WO2022102330A1 - Binding tape - Google Patents

Binding tape Download PDF

Info

Publication number
WO2022102330A1
WO2022102330A1 PCT/JP2021/037978 JP2021037978W WO2022102330A1 WO 2022102330 A1 WO2022102330 A1 WO 2022102330A1 JP 2021037978 W JP2021037978 W JP 2021037978W WO 2022102330 A1 WO2022102330 A1 WO 2022102330A1
Authority
WO
WIPO (PCT)
Prior art keywords
binding tape
binding
nonwoven fabric
thermoplastic elastomer
resin layer
Prior art date
Application number
PCT/JP2021/037978
Other languages
French (fr)
Japanese (ja)
Inventor
洋亮 楯
佳明 山本
大輔 吉村
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022561349A priority Critical patent/JPWO2022102330A1/ja
Publication of WO2022102330A1 publication Critical patent/WO2022102330A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D63/00Flexible elongated elements, e.g. straps, for bundling or supporting articles
    • B65D63/10Non-metallic straps, tapes, or bands; Filamentary elements, e.g. strings, threads or wires; Joints between ends thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics

Definitions

  • the present invention relates to a binding tape.
  • the tape for bundling electric wires and the like is required to have excellent wear resistance from the viewpoint of preventing the electric wires from coming into contact with surrounding walls and interior materials and being damaged. Further, in recent years, with the spread of electric vehicles, the diameter of electric wires after binding has increased, but from the viewpoint of design freedom, it is required to be bent even when the binding tape is wound.
  • a tape having high wear resistance for example, a binding tape using polyethylene terephthalate (PET) knitted fabric as a base material, a binding tape having a base material in which a non-woven fabric having a specific thickness and a resin film are bonded, and the like.
  • PET polyethylene terephthalate
  • a binding tape having a base material in which a non-woven fabric having a specific thickness and a resin film are bonded have been proposed (for example, Patent Documents 1, 2, etc.).
  • Patent Documents 1, 2, etc. since such a binding tape does not stretch in the longitudinal direction, there is a problem that the flexibility of the electric wires after binding is poor.
  • Patent Document 3 describes an adhesive with a film base material containing an aromatic vinyl-based elastomer, a styrene-based copolymer, and a styrene-based resin. Adhesive tapes with an agent layer have been proposed. Further, Patent Document 4 proposes a protective tube made of a thermoplastic resin and in which a sheet having a 100% tensile modulus of 50 MPa or less is wound in the circumferential direction.
  • Japanese Unexamined Patent Publication No. 2010-154634 Japanese Unexamined Patent Publication No. 2009-137296 Japanese Unexamined Patent Publication No. 2008-143976 Japanese Unexamined Patent Publication No. 2018-152983
  • an object of the present invention is to provide a binding tape having high wear resistance, flexibility to bend electric wires, and excellent binding workability.
  • thermoplastic elastomer comprises at least one selected from an olefin-based thermoplastic elastomer, a urethane-based thermoplastic elastomer, and a styrene-based thermoplastic elastomer.
  • [5] The binding tape according to any one of [1] to [4], wherein the resin layer contains at least one resin selected from polyvinyl chloride and an ethylene-vinyl acetate copolymer.
  • [6] The binding tape according to any one of [1] to [5], wherein the nonwoven fabric has a fused portion.
  • the fused portion is provided on the other surface on which the resin layer of the nonwoven fabric is not laminated, and the ratio of the total area of the fused portions is the total area of the other surface of the nonwoven fabric.
  • the binding tape according to [6] which is 20 to 80%.
  • the binding tape according to the present invention is a binding tape having a nonwoven fabric containing a fiber (A) containing a thermoplastic elastomer, a base material layer including a resin layer laminated on one surface of the nonwoven fabric, and an adhesive layer. It is characterized by being.
  • the binding tape according to the present invention having such a configuration has good flexibility and can bend electric wires after binding. In addition, it is possible to prevent the tape from being stretched too much during the bundling work and the workability from being deteriorated. It also has excellent wear resistance. That is, the binding tape according to the present invention can be worn 100 times or more in the scrape wear test.
  • FIG. 1 is a cross-sectional view showing one aspect of the binding tape of the present invention.
  • the binding tape 100 has a structure in which the non-woven fabric 10, the resin layer 20, and the adhesive layer 30 are laminated in this order. Further, the nonwoven fabric 10 is composed of fibers containing fibers (A) containing a thermoplastic elastomer.
  • the binding tape 100 according to the present invention having such a configuration has high wear resistance, flexibility to bend electric wires, and is also excellent in binding workability.
  • the base material layer in the binding tape according to the present invention includes a nonwoven fabric containing fibers (A) containing a thermoplastic elastomer and a resin layer laminated on one surface of the nonwoven fabric.
  • the non-woven fabric contains a fiber (A) containing a thermoplastic elastomer.
  • Thermoplastic elastomer means an elastomer that softens by heating and exhibits fluidity, has the property of returning to a rubber-like state when cooled, and exhibits rubber elasticity at room temperature.
  • the nonwoven fabric contains the fiber (A) containing the thermoplastic elastomer, the flexibility of the binding tape is improved. Further, it becomes easy to adjust the tensile breaking strength in the length direction of the binding tape to 20 N / 10 mm or more.
  • the "longitudinal direction of the binding tape” means the direction in which the tape is pulled out in the binding tape in a rolled state.
  • the direction orthogonal to the longitudinal direction is described as "width direction”.
  • the longitudinal direction of the binding tape may be described as "MD direction”
  • the "width direction” may be described as "TD direction”.
  • the term "fiber (A) containing a thermoplastic elastomer” means that at least a thermoplastic elastomer component is contained in the components constituting the fiber (A).
  • the nonwoven fabric according to the present invention is composed of a fiber containing a fiber (A) containing a thermoplastic elastomer.
  • the thermoplastic elastomer contained in the fiber (A) for example, one having a tensile strength of 2 to 40 MPa measured according to the standard of JIS K7311-1995 is preferable.
  • thermoplastic elastomers examples include olefin-based thermoplastic elastomers (TPOs), urethane-based thermoplastic elastomers (TPUs), styrene-based thermoplastic elastomers (TPS), ester-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers (TPS). TPAE) and the like. These thermoplastic elastomers may be used alone or in combination of two or more.
  • the specific method for measuring the tensile strength of the thermoplastic elastomer is as follows. (Measuring method of tensile strength of thermoplastic elastomer) The tensile strength is measured according to the JIS K7311-1995 standard.
  • thermoplastic elastomer resin is injection-molded to prepare a flat plate-shaped sample having a size of 100 mm square and a thickness of 2 mm.
  • This sample is punched out with a No. 3 dumbbell (see Fig. 4) specified by JIS K6251 as a test piece, and the test piece is sandwiched and fixed to the chuck part of the tensile tester so that the distance between the chucks is 70 mm. ..
  • the distance between the marked lines is 20 mm
  • the test piece is pulled at a test speed of 300 mm / min
  • the load until the test piece breaks is measured
  • the value obtained by dividing the maximum value by the cross-sectional area is taken as the tensile strength.
  • the numbers shown mean the dimensions (unit: mm).
  • TPO olefin-based thermoplastic elastomer
  • PP + EPDM ethylene propylene diene rubber-dispersed polypropylene
  • TPU urethane-based thermoplastic elastomer
  • TPS styrene-based thermoplastic elastomer
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • SBS styrene-ethylene-propylene-styrene block.
  • polymers SEPS
  • styrene-isoprene-styrene block copolymers SIS
  • ester-based thermoplastic elastomer examples include polyether ester-polyester block copolymer (TPC-EE), polyether ester block copolymer (TPC-ET), polyester block copolymer (TPC-ES), and the like.
  • TPC-EE polyether ester-polyester block copolymer
  • TPC-ES polyester block copolymer
  • TPAE polyamide-based thermoplastic elastomer
  • examples of the polyamide-based thermoplastic elastomer examples include polyamide-polyester ester-polyester block copolymer (TPA-EE), polyamide-polyester block copolymer (TPA-ES), and polyamide-polyester ester block. Examples thereof include a polymer (TPA-ET).
  • the thermoplastic elastomer contained in the fiber (A) is an olefin-based thermoplastic elastomer (TPO), a urethane-based thermoplastic elastomer (TPU), or a styrene-based heat.
  • TPO thermoplastic elastomer
  • TPU thermoplastic elastomer
  • TPU urethane-based thermoplastic elastomer
  • TPU polyester-based TPU is more preferable.
  • the ratio of the thermoplastic elastomer to the component (100% by mass) constituting the fiber (A) is determined from the viewpoint of flexibility. It is preferably 80 to 99% by mass, more preferably 90 to 99% by mass, and particularly preferably 95 to 99% by mass.
  • the fiber (A) may be a fiber consisting only of a thermoplastic elastomer. That is, the proportion of the thermoplastic elastomer component in the components constituting the fiber (A) may be 100% by mass.
  • the other components in the fiber (A) are not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyester and the like. These other components may be used alone or in combination of two or more. When the fiber (A) contains other components, it is preferable to contain polyolefin because the strength of the nonwoven fabric is likely to be improved.
  • the fiber diameter of the fiber (A) is preferably 1 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, from the viewpoint of easily achieving both strength and flexibility of the nonwoven fabric.
  • the fiber diameter refers to a value calculated from the average value obtained by measuring the diameter of 10 arbitrary fibers (A) using a laser microscope.
  • the non-woven fabric may contain fibers (other fibers) other than the fibers (A).
  • the ratio of the fibers (A) to the total mass of the fibers constituting the nonwoven fabric is preferably 80% by mass or more, more preferably 90% by mass or more.
  • the nonwoven fabric may be composed of only the fibers (A).
  • the nonwoven fabric may be a mixed fiber of the fiber (A) and a polyolefin fiber as another fiber.
  • the other fibers preferably have a fiber diameter similar to that of the fiber (A). That is, the fiber diameter is preferably 1 to 40 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the fiber diameter of the other fibers can be determined by the same method as that of the fiber (A).
  • the nonwoven fabric may have a fused portion.
  • the fused portion is formed as a recessed portion on the surface of the nonwoven fabric by joining the fibers constituting the nonwoven fabric to each other.
  • the fused portion may be formed by mechanical treatment or may be formed by embossing.
  • the fused portion is preferably formed by heat-sealing fibers constituting the nonwoven fabric by heat embossing.
  • the fused portion is provided on the "surface on the side where the resin layer is not laminated" (hereinafter, referred to as "the other surface of the nonwoven fabric") of the nonwoven fabric. That is, in one preferred embodiment, the resin layer may be laminated on one surface of the nonwoven fabric, and the fused portion may be provided on the other surface of the nonwoven fabric.
  • the fused portion formed on the other surface of the nonwoven fabric may be of one type or two or more types.
  • two or more types of fused portions means that two or more types of fused portions having different shapes are provided, and two or more types of fused portions having different sizes (areas) are provided. , Or a mixture of them.
  • the shape of the fused portion is not particularly limited as long as it has the effect of the present invention, and is, for example, a circular shape (a perfect circle or an elliptical shape), a rhombus shape (a rhombus or a similar shape (however, not including a square)). Shapes such as a quadrangle (rectangle, square, trapezoid, etc., including rounded quadrangle) can be mentioned. Of these, from the viewpoint of easily improving the wear resistance and the binding workability of the binding tape, it is preferably circular or square, and particularly preferably square.
  • the area of the fused portion is preferably 0.5 to 4.0 mm 2 and more preferably 0.8 to 3.8 mm 2 from the viewpoint of easily improving wear resistance and bundling workability.
  • the fused portions may be randomly arranged on the other surface of the nonwoven fabric, and may be arranged linearly or in a grid pattern. Of these, it is preferable that they are arranged in a grid pattern from the viewpoint that wear resistance is more likely to be improved.
  • the nonwoven fabric includes a fused portion
  • the ratio of the total area of the fused portions provided on the nonwoven fabric is preferably 20 to 80%, preferably 50 to 75% of the total area of the other surface of the nonwoven fabric. % Is more preferable. When the total area of the fused portions is within the above range, wear resistance and bundling workability are more likely to be improved.
  • the nonwoven fabric When the nonwoven fabric has a fused portion, it is preferably formed by heat-sealing fibers constituting the nonwoven fabric by heat embossing as described above. That is, it is preferable that the convex portion for forming the fused portion of the present invention is formed by sandwiching the non-woven fabric between the heat embossed roll formed on the surface and the flat roll and applying pressure.
  • the temperature at the time of heat embossing is, for example, preferably 100 to 150 ° C, more preferably 100 to 130 ° C.
  • the non-woven fabric for example, a non-woven fabric produced by the spunbond method, a non-woven fabric produced by the spunlace method, a non-woven fabric produced by the melt blow method, or the like can be used.
  • the nonwoven fabric may be a single layer or a laminated nonwoven fabric composed of a plurality of layers.
  • the nonwoven fabrics produced by a plurality of methods may be laminated.
  • the basis weight of the nonwoven fabric is preferably 20 to 350 g / m 2 , more preferably 30 to 320 g / m 2 , and even more preferably 50 to 300 g / m 2 .
  • the porosity is preferably 40 to 90%.
  • the apparent density is preferably 0.1 to 0.5 g / cm 3 , more preferably 0.2 to 0.45 g / cm 3 .
  • the apparent density of the non-woven fabric is within the above range, the flexibility of the bound product tends to be good while maintaining high wear resistance.
  • FIG. 2 is a laser micrograph showing an example of the fused portion 1 provided on the surface of the nonwoven fabric 10 of the binding tape 100.
  • the square fused portion 1 is provided on the surface of the nonwoven fabric 10 (the other surface) in a grid pattern.
  • the resin layer is laminated on one surface of the nonwoven fabric.
  • the resin layer is preferably laminated directly on one surface of the nonwoven fabric.
  • the resin constituting the resin layer is not particularly limited as long as it has the effect of the present invention. From the viewpoint of improving wear resistance more easily, it is selected from polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polyvinyl alcohol (PVA), and a copolymer of ethylene and vinyl acetate (EVA).
  • PVC polyvinyl styrene
  • EVA polyvinyl styrene
  • these PVC, PP, PE, PVA and EVA may contain a small amount of additives and comonomer as long as the effect of the present invention is not impaired.
  • the PVC for example, one having an average degree of polymerization of 500 to 3000 is preferable, one having an average degree of polymerization of 700 to 2000 is more preferable, and one having an average degree of polymerization of 800 to 1500 is particularly preferable.
  • the average degree of polymerization means a value calculated by JIS-K6720-2 by dissolving 200 mg of a resin in 50 mL of nitrobenzene, measuring the specific viscosity of this polymer solution in a constant temperature bath at 30 ° C. using an Ubbelohde viscometer. do.
  • the PVC may contain a plasticizer from the viewpoint of flexibility.
  • plasticizer examples include phthalic acid-based plasticizers, isophthalic acid-based plasticizers, terephthalic acid-based plasticizers, adipic acid-based plasticizers and their polyester-based plasticizers, phosphoric acid-based plasticizers, trimellitic acid-based plasticizers, and epoxys.
  • a system plasticizer or the like can be used.
  • specific examples of the plasticizer include diisononyl phthalate (DINP), diheptyl phthalate (DHP), di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate (n-DOP), and diisodecyl phthalate (n-DOP).
  • DIDP di-2-ethylhexyl isophthalate
  • DOIP di-2-ethylhexyl terephthalate
  • BBP benzylbutylphthalate
  • TOTM tri-2-ethylhexyl trimellitic acid
  • DOA di-2-adipate Ethylhexyl
  • TCP tricresyl phosphate
  • BBP benzyloctyl adipate
  • adipic acid-propylene glycol polyester adipic acid-butylene glycol polyester, phthalic acid-propylene glycol polyester, diphenyl cresil phosphate (DPCP) ), Diisodecyl adipic acid, epoxidized soybean oil, epoxidized flaxseed oil, chlorinated paraffin and the like.
  • plasticizers DINP, which is inexpensive and has a high plasticizing effect, is more preferable.
  • the content thereof is preferably 40 to 70 parts by mass, more preferably 50 to 65 parts by mass, still more preferably 57 to 65 parts by mass with respect to 100 parts by mass of the polyvinyl chloride resin.
  • Inorganic fillers, modifiers, other additives and the like can be added to PVC, if necessary, as long as the effects of the present invention are not impaired. Examples of other additives include colorants, stabilizers, antioxidants, ultraviolet absorbers, lubricants and the like. These blending amounts are arbitrary.
  • PP examples include resins having isotactical or syndiotactic crystalline properties. Further, PP may be a copolymer of a small amount of comonomer. Such PP may have a melting point in the range of 155 to 175 ° C., preferably 160 to 170 ° C. by differential scanning calorimetry (DSC), for example.
  • DSC differential scanning calorimetry
  • the PVA for example, PVA having a saponification degree of 70 to 90 mol% is preferable. Further, the EVA preferably has an ethylene content in the range of 5 to 99%, preferably 10 to 98%, from the viewpoint of wear resistance and bundling workability.
  • PE low density polyethylene
  • HDPE high density polyethylene
  • Examples of the LDPE include those having a density of 0.91 g / cm 3 or more and less than 0.95 g / cm 3 , preferably 0.93 to 0.94 g / cm 3
  • Examples of HDPE include those having a density of 0.95 g / cm 3 or more and 0.97 g / cm 3 or less, preferably 0.95 to 0.96 g / cm 3 .
  • the melting point measured by differential scanning calorimetry (DSC) may be in the range of 110 to 140 ° C, preferably 120 to 135 ° C.
  • the resin layer may be formed by impregnating or coating the non-woven fabric with the above-mentioned resin, or may be a film or sheet containing the above-mentioned resin laminated on the non-woven fabric.
  • a method for forming the resin layer for example, a method of applying with a gravure coater, a comma coater, a die coater or the like is used. Can be mentioned.
  • the film or sheet when a film or sheet containing the above-mentioned resin is laminated on a nonwoven fabric to form a resin layer, the film or sheet may be, for example, a film or sheet obtained by extrusion film formation by a sheet extruder. preferable.
  • the amount of the resin layer laminated is preferably 20 to 350 g / m 2 , more preferably 30 to 320 g / m 2 , and even more preferably 50 to 300 g / m 2 .
  • the substrate layer may be composed of only a non-woven fabric and a resin layer.
  • the thickness of the base material layer is preferably 300 to 1200 ⁇ m, more preferably 300 to 600 ⁇ m. When the thickness of the base material layer is within the above range, wear resistance and flexibility tend to be good.
  • the thickness of the base material layer is measured at three points using a dial gauge specified in JIS B7503, and means the average value thereof.
  • the base material layer may include a layer (intermediate layer) other than the above-mentioned non-woven fabric and resin layer.
  • the intermediate layer may be provided between the nonwoven fabric and the resin layer, or on the surface of the resin layer on the side where the nonwoven fabric is not laminated.
  • the adhesive layer is provided on at least one surface of the base material layer. Further, it is particularly preferable that the adhesive layer is directly laminated on the resin layer.
  • the adhesive layer is preferably composed of an adhesive.
  • the pressure-sensitive adhesive is not particularly limited as long as it has the effect of the present invention, and a pressure-sensitive adhesive conventionally used for a binding tape can be appropriately used.
  • a pressure-sensitive adhesive for example, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, or the like can be used.
  • acrylic pressure-sensitive adhesive for example, one containing an acrylic polymer as a main component can be used.
  • acrylic polymer include polymers of (meth) acrylic acid alkyl esters and carboxy group-containing unsaturated monomers.
  • (meth) acrylic acid means acrylic acid and methacrylic acid.
  • examples of the (meth) acrylic acid alkyl ester include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, n-butyl acrylate, and n-butyl methacrylate.
  • the carboxy group-containing unsaturated monomer is not particularly limited as long as it is copolymerizable with the above-mentioned (meth) acrylic acid alkyl ester, as long as it has the effect of the present invention, and is, for example, acrylic acid, methacrylic acid, and the like. Itaconic acid, fumaric acid, maleic acid and the like can be used. These may be used alone or in combination of two or more.
  • the acrylic polymer may be a copolymer containing a (meth) acrylic acid alkyl ester as exemplified above or a monomer other than the carboxy group-containing unsaturated monomer.
  • examples of other monomers include hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and hydroxyhexyl (meth) acrylate; (meth) acrylamide, acryloylmorpholine, and (meth).
  • Nitrogen-containing (meth) acrylates such as acrylonitrile; examples thereof include vinyl acetate, styrene, vinylitene chloride, vinyl propionate and the like. These may be used alone or in combination of two or more.
  • the acrylic pressure-sensitive adhesive when used as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer, a phenomenon in which a low molecular weight component contained in the acrylic pressure-sensitive adhesive permeates the non-woven fabric of the base material layer (through-through). ), It is preferable that the acrylic polymer is crosslinked.
  • the method for cross-linking the acrylic polymer include a method of irradiating with active energy rays (ultraviolet rays, electron beams, etc.), a method of adding an arbitrary cross-linking agent, and the like.
  • the optional cross-linking agent examples include an epoxy-based cross-linking agent, a polyfunctional isocyanate-based cross-linking agent, a melamine resin-based cross-linking agent, a metal salt-based cross-linking agent, a metal chelate-based cross-linking agent, an amino resin-based cross-linking agent, and a peroxide-based cross-linking agent. Agents and the like can be mentioned. These may be used alone or in combination of two or more.
  • the rubber-based pressure-sensitive adhesive for example, at least one rubber component selected from natural rubber (NR) and synthetic rubber is selected from the group consisting of a rosin-based resin, a terpene-based resin, a petroleum-based resin, and the like. Examples thereof include those appropriately blended with one tackifier.
  • the synthetic rubber include styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-styrene block copolymer (SBS), and hydrogenated additives (SIPS, SEBS) of the styrene-based block copolymer.
  • At least one selected from the group consisting of styrene-butadiene rubber (SBR), polyisoprene rubber (IR), polyisobutylene (PIB), chloroprene rubber (CR), butyl rubber (IIR) and the like can be mentioned.
  • SBR styrene-butadiene rubber
  • IR polyisoprene rubber
  • PIB polyisobutylene
  • IIR chloroprene rubber
  • NR natural rubber
  • natural rubber natural rubber
  • SBR natural rubber
  • CR polyisobutylene
  • IIR chloroprene rubber
  • silicone-based adhesive examples include those obtained by appropriately blending silicone rubber with silicone resin, silicone oil, or the like.
  • urethane-based pressure-sensitive adhesive examples include polyols such as polyether-based polyols and polyester-based polyols, and tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI) and the like. Examples thereof include those obtained by reacting with polyisocyanate.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer may contain any additive in the above-mentioned pressure-sensitive adhesive.
  • Additives include, for example, softeners, tackifiers, surface lubricants, leveling agents, antioxidants, corrosion inhibitors, light stabilizers, UV absorbers, heat stabilizers, polymerization inhibitors, silane coupling agents. , Lubricants, inorganic or organic fillers, metal powders, pigments and the like. These may be used alone or in combination of two or more.
  • tackifier examples include petroleum-based resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers and alicyclic copolymers, and kumaron-inden resins. , Terpene-based resin, terpene phenol-based resin, rosin-based resin such as polymerized rosin, (alkyl) phenol-based resin, xylene-based resin, hydrogenated products thereof and the like. These may be used alone or in combination of two or more.
  • a rubber-based pressure-sensitive adhesive as the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer from the viewpoint of high adhesive strength and prevention of backside adhesive residue.
  • the amount of the adhesive layer laminated is preferably 10 to 100 g / m 2 , more preferably 20 to 80 g / m 2 , and particularly preferably 20 to 60 g / m 2 .
  • the adhesive layer may be composed of a plurality of layers. When the adhesive layer is composed of a plurality of layers, it is preferable that the total amount of the adhesive layers laminated is adjusted to be within the above range.
  • the binding tape of the present invention preferably has a total thickness of 200 to 1300 ⁇ m, more preferably 240 to 1100 ⁇ m, and even more preferably 250 to 650 ⁇ m.
  • the binding tape of the present invention having the above-described configuration tends to have good flexibility and good binding workability even when the total thickness is in the range of 200 to 1300 ⁇ m.
  • the total laminated amount of the binding tape (total laminated amount of the base material layer and the adhesive layer) is preferably 100 to 500 g / m 2 from the viewpoint of more easily achieving both flexibility and high wear resistance. , 200-460 g / m 2 is more preferred, and 250-450 g / m 2 is particularly preferred.
  • the binding tape according to the present invention preferably has a tensile breaking strength of the tape in the MD direction of 20 N / 10 mm or more.
  • the tensile breaking strength of the binding tape in the MD direction is 20 N / 10 mm or more, the flexibility of the binding tape becomes better and the electric wires after binding are easily bent.
  • the tensile breaking strength of the binding tape in the MD direction is preferably 20 N / 10 mm or more and 70 N / 10 mm or less, more preferably 22 N / 10 mm or more and 60 N / 10 mm or less, and 24 N / 10 mm or more and 50 N / 10 mm or less. Is even more preferable.
  • the tensile breaking strength of the binding tape in the MD direction is 70 N / 10 mm or less, it becomes easier to prevent the binding tape from being stretched too much during the binding operation and the workability from being deteriorated.
  • the tensile breaking strength of the binding tape in the MD direction refers to a value measured according to 8 of JIS Z0237 (2000).
  • the tensile breaking strength of the binding tape in the TD direction is not particularly limited. From the viewpoint of easily preventing the tape from breaking due to bending of the bound electric wire, the tensile breaking strength of the bound tape in the TD direction may be 5 to 70 N / 10 mm or 10 to 50 N / 10 mm.
  • the binding tape according to the present invention preferably has a scrap wear resistance of 100 times or more, and more preferably 1000 times or more, as measured according to ISO 6722.
  • the scrap wear frequency specifically refers to a value measured by the following method. ⁇ Measuring method of scrap wear resistance>
  • One layer of binding tape having a width of 19 mm and a length of 50 mm is attached in the longitudinal direction of a steel rod having a diameter of 10 mm.
  • a piano wire having a diameter of 0.45 mm is brought into contact with the base material layer side of the binding tape, and a load of 7 N is applied to reciprocate the piano wire at a speed of 60 times / minute over a distance of 15.5 mm in the longitudinal direction.
  • the piano wire scrapes the binding tape, and the number of round trips until the binding tape penetrates is defined as the number of scrap wear resistance.
  • the binding tape according to the present invention has a tensile elastic modulus of 0 in the MD direction and the TD direction of the binding tape measured according to the measurement conditions of the tensile strength and the elongation in JIS Z0237 (2008). It is preferably 8.08 to 1.5 MPa, more preferably 0.08 to 0.92 MPa, and particularly preferably 0.08 to 0.7 MPa.
  • the tensile elastic modulus in the MD direction and the TD direction of the binding tape is 0.08 MPa or more, it becomes easy to achieve high wear resistance and good binding workability.
  • the tensile elastic modulus in the MD direction and the TD direction of the binding tape is 1.5 MPa or less, it becomes easy to obtain a binding tape having excellent flexibility.
  • the tensile elastic modulus of the binding tape specifically refers to a value measured by the following method.
  • ⁇ Measurement method of tensile elastic modulus in MD direction and TD direction of binding tape> A binding tape test piece having a width of 19 mm and a length of 200 mm is sandwiched and fixed in the chuck portion of the tensile tester so that the distance between the chucks is 100 mm. The test piece is pulled at a speed of 300 mm / min in an environment of room temperature of 23 ° C. and relative humidity of 50% RH, and tensile stress and strain are measured. The value calculated by linear regression for the ratio of the tensile stress to the strain between 5 and 10% of the strain is taken as the tensile elastic modulus.
  • the "width” of the test piece means the length in the TD direction
  • the “length” means the length in the MD direction.
  • the "width” of the test piece means the length in the MD direction
  • the “length” means the length in the TD direction.
  • the ratio of the tensile modulus in the TD direction of the binding tape to the tensile modulus in the MD direction is preferably 0.8 to 1.3, more preferably 0.9 to 1.2.
  • the ratio of the tensile elastic modulus of the binding tape is within the above range, the flexibility and the binding workability tend to be better.
  • a nonwoven fabric is formed by a spunbond method or a melt blow method using a fiber containing a fiber (A) containing a thermoplastic elastomer.
  • a non-woven fabric composed of fibers containing the fiber (A) is prepared.
  • the nonwoven fabric includes a fused portion, a step of forming the fused portion by, for example, heat embossing may be included on the other surface of the nonwoven fabric.
  • a resin film is formed by a sheet extrusion method, and a resin is laminated on the nonwoven fabric by a thermal laminating method on one surface of the nonwoven fabric to form a base material layer containing the nonwoven fabric and the resin layer.
  • the binding tape is manufactured by a method of directly applying the above-mentioned adhesive to the base material layer to form the pressure-sensitive adhesive layer, a method of transferring the pressure-sensitive adhesive once applied to another sheet to the base material layer, or the like. can do.
  • the base material layer is composed of a non-woven fabric and a resin layer, it is preferable that the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer is formed by directly applying the pressure-sensitive adhesive onto the resin layer.
  • Examples of the method of applying the adhesive to the base material layer or another sheet include a roll coating method, a spray coating method, a gravure coating method, a reverse coating method, a rod coating method, a bar coating method, a die coating method, a kiss coating method, and a reverse method.
  • Examples include the kiss coat method and the air knife coat method.
  • the binding tape of the present invention has high wear resistance, flexibility to bend electric wires, and is also excellent in binding workability. Therefore, it can be suitably used as a binding tape for electric wires and the like in automobiles in fields where these performances are required.
  • the use of the binding tape of the present embodiment is not limited to the binding use of electric wires and the like of automobiles.
  • Another more preferred embodiment of the binding tape of the present invention is a substrate layer comprising a nonwoven fabric made of fibers (A) containing a thermoplastic elastomer, a resin layer directly laminated on one surface of the nonwoven fabric, and an adhesive layer.
  • a binding tape having a texture of 30 g / m 2 or more and a laminated amount of the resin layer of 30 g / m 2 or more.
  • the thermoplastic elastomer preferably contains at least one selected from TPO, TPS, and TPU. Further, a fused portion may be provided on the other surface of the nonwoven fabric.
  • Example 1 (Creation of base material layer) A sheet on one side of a urethane non-woven fabric (trade name: "Espancione (registered trademark)", manufactured by KB Salen Co., Ltd.) with a fiber diameter of 20 ⁇ m, a grain size of 100 g / m 2 , and an apparent density of 0.33 g / m 3 .
  • a PVC film extruded and formed by an extruder (T-die width 500 mm, ⁇ 40 mm extruder, manufactured by Tanabe Kikai Plastic Co., Ltd.) was laminated by a thermal laminating method to form a resin layer, and a base material layer was obtained. ..
  • the laminated amount of the resin layer was 130 g / m 2 .
  • the PVC constituting the resin layer the PVC having the following composition was used.
  • (Composition of PVC resin) PVC homopolymer of vinyl chloride, average degree of polymerization 1300, product name: "TH-1300", manufactured by Taiyo PVC Co., Ltd.) 100 parts by mass, while DINP (manufactured by Jay Plus Co., Ltd.) 58 parts by mass, epoxidation Soybean oil (product name: "Chemisizer SNE-50", manufactured by Sanwa Synthetic Chemical Co., Ltd.) 2 parts by mass, Ca-Zn-Mg-based composite stabilizer (product name: "OW-5200", Sakai Chemical Industry Co., Ltd.) ), 2 parts by mass of calcium carbonate (product name: “Calcies (registered trademark) P", manufactured by Kamishima Chemical Industry Co., Ltd.) 28 parts by mass.
  • Natural rubber latex product name: “HA LATEX”, manufactured by Reditex Co., Ltd.
  • 10 parts by mass solid content
  • styrene-butadiene rubber latex product name: “T-093A”, manufactured by JSR Co., Ltd.
  • 40 parts by mass Solid content
  • petroleum resin emulsion tackifier product name: "AP-1100-NT”, manufactured by Arakawa Chemical Industry Co., Ltd.
  • 50 parts by mass (solid content) are mixed to form a rubber adhesive emulsion. Prepared.
  • an adhesive layer was formed on the resin layer of the base material layer (that is, the surface on the side on which the non-woven fabric was not laminated) to obtain a binding tape.
  • the laminated amount of the adhesive layer was 40 g / m 2 .
  • the total laminated amount of the obtained binding tape was 270 g / m 2 , and the total thickness was 440 ⁇ m.
  • the tensile breaking strength of the binding tape in the MD direction was measured by the following method.
  • the tensile breaking strength of the binding tape of Example 1 in the MD direction was 29 N / 10 mm. (Tension breaking strength of binding tape in MD direction) Under an environment of room temperature of 23 ° C.
  • the obtained binding tape was cut out with a width (length in the TD direction) of 19 mm and a length (length in the MD direction) of 200 mm to prepare a test piece. ..
  • the test piece is pulled at a speed of 300 mm / min, and the load until the test piece breaks is measured. The maximum value was taken as the tensile breaking strength.
  • the wear resistance, flexibility, binding workability, and tensile elastic modulus of the obtained binding tape were evaluated according to the following procedure. The results are shown in Table 1.
  • the wear resistance was evaluated according to the following evaluation criteria, and B or higher was regarded as acceptable (has high wear resistance).
  • the binding tape of A evaluation (the number of times of scrap wear resistance is 1000 times or more) has the wear resistance of class D in the European automobile standard LV312.
  • the three-point bending load of the test piece was measured according to JIS K7171 (2016) (ISO 178: 2010). Specifically, as shown in FIG. 3, seven thin-walled electric wires 200 (product name: "AVS050", manufactured by Sumitomo Wiring Systems Co., Ltd.) for automobiles having a diameter of 1 mm cut to a length of 300 mm are tied with a binding tape 100. A test piece X was prepared by winding in half a wrap.
  • ⁇ Tension elastic modulus in MD direction and TD direction of binding tape> A binding tape test piece having a width of 19 mm and a length of 200 mm was prepared, sandwiched between chucks of a tensile tester so that the distance between chucks was 100 mm, and fixed. The test piece was pulled at a speed of 300 mm / min in an environment of room temperature of 23 ° C. and relative humidity of 50% RH, and tensile stress and strain were measured. The ratio of the tensile stress to the strain between 5 and 10% of the strain was calculated by linear regression and used as the tensile elastic modulus.
  • the "width” of the test piece means the length in the TD direction
  • the “length” means the length in the MD direction.
  • the "width” of the test piece means the length in the MD direction
  • the “length” means the length in the TD direction.
  • Examples 2 to 10 A binding tape was prepared in the same manner as in Example 1 except that the configurations of the nonwoven fabric and the resin layer were as shown in Table 1. Further, for the binding tape of each example, the tensile breaking strength in the MD direction was measured by the same method as in Example 1. Further, the wear resistance, flexibility, binding workability, and tensile elastic modulus of the binding tape were evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 11 A urethane non-woven fabric (trade name: "Espancione", manufactured by KB Salen Co., Ltd.) with a fiber diameter of 20 ⁇ m, a basis weight of 100 g / m 2 , and an apparent density of 0.33 g / m 3 is embossed on the surface of the fused part. Formed. The shape of the fused portion was square, and its area was 2.8 mm 2 . The fused portions were formed in a grid pattern on the surface of the nonwoven fabric. The total area of the fused portion with respect to the surface area of the nonwoven fabric (total area of the surface provided with the fused portion) was 69%.
  • a resin layer was formed on the surface of the non-woven fabric on the side where the fused portion was not provided by the same method as in Example 1 to obtain a base material layer.
  • the resin layer was made of the same PVC resin as in Example 1, and the laminated amount was 130 g / m 2 .
  • an adhesive layer was formed in the same manner as in Example 1 to obtain a binding tape.
  • the pressure-sensitive adhesive used was the same rubber-based pressure-sensitive adhesive as in Example 1, and the laminated amount of the pressure-sensitive adhesive layer was 40 g / m 2 .
  • the total laminated amount of the obtained binding tape was 270 g / m 2 , and the total thickness was 440 ⁇ m.
  • Example 1 Further, the tensile breaking strength of the binding tape in the MD direction was measured by the same method as in Example 1. Further, the wear resistance, flexibility, binding workability, and tensile elastic modulus of the obtained binding tape were evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 1 A binding tape was prepared by the same method as in Example 1 except that polyethylene terephthalate fibers were used as the fibers constituting the non-woven fabric.
  • the tensile breaking strength of the obtained binding tape in the MD direction was measured by the same method as in Example 1. Further, the wear resistance, flexibility, binding workability, and tensile elastic modulus of the obtained binding tape were evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 2 A binding tape was prepared in the same manner as in Example 1 except that the resin layer was not provided.
  • the tensile breaking strength of the obtained binding tape in the MD direction was measured by the same method as in Example 1. Further, the wear resistance, flexibility, binding workability and tensile elastic modulus of the obtained binding tape were evaluated by the same method as in Example 1. The results are shown in Table 1.
  • NR / SBR means natural rubber (NR) and synthetic rubber (styrene-butadiene rubber (SBR)).
  • SBR styrene-butadiene rubber
  • TPO A fiber having a fiber diameter of 20 ⁇ m, made of ethylene propylene diene rubber-dispersed polypropylene (TPO, trade name: “EXCELINK (registered trademark) 1300B”, manufactured by JSR Co., Ltd.), which is an olefin-based thermoplastic elastomer.
  • TPS A fiber having a fiber diameter of 10 ⁇ m, which is a styrene-based thermoplastic elastomer styrene-ethylene-butylene-styrene block copolymer (SEBS) (TPS, trade name: "Tough Tech (registered trademark) H1043", manufactured by Asahi Kasei Corporation).
  • SEBS styrene-based thermoplastic elastomer styrene-ethylene-butylene-styrene block copolymer
  • EVA EVA resin with an ethylene content of 18% (Product name: "Denka EVA Tex (registered trademark
  • the binding tapes of Examples 1 to 11 satisfying the configuration of the present invention have high wear resistance, flexibility to bend electric wires, and good binding workability. there were. Furthermore, it was found that the binding tapes of Examples 3, 5 and 7 also had excellent wear resistance corresponding to Class D of the European automobile standard LV312. On the other hand, the binding tape of Comparative Example 1 provided with the non-woven fabric composed of the fiber (A) containing the thermoplastic elastomer had good wear resistance and binding workability, but had low flexibility. Further, although the binding tape of Comparative Example 2 in which the base material layer does not contain the resin layer had good flexibility, the tape stretched too much during the binding operation, and it was difficult to bind the object. The wear resistance was also low. From the above results, it was confirmed that the binding tape of the present invention has high wear resistance, flexibility to bend electric wires, and is also excellent in binding workability.
  • Fused part 10 Non-woven fabric 20: Resin layer 30: Adhesive layer 40: Base material layer 100: Bundling tape 200: Electric wire 300: Support base 400: Load cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Package Frames And Binding Bands (AREA)

Abstract

[Problem] To provide a binding tape that has flexibility for allowing electric wires to be bent, and has high abrasion resistance, while having excellent binding workability. [Solution] This binding tape has: a base material layer comprising a nonwoven fabric that includes fibers (A) containing a thermoplastic elastomer, and a resin layer laminated on one surface of the nonwoven fabric; and an adhesive layer. The basis weight of the nonwoven fabric is preferably 20-350 g/m2. The lamination amount of the resin layer is preferably 20-350 g/m2. The tensile break strength of the binding tape in the longitudinal direction is preferably 20 N/10 mm or more.

Description

結束テープBundling tape
 本発明は、結束テープに関する。 The present invention relates to a binding tape.
 自動車等の配線においては、電線類を結束テープで所定の形状に束ねたものが用いられる。電線類等を結束するためのテープには、電線類が周辺の壁や内装材と接触して傷つくのを防ぐ観点から、耐摩耗性に優れることが求められる。また、近年、電気自動車の普及に伴い、結束後の電線類の径が増大しているが、設計自由度の観点から結束テープを巻いた状態でも屈曲させられることが求められている。
 これまで、耐摩耗性の高いテープとして、例えば、ポリエチレンテレフタレート(PET)編布を基材として用いた結束テープ、特定の厚みを有する不織布と樹脂フィルムとを貼り合わせた基材を有する結束テープ等が提案されている(例えば、特許文献1、2等)。しかしながら、このような結束テープは長手方向に伸びないため、結束後の電線類の屈曲性が悪いという課題がある。
In the wiring of automobiles and the like, electric wires bundled in a predetermined shape with a binding tape are used. The tape for bundling electric wires and the like is required to have excellent wear resistance from the viewpoint of preventing the electric wires from coming into contact with surrounding walls and interior materials and being damaged. Further, in recent years, with the spread of electric vehicles, the diameter of electric wires after binding has increased, but from the viewpoint of design freedom, it is required to be bent even when the binding tape is wound.
So far, as a tape having high wear resistance, for example, a binding tape using polyethylene terephthalate (PET) knitted fabric as a base material, a binding tape having a base material in which a non-woven fabric having a specific thickness and a resin film are bonded, and the like. Have been proposed (for example, Patent Documents 1, 2, etc.). However, since such a binding tape does not stretch in the longitudinal direction, there is a problem that the flexibility of the electric wires after binding is poor.
 結束後の電線類を屈曲可能な柔軟性を備える結束テープとして、例えば、特許文献3には、芳香族ビニル系エラストマー、スチレン系共重合体及びスチレン系樹脂とを含有するフィルム基材と、粘着剤層とを備える粘着テープが提案されている。また、特許文献4には、熱可塑性樹脂からなり、100%引張モジュラスが50MPa以下であるシートが周方向に巻かれた保護チューブが提案されている。 As a binding tape having flexibility to bend electric wires after binding, for example, Patent Document 3 describes an adhesive with a film base material containing an aromatic vinyl-based elastomer, a styrene-based copolymer, and a styrene-based resin. Adhesive tapes with an agent layer have been proposed. Further, Patent Document 4 proposes a protective tube made of a thermoplastic resin and in which a sheet having a 100% tensile modulus of 50 MPa or less is wound in the circumferential direction.
特開2010-154634号公報Japanese Unexamined Patent Publication No. 2010-154634 特開2009-137296号公報Japanese Unexamined Patent Publication No. 2009-137296 特開2008-143976号公報Japanese Unexamined Patent Publication No. 2008-143976 特開2018-152983号公報Japanese Unexamined Patent Publication No. 2018-152983
 自動車等の配線用途においては、近年、より高度な耐摩耗性を有することが要求されている。すなわち、スクレープ摩耗試験において、100回以上の摩耗回数を達成できる結束テープが求められている。しかしながら、従来の結束テープでは、上記の摩耗試験をクリアできないという問題がある。
 また、結束テープは結束作業時にテープを長手方向に引っ張りながら対象物を結束するが、テープが伸びすぎると対象物を固定しづらくなり、作業性が低下する。そのため、柔軟性と結束作業性とを両立できる結束テープが求められている。
 そこで本発明は、高耐摩耗性と、電線類を屈曲可能な柔軟性とを有し、かつ結束作業性にも優れる結束テープの提供を目的とする。
In recent years, it has been required to have a higher degree of wear resistance in wiring applications such as automobiles. That is, in the scrape wear test, a binding tape capable of achieving 100 or more wear times is required. However, the conventional binding tape has a problem that the above wear test cannot be cleared.
Further, the binding tape binds the object while pulling the tape in the longitudinal direction during the binding operation, but if the tape is stretched too much, it becomes difficult to fix the object and the workability is lowered. Therefore, there is a demand for a binding tape that can achieve both flexibility and binding workability.
Therefore, an object of the present invention is to provide a binding tape having high wear resistance, flexibility to bend electric wires, and excellent binding workability.
 上記課題に対して、本願発明者らは鋭意検討した結果、熱可塑性エラストマー成分を含む繊維を含む不織布と、樹脂層とを備える基材層、及び粘着層を有する結束テープであれば、前述の全ての課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の態様を有する。
[1]熱可塑性エラストマーを含む繊維(A)を含む不織布と、前記不織布の一方の面に積層された樹脂層とを備える基材層と、粘着層とを有する結束テープ。
[2]前記不織布の目付が20~350g/mである、[1]に記載の結束テープ。
[3]前記樹脂層の積層量が20~350g/mである、[1]または[2]に記載の結束テープ。
[4]前記熱可塑性エラストマーが、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、及びスチレン系熱可塑性エラストマーから選択される少なくとも1つを含む、[1]から[3]のいずれか一項に記載の結束テープ。
[5]前記樹脂層が、ポリ塩化ビニル、及びエチレン-酢酸ビニル共重合体から選択される少なくとも1つの樹脂を含む、[1]から[4]のいずれか一項に記載の結束テープ。
[6]前記不織布が融着部を備える、[1]から[5]のいずれか一項に記載の結束テープ。
[7]前記融着部が、前記不織布の前記樹脂層が積層されていない他方の表面に設けられており、前記融着部の合計面積の割合が、前記不織布の他方の表面の総面積に対して、20~80%である、[6]に記載の結束テープ。
[8]前記結束テープの長手方向の引張破断強度が20N/10mm以上である、[1]から[7]のいずれか一項に記載の結束テープ。
[9]電線類等の結束用である、[1]から[8]のいずれか一項に記載の結束テープ。
As a result of diligent studies on the above problems, the inventors of the present application have described above if it is a non-woven fabric containing a fiber containing a thermoplastic elastomer component, a base material layer including a resin layer, and a binding tape having an adhesive layer. We have found that all the problems can be solved, and have completed the present invention.
That is, the present invention has the following aspects.
[1] A binding tape having a base material layer including a non-woven fabric containing a fiber (A) containing a thermoplastic elastomer, a resin layer laminated on one surface of the non-woven fabric, and an adhesive layer.
[2] The binding tape according to [1], wherein the nonwoven fabric has a basis weight of 20 to 350 g / m 2 .
[3] The binding tape according to [1] or [2], wherein the laminated amount of the resin layer is 20 to 350 g / m 2 .
[4] The item according to any one of [1] to [3], wherein the thermoplastic elastomer comprises at least one selected from an olefin-based thermoplastic elastomer, a urethane-based thermoplastic elastomer, and a styrene-based thermoplastic elastomer. The described binding tape.
[5] The binding tape according to any one of [1] to [4], wherein the resin layer contains at least one resin selected from polyvinyl chloride and an ethylene-vinyl acetate copolymer.
[6] The binding tape according to any one of [1] to [5], wherein the nonwoven fabric has a fused portion.
[7] The fused portion is provided on the other surface on which the resin layer of the nonwoven fabric is not laminated, and the ratio of the total area of the fused portions is the total area of the other surface of the nonwoven fabric. On the other hand, the binding tape according to [6], which is 20 to 80%.
[8] The binding tape according to any one of [1] to [7], wherein the tensile breaking strength in the longitudinal direction of the binding tape is 20 N / 10 mm or more.
[9] The binding tape according to any one of [1] to [8], which is used for binding electric wires and the like.
 本発明によれば、高耐摩耗性と、電線類を屈曲可能な柔軟性とを有し、かつ結束作業性にも優れる結束テープを提供できる。 According to the present invention, it is possible to provide a binding tape having high wear resistance, flexibility to bend electric wires, and excellent binding workability.
本発明の結束テープの1つの態様を表す断面図である。It is sectional drawing which shows one aspect of the binding tape of this invention. 本発明の結束テープの不織布の1つの態様を表すレーザー顕微鏡写真である。It is a laser micrograph which shows one aspect of the nonwoven fabric of the binding tape of this invention. 実施例において、結束テープの柔軟性を評価するための、3点曲げ荷重の測定方法を示す説明図である。In the Example, it is explanatory drawing which shows the measuring method of the three-point bending load for evaluating the flexibility of a binding tape. 引張強度測定用試験片を作成するための3号ダンベルの形状を説明する説明図である。It is explanatory drawing explaining the shape of the No. 3 dumbbell for making the test piece for tensile strength measurement.
 以下、本発明を詳細に説明するが、本発明は以下の態様に限定されるものではない。
[結束テープ]
 本発明に係る結束テープは、熱可塑性エラストマーを含む繊維(A)を含む不織布と、前記不織布の一方の面に積層された樹脂層とを備える基材層と、粘着層とを有する結束テープであることを特徴とする。このような構成を有する本発明に係る結束テープは、柔軟性が良好であり、結束後の電線類を屈曲させることができる。また、結束作業時にテープが伸びすぎて作業性が低下することを防ぐことができる。また、耐摩耗性にも優れている。すなわち、本発明に係る結束テープは、スクレープ摩耗試験における摩耗回数を100回以上とすることができる。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following aspects.
[Binding tape]
The binding tape according to the present invention is a binding tape having a nonwoven fabric containing a fiber (A) containing a thermoplastic elastomer, a base material layer including a resin layer laminated on one surface of the nonwoven fabric, and an adhesive layer. It is characterized by being. The binding tape according to the present invention having such a configuration has good flexibility and can bend electric wires after binding. In addition, it is possible to prevent the tape from being stretched too much during the bundling work and the workability from being deteriorated. It also has excellent wear resistance. That is, the binding tape according to the present invention can be worn 100 times or more in the scrape wear test.
 図1は、本発明の結束テープの1つの態様を表す断面図である。結束テープ100は、不織布10、樹脂層20及び粘着層30がこの順に積層された構成を有する。また、不織布10は熱可塑性エラストマーを含む繊維(A)を含む繊維から構成されている。このような構成を有する本発明に係る結束テープ100は、高耐摩耗性と、電線類を屈曲可能な柔軟性とを有し、かつ結束作業性にも優れている。 FIG. 1 is a cross-sectional view showing one aspect of the binding tape of the present invention. The binding tape 100 has a structure in which the non-woven fabric 10, the resin layer 20, and the adhesive layer 30 are laminated in this order. Further, the nonwoven fabric 10 is composed of fibers containing fibers (A) containing a thermoplastic elastomer. The binding tape 100 according to the present invention having such a configuration has high wear resistance, flexibility to bend electric wires, and is also excellent in binding workability.
(基材層)
 本発明に係る結束テープにおける基材層は、熱可塑性エラストマーを含む繊維(A)を含む不織布と、前記不織布の一方の面に積層された樹脂層とを備えている。
(Base layer)
The base material layer in the binding tape according to the present invention includes a nonwoven fabric containing fibers (A) containing a thermoplastic elastomer and a resin layer laminated on one surface of the nonwoven fabric.
<不織布>
 不織布は、熱可塑性エラストマーを含む繊維(A)を含む。熱可塑性エラストマーは、加熱により軟化して流動性を示し、冷却するとゴム状に戻る性質を有し、常温ではゴム弾性を示すエラストマーを意味する。不織布が、熱可塑性エラストマーを含む繊維(A)を含むことにより、結束テープの柔軟性が向上する。また、結束テープの長さ方向の引張破断強度を20N/10mm以上に調整しやすくなる。本明細書において「結束テープの長手方向」とは、ロール状に巻かれた状態の結束テープにおいて、テープを引き出す際の方向を意味する。一方で、前記長手方向に対して直交する方向を「幅方向」と記載する。本明細書においては、結束テープの長手方向を「MD方向」と記載し、「幅方向」を「TD方向」と記載することもある。
<Non-woven fabric>
The non-woven fabric contains a fiber (A) containing a thermoplastic elastomer. Thermoplastic elastomer means an elastomer that softens by heating and exhibits fluidity, has the property of returning to a rubber-like state when cooled, and exhibits rubber elasticity at room temperature. When the nonwoven fabric contains the fiber (A) containing the thermoplastic elastomer, the flexibility of the binding tape is improved. Further, it becomes easy to adjust the tensile breaking strength in the length direction of the binding tape to 20 N / 10 mm or more. As used herein, the "longitudinal direction of the binding tape" means the direction in which the tape is pulled out in the binding tape in a rolled state. On the other hand, the direction orthogonal to the longitudinal direction is described as "width direction". In the present specification, the longitudinal direction of the binding tape may be described as "MD direction", and the "width direction" may be described as "TD direction".
 <繊維(A)>
 本明細書において、「熱可塑性エラストマーを含む繊維(A)」とは、繊維(A)を構成する成分中に、少なくとも熱可塑性エラストマー成分が含まれていることを意味する。本発明に係る不織布は、熱可塑性エラストマーを含む繊維(A)を含む繊維から構成されている。
 繊維(A)に含まれる熱可塑性エラストマーとしては、例えば、JIS K7311-1995の規格に沿って測定した引張強度が2~40MPaであるものが好ましい。このような熱可塑性エラストマーとしては、例えば、オレフィン系熱可塑性エラストマー(TPO)、ウレタン系熱可塑性エラストマー(TPU)、スチレン系熱可塑性エラストマー(TPS)、エステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー(TPAE)等が挙げられる。これらの熱可塑性エラストマーは、一種単独で用いられてもよく、二種以上を併用してもよい。なお、熱可塑性エラストマーの引張強度の具体的な測定方法は以下のとおりである。
(熱可塑性エラストマーの引張強度の測定方法)
 JIS K7311-1995の規格に沿って引張強度を測定する。具体的には、熱可塑性エラストマー樹脂を射出成形して、大きさ100mm角、厚さ2mmに成形した平板状試料を作製する。この試料をJIS K6251で規定される3号ダンベル(図4参照)で打抜いたものを試験片とし、チャック間距離が70mmとなるように引張試験機のチャック部に試験片を挟んで固定する。標線間距離を20mmとし、試験速度300mm/minの速さで試験片を引っ張り、試験片が破断するまでの荷重を測定し、その最大値を断面積で除した値を引張強度とする。なお、図4の3号ダンベルの説明図において、表記の数字は寸法(単位:mm)を意味する。
<Fiber (A)>
As used herein, the term "fiber (A) containing a thermoplastic elastomer" means that at least a thermoplastic elastomer component is contained in the components constituting the fiber (A). The nonwoven fabric according to the present invention is composed of a fiber containing a fiber (A) containing a thermoplastic elastomer.
As the thermoplastic elastomer contained in the fiber (A), for example, one having a tensile strength of 2 to 40 MPa measured according to the standard of JIS K7311-1995 is preferable. Examples of such thermoplastic elastomers include olefin-based thermoplastic elastomers (TPOs), urethane-based thermoplastic elastomers (TPUs), styrene-based thermoplastic elastomers (TPS), ester-based thermoplastic elastomers, and polyamide-based thermoplastic elastomers (TPS). TPAE) and the like. These thermoplastic elastomers may be used alone or in combination of two or more. The specific method for measuring the tensile strength of the thermoplastic elastomer is as follows.
(Measuring method of tensile strength of thermoplastic elastomer)
The tensile strength is measured according to the JIS K7311-1995 standard. Specifically, a thermoplastic elastomer resin is injection-molded to prepare a flat plate-shaped sample having a size of 100 mm square and a thickness of 2 mm. This sample is punched out with a No. 3 dumbbell (see Fig. 4) specified by JIS K6251 as a test piece, and the test piece is sandwiched and fixed to the chuck part of the tensile tester so that the distance between the chucks is 70 mm. .. The distance between the marked lines is 20 mm, the test piece is pulled at a test speed of 300 mm / min, the load until the test piece breaks is measured, and the value obtained by dividing the maximum value by the cross-sectional area is taken as the tensile strength. In the explanatory diagram of the No. 3 dumbbell in FIG. 4, the numbers shown mean the dimensions (unit: mm).
 オレフィン系熱可塑性エラストマー(TPO)としては、例えば、エチレンプロピレンジエンゴム分散ポリプロピレン(PP+EPDM)等が挙げられる。
 ウレタン系熱可塑性エラストマー(TPU)としては、例えば、ポリエステル系TPU、ポリエーテル系TPU等が挙げられる。
 スチレン系熱可塑性エラストマー(TPS)としては、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)等が挙げられる。
 エステル系熱可塑性エラストマーとしては、例えば、ポリエーテルエステル-ポリエステルブロック共重合体(TPC-EE)、ポリエーテルエステルブロック共重合体(TPC-ET)、ポリエステルブロック共重合体(TPC-ES)等が挙げられる。
 ポリアミド系熱可塑性エラストマー(TPAE)としては、例えば、ポリアミド-ポリエーテルエステル-ポリエステルブロック共重合体(TPA-EE)、ポリアミド-ポリエステルブロック共重合体(TPA-ES)、ポリアミド-ポリエーテルエステルブロック共重合体(TPA-ET)等が挙げられる。
 これらのうち、柔軟性と引張強度とを両立しやすい観点から、繊維(A)に含まれる熱可塑性エラストマーは、オレフィン系熱可塑性エラストマー(TPO)、ウレタン系熱可塑性エラストマー(TPU)、スチレン系熱可塑性エラストマー(TPS)が好ましく、ウレタン系熱可塑性エラストマー(TPU)を含むことがより好ましい。また、ウレタン系熱可塑性エラストマーとしては、ポリエステル系TPUがより好ましい。
Examples of the olefin-based thermoplastic elastomer (TPO) include ethylene propylene diene rubber-dispersed polypropylene (PP + EPDM).
Examples of the urethane-based thermoplastic elastomer (TPU) include polyester-based TPU and polyether-based TPU.
Examples of the styrene-based thermoplastic elastomer (TPS) include styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-butadiene-styrene block copolymer (SBS), and styrene-ethylene-propylene-styrene block. Polymers (SEPS), styrene-isoprene-styrene block copolymers (SIS) and the like can be mentioned.
Examples of the ester-based thermoplastic elastomer include polyether ester-polyester block copolymer (TPC-EE), polyether ester block copolymer (TPC-ET), polyester block copolymer (TPC-ES), and the like. Can be mentioned.
Examples of the polyamide-based thermoplastic elastomer (TPAE) include polyamide-polyester ester-polyester block copolymer (TPA-EE), polyamide-polyester block copolymer (TPA-ES), and polyamide-polyester ester block. Examples thereof include a polymer (TPA-ET).
Of these, from the viewpoint of easily achieving both flexibility and tensile strength, the thermoplastic elastomer contained in the fiber (A) is an olefin-based thermoplastic elastomer (TPO), a urethane-based thermoplastic elastomer (TPU), or a styrene-based heat. A plastic elastomer (TPS) is preferable, and a urethane-based thermoplastic elastomer (TPU) is more preferable. Further, as the urethane-based thermoplastic elastomer, polyester-based TPU is more preferable.
 繊維(A)が、前記熱可塑性エラストマー以外の成分(その他の成分)を含む場合、繊維(A)を構成する成分(100質量%)に対する、熱可塑性エラストマーの割合は、柔軟性の観点から、80~99質量%であることが好ましく、90~99質量%がより好ましく、95~99質量%であることが特に好ましい。1つの好ましい態様においては、繊維(A)は熱可塑性エラストマーのみからなる繊維であってもよい。すなわち、繊維(A)を構成する成分中の熱可塑性エラストマー成分の割合が100質量%であってもよい。
 繊維(A)中のその他の成分としては特に限定されず、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエステル等が挙げられる。これらその他の成分は、一種単独で用いられてよく、二種以上を併用してもよい。繊維(A)がその他の成分を含む場合は、不織布の強度が向上しやすいことから、ポリオレフィンを含むことが好ましい。
When the fiber (A) contains a component (other components) other than the thermoplastic elastomer, the ratio of the thermoplastic elastomer to the component (100% by mass) constituting the fiber (A) is determined from the viewpoint of flexibility. It is preferably 80 to 99% by mass, more preferably 90 to 99% by mass, and particularly preferably 95 to 99% by mass. In one preferred embodiment, the fiber (A) may be a fiber consisting only of a thermoplastic elastomer. That is, the proportion of the thermoplastic elastomer component in the components constituting the fiber (A) may be 100% by mass.
The other components in the fiber (A) are not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyester and the like. These other components may be used alone or in combination of two or more. When the fiber (A) contains other components, it is preferable to contain polyolefin because the strength of the nonwoven fabric is likely to be improved.
 繊維(A)の繊維径は、不織布の強度と柔軟性を両立しやすい観点から、1~40μmが好ましく、5~30μmがより好ましい。なお、前記繊維径は、レーザー顕微鏡を用いて、任意の繊維(A)10本の直径を測定し、その平均値から算出した値を指す。 The fiber diameter of the fiber (A) is preferably 1 to 40 μm, more preferably 5 to 30 μm, from the viewpoint of easily achieving both strength and flexibility of the nonwoven fabric. The fiber diameter refers to a value calculated from the average value obtained by measuring the diameter of 10 arbitrary fibers (A) using a laser microscope.
 不織布は、前記繊維(A)以外の繊維(その他の繊維)を含んでいてもよい。不織布がその他の繊維を含む場合、不織布を構成する繊維の総質量に対する繊維(A)の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。不織布を構成する繊維の総質量に対する繊維(A)の割合が前記範囲内であれば、柔軟性が良好となりやすい。1つの好ましい態様においては、不織布は、繊維(A)のみから構成されていてもよい。
 不織布に含まれるその他の繊維としては特に限定されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン繊維、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、レーヨン繊維等が挙げられる。これらその他の繊維は、一種単独で用いられてもよく、二種以上を併用してもよい。1つの態様において、不織布は、繊維(A)と、その他の繊維としてポリオレフィン繊維との混繊であってもよい。
 その他の繊維は繊維(A)と同程度の繊維径を有することが好ましい。すなわち、繊維径は1~40μmであることが好ましく、5~30μmであることがより好ましい。その他の繊維の繊維径は、繊維(A)と同じ方法にて求めることができる。
The non-woven fabric may contain fibers (other fibers) other than the fibers (A). When the nonwoven fabric contains other fibers, the ratio of the fibers (A) to the total mass of the fibers constituting the nonwoven fabric is preferably 80% by mass or more, more preferably 90% by mass or more. When the ratio of the fiber (A) to the total mass of the fibers constituting the non-woven fabric is within the above range, the flexibility tends to be good. In one preferred embodiment, the nonwoven fabric may be composed of only the fibers (A).
Other fibers contained in the non-woven fabric are not particularly limited, and examples thereof include polyolefin fibers such as polyethylene and polypropylene, aramid fibers, glass fibers, cellulose fibers, nylon fibers, vinylon fibers, polyester fibers, and rayon fibers. These other fibers may be used alone or in combination of two or more. In one embodiment, the nonwoven fabric may be a mixed fiber of the fiber (A) and a polyolefin fiber as another fiber.
The other fibers preferably have a fiber diameter similar to that of the fiber (A). That is, the fiber diameter is preferably 1 to 40 μm, more preferably 5 to 30 μm. The fiber diameter of the other fibers can be determined by the same method as that of the fiber (A).
 不織布は融着部を備えていてもよい。前記融着部は、不織布を構成する繊維同士が接合することによって、不織布表面に凹み部として形成されている。前記融着部は、機械的処理によって形成されていてもよく、エンボス加工によって形成されたものであってもよい。本発明の1つの態様においては、前記融着部は、熱エンボス加工により前記不織布を構成する繊維を熱融着して形成されたものであることが好ましい。このような融着部を有することにより、摩耗時に働く水平方向の応力緩和が大きくなり、耐摩耗性がより向上しやすくなる。また、結束作業時に結束テープが伸びすぎて作業性が低下することを防ぎやすくなる。
 また、前記融着部は、不織布の「樹脂層が積層されていない側の表面」(以下、「不織布の他方の表面」と記載する)に設けられていることが好ましい。すなわち、1つの好ましい態様においては、不織布の一方の面上に樹脂層が積層されており、前記不織布の他方の表面に、融着部が設けられていてもよい。
 不織布の他方の表面に形成された融着部は、1種類であってもよく、2種類以上であってもよい。ここで、「2種類以上の融着部」とは、形状の異なる融着部が2種類以上設けられていること、大きさ(面積)が異なる融着部が2種類以上設けられていること、またはそれらが混在していることを意味する。
The nonwoven fabric may have a fused portion. The fused portion is formed as a recessed portion on the surface of the nonwoven fabric by joining the fibers constituting the nonwoven fabric to each other. The fused portion may be formed by mechanical treatment or may be formed by embossing. In one aspect of the present invention, the fused portion is preferably formed by heat-sealing fibers constituting the nonwoven fabric by heat embossing. By having such a fused portion, the stress relaxation in the horizontal direction acting at the time of wear becomes large, and the wear resistance is more likely to be improved. In addition, it becomes easy to prevent the binding tape from being stretched too much during the binding work and the workability from being deteriorated.
Further, it is preferable that the fused portion is provided on the "surface on the side where the resin layer is not laminated" (hereinafter, referred to as "the other surface of the nonwoven fabric") of the nonwoven fabric. That is, in one preferred embodiment, the resin layer may be laminated on one surface of the nonwoven fabric, and the fused portion may be provided on the other surface of the nonwoven fabric.
The fused portion formed on the other surface of the nonwoven fabric may be of one type or two or more types. Here, "two or more types of fused portions" means that two or more types of fused portions having different shapes are provided, and two or more types of fused portions having different sizes (areas) are provided. , Or a mixture of them.
 融着部の形状は、本発明の効果を有する限り特に限定されず、例えば、円形状(真円または楕円形)、ひし形状(ひし形やそれに類似する形状(ただし、正方形は含まない))、四角形状(長方形、正方形、台形等。角丸四角形も含む)等の形状が挙げられる。このうち、結束テープの耐摩耗性及び結束作業性がより向上しやすい観点から、円形状、または四角形状であることが好ましく、正方形を含むことが特に好ましい。
 融着部の面積は、耐摩耗性及び結束作業性が向上しやすい観点から、0.5~4.0mmであることが好ましく、0.8~3.8mmであることがより好ましく、1.2~3.5mmであることが特に好ましい。
 融着部は、不織布の他方の表面上にランダムに配置されていてもよく、直線状または格子状に配置されていてもよい。このうち、耐摩耗性がより向上しやすい観点から、格子状に配置されていることが好ましい。
 不織布が融着部を備える場合、不織布上に設けられた融着部の合計面積の割合は、不織布の他方の表面の総面積に対して、20~80%であることが好ましく、50~75%であることがより好ましい。融着部の合計面積が前記範囲内であれば、耐摩耗性、結束作業性がより向上しやすい。
The shape of the fused portion is not particularly limited as long as it has the effect of the present invention, and is, for example, a circular shape (a perfect circle or an elliptical shape), a rhombus shape (a rhombus or a similar shape (however, not including a square)). Shapes such as a quadrangle (rectangle, square, trapezoid, etc., including rounded quadrangle) can be mentioned. Of these, from the viewpoint of easily improving the wear resistance and the binding workability of the binding tape, it is preferably circular or square, and particularly preferably square.
The area of the fused portion is preferably 0.5 to 4.0 mm 2 and more preferably 0.8 to 3.8 mm 2 from the viewpoint of easily improving wear resistance and bundling workability. It is particularly preferably 1.2 to 3.5 mm 2 .
The fused portions may be randomly arranged on the other surface of the nonwoven fabric, and may be arranged linearly or in a grid pattern. Of these, it is preferable that they are arranged in a grid pattern from the viewpoint that wear resistance is more likely to be improved.
When the nonwoven fabric includes a fused portion, the ratio of the total area of the fused portions provided on the nonwoven fabric is preferably 20 to 80%, preferably 50 to 75% of the total area of the other surface of the nonwoven fabric. % Is more preferable. When the total area of the fused portions is within the above range, wear resistance and bundling workability are more likely to be improved.
 不織布が融着部を備える場合、前述の通り、熱エンボス加工により不織布を構成する繊維を熱融着して形成されたものであることが好ましい。すなわち、本発明の融着部を形成するための凸部が表面に形成された熱エンボスロールと、フラットロールとの間に不織布を挟み込んで加圧することによって形成されたものであることが好ましい。
 熱エンボス加工を施す際の温度としては、例えば、100~150℃が好ましく、100~130℃がより好ましい。
When the nonwoven fabric has a fused portion, it is preferably formed by heat-sealing fibers constituting the nonwoven fabric by heat embossing as described above. That is, it is preferable that the convex portion for forming the fused portion of the present invention is formed by sandwiching the non-woven fabric between the heat embossed roll formed on the surface and the flat roll and applying pressure.
The temperature at the time of heat embossing is, for example, preferably 100 to 150 ° C, more preferably 100 to 130 ° C.
 不織布としては、例えば、スパンボンド法で作成された不織布、スパンレース法で作成された不織布、メルトブロー法で作成された不織布等を用いることができる。また、不織布は単層であってもよく、複数の層からなる積層不織布であってもよい。また積層不織布の場合、複数の方法で作成された不織布を積層させたものであってもよい。このうち、機械的強度の観点から、スパンボンド法で作成された不織布(スパンボンド不織布)を用いることが好ましい。
 また、不織布の目付は、20~350g/mが好ましく、30~320g/mがより好ましく、50~300g/mがさらに好ましい。不織布の目付が前記範囲内であれば、テープ重量の増加を抑えつつ、耐摩耗性が向上しやすくなる。また、その空隙率としては、40~90%が好ましい。
 また、見かけ密度としては、0.1~0.5g/cmが好ましく、0.2~0.45g/cmであることがより好ましい。不織布の見かけ密度が前記範囲内であれば、高い耐摩耗性を維持しつつ、結束品の柔軟性が良好となりやすい。
As the non-woven fabric, for example, a non-woven fabric produced by the spunbond method, a non-woven fabric produced by the spunlace method, a non-woven fabric produced by the melt blow method, or the like can be used. Further, the nonwoven fabric may be a single layer or a laminated nonwoven fabric composed of a plurality of layers. Further, in the case of a laminated nonwoven fabric, the nonwoven fabrics produced by a plurality of methods may be laminated. Of these, from the viewpoint of mechanical strength, it is preferable to use a non-woven fabric (spun-bonded non-woven fabric) produced by the spunbond method.
The basis weight of the nonwoven fabric is preferably 20 to 350 g / m 2 , more preferably 30 to 320 g / m 2 , and even more preferably 50 to 300 g / m 2 . When the basis weight of the non-woven fabric is within the above range, the abrasion resistance is likely to be improved while suppressing the increase in the tape weight. The porosity is preferably 40 to 90%.
The apparent density is preferably 0.1 to 0.5 g / cm 3 , more preferably 0.2 to 0.45 g / cm 3 . When the apparent density of the non-woven fabric is within the above range, the flexibility of the bound product tends to be good while maintaining high wear resistance.
 図2は、結束テープ100の不織布10の表面上に設けられた融着部1の一例を示すレーザー顕微鏡写真である。図2では、正方形の融着部1を不織布10の表面(他方の表面)に格子状に設けた構成となっている。 FIG. 2 is a laser micrograph showing an example of the fused portion 1 provided on the surface of the nonwoven fabric 10 of the binding tape 100. In FIG. 2, the square fused portion 1 is provided on the surface of the nonwoven fabric 10 (the other surface) in a grid pattern.
<樹脂層>
 樹脂層は、前記不織布の一方の面に積層されている。1つの態様において、前記樹脂層は、前記不織布の一方の表面上に直接積層されていることが好ましい。
 基材層が前記不織布と樹脂層とを含むことにより、結束テープの耐摩耗性が向上する。また、結束作業時に結束テープが伸びすぎて作業性が低下することを防ぐことができる。
 樹脂層を構成する樹脂としては、本発明の効果を有する限り特に限定されない。耐摩耗性がより向上しやすい観点からは、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリビニルアルコール(PVA)、エチレンと酢酸ビニルの共重合体(EVA)から選択される少なくとも1つの樹脂を含むことが好ましく、PVC及びEVAから選択される少なくとも1つの樹脂を含むことがより好ましい。なお、これらPVC、PP、PE、PVA及びEVAには、本発明の効果を阻害しない範囲で、少量の添加剤やコモノマーが含まれていてもよい。
<Resin layer>
The resin layer is laminated on one surface of the nonwoven fabric. In one embodiment, the resin layer is preferably laminated directly on one surface of the nonwoven fabric.
When the base material layer contains the non-woven fabric and the resin layer, the wear resistance of the binding tape is improved. In addition, it is possible to prevent the binding tape from being stretched too much during the binding operation and the workability from being deteriorated.
The resin constituting the resin layer is not particularly limited as long as it has the effect of the present invention. From the viewpoint of improving wear resistance more easily, it is selected from polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polyvinyl alcohol (PVA), and a copolymer of ethylene and vinyl acetate (EVA). It preferably contains at least one resin, more preferably at least one resin selected from PVC and EVA. In addition, these PVC, PP, PE, PVA and EVA may contain a small amount of additives and comonomer as long as the effect of the present invention is not impaired.
 PVCとしては、例えば、平均重合度が500~3000のものが好ましく、700~2000のものがより好ましく、800~1500のものが特に好ましい。前記平均重合度は、樹脂200mgをニトロベンゼン50mLに溶解させ、このポリマー溶液の比粘度を30℃恒温槽中において、ウベローデ型粘度計を用いて測定し、JIS-K6720-2により算出した値を意味する。
 PVCには、柔軟性の観点から、可塑剤が含まれていてもよい。
 可塑剤としては、フタル酸系可塑剤、イソフタル酸系可塑剤、テレフタル酸系可塑剤、アジピン酸系可塑剤及びそれらのポリエステル系可塑剤、リン酸系可塑剤、トリメリット酸系可塑剤、エポキシ系可塑剤等を使用することができる。
 可塑剤の具体例としては、フタル酸ジイソノニル(DINP)、フタル酸ジヘプチル(DHP)、フタル酸ジ-2-エチルヘキシル(DOP)、フタル酸ジ-n-オクチル(n-DOP)、フタル酸ジイソデシル(DIDP)、イソフタル酸ジ-2-エチルヘキシル(DOIP)、テレフタル酸ジ-2-エチルヘキシル(DOTP)、ベンジルブチルフタレート(BBP)、トリメリット酸トリ-2-エチルヘキシル(TOTM)、アジピン酸ジ-2-エチルヘキシル(DOA)、トリクレジルホスフェート(TCP)、ベンジルオクチルアジペート(BOA)、アジピン酸-プロピレングリコール系ポリエステル、アジピン酸-ブチレングリコール系ポリエステル、フタル酸-プロピレングリコール系ポリエステル、ジフェニルクレジルホスフェート(DPCP)、アジピン酸ジイソデシル、エポキシ化大豆油、エポキシ化アマニ油、塩素化パラフィン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記可塑剤のうち、安価で可塑化効果の高いDINPがより好ましい。
 PVCが可塑剤を含む場合、その含有量は、ポリ塩化ビニル樹脂100質量部に対して、40~70質量部が好ましく、50~65質量部がより好ましく、57~65質量部がさらに好ましい。
 PVCには、必要に応じて本発明の効果を阻害しない範囲で、無機充填剤、改質剤、及びその他添加剤等を配合することができる。その他添加剤としては、例えば、着色剤、安定剤、酸化防止剤、紫外線吸収剤、滑剤等が挙げられる。これらの配合量は、任意である。
As the PVC, for example, one having an average degree of polymerization of 500 to 3000 is preferable, one having an average degree of polymerization of 700 to 2000 is more preferable, and one having an average degree of polymerization of 800 to 1500 is particularly preferable. The average degree of polymerization means a value calculated by JIS-K6720-2 by dissolving 200 mg of a resin in 50 mL of nitrobenzene, measuring the specific viscosity of this polymer solution in a constant temperature bath at 30 ° C. using an Ubbelohde viscometer. do.
The PVC may contain a plasticizer from the viewpoint of flexibility.
Examples of the plasticizer include phthalic acid-based plasticizers, isophthalic acid-based plasticizers, terephthalic acid-based plasticizers, adipic acid-based plasticizers and their polyester-based plasticizers, phosphoric acid-based plasticizers, trimellitic acid-based plasticizers, and epoxys. A system plasticizer or the like can be used.
Specific examples of the plasticizer include diisononyl phthalate (DINP), diheptyl phthalate (DHP), di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate (n-DOP), and diisodecyl phthalate (n-DOP). DIDP), di-2-ethylhexyl isophthalate (DOIP), di-2-ethylhexyl terephthalate (DOTP), benzylbutylphthalate (BBP), tri-2-ethylhexyl trimellitic acid (TOTM), di-2-adipate Ethylhexyl (DOA), tricresyl phosphate (TCP), benzyloctyl adipate (BOA), adipic acid-propylene glycol polyester, adipic acid-butylene glycol polyester, phthalic acid-propylene glycol polyester, diphenyl cresil phosphate (DPCP) ), Diisodecyl adipic acid, epoxidized soybean oil, epoxidized flaxseed oil, chlorinated paraffin and the like. These may be used alone or in combination of two or more. Among the above-mentioned plasticizers, DINP, which is inexpensive and has a high plasticizing effect, is more preferable.
When the PVC contains a plasticizer, the content thereof is preferably 40 to 70 parts by mass, more preferably 50 to 65 parts by mass, still more preferably 57 to 65 parts by mass with respect to 100 parts by mass of the polyvinyl chloride resin.
Inorganic fillers, modifiers, other additives and the like can be added to PVC, if necessary, as long as the effects of the present invention are not impaired. Examples of other additives include colorants, stabilizers, antioxidants, ultraviolet absorbers, lubricants and the like. These blending amounts are arbitrary.
 PPとしては、例えば、アイソタクティックまたはシンジオタクティックの結晶性を有する樹脂が挙げられる。また、PPは、少量のコモノマーが共重合したものであってもよい。このようなPPとしては、例えば、示差走査熱量測定(DSC)による融点が155~175℃、好ましくは160~170℃の範囲のものであってもよい。 Examples of PP include resins having isotactical or syndiotactic crystalline properties. Further, PP may be a copolymer of a small amount of comonomer. Such PP may have a melting point in the range of 155 to 175 ° C., preferably 160 to 170 ° C. by differential scanning calorimetry (DSC), for example.
 PVAとしては、例えば、けん化度が70~90モル%のPVAが好ましい。
 またEVAとしては、耐摩耗性と結束作業性の観点から、エチレン含有量が5~99%、好ましくは10~98%の範囲のものが好ましい。
As the PVA, for example, PVA having a saponification degree of 70 to 90 mol% is preferable.
Further, the EVA preferably has an ethylene content in the range of 5 to 99%, preferably 10 to 98%, from the viewpoint of wear resistance and bundling workability.
 PEとしては、例えば、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)が挙げられる。LDPEとしては、例えば、密度が0.91g/cm以上0.95g/cm未満、好ましくは0.93~0.94g/cmのものが挙げられる。また、HDPEとしては、例えば、密度が0.95g/cm以上0.97g/cm以下、好ましくは0.95~0.96g/cmのものが挙げられる。また、示差走査熱量測定(DSC)による融点が110~140℃、好ましくは120~135℃の範囲のものであってもよい。 Examples of PE include low density polyethylene (LDPE) and high density polyethylene (HDPE). Examples of the LDPE include those having a density of 0.91 g / cm 3 or more and less than 0.95 g / cm 3 , preferably 0.93 to 0.94 g / cm 3 . Examples of HDPE include those having a density of 0.95 g / cm 3 or more and 0.97 g / cm 3 or less, preferably 0.95 to 0.96 g / cm 3 . Further, the melting point measured by differential scanning calorimetry (DSC) may be in the range of 110 to 140 ° C, preferably 120 to 135 ° C.
 樹脂層は、前述の樹脂を不織布に含浸または塗工することによって構成されたものであってもよく、前述の樹脂を含むフィルムまたはシートを不織布に積層させたものであってもよい。
 樹脂層が、前述の樹脂を不織布に含浸または塗工することによって構成された層である場合、樹脂層を形成する方法としては、例えば、グラビアコーター、コンマコーター、ダイコーター等によって塗布する方法が挙げられる。
 一方、前述の樹脂を含むフィルムまたはシートを不織布に積層させて樹脂層を形成する場合、前記フィルムまたはシートとしては、例えば、シート押出機による押出し製膜によって得られたフィルムまたはシートであることが好ましい。
The resin layer may be formed by impregnating or coating the non-woven fabric with the above-mentioned resin, or may be a film or sheet containing the above-mentioned resin laminated on the non-woven fabric.
When the resin layer is a layer formed by impregnating or coating a non-woven fabric with the above-mentioned resin, as a method for forming the resin layer, for example, a method of applying with a gravure coater, a comma coater, a die coater or the like is used. Can be mentioned.
On the other hand, when a film or sheet containing the above-mentioned resin is laminated on a nonwoven fabric to form a resin layer, the film or sheet may be, for example, a film or sheet obtained by extrusion film formation by a sheet extruder. preferable.
 樹脂層の積層量は、20~350g/mが好ましく、30~320g/mがより好ましく、50~300g/mがさらに好ましい。樹脂層の積層量が前記範囲内であれば、耐摩耗性が向上しやすい。また、柔軟性と結束作業性をより両立しやすい。
 1つの態様において、基材層は、不織布と樹脂層のみから構成されていてもよい。
The amount of the resin layer laminated is preferably 20 to 350 g / m 2 , more preferably 30 to 320 g / m 2 , and even more preferably 50 to 300 g / m 2 . When the amount of the resin layer laminated is within the above range, the wear resistance is likely to be improved. In addition, it is easier to achieve both flexibility and binding workability.
In one embodiment, the substrate layer may be composed of only a non-woven fabric and a resin layer.
 基材層の厚みは、300~1200μmであることが好ましく、300~600μmであることがより好ましい。基材層の厚みが前記範囲内であれば、耐摩耗性及び柔軟性が良好となりやすい。なお、基材層の厚みは、JIS B 7503に規定するダイヤルゲージを用いて3箇所測定し、その平均の値のことを意味する。 The thickness of the base material layer is preferably 300 to 1200 μm, more preferably 300 to 600 μm. When the thickness of the base material layer is within the above range, wear resistance and flexibility tend to be good. The thickness of the base material layer is measured at three points using a dial gauge specified in JIS B7503, and means the average value thereof.
 基材層は、前述の不織布及び樹脂層以外の層(中間層)を備えていてもよい。中間層を設ける場合は、不織布と樹脂層との間、もしくは樹脂層の不織布が積層されていない側の面に設けられていてもよい。 The base material layer may include a layer (intermediate layer) other than the above-mentioned non-woven fabric and resin layer. When the intermediate layer is provided, it may be provided between the nonwoven fabric and the resin layer, or on the surface of the resin layer on the side where the nonwoven fabric is not laminated.
(粘着層)
 本発明に係る結束テープにおいて、粘着層は、前記基材層の少なくとも一方の面上に設けられている。また、粘着層は、樹脂層の上に直接積層されていることが特に好ましい。
 粘着層は粘着剤により構成されていることが好ましい。粘着剤としては、本発明の効果を有する限り特に限定されず、従来結束テープに用いられている粘着剤を適宜用いることができる。具体的には、粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等を用いることができる。
(Adhesive layer)
In the binding tape according to the present invention, the adhesive layer is provided on at least one surface of the base material layer. Further, it is particularly preferable that the adhesive layer is directly laminated on the resin layer.
The adhesive layer is preferably composed of an adhesive. The pressure-sensitive adhesive is not particularly limited as long as it has the effect of the present invention, and a pressure-sensitive adhesive conventionally used for a binding tape can be appropriately used. Specifically, as the pressure-sensitive adhesive, for example, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a urethane-based pressure-sensitive adhesive, or the like can be used.
 前記アクリル系粘着剤としては、例えば、アクリル系ポリマーを主成分とするものを用いることができる。
 前記アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル及びカルボキシ基含有不飽和単量体の重合体等が挙げられる。なお、「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸を意味する。
 (メタ)アクリル酸アルキルエステルとしては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-プロピルアクリレート、n-プロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、sec-ブチルアクリレート、sec-ブチルメタクリレート、tert-ブチルアクリレート、tert-ブチルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、n-オクチルアクリレート、n-オクチルメタクリレート、イソオクチルアクリレート、イソオクチルメタクリレート、n-ノニルアクリレート、n-ノニルメタクリレート、イソノニルアクリレート、イソノニルメタクリレート等が挙げられる。これらは1種単独で用いられてもよく、2種以上を組み合わせて用いてもよい。
As the acrylic pressure-sensitive adhesive, for example, one containing an acrylic polymer as a main component can be used.
Examples of the acrylic polymer include polymers of (meth) acrylic acid alkyl esters and carboxy group-containing unsaturated monomers. In addition, "(meth) acrylic acid" means acrylic acid and methacrylic acid.
Examples of the (meth) acrylic acid alkyl ester include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, n-butyl acrylate, and n-butyl methacrylate. Isobutyl acrylate, isobutyl methacrylate, sec-butyl acrylate, sec-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, n-octyl acrylate, n-octyl methacrylate, isooctyl acrylate, Examples thereof include isooctyl methacrylate, n-nonyl acrylate, n-nonyl methacrylate, isononyl acrylate, and isononyl methacrylate. These may be used alone or in combination of two or more.
 カルボキシ基含有不飽和単量体としては、前記の(メタ)アクリル酸アルキルエステルと共重合可能なものであれば、本発明の効果を有する限り特に限定されず、例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等を用いることができる。これらは1種単独で用いられてもよく、2種以上を組み合わせて用いてもよい。 The carboxy group-containing unsaturated monomer is not particularly limited as long as it is copolymerizable with the above-mentioned (meth) acrylic acid alkyl ester, as long as it has the effect of the present invention, and is, for example, acrylic acid, methacrylic acid, and the like. Itaconic acid, fumaric acid, maleic acid and the like can be used. These may be used alone or in combination of two or more.
 前記アクリル系ポリマーは、上記に例示したような(メタ)アクリル酸アルキルエステルやカルボキシ基含有不飽和モノマー以外のその他のモノマーを含む共重合体とすることもできる。
 その他のモノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等の水酸基含有モノマー;(メタ)アクリルアミド、アクリロイルモルフォリン、(メタ)アクリロニトリル等の含窒素(メタ)アクリレート;酢酸ビニル、スチレン、塩化ビニリテン、プロピオン酸ビニル等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The acrylic polymer may be a copolymer containing a (meth) acrylic acid alkyl ester as exemplified above or a monomer other than the carboxy group-containing unsaturated monomer.
Examples of other monomers include hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and hydroxyhexyl (meth) acrylate; (meth) acrylamide, acryloylmorpholine, and (meth). Nitrogen-containing (meth) acrylates such as acrylonitrile; examples thereof include vinyl acetate, styrene, vinylitene chloride, vinyl propionate and the like. These may be used alone or in combination of two or more.
 本発明の1つの態様において、粘着層を構成する粘着剤として、アクリル系粘着剤を用いる場合、前記アクリル系粘着剤に含まれる低分子量成分が、基材層の不織布を透過する現象(裏抜け)を防止する観点から、前記アクリル系ポリマーが架橋されていることが好ましい。
 アクリル系ポリマーの架橋方法としては、例えば、活性エネルギー線(紫外線、電子線等)を照射する方法、任意の架橋剤を添加する方法等が挙げられる。
 任意の架橋剤としては、例えば、エポキシ系架橋剤、多官能イソシアネート系架橋剤、メラミン樹脂系架橋剤、金属塩系架橋剤、金属キレート系架橋剤、アミノ樹脂系架橋剤、過酸化物系架橋剤等が挙げられる。これらは1種単独で用いられてもよく、2種以上を組み合わせて用いてもよい。
In one embodiment of the present invention, when an acrylic pressure-sensitive adhesive is used as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer, a phenomenon in which a low molecular weight component contained in the acrylic pressure-sensitive adhesive permeates the non-woven fabric of the base material layer (through-through). ), It is preferable that the acrylic polymer is crosslinked.
Examples of the method for cross-linking the acrylic polymer include a method of irradiating with active energy rays (ultraviolet rays, electron beams, etc.), a method of adding an arbitrary cross-linking agent, and the like.
Examples of the optional cross-linking agent include an epoxy-based cross-linking agent, a polyfunctional isocyanate-based cross-linking agent, a melamine resin-based cross-linking agent, a metal salt-based cross-linking agent, a metal chelate-based cross-linking agent, an amino resin-based cross-linking agent, and a peroxide-based cross-linking agent. Agents and the like can be mentioned. These may be used alone or in combination of two or more.
 ゴム系粘着剤としては、例えば、天然ゴム(NR)、及び合成ゴムから選択される少なくとも1種のゴム成分に、ロジン系樹脂、テルペン系樹脂、石油系樹脂等からなる群より選択される少なくとも1つの粘着付与剤を適宜配合したもの等が挙げられる。合成ゴムとしては、例えば、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、前記スチレン系ブロック共重合体の水素添加物(SIPS、SEBS)、スチレン-ブタジエンゴム(SBR)、ポリイソプレンゴム(IR)、ポリイソブチレン(PIB)、クロロプレンゴム(CR)、及びブチルゴム(IIR)等からなる群より選択される少なくとも1つが挙げられる。これらのうち、高粘着力と背面糊残り防止とを両立しやすい観点から、天然ゴム(NR)と、SBR、CR及びIIRから選択される少なくとも1つの合成ゴムとの組み合わせが好ましく、天然ゴム(NR)とSBRとの組み合わせが特に好ましい。 As the rubber-based pressure-sensitive adhesive, for example, at least one rubber component selected from natural rubber (NR) and synthetic rubber is selected from the group consisting of a rosin-based resin, a terpene-based resin, a petroleum-based resin, and the like. Examples thereof include those appropriately blended with one tackifier. Examples of the synthetic rubber include styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-styrene block copolymer (SBS), and hydrogenated additives (SIPS, SEBS) of the styrene-based block copolymer. At least one selected from the group consisting of styrene-butadiene rubber (SBR), polyisoprene rubber (IR), polyisobutylene (PIB), chloroprene rubber (CR), butyl rubber (IIR) and the like can be mentioned. Of these, from the viewpoint of easily achieving both high adhesive strength and prevention of back adhesive residue, a combination of natural rubber (NR) and at least one synthetic rubber selected from SBR, CR and IIR is preferable, and natural rubber (natural rubber ( A combination of NR) and SBR is particularly preferred.
 シリコーン系粘着剤としては、例えば、シリコーンゴムに、シリコーンレジンやシリコーンオイル等を適宜配合したもの等が挙げられる。 Examples of the silicone-based adhesive include those obtained by appropriately blending silicone rubber with silicone resin, silicone oil, or the like.
 ウレタン系粘着剤としては、例えば、ポリエーテル系ポリオール、ポリエステル系ポリオール等のポリオールと、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)等のポリイソシアネートとを反応させてなるものが挙げられる。 Examples of the urethane-based pressure-sensitive adhesive include polyols such as polyether-based polyols and polyester-based polyols, and tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI) and the like. Examples thereof include those obtained by reacting with polyisocyanate.
 粘着層を形成する粘着剤には、前述の粘着剤に任意の添加剤を含有させてもよい。
 添加剤としては、例えば、軟化剤、粘着付与剤、表面潤滑剤、レベリング剤、酸化防止剤、腐食防止剤、光安定剤、紫外線吸収剤、耐熱安定剤、重合禁止剤、シランカップリンング剤、滑剤、無機または有機の充填剤、金属粉、顔料等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer may contain any additive in the above-mentioned pressure-sensitive adhesive.
Additives include, for example, softeners, tackifiers, surface lubricants, leveling agents, antioxidants, corrosion inhibitors, light stabilizers, UV absorbers, heat stabilizers, polymerization inhibitors, silane coupling agents. , Lubricants, inorganic or organic fillers, metal powders, pigments and the like. These may be used alone or in combination of two or more.
 粘着付与剤としては、例えば、脂肪族系共重合体、芳香族系共重合体、脂肪族・芳香族系共重合体系や脂環式系共重合体等の石油系樹脂、クマロン-インデン系樹脂、テルペン系樹脂、テルペンフェノール系樹脂、重合ロジン等のロジン系樹脂、(アルキル)フェノール系樹脂、キシレン系樹脂またはこれらの水添物等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the tackifier include petroleum-based resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers and alicyclic copolymers, and kumaron-inden resins. , Terpene-based resin, terpene phenol-based resin, rosin-based resin such as polymerized rosin, (alkyl) phenol-based resin, xylene-based resin, hydrogenated products thereof and the like. These may be used alone or in combination of two or more.
 本発明の1つの態様においては、粘着層を構成するための粘着剤としては、高粘着力と背面糊残り防止の観点から、ゴム系粘着剤を用いることが好ましい。
 粘着層の積層量としては、10~100g/mが好ましく、20~80g/mがより好ましく、20~60g/mが特に好ましい。粘着層の積層量が前記範囲内であれば耐摩耗性と柔軟性とがより良好となりやすい。
 また、粘着層は、複数の層から構成されていてもよい。粘着層が複数の層から構成される場合、粘着層の総積層量が前記範囲内となるように調整されることが好ましい。
In one aspect of the present invention, it is preferable to use a rubber-based pressure-sensitive adhesive as the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer from the viewpoint of high adhesive strength and prevention of backside adhesive residue.
The amount of the adhesive layer laminated is preferably 10 to 100 g / m 2 , more preferably 20 to 80 g / m 2 , and particularly preferably 20 to 60 g / m 2 . When the amount of the adhesive layer laminated is within the above range, the wear resistance and the flexibility tend to be better.
Further, the adhesive layer may be composed of a plurality of layers. When the adhesive layer is composed of a plurality of layers, it is preferable that the total amount of the adhesive layers laminated is adjusted to be within the above range.
 1つの態様において、本発明の結束テープは、その総厚みが、200~1300μmであることが好ましく、240~1100μmであることがより好ましく、250~650μmであることがさらに好ましい。前述の構成を有する本発明の結束テープは、その総厚みが200~1300μmの範囲であっても、柔軟性が良好となりやすく、かつ結束作業性が良好となりやすい。
 また、1つの態様において、結束テープの総積層量(基材層及び粘着層の合計積層量)は、柔軟性と高耐摩耗とをより両立しやすい観点から、100~500g/mが好ましく、200~460g/mがより好ましく、250~450g/mが特に好ましい。
In one embodiment, the binding tape of the present invention preferably has a total thickness of 200 to 1300 μm, more preferably 240 to 1100 μm, and even more preferably 250 to 650 μm. The binding tape of the present invention having the above-described configuration tends to have good flexibility and good binding workability even when the total thickness is in the range of 200 to 1300 μm.
Further, in one embodiment, the total laminated amount of the binding tape (total laminated amount of the base material layer and the adhesive layer) is preferably 100 to 500 g / m 2 from the viewpoint of more easily achieving both flexibility and high wear resistance. , 200-460 g / m 2 is more preferred, and 250-450 g / m 2 is particularly preferred.
 本発明に係る結束テープは、テープのMD方向の引張破断強度が20N/10mm以上であることが好ましい。結束テープのMD方向の引張破断強度が20N/10mm以上であれば、結束テープの柔軟性がより良好となり、結束後の電線類を屈曲させやすくなる。また、結束作業時にテープが伸びすぎて作業性が低下することを防ぎやすくなる。また耐摩耗性により優れる結束テープが得られやすくなる。
 結束テープのMD方向の引張破断強度は、20N/10mm以上70N/10mm以下であることが好ましく、22N/10mm以上60N/10mm以下であることがより好ましく、24N/10mm以上50N/10mm以下であることがさらに好ましい。結束テープのMD方向の引張破断強度が70N/10mm以下であれば、結束作業時に結束テープが伸びすぎて作業性が低下することをより防ぎやすくなる。なお、本明細書において、結束テープのMD方向の引張破断強度は、JIS Z0237(2000)の8に従って測定した値のことを指す。具体的には、以下の方法で測定した値のことを指す。
<結束テープのMD方向の引張破断強度の測定方法>
 室温23℃、相対湿度50%RHの環境下にて、結束テープの試験片(幅(TD方向の長さ)19mm、長さ(MD方向の長さ)200mm、厚み0.2~1.3mm)をチャック間距離が100mmとなるように引張試験機のチャック部に挟んで固定する。その後、300mm/minの速さで試験片を引張り、試験片が破断するまでの荷重を測定し、その最大値を引張破断強度とする。
The binding tape according to the present invention preferably has a tensile breaking strength of the tape in the MD direction of 20 N / 10 mm or more. When the tensile breaking strength of the binding tape in the MD direction is 20 N / 10 mm or more, the flexibility of the binding tape becomes better and the electric wires after binding are easily bent. In addition, it becomes easy to prevent the tape from being stretched too much during the binding work and the workability from being deteriorated. In addition, it becomes easy to obtain a binding tape having excellent wear resistance.
The tensile breaking strength of the binding tape in the MD direction is preferably 20 N / 10 mm or more and 70 N / 10 mm or less, more preferably 22 N / 10 mm or more and 60 N / 10 mm or less, and 24 N / 10 mm or more and 50 N / 10 mm or less. Is even more preferable. When the tensile breaking strength of the binding tape in the MD direction is 70 N / 10 mm or less, it becomes easier to prevent the binding tape from being stretched too much during the binding operation and the workability from being deteriorated. In this specification, the tensile breaking strength of the binding tape in the MD direction refers to a value measured according to 8 of JIS Z0237 (2000). Specifically, it refers to the value measured by the following method.
<Measurement method of tensile breaking strength of binding tape in MD direction>
A test piece of binding tape (width (length in the TD direction) 19 mm, length (length in the MD direction) 200 mm, thickness 0.2 to 1.3 mm) in an environment of room temperature 23 ° C. and relative humidity 50% RH. ) Is sandwiched and fixed in the chuck portion of the tensile tester so that the distance between the chucks is 100 mm. After that, the test piece is pulled at a speed of 300 mm / min, the load until the test piece breaks is measured, and the maximum value thereof is taken as the tensile breaking strength.
 なお、結束テープのTD方向の引張破断強度としては、特に限定されない。結束した電線の屈曲によるテープ破断を防止しやすい観点からは、結束テープのTD方向の引張破断強度は、5~70N/10mmであってもよく、10~50N/10mmであってもよい。 The tensile breaking strength of the binding tape in the TD direction is not particularly limited. From the viewpoint of easily preventing the tape from breaking due to bending of the bound electric wire, the tensile breaking strength of the bound tape in the TD direction may be 5 to 70 N / 10 mm or 10 to 50 N / 10 mm.
 1つの態様において、本発明に係る結束テープは、ISO6722に沿って測定した耐スクレープ摩耗回数が100回以上であることが好ましく、1000回以上であることがより好ましい。なお、スクレープ摩耗回数は、具体的には、以下の方法で測定した値のことを指す。
<耐スクレープ摩耗回数の測定方法>
 直径10mmの鋼棒の長手方向に、幅19mm、長さ50mmの結束テープを1層貼り付ける。次に、直径0.45mmのピアノ線を結束テープの基材層側に接触させ、7Nの荷重をかけて、60回/分の速度で長手方向15.5mmの距離を往復運動させる。このときピアノ線は結束テープを擦過し、結束テープが貫通するまでの往復回数を耐スクレープ摩耗回数とする。
In one embodiment, the binding tape according to the present invention preferably has a scrap wear resistance of 100 times or more, and more preferably 1000 times or more, as measured according to ISO 6722. The scrap wear frequency specifically refers to a value measured by the following method.
<Measuring method of scrap wear resistance>
One layer of binding tape having a width of 19 mm and a length of 50 mm is attached in the longitudinal direction of a steel rod having a diameter of 10 mm. Next, a piano wire having a diameter of 0.45 mm is brought into contact with the base material layer side of the binding tape, and a load of 7 N is applied to reciprocate the piano wire at a speed of 60 times / minute over a distance of 15.5 mm in the longitudinal direction. At this time, the piano wire scrapes the binding tape, and the number of round trips until the binding tape penetrates is defined as the number of scrap wear resistance.
 また、1つの態様において、本発明に係る結束テープは、JIS Z0237(2008)における引張強さ及び伸びの測定条件に沿って測定した、結束テープのMD方向及びTD方向の引張弾性率が、0.08~1.5MPaであることが好ましく、0.08~0.92MPaであることがより好ましく、0.08~0.7MPaであることが特に好ましい。結束テープのMD方向及びTD方向の引張弾性率が、0.08MPa以上であることにより、高耐摩耗性と良好な結束作業性を達成しやすくなる。結束テープのMD方向及びTD方向の引張弾性率が1.5MPa以下であることにより、柔軟性に優れた結束テープが得られ易くなる。なお、結束テープの引張弾性率は、具体的には以下の方法で測定した値のことを指す。
<結束テープのMD方向及びTD方向の引張弾性率の測定方法>
 幅19mm、長さ200mmの結束テープ試験片を、チャック間距離が100mmとなるように引張試験機のチャック部に挟んで固定する。室温23℃、相対湿度50%RHの環境下、300mm/minの速さで試験片を引っ張り、引張応力と歪とを測定する。歪5~10%間の引張応力と歪との比を、線形回帰により算出した値を引張弾性率とする。なお結束テープのMD方向の測定において、前記試験片の「幅」はTD方向の長さを意味し、「長さ」はMD方向の長さを意味する。また、結束テープのTD方向の測定においては、前記試験片の「幅」はMD方向の長さを意味し、「長さ」はTD方向の長さを意味する。
Further, in one embodiment, the binding tape according to the present invention has a tensile elastic modulus of 0 in the MD direction and the TD direction of the binding tape measured according to the measurement conditions of the tensile strength and the elongation in JIS Z0237 (2008). It is preferably 8.08 to 1.5 MPa, more preferably 0.08 to 0.92 MPa, and particularly preferably 0.08 to 0.7 MPa. When the tensile elastic modulus in the MD direction and the TD direction of the binding tape is 0.08 MPa or more, it becomes easy to achieve high wear resistance and good binding workability. When the tensile elastic modulus in the MD direction and the TD direction of the binding tape is 1.5 MPa or less, it becomes easy to obtain a binding tape having excellent flexibility. The tensile elastic modulus of the binding tape specifically refers to a value measured by the following method.
<Measurement method of tensile elastic modulus in MD direction and TD direction of binding tape>
A binding tape test piece having a width of 19 mm and a length of 200 mm is sandwiched and fixed in the chuck portion of the tensile tester so that the distance between the chucks is 100 mm. The test piece is pulled at a speed of 300 mm / min in an environment of room temperature of 23 ° C. and relative humidity of 50% RH, and tensile stress and strain are measured. The value calculated by linear regression for the ratio of the tensile stress to the strain between 5 and 10% of the strain is taken as the tensile elastic modulus. In the measurement of the binding tape in the MD direction, the "width" of the test piece means the length in the TD direction, and the "length" means the length in the MD direction. Further, in the measurement of the binding tape in the TD direction, the "width" of the test piece means the length in the MD direction, and the "length" means the length in the TD direction.
 1つの態様において、結束テープのTD方向の引張弾性率と、MD方向の引張弾性率との比(テープのTD方向の引張弾性率/テープのMD方向の引張弾性率、以下、単に「TD/MD」と記載することもある)は、0.8~1.3であることが好ましく、0.9~1.2であることがより好ましい。結束テープの引張弾性率の比が前記範囲内であれば、柔軟性と結束作業性とがより良好となりやすい。 In one embodiment, the ratio of the tensile modulus in the TD direction of the binding tape to the tensile modulus in the MD direction (the tensile modulus in the TD direction of the tape / the tensile modulus in the MD direction of the tape, hereinafter simply "TD /". "MD") is preferably 0.8 to 1.3, more preferably 0.9 to 1.2. When the ratio of the tensile elastic modulus of the binding tape is within the above range, the flexibility and the binding workability tend to be better.
[結束テープの製造方法]
 本発明に係る結束テープの製造方法としては、例えば、熱可塑性エラストマーを含む繊維(A)を含む繊維を用いて、スパンボンド法、又はメルトブロー法で不織布を形成する。または、繊維(A)を含む繊維から構成された不織布を準備する。不織布が融着部を備える場合、前記不織布の他方の表面に、例えば、熱エンボス加工で融着部を形成する工程を含んでいてもよい。
 次いで、シート押出し法で樹脂フィルムを製膜し、前記不織布の一方の面に、熱ラミネート法で不織布に樹脂を積層して、不織布と樹脂層とを含む基材層を構成する。その後、前述の粘着剤を前記基材層に直接塗布して粘着層を形成する方法、または一旦、別のシートに塗布した粘着剤を前記基材層に転写する方法等によって、結束テープを製造することができる。なお、粘着層を形成するための粘着剤は、基材層が不織布と樹脂層とで構成されている場合、前記樹脂層上に直接粘着剤を塗布して粘着層とすることが好ましい。
 基材層や別のシートへの粘着剤の塗布方法としては、例えば、ロールコート法、スプレーコート法、グラビアコート法、リバースコート法、ロッドコート法、バーコート法、ダイコート法、キスコート法、リバースキスコート法、エアナイフコート法等が挙げられる。
[Manufacturing method of binding tape]
As a method for producing the binding tape according to the present invention, for example, a nonwoven fabric is formed by a spunbond method or a melt blow method using a fiber containing a fiber (A) containing a thermoplastic elastomer. Alternatively, a non-woven fabric composed of fibers containing the fiber (A) is prepared. When the nonwoven fabric includes a fused portion, a step of forming the fused portion by, for example, heat embossing may be included on the other surface of the nonwoven fabric.
Next, a resin film is formed by a sheet extrusion method, and a resin is laminated on the nonwoven fabric by a thermal laminating method on one surface of the nonwoven fabric to form a base material layer containing the nonwoven fabric and the resin layer. Then, the binding tape is manufactured by a method of directly applying the above-mentioned adhesive to the base material layer to form the pressure-sensitive adhesive layer, a method of transferring the pressure-sensitive adhesive once applied to another sheet to the base material layer, or the like. can do. When the base material layer is composed of a non-woven fabric and a resin layer, it is preferable that the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer is formed by directly applying the pressure-sensitive adhesive onto the resin layer.
Examples of the method of applying the adhesive to the base material layer or another sheet include a roll coating method, a spray coating method, a gravure coating method, a reverse coating method, a rod coating method, a bar coating method, a die coating method, a kiss coating method, and a reverse method. Examples include the kiss coat method and the air knife coat method.
[用途]
 前述の通り、本発明の結束テープは、高耐摩耗性と、電線類を屈曲可能な柔軟性とを有し、かつ結束作業性にも優れる。よって、これらの性能が要求される分野、例えば、自動車の電線等の結束用テープとして好適に用いることができる。なお、当然ながら本実施形態の結束テープは、その用途が自動車の電線等の結束用途に限定されるわけではない。
[Use]
As described above, the binding tape of the present invention has high wear resistance, flexibility to bend electric wires, and is also excellent in binding workability. Therefore, it can be suitably used as a binding tape for electric wires and the like in automobiles in fields where these performances are required. As a matter of course, the use of the binding tape of the present embodiment is not limited to the binding use of electric wires and the like of automobiles.
 本発明の結束テープのその他のより好ましい態様は、熱可塑性エラストマーを含む繊維(A)からなる不織布と、前記不織布の一方の面に直接積層された樹脂層とを備える基材層と、粘着層とを有する結束テープであって、前記不織布の目付が30g/m以上であり、前記樹脂層の積層量が30g/m以上である、結束テープである。前記熱可塑性エラストマーは、TPO、TPS、及びTPUから選択される少なくとも1つを含むことが好ましい。また、前記不織布の他方の表面には融着部が設けられていてもよい。 Another more preferred embodiment of the binding tape of the present invention is a substrate layer comprising a nonwoven fabric made of fibers (A) containing a thermoplastic elastomer, a resin layer directly laminated on one surface of the nonwoven fabric, and an adhesive layer. A binding tape having a texture of 30 g / m 2 or more and a laminated amount of the resin layer of 30 g / m 2 or more. The thermoplastic elastomer preferably contains at least one selected from TPO, TPS, and TPU. Further, a fused portion may be provided on the other surface of the nonwoven fabric.
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following description.
[実施例1]
(基材層の作成)
 繊維径20μm、目付100g/m、見かけ密度0.33g/mのウレタン製不織布(商品名:「エスパンシオーネ(登録商標)」、KBセーレン(株)製)の一方の面に、シート押出機(Tダイ幅500mm、φ40mmのエキストルーダー、田辺機械プラスチック(株)製)にて押出し製膜した、PVCフィルムを熱ラミネート法で積層して樹脂層を形成し、基材層を得た。樹脂層の積層量は130g/mであった。なお、樹脂層を構成するPVCとしては、以下の組成のものを用いた。
 (PVC樹脂の組成)
 PVC(塩化ビニルのホモポリマー、平均重合度1300、製品名:「TH-1300」、大洋塩ビ(株)製)100質量部に対し、DINP((株)ジェイプラス製)58質量部、エポキシ化大豆油(製品名:「ケミサイザーSNE-50」、三和合成化学(株)製)2質量部、Ca-Zn-Mg系複合安定剤(製品名:「OW-5200」、堺化学工業(株)製)2質量部、炭酸カルシウム(製品名:「カルシーズ(登録商標)P」、神島化学工業(株)製)28質量部、を配合した。
[Example 1]
(Creation of base material layer)
A sheet on one side of a urethane non-woven fabric (trade name: "Espancione (registered trademark)", manufactured by KB Salen Co., Ltd.) with a fiber diameter of 20 μm, a grain size of 100 g / m 2 , and an apparent density of 0.33 g / m 3 . A PVC film extruded and formed by an extruder (T-die width 500 mm, φ40 mm extruder, manufactured by Tanabe Kikai Plastic Co., Ltd.) was laminated by a thermal laminating method to form a resin layer, and a base material layer was obtained. .. The laminated amount of the resin layer was 130 g / m 2 . As the PVC constituting the resin layer, the PVC having the following composition was used.
(Composition of PVC resin)
PVC (homopolymer of vinyl chloride, average degree of polymerization 1300, product name: "TH-1300", manufactured by Taiyo PVC Co., Ltd.) 100 parts by mass, while DINP (manufactured by Jay Plus Co., Ltd.) 58 parts by mass, epoxidation Soybean oil (product name: "Chemisizer SNE-50", manufactured by Sanwa Synthetic Chemical Co., Ltd.) 2 parts by mass, Ca-Zn-Mg-based composite stabilizer (product name: "OW-5200", Sakai Chemical Industry Co., Ltd.) ), 2 parts by mass of calcium carbonate (product name: "Calcies (registered trademark) P", manufactured by Kamishima Chemical Industry Co., Ltd.) 28 parts by mass.
(結束テープの作成)
 天然ゴムラテックス(製品名:「HA LATEX」、(株)レヂテックス製)10質量部(固形分)、スチレン-ブタジエンゴムラテックス(製品名:「T-093A」、JSR(株)製)40質量部(固形分)、石油樹脂系エマルション粘着付与剤(製品名:「AP-1100-NT」、荒川化学工業(株)製)50質量部(固形分)を混合して、ゴム系粘着剤エマルジョンを調製した。次に、コンマコーター法で、前記基材層の前記樹脂層の上(すなわち、不織布が積層されていない側の面)に粘着層を形成して結束テープを得た。粘着層の積層量は40g/mであった。得られた結束テープの総積層量は270g/mであり、総厚みは440μmであった。また、結束テープのMD方向の引張破断強度を以下の方法で測定した。実施例1の結束テープのMD方向の引張破断強度は29N/10mmであった。
 (結束テープのMD方向の引張破断強度)
 室温23℃、相対湿度50%RHの環境下にて、得られた結束テープを、幅(TD方向の長さ)19mm、長さ(MD方向の長さ)200mmで切り出して試験片を作成した。次に、試験片をチャック間距離が100mmとなるように引張試験機のチャック部に挟んで固定したのち、300mm/minの速さで引張り、試験片が破断するまでの荷重を測定し、その最大値を引張破断強度とした。
 また、得られた結束テープの耐摩耗性、柔軟性、結束作業性、及び引張弾性率を、以下の手順に沿って評価した。結果を表1に示す。
(Creation of binding tape)
Natural rubber latex (product name: "HA LATEX", manufactured by Reditex Co., Ltd.) 10 parts by mass (solid content), styrene-butadiene rubber latex (product name: "T-093A", manufactured by JSR Co., Ltd.) 40 parts by mass (Solid content), petroleum resin emulsion tackifier (product name: "AP-1100-NT", manufactured by Arakawa Chemical Industry Co., Ltd.) 50 parts by mass (solid content) are mixed to form a rubber adhesive emulsion. Prepared. Next, by the comma coater method, an adhesive layer was formed on the resin layer of the base material layer (that is, the surface on the side on which the non-woven fabric was not laminated) to obtain a binding tape. The laminated amount of the adhesive layer was 40 g / m 2 . The total laminated amount of the obtained binding tape was 270 g / m 2 , and the total thickness was 440 μm. Further, the tensile breaking strength of the binding tape in the MD direction was measured by the following method. The tensile breaking strength of the binding tape of Example 1 in the MD direction was 29 N / 10 mm.
(Tension breaking strength of binding tape in MD direction)
Under an environment of room temperature of 23 ° C. and relative humidity of 50% RH, the obtained binding tape was cut out with a width (length in the TD direction) of 19 mm and a length (length in the MD direction) of 200 mm to prepare a test piece. .. Next, after fixing the test piece by sandwiching it between the chucks of the tensile tester so that the distance between the chucks is 100 mm, the test piece is pulled at a speed of 300 mm / min, and the load until the test piece breaks is measured. The maximum value was taken as the tensile breaking strength.
In addition, the wear resistance, flexibility, binding workability, and tensile elastic modulus of the obtained binding tape were evaluated according to the following procedure. The results are shown in Table 1.
<耐摩耗性の評価>
 直径10mmの鋼棒の長手方向に、幅19mm、長さ50mmの結束テープを1層貼り付けた。直径0.45mmのピアノ線を結束テープの不織布側に接触させ、23℃、湿度50%RHの条件にて7Nの荷重をかけて、60回/分の速度で結束テープの長手方向15.5mmの距離を往復運動させた。このときピアノ線は結束テープを擦過し、結束テープが貫通するまでの往復回数を耐スクレープ摩耗回数とした。また、以下の評価基準に沿って耐摩耗性を評価し、B以上を合格(高耐摩耗性を有する)とした。なお、以下の評価基準において、A評価(耐スクレープ摩耗回数が1000回以上)の結束テープは、欧州自動車規格LV312における、クラスDの耐摩耗性を有する。
 (評価基準)
 A:耐スクレープ摩耗回数が1000回以上である。
 B:耐スクレープ摩耗回数が100回以上1000回未満である。
 C:耐スクレープ摩耗回数が100回未満である。
<Evaluation of wear resistance>
One layer of binding tape having a width of 19 mm and a length of 50 mm was attached in the longitudinal direction of a steel rod having a diameter of 10 mm. A piano wire with a diameter of 0.45 mm is brought into contact with the non-woven fabric side of the binding tape, a load of 7 N is applied under the conditions of 23 ° C. and a humidity of 50% RH, and the binding tape is 15.5 mm in the longitudinal direction at a speed of 60 times / minute. The distance was reciprocated. At this time, the piano wire scraped the binding tape, and the number of round trips until the binding tape penetrated was defined as the number of scrap wear resistance. In addition, the wear resistance was evaluated according to the following evaluation criteria, and B or higher was regarded as acceptable (has high wear resistance). In addition, in the following evaluation criteria, the binding tape of A evaluation (the number of times of scrap wear resistance is 1000 times or more) has the wear resistance of class D in the European automobile standard LV312.
(Evaluation criteria)
A: The scrap wear resistance is 1000 times or more.
B: The scrap wear resistance is 100 times or more and less than 1000 times.
C: The scrap wear resistance is less than 100 times.
<柔軟性の評価>
 JIS K7171(2016)(ISO 178:2010)に沿って、試験片の3点曲げ荷重を測定した。具体的には、図3に示すように、300mmの長さにカットした直径1mmの自動車用薄肉電線200(製品名:「AVS050」、住友電装(株)製)7本を、結束テープ100でハーフラップ巻きして試験片Xを作成した。次に、100mm間隔で配置した支持台300で支持した試験片Xの中央部に、ロードセル400に接続した押し込み治具を当て、変位量が30mmとなるまで押し込み、その時の最大荷重を測定した。なお、曲げ荷重は以下の測定条件にて測定した。また、以下の評価基準に沿って柔軟性を評価し、B以上を合格(柔軟性に優れる)とした。
 (測定条件)
 測定環境:温度23℃、湿度50%RH
 試験速度:100mm/min
 (評価基準)
 A:3点曲げ荷重が4.0N未満。
 B:3点曲げ荷重が4.0N以上5.0N未満。
 C:3点曲げ荷重が5.0N以上。
<Evaluation of flexibility>
The three-point bending load of the test piece was measured according to JIS K7171 (2016) (ISO 178: 2010). Specifically, as shown in FIG. 3, seven thin-walled electric wires 200 (product name: "AVS050", manufactured by Sumitomo Wiring Systems Co., Ltd.) for automobiles having a diameter of 1 mm cut to a length of 300 mm are tied with a binding tape 100. A test piece X was prepared by winding in half a wrap. Next, a pushing jig connected to the load cell 400 was applied to the central portion of the test piece X supported by the support bases 300 arranged at 100 mm intervals, and the test piece X was pushed until the displacement amount became 30 mm, and the maximum load at that time was measured. The bending load was measured under the following measurement conditions. In addition, the flexibility was evaluated according to the following evaluation criteria, and B or higher was regarded as acceptable (excellent in flexibility).
(Measurement condition)
Measurement environment: temperature 23 ° C, humidity 50% RH
Test speed: 100 mm / min
(Evaluation criteria)
A: The 3-point bending load is less than 4.0N.
B: The 3-point bending load is 4.0 N or more and less than 5.0 N.
C: 3-point bending load is 5.0N or more.
<結束作業性の評価>
 幅19mmで1.3インチ紙管に15m巻き取ったロール状の結束テープを用意し、直径1mmの自動車用薄肉電線200(製品名:「AVS050」、住友電装(株)製)7本を結束テープでハーフラップ巻きする作業を行って結束作業性を評価した。また、以下の評価基準に沿って結束作業性を評価し、B以上を合格(結束作業性が良好である)とした。
 (評価基準)
 A:結束作業時に結束テープが伸びず対象物を結束しやすかった。
 B:結束作業時に結束テープが少し伸びるが対象物を結束することができた。
 C:結束作業時に結束テープが伸びてしまい、対象物を結束しづらかった。
<Evaluation of binding workability>
Prepare a roll-shaped binding tape wound 15 m on a 1.3-inch paper tube with a width of 19 mm, and bind seven thin-walled electric wires 200 for automobiles (product name: "AVS050", manufactured by Sumitomo Wiring Systems Co., Ltd.) with a diameter of 1 mm. The work of half-wrapping with tape was performed to evaluate the binding workability. In addition, the binding workability was evaluated according to the following evaluation criteria, and B or higher was regarded as acceptable (good binding workability).
(Evaluation criteria)
A: The binding tape did not stretch during the binding operation, and it was easy to bind the object.
B: The binding tape stretched a little during the binding work, but the object could be bound.
C: The binding tape stretched during the binding operation, making it difficult to bind the object.
<結束テープのMD方向及びTD方向の引張弾性率>
 幅19mm、長さ200mmの結束テープ試験片を作成し、チャック間距離が100mmとなるように引張試験機のチャック部に挟んで固定した。室温23℃、相対湿度50%RHの環境下、300mm/minの速さで試験片を引っ張り、引張応力と歪とを測定した。歪5~10%間の引張応力と歪との比を、線形回帰により算出した値を引張弾性率とした。なお結束テープのMD方向の測定において、前記試験片の「幅」とはTD方向の長さを意味し、「長さ」とはMD方向の長さを意味する。また、結束テープのTD方向の測定においては、前記試験片の「幅」とはMD方向の長さを意味し、「長さ」とはTD方向の長さを意味する。
<Tension elastic modulus in MD direction and TD direction of binding tape>
A binding tape test piece having a width of 19 mm and a length of 200 mm was prepared, sandwiched between chucks of a tensile tester so that the distance between chucks was 100 mm, and fixed. The test piece was pulled at a speed of 300 mm / min in an environment of room temperature of 23 ° C. and relative humidity of 50% RH, and tensile stress and strain were measured. The ratio of the tensile stress to the strain between 5 and 10% of the strain was calculated by linear regression and used as the tensile elastic modulus. In the measurement of the binding tape in the MD direction, the "width" of the test piece means the length in the TD direction, and the "length" means the length in the MD direction. Further, in the measurement of the binding tape in the TD direction, the "width" of the test piece means the length in the MD direction, and the "length" means the length in the TD direction.
[実施例2~10]
 不織布及び樹脂層の構成を表1に示す通りとした以外は、実施例1と同様の方法にて結束テープを作成した。また各例の結束テープについて、実施例1と同様の方法で、MD方向の引張破断強度を測定した。また、実施例1と同様の方法で耐摩耗性、柔軟性、結束作業性、及び結束テープの引張弾性率を評価した。結果を表1に示す。
[Examples 2 to 10]
A binding tape was prepared in the same manner as in Example 1 except that the configurations of the nonwoven fabric and the resin layer were as shown in Table 1. Further, for the binding tape of each example, the tensile breaking strength in the MD direction was measured by the same method as in Example 1. Further, the wear resistance, flexibility, binding workability, and tensile elastic modulus of the binding tape were evaluated by the same method as in Example 1. The results are shown in Table 1.
[実施例11]
 繊維径20μm、目付100g/m、見かけ密度0.33g/mのウレタン製不織布(商品名:「エスパンシオーネ」、KBセーレン(株)製)の表面に、エンボス加工法で融着部を形成した。融着部の形状は正方形であり、その面積は2.8mmであった。融着部は不織布の表面に格子状に形成した。また不織布の表面積(融着部を設けた表面の総面積)に対する融着部の合計面積は69%であった。
 次に、前記不織布の融着部が設けられていない側の面に、実施例1と同様の方法にて樹脂層を形成して基材層を得た。樹脂層は実施例1と同じPVC樹脂で構成されており、その積層量は130g/mであった。その後、実施例1と同様の方法で粘着層を形成して結束テープを得た。使用した粘着剤は実施例1と同じゴム系粘着剤であり、粘着層の積層量は40g/mであった。得られた結束テープの総積層量は270g/mであり、総厚みは440μmであった。また、結束テープのMD方向の引張破断強度を実施例1と同様の方法で測定した。さらに、得られた結束テープの耐摩耗性、柔軟性、結束作業性、及び引張弾性率を実施例1と同様の方法で評価した。結果を表1に示す。
[Example 11]
A urethane non-woven fabric (trade name: "Espancione", manufactured by KB Salen Co., Ltd.) with a fiber diameter of 20 μm, a basis weight of 100 g / m 2 , and an apparent density of 0.33 g / m 3 is embossed on the surface of the fused part. Formed. The shape of the fused portion was square, and its area was 2.8 mm 2 . The fused portions were formed in a grid pattern on the surface of the nonwoven fabric. The total area of the fused portion with respect to the surface area of the nonwoven fabric (total area of the surface provided with the fused portion) was 69%.
Next, a resin layer was formed on the surface of the non-woven fabric on the side where the fused portion was not provided by the same method as in Example 1 to obtain a base material layer. The resin layer was made of the same PVC resin as in Example 1, and the laminated amount was 130 g / m 2 . Then, an adhesive layer was formed in the same manner as in Example 1 to obtain a binding tape. The pressure-sensitive adhesive used was the same rubber-based pressure-sensitive adhesive as in Example 1, and the laminated amount of the pressure-sensitive adhesive layer was 40 g / m 2 . The total laminated amount of the obtained binding tape was 270 g / m 2 , and the total thickness was 440 μm. Further, the tensile breaking strength of the binding tape in the MD direction was measured by the same method as in Example 1. Further, the wear resistance, flexibility, binding workability, and tensile elastic modulus of the obtained binding tape were evaluated by the same method as in Example 1. The results are shown in Table 1.
[比較例1]
 不織布を構成する繊維としてポリエチレンテレフタレート系繊維を用いた以外は、実施例1と同様の方法にて結束テープを作成した。得られた結束テープのMD方向の引張破断強度を実施例1と同様の方法で測定した。さらに、得られた結束テープの耐摩耗性、柔軟性、結束作業性、及び引張弾性率を実施例1と同様の方法で評価した。結果を表1に示す。
[Comparative Example 1]
A binding tape was prepared by the same method as in Example 1 except that polyethylene terephthalate fibers were used as the fibers constituting the non-woven fabric. The tensile breaking strength of the obtained binding tape in the MD direction was measured by the same method as in Example 1. Further, the wear resistance, flexibility, binding workability, and tensile elastic modulus of the obtained binding tape were evaluated by the same method as in Example 1. The results are shown in Table 1.
[比較例2]
 樹脂層を設けなかった以外は実施例1と同様の方法で結束テープを作成した。得られた結束テープのMD方向の引張破断強度を実施例1と同様の方法で測定した。さらに、得られた結束テープの耐摩耗性、柔軟性、結束作業性及び引張弾性率を実施例1と同様の方法で評価した。結果を表1に示す。
[Comparative Example 2]
A binding tape was prepared in the same manner as in Example 1 except that the resin layer was not provided. The tensile breaking strength of the obtained binding tape in the MD direction was measured by the same method as in Example 1. Further, the wear resistance, flexibility, binding workability and tensile elastic modulus of the obtained binding tape were evaluated by the same method as in Example 1. The results are shown in Table 1.
 なお、表1中、「NR/SBR」とは、天然ゴム(NR)と合成ゴム(スチレン-ブタジエンゴム(SBR))のことを意味する。実施例2~11及び比較例1~2の粘着剤(NR/SBR)は、実施例1で用いたものと同じ粘着剤を用いた。
 また、表1中、「PET」は、ポリエチレンテレフタレート系繊維(繊維径10μm)を意味する。
 実施例2~9、11、及び比較例1の「PVC」は、実施例1と同じPVC樹脂を用いた。また、実施例8の「TPO」、実施例9の「TPS」、及び実施例10の「EVA」としては、以下の組成のものを用いた。
 (TPO)
 オレフィン系熱可塑性エラストマーであるエチレンプロピレンジエンゴム分散ポリプロピレン(TPO、商品名:「EXCELINK(登録商標)1300B」、JSR(株)製)からなる、繊維径20μmの繊維。
 (TPS)
 スチレン系熱可塑性エラストマーであるスチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)(TPS、商品名:「タフテック(登録商標)H1043」、旭化成(株)製)からなる、繊維径10μmの繊維。
 (EVA)
 エチレン含量が18%であるEVA樹脂(製品名:「デンカEVAテックス(登録商標)」、デンカ(株)製)。
In Table 1, "NR / SBR" means natural rubber (NR) and synthetic rubber (styrene-butadiene rubber (SBR)). As the pressure-sensitive adhesives (NR / SBR) of Examples 2 to 11 and Comparative Examples 1 and 2, the same pressure-sensitive adhesives used in Example 1 were used.
Further, in Table 1, "PET" means a polyethylene terephthalate fiber (fiber diameter 10 μm).
The same PVC resin as in Example 1 was used for "PVC" in Examples 2 to 9, 11 and Comparative Example 1. Further, as "TPO" of Example 8, "TPS" of Example 9, and "EVA" of Example 10, those having the following compositions were used.
(TPO)
A fiber having a fiber diameter of 20 μm, made of ethylene propylene diene rubber-dispersed polypropylene (TPO, trade name: “EXCELINK (registered trademark) 1300B”, manufactured by JSR Co., Ltd.), which is an olefin-based thermoplastic elastomer.
(TPS)
A fiber having a fiber diameter of 10 μm, which is a styrene-based thermoplastic elastomer styrene-ethylene-butylene-styrene block copolymer (SEBS) (TPS, trade name: "Tough Tech (registered trademark) H1043", manufactured by Asahi Kasei Corporation). ..
(EVA)
EVA resin with an ethylene content of 18% (Product name: "Denka EVA Tex (registered trademark)", manufactured by Denka Co., Ltd.).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、本発明の構成を満たす実施例1~11の結束テープは、高耐摩耗性と、電線類を屈曲可能な柔軟性とを有しており、かつ結束作業性も良好であった。さらに、実施例3、5及び7の結束テープは、欧州自動車規格LV312のクラスDに相当する、優れた耐摩耗性も有していることが分かった。一方、熱可塑性エラストマーを含む繊維(A)を含まない繊維から構成された不織布を備える比較例1の結束テープは、耐摩耗性及び結束作業性は良好であったものの、柔軟性が低かった。また、基材層が樹脂層を含まない比較例2の結束テープは、柔軟性は良好であったものの、結束作業時にテープが伸びすぎてしまい、対象物を結束することが難しかった。また耐摩耗性も低かった。以上の結果から、本発明の結束テープは、高耐摩耗性と、電線類を屈曲可能な柔軟性とを有し、かつ結束作業性にも優れることが確認された。 As shown in Table 1, the binding tapes of Examples 1 to 11 satisfying the configuration of the present invention have high wear resistance, flexibility to bend electric wires, and good binding workability. there were. Furthermore, it was found that the binding tapes of Examples 3, 5 and 7 also had excellent wear resistance corresponding to Class D of the European automobile standard LV312. On the other hand, the binding tape of Comparative Example 1 provided with the non-woven fabric composed of the fiber (A) containing the thermoplastic elastomer had good wear resistance and binding workability, but had low flexibility. Further, although the binding tape of Comparative Example 2 in which the base material layer does not contain the resin layer had good flexibility, the tape stretched too much during the binding operation, and it was difficult to bind the object. The wear resistance was also low. From the above results, it was confirmed that the binding tape of the present invention has high wear resistance, flexibility to bend electric wires, and is also excellent in binding workability.
1:融着部
10:不織布
20:樹脂層
30:粘着層
40:基材層
100:結束テープ
200:電線
300:支持台
400:ロードセル
 
1: Fused part 10: Non-woven fabric 20: Resin layer 30: Adhesive layer 40: Base material layer 100: Bundling tape 200: Electric wire 300: Support base 400: Load cell

Claims (9)

  1.  熱可塑性エラストマーを含む繊維(A)を含む不織布と、前記不織布の一方の面に積層された樹脂層とを備える基材層と、粘着層とを有する結束テープ。 A binding tape having a base material layer including a non-woven fabric containing a fiber (A) containing a thermoplastic elastomer, a resin layer laminated on one surface of the non-woven fabric, and an adhesive layer.
  2.  前記不織布の目付が20~350g/mである、請求項1に記載の結束テープ。 The binding tape according to claim 1, wherein the nonwoven fabric has a basis weight of 20 to 350 g / m 2 .
  3.  前記樹脂層の積層量が20~350g/mである、請求項1または2に記載の結束テープ。 The binding tape according to claim 1 or 2, wherein the laminated amount of the resin layer is 20 to 350 g / m 2 .
  4.  前記熱可塑性エラストマーが、オレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、及びスチレン系熱可塑性エラストマーから選択される少なくとも1つを含む、請求項1から3のいずれか一項に記載の結束テープ。 The binding tape according to any one of claims 1 to 3, wherein the thermoplastic elastomer comprises at least one selected from an olefin-based thermoplastic elastomer, a urethane-based thermoplastic elastomer, and a styrene-based thermoplastic elastomer.
  5.  前記樹脂層が、ポリ塩化ビニル、及びエチレン-酢酸ビニル共重合体から選択される少なくとも1つの樹脂を含む、請求項1から4のいずれか一項に記載の結束テープ。 The binding tape according to any one of claims 1 to 4, wherein the resin layer contains at least one resin selected from polyvinyl chloride and an ethylene-vinyl acetate copolymer.
  6.  前記不織布が融着部を備える、請求項1から5のいずれか一項に記載の結束テープ。 The binding tape according to any one of claims 1 to 5, wherein the nonwoven fabric has a fused portion.
  7.  前記融着部が、前記不織布の前記樹脂層が積層されていない他方の表面に設けられており、前記融着部の合計面積の割合が、前記不織布の他方の表面の総面積に対して、20~80%である、請求項6に記載の結束テープ。 The fused portion is provided on the other surface on which the resin layer of the nonwoven fabric is not laminated, and the ratio of the total area of the fused portions is relative to the total area of the other surface of the nonwoven fabric. The binding tape according to claim 6, which is 20 to 80%.
  8.  前記結束テープの長手方向の引張破断強度が20N/10mm以上である、請求項1から7のいずれか一項に記載の結束テープ。 The binding tape according to any one of claims 1 to 7, wherein the tensile breaking strength in the longitudinal direction of the binding tape is 20 N / 10 mm or more.
  9.  電線類等の結束用である、請求項1から8のいずれか一項に記載の結束テープ。
     
    The binding tape according to any one of claims 1 to 8, which is used for binding electric wires and the like.
PCT/JP2021/037978 2020-11-12 2021-10-14 Binding tape WO2022102330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022561349A JPWO2022102330A1 (en) 2020-11-12 2021-10-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020188495 2020-11-12
JP2020-188495 2020-11-12

Publications (1)

Publication Number Publication Date
WO2022102330A1 true WO2022102330A1 (en) 2022-05-19

Family

ID=81601857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037978 WO2022102330A1 (en) 2020-11-12 2021-10-14 Binding tape

Country Status (3)

Country Link
JP (1) JPWO2022102330A1 (en)
TW (1) TW202227268A (en)
WO (1) WO2022102330A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115573100B (en) * 2022-10-31 2023-06-13 贵州省材料产业技术研究院 TPC-ET-based high-elasticity melt-blown nonwoven material and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335637A (en) * 1998-05-27 1999-12-07 Sliontec Corp Adhesive cloth tape for binding wire harness
JP2001040302A (en) * 1999-07-30 2001-02-13 Nichiban Co Ltd Pressure-sensitive self-back surface adhesive tape or sheet
JP2004524376A (en) * 2000-08-16 2004-08-12 テサ・アクチエンゲゼルシヤフト Adhesive tape comprising a textile support for wrapping an elongated material, in particular a cable room
JP2005162958A (en) * 2003-12-05 2005-06-23 Sliontec Corp Stretchable adhesive tape
JP2006210228A (en) * 2005-01-31 2006-08-10 Nitto Shinko Kk Sound deadening tape for wire harness
JP2009084481A (en) * 2007-10-01 2009-04-23 Hagihara Industries Inc Extensible adhesive sheet
JP2009137296A (en) * 2007-12-04 2009-06-25 Tesa Ag Wear-resistant tape with high noise supression effect, especially tape for bandaging cable harness
JP2011088654A (en) * 2009-10-23 2011-05-06 Nitto Shinko Kk Wire harness binding tape, and method for manufacturing binding tape
WO2019069577A1 (en) * 2017-10-05 2019-04-11 デンカ株式会社 Adhesive sheet, protective material, and wire harness
WO2020213521A1 (en) * 2019-04-16 2020-10-22 デンカ株式会社 Binding tape

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335637A (en) * 1998-05-27 1999-12-07 Sliontec Corp Adhesive cloth tape for binding wire harness
JP2001040302A (en) * 1999-07-30 2001-02-13 Nichiban Co Ltd Pressure-sensitive self-back surface adhesive tape or sheet
JP2004524376A (en) * 2000-08-16 2004-08-12 テサ・アクチエンゲゼルシヤフト Adhesive tape comprising a textile support for wrapping an elongated material, in particular a cable room
JP2005162958A (en) * 2003-12-05 2005-06-23 Sliontec Corp Stretchable adhesive tape
JP2006210228A (en) * 2005-01-31 2006-08-10 Nitto Shinko Kk Sound deadening tape for wire harness
JP2009084481A (en) * 2007-10-01 2009-04-23 Hagihara Industries Inc Extensible adhesive sheet
JP2009137296A (en) * 2007-12-04 2009-06-25 Tesa Ag Wear-resistant tape with high noise supression effect, especially tape for bandaging cable harness
JP2011088654A (en) * 2009-10-23 2011-05-06 Nitto Shinko Kk Wire harness binding tape, and method for manufacturing binding tape
WO2019069577A1 (en) * 2017-10-05 2019-04-11 デンカ株式会社 Adhesive sheet, protective material, and wire harness
WO2020213521A1 (en) * 2019-04-16 2020-10-22 デンカ株式会社 Binding tape

Also Published As

Publication number Publication date
TW202227268A (en) 2022-07-16
JPWO2022102330A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN108307638B (en) Adhesive tape roll
KR102031609B1 (en) Adhesive cleaner
KR101946322B1 (en) Laminated film
EP3957478B1 (en) Binding tape
WO2022102330A1 (en) Binding tape
JPWO2018168990A1 (en) Adhesive sheet, protective material and wire harness
JP2006328162A (en) Film
JP6349212B2 (en) Binding tape
WO2022102331A1 (en) Binding tape
WO2018123439A1 (en) Stretchable film, stretchable laminate and article comprising same
WO2022039083A1 (en) Binding tape
WO2022039046A1 (en) Binding tape
JP2004099805A (en) Pressure-sensitive adhesive sheet
JP2007161855A (en) Assembly part protection sheet
JP2004018571A (en) Foamed pressure-sensitive adhesive sheet
JP2015140500A (en) Synthetic leather and method for producing the same
JP7439114B2 (en) binding tape
JP2007063512A (en) Pressure-sensitive adhesive sheet improved in cutting property by hand
JP5464203B2 (en) Adhesive tape for processing sheets and semiconductor wafers
JP2006137899A (en) Weathering-resistant pressure-sensitive adhesive sheet
JP2005023237A (en) Laminated pressure sensitive adhesive sheet having hand tearing easiness
JP7489538B2 (en) Adhesive tape
JP2007063511A (en) Pressure-sensitive adhesive sheet improved in cutting property by hand
JP2022074889A (en) Adhesive sheet and method for manufacturing the same
JP2020028432A (en) Adhesive cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891577

Country of ref document: EP

Kind code of ref document: A1