WO2022102405A1 - Plasma treatment device and control method - Google Patents

Plasma treatment device and control method Download PDF

Info

Publication number
WO2022102405A1
WO2022102405A1 PCT/JP2021/039668 JP2021039668W WO2022102405A1 WO 2022102405 A1 WO2022102405 A1 WO 2022102405A1 JP 2021039668 W JP2021039668 W JP 2021039668W WO 2022102405 A1 WO2022102405 A1 WO 2022102405A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
plasma
microwave radiation
mechanisms
microwave
Prior art date
Application number
PCT/JP2021/039668
Other languages
French (fr)
Japanese (ja)
Inventor
太郎 池田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022102405A1 publication Critical patent/WO2022102405A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • This disclosure relates to a plasma processing apparatus and a control method.
  • Patent Document 1 describes a microwave plasma source including a microwave output unit that outputs a microwave in a state of being divided into a plurality of microwaves, and a plurality of antenna modules for guiding the microwaves distributed in the plurality of antennas into a chamber.
  • a plasma processing apparatus having the above.
  • the present disclosure provides a technique capable of controlling the plasma density distribution.
  • a plurality of outer peripheral microwave radiations arranged on a processing container and a top plate constituting the top wall of the processing container and arranged in a region outside the central region of the top plate.
  • a plasma processing apparatus having a mechanism and a plurality of magnetic field mechanisms provided at positions outside the outer peripheral microwave radiation mechanism and corresponding to each outer microwave radiation mechanism.
  • the plasma density distribution can be controlled.
  • the sectional schematic diagram which shows an example of the plasma processing apparatus which concerns on embodiment.
  • the flowchart which shows an example of the control method of the plasma processing apparatus which concerns on embodiment.
  • FIG. 1 is a schematic cross-sectional view showing an example of the plasma processing apparatus 1 according to the embodiment.
  • the plasma processing apparatus 1 according to the embodiment is an example of a CVD (chemical Vapor deposition) film forming apparatus, and is a microwave plasma processing apparatus that generates plasma from a processing gas by microwaves and plasma-treats a substrate.
  • CVD chemical Vapor deposition
  • the plasma processing device 1 has a processing container 2, a mounting table 21, a gas supply mechanism 3, an exhaust device 4, a microwave introduction module 5, and a control unit 8.
  • the processing container 2 accommodates a substrate W having a wafer as an example.
  • the mounting table 21 is arranged inside the processing container 2 and has a mounting surface 21a on which the substrate W is placed.
  • the gas supply mechanism 3 supplies gas into the processing container 2.
  • the exhaust device 4 exhausts the inside of the processing container 2 to reduce the pressure.
  • the microwave introduction module 5 introduces microwaves for turning the processing gas supplied into the processing container 2 into plasma.
  • the control unit 8 controls each unit of the plasma processing device 1.
  • the processing container 2 has, for example, a cylindrical shape.
  • the processing container 2 is made of a metal material such as aluminum and an alloy thereof.
  • the microwave introduction module 5 is arranged in the upper part of the processing container 2, introduces an electromagnetic wave (microwave in this embodiment) into the processing container 2, and generates plasma from the gas supplied from the gas supply mechanism 3. Functions as a department.
  • the processing container 2 has a plate-shaped top plate 11, a bottom wall 13, and a side wall 12 connecting the top plate 11 and the bottom wall 13.
  • the top plate 11 has a plurality of openings.
  • the side wall 12 has an loading / unloading port 12a for loading / unloading the substrate W to / from a transport chamber (not shown) adjacent to the processing container 2.
  • a gate valve G is arranged between the processing container 2 and the transport chamber (not shown).
  • the gate valve G has a function of opening and closing the carry-in outlet 12a.
  • the gate valve G hermetically seals the processing container 2 in the closed state and enables the transfer of the substrate W between the processing container 2 and the transport chamber in the open state.
  • the bottom wall 13 has a plurality of (two in FIG. 1) exhaust ports 13a.
  • the plasma processing device 1 further has an exhaust pipe 14 connecting the exhaust port 13a and the exhaust device 4.
  • the exhaust device 4 has an APC valve and a high-speed vacuum pump capable of rapidly depressurizing the internal space of the processing container 2 to a predetermined degree of vacuum. Examples of such a high-speed vacuum pump include a turbo molecular pump and the like. By operating the high-speed vacuum pump of the exhaust device 4, the internal space of the processing container 2 is depressurized to a predetermined degree of vacuum.
  • the plasma processing apparatus 1 further has a support member 22 that supports the mounting table 21 in the processing container 2, and an insulating member 23 provided between the support member 22 and the bottom wall 13.
  • the substrate W is lifted by the lift pin 19 at the time of loading and unloading, and the substrate W is transferred between the transport mechanism and the mounting table 21.
  • the support member 22 has a cylindrical shape extending from the center of the bottom wall 13 toward the internal space of the processing container 2.
  • the mounting table 21 and the support member 22 are formed of, for example, aluminum or the like whose surface is anodized (anodized).
  • the plasma processing device 1 further includes a high-frequency bias power supply 25 that supplies high-frequency power to the mounting table 21, and a matching unit 24 provided between the mounting table 21 and the high-frequency bias power supply 25.
  • the high frequency bias power supply 25 applies high frequency power to the mounting table 21 in order to draw ions into the substrate W.
  • the matching device 24 has a circuit for matching the output impedance of the high frequency bias power supply 25 with the impedance on the load side (mounting table 21 side).
  • the plasma processing apparatus 1 may further have a temperature control mechanism (not shown) for heating or cooling the mounting table 21.
  • the temperature control mechanism may, for example, control the temperature of the substrate W in the range of 25 ° C. (room temperature) to 900 ° C.
  • the plasma processing device 1 further has a plurality of gas nozzles 16.
  • the plurality of gas nozzles 16 have a cylindrical shape and penetrate the top plate 11 constituting the processing container 2.
  • the gas is supplied into the processing container 2 from the gas supply hole 16a formed in the gas nozzle 16.
  • the plurality of gas nozzles 16 may be provided on the side wall 12.
  • the plurality of gas nozzles 16 may be combined with different distances from the lower surface of the top plate 11 to the gas supply hole 16a.
  • the gas supply source 31 is used, for example, as a gas supply source for a rare gas for plasma generation or a processing gas used in a film forming process.
  • the silane gas (SiH 4 ) for which gas decomposition is desired is located at a position where the distance from the lower surface of the top plate 11 to the gas supply hole is long. It may be introduced from the gas supply hole.
  • the gas supply mechanism 3 has a gas supply device 3a including a gas supply source 31, and a pipe 32 connecting the gas supply source 31 and a plurality of gas nozzles 16. Although one gas supply source 31 is shown in FIG. 1, the gas supply device 3a may include a plurality of gas supply sources depending on the type of gas used.
  • the gas supply device 3a further includes a mass flow controller (not shown) and an on / off valve provided in the middle of the pipe 32.
  • the type of gas supplied into the processing container 2, the flow rate of these gases, and the like are controlled by the mass flow controller and the on / off valve.
  • the control unit 8 is typically a computer.
  • the control unit 8 has a process controller including a CPU, a user interface connected to the process controller, and a storage unit.
  • the process controller collectively controls each component related to the process conditions such as temperature, pressure, gas flow rate, high frequency power for bias application, and microwave output in the plasma processing device 1.
  • each component include a high frequency bias power supply 25, a gas supply device 3a, an exhaust device 4, a microwave introduction module 5, and the like.
  • the user interface has a keyboard and a touch panel for the process manager to input commands for managing the plasma processing device 1, a display that visualizes and displays the operating status of the plasma processing device 1.
  • the storage unit stores a control program for realizing various processes executed by the plasma processing device 1 under the control of the process controller, a recipe in which processing condition data and the like are recorded, and the like.
  • the process controller calls and executes an arbitrary control program or recipe from the storage unit as needed, such as an instruction from the user interface. As a result, the desired processing is performed in the processing container 2 of the plasma processing apparatus 1 under the control of the process controller.
  • control program and recipe can be used, for example, in a state of being stored in a computer-readable storage medium such as a flash memory, a DVD, or a Blu-ray disc. Further, the above recipe can be transmitted online at any time from another device, for example, via a dedicated line.
  • the microwave introduction module 5 is arranged in the central region of the top plate 11 and the region outside the central region thereof, and has an antenna unit 60 and a plurality of microwave radiation mechanisms 63 for radiating microwaves.
  • the plurality of microwave radiation mechanisms 63 are arranged on the top plate 11.
  • the microwave output unit 50 generates microwaves and distributes and outputs microwaves to a plurality of paths.
  • the antenna unit 60 introduces the microwave output from the microwave output unit 50 into the processing container 2.
  • the antenna unit 60 includes a plurality of antenna modules 61.
  • the plurality of antenna modules 61 amplify the distributed microwaves by the amplifier unit 62 and introduce them into the microwave radiation mechanism 63.
  • the microwave radiation mechanism 63 has a tuner for matching impedance and an antenna unit 65 for radiating amplified microwaves into the processing container 2. Further, the microwave radiation mechanism 63 is made of a metal material and has a cylindrical main body container 66 extending in the vertical direction and an inner conductor 67 extending in the same direction as the main body container 66 extends in the main body container 66. There is. The main body container 66 and the inner conductor 67 form a coaxial tube. The main body container 66 constitutes the outer conductor of this coaxial tube. The inner conductor 67 has a rod shape or a cylindrical shape. The space between the inner peripheral surface of the main body container 66 and the outer peripheral surface of the inner conductor 67 forms the microwave transmission path 68.
  • the antenna portion 65 includes a planar antenna 71 connected to the lower end of the inner conductor 67, a microwave slow wave material 72 arranged on the upper surface side of the planar antenna 71, and microwaves arranged on the lower surface side of the planar antenna 71. It has a transmission plate 73. The lower surface of the microwave transmission plate 73 is exposed to the internal space of the processing container 2. The microwave transmission plate 73 is fitted to the opening of the top plate 11 via the main body container 66. The microwave transmission plate 73 functions as a window that transmits microwaves.
  • the flat antenna 71 has a disk shape. Further, the planar antenna 71 has a slot penetrating the planar antenna 71.
  • the microwave slow wave material 72 is formed of a material having a dielectric constant larger than that of vacuum.
  • a fluorine-based resin such as quartz, ceramics, or polytetrafluoroethylene resin, a polyimide resin, or the like can be used.
  • the wavelength of microwaves becomes longer in a vacuum.
  • the microwave slow wave material 72 has a function of adjusting the plasma by shortening the wavelength of the microwave. Further, the phase of the microwave changes depending on the thickness of the microwave slow wave material 72.
  • the planar antenna 71 can be adjusted so as to be at the position of the antinode of the standing wave. As a result, the power of microwaves can be efficiently introduced into the processing container 2.
  • the microwave transmission plate 73 is made of a dielectric material.
  • the dielectric material for forming the microwave transmission plate 73 for example, quartz, ceramics, or the like is used.
  • the microwave transmission plate 73 is shaped so that microwaves can be efficiently radiated in the TE mode.
  • FIG. 2 is a diagram showing an example of the lower surface 11a of the top plate 11 of the processing container 2 according to the embodiment.
  • the plurality of microwave radiation mechanisms 63 are composed of seven microwave radiation mechanisms 63A to 63G.
  • the microwave radiation mechanism 63 is a general term for the microwave radiation mechanisms 63A to 63G.
  • the plurality of microwave radiation mechanisms 63 are arranged on the top plate 11 constituting the top wall of the processing container 2, and are outside the central microwave radiation mechanism and the central microwave radiation mechanism arranged in the central region of the top plate 11. It consists of a plurality of outer microwave radiation mechanisms arranged in the region of.
  • the microwave radiation mechanism 63G is an example of a central microwave radiation mechanism arranged in the central region of the top plate. However, the number of central microwave radiation mechanisms is not limited to one, and a plurality of central microwave radiation mechanisms may be arranged in the central region of the top plate 11.
  • the central region of the top plate 11 is a region radially inside the microwave radiation mechanisms 63A to 63F, and a region radially outside the microwave radiation mechanisms 63A to 63F is referred to as an outer peripheral region of the top plate
  • the microwave radiation mechanisms 63A to 63F are examples of a plurality of outer peripheral microwave radiation mechanisms arranged in a region outside the central microwave radiation mechanism.
  • the plurality of outer peripheral microwave radiation mechanisms is not limited to six, and a plurality of may be arranged.
  • another microwave radiation mechanism may be provided in the region between the microwave radiation mechanism 63G and the microwave radiation mechanisms 63A to 63F.
  • the diameter of the circle connecting the outer edges of the microwave radiation mechanisms 63A to 63F is larger than the diameter of the mounting table 21.
  • the microwave transmission plates 73A to 73G are exposed in the processing space in each of the microwave radiation mechanisms 63A to 63G.
  • the microwave transmission plate 73G is exposed to the processing space from the central region of the lower surface 11a of the top plate 11, and the microwave transmission plates 73A to 73F are exposed to the processing space from the outer region thereof.
  • the microwave transmission plate 73 has a cylindrical shape.
  • the distances between the center points of any three microwave transmission plates 73 adjacent to each other are equal to each other.
  • the gas nozzles 16 are arranged at equal intervals in the radial direction and the circumferential direction between the outer microwave transmission plates 73A to 73F and the central microwave transmission plate 73G.
  • Fixed magnets 80A to 80F are provided at positions corresponding to the microwave radiation mechanisms 63A to 63F, which are outside the plurality of microwave radiation mechanisms 63A to 63F located on the outermost periphery of the top plate 11.
  • the fixed magnets 80A to 80F are examples of the magnetic field mechanism 80.
  • the fixed magnets 80A to 80F are arranged one-to-one with respect to the microwave radiation mechanisms 63A to 63F.
  • the fixed magnets 80A to 80F are arcuate. It is preferable that the number of the plurality of microwave radiation mechanisms 63A to 63F and the fixed magnets 80A to 80F are the same, but the number is not limited to this.
  • the fixed magnet 80A may be divided and arranged in a plurality of positions outside the microwave radiation mechanism 63A shown in FIG.
  • the fixed magnets 80A to 80F are placed so that the center of the arc of the fixed magnets 80A to 80F is located on the line passing through the center c of the microwave radiation mechanism 63G and the respective centers e of the microwave radiation mechanisms 63A to 63F on the outer peripheral side. It may be arranged.
  • the arcuate length D of the fixed magnets 80A to 80F in the longitudinal direction is slightly longer than the diameter ⁇ 1 of the microwave transmission plate 73.
  • the arcuate length D of the fixed magnets 80A to 80F in the longitudinal direction may be substantially the same as the diameter ⁇ 1 of the microwave transmission plate 73. If the length D of the fixed magnets 80A to 80F is too long, it will interfere with the magnetic field of the adjacent fixed magnets. If the length D of the fixed magnets 80A to 80F is too short, the effect of the magnetic field becomes small.
  • the width (length of the arc) of the fixed magnets 80A to 80F and the diameter of the microwave transmission plate 73 are substantially the same. Dimensions are preferred.
  • the fixed magnets 80A to 80F may be linear.
  • Each of the fixed magnets 80A to 80F independently controls the surface wave plasma generated below each of the corresponding microwave radiation mechanisms 63A to 63F (for example, about 5 mm below the top plate).
  • the fixed magnet 80A independently controls the surface wave plasma generated below the corresponding microwave radiation mechanism 63A.
  • the magnet is placed between the fixed magnet 80A and the fixed magnet 80B shown in FIG. 2 or between the microwave transmitting plate 73A and the microwave transmitting plate 73B, the magnet is placed under the microwave radiation mechanism 63.
  • Surface wave plasma cannot be controlled independently.
  • the magnetic field mechanism 80 affects the surface wave plasma under both the microwave radiation mechanisms 63A and 63B.
  • the magnetic field mechanism 80 is arranged intermittently in the circumferential direction on a one-to-one basis with respect to the microwave radiation mechanisms 63A to 63F, and is in the vicinity of the microwave radiation mechanisms 63A to 63F that excite the plasma as much as possible. It is preferable to place it in. From the above, the fixed magnet is not arranged between the adjacent microwave radiation mechanisms 63 or between the adjacent fixed magnets.
  • the magnetic field mechanism 80 is an outer peripheral region of each microwave radiation mechanism 63A to 63F, and is arranged in a region from the outside of each microwave radiation mechanism 63 to the end of the upper surface 11b of the top plate 11 (see FIG. 1). ).
  • the fixed magnets 80A to 80F are placed between the central microwave radiation mechanism 63G and the outer peripheral microwave radiation mechanisms 63A to 63F, the influence of the fixed magnets 80A to 80F is below the central microwave radiation mechanism 63G. It affects the plasma. In order to avoid this, the fixed magnets 80A to 80F are not arranged between the central microwave radiation mechanism 63G and the outer microwave radiation mechanisms 63A to 63F. That is, the magnetic field mechanism 80 is arranged outside the microwave radiation mechanism located on the outermost circumference.
  • the center of each arc of the fixed magnets 80A to 80F coincides with the center c of the microwave radiation mechanism 63G.
  • the center c of the microwave radiation mechanism 63G coincides with the center of the top plate 11.
  • the center of each arc of the magnetic field mechanism 80 may coincide with the center of the top plate 11.
  • the center of each arc of the fixed magnets 80A to 80F may coincide with the center e of the corresponding microwave radiation mechanisms 63A to 63F (microwave transmission plates 73A to 73F).
  • “matching with the center” includes the case of substantially matching with the center.
  • the plasma density tends to decrease as compared with the central region of the top plate 11.
  • the plasma density decreases in the vicinity of the side wall of the processing container 2.
  • it is required to suppress a decrease in plasma density on the side wall side of the processing container 2 as much as possible and to make the plasma density distribution uniform.
  • the plasma density distribution is expanded to the outside by shifting the virtual central axis of each plasma generated below the microwave radiation mechanisms 63A to 63F to the outside. Therefore, the magnetic field mechanism 80 is arranged corresponding to each microwave radiation mechanism 63A to 63F. As a result, the peak of the plasma density is shifted to the outside by the action of the magnetic field mechanism 80, and the decrease in the plasma density in the vicinity of the side wall of the processing container 2 is suppressed.
  • the magnetic field mechanism 80 can not only shift the peak of the plasma density outward, but also shift it inward.
  • the magnetic field mechanism 80 corresponding to the microwave radiation mechanism 63G is not provided. This is because in the central region where the microwave radiation mechanism 63G is arranged, if the central axis of the plasma is deviated from the center c, the entire plasma density distribution is disturbed.
  • the magnetic field mechanism 80 is not limited to the fixed magnets 80A to 80F described above, and may be an electromagnet.
  • 3A and 3B show an example of the magnetic field mechanism 80 arranged on the upper surface 11b of the top plate 11.
  • FIG. 3A shows a case where the magnetic field mechanism 80 is a fixed magnet 80A to 80F
  • FIG. 3B shows a case where the magnetic field mechanism 80 is an electromagnet 80a to 80f.
  • 3A and 3B are shown except for the structures of the microwave radiation mechanisms 63A to 63G other than the microwave slow wave materials 72A to 72G arranged on the upper surface 11b of the top plate 11.
  • an annular magnet having a diameter larger than that of the processing container 2 may be provided on the outside of the side wall of the processing container 2.
  • each magnetic field mechanism 80 functions to shift the central axis of the plasma density distribution generated below the microwave radiation mechanisms 63A to 63F.
  • each of the six fixed magnets 80A to 80F shifts the central axis of the plasma density distribution below the six microwave slow wave materials 72A to 72F (microwave radiation mechanism 63A to 63F) shown in FIG. 3A. Function. Therefore, in the embodiment, a large magnet that surrounds the entire plasma generated below the microwave radiation mechanisms 63A to 63G is unnecessary, the structure does not become large, and the cost can be reduced.
  • shifting the central axis of the plasma density distribution means that the fixed magnets 80A to 80F are located below the adjacent microwave slow wave materials 72A to 72F (microwave radiation mechanism 63A to 63F). It means moving the central axis of the generated plasma density distribution. As a result of shifting the central axis of the plasma density distribution, the plasma density distribution can be changed.
  • each of the electromagnets 80a to 80f moves the central axis of the plasma density distribution below the adjacent microwave slow wave materials 72A to 72F (microwave radiation mechanism 63A to 63F).
  • microwave radiation mechanism 63A to 63F microwave radiation mechanism
  • FIG. 4A and 4B are diagrams showing an example of control of plasma density distribution by the magnetic field mechanism 80 according to the embodiment.
  • the fixed magnets 80A to 80F of FIG. 3A were used for the magnetic field mechanism 80.
  • the directions of the S pole and the N pole of the fixed magnets 80A to 80F were set so that the central axis of the plasma density distribution generated below the microwave radiation mechanism 63 moves to the outside of the top plate 11. That is, in the electrons in the plasma generated by the microwave emitted from the microwave radiation mechanism 63, a magnetic field that gives a force toward the outside of the top plate 11 is formed for the electron group toward the top plate 11.
  • Fixed magnets 80A to 80F are arranged.
  • FIG. 4A shows only the fixed magnet 80A.
  • FIG. 5B is a diagram showing an example of an experimental result of controlling the plasma density distribution by the magnetic field mechanism 80 according to the embodiment.
  • the fixed magnets 80A to 80F of FIG. 3A were used for the magnetic field mechanism 80.
  • N2 gas is supplied, the pressure in the processing container 2 is controlled to 10 Pa, and microwaves having a power of 400 W are generated from the microwave output unit 50. Output.
  • FIG. 5A is a diagram for explaining the control result of the plasma density distribution by the magnetic field mechanism according to the embodiment.
  • the center A of the plasma (not shown) generated below the microwave radiation mechanism 63 shown in FIG. 5A cannot be displaced.
  • the current (electron saturation current) in the plasma generated by microwave radiation was measured with a probe.
  • the peak of the electron saturation current on the vertical axis is located at the center of each microwave transmission plate 73A to 73F on the horizontal axis (0 mm: see the center e in FIG. 2).
  • the plasma density distribution that decreased toward the outside and the center side (150 mm, ⁇ 150 mm) of the top plate 11 with respect to e was measured.
  • the electron temperature is almost uniform, and if the electron temperature is uniform, the electron saturation current is proportional to the plasma density. Therefore, there is a peak of plasma density (electron density) at the center e (0 mm) of each microwave transmission plate 73A to 73F on the horizontal axis, and the plasma density increases toward the outside and the center side of the top plate 11 with respect to the center e.
  • the plasma density distribution decreased.
  • the central axis of the plasma density distribution is set to the center shown in FIG. 5 (A). It was moved from A to A'.
  • the peak of the electron saturation current on the vertical axis is from the center e (0 mm) of each microwave transmission plate 73A to 73F on the horizontal axis. Also shifted to the right side (outside of the top plate 11), and a distribution was observed that decreased toward the outside and the center side of the top plate 11. That is, on the right side of the center of each microwave transmission plate 73A to 73F on the horizontal axis. There was a peak in plasma density (electron density), and the plasma density distribution shifted to the right.
  • the central axis of the plasma density distribution was moved from the center A shown in FIG. 5A to A ′′.
  • the peak of the electron saturation current on the vertical axis is on the left side (inside of the top plate 11) of the center e (0 mm) of the microwave transmission plates 73A to 73F on the horizontal axis.
  • a distribution was observed in which the top plate 11 was displaced toward the outside and toward the center. That is, the plasma density (electron density) peak was on the left side of the center of each microwave transmission plate 73A to 73F on the horizontal axis, and the plasma density distribution was shifted to the left side.
  • the central axis of the plasma density distribution is moved to the outside or the inside of the processing container 2 for each plasma generated below the microwave radiation mechanism 63 on the outer periphery.
  • the plasma density distribution can be controlled by expanding the plasma density distribution to the outside of the processing container 2 or concentrating the plasma density distribution on the inside.
  • the plasma density distribution according to the process conditions it is possible to improve the uniformity of the process in the substrate surface.
  • FIG. 3B the control of the plasma density distribution when the magnetic field mechanism 80 is the electromagnets 80a to 80f shown in FIG. 3B will be described with reference to FIGS. 3B, 5A and 5B.
  • a coil is used for the electromagnets 80a to 80f.
  • it has an electric circuit 81 for controlling the electromagnets 80a to 80f (only the electric circuit 81 for controlling the electromagnets 80a is shown in FIG. 3B).
  • the electric circuit 81 is connected to each coil of the electromagnets 80a to 80f.
  • Each electric circuit 81 has switches 82a and 82b and variable voltage DC power supplies 83a and 83b.
  • the switch 82a and the variable voltage DC power supply 83a are connected in parallel to the switch 82b and the variable voltage DC power supply 83b.
  • the magnetic field mechanism 80 is the electromagnets 80a to 80f shown in FIG. 3B, it is possible to control whether the plasma density distribution is widened outward or concentrated inward depending on the direction of the current flowing through the coils of the electromagnets 80a to 80f.
  • an example of controlling the electromagnet 80a will be described.
  • a current is passed through the coil so that a magnetic field H is generated from the back side of the paper surface to the front side of the electromagnet 80a.
  • the electrons in the plasma generated by the electric field of the surface wave of the microwave radiated from the microwave radiation mechanism 63 are directed outward as shown by the arrow in FIG. 5A.
  • Lorentz force F works. Due to this Lorentz force F, an outward force acts on the plasma. As a result, the central axis of the plasma density distribution generated below the microwave radiation mechanism 63 shifts from A to A'as shown in FIG. 5A.
  • a current is supplied from the variable voltage DC power supply 83b to the coil of the electromagnet 80a with the switch 82a of the electric circuit 81 turned off and the switch 82b turned on.
  • a magnetic field is generated in the coil in the direction of arrow B shown in FIG. 3B, that is, in the direction from the left to the right of the coil.
  • the Lorentz force F acts inward with respect to the electrons in the plasma.
  • the central axis of the plasma density distribution below the microwave slow wave material 72A microwave radiation mechanism 63A
  • the central axis of the plasma density distribution below each of the microwave radiation mechanisms 63A to 63F is inward. It shifts. As a result, the entire plasma density distribution can be controlled to be concentrated inside the processing container 2.
  • a current is supplied from the variable voltage DC power supply 83a to the coil of the electromagnet 80a with the switch 82a turned on and the switch 82b turned off.
  • a magnetic field is generated in the coil in the direction opposite to the arrow B shown in FIG. 3B, that is, in the direction from the right to the left of the coil.
  • the Lorentz force F with respect to the electrons in the plasma acts outward.
  • the central axis of the plasma density distribution below the microwave slow wave material 72A microwave radiation mechanism 63A
  • the central axis of the plasma density distribution below each of the microwave radiation mechanisms 63A to 63F is outward. It shifts. As a result, the entire plasma density distribution can be controlled to spread outside the processing container 2.
  • control unit 8 controls the polarities and / or powers of the voltages applied to the electromagnets 80a to 80f by controlling the switches 82a and 82b and / or the variable voltage DC power supplies 83a and 83b to control the plasma density distribution. Can be controlled.
  • FIGS. 6A and 6B are diagrams showing an arrangement example of the magnetic field mechanism 80 according to the embodiment.
  • the plurality of magnetic field mechanisms 80 may be arranged on the upper surface 11b of the top plate 11 outside the microwave radiation mechanism 63 corresponding to the microwave radiation mechanism 63.
  • a part may be arranged so as to be partially embedded in the groove formed in the upper surface 11b of the top plate 11 outside the microwave radiation mechanism 63.
  • it may be embedded inside the top plate 11 outside the microwave radiation mechanism 63.
  • the magnetic field mechanism 80 is preferably placed at the position of the top plate 11 which is outside the microwave radiation mechanism 63 and is as close as possible to the plasma generated below the microwave radiation mechanism 63. However, when embedding in the top plate 11, it is preferable to cover the coils of the electromagnets 80a to 80f with an insulating material such as ceramics.
  • the magnetic field mechanism 80 may be arranged on the side of the top plate 11 corresponding to the microwave radiation mechanism 63. However, when the magnetic field mechanism 80 is arranged on the side, the magnetic field mechanism 80 is arranged in the plasma diffusion region (that is, not the surface wave plasma generation region) away from the microwave radiation mechanism 63, so that the plasma density distribution is distributed. The effect of shifting the central axis is low. Further, since the surface wave plasma is generated by the microwave, the highest effect can be obtained by providing the magnetic field mechanism 80 in the vicinity of the lower surface 11a of the top plate 11 which is the plasma generation region.
  • FIG. 7 is a flowchart showing an example of a control method of the plasma processing apparatus 1 according to the embodiment.
  • the plasma density distribution changes depending on the pressure in the processing container 2. Therefore, the plasma density distribution is controlled according to the pressure in the processing container 2.
  • the magnetic field mechanism 80 either a fixed magnet or an electromagnet can be used.
  • the control unit 8 acquires the pressure in the process container 2 (step S11).
  • the pressure in the processing container 2 is measured by a pressure gauge (not shown) attached to the processing container 2.
  • the control unit 8 determines whether the pressure in the acquired processing container 2 is higher than the first threshold value (step S12).
  • the first threshold value is used to determine whether the pressure in the processing container 2 is a value in the high pressure region.
  • control unit 8 determines that the pressure inside the processing container 2 is higher than the first threshold value, a force acts so that the center of the plasma density distribution for each microwave transmission plate 73A to 73F acts toward the outside of the processing container 2.
  • a magnetic field is generated using the magnetic field mechanism 80 (step S13), and this process is terminated.
  • the pressure in the processing container 2 becomes high, the plasma concentrates inward. Therefore, by using the magnetic field mechanism 80 to generate a magnetic field so that the center of the plasma density distribution for each microwave transmission plate acts toward the outside of the processing container 2, the plasma of the outer microwave radiation mechanisms 63A to 63F works.
  • the central axis of the density distribution is shifted outward, and control is performed so as to suppress changes in the plasma density distribution. This makes it possible to improve the uniformity of the process in the substrate surface.
  • step S12 when the control unit 8 determines that the pressure in the processing container 2 is equal to or less than the first threshold value, the control unit 8 then determines whether the acquired pressure in the processing container 2 is lower than the second threshold value.
  • the second threshold value is used to determine whether the pressure in the processing vessel 2 is a value in the low pressure region.
  • control unit 8 determines that the pressure in the processing container 2 is lower than the second threshold value, a force acts so that the center of the plasma density distribution with respect to the microwave transmission plates 73A to 73F acts toward the inside of the processing container 2.
  • a magnetic field is generated using the magnetic field mechanism 80 (step S15), and this process is terminated.
  • the control unit 8 determines in step S14 that the pressure in the processing container 2 is equal to or higher than the second threshold value, the control unit 8 ends the processing as it is.
  • the control unit 8 switches, for example, switches 82a and 82b according to the pressure in the processing container 2, and controls the polarity and / or power of the voltage applied to the electromagnets 80a to 80f.
  • the arrangement of the S pole and the N pole of the fixed magnet may be controlled. This makes it possible to control the plasma density distribution according to the pressure. For example, it is possible to suppress a change in the plasma density distribution due to a change in pressure in the processing container 2.
  • the process conditions that change the plasma density distribution are not limited to pressure.
  • the plasma density distribution changes depending on the gas type. Therefore, the control unit 8 switches, for example, switches 82a and 82b in response to the replacement of the gas type supplied into the processing container 2, and controls the polarity and / or power of the voltage applied to the electromagnets 80a to 80f.
  • the arrangement of the S pole and the N pole of the fixed magnet may be controlled. This makes it possible to control the plasma density distribution according to the gas type. For example, it is possible to suppress a change in the plasma density distribution due to a change in the gas type in the processing container 2.
  • the process conditions conditions for changing the plasma density distribution such as pressure and gas type
  • the plasma processing apparatus 1 performs the process.
  • a step of controlling the direction of each magnetic field of the plurality of magnetic field mechanisms 80 included in the plasma processing apparatus 1 is executed based on the acquired process conditions. This makes it possible to control the plasma density distribution according to the process conditions.
  • the plasma density distribution can be controlled.

Abstract

Provided is a plasma treatment device having: a treatment container; a plurality of outer circumferential microwave radiation mechanisms that are arranged on a top plate forming a top wall of the treatment container, and that are located in a region outside a center region of the top plate; and a plurality of magnetic field mechanisms located at positions that are outside the plurality of outer circumferential microwave radiation mechanisms and that correspond to the respective outer circumferential microwave radiation mechanisms.

Description

プラズマ処理装置及び制御方法Plasma processing equipment and control method
 本開示は、プラズマ処理装置及び制御方法に関する。 This disclosure relates to a plasma processing apparatus and a control method.
 低ダメージで高密度なプラズマを生成する上で、マイクロ波等を利用した表面波プラズマが適用されている。例えば、特許文献1は、マイクロ波を複数に分配した状態で出力するマイクロ波出力部と、複数に分配されたマイクロ波をチャンバ内に導く複数のアンテナモジュールとを具備するマイクロ波プラズマ源と、を有するプラズマ処理装置を提案する。 Surface wave plasma using microwaves is applied to generate high-density plasma with low damage. For example, Patent Document 1 describes a microwave plasma source including a microwave output unit that outputs a microwave in a state of being divided into a plurality of microwaves, and a plurality of antenna modules for guiding the microwaves distributed in the plurality of antennas into a chamber. We propose a plasma processing apparatus having the above.
国際公開第2008/013112号International Publication No. 2008/013112
 本開示は、プラズマ密度分布を制御することができる技術を提供する。 The present disclosure provides a technique capable of controlling the plasma density distribution.
 本開示の一の態様によれば、処理容器と、前記処理容器の天壁を構成する天板に配置され、前記天板の中心領域よりも外側の領域に配置された複数の外周マイクロ波放射機構と、複数の前記外周マイクロ波放射機構よりも外側であって各外周マイクロ波放射機構に対応する位置に設けられた複数の磁場機構と、を有するプラズマ処理装置が提供される。 According to one aspect of the present disclosure, a plurality of outer peripheral microwave radiations arranged on a processing container and a top plate constituting the top wall of the processing container and arranged in a region outside the central region of the top plate. Provided is a plasma processing apparatus having a mechanism and a plurality of magnetic field mechanisms provided at positions outside the outer peripheral microwave radiation mechanism and corresponding to each outer microwave radiation mechanism.
 一の側面によれば、プラズマ密度分布を制御することができる。 According to one aspect, the plasma density distribution can be controlled.
実施形態に係るプラズマ処理装置の一例を示す断面模式図。The sectional schematic diagram which shows an example of the plasma processing apparatus which concerns on embodiment. 実施形態に係る処理容器の天壁の下面の一例を示す図。The figure which shows an example of the lower surface of the top wall of the processing container which concerns on embodiment. 実施形態に係る磁場機構を備えた天壁の一例を示す図。The figure which shows an example of the top wall provided with the magnetic field mechanism which concerns on embodiment. 実施形態に係る磁場機構を備えた天壁の一例を示す図。The figure which shows an example of the top wall provided with the magnetic field mechanism which concerns on embodiment. 実施形態に係る磁場機構によるプラズマ密度分布の制御の一例を示す図。The figure which shows an example of the control of the plasma density distribution by the magnetic field mechanism which concerns on embodiment. 実施形態に係る磁場機構によるプラズマ密度分布の制御の一例を示す図。The figure which shows an example of the control of the plasma density distribution by the magnetic field mechanism which concerns on embodiment. 実施形態に係る磁場機構によるプラズマ密度分布の制御結果を説明するための図。The figure for demonstrating the control result of the plasma density distribution by the magnetic field mechanism which concerns on embodiment. 実施形態に係る磁場機構によるプラズマ密度分布の制御結果の一例を示す図。The figure which shows an example of the control result of the plasma density distribution by the magnetic field mechanism which concerns on embodiment. 実施形態に係る磁場機構の配置例を示す図。The figure which shows the arrangement example of the magnetic field mechanism which concerns on embodiment. 実施形態に係る磁場機構の配置例を示す図。The figure which shows the arrangement example of the magnetic field mechanism which concerns on embodiment. 実施形態に係るプラズマ処理装置の制御方法の一例を示すフローチャート。The flowchart which shows an example of the control method of the plasma processing apparatus which concerns on embodiment.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, a mode for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same components may be designated by the same reference numerals and duplicate explanations may be omitted.
 [プラズマ処理装置]
 実施形態に係るプラズマ処理装置1について、図1を用いて説明する。図1は、実施形態に係るプラズマ処理装置1の一例を示す断面模式図である。実施形態に係るプラズマ処理装置1は、CVD(chemical Vapor deposition)成膜装置の一例であり、マイクロ波により処理ガスからプラズマを生成し、基板をプラズマ処理するマイクロ波プラズマ処理装置である。
[Plasma processing equipment]
The plasma processing apparatus 1 according to the embodiment will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view showing an example of the plasma processing apparatus 1 according to the embodiment. The plasma processing apparatus 1 according to the embodiment is an example of a CVD (chemical Vapor deposition) film forming apparatus, and is a microwave plasma processing apparatus that generates plasma from a processing gas by microwaves and plasma-treats a substrate.
 プラズマ処理装置1は、処理容器2と載置台21とガス供給機構3と排気装置4とマイクロ波導入モジュール5と制御部8とを有する。処理容器2は、ウェハを一例とする基板Wを収容する。載置台21は、処理容器2の内部に配置され、基板Wを載置する載置面21aを有する。ガス供給機構3は、処理容器2内にガスを供給する。排気装置4は、処理容器2内を排気し、減圧状態にする。マイクロ波導入モジュール5は、処理容器2内に供給される処理ガスをプラズマ化するためのマイクロ波を導入する。制御部8は、プラズマ処理装置1の各部を制御する。 The plasma processing device 1 has a processing container 2, a mounting table 21, a gas supply mechanism 3, an exhaust device 4, a microwave introduction module 5, and a control unit 8. The processing container 2 accommodates a substrate W having a wafer as an example. The mounting table 21 is arranged inside the processing container 2 and has a mounting surface 21a on which the substrate W is placed. The gas supply mechanism 3 supplies gas into the processing container 2. The exhaust device 4 exhausts the inside of the processing container 2 to reduce the pressure. The microwave introduction module 5 introduces microwaves for turning the processing gas supplied into the processing container 2 into plasma. The control unit 8 controls each unit of the plasma processing device 1.
 処理容器2は、例えば円筒形状を有する。処理容器2は、例えばアルミニウム及びその合金等の金属材料によって形成されている。マイクロ波導入モジュール5は、処理容器2の上部に配置され、処理容器2内に電磁波(本実施形態ではマイクロ波)を導入し、ガス供給機構3から供給されたガスからプラズマを生成するプラズマ生成部として機能する。 The processing container 2 has, for example, a cylindrical shape. The processing container 2 is made of a metal material such as aluminum and an alloy thereof. The microwave introduction module 5 is arranged in the upper part of the processing container 2, introduces an electromagnetic wave (microwave in this embodiment) into the processing container 2, and generates plasma from the gas supplied from the gas supply mechanism 3. Functions as a department.
 処理容器2は、板状の天板11、底壁13、及び天板11と底壁13とを連結する側壁12を有している。天板11は、複数の開口部を有している。側壁12は、処理容器2に隣接する図示しない搬送室との間で基板Wの搬入出を行うための搬入出口12aを有している。処理容器2と図示しない搬送室との間には、ゲートバルブGが配置されている。ゲートバルブGは、搬入出口12aを開閉する機能を有している。ゲートバルブGは、閉状態で処理容器2を気密にシールすると共に、開状態で処理容器2と搬送室との間で基板Wの移送を可能にする。 The processing container 2 has a plate-shaped top plate 11, a bottom wall 13, and a side wall 12 connecting the top plate 11 and the bottom wall 13. The top plate 11 has a plurality of openings. The side wall 12 has an loading / unloading port 12a for loading / unloading the substrate W to / from a transport chamber (not shown) adjacent to the processing container 2. A gate valve G is arranged between the processing container 2 and the transport chamber (not shown). The gate valve G has a function of opening and closing the carry-in outlet 12a. The gate valve G hermetically seals the processing container 2 in the closed state and enables the transfer of the substrate W between the processing container 2 and the transport chamber in the open state.
 底壁13は、複数(図1では2つ)の排気口13aを有している。プラズマ処理装置1は、更に、排気口13aと排気装置4とを接続する排気管14を有する。排気装置4は、APCバルブと、処理容器2の内部空間を所定の真空度まで高速に減圧することが可能な高速真空ポンプとを有している。このような高速真空ポンプとしては、例えばターボ分子ポンプ等がある。排気装置4の高速真空ポンプを作動させることによって、処理容器2は、その内部空間が所定の真空度まで減圧される。 The bottom wall 13 has a plurality of (two in FIG. 1) exhaust ports 13a. The plasma processing device 1 further has an exhaust pipe 14 connecting the exhaust port 13a and the exhaust device 4. The exhaust device 4 has an APC valve and a high-speed vacuum pump capable of rapidly depressurizing the internal space of the processing container 2 to a predetermined degree of vacuum. Examples of such a high-speed vacuum pump include a turbo molecular pump and the like. By operating the high-speed vacuum pump of the exhaust device 4, the internal space of the processing container 2 is depressurized to a predetermined degree of vacuum.
 プラズマ処理装置1は、更に、処理容器2内において載置台21を支持する支持部材22と、支持部材22と底壁13との間に設けられた絶縁部材23とを有する。基板Wは、搬入及び搬出時、リフトピン19により持ち上げられ、搬送機構と載置台21との間で基板Wの受け渡しが行われる。支持部材22は、底壁13の中央から処理容器2の内部空間に向かって延びる円筒形状を有している。載置台21および支持部材22は、例えば表面にアルマイト処理(陽極酸化処理)が施されたアルミニウム等によって形成されている。 The plasma processing apparatus 1 further has a support member 22 that supports the mounting table 21 in the processing container 2, and an insulating member 23 provided between the support member 22 and the bottom wall 13. The substrate W is lifted by the lift pin 19 at the time of loading and unloading, and the substrate W is transferred between the transport mechanism and the mounting table 21. The support member 22 has a cylindrical shape extending from the center of the bottom wall 13 toward the internal space of the processing container 2. The mounting table 21 and the support member 22 are formed of, for example, aluminum or the like whose surface is anodized (anodized).
 プラズマ処理装置1は、更に、載置台21に高周波電力を供給する高周波バイアス電源25と、載置台21と高周波バイアス電源25との間に設けられた整合器24とを有する。高周波バイアス電源25は、基板Wにイオンを引き込むために、載置台21に高周波電力を印加する。整合器24は、高周波バイアス電源25の出力インピーダンスと負荷側(載置台21側)のインピーダンスを整合させるための回路を有する。 The plasma processing device 1 further includes a high-frequency bias power supply 25 that supplies high-frequency power to the mounting table 21, and a matching unit 24 provided between the mounting table 21 and the high-frequency bias power supply 25. The high frequency bias power supply 25 applies high frequency power to the mounting table 21 in order to draw ions into the substrate W. The matching device 24 has a circuit for matching the output impedance of the high frequency bias power supply 25 with the impedance on the load side (mounting table 21 side).
 プラズマ処理装置1は、更に、載置台21を加熱または冷却する、図示しない温度制御機構を有してもよい。温度制御機構は、例えば、基板Wの温度を、25℃(室温)~900℃の範囲内で制御してもよい。 The plasma processing apparatus 1 may further have a temperature control mechanism (not shown) for heating or cooling the mounting table 21. The temperature control mechanism may, for example, control the temperature of the substrate W in the range of 25 ° C. (room temperature) to 900 ° C.
 プラズマ処理装置1は、更に、複数のガスノズル16を有する。複数のガスノズル16は、円筒形状をなし、処理容器2を構成する天板11を貫通している。ガスは、ガスノズル16に形成されたガス供給孔16aから処理容器2内に供給される。複数のガスノズル16は、側壁12に設けられてもよい。 The plasma processing device 1 further has a plurality of gas nozzles 16. The plurality of gas nozzles 16 have a cylindrical shape and penetrate the top plate 11 constituting the processing container 2. The gas is supplied into the processing container 2 from the gas supply hole 16a formed in the gas nozzle 16. The plurality of gas nozzles 16 may be provided on the side wall 12.
 複数のガスノズル16は、天板11の下面からガス供給孔16aまでの距離が異なるものを組み合わせてもよい。ガス供給源31は、例えば、プラズマ生成用の希ガスや、成膜プロセスに使用する処理ガスのガス供給源として用いられる。例えば、シリコン窒化膜を成膜する場合を例に挙げると、処理ガスのうち、ガスの分解を抑制したいシランガス(SiH)は天板11の下面からガス供給孔までの距離が長い位置にあるガス供給孔から導入してもよい。それ以外のN及び/又はAr等の希ガスは、天板11の下面からガス供給孔までの距離が短い位置にあるガス供給孔から導入してもよい。これにより、分解し易いシランガスを解離しすぎないことで良質のシリコン窒化膜を成膜できる。 The plurality of gas nozzles 16 may be combined with different distances from the lower surface of the top plate 11 to the gas supply hole 16a. The gas supply source 31 is used, for example, as a gas supply source for a rare gas for plasma generation or a processing gas used in a film forming process. For example, in the case of forming a silicon nitride film as an example, among the processing gases, the silane gas (SiH 4 ) for which gas decomposition is desired is located at a position where the distance from the lower surface of the top plate 11 to the gas supply hole is long. It may be introduced from the gas supply hole. Other rare gases such as N 2 and / or Ar may be introduced from the gas supply hole at a position where the distance from the lower surface of the top plate 11 to the gas supply hole is short. As a result, a high-quality silicon nitride film can be formed by not dissociating too much silane gas, which is easily decomposed.
 ガス供給機構3は、ガス供給源31を含むガス供給装置3aと、ガス供給源31と複数のガスノズル16とを接続する配管32とを有している。なお、図1では、1つのガス供給源31を図示しているが、ガス供給装置3aは、使用されるガスの種類に応じて複数のガス供給源を含んでもよい。 The gas supply mechanism 3 has a gas supply device 3a including a gas supply source 31, and a pipe 32 connecting the gas supply source 31 and a plurality of gas nozzles 16. Although one gas supply source 31 is shown in FIG. 1, the gas supply device 3a may include a plurality of gas supply sources depending on the type of gas used.
 ガス供給装置3aは、更に、配管32の途中に設けられた図示しないマスフローコントローラおよび開閉バルブを含んでいる。処理容器2内に供給されるガスの種類や、これらのガスの流量等は、マスフローコントローラおよび開閉バルブによって制御される。 The gas supply device 3a further includes a mass flow controller (not shown) and an on / off valve provided in the middle of the pipe 32. The type of gas supplied into the processing container 2, the flow rate of these gases, and the like are controlled by the mass flow controller and the on / off valve.
 プラズマ処理装置1の各構成部は、それぞれ制御部8に接続されて、制御部8によって制御される。制御部8は、典型的にはコンピュータである。制御部8は、CPUを備えたプロセスコントローラ、プロセスコントローラに接続されたユーザーインターフェース及び記憶部を有する。 Each component of the plasma processing apparatus 1 is connected to the control unit 8 and controlled by the control unit 8. The control unit 8 is typically a computer. The control unit 8 has a process controller including a CPU, a user interface connected to the process controller, and a storage unit.
 プロセスコントローラは、プラズマ処理装置1において、例えば温度、圧力、ガス流量、バイアス印加用の高周波電力、マイクロ波の出力等のプロセス条件に関係する各構成部を統括して制御する。各構成部は、例えば、高周波バイアス電源25、ガス供給装置3a、排気装置4、マイクロ波導入モジュール5等が挙げられる。 The process controller collectively controls each component related to the process conditions such as temperature, pressure, gas flow rate, high frequency power for bias application, and microwave output in the plasma processing device 1. Examples of each component include a high frequency bias power supply 25, a gas supply device 3a, an exhaust device 4, a microwave introduction module 5, and the like.
 ユーザーインターフェースは、工程管理者がプラズマ処理装置1を管理するためにコマンドの入力操作等を行うキーボードやタッチパネル、プラズマ処理装置1の稼働状況を可視化して表示するディスプレイ等を有している。 The user interface has a keyboard and a touch panel for the process manager to input commands for managing the plasma processing device 1, a display that visualizes and displays the operating status of the plasma processing device 1.
 記憶部には、プラズマ処理装置1で実行される各種処理をプロセスコントローラの制御によって実現するための制御プログラムや、処理条件データ等が記録されたレシピ等が保存されている。プロセスコントローラは、ユーザーインターフェースからの指示等、必要に応じて任意の制御プログラムやレシピを記憶部から呼び出して実行する。これにより、プロセスコントローラによる制御下で、プラズマ処理装置1の処理容器2内において所望の処理が行われる。 The storage unit stores a control program for realizing various processes executed by the plasma processing device 1 under the control of the process controller, a recipe in which processing condition data and the like are recorded, and the like. The process controller calls and executes an arbitrary control program or recipe from the storage unit as needed, such as an instruction from the user interface. As a result, the desired processing is performed in the processing container 2 of the plasma processing apparatus 1 under the control of the process controller.
 上記の制御プログラムおよびレシピは、例えば、フラッシュメモリ、DVD、ブルーレイディスク等のコンピュータ読み取り可能な記憶媒体に格納された状態のものを利用することができる。また、上記のレシピは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用することも可能である。 The above control program and recipe can be used, for example, in a state of being stored in a computer-readable storage medium such as a flash memory, a DVD, or a Blu-ray disc. Further, the above recipe can be transmitted online at any time from another device, for example, via a dedicated line.
 マイクロ波導入モジュール5は、天板11の中心領域とその外側の領域とに配置され、アンテナユニット60及びマイクロ波を放射する複数のマイクロ波放射機構63を有する。複数のマイクロ波放射機構63は、天板11に配置されている。マイクロ波出力部50は、マイクロ波を生成すると共に、マイクロ波を複数の経路に分配して出力する。アンテナユニット60は、マイクロ波出力部50から出力されたマイクロ波を処理容器2に導入する。アンテナユニット60は、複数のアンテナモジュール61を含んでいる。複数のアンテナモジュール61は、分配されたマイクロ波をアンプ部62により増幅してマイクロ波放射機構63に導入する。 The microwave introduction module 5 is arranged in the central region of the top plate 11 and the region outside the central region thereof, and has an antenna unit 60 and a plurality of microwave radiation mechanisms 63 for radiating microwaves. The plurality of microwave radiation mechanisms 63 are arranged on the top plate 11. The microwave output unit 50 generates microwaves and distributes and outputs microwaves to a plurality of paths. The antenna unit 60 introduces the microwave output from the microwave output unit 50 into the processing container 2. The antenna unit 60 includes a plurality of antenna modules 61. The plurality of antenna modules 61 amplify the distributed microwaves by the amplifier unit 62 and introduce them into the microwave radiation mechanism 63.
 マイクロ波放射機構63は、インピーダンスを整合させるチューナと、増幅されたマイクロ波を処理容器2内に放射するアンテナ部65とを有している。更に、マイクロ波放射機構63は、金属材料よりなり、上下方向に延びる円筒形状の本体容器66と、本体容器66内において本体容器66が延びる方向と同じ方向に延びる内側導体67とを有している。本体容器66および内側導体67は、同軸管を構成している。本体容器66は、この同軸管の外側導体を構成している。内側導体67は、棒状または筒状を有している。本体容器66の内周面と内側導体67の外周面との間の空間は、マイクロ波伝送路68を形成する。 The microwave radiation mechanism 63 has a tuner for matching impedance and an antenna unit 65 for radiating amplified microwaves into the processing container 2. Further, the microwave radiation mechanism 63 is made of a metal material and has a cylindrical main body container 66 extending in the vertical direction and an inner conductor 67 extending in the same direction as the main body container 66 extends in the main body container 66. There is. The main body container 66 and the inner conductor 67 form a coaxial tube. The main body container 66 constitutes the outer conductor of this coaxial tube. The inner conductor 67 has a rod shape or a cylindrical shape. The space between the inner peripheral surface of the main body container 66 and the outer peripheral surface of the inner conductor 67 forms the microwave transmission path 68.
 アンテナ部65は、内側導体67の下端部に接続された平面アンテナ71と、平面アンテナ71の上面側に配置されたマイクロ波遅波材72と、平面アンテナ71の下面側に配置されたマイクロ波透過板73とを有している。マイクロ波透過板73の下面は、処理容器2の内部空間に露出している。マイクロ波透過板73は、本体容器66を介して天板11の開口部に嵌合している。マイクロ波透過板73は、マイクロ波を透過する窓として機能する。 The antenna portion 65 includes a planar antenna 71 connected to the lower end of the inner conductor 67, a microwave slow wave material 72 arranged on the upper surface side of the planar antenna 71, and microwaves arranged on the lower surface side of the planar antenna 71. It has a transmission plate 73. The lower surface of the microwave transmission plate 73 is exposed to the internal space of the processing container 2. The microwave transmission plate 73 is fitted to the opening of the top plate 11 via the main body container 66. The microwave transmission plate 73 functions as a window that transmits microwaves.
 平面アンテナ71は、円板形状を有している。また、平面アンテナ71は、平面アンテナ71を貫通するスロットを有している。マイクロ波遅波材72は、真空よりも大きい誘電率を有する材料によって形成されている。マイクロ波遅波材72を形成する材料としては、例えば、石英、セラミックス、ポリテトラフルオロエチレン樹脂等のフッ素系樹脂、ポリイミド樹脂等を用いることができる。マイクロ波は、真空中ではその波長が長くなる。マイクロ波遅波材72は、マイクロ波の波長を短くしてプラズマを調整する機能を有している。また、マイクロ波の位相は、マイクロ波遅波材72の厚みによって変化する。そのため、マイクロ波遅波材72の厚みによってマイクロ波の位相を調整することにより、平面アンテナ71が定在波の腹の位置になるように調整することができる。これにより、マイクロ波のパワーを効率よく処理容器2内に導入することができる。 The flat antenna 71 has a disk shape. Further, the planar antenna 71 has a slot penetrating the planar antenna 71. The microwave slow wave material 72 is formed of a material having a dielectric constant larger than that of vacuum. As the material for forming the microwave slow wave material 72, for example, a fluorine-based resin such as quartz, ceramics, or polytetrafluoroethylene resin, a polyimide resin, or the like can be used. The wavelength of microwaves becomes longer in a vacuum. The microwave slow wave material 72 has a function of adjusting the plasma by shortening the wavelength of the microwave. Further, the phase of the microwave changes depending on the thickness of the microwave slow wave material 72. Therefore, by adjusting the phase of the microwave according to the thickness of the microwave slow wave material 72, the planar antenna 71 can be adjusted so as to be at the position of the antinode of the standing wave. As a result, the power of microwaves can be efficiently introduced into the processing container 2.
 マイクロ波透過板73は、誘電体材料によって形成されている。マイクロ波透過板73を形成する誘電体材料としては、例えば石英やセラミックス等が用いられる。マイクロ波透過板73は、マイクロ波をTEモードで効率的に放射することができるような形状をなしている。 The microwave transmission plate 73 is made of a dielectric material. As the dielectric material for forming the microwave transmission plate 73, for example, quartz, ceramics, or the like is used. The microwave transmission plate 73 is shaped so that microwaves can be efficiently radiated in the TE mode.
 次に、図2を参照して、図1に示した天板11の下面11aについて説明する。図2は、実施形態に係る処理容器2の天板11の下面11aの一例を示す図である。 Next, the lower surface 11a of the top plate 11 shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a diagram showing an example of the lower surface 11a of the top plate 11 of the processing container 2 according to the embodiment.
 複数のマイクロ波放射機構63は、7つのマイクロ波放射機構63A~63Gから構成される。マイクロ波放射機構63は、マイクロ波放射機構63A~63Gの総称である。複数のマイクロ波放射機構63は、処理容器2の天壁を構成する天板11に配置され、天板11の中心領域に配置された中心マイクロ波放射機構と、中心マイクロ波放射機構よりも外側の領域に配置された複数の外周マイクロ波放射機構とからなる。マイクロ波放射機構63Gは、天板の中心領域に配置された中心マイクロ波放射機構の一例である。ただし、中心マイクロ波放射機構は、1つに限られず、天板11の中心領域に複数個配置されてもよい。天板11の中心領域は、マイクロ波放射機構63A~63Fよりも径方向に内側の領域であり、マイクロ波放射機構63A~63Fよりも径方向に外側の領域を天板11の外周領域という。 The plurality of microwave radiation mechanisms 63 are composed of seven microwave radiation mechanisms 63A to 63G. The microwave radiation mechanism 63 is a general term for the microwave radiation mechanisms 63A to 63G. The plurality of microwave radiation mechanisms 63 are arranged on the top plate 11 constituting the top wall of the processing container 2, and are outside the central microwave radiation mechanism and the central microwave radiation mechanism arranged in the central region of the top plate 11. It consists of a plurality of outer microwave radiation mechanisms arranged in the region of. The microwave radiation mechanism 63G is an example of a central microwave radiation mechanism arranged in the central region of the top plate. However, the number of central microwave radiation mechanisms is not limited to one, and a plurality of central microwave radiation mechanisms may be arranged in the central region of the top plate 11. The central region of the top plate 11 is a region radially inside the microwave radiation mechanisms 63A to 63F, and a region radially outside the microwave radiation mechanisms 63A to 63F is referred to as an outer peripheral region of the top plate 11.
 マイクロ波放射機構63A~63Fは、中心マイクロ波放射機構よりも外側の領域に配置された複数の外周マイクロ波放射機構の一例である。ただし、複数の外周マイクロ波放射機構は、6つに限られず、複数個配置されてよい。また、マイクロ波放射機構63Gとマイクロ波放射機構63A~63Fの間の領域に、更に別のマイクロ波放射機構を有した構成であってもよい。なお、マイクロ波放射機構63A~63Fの外縁を結ぶ円の径は載置台21の径よりも大きくなっている。 The microwave radiation mechanisms 63A to 63F are examples of a plurality of outer peripheral microwave radiation mechanisms arranged in a region outside the central microwave radiation mechanism. However, the plurality of outer peripheral microwave radiation mechanisms is not limited to six, and a plurality of may be arranged. Further, another microwave radiation mechanism may be provided in the region between the microwave radiation mechanism 63G and the microwave radiation mechanisms 63A to 63F. The diameter of the circle connecting the outer edges of the microwave radiation mechanisms 63A to 63F is larger than the diameter of the mounting table 21.
 マイクロ波放射機構63A~63Gのそれぞれにおいてマイクロ波透過板73A~73Gが処理空間に露出している。マイクロ波透過板73Gは、天板11の下面11aの中心領域から処理空間に露出し、マイクロ波透過板73A~73Fは、その外側の領域から処理空間に露出している。マイクロ波透過板73は円柱形状を有する。 The microwave transmission plates 73A to 73G are exposed in the processing space in each of the microwave radiation mechanisms 63A to 63G. The microwave transmission plate 73G is exposed to the processing space from the central region of the lower surface 11a of the top plate 11, and the microwave transmission plates 73A to 73F are exposed to the processing space from the outer region thereof. The microwave transmission plate 73 has a cylindrical shape.
 すべてのマイクロ波透過板73A~73Gにおいて、互いに隣接する任意の3つのマイクロ波透過板73の中心点間の距離は互いに等しい。ガスノズル16は、外側のマイクロ波透過板73A~73Fと中心のマイクロ波透過板73Gとの間にて径方向及び円周方向に等間隔に配置されている。 In all the microwave transmission plates 73A to 73G, the distances between the center points of any three microwave transmission plates 73 adjacent to each other are equal to each other. The gas nozzles 16 are arranged at equal intervals in the radial direction and the circumferential direction between the outer microwave transmission plates 73A to 73F and the central microwave transmission plate 73G.
 [磁場機構]
 天板11の最外周に位置する複数のマイクロ波放射機構63A~63Fよりも外側の、マイクロ波放射機構63A~63Fに対応する位置には固定磁石80A~80Fが設けられている。固定磁石80A~80Fは、磁場機構80の一例である。固定磁石80A~80Fは、マイクロ波放射機構63A~63Fに対して一対一に配置されている。
[Magnetic field mechanism]
Fixed magnets 80A to 80F are provided at positions corresponding to the microwave radiation mechanisms 63A to 63F, which are outside the plurality of microwave radiation mechanisms 63A to 63F located on the outermost periphery of the top plate 11. The fixed magnets 80A to 80F are examples of the magnetic field mechanism 80. The fixed magnets 80A to 80F are arranged one-to-one with respect to the microwave radiation mechanisms 63A to 63F.
 固定磁石80A~80Fは円弧状である。複数のマイクロ波放射機構63A~63Fと固定磁石80A~80Fとは同数であることが好ましいが、これに限らない。例えば、固定磁石80Aを、図2に示すマイクロ波放射機構63Aの外側の位置に複数に分割して配置してもよい。 The fixed magnets 80A to 80F are arcuate. It is preferable that the number of the plurality of microwave radiation mechanisms 63A to 63F and the fixed magnets 80A to 80F are the same, but the number is not limited to this. For example, the fixed magnet 80A may be divided and arranged in a plurality of positions outside the microwave radiation mechanism 63A shown in FIG.
 例えば、マイクロ波放射機構63Gの中心cと外周側のマイクロ波放射機構63A~63Fの各中心eとを通る線上に固定磁石80A~80Fの円弧の中心が位置するように固定磁石80A~80Fを配置してもよい。 For example, the fixed magnets 80A to 80F are placed so that the center of the arc of the fixed magnets 80A to 80F is located on the line passing through the center c of the microwave radiation mechanism 63G and the respective centers e of the microwave radiation mechanisms 63A to 63F on the outer peripheral side. It may be arranged.
 固定磁石80A~80Fの円弧状の長手方向の長さDは、マイクロ波透過板73の直径φ1よりも若干長い。ただし、固定磁石80A~80Fの円弧状の長手方向の長さDは、マイクロ波透過板73の直径φ1と概ね同じ長さであってもよい。固定磁石80A~80Fの長さDが長すぎると、隣接する固定磁石の磁場と干渉してしまう。固定磁石80A~80Fの長さDが短すぎると、磁場の効果が小さくなる。よって、隣接する固定磁石の磁場との干渉を防止しつつ、プラズマ密度分布を制御するために、固定磁石80A~80Fの幅(円弧の長さ)とマイクロ波透過板73の直径とは概ね同じ寸法が好ましい。なお、固定磁石80A~80Fは、直線状であってもよい。 The arcuate length D of the fixed magnets 80A to 80F in the longitudinal direction is slightly longer than the diameter φ1 of the microwave transmission plate 73. However, the arcuate length D of the fixed magnets 80A to 80F in the longitudinal direction may be substantially the same as the diameter φ1 of the microwave transmission plate 73. If the length D of the fixed magnets 80A to 80F is too long, it will interfere with the magnetic field of the adjacent fixed magnets. If the length D of the fixed magnets 80A to 80F is too short, the effect of the magnetic field becomes small. Therefore, in order to control the plasma density distribution while preventing interference with the magnetic field of the adjacent fixed magnet, the width (length of the arc) of the fixed magnets 80A to 80F and the diameter of the microwave transmission plate 73 are substantially the same. Dimensions are preferred. The fixed magnets 80A to 80F may be linear.
 固定磁石80A~80Fのそれぞれは、対応するマイクロ波放射機構63A~63Fのそれぞれの下方(例えば、天板下の5mm程度)に生成される表面波プラズマを独立して制御する。例えば、固定磁石80Aは、対応するマイクロ波放射機構63Aの下方に生成される表面波プラズマを独立して制御する。例えば、図2に示す固定磁石80Aと固定磁石80Bとの間や、マイクロ波透過板73Aとマイクロ波透過板73Bとの間の位置に、磁石を配置しても、マイクロ波放射機構63下の表面波プラズマを独立して制御できない。例えば、マイクロ波透過板73A、73Bの間の位置に磁石を配置すると、磁場機構80が、両方のマイクロ波放射機構63A、63B下の表面波プラズマに対して影響を及ぼしてしまうためである。また、隣接するマイクロ波透過板73の間に固定磁石を置いた場合、隣接するマイクロ波放射機構63の間のプラズマ密度はそれほど高くないため、磁石によるプラズマ密度の制御効果は低い。以上から、磁場機構80は、各マイクロ波放射機構63A~63Fに対して一対一に、円周方向に間欠的に配置し、できるだけプラズマを励起している各マイクロ波放射機構63A~63Fの近傍に配置することが好ましい。以上から、固定磁石は、隣接するマイクロ波放射機構63の間又は隣接する固定磁石の間には配置されない。磁場機構80は、各マイクロ波放射機構63A~63Fの外周領域であって、各マイクロ波放射機構63よりも外側から天板11の上面11bの端部までの領域に配置される(図1参照)。 Each of the fixed magnets 80A to 80F independently controls the surface wave plasma generated below each of the corresponding microwave radiation mechanisms 63A to 63F (for example, about 5 mm below the top plate). For example, the fixed magnet 80A independently controls the surface wave plasma generated below the corresponding microwave radiation mechanism 63A. For example, even if the magnet is placed between the fixed magnet 80A and the fixed magnet 80B shown in FIG. 2 or between the microwave transmitting plate 73A and the microwave transmitting plate 73B, the magnet is placed under the microwave radiation mechanism 63. Surface wave plasma cannot be controlled independently. For example, if the magnet is arranged at a position between the microwave transmission plates 73A and 73B, the magnetic field mechanism 80 affects the surface wave plasma under both the microwave radiation mechanisms 63A and 63B. Further, when the fixed magnet is placed between the adjacent microwave transmission plates 73, the plasma density between the adjacent microwave radiation mechanisms 63 is not so high, so that the effect of controlling the plasma density by the magnet is low. From the above, the magnetic field mechanism 80 is arranged intermittently in the circumferential direction on a one-to-one basis with respect to the microwave radiation mechanisms 63A to 63F, and is in the vicinity of the microwave radiation mechanisms 63A to 63F that excite the plasma as much as possible. It is preferable to place it in. From the above, the fixed magnet is not arranged between the adjacent microwave radiation mechanisms 63 or between the adjacent fixed magnets. The magnetic field mechanism 80 is an outer peripheral region of each microwave radiation mechanism 63A to 63F, and is arranged in a region from the outside of each microwave radiation mechanism 63 to the end of the upper surface 11b of the top plate 11 (see FIG. 1). ).
 また、中央のマイクロ波放射機構63Gと外周のマイクロ波放射機構63A~63Fとの間に固定磁石80A~80Fを置くと、固定磁石80A~80Fの影響により中央のマイクロ波放射機構63Gの下方のプラズマに影響を与えてしまう。これを避けるために、固定磁石80A~80Fは、中央のマイクロ波放射機構63Gと外周のマイクロ波放射機構63A~63Fとの間には配置されない。即ち、最外周に位置するマイクロ波放射機構の外側に磁場機構80は配置される。 Further, when the fixed magnets 80A to 80F are placed between the central microwave radiation mechanism 63G and the outer peripheral microwave radiation mechanisms 63A to 63F, the influence of the fixed magnets 80A to 80F is below the central microwave radiation mechanism 63G. It affects the plasma. In order to avoid this, the fixed magnets 80A to 80F are not arranged between the central microwave radiation mechanism 63G and the outer microwave radiation mechanisms 63A to 63F. That is, the magnetic field mechanism 80 is arranged outside the microwave radiation mechanism located on the outermost circumference.
 本実施形態では、固定磁石80A~80Fのそれぞれの円弧の中心は、マイクロ波放射機構63Gの中心cに一致する。マイクロ波放射機構63Gの中心cは天板11の中心と一致する。このように、磁場機構80のそれぞれの円弧の中心は、天板11の中心に一致してもよい。また、固定磁石80A~80Fのそれぞれの円弧の中心は、対応するマイクロ波放射機構63A~63F(マイクロ波透過板73A~73F)の中心eに一致していてもよい。なお、「中心に一致」とは、中心に略一致する場合を含む。 In the present embodiment, the center of each arc of the fixed magnets 80A to 80F coincides with the center c of the microwave radiation mechanism 63G. The center c of the microwave radiation mechanism 63G coincides with the center of the top plate 11. As described above, the center of each arc of the magnetic field mechanism 80 may coincide with the center of the top plate 11. Further, the center of each arc of the fixed magnets 80A to 80F may coincide with the center e of the corresponding microwave radiation mechanisms 63A to 63F (microwave transmission plates 73A to 73F). In addition, "matching with the center" includes the case of substantially matching with the center.
 [磁場機構の機能]
 天板11の外周領域では、天板11の中心領域と比較してプラズマ密度が低下し易い。特に処理容器2の側壁の近傍にてプラズマ密度が低下する。基板Wへ均一なプラズマ処理を行うためにできる限り処理容器2の側壁側でのプラズマ密度の低下を抑制し、プラズマ密度分布を均一にすることが要求される。
[Function of magnetic field mechanism]
In the outer peripheral region of the top plate 11, the plasma density tends to decrease as compared with the central region of the top plate 11. In particular, the plasma density decreases in the vicinity of the side wall of the processing container 2. In order to perform uniform plasma treatment on the substrate W, it is required to suppress a decrease in plasma density on the side wall side of the processing container 2 as much as possible and to make the plasma density distribution uniform.
 係る要求に対して、処理容器2を物理的に大きくし、マイクロ波放射機構63A~63Fを処理容器2の側壁から遠ざけ、基板上におけるプラズマ密度分布の均一性を図ることが考えられる。しかし、そうすると処理容器2が大型化し、処理容器2内のバランスが崩れることによりプロセスの均一性が図れない場合が生じる。このため、処理容器2の大きさは極力変えずに、処理容器2の側壁側でのプラズマ密度の低下を抑制したい。 In response to this requirement, it is conceivable to physically increase the processing container 2 and move the microwave radiation mechanisms 63A to 63F away from the side wall of the processing container 2 to achieve uniformity of plasma density distribution on the substrate. However, in that case, the processing container 2 becomes large and the balance in the processing container 2 is lost, so that the process uniformity may not be achieved. Therefore, it is desired to suppress a decrease in plasma density on the side wall side of the processing container 2 without changing the size of the processing container 2 as much as possible.
 そこで、本実施形態では、マイクロ波放射機構63A~63Fの下方で生成される各プラズマの仮想的な中心軸を外側にずらすことで、プラズマ密度分布を外側に広げる。そのために、磁場機構80を、各マイクロ波放射機構63A~63Fに対応して配置する。これにより、磁場機構80の働きによってプラズマ密度のピークを外側にずらし、処理容器2の側壁近傍におけるプラズマ密度の低下を抑制する。 Therefore, in the present embodiment, the plasma density distribution is expanded to the outside by shifting the virtual central axis of each plasma generated below the microwave radiation mechanisms 63A to 63F to the outside. Therefore, the magnetic field mechanism 80 is arranged corresponding to each microwave radiation mechanism 63A to 63F. As a result, the peak of the plasma density is shifted to the outside by the action of the magnetic field mechanism 80, and the decrease in the plasma density in the vicinity of the side wall of the processing container 2 is suppressed.
 ただし、磁場機構80の働きによりプラズマ密度のピークを外側にずらすだけでなく、内側にずらすこともできる。 However, the magnetic field mechanism 80 can not only shift the peak of the plasma density outward, but also shift it inward.
 なお、マイクロ波放射機構63Gに対応する磁場機構80は設けない。マイクロ波放射機構63Gが配置される中心領域では、プラズマの中心軸を中心cからずらすと、全体のプラズマ密度分布が乱れるためである。 The magnetic field mechanism 80 corresponding to the microwave radiation mechanism 63G is not provided. This is because in the central region where the microwave radiation mechanism 63G is arranged, if the central axis of the plasma is deviated from the center c, the entire plasma density distribution is disturbed.
 本実施形態に係る磁場機構80は、前述した固定磁石80A~80Fに限られず、電磁石であってもよい。図3A及び図3Bは、天板11の上面11bに配置された磁場機構80の一例を示す。図3Aは、磁場機構80が固定磁石80A~80Fである場合、図3Bは、磁場機構80が電磁石80a~80fである場合を示す。図3A及び図3Bでは、天板11の上面11bに配置されたマイクロ波遅波材72A~72G以外のマイクロ波放射機構63A~63Gの構造は除いて図示している。 The magnetic field mechanism 80 according to the present embodiment is not limited to the fixed magnets 80A to 80F described above, and may be an electromagnet. 3A and 3B show an example of the magnetic field mechanism 80 arranged on the upper surface 11b of the top plate 11. FIG. 3A shows a case where the magnetic field mechanism 80 is a fixed magnet 80A to 80F, and FIG. 3B shows a case where the magnetic field mechanism 80 is an electromagnet 80a to 80f. 3A and 3B are shown except for the structures of the microwave radiation mechanisms 63A to 63G other than the microwave slow wave materials 72A to 72G arranged on the upper surface 11b of the top plate 11.
 処理容器2内に生成されたプラズマ密度分布を全体として磁石で動かそうとすると、プラズマ全体を囲う大型の磁石が必要になる。例えば、処理容器2の直径よりも大きい環状の磁石を処理容器2の側壁の外側に設けることが一例として挙げられる。 If the plasma density distribution generated in the processing container 2 is to be moved by a magnet as a whole, a large magnet surrounding the entire plasma is required. For example, an annular magnet having a diameter larger than that of the processing container 2 may be provided on the outside of the side wall of the processing container 2.
 これに対して、本実施形態では、各磁場機構80が、マイクロ波放射機構63A~63Fの下方に生成されたプラズマ密度分布の中心軸をずらすように機能する。例えば、6つの固定磁石80A~80Fのそれぞれが、図3Aに示す6つマイクロ波遅波材72A~72F(マイクロ波放射機構63A~63F)の下方のプラズマ密度分布の中心軸をそれぞれずらすように機能する。よって、実施形態では、マイクロ波放射機構63A~63Gの下方に生成されたプラズマの全体を囲う大型の磁石は不要であり、大規模な構造にならず、コストを軽減できる。 On the other hand, in the present embodiment, each magnetic field mechanism 80 functions to shift the central axis of the plasma density distribution generated below the microwave radiation mechanisms 63A to 63F. For example, each of the six fixed magnets 80A to 80F shifts the central axis of the plasma density distribution below the six microwave slow wave materials 72A to 72F (microwave radiation mechanism 63A to 63F) shown in FIG. 3A. Function. Therefore, in the embodiment, a large magnet that surrounds the entire plasma generated below the microwave radiation mechanisms 63A to 63G is unnecessary, the structure does not become large, and the cost can be reduced.
 「プラズマ密度分布の中心軸をずらす」とは、図3Aの例では、固定磁石80A~80Fのそれぞれが、近接するマイクロ波遅波材72A~72F(マイクロ波放射機構63A~63F)の下方に生成されるプラズマ密度分布の中心軸を移動させることをいう。プラズマ密度分布の中心軸をずらした結果、プラズマ密度分布を変えることができる。 In the example of FIG. 3A, "shifting the central axis of the plasma density distribution" means that the fixed magnets 80A to 80F are located below the adjacent microwave slow wave materials 72A to 72F (microwave radiation mechanism 63A to 63F). It means moving the central axis of the generated plasma density distribution. As a result of shifting the central axis of the plasma density distribution, the plasma density distribution can be changed.
 図3Bの例では、電磁石80a~80fのそれぞれが、近接するマイクロ波遅波材72A~72F(マイクロ波放射機構63A~63F)の下方のプラズマ密度分布の中心軸を移動させることをいう。プラズマ密度分布の中心軸をずらした結果、プラズマ密度分布を変えることができる。 In the example of FIG. 3B, it means that each of the electromagnets 80a to 80f moves the central axis of the plasma density distribution below the adjacent microwave slow wave materials 72A to 72F (microwave radiation mechanism 63A to 63F). As a result of shifting the central axis of the plasma density distribution, the plasma density distribution can be changed.
 図4A及び図4Bは、実施形態に係る磁場機構80によるプラズマ密度分布の制御の一例を示す図である。この例では、磁場機構80に図3Aの固定磁石80A~80Fを使用した。固定磁石80A~80FのS極及びN極の向きは、マイクロ波放射機構63の下方に生成されるプラズマ密度分布の中心軸が天板11の外側に移動する方向に設定した。つまり、マイクロ波放射機構63から放射されるマイクロ波により生成されたプラズマ中の電子において、天板11へ向かう電子群に対して、天板11の外側へ向かう力を与える磁場を形成するように固定磁石80A~80Fを配置する。これにより、プラズマが天板11の外側へ向かう力に作用され、図4Aに示すマイクロ波放射機構63の下方に生成されるプラズマ分布Pの中心軸Aが、固定磁石80A~80Fを配置することで、図4Bに示すプラズマ分布Pの中心軸A’に移動する。なお、図4Bには、固定磁石80Aのみを図示している。 4A and 4B are diagrams showing an example of control of plasma density distribution by the magnetic field mechanism 80 according to the embodiment. In this example, the fixed magnets 80A to 80F of FIG. 3A were used for the magnetic field mechanism 80. The directions of the S pole and the N pole of the fixed magnets 80A to 80F were set so that the central axis of the plasma density distribution generated below the microwave radiation mechanism 63 moves to the outside of the top plate 11. That is, in the electrons in the plasma generated by the microwave emitted from the microwave radiation mechanism 63, a magnetic field that gives a force toward the outside of the top plate 11 is formed for the electron group toward the top plate 11. Fixed magnets 80A to 80F are arranged. As a result, the plasma is acted on by the force toward the outside of the top plate 11, and the central axis A of the plasma distribution P generated below the microwave radiation mechanism 63 shown in FIG. 4A arranges the fixed magnets 80A to 80F. Then, it moves to the central axis A'of the plasma distribution P shown in FIG. 4B. Note that FIG. 4B shows only the fixed magnet 80A.
 図5Bは、実施形態に係る磁場機構80によるプラズマ密度分布の制御の実験結果の一例を示す図である。この実験では、磁場機構80に図3Aの固定磁石80A~80Fを使用した。プラズマ処理装置1を用いてプラズマを生成する際のプロセス条件としては、Nガスを供給し、処理容器2内の圧力を10Paに制御し、マイクロ波出力部50から400Wのパワーのマイクロ波を出力した。 FIG. 5B is a diagram showing an example of an experimental result of controlling the plasma density distribution by the magnetic field mechanism 80 according to the embodiment. In this experiment, the fixed magnets 80A to 80F of FIG. 3A were used for the magnetic field mechanism 80. As the process conditions for generating plasma using the plasma processing device 1, N2 gas is supplied, the pressure in the processing container 2 is controlled to 10 Pa, and microwaves having a power of 400 W are generated from the microwave output unit 50. Output.
 図5Aは、実施形態に係る磁場機構によるプラズマ密度分布の制御結果を説明するための図である。固定磁石80A~80Fが配置されていない場合、図5Aに示すマイクロ波放射機構63の下方に生成されるプラズマ(図示せず)の中心Aはずれない。この場合に、マイクロ波放射により生成されるプラズマ中の電流(電子飽和電流)をプローブで計測した。その結果、図5Bの曲線Jに示すように、縦軸の電子飽和電流のピークは、横軸の各マイクロ波透過板73A~73Fの中心(0mm:図2の中心e参照)にあり、中心eに対して天板11の外側と中心側(150mm、-150mm)に向かって低下するプラズマ密度分布が計測された。プラズマ中では電子温度はほぼ一様であり、電子温度が一様であれば電子飽和電流はプラズマ密度に比例する。よって、横軸の各マイクロ波透過板73A~73Fの中心e(0mm)にプラズマ密度(電子密度)のピークがあり、中心eに対して天板11の外側と中心側に向かってプラズマ密度が低下するプラズマ密度分布となった。 FIG. 5A is a diagram for explaining the control result of the plasma density distribution by the magnetic field mechanism according to the embodiment. When the fixed magnets 80A to 80F are not arranged, the center A of the plasma (not shown) generated below the microwave radiation mechanism 63 shown in FIG. 5A cannot be displaced. In this case, the current (electron saturation current) in the plasma generated by microwave radiation was measured with a probe. As a result, as shown by the curve J in FIG. 5B, the peak of the electron saturation current on the vertical axis is located at the center of each microwave transmission plate 73A to 73F on the horizontal axis (0 mm: see the center e in FIG. 2). The plasma density distribution that decreased toward the outside and the center side (150 mm, −150 mm) of the top plate 11 with respect to e was measured. In plasma, the electron temperature is almost uniform, and if the electron temperature is uniform, the electron saturation current is proportional to the plasma density. Therefore, there is a peak of plasma density (electron density) at the center e (0 mm) of each microwave transmission plate 73A to 73F on the horizontal axis, and the plasma density increases toward the outside and the center side of the top plate 11 with respect to the center e. The plasma density distribution decreased.
 これに対して、固定磁石80A~80Fがプラズマ密度分布を天板11の外側へ向かう力を与える磁場を発生させるように配置することで、プラズマ密度分布の中心軸を図5(Aに示す中心AからA’に移動させた。この場合、図5Bの曲線Kに示すように、縦軸の電子飽和電流のピークは、横軸の各マイクロ波透過板73A~73Fの中心e(0mm)よりも右側(天板11の外側)にずれ、天板11の外側と中心側に向かって低下する分布が見られた。つまり、横軸の各マイクロ波透過板73A~73Fの中心よりも右側にプラズマ密度(電子密度)のピークがあり、プラズマ密度分布が右側へシフトした。 On the other hand, by arranging the fixed magnets 80A to 80F so as to generate a magnetic field that gives a force toward the outside of the top plate 11 for the plasma density distribution, the central axis of the plasma density distribution is set to the center shown in FIG. 5 (A). It was moved from A to A'. In this case, as shown by the curve K in FIG. 5B, the peak of the electron saturation current on the vertical axis is from the center e (0 mm) of each microwave transmission plate 73A to 73F on the horizontal axis. Also shifted to the right side (outside of the top plate 11), and a distribution was observed that decreased toward the outside and the center side of the top plate 11. That is, on the right side of the center of each microwave transmission plate 73A to 73F on the horizontal axis. There was a peak in plasma density (electron density), and the plasma density distribution shifted to the right.
 磁場機構80の固定磁石がプラズマ密度分布を天板11の内側へ向かう力を与える磁場を発生させるように固定磁石のS極とN極の向きを逆にした。これにより、プラズマ密度分布の中心軸を図5Aに示す中心AからA’’に移動させた。この場合、図5Bの曲線Iに示すように、縦軸の電子飽和電流のピークは、横軸の各マイクロ波透過板73A~73Fの中心e(0mm)よりも左側(天板11の内側)にずれ、天板11の外側と中心側に向かって低下する分布が見られた。つまり、横軸の各マイクロ波透過板73A~73Fの中心よりも左側にプラズマ密度(電子密度)のピークがあり、プラズマ密度分布が左側へシフトした。 The directions of the S pole and the N pole of the fixed magnet were reversed so that the fixed magnet of the magnetic field mechanism 80 generated a magnetic field that gave a force to the plasma density distribution toward the inside of the top plate 11. As a result, the central axis of the plasma density distribution was moved from the center A shown in FIG. 5A to A ″. In this case, as shown by the curve I in FIG. 5B, the peak of the electron saturation current on the vertical axis is on the left side (inside of the top plate 11) of the center e (0 mm) of the microwave transmission plates 73A to 73F on the horizontal axis. A distribution was observed in which the top plate 11 was displaced toward the outside and toward the center. That is, the plasma density (electron density) peak was on the left side of the center of each microwave transmission plate 73A to 73F on the horizontal axis, and the plasma density distribution was shifted to the left side.
 以上から、本実施形態に係る磁場機構80によれば外周のマイクロ波放射機構63の下方に生成されるプラズマ毎に、プラズマ密度分布の中心軸を処理容器2の外側又は内側に移動させる。これにより、プラズマ密度分布を処理容器2の外側に広げたり、内側に集中させたりしてプラズマ密度分布を制御できる。この結果、プロセス条件に応じてプラズマ密度分布の制御を行うことで、プロセスの基板面内における均一性の向上を図ることができる。 From the above, according to the magnetic field mechanism 80 according to the present embodiment, the central axis of the plasma density distribution is moved to the outside or the inside of the processing container 2 for each plasma generated below the microwave radiation mechanism 63 on the outer periphery. Thereby, the plasma density distribution can be controlled by expanding the plasma density distribution to the outside of the processing container 2 or concentrating the plasma density distribution on the inside. As a result, by controlling the plasma density distribution according to the process conditions, it is possible to improve the uniformity of the process in the substrate surface.
 次に、磁場機構80が図3Bに示す電磁石80a~80fの場合のプラズマ密度分布の制御について、図3B、図5A及び図5Bを参照して説明する。磁場機構80に電磁石80a~80fを使用する場合、図3Bに示すように、電磁石80a~80fにはコイルを使用する。また、電磁石80a~80fを制御する電気回路81を有する(図3Bでは電磁石80aを制御する電気回路81のみ図示)。 Next, the control of the plasma density distribution when the magnetic field mechanism 80 is the electromagnets 80a to 80f shown in FIG. 3B will be described with reference to FIGS. 3B, 5A and 5B. When the electromagnets 80a to 80f are used for the magnetic field mechanism 80, as shown in FIG. 3B, a coil is used for the electromagnets 80a to 80f. Further, it has an electric circuit 81 for controlling the electromagnets 80a to 80f (only the electric circuit 81 for controlling the electromagnets 80a is shown in FIG. 3B).
 電気回路81は、電磁石80a~80fの各コイルにそれぞれ接続されている。各電気回路81は、スイッチ82a、82b及び可変電圧直流電源83a、83bを有する。スイッチ82a及び可変電圧直流電源83aと、スイッチ82b及び可変電圧直流電源83bとは並列に接続されている。 The electric circuit 81 is connected to each coil of the electromagnets 80a to 80f. Each electric circuit 81 has switches 82a and 82b and variable voltage DC power supplies 83a and 83b. The switch 82a and the variable voltage DC power supply 83a are connected in parallel to the switch 82b and the variable voltage DC power supply 83b.
 磁場機構80が、図3Bに示す電磁石80a~80fの場合、電磁石80a~80fのコイルに流す電流の向きによってプラズマ密度分布を外側に広げるか、又は内側に集中させるかを制御できる。以下では、電磁石80aについて制御する例を説明する。 When the magnetic field mechanism 80 is the electromagnets 80a to 80f shown in FIG. 3B, it is possible to control whether the plasma density distribution is widened outward or concentrated inward depending on the direction of the current flowing through the coils of the electromagnets 80a to 80f. Hereinafter, an example of controlling the electromagnet 80a will be described.
 図5Aの例では、電磁石80aに紙面の奥側から表側へ磁場Hが発生するようにコイルに電流を流す。この場合、フレミングの左手の法則により、マイクロ波放射機構63から放射されるマイクロ波の表面波の電界により生成されたプラズマ中の電子に対して、図5Aの矢印に示すように、外側に向かってローレンツ力Fが働く。このローレンツ力Fによりプラズマに外側に向かう力が働く。その結果、マイクロ波放射機構63の下方に生成されるプラズマ密度分布の中心軸が、図5Aに示すようにAからA’にずれる。このとき、電子飽和電流をプローブで計測すると、図5Bの曲線Kに示すように、縦軸の電子飽和電流のピークは、横軸の各マイクロ波透過板73A~73Fの中心から右側にずれる分布となった。つまり、プラズマ中では電子温度はほぼ一様であり、電子温度が一様であれば電子飽和電流はプラズマ密度に比例することから、電磁石80aに紙面の奥側から表側へ磁場Hが発生するように電磁石80aのコイルに電流を流すことで、プラズマ密度分布を処理容器2の外側に広げるように制御できた。 In the example of FIG. 5A, a current is passed through the coil so that a magnetic field H is generated from the back side of the paper surface to the front side of the electromagnet 80a. In this case, according to Fleming's left-hand rule, the electrons in the plasma generated by the electric field of the surface wave of the microwave radiated from the microwave radiation mechanism 63 are directed outward as shown by the arrow in FIG. 5A. Lorentz force F works. Due to this Lorentz force F, an outward force acts on the plasma. As a result, the central axis of the plasma density distribution generated below the microwave radiation mechanism 63 shifts from A to A'as shown in FIG. 5A. At this time, when the electron saturation current is measured by the probe, as shown in the curve K in FIG. 5B, the peak of the electron saturation current on the vertical axis is distributed to the right from the center of each microwave transmission plate 73A to 73F on the horizontal axis. It became. That is, the electron temperature is almost uniform in the plasma, and if the electron temperature is uniform, the electron saturation current is proportional to the plasma density. Therefore, the magnetic field H is generated from the back side to the front side of the paper surface in the electromagnet 80a. By passing a current through the coil of the electromagnet 80a, it was possible to control the plasma density distribution to be widened to the outside of the processing container 2.
 一方、内側(処理容器2の中心側)にローレンツ力Fが働くためには、電磁石80aに紙面の表側から奥側へ磁場Hが発生するようにコイルに電流を流す。この場合、マイクロ波放射機構63から放射されるマイクロ波の表面波の電界により生成されたプラズマ中の電子に対して、図5Aの矢印とは逆向きの内側に向かうローレンツ力Fによりプラズマに内側に向かう力が働く。その結果、マイクロ波放射機構63の下方に生成されるプラズマ密度分布の中心軸が、図5Aに示すようにAからA’’にずれる。この場合、電子飽和電流をプローブで計測すると、図5Bの曲線Iに示すように、縦軸の電子飽和電流のピークは、横軸の各マイクロ波透過板73A~73Fの中心から左側にずれる分布となった。つまり、プラズマ中では電子温度はほぼ一様であり、電子温度が一様であれば電子飽和電流はプラズマ密度に比例することから、電磁石80aに紙面の表側から奥側へ磁場Hが発生するように電磁石80aのコイルに電流を流すことで、プラズマ密度分布を処理容器2の内側に集中させるように制御できた。 On the other hand, in order for the Lorentz force F to act on the inside (center side of the processing container 2), a current is passed through the coil so that the magnetic field H is generated from the front side to the back side of the paper surface on the electromagnet 80a. In this case, with respect to the electrons in the plasma generated by the electric field of the surface wave of the microwave radiated from the microwave radiation mechanism 63, the Lorentz force F inward in the direction opposite to the arrow in FIG. 5A causes the inside of the plasma. The force to go to works. As a result, the central axis of the plasma density distribution generated below the microwave radiation mechanism 63 shifts from A to A ″ as shown in FIG. 5A. In this case, when the electron saturation current is measured by the probe, as shown in the curve I of FIG. 5B, the peak of the electron saturation current on the vertical axis is distributed to the left from the center of each microwave transmission plate 73A to 73F on the horizontal axis. It became. That is, the electron temperature is almost uniform in the plasma, and if the electron temperature is uniform, the electron saturation current is proportional to the plasma density. Therefore, the magnetic field H is generated from the front side to the back side of the paper surface in the electromagnet 80a. By passing a current through the coil of the electromagnet 80a, the plasma density distribution could be controlled to be concentrated inside the processing container 2.
 図3Bの例では、電気回路81のスイッチ82aをオフにし、スイッチ82bをオンにした状態で、可変電圧直流電源83bから電磁石80aのコイルに電流を供給する。右ネジの法則により図3Bに示す矢印Bの方向、つまり、コイルの左から右の方向にコイル内では磁場が発生する。このとき、フレミングの左手の法則により、プラズマ中の電子に対して、ローレンツ力Fは内側に向かって働く。この結果、マイクロ波遅波材72A(マイクロ波放射機構63A)の下方のプラズマ密度分布の中心軸が内側にずれる。外周のマイクロ波遅波材72A~72F(マイクロ波放射機構63A~63F)のいずれも同じ制御を行うことで、マイクロ波放射機構63A~63Fのそれぞれの下方のプラズマ密度分布の中心軸が内側にずれる。この結果、プラズマ密度分布の全体を処理容器2の内側に集中させるように制御できる。 In the example of FIG. 3B, a current is supplied from the variable voltage DC power supply 83b to the coil of the electromagnet 80a with the switch 82a of the electric circuit 81 turned off and the switch 82b turned on. According to the right-handed screw rule, a magnetic field is generated in the coil in the direction of arrow B shown in FIG. 3B, that is, in the direction from the left to the right of the coil. At this time, according to Fleming's left-hand rule, the Lorentz force F acts inward with respect to the electrons in the plasma. As a result, the central axis of the plasma density distribution below the microwave slow wave material 72A (microwave radiation mechanism 63A) shifts inward. By performing the same control for all of the microwave slow wave materials 72A to 72F (microwave radiation mechanism 63A to 63F) on the outer circumference, the central axis of the plasma density distribution below each of the microwave radiation mechanisms 63A to 63F is inward. It shifts. As a result, the entire plasma density distribution can be controlled to be concentrated inside the processing container 2.
 プラズマ密度分布を外側に広げる効果を得るには、スイッチ82aをオンにし、スイッチ82bをオフにした状態で、可変電圧直流電源83aから電磁石80aのコイルに電流を供給する。この場合、図3Bに示す矢印Bと反対の方向、つまり、コイルの右から左の方向にコイル内では磁場が発生する。このとき、プラズマ中の電子に対するローレンツ力Fは外側に向かって働く。この結果、マイクロ波遅波材72A(マイクロ波放射機構63A)の下方のプラズマ密度分布の中心軸が外側にずれる。外周のマイクロ波遅波材72A~72F(マイクロ波放射機構63A~63F)のいずれも同じ制御を行うことで、マイクロ波放射機構63A~63Fのそれぞれの下方のプラズマ密度分布の中心軸が外側にずれる。この結果、プラズマ密度分布の全体を処理容器2の外側に広げるように制御できる。 To obtain the effect of widening the plasma density distribution to the outside, a current is supplied from the variable voltage DC power supply 83a to the coil of the electromagnet 80a with the switch 82a turned on and the switch 82b turned off. In this case, a magnetic field is generated in the coil in the direction opposite to the arrow B shown in FIG. 3B, that is, in the direction from the right to the left of the coil. At this time, the Lorentz force F with respect to the electrons in the plasma acts outward. As a result, the central axis of the plasma density distribution below the microwave slow wave material 72A (microwave radiation mechanism 63A) shifts outward. By performing the same control for all of the microwave slow wave materials 72A to 72F (microwave radiation mechanism 63A to 63F) on the outer periphery, the central axis of the plasma density distribution below each of the microwave radiation mechanisms 63A to 63F is outward. It shifts. As a result, the entire plasma density distribution can be controlled to spread outside the processing container 2.
 なお、可変電圧直流電源83a、83bから出力する電圧の大きさを可変に制御することで、各プラズマ密度分布の中心軸からのずれの大きさを制御できる。よって、制御部8は、スイッチ82a、82b及び/又は可変電圧直流電源83a、83bを制御することで電磁石80a~80fに印加する電圧の極性及び/又はパワーを制御することで、プラズマ密度分布を制御できる。 By variably controlling the magnitude of the voltage output from the variable voltage DC power supplies 83a and 83b, the magnitude of the deviation of each plasma density distribution from the central axis can be controlled. Therefore, the control unit 8 controls the polarities and / or powers of the voltages applied to the electromagnets 80a to 80f by controlling the switches 82a and 82b and / or the variable voltage DC power supplies 83a and 83b to control the plasma density distribution. Can be controlled.
 [磁場機構の配置]
 次に、磁場機構80の配置について、図6A及び図6Bを参照しながら説明する。図6A及び図6Bは、実施形態に係る磁場機構80の配置例を示す図である。複数の磁場機構80は、図1に示すように、マイクロ波放射機構63に対応してマイクロ波放射機構63の外側の天板11の上面11b上に配置されてもよい。また、図6Aに示すように、マイクロ波放射機構63の外側の天板11の上面11bに形成された溝に一部を埋め込むように配置してもよい。更に、図6Bに示すように、マイクロ波放射機構63の外側の天板11の内部に埋設してもよい。
[Arrangement of magnetic field mechanism]
Next, the arrangement of the magnetic field mechanism 80 will be described with reference to FIGS. 6A and 6B. 6A and 6B are diagrams showing an arrangement example of the magnetic field mechanism 80 according to the embodiment. As shown in FIG. 1, the plurality of magnetic field mechanisms 80 may be arranged on the upper surface 11b of the top plate 11 outside the microwave radiation mechanism 63 corresponding to the microwave radiation mechanism 63. Further, as shown in FIG. 6A, a part may be arranged so as to be partially embedded in the groove formed in the upper surface 11b of the top plate 11 outside the microwave radiation mechanism 63. Further, as shown in FIG. 6B, it may be embedded inside the top plate 11 outside the microwave radiation mechanism 63.
 磁場機構80は、マイクロ波放射機構63の外側であって、マイクロ波放射機構63の下方に生成されるプラズマにできるだけ近くなる天板11の位置に置くことが好ましい。ただし、天板11内に埋め込むときには、電磁石80a~80fのコイルをセラミックスなどの絶縁物で覆うことが好ましい。なお、磁場機構80をマイクロ波放射機構63に対応する天板11の側部に配置してもよい。ただし、磁場機構80を側部に配置すると、マイクロ波放射機構63から離れ、かつプラズマの拡散領域(つまり、表面波プラズマの生成領域ではない)に磁場機構80を配置するため、プラズマ密度分布の中心軸をずらす効果は低くなる。また、マイクロ波により表面波プラズマが生成されるため、プラズマ生成領域である天板11の下面11aの近傍に磁場機構80を設けることで最も高い効果を得られる。 The magnetic field mechanism 80 is preferably placed at the position of the top plate 11 which is outside the microwave radiation mechanism 63 and is as close as possible to the plasma generated below the microwave radiation mechanism 63. However, when embedding in the top plate 11, it is preferable to cover the coils of the electromagnets 80a to 80f with an insulating material such as ceramics. The magnetic field mechanism 80 may be arranged on the side of the top plate 11 corresponding to the microwave radiation mechanism 63. However, when the magnetic field mechanism 80 is arranged on the side, the magnetic field mechanism 80 is arranged in the plasma diffusion region (that is, not the surface wave plasma generation region) away from the microwave radiation mechanism 63, so that the plasma density distribution is distributed. The effect of shifting the central axis is low. Further, since the surface wave plasma is generated by the microwave, the highest effect can be obtained by providing the magnetic field mechanism 80 in the vicinity of the lower surface 11a of the top plate 11 which is the plasma generation region.
 [制御方法]
 次に、実施形態に係る磁場機構80を用いたプラズマ処理装置1の制御方法の一例について、図7を参照しながら説明する。図7は、実施形態に係るプラズマ処理装置1の制御方法の一例を示すフローチャートである。プラズマ密度分布は、処理容器2内の圧力によって変化する。そこで、処理容器2内の圧力に応じてプラズマ密度分布を制御する。磁場機構80は、固定磁石及び電磁石のいずれの磁石も用いることができる。
[Control method]
Next, an example of the control method of the plasma processing apparatus 1 using the magnetic field mechanism 80 according to the embodiment will be described with reference to FIG. 7. FIG. 7 is a flowchart showing an example of a control method of the plasma processing apparatus 1 according to the embodiment. The plasma density distribution changes depending on the pressure in the processing container 2. Therefore, the plasma density distribution is controlled according to the pressure in the processing container 2. As the magnetic field mechanism 80, either a fixed magnet or an electromagnet can be used.
 本処理が開始されると、制御部8は、処理容器2内の圧力を取得する(ステップS11)。処理容器2内の圧力は、処理容器2に取り付けられた図示しない圧力計により計測されている。次に、制御部8は、取得した処理容器2内の圧力が第1の閾値よりも高いかを判定する(ステップS12)。第1の閾値は、処理容器2内の圧力が高圧領域の値かを判定するために用いられる。 When this process is started, the control unit 8 acquires the pressure in the process container 2 (step S11). The pressure in the processing container 2 is measured by a pressure gauge (not shown) attached to the processing container 2. Next, the control unit 8 determines whether the pressure in the acquired processing container 2 is higher than the first threshold value (step S12). The first threshold value is used to determine whether the pressure in the processing container 2 is a value in the high pressure region.
 制御部8は、処理容器2内の圧力が第1の閾値よりも高いと判定した場合、各マイクロ波透過板73A~73Fに対するプラズマ密度分布の中心が処理容器2の外側に向かう力が働くように磁場機構80を用いて磁場を生成し(ステップS13)、本処理を終了する。処理容器2内の圧力が高圧になるとプラズマが内側に集中する。そこで、磁場機構80を用いて各マイクロ波透過板に対するプラズマ密度分布の中心が処理容器2の外側に向かう力が働くように磁場を生成することで、外周のマイクロ波放射機構63A~63Fのプラズマ密度分布の中心軸を外側にずらし、プラズマ密度分布の変化を抑制するように制御する。これによりプロセスの基板面内における均一性の向上を図ることができる。 When the control unit 8 determines that the pressure inside the processing container 2 is higher than the first threshold value, a force acts so that the center of the plasma density distribution for each microwave transmission plate 73A to 73F acts toward the outside of the processing container 2. A magnetic field is generated using the magnetic field mechanism 80 (step S13), and this process is terminated. When the pressure in the processing container 2 becomes high, the plasma concentrates inward. Therefore, by using the magnetic field mechanism 80 to generate a magnetic field so that the center of the plasma density distribution for each microwave transmission plate acts toward the outside of the processing container 2, the plasma of the outer microwave radiation mechanisms 63A to 63F works. The central axis of the density distribution is shifted outward, and control is performed so as to suppress changes in the plasma density distribution. This makes it possible to improve the uniformity of the process in the substrate surface.
 ステップS12において、制御部8は、処理容器2内の圧力が第1の閾値以下であると判定した場合、次に、取得した処理容器2内の圧力が第2の閾値よりも低いかを判定する(ステップS14)。第2の閾値は、処理容器2内の圧力が低圧領域の値かを判定するために用いられる。 In step S12, when the control unit 8 determines that the pressure in the processing container 2 is equal to or less than the first threshold value, the control unit 8 then determines whether the acquired pressure in the processing container 2 is lower than the second threshold value. (Step S14). The second threshold value is used to determine whether the pressure in the processing vessel 2 is a value in the low pressure region.
 制御部8は、処理容器2内の圧力が第2の閾値よりも低いと判定した場合、各マイクロ波透過板73A~73Fに対するプラズマ密度分布の中心が処理容器2の内側に向かう力が働くように磁場機構80を用いて磁場を生成し(ステップS15)、本処理を終了する。処理容器2内の圧力が低圧になるとプラズマが外側に集中する。そこで、磁場機構80を用いて各マイクロ波透過板に対するプラズマ密度分布の中心が処理容器2の内側に向かう力が働くように磁場を生成することで、プラズマ密度分布の中心軸を内側にずらし、プラズマ密度分布の変化を抑制するように制御する。これによりプロセスの基板面内における均一性の向上を図ることができる。なお、制御部8は、ステップS14において、処理容器2内の圧力が第2の閾値以上であると判定した場合、そのまま本処理を終了する。 When the control unit 8 determines that the pressure in the processing container 2 is lower than the second threshold value, a force acts so that the center of the plasma density distribution with respect to the microwave transmission plates 73A to 73F acts toward the inside of the processing container 2. A magnetic field is generated using the magnetic field mechanism 80 (step S15), and this process is terminated. When the pressure inside the processing container 2 becomes low, the plasma concentrates on the outside. Therefore, by using the magnetic field mechanism 80 to generate a magnetic field so that the center of the plasma density distribution for each microwave transmission plate acts toward the inside of the processing container 2, the central axis of the plasma density distribution is shifted inward. Control to suppress changes in the plasma density distribution. This makes it possible to improve the uniformity of the process in the substrate surface. When the control unit 8 determines in step S14 that the pressure in the processing container 2 is equal to or higher than the second threshold value, the control unit 8 ends the processing as it is.
 以上に説明したように、処理容器2内の圧力が変わるとプラズマ密度分布が変わる。そこで、制御部8は、処理容器2内の圧力に応じて例えばスイッチ82a、82bを切り替え、電磁石80a~80fに印加する電圧の極性及び/又はパワーを制御する。固定磁石のS極及びN極の配置を制御してもよい。これにより、圧力に応じてプラズマ密度分布を制御することができる。例えば、処理容器2内の圧力変化によるプラズマ密度分布の変化を抑制できる。 As explained above, the plasma density distribution changes when the pressure inside the processing container 2 changes. Therefore, the control unit 8 switches, for example, switches 82a and 82b according to the pressure in the processing container 2, and controls the polarity and / or power of the voltage applied to the electromagnets 80a to 80f. The arrangement of the S pole and the N pole of the fixed magnet may be controlled. This makes it possible to control the plasma density distribution according to the pressure. For example, it is possible to suppress a change in the plasma density distribution due to a change in pressure in the processing container 2.
 プラズマ密度分布を変えるプロセス条件は、圧力に限られない。たとえば、ガス種によってもプラズマ密度分布が変わる。よって、処理容器2内に供給するガス種の入れ替えに応じて、制御部8は、例えばスイッチ82a、82bを切り替え、電磁石80a~80fに印加する電圧の極性及び/又はパワーを制御する。固定磁石のS極及びN極の配置を制御してもよい。これにより、ガス種に応じてプラズマ密度分布を制御することができる。例えば、処理容器2内のガス種の変化によるプラズマ密度分布の変化を抑制できる。 The process conditions that change the plasma density distribution are not limited to pressure. For example, the plasma density distribution changes depending on the gas type. Therefore, the control unit 8 switches, for example, switches 82a and 82b in response to the replacement of the gas type supplied into the processing container 2, and controls the polarity and / or power of the voltage applied to the electromagnets 80a to 80f. The arrangement of the S pole and the N pole of the fixed magnet may be controlled. This makes it possible to control the plasma density distribution according to the gas type. For example, it is possible to suppress a change in the plasma density distribution due to a change in the gas type in the processing container 2.
 以上、本実施形態に係るプラズマ処理装置1の制御方法によれば、まず、プラズマ処理装置1により実行するプラズマ処理のプロセス条件(圧力、ガス種等のプラズマ密度分布を変化させる条件)を取得する工程を実行する。次に、取得したプロセス条件に基づき、プラズマ処理装置1が有する複数の磁場機構80のそれぞれの磁場の向きを制御する工程を実行する。これにより、プロセス条件に応じてプラズマ密度分布を制御することができる。 As described above, according to the control method of the plasma processing apparatus 1 according to the present embodiment, first, the process conditions (conditions for changing the plasma density distribution such as pressure and gas type) of the plasma processing executed by the plasma processing apparatus 1 are acquired. Perform the process. Next, a step of controlling the direction of each magnetic field of the plurality of magnetic field mechanisms 80 included in the plasma processing apparatus 1 is executed based on the acquired process conditions. This makes it possible to control the plasma density distribution according to the process conditions.
 以上に説明したように、本実施形態に係るプラズマ処理装置及び制御方法によれば、プラズマ密度分布を制御することができる。 As described above, according to the plasma processing apparatus and the control method according to the present embodiment, the plasma density distribution can be controlled.
 今回開示された実施形態に係るプラズマ処理装置及び制御方法は、すべての点において例示であって制限的なものではないと考えられるべきである。実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。 It should be considered that the plasma processing apparatus and the control method according to the embodiment disclosed this time are exemplary in all respects and are not restrictive. The embodiments can be modified and improved in various forms without departing from the scope of the appended claims and their gist. The matters described in the plurality of embodiments may have other configurations within a consistent range, and may be combined within a consistent range.
 本願は、日本特許庁に2020年11月10日に出願された基礎出願2020-187361号の優先権を主張するものであり、その全内容を参照によりここに援用する。 This application claims the priority of Basic Application No. 2020-187361 filed with the Japan Patent Office on November 10, 2020, and the entire contents thereof are incorporated herein by reference.
1…プラズマ処理装置、2…処理容器、3…ガス供給機構、4…排気装置、5…マイクロ波導入モジュール、8…制御部、11…天板、16…ガスノズル、16a…ガス供給孔、19…リフトピン、21…載置台、25…高周波バイアス電源、63…マイクロ波放射機構、80…磁場機構、80A~80F…固定磁石、80a~80f…電磁石、W…基板 1 ... Plasma processing device, 2 ... Processing container, 3 ... Gas supply mechanism, 4 ... Exhaust device, 5 ... Microwave introduction module, 8 ... Control unit, 11 ... Top plate, 16 ... Gas nozzle, 16a ... Gas supply hole, 19 ... lift pin, 21 ... mounting table, 25 ... high frequency bias power supply, 63 ... microwave radiation mechanism, 80 ... magnetic field mechanism, 80A-80F ... fixed magnet, 80a-80f ... electromagnet, W ... substrate

Claims (9)

  1.  処理容器と、
     前記処理容器の天壁を構成する天板に配置され、前記天板の中心領域よりも外側の領域に配置された複数の外周マイクロ波放射機構と、
     複数の前記外周マイクロ波放射機構よりも外側であって各外周マイクロ波放射機構に対応する位置に設けられた複数の磁場機構と、
     を有するプラズマ処理装置。
    With the processing container
    A plurality of outer peripheral microwave radiation mechanisms arranged on the top plate constituting the top wall of the processing container and arranged in a region outside the central region of the top plate.
    A plurality of magnetic field mechanisms provided at positions outside the plurality of outer peripheral microwave radiation mechanisms and corresponding to each outer peripheral microwave radiation mechanism, and a plurality of magnetic field mechanisms.
    Plasma processing equipment with.
  2.  複数の前記外周マイクロ波放射機構と複数の前記磁場機構とは同数である、
     請求項1に記載のプラズマ処理装置。
    The number of the plurality of outer peripheral microwave radiation mechanisms and the plurality of the magnetic field mechanisms are the same.
    The plasma processing apparatus according to claim 1.
  3.  複数の前記磁場機構のそれぞれは円弧状であり、複数の前記磁場機構のそれぞれの円弧の中心は前記天板の中心に一致する、
     請求項1又は2に記載のプラズマ処理装置。
    Each of the plurality of magnetic field mechanisms is arcuate, and the center of each arc of the plurality of magnetic field mechanisms coincides with the center of the top plate.
    The plasma processing apparatus according to claim 1 or 2.
  4.  複数の前記磁場機構のそれぞれは円弧状であり、複数の前記磁場機構のそれぞれの円弧の中心は対応する複数の前記外周マイクロ波放射機構のそれぞれの誘電体窓の中心に一致する、
     請求項1又は2に記載のプラズマ処理装置。
    Each of the plurality of magnetic field mechanisms is arcuate, and the center of each arc of the plurality of magnetic field mechanisms coincides with the center of each dielectric window of the corresponding plurality of said peripheral microwave radiation mechanisms.
    The plasma processing apparatus according to claim 1 or 2.
  5.  複数の前記磁場機構は、前記天板の上、前記天板に形成された溝又は前記天板の内部に設けられている、
     請求項1~4のいずれか一項に記載のプラズマ処理装置。
    The plurality of magnetic field mechanisms are provided on the top plate, a groove formed in the top plate, or inside the top plate.
    The plasma processing apparatus according to any one of claims 1 to 4.
  6.  複数の前記磁場機構は、電磁石である、
     請求項1~5のいずれか一項に記載のプラズマ処理装置。
    The plurality of magnetic field mechanisms are electromagnets.
    The plasma processing apparatus according to any one of claims 1 to 5.
  7.  前記プラズマ処理装置は、制御部を有し、
     前記制御部は、
     前記電磁石に印加する電圧の極性及び/又はパワーを制御する、
     請求項6に記載のプラズマ処理装置。
    The plasma processing apparatus has a control unit and has a control unit.
    The control unit
    Controls the polarity and / or power of the voltage applied to the electromagnet.
    The plasma processing apparatus according to claim 6.
  8.  請求項1~7のいずれか一項に記載のプラズマ処理装置の制御方法であって、
     前記プラズマ処理装置により実行するプラズマ処理のプロセス条件を取得する工程と、
     取得した前記プロセス条件に基づき、前記プラズマ処理装置が有する複数の前記磁場機構のそれぞれの磁場の向きを制御する工程と、
     を有する制御方法。
    The method for controlling a plasma processing apparatus according to any one of claims 1 to 7.
    The process of acquiring the process conditions of plasma processing executed by the plasma processing apparatus and
    Based on the acquired process conditions, a step of controlling the direction of each magnetic field of the plurality of magnetic field mechanisms of the plasma processing apparatus, and
    Control method having.
  9.  複数の前記磁場機構は、電磁石であり、
     前記磁場の向きを制御する工程は、前記電磁石に印加する電圧の極性及び/又はパワーを制御する、
     請求項8に記載の制御方法。
    The plurality of magnetic field mechanisms are electromagnets.
    The step of controlling the direction of the magnetic field controls the polarity and / or power of the voltage applied to the electromagnet.
    The control method according to claim 8.
PCT/JP2021/039668 2020-11-10 2021-10-27 Plasma treatment device and control method WO2022102405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020187361A JP2022076793A (en) 2020-11-10 2020-11-10 Plasma processing apparatus and control method thereof
JP2020-187361 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102405A1 true WO2022102405A1 (en) 2022-05-19

Family

ID=81601016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039668 WO2022102405A1 (en) 2020-11-10 2021-10-27 Plasma treatment device and control method

Country Status (2)

Country Link
JP (1) JP2022076793A (en)
WO (1) WO2022102405A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203881A (en) * 1995-01-30 1996-08-09 Aneruba Kk Surface treatment system
JPH09115882A (en) * 1995-10-19 1997-05-02 Hitachi Ltd Plasma treating method and apparatus therefor
JP2005019968A (en) * 2003-06-24 2005-01-20 Samsung Electronics Co Ltd High-density plasma processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203881A (en) * 1995-01-30 1996-08-09 Aneruba Kk Surface treatment system
JPH09115882A (en) * 1995-10-19 1997-05-02 Hitachi Ltd Plasma treating method and apparatus therefor
JP2005019968A (en) * 2003-06-24 2005-01-20 Samsung Electronics Co Ltd High-density plasma processor

Also Published As

Publication number Publication date
JP2022076793A (en) 2022-05-20

Similar Documents

Publication Publication Date Title
US8961735B2 (en) Plasma processing apparatus and microwave introduction device
JP5376816B2 (en) Microwave introduction mechanism, microwave plasma source, and microwave plasma processing apparatus
KR101208884B1 (en) Microwave introduction mechanism, microwave plasma source and microwave plasma processing device
JP6356415B2 (en) Microwave plasma source and plasma processing apparatus
JP4927160B2 (en) Plasma processing apparatus, plasma processing method, and storage medium
US9991097B2 (en) Plasma processing apparatus
JP2006244891A (en) Microwave plasma processing device
KR20190140081A (en) Modular microwave source with local Lorentz force
US20150194290A1 (en) Plasma processing apparatus
US10804078B2 (en) Plasma processing apparatus and gas introduction mechanism
JP2003142460A (en) Plasma treatment apparatus
KR20190122567A (en) Phased array modular high-frequency source
JP5479013B2 (en) Plasma processing apparatus and slow wave plate used therefor
JP2017004665A (en) Plasma processing apparatus
WO2022102405A1 (en) Plasma treatment device and control method
US10777389B2 (en) Plasma processing apparatus and plasma processing method
JP2019201086A (en) Processing device, component, and temperature control method
US10665428B2 (en) Plasma processing apparatus
JP2019009305A (en) Plasma processing apparatus
US20220230848A1 (en) Plasma processing method and plasma processing apparatus
US20220223378A1 (en) Plasma processing method and plasma processing apparatus
JP5728565B2 (en) Plasma processing apparatus and slow wave plate used therefor
US11842886B2 (en) Plasma processing method and plasma processing apparatus
WO2016098582A1 (en) Plasma treatment device
WO2024070267A1 (en) Substrate processing device and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891652

Country of ref document: EP

Kind code of ref document: A1