) thin film as a high refractive index layer.
 前記透明フィルムは、可視光透過率が80%以上であることが好ましく、90%以上であることがより好ましい。透明フィルムの厚みは、特に限定されないが、強度や取扱性等の作業性、薄層性等の観点から、5~300μm程度であることが好ましく、10~300μmであることがより好ましく、20~200μmであることがさらに好ましい。 The transparent film preferably has a visible light transmittance of 80% or more, and more preferably 90% or more. The thickness of the transparent film is not particularly limited, but is preferably about 5 to 300 μm, more preferably 10 to 300 μm, and more preferably 20 to 20 to 300 μm from the viewpoint of workability such as strength and handleability, and thin layer property. It is more preferably 200 μm.
 前記透明フィルムを構成する樹脂材料としては、例えば、透明性、機械強度、および熱安定性に優れる熱可塑性樹脂が挙げられる。このような熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、およびこれらの混合物が挙げられる。 Examples of the resin material constituting the transparent film include a thermoplastic resin having excellent transparency, mechanical strength, and thermal stability. Specific examples of such thermoplastic resins include cellulose-based resins such as triacetyl cellulose, polyester-based resins, polyether sulfone-based resins, polysulfone-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, and polyolefin-based resins. , (Meta) acrylic resin, cyclic polyolefin resin (norbornen resin), polyarylate resin, polystyrene resin, polyvinyl alcohol resin, and mixtures thereof.
 前記透明フィルムには、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、帯電防止剤、顔料、着色剤等の任意の適切な添加剤を含んでいてもよい。 The transparent film contains any suitable additives such as UV absorbers, antioxidants, lubricants, plasticizers, mold release agents, color inhibitors, flame retardants, antistatic agents, pigments, colorants and the like. May be good.
 前記反射防止層を有する第1の透明保護フィルムの透湿度は、50g/(m・24h)以下である。前記反射防止層を有する第1の透明保護フィルムの透湿度は、湿熱環境下における耐久性を向上させる観点から、30g/(m・24h)以下であることが好ましく、10g/(m・24h)以下であることがより好ましく、5g/(m・24h)以下であることがさらに好ましい。なお、透湿度は、40℃、90%の相対湿度差で、面積1mの試料を24時間で透過する水蒸気の重量であり、JIS K7129:2008 附属書Bに準じて測定される。 The moisture permeability of the first transparent protective film having the antireflection layer is 50 g / ( m 2.24 h) or less. The moisture permeability of the first transparent protective film having the antireflection layer is preferably 30 g / (m 2.24 h) or less, preferably 10 g / ( m 2. 24 h) or less, from the viewpoint of improving durability in a moist heat environment. It is more preferably 24 h) or less, and further preferably 5 g / (m 2.24 h) or less. The moisture permeation is the weight of water vapor that permeates a sample having an area of 1 m 2 in 24 hours at a relative humidity difference of 40 ° C. and 90%, and is measured according to JIS K7129: 2008 Annex B.
 前記反射防止層を前記透明フィルム上に形成する方法は、特に制限はなく、例えば、特開2017-227898号公報に記載の方法が参考となる。 The method for forming the antireflection layer on the transparent film is not particularly limited, and for example, the method described in Japanese Patent Application Laid-Open No. 2017-227898 can be referred to.
 前記透明フィルムの反射防止層側には、反射防止層の硬度や弾性率等の機械特性を向上できる観点から、ハードコート層が設けられていることが好ましい。ハードコート層は、表面硬度が高く、耐擦傷性に優れるものが好ましく、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂等の硬化性樹脂を含有する溶液を塗布することにより形成できる。 It is preferable that a hard coat layer is provided on the antireflection layer side of the transparent film from the viewpoint of improving mechanical properties such as hardness and elastic modulus of the antireflection layer. The hard coat layer preferably has a high surface hardness and excellent scratch resistance, and can be formed by applying a solution containing a curable resin such as a thermosetting resin, an ultraviolet curable resin, or an electron beam curable resin. ..
 前記硬化性樹脂の種類としては、例えば、ポリエステル系、アクリル系、ウレタン系、アクリルウレタン系、アミド系、シリコーン系、シリケート系、エポキシ系、メラミン系、オキセタン系、アクリルウレタン系等の各種の樹脂が挙げられる。これらの中でも、硬度が高く、紫外線硬化が可能で生産性に優れることから、アクリル系樹脂、アクリルウレタン系樹脂、およびエポキシ系樹脂が好ましい。紫外線硬化型樹脂には、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。 Examples of the type of the curable resin include various resins such as polyester-based, acrylic-based, urethane-based, acrylic-urethane-based, amide-based, silicone-based, silicate-based, epoxy-based, melamine-based, oxetane-based, and acrylic urethane-based resins. Can be mentioned. Among these, acrylic resins, acrylic urethane resins, and epoxy resins are preferable because they have high hardness, can be cured by ultraviolet rays, and are excellent in productivity. The UV curable resin includes UV curable monomers, oligomers, polymers and the like.
 また、前記ハードコート層は、防眩性を有してもよい。防眩性ハードコート層としては、例えば、上記の硬化性樹脂中に、微粒子を分散させたものが挙げられる。前記微粒子としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等の各種金属酸化物微粒子、ガラス微粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種透明ポリマーからなる架橋又は未架橋の有機系微粒子、シリコーン系微粒子等の透明性を有するものを特に制限なく使用できる。微粒子の平均粒子径は、1~10μm程度である。微粒子の割合は特に制限されないが、マトリックス樹脂100重量部に対して5~20重量部程度である。 Further, the hard coat layer may have antiglare properties. Examples of the antiglare hard coat layer include those in which fine particles are dispersed in the above-mentioned curable resin. Examples of the fine particles include various metal oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide and antimony oxide, glass fine particles, polymethylmethacrylate, polystyrene, polyurethane and acrylic. Cross-linked or uncrosslinked organic fine particles made of various transparent polymers such as styrene copolymer, benzoguanamine, melamine, and polycarbonate, and transparent fine particles such as silicone fine particles can be used without particular limitation. The average particle size of the fine particles is about 1 to 10 μm. The ratio of the fine particles is not particularly limited, but is about 5 to 20 parts by weight with respect to 100 parts by weight of the matrix resin.
 前記ハードコート層の厚みは、特に限定されないが、高い硬度を実現する観点から、0.5μm以上であることが好ましく、1μm以上であることがより好ましい。塗布による形成の容易性の観点から、前記ハードコート層の厚みは、15μm以下であることが好ましく、10μm以下であることがより好ましい。 The thickness of the hard coat layer is not particularly limited, but is preferably 0.5 μm or more, and more preferably 1 μm or more, from the viewpoint of achieving high hardness. From the viewpoint of ease of formation by coating, the thickness of the hard coat layer is preferably 15 μm or less, and more preferably 10 μm or less.
 前記透明フィルムや前記ハードコート層等の表面には、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、プライマー処理、グロー処理、ケン化処理、カップリング剤による処理等の表面改質処理が行われてもよい。また、前記透明フィルムや前記ハードコート層等の表面には、反射防止層等との密着性向上等の目的で、金属の酸化物および窒化物等のプライマー層を設けてもよい。 The surface of the transparent film or the hard coat layer is subjected to surface modification treatment such as corona treatment, plasma treatment, frame treatment, ozone treatment, primer treatment, glow treatment, saponification treatment, and treatment with a coupling agent. May be. Further, a primer layer such as a metal oxide or a nitride may be provided on the surface of the transparent film or the hard coat layer for the purpose of improving the adhesion to the antireflection layer or the like.
<偏光フィルム>
 本発明の偏光フィルムは、偏光膜の少なくとも一方の面に、透明保護フィルムが貼り合わされているものである。ここで、前記偏光膜の前記反射防止層を有する第1の透明保護フィルム側に貼り合わされている透明保護フィルムを第2の透明保護フィルムと称し、前記偏光膜の前記画像表示セル側に貼り合わされている透明保護フィルムを第3の透明保護フィルムと称す。前記偏光フィルムは、取り扱い作業時の外観安定性の観点から、前記偏光膜の前記反射防止層を有する第1の透明保護フィルム側に、第2の透明保護フィルムが貼り合わされていることが好ましい。なお、前記偏光膜と前記透明保護フィルムは、通常、粘着剤層または接着剤層を介して貼り合わされる。
<Polarizing film>
In the polarizing film of the present invention, a transparent protective film is bonded to at least one surface of the polarizing film. Here, the transparent protective film bonded to the first transparent protective film side having the antireflection layer of the polarizing film is referred to as a second transparent protective film, and is bonded to the image display cell side of the polarizing film. The transparent protective film is referred to as a third transparent protective film. From the viewpoint of appearance stability during handling work, it is preferable that the polarizing film has a second transparent protective film bonded to the first transparent protective film side having the antireflection layer of the polarizing film. The polarizing film and the transparent protective film are usually bonded to each other via an adhesive layer or an adhesive layer.
<偏光膜>
 前記偏光フィルムは、ポリビニルアルコール系フィルムにヨウ素や二色性染料等の二色性物質が吸着配向して形成される偏光膜を有する。前記偏光膜は、偏光膜の初期の偏光性能の観点から、前記二色性物質としてヨウ素を含む、ヨウ素系偏光膜が好ましい。
<Polarizing film>
The polarizing film has a polarizing film formed by adsorbing and orienting a dichroic substance such as iodine or a dichroic dye on a polyvinyl alcohol-based film. The polarizing film is preferably an iodine-based polarizing film containing iodine as the dichroic substance from the viewpoint of the initial polarization performance of the polarizing film.
 前記ポリビニルアルコール(PVA)系フィルムは、可視光領域において透光性を有し、ヨウ素や二色性染料等の二色性物質を分散吸着するものを特に制限なく使用できる。前記ポリビニルアルコール系フィルムの材料としては、ポリビニルアルコールまたはその誘導体が挙げられる。前記ポリビニルアルコールの誘導体としては、例えば、ポリビニルホルマール、ポリビニルアセタール;エチレン、プロピレン等のオレフィン;アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸、およびそのアルキルエステル、アクリルアミド等で変性したもの等が挙げられる。前記ポリビニルアルコールは、平均重合度が100~10,000程度であることが好ましく、1,000~10,000程度であることがより好ましく、1,500~4,500程度であることがさらに好ましい。また、前記ポリビニルアルコールは、ケン化度が80~100モル%程度であることが好ましく、95モル%~99.95モル程度であることがより好ましい。なお、前記平均重合度および前記ケン化度は、JIS K 6726に準じて求めることができる。 The polyvinyl alcohol (PVA) -based film has translucency in the visible light region, and a film that disperses and adsorbs a dichroic substance such as iodine or a dichroic dye can be used without particular limitation. Examples of the material of the polyvinyl alcohol-based film include polyvinyl alcohol or a derivative thereof. Examples of the polyvinyl alcohol derivative include polyvinyl formal, polyvinyl acetal; olefins such as ethylene and propylene; unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and alkyl esters thereof and those modified with acrylamide and the like. Can be mentioned. The polyvinyl alcohol preferably has an average degree of polymerization of about 100 to 10,000, more preferably about 1,000 to 10,000, and even more preferably about 1,500 to 4,500. .. Further, the polyvinyl alcohol preferably has a saponification degree of about 80 to 100 mol%, more preferably about 95 mol% to 99.95 mol. The average degree of polymerization and the saponification degree can be determined according to JIS K 6726.
 前記偏光膜は、高温環境下における耐久性を向上させる観点から、水溶性のラジカル捕捉剤を含むことが好ましい。前記水溶性のラジカル捕捉剤は、偏光膜中の水分に移行し易い観点から、25℃の水100重量部に対して1重量部以上溶解できる化合物であることが好ましく、25℃の水100重量部に対して2重量部以上溶解できる化合物であることがより好ましく、25℃の水100重量部に対して5重量部以上溶解できる化合物であることがさらに好ましい。前記水溶性のラジカル捕捉剤は、単独で用いてもよく2種類以上を併用してもよい。 The polarizing film preferably contains a water-soluble radical scavenger from the viewpoint of improving durability in a high temperature environment. The water-soluble radical trapping agent is preferably a compound that can dissolve 1 part by weight or more with 100 parts by weight of water at 25 ° C. from the viewpoint of easy transfer to water in the polarizing film, and 100 parts by weight of water at 25 ° C. It is more preferable that the compound is soluble in 2 parts by weight or more, and more preferably 5 parts by weight or more in 100 parts by weight of water at 25 ° C. The water-soluble radical scavenger may be used alone or in combination of two or more.
 前記水溶性のラジカル捕捉剤は、高温環境下での偏光膜のポリエン化を抑制できると推定される。前記水溶性のラジカル捕捉剤としては、例えば、ヒンダードフェノール系、ヒンダードアミン系、リン系、イオウ系、ベンゾトリアゾール系、ベンゾフェノン系、ヒドロキシルアミン系、サルチル酸エステル系、トリアジン系の化合物などのラジカル捕捉機能を有する化合物が挙げられる。前記水溶性のラジカル捕捉剤としては、偏光膜で発生するラジカル種の観点から、例えば、ニトロキシラジカル、またはニトロキシド基を有する化合物であることが好ましい。 It is presumed that the water-soluble radical scavenger can suppress polyene formation of the polarizing film in a high temperature environment. Examples of the water-soluble radical scavenger include radical scavengers such as hindered phenol-based, hindered amine-based, phosphorus-based, sulfur-based, benzotriazole-based, benzophenone-based, hydroxylamine-based, sulcylic acid ester-based, and triazine-based compounds. Examples thereof include compounds having a function. The water-soluble radical scavenger is preferably, for example, a nitroxy radical or a compound having a nitroxide group from the viewpoint of radical species generated in the polarizing film.
 前記ニトロキシラジカル、またはニトロキシド基を有する化合物としては、室温、空気中で比較的に安定なラジカルを有する観点から、N-オキシル化合物(官能基として、C-N(-C)-Oを有する化合物(Oはオキシラジカルを示す))が挙げられ、公知のものが使用できる。N-オキシル化合物としては、例えば、以下の構造の有機基を有する化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、Rは、オキシラジカル表し、RからRは、独立して、水素原子、または炭素原子数が1~10のアルキル基を表し、nは0または1を表す。)なお、一般式(1)中の、点線部の左は任意の有機基を示す。
As the nitroxyl radical or the compound having a nitroxide group, an N-oxyl compound (as a functional group, CN (-C) -O. " Is used from the viewpoint of having a radical that is relatively stable in air at room temperature. Examples thereof include compounds having ( O. indicates an oxyrad)), and known compounds can be used. Examples of the N-oxyl compound include compounds having an organic group having the following structure.
Figure JPOXMLDOC01-appb-C000001
(In the general formula (1), R 1 represents an oxy radical, R 2 to R 5 independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and n represents 0 or 1. (Represented.) In the general formula (1), the left side of the dotted line indicates an arbitrary organic group.
 また、前記水溶性のラジカル捕捉剤は、偏光膜に発生したラジカルを効率よく捕捉できる観点から、分子量が、1000以下であることが好ましく、500以下であることがより好ましく、300以下であることがさらに好ましい。 Further, the water-soluble radical scavenger preferably has a molecular weight of 1000 or less, more preferably 500 or less, and more preferably 300 or less, from the viewpoint of efficiently capturing radicals generated in the polarizing film. Is even more preferable.
 前記水溶性のラジカル捕捉剤の含有量は、前記偏光膜が、前記水溶性のラジカル捕捉剤を含有する場合、高温環境下における耐久性を向上させる観点から、0.005重量%以上であることが好ましく、0.01重量%以上であることがより好ましく、0.1重量%以上であることがさらに好ましく、そして、20重量%以下であることが好ましく、15重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。 The content of the water-soluble radical scavenger is 0.005% by weight or more from the viewpoint of improving durability in a high temperature environment when the polarizing film contains the water-soluble radical scavenger. Is more preferable, 0.01% by weight or more is more preferable, 0.1% by weight or more is further preferable, and 20% by weight or less is preferable, and 15% by weight or less is more preferable. It is preferably 10% by weight or less, and more preferably 10% by weight or less.
 前記偏光膜は、従前の偏光膜の製造方法により得られ、例えば、前記ポリビニルアルコール系フィルムに、任意の膨潤工程および洗浄工程と、少なくとも、染色工程、架橋工程、および延伸工程を施して得られる。前記偏光膜が、前記水溶性のラジカル捕捉剤を含有する場合、前記膨潤工程、前記洗浄工程、前記染色工程、前記架橋工程、および前記延伸工程のいずれか1つ以上の処理工程における処理浴が、水溶性のラジカル捕捉剤を含んでいればよい。 The polarizing film is obtained by a conventional method for producing a polarizing film, and is obtained, for example, by subjecting the polyvinyl alcohol-based film to an arbitrary swelling step and a washing step, and at least a dyeing step, a cross-linking step, and a stretching step. .. When the polarizing film contains the water-soluble radical scavenger, the treatment bath in any one or more of the swelling step, the washing step, the dyeing step, the cross-linking step, and the stretching step , A water-soluble radical scavenger may be contained.
 前記偏光膜は、偏光膜の初期の偏光度を向上させる観点から、厚みが1μm以上であることが好ましく、2μm以上であることがより好ましく、そして、偏光膜中の水分を低減し、高温環境下におけるポリエン化を抑制させる観点から、20μm以下であることが好ましい。とくに、厚みが8μm程度以下の偏光膜を得るためには、前記ポリビニルアルコール系フィルムとして、熱可塑性樹脂基材上に製膜されたポリビニルアルコール系樹脂層を含む積層体を用いる、以下の薄型の偏光膜の製造方法が適用できる。 From the viewpoint of improving the initial degree of polarization of the polarizing film, the thickness of the polarizing film is preferably 1 μm or more, more preferably 2 μm or more, and the moisture content in the polarizing film is reduced to create a high temperature environment. From the viewpoint of suppressing polyene formation underneath, it is preferably 20 μm or less. In particular, in order to obtain a polarizing film having a thickness of about 8 μm or less, a laminate containing a polyvinyl alcohol-based resin layer formed on a thermoplastic resin substrate is used as the polyvinyl alcohol-based film, and the following thin type is used. A method for manufacturing a polarizing film can be applied.
 偏光膜(薄型の偏光膜)は、従前の偏光膜の製造方法により得られ、例えば、長尺状の熱可塑性樹脂基材の片側に、ポリビニルアルコール系樹脂(PVA系樹脂)を含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体を準備する工程と、得られた積層体を長手方向に搬送しながら、前記積層体に、任意の不溶化処理工程、架橋処理工程、および洗浄処理工程と、少なくとも、空中補助延伸処理工程、染色処理工程、および水中延伸処理工程を施して得られる。前記偏光膜が、前記水溶性のラジカル捕捉剤を含有する場合、前記不溶化処理工程、前記架橋処理工程、前記洗浄処理工程、前記染色処理工程、および前記水中延伸処理工程のいずれか1つ以上の処理工程における処理浴が、前記水溶性のラジカル捕捉剤を含んでいればよい。 The polarizing film (thin polarizing film) is obtained by a conventional method for manufacturing a polarizing film. For example, a polyvinyl alcohol-based resin containing a polyvinyl alcohol-based resin (PVA-based resin) on one side of a long thermoplastic resin base material. A step of forming a resin layer (PVA-based resin layer) to prepare a laminate, and an arbitrary insolubilization treatment step, a cross-linking treatment step, and cleaning of the laminate while transporting the obtained laminate in the longitudinal direction. It is obtained by performing a treatment step and at least an aerial auxiliary stretching treatment step, a dyeing treatment step, and an underwater stretching treatment step. When the polarizing film contains the water-soluble radical scavenger, one or more of the insolubilization treatment step, the cross-linking treatment step, the cleaning treatment step, the dyeing treatment step, and the underwater stretching treatment step. The treatment bath in the treatment step may contain the water-soluble radical scavenger.
<透明保護フィルム>
 前記透明保護フィルムは、特に制限されず、偏光フィルムに用いられている各種の透明保護フィルムを用いることができる。前記透明保護フィルムを構成する材料としては、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性等に優れる熱可塑性樹脂が用いられる。前記熱可塑性樹脂としては、例えば、トリアセチルセルロール等のセルロールエステル系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ナイロンや芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体の如きポリオレフィン系樹脂、(メタ)アクリル系樹脂、シクロ系ないしはノルボルネン構造を有する環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、およびこれらの混合物があげられる。また、前記透明保護フィルムは、(メタ)アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化性樹脂または紫外線硬化型樹脂から形成される硬化層を用いることができる。これらの中でも、セルロールエステル系樹脂、ポリカーボネート系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂、ポリエステル系樹脂が好適である。
<Transparent protective film>
The transparent protective film is not particularly limited, and various transparent protective films used for the polarizing film can be used. As the material constituting the transparent protective film, for example, a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture barrier property, isotropic property, etc. is used. Examples of the thermoplastic resin include a cell roll ester resin such as triacetyl cell roll, a polyester resin such as polyethylene terephthalate and polyethylene naphthalate, a polyether sulfone resin, a polysulfone resin, a polycarbonate resin, nylon and aroma. Polyamide-based resin such as group polyamide, polyimide-based resin, polyethylene, polypropylene, polyolefin-based resin such as ethylene / propylene copolymer, (meth) acrylic-based resin, cyclo-based or cyclic polyolefin-based resin having norbornene structure (norbornene-based resin) ), Polyallylate-based resin, polystyrene-based resin, polyvinyl alcohol-based resin, and mixtures thereof. Further, as the transparent protective film, a cured layer formed of a thermosetting resin such as (meth) acrylic, urethane, acrylic urethane, epoxy, silicone or the like or an ultraviolet curable resin can be used. Among these, cell roll ester-based resin, polycarbonate-based resin, (meth) acrylic-based resin, cyclic polyolefin-based resin, and polyester-based resin are preferable.
 前記透明保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性等の観点から、1~500μm程度であることが好ましく、1~300μm程度あることがより好ましく、5~100μm程度であることがさらに好ましい。 The thickness of the transparent protective film can be appropriately determined, but is generally preferably about 1 to 500 μm, preferably about 1 to 300 μm, from the viewpoint of workability such as strength and handleability, and thin layerability. More preferably, it is more preferably about 5 to 100 μm.
 前記透明保護フィルムを、前記偏光膜の両面に貼り合わせる場合、その両面の透明保護フィルムは、同じものであってもよく、異なっていてもよい。 When the transparent protective film is attached to both sides of the polarizing film, the transparent protective films on both sides may be the same or different.
 前記透明保護フィルムは、正面位相差が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有する位相差板を用いることができる。正面位相差は、通常、40~200nmの範囲に、厚み方向位相差は、通常、80~300nmの範囲に制御される。前記透明保護フィルムとして位相差板を用いる場合には、当該位相差板が透明保護フィルムとしても機能するため、薄型化を図ることができる。 As the transparent protective film, a retardation plate having a front retardation of 40 nm or more and / or a retardation of thickness direction of 80 nm or more can be used. The frontal phase difference is usually controlled in the range of 40 to 200 nm, and the thickness direction phase difference is usually controlled in the range of 80 to 300 nm. When a retardation plate is used as the transparent protective film, the retardation plate also functions as a transparent protective film, so that the thickness can be reduced.
 前記位相差板としては、例えば、高分子素材を一軸または二軸延伸処理してなる複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したもの等が挙げられる。位相差板の厚さは特に制限されないが、20~150μm程度が一般的である。なお、位相差を有しない透明保護フィルムに前記位相板を貼り合わせて使用してもよい。 Examples of the retardation plate include a birefringent film formed by uniaxially or biaxially stretching a polymer material, an alignment film of a liquid crystal polymer, and a film in which an alignment layer of a liquid crystal polymer is supported by a film. The thickness of the retardation plate is not particularly limited, but is generally about 20 to 150 μm. The phase plate may be attached to a transparent protective film having no phase difference before use.
 前記透明保護フィルムには、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、帯電防止剤、顔料、着色剤等の任意の適切な添加剤を含んでいてもよい。 The transparent protective film contains any suitable additives such as UV absorbers, antioxidants, lubricants, plasticizers, mold release agents, color inhibitors, flame retardants, antistatic agents, pigments, colorants and the like. You may.
 前記第3の透明保護フィルムは、貼り合わせた後の乾燥工程の生産効率の観点から、透湿度が300g/(m・24h)以下であることが好ましく、200g/(m・24h)以下であることがより好ましい。前記第2の透明保護フィルムは、偏光膜の高温高湿下の耐久性や、貼り合わせた後の乾燥工程の生産効率の観点から、透湿度が、前記反射防止層を有する第1の透明保護フィルムの透湿度よりも大きいことが好ましく、100g/(m・24h)以上であることがより好ましく、200g/(m・24h)以上であることがさらに好ましく、そして、透湿度が1000g/(m・24h)以下であることが好ましく、600g/(m・24h)以下であることがより好ましい。なお、透湿度は、JIS Z0208の透湿度試験(カップ法)に準じ、直径60mmに切断したサンプルを約15gの塩化カルシウムを入れた透湿カップにセットし、温度40℃、湿度90%R.H.の恒温機に入れ、24時間放置した前後の塩化カルシウムの重量増加を測定することで算出できる。 The third transparent protective film preferably has a moisture permeability of 300 g / (m 2.24 h) or less, preferably 200 g / ( m 2.24 h) or less, from the viewpoint of production efficiency in the drying step after bonding. Is more preferable. The second transparent protective film has a first transparent protection having an antireflection layer in terms of moisture permeability from the viewpoint of durability of the polarizing film under high temperature and high humidity and production efficiency in the drying process after bonding. It is preferably larger than the moisture permeability of the film, more preferably 100 g / ( m 2.24 h) or more, further preferably 200 g / (m 2.24 h) or more, and the moisture permeability is 1000 g / (m 2.24 h) or more. It is preferably (m 2.24h ) or less, and more preferably 600 g / (m 2.24h ) or less. The humidity permeability was determined according to the JIS Z0208 moisture permeability test (cup method), and a sample cut to a diameter of 60 mm was set in a moisture permeability cup containing about 15 g of calcium chloride, and the temperature was 40 ° C. and the humidity was 90%. H. It can be calculated by measuring the weight increase of calcium chloride before and after putting it in a constant temperature machine and leaving it for 24 hours.
 前記透明保護フィルムの偏光膜を貼り合わせない面には、ハードコート層、スティッキング防止層、拡散層ないしアンチグレア層等の他の層を設けることができる。なお、上記の他の層は、保護フィルムそのものに設けることができるほか、別途、保護フィルムとは別体のものとして設けることもできる。 Other layers such as a hard coat layer, an anti-sticking layer, a diffusion layer, and an anti-glare layer can be provided on the surface of the transparent protective film to which the polarizing film is not bonded. The other layers may be provided on the protective film itself, or may be provided separately from the protective film.
<粘着剤層>
 前記粘着剤層を形成する粘着剤としては、偏光フィルムに用いられている各種の粘着剤を適用でき、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルポロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤等が挙げられる。これらの中でも、アクリル系粘着剤が好適である。前記アクリル系粘着剤は、ベースポリマーとしてアクリル系ポリマーを含有するものであり、例えば、特開2017-75998号公報等に記載のアクリル系粘着剤が例示できる。
<Adhesive layer>
As the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer, various pressure-sensitive adhesives used for polarizing films can be applied, for example, rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, and vinyl. Examples thereof include an alkyl ether-based adhesive, a polyvinyl alcohol-based adhesive, a polyvinyl porolidone-based adhesive, a polyacrylamide-based adhesive, and a cellulose-based adhesive. Among these, acrylic adhesives are preferable. The acrylic pressure-sensitive adhesive contains an acrylic polymer as a base polymer, and examples thereof include the acrylic pressure-sensitive adhesive described in JP-A-2017-75998.
 前記アクリル系粘着剤におけるアクリル系ポリマーは、(メタ)アクリル酸アルキルエステルのモノマーユニットを主骨格とするものである。(メタ)アクリル酸アルキルエステルとしては、アルキル基の炭素数が1~20である(メタ)アクリル酸アルキルエステルが好適に用いられ、当該(メタ)アクリル酸アルキルエステルの含有量は、ベースポリマーを構成するモノマー成分全量に対して、好ましくは40重量%以上であり、より好ましくは60重量%以上である。また、粘着剤の接着性を調整できる観点から、窒素含有モノマーユニットやヒドロキシ基含有モノマー等のモノマーユニットを含んでいてもよい。さらに、粘着剤層に架橋構造を形成するため、架橋剤を用いてもよく、架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、カルボジイミド系架橋剤、金属キレート系架橋剤等の一般に用いられているものを使用できる。架橋剤の使用量は、ベースポリマー100重量部に対して、通常、10重量部以下であり、好ましくは5重量部以下である。 The acrylic polymer in the acrylic pressure-sensitive adhesive has a monomer unit of (meth) acrylic acid alkyl ester as a main skeleton. As the (meth) acrylic acid alkyl ester, a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms is preferably used, and the content of the (meth) acrylic acid alkyl ester is the base polymer. It is preferably 40% by weight or more, more preferably 60% by weight or more, based on the total amount of the constituent monomer components. Further, from the viewpoint of adjusting the adhesiveness of the pressure-sensitive adhesive, a monomer unit such as a nitrogen-containing monomer unit or a hydroxy group-containing monomer may be contained. Further, a cross-linking agent may be used to form a cross-linked structure in the pressure-sensitive adhesive layer. Commonly used substances such as a cross-linking agent and a metal chelate-based cross-linking agent can be used. The amount of the cross-linking agent used is usually 10 parts by weight or less, preferably 5 parts by weight or less, based on 100 parts by weight of the base polymer.
 前記粘着剤には、接着力を調整できる観点から、シランカップリング剤;テルペン系粘着付与剤、スチレン系粘着付与剤、フェノール系粘着付与剤、ロジン系粘着付与剤、エポキシ系粘着付与剤等の粘着付与剤を添加してもよい。また、耐光性の向上の観点から、紫外線吸収剤を添加してもよい。上記例示の各成分の他、粘着剤には、可塑剤、軟化剤、劣化防止剤、充填剤、着色剤、酸化防止剤、界面活性剤、帯電防止剤等の添加剤を、粘着剤の特性を損なわない範囲で用いることができる。 From the viewpoint of adjusting the adhesive strength, the pressure-sensitive adhesive includes a silane coupling agent; a terpene-based pressure-sensitive adhesive, a styrene-based pressure-sensitive adhesive, a phenol-based pressure-sensitive adhesive, a rosin-based pressure-sensitive adhesive, an epoxy-based pressure-sensitive adhesive, and the like. A tackifier may be added. Further, from the viewpoint of improving the light resistance, an ultraviolet absorber may be added. In addition to the above-exemplified components, the pressure-sensitive adhesives include additives such as plasticizers, softeners, deterioration inhibitors, fillers, colorants, antioxidants, surfactants, and antistatic agents, and the characteristics of the pressure-sensitive adhesives. Can be used as long as it does not impair.
 粘着剤層を形成する方法としては、例えば、前記粘着剤を剥離処理したセパレータ等に塗布し、乾燥して粘着剤層を形成した後に、偏光膜等に転写する方法、または前記粘着剤を偏光膜等に塗布し、乾燥して粘着剤層を形成する方法等が例示できる。前記粘着剤層の厚さは、特に制限されず、例えば、1~100μm程度であり、2~50μm程度であることが好ましい。 As a method for forming the pressure-sensitive adhesive layer, for example, a method in which the pressure-sensitive adhesive is applied to a separator or the like that has been peeled off and dried to form a pressure-sensitive adhesive layer and then transferred to a polarizing film or the like, or the pressure-sensitive adhesive is polarized. Examples thereof include a method of applying to a film or the like and drying to form an adhesive layer. The thickness of the pressure-sensitive adhesive layer is not particularly limited, and is preferably about 1 to 100 μm, preferably about 2 to 50 μm.
<接着剤層>
 前記接着剤層を形成する接着剤としては、偏光フィルムに用いられている各種の接着剤を適用でき、例えば、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等が挙げられる。これら接着剤は、通常、水溶液からなる接着剤(水系接着剤)として用いられ、0.5~60重量%の固形分を含有してなる。これらの中でも、ポリビニルアルコール系接着剤が好ましく、アセトアセチル基含有ポリビニルアルコール系接着剤がより好ましい。
<Adhesive layer>
As the adhesive forming the adhesive layer, various adhesives used for polarizing films can be applied, and for example, isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, and the like. Examples include water-based polyester. These adhesives are usually used as an adhesive consisting of an aqueous solution (water-based adhesive) and contain 0.5 to 60% by weight of a solid content. Among these, a polyvinyl alcohol-based adhesive is preferable, and an acetacetyl group-containing polyvinyl alcohol-based adhesive is more preferable.
 前記水系接着剤は、架橋剤を含んでいてもよい。前記架橋剤としては、通常、接着剤を構成するポリマー等の成分と反応性を有する官能基を1分子中に少なくとも2つ有する化合物が用いられ、例えば、アルキレンジアミン類;イソシアネート類;エポキシ類;アルデヒド類;メチロール尿素、メチロールメラミン等のアミノ-ホルムアルデヒド等が挙げられる。接着剤中の架橋剤の配合量は、接着剤を構成するポリマー等の成分100重量部に対して、通常、10~60重量部程度である。 The water-based adhesive may contain a cross-linking agent. As the cross-linking agent, a compound having at least two functional groups in one molecule having reactivity with a component such as a polymer constituting the adhesive is usually used, and for example, alkylenediamines; isocyanates; epoxys; Aldehydes; Examples thereof include amino-formaldehydes such as methylol urea and methylol melamine. The blending amount of the cross-linking agent in the adhesive is usually about 10 to 60 parts by weight with respect to 100 parts by weight of the components such as the polymer constituting the adhesive.
 前記接着剤としては、上記の他、紫外線硬化型接着剤、電子線硬化型接着剤等の活性エネルギー線硬化型接着剤が挙げられる。前記活性エネルギー線硬化型接着剤としては、例えば、(メタ)アクリレート系接着剤が挙げられる。前記(メタ)アクリレート系接着剤における硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物が挙げられる。(メタ)アクリロイル基を有する化合物としては、例えば、炭素数が1~20の鎖状アルキル(メタ)アクリレート、脂環式アルキル(メタ)アクリレート、多環式アルキル(メタ)アクリレート等のアルキル(メタ)アクリレート;ヒドロキシル基含有(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート等が挙げられる。(メタ)アクリレート系接着剤は、ヒドロキシエチル(メタ)アクリルアミド、N‐メチロール(メタ)アクリルアミド、N‐メトキシメチル(メタ)アクリルアミド、N‐エトキシメチル(メタ)アクリルアミド、(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等の窒素含有モノマーを含んでいてもよい。(メタ)アクリレート系接着剤は、架橋成分として、トリプロピレングリコールジアクリレート、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、環状トリメチロールプロパンフォルマルアクリレート、ジオキサングリコールジアクリレート、EO変性ジグリセリンテトラアクリレート等の多官能モノマーを含んでいてもよい。また、カチオン重合硬化型接着剤としてエポキシ基やオキセタニル基を有する化合物も使用することができる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。 In addition to the above, examples of the adhesive include active energy ray-curable adhesives such as ultraviolet curable adhesives and electron beam curable adhesives. Examples of the active energy ray-curable adhesive include (meth) acrylate-based adhesives. Examples of the curable component in the (meth) acrylate-based adhesive include a compound having a (meth) acryloyl group and a compound having a vinyl group. Examples of the compound having a (meth) acryloyl group include alkyl (meth) acrylates having 1 to 20 carbon atoms, such as chain alkyl (meth) acrylates, alicyclic alkyl (meth) acrylates, and polycyclic alkyl (meth) acrylates. ) Acrylate; hydroxyl group-containing (meth) acrylate; epoxy group-containing (meth) acrylate such as glycidyl (meth) acrylate can be mentioned. The (meth) acrylate adhesives are hydroxyethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, (meth) acrylamide, and (meth). It may contain a nitrogen-containing monomer such as acrylamide. The (meth) acrylate-based adhesive has tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, cyclic trimethylolpropane formal acrylate, dioxane glycol diacrylate, and EO as cross-linking components. It may contain a polyfunctional monomer such as modified diglycerin tetraacrylate. Further, a compound having an epoxy group or an oxetanyl group can also be used as the cationic polymerization curable adhesive. The compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various generally known curable epoxy compounds can be used.
 前記接着剤は、必要に応じて適宜の添加剤を含んでいてもよい。前記添加剤としては、例えば、シランカップリング剤、チタンカップリング剤等のカップリング剤、エチレンオキシド等の接着促進剤、紫外線吸収剤、劣化防止剤、染料、加工助剤、イオントラップ剤、酸化防止剤、粘着付与剤、充填剤、可塑剤、レベリング剤、発泡抑制剤、帯電防止剤、耐熱安定剤、耐加水分解安定剤等が挙げられる。 The adhesive may contain an appropriate additive, if necessary. Examples of the additive include a silane coupling agent, a coupling agent such as a titanium coupling agent, an adhesion promoter such as ethylene oxide, an ultraviolet absorber, a deterioration inhibitor, a dye, a processing aid, an ion trap agent, and an antioxidant. Examples thereof include agents, tackifiers, fillers, plasticizers, leveling agents, foaming inhibitors, antistatic agents, heat-resistant stabilizers, hydrolysis-resistant stabilizers and the like.
 前記接着剤の塗布は、後述する透明保護フィルム側(または後述する機能層側)、前記偏光膜側のいずれに行ってもよく、両者に行ってもよい。貼り合わせ後には、乾燥工程を施し、塗布乾燥層からなる接着剤層を形成する。前記乾燥工程の後には、必要に応じ、紫外線や電子線を照射することができる。前記接着剤層の厚さは、特に制限されず、水系接着剤等を用いる場合には、30~5000nm程度であることが好ましく、100~1000nm程度であることがより好ましく、紫外線硬化型接着剤、電子線硬化型接着剤等を用いる場合には、0.1~100μm程度であることが好ましく、0.5~10μm程度であることがより好ましい。 The adhesive may be applied to either the transparent protective film side (or the functional layer side described later) or the polarizing film side, which will be described later, or both. After bonding, a drying step is performed to form an adhesive layer composed of a coated dry layer. After the drying step, ultraviolet rays or electron beams can be irradiated as needed. The thickness of the adhesive layer is not particularly limited, and when a water-based adhesive or the like is used, it is preferably about 30 to 5000 nm, more preferably about 100 to 1000 nm, and an ultraviolet curable adhesive. When an electron beam curable adhesive or the like is used, it is preferably about 0.1 to 100 μm, more preferably about 0.5 to 10 μm.
 前記透明保護フィルムと前記偏光膜は、表面改質処理層、易接着剤層、ブロック層、屈折率調整層等の介在層を介して積層されていてもよい。 The transparent protective film and the polarizing film may be laminated via an intervening layer such as a surface modification treatment layer, an easy-adhesive layer, a block layer, and a refractive index adjusting layer.
 前記表面改質層を形成する表面改質処理としては、例えば、コロナ処理、プラズマ処理、プライマー処理、ケン化処理等が挙げられる。 Examples of the surface modification treatment for forming the surface modification layer include corona treatment, plasma treatment, primer treatment, saponification treatment and the like.
 前記易接着層を形成する易接着剤としては、例えば、ポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格、ポリウレタン骨格、シリコーン系、ポリアミド骨格、ポリイミド骨格、ポリビニルアルコール骨格等を有する各種樹脂を含む形成材が挙げられる。前記易接着層は、通常、保護フィルムに予め設けておき、当該保護フィルムの易接着層側と偏光膜とを、前記粘着剤層または前記接着剤層により積層する。 Examples of the easy-adhesive for forming the easy-adhesive layer include a forming material containing various resins having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a silicone-based, a polyamide skeleton, a polyimide skeleton, a polyvinyl alcohol skeleton, and the like. Can be mentioned. The easy-adhesive layer is usually provided in advance on a protective film, and the easy-adhesive layer side of the protective film and the polarizing film are laminated by the adhesive layer or the adhesive layer.
 前記ブロック層は、透明保護フィルム等から溶出されるオリゴマーやイオン等の不純物が偏光膜中に移行(侵入)することを防止するため機能を有する層である。前記ブロック層は、透明性を有し、かつ透明保護フィルム等から溶出される不純物が防止できる層であればよく、ブロック層を形成する材としては、例えば、ウレタンプレポリマー系形成材、シアノアクリレート系形成材、エポキシ系形成材等が挙げられる。 The block layer is a layer having a function to prevent impurities such as oligomers and ions eluted from the transparent protective film and the like from migrating (penetrating) into the polarizing film. The block layer may be a layer having transparency and capable of preventing impurities eluted from the transparent protective film or the like, and examples of the material forming the block layer include urethane prepolymer-based forming materials and cyanoacrylates. Examples include system-forming materials and epoxy-based forming materials.
 前記屈折率調整層は、前記透明保護フィルムと偏光膜等屈折率の異なる層間での反射に伴う透過率の低下を抑制するために設けられる層である。前記屈折率調整層を形成する屈折率調整材としては、例えば、シリカ系、アクリル系、アクリル-スチレン系、メラミン系等を有する各種樹脂及び添加剤を含む形成剤が挙げられる。 The refractive index adjusting layer is a layer provided to suppress a decrease in transmittance due to reflection between layers having different refractive indexes such as the transparent protective film and a polarizing film. Examples of the refractive index adjusting material for forming the refractive index adjusting layer include a forming agent containing various resins and additives having a silica-based, acrylic-based, acrylic-styrene-based, melamine-based, and the like.
 また、前記偏光フィルムは、前記偏光フィルムが光学層に貼り合わされている積層偏光フィルム(光学積層体)であってもよい。前記光学層は特に限定はないが、例えば、反射板や半透過板、位相差板(1/2や1/4等の波長板を含む)、視野角補償フィルム等の液晶表示装置等の形成に用いられることのある光学層を1層または2層以上用いることができる。前記偏光フィルムとしては、特に、前記偏光フィルムに更に反射板または半透過反射板が積層されてなる反射型偏光フィルムまたは半透過型偏光フィルム、前記偏光フィルムに更に位相差板が積層されてなる楕円偏光フィルムまたは円偏光フィルム、前記偏光フィルムに更に視野角補償フィルムが積層されてなる広視野角偏光フィルム、あるいは前記偏光フィルムに更に輝度向上フィルムが積層されてなる偏光フィルムが挙げられる。 Further, the polarizing film may be a laminated polarizing film (optical laminate) in which the polarizing film is bonded to an optical layer. The optical layer is not particularly limited, but for example, a reflecting plate, a semi-transmissive plate, a retardation plate (including a wave plate such as 1/2 or 1/4), a liquid crystal display device such as a viewing angle compensation film, or the like is formed. One or two or more optical layers that may be used in the above can be used. Examples of the polarizing film include a reflective polarizing film or a semi-transmissive polarizing film in which a reflecting plate or a semi-transmissive reflecting plate is further laminated on the polarizing film, and an ellipse formed by further laminating a retardation plate on the polarizing film. Examples thereof include a polarizing film or a circular polarizing film, a wide viewing angle polarizing film in which a viewing angle compensating film is further laminated on the polarizing film, and a polarizing film in which a brightness improving film is further laminated on the polarizing film.
 前記偏光フィルムの一方の面あるいは両方の面には、液晶セルや有機EL素子等の画像表示セルや、前記反射防止層を有する第1の透明保護フィルムを貼り合わせるために、予め前記粘着剤層または前記接着剤層が付設されてもよい。 In order to attach an image display cell such as a liquid crystal cell or an organic EL element or a first transparent protective film having the antireflection layer to one surface or both surfaces of the polarizing film, the pressure-sensitive adhesive layer is previously attached. Alternatively, the adhesive layer may be attached.
 前記粘着剤層または前記接着剤層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされることが好ましい。これにより、通例の取扱状態で粘着剤層または前記接着剤層の汚染等が防止できる。前記セパレータとしては、例えば、プラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したもの等が用いられる。 It is preferable that the pressure-sensitive adhesive layer or the exposed surface of the adhesive layer is temporarily covered with a separator for the purpose of preventing contamination or the like until it is put into practical use. As a result, contamination of the pressure-sensitive adhesive layer or the adhesive layer can be prevented under normal handling conditions. As the separator, for example, an appropriate thin leaf such as a plastic film, a rubber sheet, a paper, a cloth, a non-woven fabric, a net, a foamed sheet or a metal foil, or a laminate thereof can be used, and if necessary, a silicone-based or long-chain alkyl-based separator can be used. Those coated with an appropriate release agent such as fluorine-based or molybdenum sulfide are used.
 前記反射防止層を有する第1の透明保護フィルムと前記偏光膜との間の厚みが加熱耐久性の観点から、100μm以下であることが好ましく、80μm以下であることがより好ましい。 The thickness between the first transparent protective film having the antireflection layer and the polarizing film is preferably 100 μm or less, more preferably 80 μm or less, from the viewpoint of heat durability.
<画像表示パネル>
 本発明の画像表示パネルは、前記反射防止層を有する第1の透明保護フィルム、前記偏光フィルム、および画像表示セルが、前記粘着剤層または前記接着剤層を介して、この順に設けられている。
<Image display panel>
In the image display panel of the present invention, the first transparent protective film having the antireflection layer, the polarizing film, and the image display cell are provided in this order via the adhesive layer or the adhesive layer. ..
<画像表示セル>
 本発明の画像表示セルとしては、例えば、液晶セルや有機ELセル等が挙げられる。前記液晶セルとしては、例えば、外光を利用する反射型液晶セル、バックライト等の光源からの光を利用する透過型液晶セル、外部からの光と光源からの光の両者を利用する半透過半反射型液晶セルのいずれを用いてもよい。前記液晶セルが光源からの光を利用するものである場合、画像表示装置(液晶表示装置)は、画像表示セル(液晶セル)の視認側と反対側にも偏光フィルムが配置され、さらに光源が配置される。当該光源側の偏光フィルムと液晶セルとは、適宜の接着剤層を介して貼り合せられていることが好ましい。前記液晶セルの駆動方式としては、例えば、VAモード、IPSモード、TNモード、STNモードやベンド配向(π型)等の任意なタイプのものを用いうる。
<Image display cell>
Examples of the image display cell of the present invention include a liquid crystal cell and an organic EL cell. Examples of the liquid crystal cell include a reflective liquid crystal cell that uses external light, a transmissive liquid crystal cell that uses light from a light source such as a backlight, and semi-transmissive that uses both external light and light from a light source. Any of the semi-reflective liquid crystal cells may be used. When the liquid crystal cell uses light from a light source, the image display device (liquid crystal display device) has a polarizing film arranged on the side opposite to the visual recognition side of the image display cell (liquid crystal cell), and the light source is further arranged. Be placed. It is preferable that the polarizing film on the light source side and the liquid crystal cell are bonded to each other via an appropriate adhesive layer. As the driving method of the liquid crystal cell, for example, any type such as VA mode, IPS mode, TN mode, STN mode and bend orientation (π type) can be used.
 前記有機ELセルとしては、例えば、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成したもの等が好適に用いられる。前記有機発光層は、種々の有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、これらの発光層とペリレン誘導体等からなる電子注入層の積層体、あるいは正孔注入層、発光層、および電子注入層の積層体等、種々層構成が採用され得る。 As the organic EL cell, for example, a cell in which a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitting body (organic electroluminescence light emitting body) is preferably used. The organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or these. Various layer configurations can be adopted, such as a laminated body of an electron-injected layer composed of a light-emitting layer and a perylene derivative, or a laminated body of a hole-injected layer, a light-emitting layer, and an electron-injected layer.
 前記画像表示セルは、通常、最外面(最外面層)がプラスチィック基板、あるいはガラス基板であるが、耐熱性や耐湿熱性の観点から、視認側の最外面がガラス基板であることが好ましい。 The outermost surface (outermost surface layer) of the image display cell is usually a plastic substrate or a glass substrate, but from the viewpoint of heat resistance and moisture heat resistance, it is preferable that the outermost surface on the visual recognition side is a glass substrate.
 前記画像表示パネルを形成する際、高温環境下において、偏光膜の単体透過率の低下を抑制させる観点から、反射防止層を有する第1の透明保護フィルムや画像表示セルに貼り合わせるための、偏光フィルムや、粘着剤層または接着剤層付きの偏光フィルム等を加熱(エージング)処理してもよい。加熱(エージング)処理における加熱条件は、偏光膜および偏光フィルムの両面に設けられた粘着剤層または接着剤層に含まれる水分を十分に低減できれば、特に制限されず、例えば、加熱温度は、70℃~90℃程度が好ましく、75~85℃程度がより好ましい。また、加熱時間は、30分~5時間程度が好ましく、1時間~3時間程度がより好ましい。また、偏光フィルムの両面に粘着剤層または接着剤層がついた状態で加熱(エージング)処理する場合は、粘着剤層または接着剤層の透湿性は高い方が効果的であり、一方、片面に粘着剤層または接着剤層がついた状態で加熱(エージング)処理する場合は、後から積層される粘着剤層または接着剤層(他面の粘着剤層または接着剤層)の含水率は低い方が効果的である。 When forming the image display panel, from the viewpoint of suppressing a decrease in the single transmittance of the polarizing film in a high temperature environment, polarization for bonding to a first transparent protective film or an image display cell having an antireflection layer. A film, a pressure-sensitive adhesive layer, a polarizing film with an adhesive layer, or the like may be heated (aged). The heating conditions in the heating (aging) treatment are not particularly limited as long as the moisture contained in the pressure-sensitive adhesive layer or the adhesive layer provided on both sides of the polarizing film and the polarizing film can be sufficiently reduced. For example, the heating temperature is 70. The temperature is preferably about 90 ° C, more preferably about 75 to 85 ° C. The heating time is preferably about 30 minutes to 5 hours, more preferably about 1 hour to 3 hours. Further, when the pressure-sensitive adhesive layer or the adhesive layer is attached to both sides of the polarizing film and the heat (aging) treatment is performed, it is effective that the pressure-sensitive adhesive layer or the adhesive layer has high moisture permeability, while it is effective on one side. When heat (aging) treatment is performed with the pressure-sensitive adhesive layer or the adhesive layer attached to the surface, the water content of the pressure-sensitive adhesive layer or the adhesive layer (the pressure-sensitive adhesive layer or the adhesive layer on the other surface) to be laminated later is The lower one is more effective.
 以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
<実施例1>
<偏光膜の作製>
 平均重合度が2,400、ケン化度が99.9モル%、厚みが45μmであるポリビニルアルコールフィルムを用意した。ポリビニルアルコールフィルムを、周速比の異なるロール間で、30℃の膨潤浴(水浴)中に30秒間浸漬して膨潤しながら搬送方向に2.2倍に延伸し(膨潤工程)、続いて、30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)中で、偏光膜が所定の透過率になるようにヨウ素濃度を調整しながら30秒間浸漬して染色しながら元のポリビニルアルコールフィルム(搬送方向に全く延伸していないポリビニルアルコールフィルム)を基準にして搬送方向に3.3倍に延伸した(染色工程)。次いで、染色したポリビニルアルコールフィルムを、40℃の架橋浴(ホウ酸濃度が3.5重量%、ヨウ化カリウム濃度が3.0重量%、硫酸亜鉛濃度が3.6重量%である水溶液)中で28秒間浸漬して元のポリビニルアルコールフィルムを基準にして搬送方向に3.6倍まで延伸した(架橋工程)。さらに、得られたポリビニルアルコールフィルムを、64℃の延伸浴(ホウ酸濃度が4.5重量%、ヨウ化カリウム濃度が5.0重量%、硫酸亜鉛濃度5.0重量%である水溶液)中で60秒間浸漬して元のポリビニルアルコールフィルムを基準にして搬送方向に6.0倍まで延伸した(延伸工程)後、27℃の洗浄浴(ヨウ化カリウム濃度が2.3重量%、水溶性のラジカル捕捉剤として、下記一般式(2)で表される化合物濃度が1.0重量%である水溶液)中で10秒間浸漬した(洗浄工程)。洗浄したポリビニルアルコールフィルムを、40℃で30秒間乾燥して偏光膜を作製した。偏光膜中の下記一般式(2)で表される化合物の含有量が0.3重量%であり、偏光膜の厚みが18μmであった。
Figure JPOXMLDOC01-appb-C000002
<Example 1>
<Preparation of polarizing film>
A polyvinyl alcohol film having an average degree of polymerization of 2,400, a saponification degree of 99.9 mol%, and a thickness of 45 μm was prepared. The polyvinyl alcohol film was immersed in a swelling bath (water bath) at 30 ° C. for 30 seconds between rolls having different peripheral speed ratios and stretched 2.2 times in the transport direction while swelling (swelling step), followed by In a dyeing bath at 30 ° C. (an iodine aqueous solution obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water) so that the polarizing film has a predetermined permeability. While adjusting the iodine concentration, it was immersed for 30 seconds and dyed while being stretched 3.3 times in the transport direction based on the original polyvinyl alcohol film (polyvinyl alcohol film that was not stretched at all in the transport direction) (dyeing step). .. Next, the dyed polyvinyl alcohol film is placed in a cross-linked bath at 40 ° C. (an aqueous solution having a boric acid concentration of 3.5% by weight, a potassium iodide concentration of 3.0% by weight, and a zinc sulfate concentration of 3.6% by weight). It was soaked in for 28 seconds and stretched up to 3.6 times in the transport direction with respect to the original polyvinyl alcohol film (crosslinking step). Further, the obtained polyvinyl alcohol film is placed in a stretching bath at 64 ° C. (an aqueous solution having a boric acid concentration of 4.5% by weight, a potassium iodide concentration of 5.0% by weight, and a zinc sulfate concentration of 5.0% by weight). After immersing in for 60 seconds and stretching up to 6.0 times in the transport direction with reference to the original polyvinyl alcohol film (stretching step), a washing bath at 27 ° C. (potassium iodide concentration 2.3% by weight, water solubility). As a radical trapping agent, the compound was immersed in an aqueous solution having a compound concentration of 1.0% by weight represented by the following general formula (2) for 10 seconds (cleaning step). The washed polyvinyl alcohol film was dried at 40 ° C. for 30 seconds to prepare a polarizing film. The content of the compound represented by the following general formula (2) in the polarizing film was 0.3% by weight, and the thickness of the polarizing film was 18 μm.
Figure JPOXMLDOC01-appb-C000002
<偏光膜中の水溶性のラジカル捕捉剤の含有量(重量%)の測定方法>
 偏光膜約20mgを採取、定量し、水1mL中で加熱溶解させた後、メタノール4.5mLで希釈し、得られた抽出液をメンブレンフィルターでろ過し、ろ液をHPLC(Waters社製 ACQUITY UPLC H-class Bio)を用いて水溶性のラジカル捕捉剤の濃度を測定した。
<Method for measuring the content (% by weight) of the water-soluble radical scavenger in the polarizing film>
Approximately 20 mg of the polarizing film is collected, quantified, heated and dissolved in 1 mL of water, diluted with 4.5 mL of methanol, the obtained extract is filtered through a membrane filter, and the filtrate is HPLC (ACQUITY UPLC manufactured by Waters). The concentration of the water-soluble radical trapping agent was measured using H-class Bio).
<偏光フィルムの作製>
 接着剤として、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度が1,200、ケン化度が98.5モル%、アセトアセチル化度が5モル%)とメチロールメラミンとを重量比3:1で含有する水溶液を用いた。この接着剤を用いて、上記で得られた偏光膜の一方の面(画像表示セル側)に、第3の透明保護フィルムとして、厚み18μmのシクロオレフィン系の透明保護フィルム(日本ゼオン社製、ZT12、透湿度が10g/(m・24h))を、また、他方の面(視認側)に、第2の透明保護フィルムとして、トリアセチルセルロースフィルム(富士フィルム製、商品名「TJ40UL」)にHCを形成した厚み48μmの透明保護フィルム(透湿度が300g/(m・24h))をロール貼合機で貼り合わせた後、引き続きオーブン内で加熱乾燥(温度が90℃、時間が10分間)させて、偏光膜の両面に透明保護フィルムが貼り合わせられた偏光フィルムを作製した。
<Manufacturing of polarizing film>
As an adhesive, a polyvinyl alcohol resin containing an acetoacetyl group (average degree of polymerization of 1,200, saponification degree of 98.5 mol%, acetoacetylation degree of 5 mol%) and methylol melamine in a weight ratio of 3: The aqueous solution contained in 1 was used. Using this adhesive, a cycloolefin-based transparent protective film having a thickness of 18 μm (manufactured by Nippon Zeon Co., Ltd.) was used as a third transparent protective film on one surface (image display cell side) of the polarizing film obtained above. ZT12, moisture permeability 10 g / ( m 2.24 h)), and on the other surface (visual side), as a second transparent protective film, triacetyl cellulose film (manufactured by Fuji Film, trade name "TJ40UL"). A transparent protective film with a thickness of 48 μm (water permeability is 300 g / ( m 2.24 h)) on which HC is formed is bonded by a roll bonding machine, and then heat-dried in an oven (temperature is 90 ° C., time is 10). After a minute), a polarizing film was prepared in which a transparent protective film was bonded to both sides of the polarizing film.
<アクリル系粘着剤の調製>
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート99部、4-ヒドロキシブチルアクリレート1部を含有するモノマー混合物を仕込んだ。さらに、前記モノマー混合物(固形分)100部に対して、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1部を酢酸エチル100部と共に仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って8時間重合反応を行って、重量平均分子量(Mw)180万のアクリル系ポリマーの溶液を調製した。その後、得られたアクリル系ポリマーの溶液の固形分100部に対して、イソシアネート架橋剤(東ソー社製、商品名「タケネートD110N」、トリメチロールプロパン/キシリレンジイソシアネート付加物)0.02部、シランカップリング剤(信越化学工業社製、商品名「X-41-1056」)0.2部を配合して、アクリル系粘着剤組成物の溶液を調製した。
<Preparation of acrylic adhesive>
A monomer mixture containing 99 parts of butyl acrylate and 1 part of 4-hydroxybutyl acrylate was placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas introduction tube, and a cooler. Further, with respect to 100 parts of the monomer mixture (solid content), 0.1 part of 2,2'-azobisisobutyronitrile as a polymerization initiator is charged together with 100 parts of ethyl acetate, and nitrogen gas is added while gently stirring. After introduction and substitution with nitrogen, the liquid temperature in the flask was maintained at around 55 ° C. and a polymerization reaction was carried out for 8 hours to prepare a solution of an acrylic polymer having a weight average molecular weight (Mw) of 1.8 million. Then, with respect to 100 parts of the solid content of the obtained acrylic polymer solution, 0.02 part of an isocyanate cross-linking agent (manufactured by Tosoh Corporation, trade name "Takenate D110N", trimethylolpropane / xylylene diisocyanate adduct), silane. A solution of the acrylic pressure-sensitive adhesive composition was prepared by blending 0.2 parts of a coupling agent (manufactured by Shin-Etsu Chemical Industry Co., Ltd., trade name "X-41-1056").
<粘着剤層付き偏光フィルムの作製>
 上記で得られたアクリル系粘着剤組成物の溶液を、シリコーン系剥離剤で処理されたポリエチレンテレフタレートフィルム(三菱化学ポリエステルフィルム製、商品名「MRF38」、セパレータフィルム)の片面に、乾燥後の粘着剤層の厚さが20μmになるように塗布し、90℃で1分間乾燥を行い、セパレータフィルムの表面に粘着剤層を形成した。次いで、上記で作製した偏光フィルムの画像表示セル側の保護フィルム面に、セパレータフィルム上に形成した粘着剤層を転写して、粘着剤層付き偏光フィルムを作製した。
<Making a polarizing film with an adhesive layer>
Adhesive after drying of the solution of the acrylic pressure-sensitive adhesive composition obtained above on one side of a polyethylene terephthalate film (manufactured by Mitsubishi Chemical Polyester Film, trade name "MRF38", separator film) treated with a silicone-based release agent. It was applied so that the thickness of the agent layer was 20 μm, and dried at 90 ° C. for 1 minute to form an adhesive layer on the surface of the separator film. Next, the pressure-sensitive adhesive layer formed on the separator film was transferred to the protective film surface on the image display cell side of the polarizing film produced above to prepare a polarizing film with a pressure-sensitive adhesive layer.
<反射防止層を有する第1の透明保護フィルムの作製>
 紫外線硬化型アクリル系樹脂(DIC製、商品名「GRANDIC PC-1070」100重量部(固形分)を、厚み40μmのセルローストリアセテートフィルム(富士フィルム製、商品名「フジタック」)の片面に、乾燥後の厚みが5μmとなるように塗布し、80℃で3分間乾燥した。その後、高圧水銀ランプを用いて、積算光量200mJ/cmの紫外線を照射し、塗布層を硬化させハードコート層が形成されたトリアセチルセルロースフィルムを得た。ハードコート層が形成されたトリアセチルセルロースフィルムを、ロールトゥーロール方式のスパッタ成膜装置に導入し、フィルムを走行させながら、ハードコート層形成面にボンバード処理(Arガスによるプラズマ処理)を行った後、プライマー層として、3.5nmの酸化シリコン層を成膜し、その上に、12nmのNb層、28nmのSiO層、100nmのNb層および85nmのSiO層を順に成膜して、反射防止層を有する第1の透明保護フィルム(フィルムA)を作製した。なお、ボンバード処理は圧力0.5Paにて実施した。プライマー層としての酸化シリコン層は、Siターゲットを用い、基板温度-8℃、アルゴン流量300sccm、圧力0.2Paの条件でスパッタ成膜を行った。SiO層の成膜にはSiターゲット、Nb層の成膜にはNbターゲットを用い、基板温度-8℃、アルゴン流量200sccm、圧力0.10Paで成膜を行った。SiO層の成膜およびNb層の成膜においては、プラズマ発光モニタリング(PEM)制御により、成膜モードが遷移領域を維持するように導入する酸素量を調整した。なお、反射防止層を有する第1の透明保護フィルムの透湿度は、上述の通り、JIS K7129:2008 附属書Bに準じて測定される。
<Preparation of a first transparent protective film having an antireflection layer>
After drying 100 parts by weight (solid content) of an ultraviolet curable acrylic resin (manufactured by DIC, trade name "GRANDIC PC-1070") on one side of a cellulose triacetate film (manufactured by Fuji Film, trade name "Fujitac") having a thickness of 40 μm. Was coated to a thickness of 5 μm and dried at 80 ° C. for 3 minutes. Then, using a high-pressure mercury lamp, ultraviolet rays having an integrated light amount of 200 mJ / cm 2 were applied to cure the coating layer and form a hard coat layer. The obtained triacetyl cellulose film was obtained. The triacetyl cellulose film on which the hard coat layer was formed was introduced into a roll-to-roll type spatter film forming apparatus, and the hard coat layer forming surface was bombarded while running the film. After performing (plasma treatment with Ar gas), a 3.5 nm silicon oxide layer was formed as a primer layer, and a 12 nm Nb 2 O 5 layer, a 28 nm SiO 2 layer, and a 100 nm Nb 2 were formed on the film. The O5 layer and the 85 nm SiO 2 layer were sequentially formed to form a first transparent protective film (film A) having an antireflection layer. The bombard treatment was carried out at a pressure of 0.5 Pa. As the silicon oxide layer as a layer, a Si target was used, and spatter film formation was performed under the conditions of a substrate temperature of -8 ° C., an argon flow rate of 300 sccm, and a pressure of 0.2 Pa. An Nb target was used to form the O5 layer , and the film was formed at a substrate temperature of -8 ° C , an argon flow rate of 200 sccm, and a pressure of 0.10 Pa. Adjusted the amount of oxygen introduced so that the film forming mode maintained the transition region by controlling the plasma emission monitoring (PEM). The moisture permeability of the first transparent protective film having the antireflection layer was described above. As per JIS K7129: 2008, it is measured according to Annex B.
<反射防止層を有する第1の透明保護フィルム付き偏光フィルムの作製>
 上記で得られた粘着剤層付き偏光フィルムを、80℃の熱風オーブン内に2時間静置してエージング処理した後、オーブンから取り出し、23℃、55%の環境下で1時間静置した。次いで、上記で得られた反射防止層を有する第1の透明保護フィルムを、反射防止層を形成していない面に、厚み20μmのアクリル系粘着剤層を転写し、粘着剤層付き偏光フィルムの視認側の透明保護フィルム面に積層し、反射防止層を有する第1の透明保護フィルム付き偏光フィルムを作製した。
<Manufacturing of a first polarizing film with a transparent protective film having an antireflection layer>
The polarizing film with the pressure-sensitive adhesive layer obtained above was allowed to stand in a hot air oven at 80 ° C. for 2 hours for aging treatment, then taken out of the oven and allowed to stand in an environment of 23 ° C. and 55% for 1 hour. Next, the first transparent protective film having the antireflection layer obtained above is transferred to the surface on which the antireflection layer is not formed, and the acrylic pressure-sensitive adhesive layer having a thickness of 20 μm is transferred to the polarizing film with the pressure-sensitive adhesive layer. A polarizing film with a first transparent protective film having an antireflection layer was produced by laminating it on the surface of the transparent protective film on the visual recognition side.
<疑似画像表示パネル作製>
 上記で得られた反射防止層を有する第1の透明保護フィルム付き偏光フィルムを、偏光膜の吸収軸が長辺と平行になるように150×45mmのサイズに切断し、粘着剤層を介して、ガラス板(平岡特殊硝子製作社製EG-XG、165×50mm、厚さ0.7mm)を貼り合わせ、50℃、0.5MPaで15分間オートクレーブ処理して、疑似画像表示パネルを作製した。
<Making a pseudo image display panel>
The polarizing film with the first transparent protective film having the antireflection layer obtained above is cut into a size of 150 × 45 mm so that the absorption axis of the polarizing film is parallel to the long side, and is passed through the adhesive layer. , A glass plate (EG-XG manufactured by Hiraoka Special Glass Manufacturing Co., Ltd., 165 × 50 mm, thickness 0.7 mm) was laminated and autoclaved at 50 ° C. and 0.5 MPa for 15 minutes to prepare a pseudo image display panel.
<高温環境下における耐久性の評価>
 上記で得られた疑似画像表示パネルを、温度105℃の熱風オーブン内に500時間静置し、投入(加熱)前後の単体透過率(ΔTs)を測定した。単体透過率は、分光光度計(大塚電子社製、LPF-200)を用いて測定した。当該単体透過率は、JlS Z 8701-1982の2度視野(C光源)により、視感度補正を行ったY値である。なお、測定波長は、380~780nm(5nm毎)である。
 ΔTs(%)=Ts500-Ts
 ここで、Tsは初期(加熱前)の単体透過率であり、Ts500は500時間加熱後の単体透過率である。ΔTs(%)は0%以上3%以下であることが好ましく、0%以上2%以下であることがより好ましい。結果を表1に示す。
<Evaluation of durability in high temperature environment>
The pseudo image display panel obtained above was allowed to stand in a hot air oven at a temperature of 105 ° C. for 500 hours, and the single transmittance (ΔTs) before and after charging (heating) was measured. The single transmittance was measured using a spectrophotometer (LPF-200, manufactured by Otsuka Electronics Co., Ltd.). The simple substance transmittance is a Y value corrected for luminosity factor by a double field of view (C light source) of JlS Z 8701-1982. The measurement wavelength is 380 to 780 nm (every 5 nm).
ΔTs (%) = Ts 500 -Ts 0
Here, Ts 0 is the initial (before heating) single transmittance, and Ts 500 is the single transmittance after 500 hours of heating. ΔTs (%) is preferably 0% or more and 3% or less, and more preferably 0% or more and 2% or less. The results are shown in Table 1.
<湿熱環境下における耐久性の評価>
 上記で得られた疑似画像表示パネルに、水を含ませたテックスワイプ(アイリス社製、商品名「TEXWIPE」)を巻き付け、ポリ袋に入れて密閉し、60℃95%RHの湿熱オーブン内に100時間静置した後の外観を下記基準で目視にて評価した。
 〇:偏光フィルムとガラス板との剥がれ発生なし。
 △:偏光フィルムとガラス板とのわずかに剥がれ発生あり。
 ×:偏光フィルムとガラス板との著しい剥がれ発生あり。
<Evaluation of durability in a moist heat environment>
Wrap a tex wipe (manufactured by Iris, trade name "TEXWIPE") soaked in water around the pseudo image display panel obtained above, put it in a plastic bag, seal it, and put it in a moist heat oven at 60 ° C and 95% RH. The appearance after standing for 100 hours was visually evaluated according to the following criteria.
〇: No peeling between the polarizing film and the glass plate.
Δ: Slight peeling occurred between the polarizing film and the glass plate.
X: Significant peeling of the polarizing film and the glass plate occurred.
<実施例2>
 反射防止層を有する第1の透明保護フィルムの作製において、SiO層の成膜におけるアルゴン流量を400sccm、圧力0.2Pa、Nb層の成膜におけるアルゴン流量を1200sccm、圧力0.4Paの条件で成膜した反射防止層を有する第1の透明保護フィルム(フィルムB)付き偏光フィルムを使用したこと以外は、実施例1と同様の方法にて、疑似画像表示パネルを作製した。
<Example 2>
In the production of the first transparent protective film having an antireflection layer, the argon flow rate in the film formation of the SiO 2 layer is 400 sccm and the pressure is 0.2 Pa, and the argon flow rate in the film formation of the Nb 2 O 5 layer is 1200 sccm and the pressure is 0.4 Pa. A pseudo image display panel was produced by the same method as in Example 1 except that the polarizing film with the first transparent protective film (film B) having the antireflection layer formed under the above conditions was used.
<実施例3>
 反射防止層を有する第1の透明保護フィルム付き偏光フィルムの作製において、粘着剤層付き偏光フィルムを80℃の熱風オーブン内に2時間静置してエージング処理しなかったこと以外は、実施例2と同様の方法にて、疑似画像表示パネルを作製した。
<Example 3>
Example 2 in the production of the first polarizing film with a transparent protective film having an antireflection layer, except that the polarizing film with an adhesive layer was allowed to stand in a hot air oven at 80 ° C. for 2 hours and was not aged. A pseudo image display panel was produced by the same method as in the above.
<実施例4>
 偏光膜の作製において、洗浄浴に一般式(2)で表される化合物を添加しなかったこと以外は、実施例2と同様の方法にて、疑似画像表示パネルを作製した。
<Example 4>
A pseudo image display panel was produced by the same method as in Example 2 except that the compound represented by the general formula (2) was not added to the washing bath in the production of the polarizing film.
<実施例5>
 反射防止層を有する第1の透明保護フィルムの作製において、SiO層の成膜におけるアルゴン流量を800sccm、圧力0.3Pa、Nb層の成膜におけるアルゴン流量を1300sccm、圧力0.4Paの条件で成膜した反射防止層を有する第1の透明保護フィルム(フィルムC)付き偏光フィルムを使用したこと以外は、実施例3と同様の方法にて、疑似画像表示パネルを作製した。
<Example 5>
In the production of the first transparent protective film having an antireflection layer, the argon flow rate in the film formation of the SiO 2 layer is 800 sccm and the pressure is 0.3 Pa, and the argon flow rate in the film formation of the Nb 2 O 5 layer is 1300 sccm and the pressure is 0.4 Pa. A pseudo image display panel was produced by the same method as in Example 3 except that the polarizing film with the first transparent protective film (film C) having the antireflection layer formed under the above conditions was used.
<比較例1>
 反射防止層を有する第1の透明保護フィルムの作製において、SiO層の成膜におけるアルゴン流量を1100sccm、圧力0.4Pa、Nb層の成膜におけるアルゴン流量を1500sccm、圧力0.5Paの条件で成膜した反射防止層を有する第1の透明保護フィルム(フィルムD)付き偏光フィルムを使用したこと以外は、実施例3と同様の方法にて、疑似画像表示パネルを作製した。
<Comparative Example 1>
In the production of the first transparent protective film having an antireflection layer, the argon flow rate in the film formation of the SiO 2 layer is 1100 sccm and the pressure is 0.4 Pa, and the argon flow rate in the film formation of the Nb 2 O 5 layer is 1500 sccm and the pressure is 0.5 Pa. A pseudo image display panel was produced by the same method as in Example 3 except that the polarizing film with the first transparent protective film (film D) having the antireflection layer formed under the above conditions was used.
<比較例2>
 偏光膜の作製において、洗浄浴に一般式(2)で表される化合物を添加せず、反射防止層を有する第1の透明保護フィルム付き偏光フィルムの作製において、粘着剤層付き偏光フィルムを80℃の熱風オーブン内に2時間静置してエージング処理しなかったこと以外は、実施例1と同様の方法にて、疑似画像表示パネルを作製した。
<Comparative Example 2>
In the production of the polarizing film, the compound represented by the general formula (2) was not added to the washing bath, and in the production of the first polarizing film with a transparent protective film having an antireflection layer, the polarizing film with an adhesive layer was 80. A pseudo image display panel was produced by the same method as in Example 1 except that the film was allowed to stand in a hot air oven at ° C for 2 hours without aging treatment.
 上記で得られた実施例および比較例の疑似画像表示パネルを用い、上記の<高温環境下における耐久性の評価>および<湿熱環境下における剥がれの評価>を行った。結果を表1に示す。 Using the pseudo image display panels of the examples and comparative examples obtained above, the above <evaluation of durability in a high temperature environment> and <evaluation of peeling in a moist heat environment> were performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1:偏光膜を有する偏光フィルム
 11:偏光膜
 12:反射防止層を有する第1の透明保護フィルム
 13:第2の透明保護フィルム
 14:第3の透明保護フィルム
 20,30:粘着剤層または接着剤層
 81:透明フィルム
 6:反射防止層
 61,62,63,64:薄膜
 71:ハードコート層
 90:画像表示セル
 100:画像表示パネル
1: Polarizing film with polarizing film 11: Polarizing film 12: First transparent protective film with antireflection layer 13: Second transparent protective film 14: Third transparent protective film 20, 30: Adhesive layer or adhesion Agent layer 81: Transparent film 6: Antireflection layer 61, 62, 63, 64: Thin film 71: Hard coat layer 90: Image display cell 100: Image display panel

Claims (9)

  1.  反射防止層を有する第1の透明保護フィルム、偏光膜を有する偏光フィルム、および画像表示セルが、粘着剤層または接着剤層を介して、この順に設けられている画像表示パネルであって、
     前記反射防止層を有する第1の透明保護フィルムは、透湿度が50g/(m・24h)以下であり、
     前記偏光フィルムの片面に、前記粘着剤層または前記接着剤層を介して、前記反射防止層を有する第1の透明保護フィルムを貼り合わせ、かつ前記偏光フィルムの他面に、前記粘着剤層または前記接着剤層を介して、ガラス板を貼り合わせた積層体は、105℃、500時間の条件での耐熱性試験前後において、単体透過率の変化量が0~3%であることを特徴とする画像表示パネル。
    An image display panel in which a first transparent protective film having an antireflection layer, a polarizing film having a polarizing film, and an image display cell are provided in this order via an adhesive layer or an adhesive layer.
    The first transparent protective film having the antireflection layer has a moisture permeability of 50 g / ( m 2.24 h) or less.
    A first transparent protective film having the antireflection layer is attached to one side of the polarizing film via the pressure-sensitive adhesive layer or the adhesive layer, and the pressure-sensitive adhesive layer or the pressure-sensitive adhesive layer is attached to the other side of the polarizing film. The laminate in which the glass plates are bonded via the adhesive layer is characterized in that the amount of change in the single transmittance is 0 to 3% before and after the heat resistance test under the conditions of 105 ° C. and 500 hours. Image display panel.
  2.  前記偏光膜は、厚みが20μm以下であることを特徴とする請求項1に記載の画像表示パネル。 The image display panel according to claim 1, wherein the polarizing film has a thickness of 20 μm or less.
  3.  前記偏光フィルムは、前記偏光膜の前記反射防止層を有する第1の透明保護フィルム側に、第2の透明保護フィルムが貼り合わされていることを特徴とする請求項1または2に記載の画像表示パネル。 The image display according to claim 1 or 2, wherein the polarizing film has a second transparent protective film bonded to the first transparent protective film side having the antireflection layer of the polarizing film. panel.
  4.  前記第2の透明保護フィルムの透湿度が、前記反射防止層を有する第1の透明保護フィルムの透湿度よりも大きいことを特徴とする請求項3に記載の画像表示パネル。 The image display panel according to claim 3, wherein the moisture permeability of the second transparent protective film is larger than the moisture permeability of the first transparent protective film having the antireflection layer.
  5.  前記反射防止層を有する第1の透明保護フィルムと前記偏光膜との間の厚みが100μm以下であることを特徴とする請求項1~4のいずれかに記載の画像表示パネル。 The image display panel according to any one of claims 1 to 4, wherein the thickness between the first transparent protective film having the antireflection layer and the polarizing film is 100 μm or less.
  6.  前記偏光フィルムは、前記偏光膜の前記画像表示セル側に、第3の透明保護フィルムが貼り合わされていることを特徴とする請求項1~5のいずれかに記載の画像表示パネル。 The image display panel according to any one of claims 1 to 5, wherein the polarizing film is a third transparent protective film bonded to the image display cell side of the polarizing film.
  7.  前記反射防止層は、屈折率が異なる2層以上の薄膜からなる層であることを特徴とする請求項1~6のいずれかに記載の画像表示パネル。 The image display panel according to any one of claims 1 to 6, wherein the antireflection layer is a layer composed of two or more thin films having different refractive indexes.
  8.  前記反射防止層を有する第1の透明保護フィルムは、透明フィルムに、ハードコート層および前記反射防止層をこの順に備えることを特徴とする請求項1~7のいずれかに記載の画像表示パネル。 The image display panel according to any one of claims 1 to 7, wherein the first transparent protective film having the antireflection layer includes a hard coat layer and the antireflection layer in this order on the transparent film.
  9.  前記画像表示セルは、視認側の最外面がガラス基板であることを特徴とする請求項1~8のいずれかに記載の画像表示パネル。 The image display panel according to any one of claims 1 to 8, wherein the image display cell is a glass substrate on the outermost surface on the visual recognition side.
PCT/JP2021/041298 2020-11-16 2021-11-10 Image display panel WO2022102645A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180052097.9A CN115989434A (en) 2020-11-16 2021-11-10 Image display panel
JP2022561954A JPWO2022102645A1 (en) 2020-11-16 2021-11-10
KR1020237000026A KR20230098771A (en) 2020-11-16 2021-11-10 image display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-190059 2020-11-16
JP2020190059 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022102645A1 true WO2022102645A1 (en) 2022-05-19

Family

ID=81602264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041298 WO2022102645A1 (en) 2020-11-16 2021-11-10 Image display panel

Country Status (5)

Country Link
JP (1) JPWO2022102645A1 (en)
KR (1) KR20230098771A (en)
CN (1) CN115989434A (en)
TW (1) TW202223457A (en)
WO (1) WO2022102645A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152863A (en) * 2018-02-28 2019-09-12 日東電工株式会社 Polarizing film laminate for power vehicle and optical display panel in which the polarizing film laminate is used
JP2020071240A (en) * 2018-10-29 2020-05-07 住友化学株式会社 Polarizer and manufacturing method therefor
WO2020100889A1 (en) * 2018-11-12 2020-05-22 日東電工株式会社 Polarization membrane, polarization film, layered polarization film, image display panel, and image display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189211A (en) 2000-12-21 2002-07-05 Nitto Denko Corp Plastics liquid crystal display element
JP6071459B2 (en) 2012-11-19 2017-02-01 日東電工株式会社 Polarizing plate, image display device, and manufacturing method thereof
JP6774383B2 (en) 2016-06-17 2020-10-21 日東電工株式会社 Antireflection film and its manufacturing method, and polarizing plate with antireflection layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152863A (en) * 2018-02-28 2019-09-12 日東電工株式会社 Polarizing film laminate for power vehicle and optical display panel in which the polarizing film laminate is used
JP2020071240A (en) * 2018-10-29 2020-05-07 住友化学株式会社 Polarizer and manufacturing method therefor
WO2020100889A1 (en) * 2018-11-12 2020-05-22 日東電工株式会社 Polarization membrane, polarization film, layered polarization film, image display panel, and image display device

Also Published As

Publication number Publication date
TW202223457A (en) 2022-06-16
JPWO2022102645A1 (en) 2022-05-19
CN115989434A (en) 2023-04-18
KR20230098771A (en) 2023-07-04

Similar Documents

Publication Publication Date Title
CN111819617B (en) Image display device
JP6964800B2 (en) Polarizing film, polarizing film, laminated polarizing film, image display panel, and image display device
CN111801607B (en) Polarizing film, laminated polarizing film, image display panel, image display device, and method for producing polarizing film
JP6964799B2 (en) Polarizing film, polarizing film, laminated polarizing film, image display panel, and image display device
JP2020194166A (en) Polarizing film, laminated polarizing film, image display panel, and image display device
JP2022009239A (en) Polarizing membrane, polarizing film, laminated polarizing film, image display panel, and image display device
WO2021225114A1 (en) Image display device
JPWO2020100845A1 (en) Polarizing film, laminated polarizing film, image display panel, and image display device
KR102539985B1 (en) Polarizing membrane, polarizing film, multilayer polarizing film, imagedisplay panel, image display device and method for producing polarizing membrane
WO2022102645A1 (en) Image display panel
WO2022102647A1 (en) Image display panel
WO2021215384A1 (en) Polarizing film, layered polarizing film, image display panel, and image display device
WO2021215385A1 (en) Polarizing film, laminated polarizing film, image display panel, and image display device
WO2021225115A1 (en) Polarization film laminate
WO2021200390A1 (en) Polarizing film, laminated polarizing film, image display panel, and image display device
WO2022186029A1 (en) Polarizing membrane, polarizing film, image display panel, and image display device
JP2021178508A (en) Image display panel and image display device
JP2021189422A (en) Optical laminate and display
JP2021167948A (en) Polarization film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891891

Country of ref document: EP

Kind code of ref document: A1