WO2022102176A1 - Sorting method for electronic component scraps and processing method for electronic component scraps - Google Patents

Sorting method for electronic component scraps and processing method for electronic component scraps Download PDF

Info

Publication number
WO2022102176A1
WO2022102176A1 PCT/JP2021/028211 JP2021028211W WO2022102176A1 WO 2022102176 A1 WO2022102176 A1 WO 2022102176A1 JP 2021028211 W JP2021028211 W JP 2021028211W WO 2022102176 A1 WO2022102176 A1 WO 2022102176A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
scraps
waste
information
shape
Prior art date
Application number
PCT/JP2021/028211
Other languages
French (fr)
Japanese (ja)
Inventor
勝志 青木
弘 河野
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2022102176A1 publication Critical patent/WO2022102176A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/04Sorting according to size
    • B07C5/10Sorting according to size measured by light-responsive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass

Definitions

  • the present invention relates to a method for classifying electronic component scraps and a method for treating electronic component scraps, and the present invention relates to, for example, a method for classifying electronic component scraps and a method for treating electronic component scraps that can be used in a recycling processing process for used electronic / electrical equipment.
  • Patent Document 1 scraps containing valuable metals such as electronic parts scraps are charged into a self-melting furnace for copper ore smelting, and the valuable metals are retained in the furnace. It describes how to recycle valuable metals, including the process of collecting them on a mat.
  • Patent Document 2 As a method for recovering valuable metals from recycled raw materials containing aluminum, the recycled raw materials are charged into a melting furnace in a copper smelting process, and aluminum is oxidized to form a molten slag layer.
  • a method for treating recycled raw materials is described in which the valuable metal is removed from the system by making it a component of the above, the valuable metal is dissolved in the metal layer or the mat layer, and the dissolved valuable metal is recovered.
  • the processing of electronic component scraps should be well separated by crushing into multiple component types suitable for recovery, such as substrates, plastics, metal pieces, copper wire scraps, capacitors, IC chips, and other component types. It is a target.
  • component types suitable for recovery such as substrates, plastics, metal pieces, copper wire scraps, capacitors, IC chips, and other component types. It is a target.
  • many sorting processes are classified and processed on the premise that the crushed material is in a state suitable for recovery of valuable resources.
  • one of the purposes may be to appropriately recover a substrate containing a relatively large amount of valuable metal.
  • the present disclosure provides a method for classifying electronic component waste and a method for treating electronic component waste, which can appropriately determine a mixed waste containing a plurality of component types from among electronic component waste.
  • electronic component scraps are a mixture of two or more types of components such as plastic and metal, and among metals, metal to be recovered as a valuable metal and recovery. Since there are complicated circumstances such as some metals not being collected, it is necessary to detect the characteristics of two or more types of electronic component scraps to be collected. Then, the present inventors identify the position and shape of each electronic component scrap from the plurality of electronic component scraps by the identification means, and then, for each electronic component scrap whose position and shape are identified, each electronic component. It was found that it is effective to analyze two or more characteristics of the waste and classify the component waste using the two or more characteristics associated with the electronic component waste of the same shape and position. rice field.
  • the embodiment of the present invention completed based on the above findings identifies the position and shape of each electronic component scrap from a plurality of electronic component scraps having different shapes on one side, and position information of each electronic component scrap.
  • the position shape identification step of obtaining the position shape identification information including the shape information the feature analysis step of analyzing at least two or more features of each electronic component waste and obtaining the feature analysis information, and the position shape identification information and the feature analysis information.
  • the embodiment of the present invention identifies the position and shape of each electronic component scrap from a plurality of electronic component scraps having different shapes, and includes position information and shape information of each electronic component scrap.
  • the position shape identification step for obtaining the position shape identification information
  • the feature analysis step for obtaining the feature analysis information associated with the position shape identification information by analyzing at least two characteristics of each electronic component waste, and the position shape identification information and the feature analysis information.
  • a classification process for classifying each electronic component scrap by a predetermined component type and classification using two or more features associated with one electronic component scrap having the same shape and the same position. It is a method for processing electronic component waste including an extraction step of extracting electronic component waste to be extracted from a plurality of electronic component waste based on a process classification result and position shape identification information.
  • the sorting system 100 As shown in FIG. 1, the sorting system 100 according to the embodiment of the present invention has a transport unit 3 provided with a transport surface 30 for transporting electronic component scraps 5, and electronic component scraps 5 transported on the transport surface 30. It includes an image recognition unit 2 for image recognition, and a sorting unit 1 for transporting electronic component scraps 5 from a transport source to a transport destination using a picking robot 10.
  • Electronic component scrap 5 means scraps of crushed electronic and electrical equipment such as waste home appliances, PCs and mobile phones, and refers to those crushed to an appropriate size after being collected.
  • the crushing for obtaining the electronic component waste 5 may be performed by the processor himself, or may be crushed in the city and purchased.
  • the crushing method is not limited to a specific device, and may be a shearing method or an impact method, but crushing that does not impair the shape of parts is desirable as much as possible. Therefore, equipment belonging to the category of crushers intended for fine crushing is not included.
  • the electronic component scrap 5 in the present embodiment typically uses scrap crushed to a particle size of 10 mm or more and 100 mm or less, and more typically 15 mm or more and 50 mm or less as a raw material. Is preferable.
  • the electronic component scrap 5 after being sorted by using any of a magnetic force sorter, a color sorter, a metal sorter, an optical sorter including an infrared sensor, and a plastic sorter is preferable. Can be adopted for.
  • the electronic component waste 5 includes component waste (for example, substrate, plastic, metal piece, copper wire waste, capacitor, IC chip, etc.) or outside the system, which is a raw material for smelting suitable for recovery in the smelting process described later.
  • component waste for example, substrate, plastic, metal piece, copper wire waste, capacitor, IC chip, etc.
  • the raw material scraps heat sink, housing, iron (Fe) scraps, aluminum (Al) scraps, stainless steel (SUS) scraps, synthetic resins, etc.
  • a single waste having a ratio of 90% or more by weight) and a mixed waste in which these plurality of component wastes are mixed are included.
  • the single waste is not limited to the following, but is, for example, Al waste including a silver-white heat sink or a housing as shown in FIG. 12 (a), and black as shown in FIG. 12 (b).
  • Fe scraps containing, screws and springs having a silver color as shown in FIG. 13 (b) are included.
  • Examples of the mixed waste include a heat sink with an IC as shown in FIG. 14 (a), a capacitor with a substrate as shown in FIG. 14 (b), and aluminum waste with a copper wire as shown in FIG. 14 (c).
  • An iron core with a copper coil as shown in 15 (a), an iron scrap or iron core with a substrate as shown in FIG. 15 (b), a substrate with a lead wire as shown in FIG. 5 (c), and the like are included.
  • the simple substance scraps as shown in FIGS. 12 (a) to 13 (b) can be appropriately sorted to some extent by appropriately adjusting the sorting accuracy of the smelter, but FIGS. 14 (a) to 14 (a) to FIG.
  • the mixed waste as shown in 15 (c) it may be difficult to properly sort the mixed waste because the smelting raw material and the non-system raw material are mixed.
  • the image analysis means 20 includes an image pickup means 21 for capturing an image of electronic component scraps 5 in an image pickup area set on the transport surface 30, and a control means for controlling various operations of the image pickup means 21.
  • the 200, a storage device 210 for storing information necessary for the operation of the control means 200, and an input means 120 and an output means 130 capable of inputting / outputting information necessary for the control means 200 can be provided.
  • the image pickup means 21 irradiates a plurality of electronic component scraps 5 in the imaging area with light having different wavelengths (multispectral light) to obtain two or more spectral information on the electronic component scraps 5.
  • a unit (not shown) and a multi-spectral imaging unit (multi-camera unit: not shown) for imaging electronic component scraps 5 in an imaging area irradiated with light of different wavelengths are provided.
  • the image pickup control means 201 extracts the multispectral image pickup data captured by the multispectral image pickup unit and stores it in the multispectral image pickup data storage means 211.
  • the image recognition unit 2 may include a region detection unit 23 that irradiates the electronic component waste 5 in the imaging area with region detection light to acquire region detection data.
  • the area detection includes detecting the area (existing area) of the electronic component waste 5 existing in the image pickup area of the image recognition unit 2 by the image recognition process, whereby the contour of the object can be clearly recognized. .. Specifically, it is obtained by binarizing the area detection data which is an image of the imaging area including the electronic component scraps 5, whereby the position, the number, and the contour of the electronic component scraps 5 existing in the imaging area are obtained. (Shape) and area are clarified. For example, if the position of any electronic component scrap 5 in the sorting unit 1 matches the position of the specific electronic component scrap 5 in the area detection data obtained by the image recognition unit 2, they are the same. Can be identified.
  • the specific configuration of the region detection unit 23 is not particularly limited, but for example, a light source that irradiates an object in the imaging area with region detection light such as visible light, infrared light, or ultraviolet light, and region detection light. It can be provided with a detector or the like for detecting an object in the image pickup area illuminated by.
  • the area detection data is stored in the area detection data storage means 212. If the area detection data can be produced in place of the area detection unit 23 by the multispectral illumination unit and the multispectral image pickup unit included in the image pickup means 21, the area detection unit 23 may be omitted.
  • the control means 200 identifies, for example, the position and shape of each electronic component scrap 5 from among a plurality of electronic component scraps 5 having different shapes from the image pickup control means 201 that controls the image pickup means 21 and the area detection unit 23.
  • the position and shape identification means 202 that obtains the position and shape identification information including the position information and the shape information of each electronic component waste 5, and the feature analysis means 203 that analyzes at least two or more features of each electronic component scrap 5 and obtains the feature analysis information. And, based on the position shape identification information and the feature analysis information, each electronic component scrap 5 is predetermined by using two or more features associated with one electronic component scrap 5 having the same shape and the same position. It is provided with a classification means 204 for classifying by the type of parts, an identification information producing means 205 for producing identification information for each electronic component waste 5, and a movement following means 207.
  • the multispectral imaging data storage means 211 for storing the multispectral imaging data for the electronic component waste 5 the area detection data storage means 212 for storing the area detection data, and the image analysis means 20 are images. Identification information of each component scrap 5 based on the characteristics of the color characteristic information storage means 213, the classification information storage means 214, and the electronic component scrap 5 that store the color characteristic information based on the color included in the electronic component scrap 5 to be analyzed.
  • the identification information storage means 215 for producing the above is provided.
  • the control means 200 is connected to the server 25 or another sorting system 24 via the network 22 so that the image analysis result of the electronic component waste 5 analyzed by the image analysis means 20 of FIG. 2 can be shared with each other. May be good.
  • the image analysis means 20 can proceed with the image analysis process according to, for example, the procedure shown in FIG.
  • the image pickup control means 201 controls the area detection unit 23 to irradiate the electronic component waste 5 conveyed in the image pickup area with the area detection light for area detection.
  • An object in the image pickup area illuminated by light is detected, and the area detection data of the electronic component waste 5 conveyed in the image pickup area is imaged (see FIG. 4).
  • the area detection data is stored in the area detection data storage means 212.
  • step S101 the multispectral illumination unit included in the image pickup means 21 irradiates the electronic component scrap 5 in the image pickup area with multispectral illumination light having a different wavelength, and the multispectral image pickup unit performs a plurality of multispectral illuminations having different illumination colors.
  • Obtain the imaging data see FIGS. 5 (a) to 5 (h)).
  • multispectral imaging data of eight colors of illumination light of white, ultraviolet (UV), blue, green, orange, red, far infrared color (FR), and infrared (IR) can be obtained.
  • the multispectral imaging data is stored in the multispectral imaging data storage means 211.
  • the position / shape identification means 202 of FIG. 2 detects the position and shape of the electronic component waste 5 existing in the imaging area based on the area detection data.
  • the position / shape identification means 202 binarizes the imaged data in FIG. 4 to clarify the shade between the outer diameter of the electronic component waste 5 and the background (see FIG. 5), and to create an image in which the shade is clarified. Based on this, the black figures that emerge on the white background are extracted as the electronic component scraps 5 to be detected. For example, in the example of FIG. 6, there are three lumps on a white background. Therefore, the position shape identification means 202 detects three electronic component scraps 5 in the image pickup data. By detecting the number of electronic component scraps 5 existing in the imaging area using the area detection data, the position and shape (area (number of pixels)) of the electronic component scraps 5 can be detected more appropriately.
  • the feature analysis means 203 sets the first to third inspection areas 51, 52, and 53 so that only one electronic component waste 5 is included in each inspection area.
  • the feature analysis means 203 can set the first, second, and third inspection areas 51, 52, and 53.
  • the feature analysis means 203 further sets the multispectral imaging data and the electronic component scraps 5 registered in advance in the color characteristic information storage means 213 for the electronic component scraps 5 in the first to third inspection areas 51 to 53. At least two or more features of each electronic component scrap 5 are analyzed based on the identification information for identifying a plurality of component types included in the above, and feature analysis information is obtained.
  • the feature analysis information for analyzing the features of the electronic component scrap 5 can include color characteristic information, and the color characteristic information can include at least the extracted color information and the extracted color area information.
  • the extracted color information includes information including setting values of each value such as hue, saturation, and lightness of typical colors included in the smelting raw material or the extrasystem raw material.
  • the extracted color area information includes the "extracted color" preset by the user in the electronic component scrap 5 in the inspection area, the electronic component scrap 5 is determined to be a smelting raw material or a non-system raw material. Contains information on the area threshold (area ratio setting value).
  • the feature analysis means 203 analyzes the ratio of the specific color of the electronic component scraps to the area occupied by the specific color with respect to the total area of the electronic component scraps 5 to determine the smelting raw material or the non-system raw material. By comparing with the threshold value, the characteristics of the smelting raw material or the extrasystem raw material can be analyzed. Information on the threshold value of the area for determining the smelting raw material or the non-system raw material can be input in advance.
  • a material containing valuable resources contained in the smelting raw material to be collected for example, wire scrap (copper color, gold color), metal waste such as brass (copper color, gold color), IC or LSI. (Black, gold, green), substrate containing valuable metal (green, brown, black, white), connector insertion slot containing copper wire (white), capacitor and heat sink containing a certain amount or more of valuable metal (silver, White, black) etc. are included.
  • Non-system raw materials include metal scraps (glossy silver), plastics (white, black, brown) that are not suitable for recovery in the smelting process such as iron, aluminum, and stainless steel, capacitors that do not contain more than a certain amount of valuable metals, and Includes heat sinks, etc. (silver, white, black).
  • the extraction color information for reducing the misrecognition of these smelting raw materials and non-system raw materials as much as possible and improving the recognition accuracy at least the white, green, black, gold, and copper colors of the smelting raw materials and the non-system raw materials are used. It is preferable to include it as information of "extraction color" used for determining the extraction of the object to be sorted. In a more preferable embodiment, it is preferable to include white, green, black, gold, copper, brown, and silver as information of at least the "extraction color" used for determining the extraction of the selection target.
  • the extracted color area information used as the feature analysis information includes two or more threshold values for the black area. For example, when a first threshold value and a second threshold value larger than the first threshold value are set, among the electronic component scraps 5 having black color, those below the first threshold value are unevenness of the electronic component scraps 5. Since it is considered that it was only affected by the shadow that can be formed, it can be set as a "sorting target" to be extracted as a raw material for smelting.
  • Those between the first and second threshold values are considered to detect the regulator (IC) attached to the heat sink, and therefore should be left on the transport surface 30 as an extrasystem raw material. ".
  • Those having a value equal to or higher than the second threshold value are considered to be black-painted metal scraps, and therefore can be set as "sorting objects" as smelting raw materials.
  • sorting objects as smelting raw materials.
  • the classification means 204 is preset as "smelting raw materials". Based on the extracted color information and the extracted color area information, whether or not the electronic component waste 5 in the inspection area satisfies the condition of the "smelting raw material” is classified by collating with the multispectral imaging data. When the electronic component scrap 5 in the inspection area satisfies the condition of the "smelting raw material", the electronic component scrap 5 is classified as a "smelting raw material" to be removed by the sorting process described later.
  • the classification means 204 identifies the multispectral imaging data and the smelting raw material and the non-system raw material registered in advance in the color characteristic information storage means 213 for the electronic component waste 5 in each inspection area. Based on the color characteristic information of, the object to be not sorted (selection exclusion: either smelting raw material or extrasystem raw material) is determined.
  • the identification information creating means 205 creates the identification information based on the setting result of the selection target and the selection exclusion.
  • the identification information includes information on whether the electronic component waste 5 in each inspection area is an object to be sorted or a non-target object to be sorted, and the position, color, area, major axis and minor axis of the object. Information such as the orientation and center of gravity is included.
  • the identification information is stored in the identification information storage means 215.
  • the imaging means 21 provided with multispectral illumination for imaging the electronic component scrap 5 in the imaging area to obtain multispectral imaging data, and the multispectral imaging data are registered in advance.
  • the image analysis means 20 is provided with an image analysis means 20 for identifying a smelting raw material or a non-system raw material based on color characteristic information of a smelting raw material and a non-system raw material and obtaining identification information including position information of the smelting raw material or the non-system raw material.
  • metal scraps such as iron, aluminum, and stainless steel have a metallic luster, so that they look white due to halation in a conventional color camera and have a silver recognition area. It may become smaller and the recognition rate of the object may decrease.
  • the extraction color is expanded to white silver in an attempt to reduce the erroneous recognition rate, the white silver contained in the substrate waste of the smelting raw material is erroneously detected.
  • the imaging means 21 provided with the multispectral illumination unit can obtain a plurality of multispectral imaging data in which the influence of halation is suppressed. Therefore, the electrons contained therein are used by using the multispectral imaging data.
  • the influence of halation can be reduced and the misrecognition of the color possessed by the electronic component scrap 5 can be suppressed.
  • the uneven metal object looks black in a wide range in the darkened part due to the reflection of light, and the silver recognition area exhibited by the metal becomes small, so that the recognition rate may decrease.
  • the image pickup means 21 provided with the multispectral illumination unit can recognize a subtle color difference, it is possible to suppress the influence of shadows and make the silver recognition area exhibited by the metal closer to reality. Can be done.
  • the image pickup means 21 provided with the multispectral illumination unit makes it possible to recognize a black-silver metal such as stainless steel. Further, the metal scraps painted in black can be identified by ignoring the influence of painting by evaluating using the multispectral imaging data of the wavelength in the infrared region.
  • FIG. 7 shows a case where a conventional color camera is used as an image pickup means 21 when two types of metal scraps and two types of plastics are processed as the electronic component scraps 5 to be image-analyzed by the image recognition unit 2 of FIG. , An example of the comparison result when the camera irradiating the multispectral illumination light is used as the image pickup means 21 is shown.
  • plastic (1) whose appearance is very dirty, it is confused with brown substrate waste, which is a raw material for smelting, in a color camera, and misrecognition occurs.
  • the image pickup means 21 that irradiates the multispectral illumination light it can be recognized as a plastic as an external raw material.
  • red plastic (2) in a color camera, it is confused with copper wire scrap which is a raw material for smelting, and misrecognition occurs.
  • the image pickup means 21 that irradiates the multispectral illumination light it can be recognized as a plastic as an external raw material.
  • the control means 200 may include the movement following means 207.
  • the position may be displaced between the first and last imaging data.
  • the electronic component scrap 5 continuously moving along the transport direction is identified by image analysis, as a step of identifying by image analysis, immediately before imaging the region detection light and the multispectral illumination light.
  • the reference light is applied to the electronic component scrap 5 in the imaging area.
  • white light of multispectral illumination can be used.
  • the electronic component waste 5 after the image analysis process is performed by the image recognition unit 2 is sent to the sorting unit 1 shown in FIG.
  • the sorting unit 1 is not particularly limited as long as it has a device for sorting objects on the transport surface 30.
  • a sorting device using air injection, an electric paddle, a suction mechanism, a robot hand, or the like can be used.
  • the sorting unit 1 is connected to a picking robot 10 that transports an object on the transport surface 30 from the transport unit 3 to the transport unit 4, and the picking robot 10, and is connected to the picking robot 10 from among the electronic component scraps 5. It is provided with a robot hand 11 that grips a smelting raw material or a non-system raw material as an object.
  • the picking robot 10 picks out an object based on the identification information generated by the image recognition unit 2.
  • the picking robot 10 is not particularly limited as long as it is an industrial robot having a function of grasping and transporting an object, and various types of industrial robots can be used.
  • a robot having various methods such as a orthogonal type, an articulated type, and a parallel link type can be used.
  • the orthogonal robot is a simple robot composed of two or three slide axes.
  • Articulated robots can be either vertical or horizontal, and the vertical type has a wide range of motion due to the rotation of the pedestal and the movement of the arm, and is capable of three-dimensional movement with a high degree of freedom.
  • the horizontal robot has all the axes of rotation of the joints vertically aligned, and has a simpler structure than the vertical articulated robot.
  • the parallel link type robot is an industrial robot having a parallel link structure in which joints are arranged in parallel.
  • the parallel link type robot moves to the target position in the shortest distance by the parallel link mechanism, so it moves to the position of the object to be extracted with high speed and high accuracy, grips the substance, and moves to the predetermined position at high speed.
  • the picking robot 10 it can be particularly preferably used because it can be sent to.
  • the picking robot 10 is typically in a direction perpendicular to the transport direction so as to cross the transport surface 30 of the transport unit 3.
  • the object can be extracted from the transport unit 3 toward the transport destination of the transport unit 4 having a transport direction.
  • the transport unit 4 can be configured by a conveyor or the like.
  • the transport unit 3 and the picking robot 10 are arranged close to each other, and the picking robot 10 is configured to discharge the object in a direction crossing the transport direction of the transport unit 3 to eject the object. It can be accurately removed from the electronic component waste 5 in a short time and transported.
  • the robot hand 11 included in the picking robot 10 is provided with a suction pad 13a for sucking an object and a vacuum generator 13b connected to the suction pad 13a in the central portion. 13, a holding portion 14 (first to fourth arm portions 14a to 14d) for sandwiching an object to be sucked by the suction pad 13a, and a fixing portion 12 for fixing the suction portion 13 and the holding portion 14.
  • a suction pad 13a is made of an elastic member such as rubber or silicon, and projects downward (on the transport surface 30 side).
  • the sandwiching portion 14 is not particularly limited as long as it can sandwich an object.
  • the sandwiching portion 14 may include, for example, a first arm portion 14a, a second arm portion 14b, a third arm portion 14c, and a fourth arm portion 14d.
  • the base end portions of the first to fourth arm portions 14a to 14d are connected to a drive mechanism (not shown) in the fixed portion 12, respectively.
  • the first arm portion 14a and the second arm portion 14b receive power transmitted from the drive mechanism, and the direction V toward or away from the central axis X of the suction pad 13a. It can be opened and closed in conjunction with W.
  • the third arm portion 14c and the fourth arm portion 14d located in the depth direction of the paper surface in FIG. 9B are also from the air chucks (not shown) connected to the first to fourth arm portions 14a to 14d.
  • the suction pad 13a can be opened and closed in conjunction with the direction V approaching the central axis X and the direction W moving away from it.
  • the first to fourth arm portions 14a to 14d can be opened and closed at the same timing, whereby the suctioned object is sandwiched or released by the tip portion of the suction pad 13a.
  • the tips of the first to fourth arm portions 14a to 14d are provided with claw portions 141a to 141d protruding toward the central portion where the suction pads 13a are arranged, respectively. Since the first to fourth arm portions 14a to 14d are provided with the claw portions 141a to 141d, respectively, it is possible to more accurately grip the object while suppressing the fall of the object.
  • the claw portions 141a to 141d are formed so as to have a tapered shape toward the suction pad 13a side. As a result, the claw portions 141a to 141d can come into contact with the bottom surface of the object to facilitate scooping up of the object.
  • the tip portions (lowermost end portions) of the claw portions 141a to 141d are arranged at a position relatively lower than the tip portion of the suction pad 13a, that is, a position closer to the transport surface 30. Is preferable. As a result, the object whose claws 141a to 141d are sucked by the suction pad 13a can be easily picked up from the transport surface 30 and pinched.
  • the claw portion 141a of the first arm portion 14a and the claw portion 141d of the fourth arm portion 14d are connected, and the claw portion 141b of the second arm portion 14b and the third arm portion are connected.
  • the claw portion 141c of 14c may be connected.
  • the length L (see FIG. 9A) of the claw portions 141a to 141d along the direction parallel to the opening / closing direction of the first to fourth arm portions 14a to 14d is the electronic component waste 5 according to the present embodiment. In the case of treatment, it is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 15 mm or more. The upper limit depends on the dimensions of the robot hand 11, but can be, for example, 40 mm or less, further 30 mm or less.
  • the electronic component waste 5 is the electronic component waste 5 according to the present embodiment.
  • it is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 20 mm or more.
  • the upper limit depends on the dimensions of the robot hand 11, but can be, for example, 40 mm or less, further 30 mm or less.
  • the suction pad 13a for sucking the object and the first to fourth arm portions 14a for sandwiching the object sucked by the suction pad 13a A holding portion 14 including 14d is provided, and the object is first sucked by the suction pad 13a, and then the object is gripped by the first to fourth arm portions 14a to 14d (see FIG. 9C).
  • the board scraps and the like have ICs and wiring laid on the board and are heavy, and when gripped by either the suction pad 13a or the first to fourth arm portions 14a to 14d, they fall during transportation. May occur.
  • scraps such as substrate scraps having a large specific density and various sizes can be removed more reliably. Therefore, it is possible to appropriately select a target object in a large amount.
  • the opening / closing speed of the first to fourth arm portions 14a to 14d can be adjusted according to the transport speed of the transport surface 30. Further, it is preferable that the distance between the object to be picked and another adjacent object by the first to fourth arm portions 14a to 14d is 5 mm or more, more preferably 10 mm or more. Thereby, the object can be gripped more appropriately by using the first to fourth arm portions 14a to 14d.
  • FIG. 11 shows an example of a method for treating electronic component waste 5 according to an embodiment of the present invention.
  • the method for treating electronic component scraps according to an embodiment of the present invention is a step of treating electronic component scraps 5 by at least two-step wind sorting (S2, S4) and a metal sorting step (S6) using a metal sorter. At least the step of sorting the scraps can be included.
  • the wind power sorting is first divided into two stages (S2, S4), as compared with the case where the magnetic force sorting is performed at the initial stage. Therefore, the loss of valuable metal can be suppressed, and a large amount of electronic component waste 5 can be sorted and processed at once while concentrating more valuable metal. Then, after the two-step wind power sorting, the smelting inhibitor is removed while increasing the processing amount of the electronic component waste 5 by combining the sorting treatment (S6) using the metal sorter which takes time for the treatment. Valuable metals can be recovered efficiently.
  • the method for treating the electronic component waste 5 includes a pre-sorting step (S1) for removing massive copper wire dust from the electronic component scrap 5, and an electronic component after pre-sorting.
  • the wind sorting step (S2) in which the scrap 5 is wind-sorted to move the powdery and film-like scraps to the lightweight material side and removed, and the heavy material obtained by the wind-sorting are screened and linear (long).
  • Valuable metals such as copper using a color sorter from the sieving step (S3) for removing copper wire scraps, the second stage wind sorting step (S4), and the electronic component scraps 5 after removing the linear copper wire scraps.
  • the wire dust contained in the electronic component waste 5 can be removed.
  • the sieving step it is preferable to use a sieving machine having a slit-shaped sieving.
  • powdery substances can be removed in addition to wire chips by sieving.
  • the metal content ratio of the object to be processed sent to the metal sorting step (S6) can be reduced, so that the metal sorting step (S6) can be performed.
  • the sorting step in S6) can be made higher.
  • the substrates to be processed in the copper smelting process may be mixed in the heavy material obtained in the second stage wind power sorting process (S4). Therefore, the heavy objects obtained in the second stage wind sorting step (S4) should be further classified by magnetic force sorting, eddy current sorting, color sorter, hand sorting, robots, etc., and processed in the copper smelting step. Since the substrate can be separated and sent to the smelting process, the recovery efficiency of valuable metals is improved.
  • the heavy material obtained in the second stage wind power sorting step (S4) is sent to the magnetic force sorting step (S8) through the pre-sorting step (S7).
  • the magnetic force sorting step (S8) raw materials containing iron are removed from heavy objects as extrasystem raw materials in the smelting process.
  • an eddy current sorting step (S9) is performed, and further, a pre-sorting step (S10) is performed to remove aluminum, synthetic resins (plastics), debris containing SUS, etc., and the residue remains. Send the scraps of the substrate to the smelting process.
  • the sorting system 100 shown in FIG. 1 is subjected to a pre-smelting step (S1, S7) before or after the wind smelting step (S2, S4), or a vortex current.
  • a pre-smelting step (S1) before or after the wind smelting step (S2, S4), or a vortex current.
  • the smelting raw material containing the valuable metal that can be processed in the smelting step or the noble metal is not contained in the electronic parts waste 5 and , Iron, aluminum, stainless steel, synthetic resin, and other external raw materials can be processed efficiently and quickly.
  • the electronic component waste 5 can be sorted more efficiently as compared with the case where manual sorting is applied, and a larger amount of the electronic component scrap 5 can be mechanically processed.
  • the method for treating electronic component waste 5 according to the present embodiment is not limited to the above-mentioned pre-sorting steps (S1, S7, S10), and can be appropriately combined and used for each sorting process. ..
  • the image recognition unit 2 before or after processing the electronic component waste 5 in various sorting steps (S3 to S6, S8 to S9), the image recognition unit 2 performs image recognition when necessary, and FIGS. 9 (a) to 10 show. It is also preferable to perform a sorting process for extracting an object by using a sorting device including the robot hand 11 shown.
  • raw materials sorted as extrasystem raw materials in the pre-sorting step (S7), magnetic force sorting step (S8), eddy current sorting step (S9), and pre-sorting step (S10) include smelting as well as single raw materials. There are many mixed scraps in which raw materials and non-system raw materials are mixed.
  • the composite waste is subjected to the image recognition process according to the present embodiment, and the sorting process for extracting the object using the sorting device provided with the robot hand 11 shown in FIGS. 9 (a) to 10 is performed.
  • the sorting process can be speeded up, and the mixed waste from the single waste in the non-system raw material and the mixed waste containing the smelting raw material can be used. Alternatively, it becomes possible to appropriately determine the single waste.
  • the component scraps containing Al in the heavy material sorted in the wind force sorting step (S4) are sorted as Al scraps on the external raw material side by the eddy current sorting step (S9).
  • Parts scraps containing Fe in heavy objects sorted in the wind power sorting step (S4) are sorted as Fe scraps as an external raw material by the subsequent magnetic force sorting step (S8).
  • the Fe scraps selected here include single iron scraps containing Fe as a single substance as shown in FIGS. 13 (a) and 13 (b), as well as those shown in FIGS. 15 (a) to 15 (c). This includes iron cores with copper coils, iron scraps with substrates or iron cores, or mixed iron scraps such as substrates with lead wires, to which other component scraps are attached to such Fe.
  • the treatment method according to the present embodiment is used, and by discriminating these for each characteristic of the component, Fe containing elemental iron waste and mixed iron waste is used.
  • a predetermined mixed iron scrap can be extracted from the scrap.
  • the method for treating electronic component waste 5 according to the embodiment of the present invention further includes a smelting step for smelting a processing raw material containing a valuable metal sorted in each physical sorting step (S1 to S10).
  • the smelting step includes, for example, a step of incinerating the electronic component waste 5, a step of crushing and sieving the incinerated product, and a step of smelting the crushed and sieved processed product into copper.
  • the step of incinerating the electronic component waste 5 may be omitted.
  • any method can be selected for the step of crushing and sieving the electronic component waste 5 as long as it is a process of molding the electronic component waste 5 into a size preferable for the smelting process.
  • the crushing and sieving step in the smelting step iron, aluminum, which are smelting inhibitors while recovering valuable metals more efficiently, Raw materials containing either stainless steel or synthetic resin can be efficiently sent out of the system.
  • the copper smelting process using the flash smelting furnace method can be preferably used as the smelting process according to the present embodiment.
  • a copper smelting process using the flash smelting method for example, copper concentrate, a solvent, and electronic component waste 5 are charged from the ceiling of the shaft of the flash smelting furnace.
  • the charged concentrate and electronic component waste 5 melts on the shaft of the flash smelting furnace, and in the setler of the flash smelting furnace, for example, a mat containing 50 to 68% copper and slag floating above the mat. Be separated.
  • Valuable metals such as copper, gold, and silver in electronic / electrical equipment parts are absorbed by the mat that stays in the flash smelting furnace, so that the valuable metals can be recovered from the electronic parts waste 5.
  • the electronic component waste 5 contains a substance that affects the quality of products and by-products in copper smelting and / or a smelting inhibitor that affects the process of copper smelting. For example, if the amount of a substance containing an element such as Sb or Ni as described above into a smelting furnace is large, the quality of electrolytic copper obtained by copper smelting may deteriorate.
  • sulfuric acid is produced from sulfur dioxide generated by the oxidation of concentrates, but if sulfur dioxide is mixed with sulfur dioxide, the produced sulfuric acid may be colored.
  • the mixing source of hydrocarbons include synthetic resins such as plastics, but depending on the composition of the electronic component waste 5 brought into copper smelting, such synthetic resins may be contained in large amounts. Synthetic resins may cause rapid combustion in the smelting furnace, smoke leakage, and equipment deterioration due to local heating.
  • the slag composition may be changed in the copper smelting process, which may affect the loss of valuable metals to slag, so-called slag loss. ..
  • a large amount of halogen elements such as Cl, Br, and F are contained in the electronic component waste 5 charged into the smelting furnace, it may cause corrosion of the exhaust gas treatment equipment for copper smelting and deterioration of the sulfuric acid catalyst. ..
  • Such a problem of smelting inhibitory substances becomes apparent as the amount of electronic component waste 5 processed increases, and there is a problem that the smelting process is burdened.
  • a physical sorting step for electronic component waste 5 as shown in FIG. 11 is provided before the smelting process.
  • the ratio of smelting inhibitors brought into the smelting process is suppressed as much as possible, the amount of electronic parts waste 5 processed is increased, and the ratio of electronic parts waste 5 containing copper and valuable metals is increased to increase the ratio of copper and valuable metals. Can be efficiently recovered.
  • Classification means 205 ... Identification information production means 207 ... Movement tracking means 210 ... Storage device 211 ... Multispectral imaging data storage means 212 ... Area detection data storage means 213 ... Color characteristic information storage means 214 ... Classification information storage means 215 ... Identification information storage means

Abstract

Provided are: an electronic component scrap sorting method with which it is possible to appropriately determine a scrap mixture including multiple types of components; and an electronic component scrap processing method. This electronic component scrap sorting method comprises: a location/shape identification step for identifying the location and shape of each electronic component scrap from among multiple pieces of electronic component scraps having different shapes so as to obtain location/shape identification information that contains location information and shape information of the respective electronic component scraps; a feature analysis step for analyzing at least two features from each of the electronic component scraps so as to obtain feature analysis information; and a sorting step for, on the basis of the location/shape identification information and the feature analysis information, sorting the respective electronic component scraps by predetermined component types by using at least two features associated with one certain type of electronic component scraps that have the same shape and are at the same location.

Description

電子部品屑の分類方法及び電子部品屑の処理方法Classification method of electronic parts waste and disposal method of electronic parts waste
 本発明は、電子部品屑の分類方法及び電子部品屑の処理方法に関し、例えば、使用済み電子・電気機器のリサイクル処理工程に利用可能な電子部品屑の分類方法及び電子部品屑の処理方法に関する。 The present invention relates to a method for classifying electronic component scraps and a method for treating electronic component scraps, and the present invention relates to, for example, a method for classifying electronic component scraps and a method for treating electronic component scraps that can be used in a recycling processing process for used electronic / electrical equipment.
 近年、資源保護の観点から、廃家電製品・PC、携帯電話等の電子部品屑から、有価金属を回収することがますます盛んになってきており、その効率的な回収方法が検討され、提案されている。 In recent years, from the viewpoint of resource protection, it has become more and more popular to recover valuable metals from electronic component scraps such as waste home appliances, PCs, and mobile phones, and efficient recovery methods have been studied and proposed. Has been done.
 例えば、特開平9-78151号公報(特許文献1)では、電子部品屑等の有価金属を含有するスクラップ類を銅鉱石溶錬用自溶炉へ装入し、有価金属を炉内に滞留するマットへ回収させる工程を含む有価金属のリサイクル方法が記載されている。 For example, in Japanese Patent Application Laid-Open No. 9-78151 (Patent Document 1), scraps containing valuable metals such as electronic parts scraps are charged into a self-melting furnace for copper ore smelting, and the valuable metals are retained in the furnace. It describes how to recycle valuable metals, including the process of collecting them on a mat.
 特開2018-123380号公報(特許文献2)では、アルミニウムを含むリサイクル原料から有価金属を回収する方法として、リサイクル原料を銅製錬工程の溶融炉へ装入し、アルミニウムを酸化させて溶融スラグ層の成分にすることで系外に除去し、有価金属をメタル層やマット層に溶け込ませ、溶け込んだ有価金属を回収するリサイクル原料の処理方法が記載されている。 According to JP-A-2018-123380 (Patent Document 2), as a method for recovering valuable metals from recycled raw materials containing aluminum, the recycled raw materials are charged into a melting furnace in a copper smelting process, and aluminum is oxidized to form a molten slag layer. A method for treating recycled raw materials is described in which the valuable metal is removed from the system by making it a component of the above, the valuable metal is dissolved in the metal layer or the mat layer, and the dissolved valuable metal is recovered.
特開平9-78151号公報Japanese Unexamined Patent Publication No. 9-78151 特開2018-123380号公報Japanese Unexamined Patent Publication No. 2018-123380
 電子部品屑の処理は、破砕によって、回収に適した複数の部品種、例えば、基板、プラスチック、金属片、銅線屑、コンデンサ、ICチップ、その他の部品種にうまく分離されていることが理想的である。現在多くの選別処理においては、破砕物が有価物の回収に適した状態となっていることを前提として分類し、処理されている。例えば、電子部品屑の処理では、有価金属を比較的多く含む基板を適切に回収することが目的の一つとなることがある。 Ideally, the processing of electronic component scraps should be well separated by crushing into multiple component types suitable for recovery, such as substrates, plastics, metal pieces, copper wire scraps, capacitors, IC chips, and other component types. It is a target. Currently, many sorting processes are classified and processed on the premise that the crushed material is in a state suitable for recovery of valuable resources. For example, in the treatment of electronic component waste, one of the purposes may be to appropriately recover a substrate containing a relatively large amount of valuable metal.
 しかしながら、現状では、コンデンサ、ICチップ等の部品に付着した基板を含む部品屑、プラスチックに付着した基板を含む部品屑などの、分類すべき部品屑が複数種含まれた混合屑が存在する。このような混合屑の場合は、これまでの選別方法では選別が難しい。例えば、メタルソータを用いた選別においてプラスチックを比較的多く含む基板は、メタルソータの検知感度等によって、その基板に回収対象となる貴金属が多く含まれていたとしても、相対的にはプラスチックとして選別されることがある。また、基板が付着したコンデンサも、選別機の検出感度によっては、コンデンサとして判定されることにより、基板として回収されず、基板の回収効率が落ちることとなる。このように、電子部品屑に含まれる有価金属の含有比率は原料によっても異なるため、混合屑に対しては、従来の選別機の検知感度に依存した選別方法では、効率的な選別が行えていないのが現状である。 However, at present, there are mixed scraps containing a plurality of types of scraps to be classified, such as scraps including substrates attached to parts such as capacitors and IC chips, and parts scraps including substrates attached to plastics. In the case of such mixed waste, it is difficult to sort by the conventional sorting method. For example, a substrate containing a relatively large amount of plastic in sorting using a metal sorter is relatively sorted as plastic even if the substrate contains a large amount of precious metal to be collected due to the detection sensitivity of the metal sorter or the like. Sometimes. Further, the capacitor to which the substrate is attached is also determined as a capacitor depending on the detection sensitivity of the sorter, so that the capacitor is not recovered as a substrate and the recovery efficiency of the substrate is lowered. As described above, since the content ratio of the valuable metal contained in the electronic component waste differs depending on the raw material, the mixed waste can be efficiently sorted by the conventional sorting method depending on the detection sensitivity of the sorter. The current situation is that there is no such thing.
 上記課題を鑑み、本開示は、電子部品屑の中から、複数の部品種を含む混合屑を適切に判定することが可能な電子部品屑の分類方法及び電子部品屑の処理方法を提供する。 In view of the above problems, the present disclosure provides a method for classifying electronic component waste and a method for treating electronic component waste, which can appropriately determine a mixed waste containing a plurality of component types from among electronic component waste.
 上記課題を解決するために、本発明者が鋭意検討を重ねた結果、電子部品屑は、プラスチック、金属等の2種類以上の部品が混在する上、金属の中でも有価金属として回収する金属と回収しない金属があるなどの複雑な事情を含むことから、回収すべき電子部品屑に対して2種類以上の部品屑の特徴を検出することが必要であると考えた。そして、本発明者らは、識別手段により複数の電子部品屑の中から各電子部品屑の位置及び形状を識別した後、位置及び形状が識別された各電子部品屑に対して、各電子部品屑が備える2以上の特徴を解析し、同一形状及び同一位置の電子部品屑に対して関連付けられた2以上の特徴を利用して部品屑の分類を行うことが有効であるとの知見を得た。 As a result of diligent studies by the present inventor in order to solve the above problems, electronic component scraps are a mixture of two or more types of components such as plastic and metal, and among metals, metal to be recovered as a valuable metal and recovery. Since there are complicated circumstances such as some metals not being collected, it is necessary to detect the characteristics of two or more types of electronic component scraps to be collected. Then, the present inventors identify the position and shape of each electronic component scrap from the plurality of electronic component scraps by the identification means, and then, for each electronic component scrap whose position and shape are identified, each electronic component. It was found that it is effective to analyze two or more characteristics of the waste and classify the component waste using the two or more characteristics associated with the electronic component waste of the same shape and position. rice field.
 上記の知見に基づいて完成した本発明の実施の形態は一側面において、異なる形状を有する複数の電子部品屑の中から各電子部品屑の位置及び形状を識別し、各電子部品屑の位置情報と形状情報とを含む位置形状識別情報を得る位置形状識別工程と、各電子部品屑の特徴を少なくとも2以上解析し、特徴解析情報を得る特徴解析工程と、位置形状識別情報及び特徴解析情報に基づいて、同一形状で同一位置にある一の電子部品屑に対して関連付けられた2以上の特徴を用いて、各電子部品屑を予め定められた部品種毎に分類する分類工程とを含む電子部品屑の分類方法である。 The embodiment of the present invention completed based on the above findings identifies the position and shape of each electronic component scrap from a plurality of electronic component scraps having different shapes on one side, and position information of each electronic component scrap. In the position shape identification step of obtaining the position shape identification information including the shape information, the feature analysis step of analyzing at least two or more features of each electronic component waste and obtaining the feature analysis information, and the position shape identification information and the feature analysis information. Based on this, an electron including a classification step of classifying each electronic component scrap by a predetermined component type using two or more features associated with one electronic component scrap of the same shape and in the same position. This is a method for classifying component scraps.
 本発明の実施の形態は別の一側面において、異なる形状を有する複数の電子部品屑の中から各電子部品屑の位置及び形状を識別し、各電子部品屑の位置情報と形状情報とを含む位置形状識別情報を得る位置形状識別工程と、各電子部品屑の特徴を少なくとも2以上解析し、位置形状識別情報に関連付けた特徴解析情報を得る特徴解析工程と、位置形状識別情報及び特徴解析情報に基づいて、同一形状で同一位置にある一の電子部品屑に対して関連付けられた2以上の特徴を用いて、各電子部品屑を予め定められた部品種毎に分類する分類工程と、分類工程の分類結果及び位置形状識別情報に基づいて、複数の電子部品屑の中から抽出すべき電子部品屑を抽出する抽出工程とを含む電子部品屑の処理方法である。 In another aspect, the embodiment of the present invention identifies the position and shape of each electronic component scrap from a plurality of electronic component scraps having different shapes, and includes position information and shape information of each electronic component scrap. The position shape identification step for obtaining the position shape identification information, the feature analysis step for obtaining the feature analysis information associated with the position shape identification information by analyzing at least two characteristics of each electronic component waste, and the position shape identification information and the feature analysis information. Based on the above, a classification process for classifying each electronic component scrap by a predetermined component type and classification using two or more features associated with one electronic component scrap having the same shape and the same position. It is a method for processing electronic component waste including an extraction step of extracting electronic component waste to be extracted from a plurality of electronic component waste based on a process classification result and position shape identification information.
 本開示によれば、電子部品屑の中から、複数の部品種を含む混合屑を適切に判定することが可能な電子部品屑の分類方法及び電子部品屑の処理方法が提供できる。 According to the present disclosure, it is possible to provide a method for classifying electronic component waste and a method for treating electronic component waste, which can appropriately determine mixed waste containing a plurality of component types from among electronic component waste.
本発明の実施の形態に係る選別システムの一例を表す概略図である。It is a schematic diagram which shows an example of the sorting system which concerns on embodiment of this invention. 本発明の実施の形態に係る画像解析手段の一例を示す構成図である。It is a block diagram which shows an example of the image analysis means which concerns on embodiment of this invention. 本発明の実施の形態に係る画像解析処理の一例を示すフロー図である。It is a flow diagram which shows an example of the image analysis processing which concerns on embodiment of this invention. 領域検出用データの一例を示す写真である。It is a photograph which shows an example of the area detection data. マルチスペクトル撮像データの一例を表す写真である。It is a photograph showing an example of multispectral imaging data. 図4の領域検出用データを二値化処理したデータに検査エリアを割り当てた場合の例を示す写真である。It is a photograph which shows the example of the case where the inspection area is assigned to the data which binarized the area detection data of FIG. 従来のカラーカメラと本発明の実施の形態に係るマルチスペクトル照明を備えるカメラを撮像手段として使用した場合の認識精度の比較結果を表す表である。It is a table which shows the comparison result of the recognition accuracy when the conventional color camera and the camera equipped with the multispectral illumination which concerns on embodiment of this invention are used as an image pickup means. 本発明の実施の形態に係るピッキング装置の一例を示す平面図である。It is a top view which shows an example of the picking apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係るピッキング装置が備えるロボットハンドの斜視図である。It is a perspective view of the robot hand provided in the picking apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係るピッキング装置が備えるロボットハンドの変形例に係る斜視図である。It is a perspective view which concerns on the modification of the robot hand provided in the picking apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電子部品屑の処理方法の一例を表すフロー図である。It is a flow diagram which shows an example of the processing method of the electronic component waste which concerns on embodiment of this invention. 電子部品屑の単体屑(Al屑)の例を示す写真である。It is a photograph which shows the example of the simple substance waste (Al waste) of the electronic component waste. 電子部品屑の単体屑(Fe屑)の例を示す写真である。It is a photograph which shows the example of the simple substance waste (Fe waste) of the electronic component waste. 電子部品屑の混合屑(Al屑)の例を示す写真である。It is a photograph which shows the example of the mixed waste (Al waste) of the electronic component waste. 電子部品屑の混合屑(Fe屑)の例を示す写真である。It is a photograph which shows the example of the mixed waste (Fe waste) of the electronic component waste.
 以下、本発明の実施の形態について図面を用いて説明する。なお、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the structure, arrangement, etc. of the components as follows. It is not specific to things.
(選別システム)
 本発明の実施の形態に係る選別システム100は、図1に示すように、電子部品屑5を搬送する搬送面30を備える搬送部3と、搬送面30上に搬送された電子部品屑5を画像認識する画像認識部2と、電子部品屑5を対象物としてピッキングロボット10を用いて搬送元から搬送先へと搬送する選別部1とを備える。
(Sort system)
As shown in FIG. 1, the sorting system 100 according to the embodiment of the present invention has a transport unit 3 provided with a transport surface 30 for transporting electronic component scraps 5, and electronic component scraps 5 transported on the transport surface 30. It includes an image recognition unit 2 for image recognition, and a sorting unit 1 for transporting electronic component scraps 5 from a transport source to a transport destination using a picking robot 10.
 電子部品屑5は、廃家電製品・PCや携帯電話等の電子・電気機器を破砕した屑を意味し、回収された後、適当な大きさに破砕されたものを指す。電子部品屑5を得るための破砕は、処理者自身が行ってもよいが、市中で破砕されたものを購入等したものでもよい。 Electronic component scrap 5 means scraps of crushed electronic and electrical equipment such as waste home appliances, PCs and mobile phones, and refers to those crushed to an appropriate size after being collected. The crushing for obtaining the electronic component waste 5 may be performed by the processor himself, or may be crushed in the city and purchased.
 破砕方法としては、特定の装置には限定されず、せん断方式でも衝撃方式でもよいが、できる限り、部品の形状を損なわない破砕が望ましい。従って、細かく粉砕することを目的とする粉砕機のカテゴリーに属する装置は含まれない。以下に限定されるものではないが、本実施形態における電子部品屑5は、典型的には、粒度10mm以上100mm以下、より典型的には15mm以上50mm以下に破砕された屑を原料として利用することが好ましい。 The crushing method is not limited to a specific device, and may be a shearing method or an impact method, but crushing that does not impair the shape of parts is desirable as much as possible. Therefore, equipment belonging to the category of crushers intended for fine crushing is not included. Although not limited to the following, the electronic component scrap 5 in the present embodiment typically uses scrap crushed to a particle size of 10 mm or more and 100 mm or less, and more typically 15 mm or more and 50 mm or less as a raw material. Is preferable.
 電子部品屑5としては、磁力選別機、色彩選別機、金属選別機、赤外線センサを含む光学式選別機、プラスチック選別機のいずれかを用いて選別処理を行った後の電子部品屑5を好適に採用することができる。 As the electronic component waste 5, the electronic component scrap 5 after being sorted by using any of a magnetic force sorter, a color sorter, a metal sorter, an optical sorter including an infrared sensor, and a plastic sorter is preferable. Can be adopted for.
 特に、電子部品屑5には、後述する製錬工程での回収に適した製錬原料となる部品屑(例えば、基板、プラスチック、金属片、銅線屑、コンデンサ、ICチップ等)又は系外原料となる部品屑(ヒートシンク、筐体、鉄(Fe)屑、アルミ(Al)屑、ステンレス(SUS)屑、合成樹脂類等)が、単体状態(即ち、一の部品屑に対する主要部品の含有比率が重量比で90%以上をいう)で存在する単体屑と、これら複数の部品屑が混在する混合屑が含まれる。 In particular, the electronic component waste 5 includes component waste (for example, substrate, plastic, metal piece, copper wire waste, capacitor, IC chip, etc.) or outside the system, which is a raw material for smelting suitable for recovery in the smelting process described later. The raw material scraps (heat sink, housing, iron (Fe) scraps, aluminum (Al) scraps, stainless steel (SUS) scraps, synthetic resins, etc.) are contained in a single state (that is, the main parts are contained in one component scrap). A single waste having a ratio of 90% or more by weight) and a mixed waste in which these plurality of component wastes are mixed are included.
 単体屑としては、以下に限定されるものではないが例えば、図12(a)に示すような、銀白色を呈するヒートシンク又は筐体を含むAl屑、図12(b)に示すような、黒色を呈するヒートシンク又は筐体を含むAl屑、図12(c)に示すような、円筒形状を有し、黒色又は青色を呈するコンデンサ、図13(a)で示すような黒色又は灰色を呈する鉄芯を含むFe屑、図13(b)に示すような銀色を呈するネジ、ばね類が含まれる。 The single waste is not limited to the following, but is, for example, Al waste including a silver-white heat sink or a housing as shown in FIG. 12 (a), and black as shown in FIG. 12 (b). Al scrap containing a heat sink or housing, as shown in FIG. 12 (c), a capacitor having a cylindrical shape and exhibiting black or blue, and an iron core exhibiting black or gray as shown in FIG. 13 (a). Fe scraps containing, screws and springs having a silver color as shown in FIG. 13 (b) are included.
 混合屑としては、図14(a)に示すような、IC付きヒートシンク、図14(b)に示すような、基板付きコンデンサ、図14(c)に示すような、銅線付きアルミ屑、図15(a)に示すような、銅コイル付き鉄芯、図15(b)に示すような基板付き鉄屑又は鉄芯、図5(c)に示すようなリード線付き基板等が含まれる。図12(a)~図13(b)に示すような単体屑は、選別機の選別精度の調整を適切に行うことによりある程度選別を適切に行うことができるが、図14(a)~図15(c)に示すような混合屑は、製錬原料と系外原料とが混在しているため適切な選別が困難な場合がある。 Examples of the mixed waste include a heat sink with an IC as shown in FIG. 14 (a), a capacitor with a substrate as shown in FIG. 14 (b), and aluminum waste with a copper wire as shown in FIG. 14 (c). An iron core with a copper coil as shown in 15 (a), an iron scrap or iron core with a substrate as shown in FIG. 15 (b), a substrate with a lead wire as shown in FIG. 5 (c), and the like are included. The simple substance scraps as shown in FIGS. 12 (a) to 13 (b) can be appropriately sorted to some extent by appropriately adjusting the sorting accuracy of the smelter, but FIGS. 14 (a) to 14 (a) to FIG. As for the mixed waste as shown in 15 (c), it may be difficult to properly sort the mixed waste because the smelting raw material and the non-system raw material are mixed.
 電子部品屑5は、搬送面30上を搬送元から搬送方向に沿って搬送され、画像認識部2が備える画像解析手段20が、画像解析処理を行う。画像解析手段20は、図2に示すように、搬送面30上に設定された撮像エリア内の電子部品屑5の画像を撮像する撮像手段21と、撮像手段21の各種動作を制御する制御手段200と、制御手段200の動作に必要な情報を記憶する記憶装置210と、制御手段200に必要な情報を入出力可能な入力手段120及び出力手段130とを備えることができる。 The electronic component waste 5 is transported on the transport surface 30 from the transport source along the transport direction, and the image analysis means 20 included in the image recognition unit 2 performs image analysis processing. As shown in FIG. 2, the image analysis means 20 includes an image pickup means 21 for capturing an image of electronic component scraps 5 in an image pickup area set on the transport surface 30, and a control means for controlling various operations of the image pickup means 21. The 200, a storage device 210 for storing information necessary for the operation of the control means 200, and an input means 120 and an output means 130 capable of inputting / outputting information necessary for the control means 200 can be provided.
 撮像手段21は、撮像エリア内の複数の電子部品屑5に対して異なる波長の光(マルチスペクトル光)を照射することにより、電子部品屑5に対して2以上のスペクトル情報を得るマルチスペクトル照明部(不図示)と、異なる波長の光で照射された撮像エリア内の電子部品屑5を撮像するマルチスペクトル撮像部(マルチカメラ部:不図示)とを備える。撮像制御手段201は、マルチスペクトル撮像部が撮像したマルチスペクトル撮像データを抽出し、マルチスペクトル撮像データ記憶手段211に記憶させる。 The image pickup means 21 irradiates a plurality of electronic component scraps 5 in the imaging area with light having different wavelengths (multispectral light) to obtain two or more spectral information on the electronic component scraps 5. A unit (not shown) and a multi-spectral imaging unit (multi-camera unit: not shown) for imaging electronic component scraps 5 in an imaging area irradiated with light of different wavelengths are provided. The image pickup control means 201 extracts the multispectral image pickup data captured by the multispectral image pickup unit and stores it in the multispectral image pickup data storage means 211.
 画像認識部2には、撮像エリア内の電子部品屑5に対して領域検出用光を照射して、領域検出用データを取得する領域検出部23を備えていてもよい。領域検出とは、画像認識部2の撮像エリア内に存在する電子部品屑5の領域(存在エリア)を画像認識処理により検出することを含み、これにより対象物の輪郭が明確に認識可能となる。具体的には、電子部品屑5を含む撮像エリアの画像である領域検出用データを二値化することで得られ、これにより、撮像エリア内に存在する電子部品屑5の位置、個数、輪郭(形状)及び面積が明確になる。例えば、選別部1における任意の電子部品屑5の位置が、画像認識部2で得られる領域検出用データ内の特定の電子部品屑5の位置と一致すれば、これらが同一物であるとの判別ができる。 The image recognition unit 2 may include a region detection unit 23 that irradiates the electronic component waste 5 in the imaging area with region detection light to acquire region detection data. The area detection includes detecting the area (existing area) of the electronic component waste 5 existing in the image pickup area of the image recognition unit 2 by the image recognition process, whereby the contour of the object can be clearly recognized. .. Specifically, it is obtained by binarizing the area detection data which is an image of the imaging area including the electronic component scraps 5, whereby the position, the number, and the contour of the electronic component scraps 5 existing in the imaging area are obtained. (Shape) and area are clarified. For example, if the position of any electronic component scrap 5 in the sorting unit 1 matches the position of the specific electronic component scrap 5 in the area detection data obtained by the image recognition unit 2, they are the same. Can be identified.
 領域検出部23の具体的構成は特に限定されないが、例えば、撮像エリア内の物体に対して、可視光、赤外光又は紫外光等の領域検出用光を照射する光源と、領域検出用光で照らされた撮像エリア内の物体を検出する検出器等を備えることができる。領域検出用データは、領域検出用データ記憶手段212に記憶される。なお、領域検出用データを、撮像手段21が備えるマルチスペクトル照明部及びマルチスペクトル撮像部によって領域検出部23の代わりに作製できる場合には、領域検出部23を省略してもよい。 The specific configuration of the region detection unit 23 is not particularly limited, but for example, a light source that irradiates an object in the imaging area with region detection light such as visible light, infrared light, or ultraviolet light, and region detection light. It can be provided with a detector or the like for detecting an object in the image pickup area illuminated by. The area detection data is stored in the area detection data storage means 212. If the area detection data can be produced in place of the area detection unit 23 by the multispectral illumination unit and the multispectral image pickup unit included in the image pickup means 21, the area detection unit 23 may be omitted.
 制御手段200は、例えば、撮像手段21及び領域検出部23を制御する撮像制御手段201と、異なる形状を有する複数の電子部品屑5の中から各電子部品屑5の位置及び形状を識別し、各電子部品屑5の位置情報と形状情報とを含む位置形状識別情報を得る位置形状識別手段202と、各電子部品屑5の特徴を少なくとも2以上解析し、特徴解析情報を得る特徴解析手段203と、位置形状識別情報及び特徴解析情報に基づいて、同一形状で同一位置にある一の電子部品屑5に対して関連付けられた2以上の特徴を用いて、各電子部品屑5を予め定められた部品種毎に分類する分類手段204と、各電子部品屑5に対して識別情報を作製する識別情報作製手段205と、移動追従手段207とを備える。 The control means 200 identifies, for example, the position and shape of each electronic component scrap 5 from among a plurality of electronic component scraps 5 having different shapes from the image pickup control means 201 that controls the image pickup means 21 and the area detection unit 23. The position and shape identification means 202 that obtains the position and shape identification information including the position information and the shape information of each electronic component waste 5, and the feature analysis means 203 that analyzes at least two or more features of each electronic component scrap 5 and obtains the feature analysis information. And, based on the position shape identification information and the feature analysis information, each electronic component scrap 5 is predetermined by using two or more features associated with one electronic component scrap 5 having the same shape and the same position. It is provided with a classification means 204 for classifying by the type of parts, an identification information producing means 205 for producing identification information for each electronic component waste 5, and a movement following means 207.
 記憶装置210は、電子部品屑5に対してマルチスペクトル撮像データを記憶するマルチスペクトル撮像データ記憶手段211と、領域検出用データを記憶する領域検出用データ記憶手段212と、画像解析手段20が画像解析対象とする電子部品屑5が備える色彩に基づく色特性情報を記憶する色特性情報記憶手段213と、分類情報記憶手段214と、電子部品屑5の特徴に基づいて、各部品屑の識別情報を作製する識別情報記憶手段215とを備える。 In the storage device 210, the multispectral imaging data storage means 211 for storing the multispectral imaging data for the electronic component waste 5, the area detection data storage means 212 for storing the area detection data, and the image analysis means 20 are images. Identification information of each component scrap 5 based on the characteristics of the color characteristic information storage means 213, the classification information storage means 214, and the electronic component scrap 5 that store the color characteristic information based on the color included in the electronic component scrap 5 to be analyzed. The identification information storage means 215 for producing the above is provided.
 制御手段200は、ネットワーク22を介してサーバ25又は他の選別システム24に接続され、図2の画像解析手段20が解析する電子部品屑5の画像解析結果を相互に共有できるように構成されてもよい。 The control means 200 is connected to the server 25 or another sorting system 24 via the network 22 so that the image analysis result of the electronic component waste 5 analyzed by the image analysis means 20 of FIG. 2 can be shared with each other. May be good.
 画像解析手段20は、例えば図3に示すような手順に沿って画像解析処理を進めることができる。例えば、図3のステップS100に示すように、撮像制御手段201が領域検出部23を制御して、撮像エリア内に搬送された電子部品屑5に、領域検出用光を照射し、領域検出用光で照らされた撮像エリア内の物体を検出し、撮像エリア内に搬送された電子部品屑5の領域検出用データを撮像する(図4参照)。領域検出用データは領域検出用データ記憶手段212に記憶される。 The image analysis means 20 can proceed with the image analysis process according to, for example, the procedure shown in FIG. For example, as shown in step S100 of FIG. 3, the image pickup control means 201 controls the area detection unit 23 to irradiate the electronic component waste 5 conveyed in the image pickup area with the area detection light for area detection. An object in the image pickup area illuminated by light is detected, and the area detection data of the electronic component waste 5 conveyed in the image pickup area is imaged (see FIG. 4). The area detection data is stored in the area detection data storage means 212.
 ステップS101において、撮像手段21が備えるマルチスペクトル照明部が、異なる波長のマルチスペクトル照明光を撮像エリア内の電子部品屑5に照射し、マルチスペクトル撮像部が、照明色の異なる複数枚のマルチスペクトル撮像データを得る(図5(a)~図5(h)参照)。ここでは、例えば、白色、紫外線(UV)、青色、緑色、橙色、赤色、遠赤外色(FR)、赤外(IR)の8色の照明光のマルチスペクトル撮像データを得ることができる。マルチスペクトル撮像データは、マルチスペクトル撮像データ記憶手段211に記憶される。 In step S101, the multispectral illumination unit included in the image pickup means 21 irradiates the electronic component scrap 5 in the image pickup area with multispectral illumination light having a different wavelength, and the multispectral image pickup unit performs a plurality of multispectral illuminations having different illumination colors. Obtain the imaging data (see FIGS. 5 (a) to 5 (h)). Here, for example, multispectral imaging data of eight colors of illumination light of white, ultraviolet (UV), blue, green, orange, red, far infrared color (FR), and infrared (IR) can be obtained. The multispectral imaging data is stored in the multispectral imaging data storage means 211.
 ステップS102において、図2の位置形状識別手段202が、領域検出用データに基づいて、撮像エリア内に存在する電子部品屑5の位置及び形状を検出する。例えば、位置形状識別手段202が、図4の撮像データを二値化することにより、電子部品屑5の外径と背景との濃淡を明確化し(図5参照)、濃淡を明確化した画像に基づいて、白い背景上に浮き上がる黒い図形を、それぞれ検出すべき電子部品屑5として抽出する。例えば、図6の例では、白い背景上に3つの塊が存在する。よって、位置形状識別手段202は、撮像データ内の電子部品屑5を3個検出する。領域検出用データを用いて撮像エリア内に存在する電子部品屑5の個数を検出することで、電子部品屑5の位置及び形状(面積(ピクセル数))をより適切に検出することができる。 In step S102, the position / shape identification means 202 of FIG. 2 detects the position and shape of the electronic component waste 5 existing in the imaging area based on the area detection data. For example, the position / shape identification means 202 binarizes the imaged data in FIG. 4 to clarify the shade between the outer diameter of the electronic component waste 5 and the background (see FIG. 5), and to create an image in which the shade is clarified. Based on this, the black figures that emerge on the white background are extracted as the electronic component scraps 5 to be detected. For example, in the example of FIG. 6, there are three lumps on a white background. Therefore, the position shape identification means 202 detects three electronic component scraps 5 in the image pickup data. By detecting the number of electronic component scraps 5 existing in the imaging area using the area detection data, the position and shape (area (number of pixels)) of the electronic component scraps 5 can be detected more appropriately.
 ステップS103において、特徴解析手段203は、検査エリア毎に電子部品屑5がそれぞれ1個のみ含まれるように、第1~第3の検査エリア51、52、53を設定する。例えば、図6の例では、特徴解析手段203は、第1、第2及び第3の検査エリア51、52、53を設定することができる。特徴解析手段203は、更に、各第1~第3の検査エリア51~53内の電子部品屑5に対し、マルチスペクトル撮像データと、色特性情報記憶手段213に予め登録された電子部品屑5に含まれる複数の部品種を識別するための識別情報とに基づいて、各電子部品屑5の特徴を少なくとも2以上解析し、特徴解析情報を得る。 In step S103, the feature analysis means 203 sets the first to third inspection areas 51, 52, and 53 so that only one electronic component waste 5 is included in each inspection area. For example, in the example of FIG. 6, the feature analysis means 203 can set the first, second, and third inspection areas 51, 52, and 53. Further, the feature analysis means 203 further sets the multispectral imaging data and the electronic component scraps 5 registered in advance in the color characteristic information storage means 213 for the electronic component scraps 5 in the first to third inspection areas 51 to 53. At least two or more features of each electronic component scrap 5 are analyzed based on the identification information for identifying a plurality of component types included in the above, and feature analysis information is obtained.
 電子部品屑5の特徴を解析するための特徴解析情報には、色特性情報を含むことができ、色特性情報としては、抽出色情報と、抽出色面積情報を少なくとも含むことができる。抽出色情報には、製錬原料又は系外原料が備える典型的な色彩の色相、彩度、明度等の各値の設定値を含む情報が含まれる。抽出色面積情報には、検査エリア内の電子部品屑5中にユーザが予め設定した「抽出色」が含まれる場合に、その電子部品屑5を製錬原料又は系外原料と判断するための面積の閾値(面積率の設定値)の情報を含む。特徴解析手段203は、電子部品屑が有する特定の色彩と、電子部品屑5の全面積に対して特定の色彩が占める面積の比を解析し、製錬原料又は系外原料を判断するための閾値と比較することで、製錬原料又は系外原料の特徴を解析することができる。なお、製錬原料又は系外原料を判断するための面積の閾値の情報は、予め入力することができる。 The feature analysis information for analyzing the features of the electronic component scrap 5 can include color characteristic information, and the color characteristic information can include at least the extracted color information and the extracted color area information. The extracted color information includes information including setting values of each value such as hue, saturation, and lightness of typical colors included in the smelting raw material or the extrasystem raw material. When the extracted color area information includes the "extracted color" preset by the user in the electronic component scrap 5 in the inspection area, the electronic component scrap 5 is determined to be a smelting raw material or a non-system raw material. Contains information on the area threshold (area ratio setting value). The feature analysis means 203 analyzes the ratio of the specific color of the electronic component scraps to the area occupied by the specific color with respect to the total area of the electronic component scraps 5 to determine the smelting raw material or the non-system raw material. By comparing with the threshold value, the characteristics of the smelting raw material or the extrasystem raw material can be analyzed. Information on the threshold value of the area for determining the smelting raw material or the non-system raw material can be input in advance.
 色特性情報としては、回収対象とされる製錬原料に含まれる有価物を含有する材料、例えば、線屑(銅色、金色)、真鍮等の金属屑(銅色、金色)、IC又はLSI(黒色、金色、緑色)、有価金属を含有する基板(緑色、茶色、黒、白)、銅線を含むコネクタの挿し口(白)、有価金属を一定量以上含有するコンデンサ及びヒートシンク(銀、白、黒)等が含まれる。系外原料としては、鉄、アルミニウム又はステンレス等の製錬工程での回収に適さない金属屑(光沢を有する銀色)、プラスチック(白、黒、茶)、有価金属を一定量以上含有しないコンデンサ及びヒートシンク等(銀、白、黒)が含まれる。 As the color characteristic information, a material containing valuable resources contained in the smelting raw material to be collected, for example, wire scrap (copper color, gold color), metal waste such as brass (copper color, gold color), IC or LSI. (Black, gold, green), substrate containing valuable metal (green, brown, black, white), connector insertion slot containing copper wire (white), capacitor and heat sink containing a certain amount or more of valuable metal (silver, White, black) etc. are included. Non-system raw materials include metal scraps (glossy silver), plastics (white, black, brown) that are not suitable for recovery in the smelting process such as iron, aluminum, and stainless steel, capacitors that do not contain more than a certain amount of valuable metals, and Includes heat sinks, etc. (silver, white, black).
 これら製錬原料と系外原料の誤認識をなるべく減らし、より認識精度を上げるための抽出色情報としては、製錬原料及び系外原料が備える白色、緑色、黒色、金色、銅色を、少なくとも選別対象物の抽出判断に使用される「抽出色」の情報として含むことが好ましい。更に好ましい態様では、白色、緑色、黒色、金色、銅色、茶色、銀色を、少なくとも選別対象物の抽出判断に使用される「抽出色」の情報として含むことが好ましい。 As the extraction color information for reducing the misrecognition of these smelting raw materials and non-system raw materials as much as possible and improving the recognition accuracy, at least the white, green, black, gold, and copper colors of the smelting raw materials and the non-system raw materials are used. It is preferable to include it as information of "extraction color" used for determining the extraction of the object to be sorted. In a more preferable embodiment, it is preferable to include white, green, black, gold, copper, brown, and silver as information of at least the "extraction color" used for determining the extraction of the selection target.
 各種抽出色の中でも、黒色は、製錬原料と系外原料との両方に含まれ得る色であり、誤認識が特に生じやすい抽出色である。そのため、本実施形態において、特徴解析情報として利用される抽出色面積情報には、黒色の面積の閾値を2以上備えることが好ましい。例えば、第1の閾値と、第1の閾値よりも大きい第2の閾値を設定した場合、黒色を有する電子部品屑5のうち、第1の閾値以下のものは、電子部品屑5の凹凸でできる影の影響を受けただけものと考えられるから、製錬原料として摘出すべき「選別対象物」と設定することができる。第1~第2の閾値の間にあるものは、ヒートシンクに付随するレギュレータ(IC)を検知しているものであると考えられるため、系外原料として搬送面30上に残すべき「選別除外物」と設定する。第2の閾値以上のものは、黒色塗装された金属屑であるものと考えられるから製錬原料として「選別対象物」と設定することができる。このように、抽出色面積情報として、黒色の面積率の閾値を2以上備えることにより、電子部品屑5の中から製錬原料と系外原料とを選別する際の誤認識を低減し、認識精度を高めることができる。 Among various extraction colors, black is a color that can be contained in both smelting raw materials and non-system raw materials, and is an extraction color that is particularly prone to misrecognition. Therefore, in the present embodiment, it is preferable that the extracted color area information used as the feature analysis information includes two or more threshold values for the black area. For example, when a first threshold value and a second threshold value larger than the first threshold value are set, among the electronic component scraps 5 having black color, those below the first threshold value are unevenness of the electronic component scraps 5. Since it is considered that it was only affected by the shadow that can be formed, it can be set as a "sorting target" to be extracted as a raw material for smelting. Those between the first and second threshold values are considered to detect the regulator (IC) attached to the heat sink, and therefore should be left on the transport surface 30 as an extrasystem raw material. ". Those having a value equal to or higher than the second threshold value are considered to be black-painted metal scraps, and therefore can be set as "sorting objects" as smelting raw materials. As described above, by providing the extraction color area information with a threshold value of the area ratio of black of 2 or more, erroneous recognition when selecting the smelting raw material and the non-system raw material from the electronic component waste 5 is reduced and recognized. The accuracy can be improved.
 例えば、選別対象物(ピックアップ(摘出)して搬送面30から除去するもの)として基板屑等の「製錬原料」を選別する場合、分類手段204は、「製錬原料」として予め設定された、抽出色情報及び抽出色面積情報とに基づいて、検査エリア内の電子部品屑5が「製錬原料」の条件を満たすか否か、マルチスペクトル撮像データと照合することにより分類する。検査エリア内の電子部品屑5が「製錬原料」の条件を満たす場合には、その電子部品屑5を、後述の選別処理で取り除くべき「製錬原料」であると分類する。 For example, when sorting "smelting raw materials" such as substrate scraps as sorting objects (those that are picked up (extracted) and removed from the transport surface 30), the classification means 204 is preset as "smelting raw materials". Based on the extracted color information and the extracted color area information, whether or not the electronic component waste 5 in the inspection area satisfies the condition of the "smelting raw material" is classified by collating with the multispectral imaging data. When the electronic component scrap 5 in the inspection area satisfies the condition of the "smelting raw material", the electronic component scrap 5 is classified as a "smelting raw material" to be removed by the sorting process described later.
 ステップS104として、分類手段204は、各検査エリア内の電子部品屑5に対し、マルチスペクトル撮像データと、色特性情報記憶手段213に予め登録された製錬原料と系外原料とを識別するための色特性情報とに基づいて、選別しない対象物(選別除外物:製錬原料又は系外原料のいずれか)を決定する。 As step S104, the classification means 204 identifies the multispectral imaging data and the smelting raw material and the non-system raw material registered in advance in the color characteristic information storage means 213 for the electronic component waste 5 in each inspection area. Based on the color characteristic information of, the object to be not sorted (selection exclusion: either smelting raw material or extrasystem raw material) is determined.
 ステップS105において、選別対象物及び選別除外物の設定結果に基づいて、識別情報作製手段205が、識別情報を作製する。識別情報には、各検査エリア内の電子部品屑5が選別対象物であるか選別非対象物であるかの情報と、電子部品屑5の位置、色彩、面積、対象物の長径及び短径の向き、重心等の情報が含まれる。識別情報は識別情報記憶手段215に記憶される。 In step S105, the identification information creating means 205 creates the identification information based on the setting result of the selection target and the selection exclusion. The identification information includes information on whether the electronic component waste 5 in each inspection area is an object to be sorted or a non-target object to be sorted, and the position, color, area, major axis and minor axis of the object. Information such as the orientation and center of gravity is included. The identification information is stored in the identification information storage means 215.
 本発明の実施の形態によれば、撮像エリア内の電子部品屑5を撮像してマルチスペクトル撮像データを得るためのマルチスペクトル照明を備えた撮像手段21及び、マルチスペクトル撮像データと予め登録された製錬原料と系外原料の色特性情報とに基づいて、製錬原料又は系外原料を識別し、製錬原料又は系外原料の位置情報を含む識別情報を得る画像解析手段20とを備えることにより、従来のカラーカメラを用いた撮像手段を備える場合に比べて電子部品屑5の認識精度を向上できる。 According to the embodiment of the present invention, the imaging means 21 provided with multispectral illumination for imaging the electronic component scrap 5 in the imaging area to obtain multispectral imaging data, and the multispectral imaging data are registered in advance. The image analysis means 20 is provided with an image analysis means 20 for identifying a smelting raw material or a non-system raw material based on color characteristic information of a smelting raw material and a non-system raw material and obtaining identification information including position information of the smelting raw material or the non-system raw material. As a result, the recognition accuracy of the electronic component waste 5 can be improved as compared with the case where an image pickup means using a conventional color camera is provided.
 例えば、系外原料とされる電子部品屑5の中でも、例えば鉄、アルミニウム、ステンレス等の金属屑は、金属光沢をもつことから、従来のカラーカメラではハレーションにより白色に見え、銀色の認識面積が小さくなり、対象物の認識率が低下する場合がある。一方で、誤認識率を低減しようとして抽出色を白銀色にまで拡大すると、製錬原料の基板屑に含まれる白銀色を誤検知してしまう。 For example, among the electronic component scraps 5 used as extrasystem raw materials, for example, metal scraps such as iron, aluminum, and stainless steel have a metallic luster, so that they look white due to halation in a conventional color camera and have a silver recognition area. It may become smaller and the recognition rate of the object may decrease. On the other hand, if the extraction color is expanded to white silver in an attempt to reduce the erroneous recognition rate, the white silver contained in the substrate waste of the smelting raw material is erroneously detected.
 本実施形態によれば、マルチスペクトル照明部を備える撮像手段21により、ハレーションの影響を抑えた複数のマルチスペクトル撮像データが得られるため、このマルチスペクトル撮像データを用いて、その中に含まれる電子部品屑5と予め登録された抽出色の情報を含む色特性情報とを対比することにより、ハレーションの影響を小さくでき、電子部品屑5が有する色彩の誤認識を抑えることができる。 According to the present embodiment, the imaging means 21 provided with the multispectral illumination unit can obtain a plurality of multispectral imaging data in which the influence of halation is suppressed. Therefore, the electrons contained therein are used by using the multispectral imaging data. By comparing the component scrap 5 with the color characteristic information including the information of the extracted color registered in advance, the influence of halation can be reduced and the misrecognition of the color possessed by the electronic component scrap 5 can be suppressed.
 また、従来のカラーカメラでは、凹凸のある金属物は光の反射によって暗くなる部分が広い範囲で黒色に見え、メタルが呈する銀色の認識面積が小さくなるため、認識率が低下する場合がある。本実施形態によれば、マルチスペクトル照明部を備える撮像手段21により、微妙な色の違いを認識できるため、影の影響を抑えてメタルが呈する銀色の認識面積をより現実に近いものにすることができる。 In addition, in a conventional color camera, the uneven metal object looks black in a wide range in the darkened part due to the reflection of light, and the silver recognition area exhibited by the metal becomes small, so that the recognition rate may decrease. According to the present embodiment, since the image pickup means 21 provided with the multispectral illumination unit can recognize a subtle color difference, it is possible to suppress the influence of shadows and make the silver recognition area exhibited by the metal closer to reality. Can be done.
 また、従来のカラーカメラでは、カラーフィルタを通すため、ステンレスのような黒銀色はメタルのスペクトル強度が下がって黒色に見え、銀色の認識面積が小さくなるため、認識率が低下する場合がある。本実施形態によれば、マルチスペクトル照明部を備える撮像手段21により、ステンレスのような黒銀色をしたメタルも認識可能となる。また、黒く塗装された金属屑は、赤外領域の波長のマルチスペクトル撮像データを用いて評価することにより、塗装の影響を無視した識別が行える。 In addition, in a conventional color camera, since it is passed through a color filter, black silver such as stainless steel has a reduced spectral intensity of metal and looks black, and the recognition area of silver is reduced, so that the recognition rate may decrease. According to the present embodiment, the image pickup means 21 provided with the multispectral illumination unit makes it possible to recognize a black-silver metal such as stainless steel. Further, the metal scraps painted in black can be identified by ignoring the influence of painting by evaluating using the multispectral imaging data of the wavelength in the infrared region.
 図7は、図1の画像認識部2で画像解析させる電子部品屑5として、金属屑を2種類とプラスチックを2種類、処理した場合に、従来のカラーカメラを撮像手段21として用いた場合と、マルチスペクトル照明光を照射するカメラを撮像手段21として用いた場合の比較結果の例を表す。 FIG. 7 shows a case where a conventional color camera is used as an image pickup means 21 when two types of metal scraps and two types of plastics are processed as the electronic component scraps 5 to be image-analyzed by the image recognition unit 2 of FIG. , An example of the comparison result when the camera irradiating the multispectral illumination light is used as the image pickup means 21 is shown.
 従来の照明光の照射により白色の反射光を発する金属屑(1)の場合、カラーカメラでは、系外原料である白色のプラスチックと混同されて誤認識が生じる。一方、マルチスペクトル照明光を照射する撮像手段21を使用した場合は、製錬原料である基板屑として認識させることができる。同様に、照明光の照射により緑色の反射光を発する金属屑(2)の場合、カラーカメラでは、系外原料である緑色のプラスチック基板と混同されて誤認識が生じる。一方、マルチスペクトル照明光を照射する撮像手段21を使用した場合は、製錬原料である基板屑として認識させることができる。 In the case of metal scraps (1) that emit white reflected light by irradiation with conventional illumination light, in a color camera, it is confused with white plastic, which is an external raw material, and misrecognition occurs. On the other hand, when the image pickup means 21 that irradiates the multispectral illumination light is used, it can be recognized as substrate waste which is a raw material for smelting. Similarly, in the case of metal scrap (2) that emits green reflected light by irradiation with illumination light, it is confused with a green plastic substrate which is an external raw material in a color camera, and misrecognition occurs. On the other hand, when the image pickup means 21 that irradiates the multispectral illumination light is used, it can be recognized as substrate waste which is a raw material for smelting.
 外観が非常に汚れたプラスチック(1)の場合、カラーカメラでは、製錬原料である茶色の基板屑と混同されて誤認識が生じる。一方、マルチスペクトル照明光を照射する撮像手段21を使用した場合は、系外原料であるプラスチックとして認識させることができる。赤色プラスチック(2)の場合、カラーカメラでは、製錬原料である銅線屑と混同されて誤認識が生じる。一方、マルチスペクトル照明光を照射する撮像手段21を使用した場合は、系外原料であるプラスチックとして認識させることができる。 In the case of plastic (1) whose appearance is very dirty, it is confused with brown substrate waste, which is a raw material for smelting, in a color camera, and misrecognition occurs. On the other hand, when the image pickup means 21 that irradiates the multispectral illumination light is used, it can be recognized as a plastic as an external raw material. In the case of red plastic (2), in a color camera, it is confused with copper wire scrap which is a raw material for smelting, and misrecognition occurs. On the other hand, when the image pickup means 21 that irradiates the multispectral illumination light is used, it can be recognized as a plastic as an external raw material.
 図2に示すように、制御手段200は、移動追従手段207を有していても良い。搬送部3を連続的に動かして、電子部品屑5を搬送面30上で連続的に移動させると、最初と最後の撮像データ間で位置のズレが生じる場合がある。本実施形態では、搬送方向に沿って連続的に移動する電子部品屑5を画像解析により識別する場合には、画像解析により識別する工程として、領域検出用光及びマルチスペクトル照明光を撮像する直前及び直後に、撮像エリア内の電子部品屑5に基準光を照射する。基準光としてはマルチスペクトル照明の白色光を利用することができる。この基準光で照射された撮像データに基づいて、電子部品屑5の移動による撮像データの位置ずれを補正することで、搬送部3を連続運転することができるため、処理効率が向上する。 As shown in FIG. 2, the control means 200 may include the movement following means 207. When the transport unit 3 is continuously moved to continuously move the electronic component waste 5 on the transport surface 30, the position may be displaced between the first and last imaging data. In the present embodiment, when the electronic component scrap 5 continuously moving along the transport direction is identified by image analysis, as a step of identifying by image analysis, immediately before imaging the region detection light and the multispectral illumination light. Immediately after that, the reference light is applied to the electronic component scrap 5 in the imaging area. As the reference light, white light of multispectral illumination can be used. By correcting the positional deviation of the imaged data due to the movement of the electronic component scraps 5 based on the imaged data irradiated with the reference light, the transport unit 3 can be continuously operated, so that the processing efficiency is improved.
 画像認識部2で画像解析処理が行われた後の電子部品屑5は図1に示す選別部1へ送られる。選別部1は、搬送面30上の対象物を選別する装置を有していれば特に限定されない。例えば、エア噴射、電動パドル、吸着機構、ロボットハンド等を利用した選別装置が利用可能である。一実施態様においては、選別部1は、搬送面30上の対象物を、搬送部3から搬送部4へと搬送するピッキングロボット10と、ピッキングロボット10に接続され、電子部品屑5の中から製錬原料又は系外原料を対象物として把持するロボットハンド11とを備える。ピッキングロボット10は、画像認識部2で作製された識別情報に基づいて、対象物を摘出する。 The electronic component waste 5 after the image analysis process is performed by the image recognition unit 2 is sent to the sorting unit 1 shown in FIG. The sorting unit 1 is not particularly limited as long as it has a device for sorting objects on the transport surface 30. For example, a sorting device using air injection, an electric paddle, a suction mechanism, a robot hand, or the like can be used. In one embodiment, the sorting unit 1 is connected to a picking robot 10 that transports an object on the transport surface 30 from the transport unit 3 to the transport unit 4, and the picking robot 10, and is connected to the picking robot 10 from among the electronic component scraps 5. It is provided with a robot hand 11 that grips a smelting raw material or a non-system raw material as an object. The picking robot 10 picks out an object based on the identification information generated by the image recognition unit 2.
 ピッキングロボット10は、対象物を掴んで搬送する機能を有する産業用ロボットであれば特に限定されず、種々の方式の産業用ロボットが利用できる。例えば、ピッキングロボット10としては、直行式、多関節式、パラレルリンク式等の種々の方式を備えたロボットが利用可能である。直行式ロボットは、2~3のスライド軸で構成されるシンプルなロボットである。多関節ロボットは、垂直式又は水平式があり、垂直式は、台座の回転とアームの運動によって可動域が広く、自由度の高い3次元的な動きが可能である。水平式ロボットは、関節の回転軸がすべて垂直にそろっており、垂直多関節ロボットよりもシンプルな構造を有する。パラレルリンク式ロボットは、関節を並列に配置したパラレルリンク構造を有する産業用ロボットである。 The picking robot 10 is not particularly limited as long as it is an industrial robot having a function of grasping and transporting an object, and various types of industrial robots can be used. For example, as the picking robot 10, a robot having various methods such as a orthogonal type, an articulated type, and a parallel link type can be used. The orthogonal robot is a simple robot composed of two or three slide axes. Articulated robots can be either vertical or horizontal, and the vertical type has a wide range of motion due to the rotation of the pedestal and the movement of the arm, and is capable of three-dimensional movement with a high degree of freedom. The horizontal robot has all the axes of rotation of the joints vertically aligned, and has a simpler structure than the vertical articulated robot. The parallel link type robot is an industrial robot having a parallel link structure in which joints are arranged in parallel.
 中でもパラレルリンク式ロボットは、パラレルリンクメカニズムにより、ターゲットの位置に最短距離で移動するため、抽出対象とする対象物の位置に高速・高精度で移動し、物質を把持し、高速で所定の位置へ送り出すことができる点で、ピッキングロボット10として利用可能な種々の産業用ロボットの中でも特に好適に利用できる。 Among them, the parallel link type robot moves to the target position in the shortest distance by the parallel link mechanism, so it moves to the position of the object to be extracted with high speed and high accuracy, grips the substance, and moves to the predetermined position at high speed. Among various industrial robots that can be used as the picking robot 10, it can be particularly preferably used because it can be sent to.
 以下の態様に限定されるものではないが、ピッキングロボット10は、図8に示すように、搬送部3の搬送面30を横切るように、典型的には搬送方向に対して垂直に交わる方向に搬送方向を有する搬送部4の搬送先に向けて搬送部3から対象物を摘出することができる。搬送部4はコンベア等で構成することができる。 Although not limited to the following aspects, as shown in FIG. 8, the picking robot 10 is typically in a direction perpendicular to the transport direction so as to cross the transport surface 30 of the transport unit 3. The object can be extracted from the transport unit 3 toward the transport destination of the transport unit 4 having a transport direction. The transport unit 4 can be configured by a conveyor or the like.
 このように、搬送部3及びピッキングロボット10がお互い近接して配置され、ピッキングロボット10が、対象物を搬送部3の搬送方向を横切る方向に排出するように構成されることで、対象物を電子部品屑5中から短時間で精度よく取り除いて搬送することができる。 In this way, the transport unit 3 and the picking robot 10 are arranged close to each other, and the picking robot 10 is configured to discharge the object in a direction crossing the transport direction of the transport unit 3 to eject the object. It can be accurately removed from the electronic component waste 5 in a short time and transported.
(ロボットハンド)
 ピッキングロボット10が備えるロボットハンド11は、図9(a)に示すように、中央部に、対象物を吸引するための吸引パッド13a及び吸引パッド13aに接続された真空発生器13bを備える吸引部13と、吸引パッド13aに吸引される対象物を挟むための挟持部14(第1~第4のアーム部14a~14d)と、吸引部13及び挟持部14を固定するための固定部12とを備える。固定部12は一端がピッキングロボット10に固定され、他端に挟持部14が固定される。吸引パッド13aは、ゴム、シリコン等の弾性部材で形成されており、下方(搬送面30側)へ突出している。
(Robot hand)
As shown in FIG. 9A, the robot hand 11 included in the picking robot 10 is provided with a suction pad 13a for sucking an object and a vacuum generator 13b connected to the suction pad 13a in the central portion. 13, a holding portion 14 (first to fourth arm portions 14a to 14d) for sandwiching an object to be sucked by the suction pad 13a, and a fixing portion 12 for fixing the suction portion 13 and the holding portion 14. To prepare for. One end of the fixing portion 12 is fixed to the picking robot 10, and the holding portion 14 is fixed to the other end. The suction pad 13a is made of an elastic member such as rubber or silicon, and projects downward (on the transport surface 30 side).
 挟持部14は、対象物を挟むことができる構成であれば特に制限はされない。挟持部14は、例えば、第1のアーム部14a、第2のアーム部14b、第3のアーム部14c及び第4のアーム部14dを備えることができる。これらの第1~第4のアーム部14a~14dの基端部分は固定部12内の駆動機構(不図示)にそれぞれ接続されている。 The sandwiching portion 14 is not particularly limited as long as it can sandwich an object. The sandwiching portion 14 may include, for example, a first arm portion 14a, a second arm portion 14b, a third arm portion 14c, and a fourth arm portion 14d. The base end portions of the first to fourth arm portions 14a to 14d are connected to a drive mechanism (not shown) in the fixed portion 12, respectively.
 図9(b)に示すように、第1のアーム部14a及び第2のアーム部14bは、駆動機構からの動力の伝達を受けて、吸引パッド13aの中心軸Xに近づく方向V又は遠ざかる方向Wに互いに連動して開閉可能になっている。図9(b)の紙面奥方向に位置する第3のアーム部14c及び第4のアーム部14dも、第1~第4のアーム部14a~14dに接続されたエアチャック(不図示)からの動力の伝達を受けて、吸引パッド13aの中心軸Xに近づく方向V又は遠ざかる方向Wにそれぞれ連動して開閉可能になっている。第1~第4のアーム部14a~14dはそれぞれ同一のタイミングで開閉でき、これにより、吸引パッド13aの先端部に吸引された対象物を挟持又は開放する。 As shown in FIG. 9B, the first arm portion 14a and the second arm portion 14b receive power transmitted from the drive mechanism, and the direction V toward or away from the central axis X of the suction pad 13a. It can be opened and closed in conjunction with W. The third arm portion 14c and the fourth arm portion 14d located in the depth direction of the paper surface in FIG. 9B are also from the air chucks (not shown) connected to the first to fourth arm portions 14a to 14d. Upon receiving the transmission of power, the suction pad 13a can be opened and closed in conjunction with the direction V approaching the central axis X and the direction W moving away from it. The first to fourth arm portions 14a to 14d can be opened and closed at the same timing, whereby the suctioned object is sandwiched or released by the tip portion of the suction pad 13a.
 第1~第4のアーム部14a~14dの先端部にはそれぞれ、吸引パッド13aが配置された中央部へ突出する爪部141a~141dを備えることが好ましい。第1~第4のアーム部14a~14dがそれぞれ爪部141a~141dを備えることにより、対象物の落下を抑制しながらより的確に対象物を把持できる。 It is preferable that the tips of the first to fourth arm portions 14a to 14d are provided with claw portions 141a to 141d protruding toward the central portion where the suction pads 13a are arranged, respectively. Since the first to fourth arm portions 14a to 14d are provided with the claw portions 141a to 141d, respectively, it is possible to more accurately grip the object while suppressing the fall of the object.
 爪部141a~141dは、吸引パッド13a側に向かって先細り形状を有するように成形されていることが好ましい。これにより、爪部141a~141dが、対象物の底面と接触して、対象物を掬い上げやすくすることができる。 It is preferable that the claw portions 141a to 141d are formed so as to have a tapered shape toward the suction pad 13a side. As a result, the claw portions 141a to 141d can come into contact with the bottom surface of the object to facilitate scooping up of the object.
 図9(b)に示すように、爪部141a~141dの先端部(最下端部)は、吸引パッド13aの先端部よりも相対的に低い位置、即ち搬送面30により近い位置に配置されることが好ましい。これにより、爪部141a~141dが吸引パッド13aに吸引された対象物を、搬送面30から掬い上げて挟持しやすくできる。 As shown in FIG. 9B, the tip portions (lowermost end portions) of the claw portions 141a to 141d are arranged at a position relatively lower than the tip portion of the suction pad 13a, that is, a position closer to the transport surface 30. Is preferable. As a result, the object whose claws 141a to 141d are sucked by the suction pad 13a can be easily picked up from the transport surface 30 and pinched.
 また、図10に示すように、第1のアーム部14aの爪部141aと第4のアーム部14dの爪部141dが連結され、第2のアーム部14bの爪部141bと第3のアーム部14cの爪部141cが連結されていてもよい。このように構成されることで、電子部品屑5中の基板等を含む長尺状の対象物をより適切に把持できる。 Further, as shown in FIG. 10, the claw portion 141a of the first arm portion 14a and the claw portion 141d of the fourth arm portion 14d are connected, and the claw portion 141b of the second arm portion 14b and the third arm portion are connected. The claw portion 141c of 14c may be connected. With this configuration, it is possible to more appropriately grip a long object including a substrate or the like in the electronic component waste 5.
 また、対象物の形状に応じて爪部141a~141dの長さを変更することにより、より小さい対象物をより確実に把持することができる。第1~第4のアーム部14a~14dの開閉方向と平行な方向に沿った爪部141a~141dの長さL(図9(a)参照)は、本実施形態に係る電子部品屑5を処理する場合は5mm以上であることが好ましく、更には10mm以上、より更には15mm以上であることが好ましい。上限はロボットハンド11の寸法にもよるが、例えば40mm以下、更には30mm以下とすることができる。第1~第4のアーム部14a~14dの開閉方向と垂直な方向に沿った爪部141a~141dの長さD(図9(b)参照)は、本実施形態に係る電子部品屑5を処理する場合は5mm以上であることが好ましく、更には10mm以上、より更には20mm以上であることが好ましい。上限はロボットハンド11の寸法にもよるが、例えば40mm以下、更には30mm以下とすることができる。 Further, by changing the lengths of the claw portions 141a to 141d according to the shape of the object, a smaller object can be gripped more reliably. The length L (see FIG. 9A) of the claw portions 141a to 141d along the direction parallel to the opening / closing direction of the first to fourth arm portions 14a to 14d is the electronic component waste 5 according to the present embodiment. In the case of treatment, it is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 15 mm or more. The upper limit depends on the dimensions of the robot hand 11, but can be, for example, 40 mm or less, further 30 mm or less. The length D (see FIG. 9B) of the claw portions 141a to 141d along the direction perpendicular to the opening / closing direction of the first to fourth arm portions 14a to 14d is the electronic component waste 5 according to the present embodiment. In the case of treatment, it is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 20 mm or more. The upper limit depends on the dimensions of the robot hand 11, but can be, for example, 40 mm or less, further 30 mm or less.
 本発明の実施の形態に係るピッキングロボット10が備えるロボットハンド11によれば、対象物を吸引する吸引パッド13aと、吸引パッド13aに吸引された対象物を挟む第1~第4のアーム部14a~14dを備える挟持部14とを備え、対象物をまず吸引パッド13aで吸引した後に、第1~第4のアーム部14a~14dで対象物を把持する(図9(c)参照)。これにより、吸引パッド13aによる吸引力ではピッキングが困難な重量物に対しても、挟持部14で挟んで運ぶことができるため、種々の形状からなる電子部品屑5をより確実かつ適切に搬送することができる。 According to the robot hand 11 included in the picking robot 10 according to the embodiment of the present invention, the suction pad 13a for sucking the object and the first to fourth arm portions 14a for sandwiching the object sucked by the suction pad 13a. A holding portion 14 including 14d is provided, and the object is first sucked by the suction pad 13a, and then the object is gripped by the first to fourth arm portions 14a to 14d (see FIG. 9C). As a result, even heavy objects that are difficult to pick with the suction force of the suction pad 13a can be sandwiched and carried by the holding portion 14, so that the electronic component scraps 5 having various shapes can be more reliably and appropriately conveyed. be able to.
 特に、基板屑等は基板上にICや配線が敷設されており、重量が重く、吸引パッド13a又は第1~第4のアーム部14a~14dのいずれか一方による把持では、搬送中に落下が生じる場合がある。本発明の実施の形態に係るピッキング装置によれば、種々の原料が混在する電子部品屑5の中でも特に、比重が大きく種々のサイズが混在する基板屑のような屑をより確実に取り除くことができるため、目的とする対象物を、大量に且つ適切に選別することができる。 In particular, the board scraps and the like have ICs and wiring laid on the board and are heavy, and when gripped by either the suction pad 13a or the first to fourth arm portions 14a to 14d, they fall during transportation. May occur. According to the picking apparatus according to the embodiment of the present invention, among the electronic component scraps 5 in which various raw materials are mixed, scraps such as substrate scraps having a large specific density and various sizes can be removed more reliably. Therefore, it is possible to appropriately select a target object in a large amount.
 第1~第4のアーム部14a~14dの開閉速度は搬送面30の搬送速度に応じて調整することができる。また、第1~第4のアーム部14a~14dによりピッキング処理対象とする対象物と隣接する別の対象物との間隔を5mm以上、更には10mm以上離すことが好ましい。これにより、第1~第4のアーム部14a~14dを用いて対象物をより適切に把持することができる。 The opening / closing speed of the first to fourth arm portions 14a to 14d can be adjusted according to the transport speed of the transport surface 30. Further, it is preferable that the distance between the object to be picked and another adjacent object by the first to fourth arm portions 14a to 14d is 5 mm or more, more preferably 10 mm or more. Thereby, the object can be gripped more appropriately by using the first to fourth arm portions 14a to 14d.
(電子部品屑の処理方法)
 本発明の実施の形態に係る電子部品屑5の処理方法の一例を図11に示す。本発明の実施の形態に係る電子部品屑の処理方法は、電子部品屑5を少なくとも2段階の風力選別(S2、S4)により処理する工程と、メタルソータを用いた金属選別工程(S6)により基板屑を選別する工程を少なくとも含むことができる。
(How to dispose of electronic component waste)
FIG. 11 shows an example of a method for treating electronic component waste 5 according to an embodiment of the present invention. The method for treating electronic component scraps according to an embodiment of the present invention is a step of treating electronic component scraps 5 by at least two-step wind sorting (S2, S4) and a metal sorting step (S6) using a metal sorter. At least the step of sorting the scraps can be included.
 本発明の実施の形態に係る処理方法によれば、物理選別の初期段階において、まず風力選別を2段階に分けて行う(S2、S4)ことにより、初期に磁力選別の処理を行う場合に比べて有価金属のロスを抑えることができ、より多くの有価金属を濃縮しながら、多量の電子部品屑5を一気に選別処理することができる。そして、2段階の風力選別の後、処理に時間を要するメタルソータを用いた選別処理(S6)を組み合わせることによって、電子部品屑5の処理量を増大しながら、製錬阻害物質を除去して、有価金属を効率的に回収することができる。 According to the processing method according to the embodiment of the present invention, in the initial stage of physical sorting, the wind power sorting is first divided into two stages (S2, S4), as compared with the case where the magnetic force sorting is performed at the initial stage. Therefore, the loss of valuable metal can be suppressed, and a large amount of electronic component waste 5 can be sorted and processed at once while concentrating more valuable metal. Then, after the two-step wind power sorting, the smelting inhibitor is removed while increasing the processing amount of the electronic component waste 5 by combining the sorting treatment (S6) using the metal sorter which takes time for the treatment. Valuable metals can be recovered efficiently.
 一実施形態においては、本発明の実施の形態に係る電子部品屑5の処理方法は、電子部品屑5の中から塊状銅線屑を取り除く前選別工程(S1)と、前選別後の電子部品屑5を風力選別して粉状物及びフィルム状の屑を軽量物側に移行させて取り除く風力選別工程(S2)と、風力選別で得られる重量物を篩別し、線状(長尺状)銅線屑を取り除く篩別工程(S3)と、二段階目の風力選別工程(S4)と、線状銅線屑除去後の電子部品屑5から、カラーソータを用いて銅等の有価金属を含む基板屑を取り除く色彩選別工程(S5)と、色彩選別工程後の電子部品屑5の中からメタルソータを用いて銅等の有価金属を含む基板屑を更に取り除く金属選別工程(S6)を含むことができる。 In one embodiment, the method for treating the electronic component waste 5 according to the embodiment of the present invention includes a pre-sorting step (S1) for removing massive copper wire dust from the electronic component scrap 5, and an electronic component after pre-sorting. The wind sorting step (S2), in which the scrap 5 is wind-sorted to move the powdery and film-like scraps to the lightweight material side and removed, and the heavy material obtained by the wind-sorting are screened and linear (long). ) Valuable metals such as copper using a color sorter from the sieving step (S3) for removing copper wire scraps, the second stage wind sorting step (S4), and the electronic component scraps 5 after removing the linear copper wire scraps. Includes a color sorting step (S5) for removing substrate scraps containing the above, and a metal sorting step (S6) for further removing substrate scraps containing valuable metals such as copper from the electronic component scraps 5 after the color sorting step using a metal sorter. be able to.
 一段階目の風力選別工程(S2)と二段階目の風力選別工程(S4)との間に篩別工程(S3)を備えることにより、電子部品屑5に含まれる線屑を除去することができる。篩別工程では、スリット状の篩を有する篩別機を用いて処理することが好ましい。篩別工程(S3)においては、篩別により、線屑の他に粉状物も除去することができる。篩別後の粉状物及び銅線屑は、焼却前処理工程を経由して製錬工程に送ることで、部品屑中の有価金属をより効率的に回収できる。また、風力選別工程(S4)の後に色彩選別工程(S5)が実施されることにより、金属選別工程(S6)に送られる処理対象物の金属含有比率を下げることができるため、金属選別工程(S6)における選別工程をより高くすることができる。 By providing a sieving step (S3) between the first-stage wind sorting step (S2) and the second-stage wind sorting step (S4), the wire dust contained in the electronic component waste 5 can be removed. can. In the sieving step, it is preferable to use a sieving machine having a slit-shaped sieving. In the sieving step (S3), powdery substances can be removed in addition to wire chips by sieving. By sending the powdered material and copper wire waste after sieving to the smelting process via the pre-incinerator treatment process, the valuable metal in the component waste can be recovered more efficiently. Further, by carrying out the color sorting step (S5) after the wind sorting step (S4), the metal content ratio of the object to be processed sent to the metal sorting step (S6) can be reduced, so that the metal sorting step (S6) can be performed. The sorting step in S6) can be made higher.
 更に、二段階目の風力選別工程(S4)で得られる重量物の中には、銅製錬工程で処理すべき基板が一部混入する場合がある。よって、二段階目の風力選別工程(S4)で得られる重量物を、磁力選別、渦電流選別、カラーソータ、手選別、ロボット等の処理により更に分類することで、銅製錬工程で処理すべき基板を分離して製錬工程に送ることができるため、有価金属の回収効率が高まる。 Furthermore, some of the substrates to be processed in the copper smelting process may be mixed in the heavy material obtained in the second stage wind power sorting process (S4). Therefore, the heavy objects obtained in the second stage wind sorting step (S4) should be further classified by magnetic force sorting, eddy current sorting, color sorter, hand sorting, robots, etc., and processed in the copper smelting step. Since the substrate can be separated and sent to the smelting process, the recovery efficiency of valuable metals is improved.
 例えば、二段階目の風力選別工程(S4)で得られる重量物を、前選別工程(S7)を経て、磁力選別工程(S8)に送る。磁力選別工程(S8)では、重量物から鉄を含む原料を、製錬工程の系外原料として除去する。磁力選別工程(S8)後には渦電流選別工程(S9)が行われ、更に、前選別工程(S10)が行われ、アルミ、合成樹脂類(プラスチック)、SUSを含む屑等を除去し、残った基板屑を製錬工程へ送る。 For example, the heavy material obtained in the second stage wind power sorting step (S4) is sent to the magnetic force sorting step (S8) through the pre-sorting step (S7). In the magnetic force sorting step (S8), raw materials containing iron are removed from heavy objects as extrasystem raw materials in the smelting process. After the magnetic force sorting step (S8), an eddy current sorting step (S9) is performed, and further, a pre-sorting step (S10) is performed to remove aluminum, synthetic resins (plastics), debris containing SUS, etc., and the residue remains. Send the scraps of the substrate to the smelting process.
 本発明の実施の形態に係る電子部品屑5の処理方法では、図1に示す選別システム100を、風力選別工程(S2、S4)の前後の前選別工程(S1、S7)、或いは、渦電流選別工程(S9)後の前選別工程(S10)に導入することにより、電子部品屑5の中から、製錬工程で処理可能な有価金属を含む製錬原料、或いは、貴金属を含まず、且つ、鉄、アルミニウム、ステンレス鋼、合成樹脂のいずれかを含む、系外原料を、効率良く迅速に処理することができる。これにより、手選別を適用する場合に比べて、電子部品屑5をより効率良く選別処理することが可能となり、より大量の電子部品屑5の機械的処理が可能となる。 In the method for treating electronic component waste 5 according to the embodiment of the present invention, the sorting system 100 shown in FIG. 1 is subjected to a pre-smelting step (S1, S7) before or after the wind smelting step (S2, S4), or a vortex current. By introducing it into the pre-sorting step (S10) after the sorting step (S9), the smelting raw material containing the valuable metal that can be processed in the smelting step or the noble metal is not contained in the electronic parts waste 5 and , Iron, aluminum, stainless steel, synthetic resin, and other external raw materials can be processed efficiently and quickly. As a result, the electronic component waste 5 can be sorted more efficiently as compared with the case where manual sorting is applied, and a larger amount of the electronic component scrap 5 can be mechanically processed.
 また、本実施形態に係る電子部品屑5の処理方法では、上記の前選別工程(S1、S7、S10)に限定されるものではなく、各選別処理に適宜組み合わせて利用することも可能である。例えば、電子部品屑5を各種選別工程(S3~S6、S8~S9)で処理する前又は後で適宜必要な時に、画像認識部2において画像認識を行い、図9(a)~図10に示すロボットハンド11を備える選別装置を用いて対象物を抽出する選別処理を行うこともまた好ましい。 Further, the method for treating electronic component waste 5 according to the present embodiment is not limited to the above-mentioned pre-sorting steps (S1, S7, S10), and can be appropriately combined and used for each sorting process. .. For example, before or after processing the electronic component waste 5 in various sorting steps (S3 to S6, S8 to S9), the image recognition unit 2 performs image recognition when necessary, and FIGS. 9 (a) to 10 show. It is also preferable to perform a sorting process for extracting an object by using a sorting device including the robot hand 11 shown.
 特に、前選別工程(S7)、磁力選別工程(S8)、渦電流選別工程(S9)、前選別工程(S10)で系外原料として選別される原料には、単体原料の他に、製錬原料と系外原料とが混在する混合屑が多く存在する。この複合屑に対して、本実施形態に係る画像認識処理を行い、図9(a)~図10に示すロボットハンド11を備える選別装置を用いて対象物を抽出する選別処理を実施することにより、従来、手作業で行っていた作業を機械化することができるため、選別処理を高速化することができるとともに、系外原料中の単体屑と製錬原料を含有する混合屑の中から混合屑又は単体屑を適切に判定することが可能となる。 In particular, raw materials sorted as extrasystem raw materials in the pre-sorting step (S7), magnetic force sorting step (S8), eddy current sorting step (S9), and pre-sorting step (S10) include smelting as well as single raw materials. There are many mixed scraps in which raw materials and non-system raw materials are mixed. The composite waste is subjected to the image recognition process according to the present embodiment, and the sorting process for extracting the object using the sorting device provided with the robot hand 11 shown in FIGS. 9 (a) to 10 is performed. Since the work that was conventionally performed manually can be mechanized, the sorting process can be speeded up, and the mixed waste from the single waste in the non-system raw material and the mixed waste containing the smelting raw material can be used. Alternatively, it becomes possible to appropriately determine the single waste.
 また、例えば、風力選別工程(S4)で選別される重量物中のAlを含む部品屑は、渦電流選別工程(S9)によりAl屑として系外原料側に選別されるが、このAl屑には、図12(a)~図12(c)に示すようなAlの単体屑だけでなく、図14(a)~図14(c)に示すようなAlを含む混合屑も含まれる。そのため、渦電流選別工程(S9)で選別されるAl屑に対して、本実施形態に係る選別手法を用いて部品屑の特徴を解析し、更に図9(a)~図10に示すロボットハンド11を備える選別装置を用いて対象物を抽出する選別処理を行うことにより、図12(a)~図12(c)に示すようなAlの単体屑と図14(a)~図14(c)に示すようなAlを含む混合屑とを選別することができる。そして、選別された混合屑を、有価物を含む製錬原料として製錬工程へ投入することにより、有価物の回収効率を向上できる。 Further, for example, the component scraps containing Al in the heavy material sorted in the wind force sorting step (S4) are sorted as Al scraps on the external raw material side by the eddy current sorting step (S9). Includes not only simple substance of Al as shown in FIGS. 12 (a) to 12 (c) but also mixed waste containing Al as shown in FIGS. 14 (a) to 14 (c). Therefore, for the Al scraps sorted in the eddy current sorting step (S9), the characteristics of the parts scraps are analyzed by using the sorting method according to the present embodiment, and further, the robot hands shown in FIGS. 9A to 10A. By performing a sorting process for extracting an object using a sorting device provided with 11, the simple substance of Al as shown in FIGS. 12 (a) to 12 (c) and the single waste of Al and FIGS. 14 (a) to 14 (c) ) Can be sorted out from the mixed waste containing Al. Then, by putting the selected mixed waste into the smelting process as a smelting raw material containing valuable resources, the recovery efficiency of the valuable resources can be improved.
 風力選別工程(S4)で選別される重量物中のFeを含む部品屑は、その後の磁力選別工程(S8)によって系外原料であるFe屑として選別される。ここで選別されるFe屑には、図13(a)及び図13(b)に示すようなFeを単体で含む単体鉄屑の他に、図15(a)~図15(c)に示すようなFeに他の部品屑が付着した、銅コイル付き鉄芯、基板付き鉄屑又は鉄芯、あるいは、リード線付き基板等の混合鉄屑等が含まれる。そのため、磁力選別工程(S8)で処理されたFe屑について、本実施形態に係る処理方法を利用し、これらを部品の特性毎に判別することで、単体鉄屑と混合鉄屑とを含むFe屑の中から、所定の混合鉄屑を抽出することができる。混合鉄屑と判断されたものは、ピッキング等によって有価物側(製錬原料側)に仕分けすることで、有価物の回収効率を向上させることができる。 Parts scraps containing Fe in heavy objects sorted in the wind power sorting step (S4) are sorted as Fe scraps as an external raw material by the subsequent magnetic force sorting step (S8). The Fe scraps selected here include single iron scraps containing Fe as a single substance as shown in FIGS. 13 (a) and 13 (b), as well as those shown in FIGS. 15 (a) to 15 (c). This includes iron cores with copper coils, iron scraps with substrates or iron cores, or mixed iron scraps such as substrates with lead wires, to which other component scraps are attached to such Fe. Therefore, for the Fe waste treated in the magnetic force sorting step (S8), the treatment method according to the present embodiment is used, and by discriminating these for each characteristic of the component, Fe containing elemental iron waste and mixed iron waste is used. A predetermined mixed iron scrap can be extracted from the scrap. By sorting the iron scraps judged to be mixed iron scraps to the valuable resources side (smelting raw materials side) by picking or the like, the recovery efficiency of the valuable resources can be improved.
(製錬工程)
 本発明の実施の形態に係る電子部品屑5の処理方法は、各物理選別工程(S1~S10)でそれぞれ選別された有価金属を含む処理原料を製錬する製錬工程を更に有する。
(Smelting process)
The method for treating electronic component waste 5 according to the embodiment of the present invention further includes a smelting step for smelting a processing raw material containing a valuable metal sorted in each physical sorting step (S1 to S10).
 有価金属として銅を回収する場合は、溶錬炉を用いた製錬が行われる。製錬工程には、例えば、電子部品屑5を焼却する工程と、焼却物を破砕及び篩別する工程と、破砕及び篩別処理した処理物を銅製錬する工程とを備える。製錬工程の処理能力に応じて、電子部品屑5を焼却する工程は省略してもよい。 When recovering copper as a valuable metal, smelting is performed using a smelting furnace. The smelting step includes, for example, a step of incinerating the electronic component waste 5, a step of crushing and sieving the incinerated product, and a step of smelting the crushed and sieved processed product into copper. Depending on the processing capacity of the smelting process, the step of incinerating the electronic component waste 5 may be omitted.
 製錬工程において、電子部品屑5を破砕及び篩別する工程は、電子部品屑5を製錬処理に好ましいサイズに成形する処理であれば任意の手法を選択できる。図11に示す物理選別工程が、製錬工程における焼却工程、破砕及び篩別する工程の前に行われることにより、有価金属をより効率的に回収しながら製錬阻害物質となる鉄、アルミニウム、ステンレス鋼、合成樹脂のいずれかを含む原料を系外へ効率良く送ることができる。 In the smelting process, any method can be selected for the step of crushing and sieving the electronic component waste 5 as long as it is a process of molding the electronic component waste 5 into a size preferable for the smelting process. By performing the physical sorting step shown in FIG. 11 before the incineration step, the crushing and sieving step in the smelting step, iron, aluminum, which are smelting inhibitors while recovering valuable metals more efficiently, Raw materials containing either stainless steel or synthetic resin can be efficiently sent out of the system.
 以下に制限されるものではないが、本実施形態に係る製錬工程としては、自溶炉法を用いた銅製錬工程が好適に利用できる。自溶炉法を用いた銅製錬工程としては、例えば、自溶炉のシャフトの天井部から銅精鉱と溶剤と電子部品屑5を装入する。装入された精鉱及び電子部品屑5が、自溶炉のシャフトにおいて溶融し、自溶炉のセットラーにおいて例えば50~68%の銅を含むマットとそのマットの上方に浮遊するスラグとに分離される。電子・電気機器部品中の銅、金、銀などの有価金属は、自溶炉内を滞留するマットへ吸収されることで、電子部品屑5中から有価金属を回収できる。 Although not limited to the following, the copper smelting process using the flash smelting furnace method can be preferably used as the smelting process according to the present embodiment. As a copper smelting process using the flash smelting method, for example, copper concentrate, a solvent, and electronic component waste 5 are charged from the ceiling of the shaft of the flash smelting furnace. The charged concentrate and electronic component waste 5 melts on the shaft of the flash smelting furnace, and in the setler of the flash smelting furnace, for example, a mat containing 50 to 68% copper and slag floating above the mat. Be separated. Valuable metals such as copper, gold, and silver in electronic / electrical equipment parts are absorbed by the mat that stays in the flash smelting furnace, so that the valuable metals can be recovered from the electronic parts waste 5.
 銅製錬においては、銅を製造するとともに、金、銀などの貴金属をより多く回収するために、処理する原料として銅、金、銀など有価金属の含有量の多い電子部品屑5をできるだけ多く投入して処理することが重要である。一方、電子部品屑5には、銅製錬における製品、副製品の品質に影響を与える物質及び/又は銅製錬のプロセスに影響を与える製錬阻害物質が含有される。例えば、上記のようなSb、Ni等の元素を含有する物質の溶錬炉への投入量が多くなると、銅製錬で得られる電気銅の品質が低下する場合がある。 In copper smelting, in order to produce copper and recover more precious metals such as gold and silver, as much as possible of electronic parts waste 5 containing a large amount of valuable metals such as copper, gold and silver is added as a raw material to be processed. It is important to process it. On the other hand, the electronic component waste 5 contains a substance that affects the quality of products and by-products in copper smelting and / or a smelting inhibitor that affects the process of copper smelting. For example, if the amount of a substance containing an element such as Sb or Ni as described above into a smelting furnace is large, the quality of electrolytic copper obtained by copper smelting may deteriorate.
 また、銅製錬などの非鉄金属製錬工程では、精鉱の酸化によって発生する二酸化硫黄から硫酸を製造するが、二酸化硫黄に炭化水素が混入すると、産出される硫酸が着色する場合がある。炭化水素の混入源としては、例えばプラスチックなどの合成樹脂類などが挙げられるが、銅製錬へ持ち込まれる電子部品屑5の構成によっては、このような合成樹脂類が多く含まれる場合がある。合成樹脂類は、溶錬炉内での急激な燃焼、漏煙のほか局所加熱による設備劣化を生じさせる恐れもある。 Also, in non-ferrous metal smelting processes such as copper smelting, sulfuric acid is produced from sulfur dioxide generated by the oxidation of concentrates, but if sulfur dioxide is mixed with sulfur dioxide, the produced sulfuric acid may be colored. Examples of the mixing source of hydrocarbons include synthetic resins such as plastics, but depending on the composition of the electronic component waste 5 brought into copper smelting, such synthetic resins may be contained in large amounts. Synthetic resins may cause rapid combustion in the smelting furnace, smoke leakage, and equipment deterioration due to local heating.
 更に、Al、Feなどが溶錬炉内に一定以上の濃度で存在すると、例えば、銅製錬のプロセスでスラグ組成に変化を与え、有価金属のスラグへの損失、いわゆるスラグロスに影響する場合もある。また、Cl、Br、F等のハロゲン元素が溶錬炉へ投入される電子部品屑5中に多く含まれていると、銅製錬の排ガス処理設備の腐食や硫酸触媒の劣化を引き起こす場合がある。このような製錬阻害物質の混入の問題は、電子部品屑5の処理量が多くなるにつれて顕在化し、製錬工程に負担がかかるという問題が生じてきている。 Furthermore, if Al, Fe, etc. are present in the smelting furnace at a concentration above a certain level, for example, the slag composition may be changed in the copper smelting process, which may affect the loss of valuable metals to slag, so-called slag loss. .. Further, if a large amount of halogen elements such as Cl, Br, and F are contained in the electronic component waste 5 charged into the smelting furnace, it may cause corrosion of the exhaust gas treatment equipment for copper smelting and deterioration of the sulfuric acid catalyst. .. Such a problem of smelting inhibitory substances becomes apparent as the amount of electronic component waste 5 processed increases, and there is a problem that the smelting process is burdened.
 本発明の実施の形態に係る電子部品屑5の処理方法によれば、製錬工程の前に、図11に示すような電子部品屑5の物理選別工程を備える。これにより、製錬工程に持ち込まれる製錬阻害物質の割合を極力抑えるとともに、電子部品屑5の処理量を増やし、銅及び有価金属を含む電子部品屑5の割合を多くして銅及び有価金属を効率的に回収することが可能となる。 According to the method for treating electronic component waste 5 according to the embodiment of the present invention, a physical sorting step for electronic component waste 5 as shown in FIG. 11 is provided before the smelting process. As a result, the ratio of smelting inhibitors brought into the smelting process is suppressed as much as possible, the amount of electronic parts waste 5 processed is increased, and the ratio of electronic parts waste 5 containing copper and valuable metals is increased to increase the ratio of copper and valuable metals. Can be efficiently recovered.
 本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。即ち、本開示は、上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で構成要素を変形して具体化できる。 Although the present invention has been described in accordance with the above embodiments, the statements and drawings that form part of this disclosure should not be understood to limit the invention. That is, the present disclosure is not limited to the above embodiment, and the components can be modified and embodied without departing from the gist thereof.
1…選別部
2…画像認識部
3…搬送部
4…搬送部
5…電子部品屑
10…ピッキングロボット
11…ロボットハンド
12…固定部
13…吸引部
14…挟持部
13a…吸引パッド
13b…真空発生器
14a~14d…アーム部
20…画像解析手段
21…撮像手段
22…ネットワーク
23…領域検出部
24…選別システム
25…サーバ
30…搬送面
51、52、53…検査エリア
100…選別システム
120…入力手段
130…出力手段
141a~141d…爪部
200…制御手段
201…撮像制御手段
202…位置形状識別手段
203…特徴解析手段
204…分類手段
205…識別情報作製手段
207…移動追従手段
210…記憶装置
211…マルチスペクトル撮像データ記憶手段
212…領域検出用データ記憶手段
213…色特性情報記憶手段
214…分類情報記憶手段
215…識別情報記憶手段
1 ... Sorting unit 2 ... Image recognition unit 3 ... Transfer unit 4 ... Transfer unit 5 ... Electronic parts waste 10 ... Picking robot 11 ... Robot hand 12 ... Fixing unit 13 ... Suction unit 14 ... Holding unit 13a ... Suction pad 13b ... Vacuum generation Vessels 14a to 14d ... Arm unit 20 ... Image analysis means 21 ... Imaging means 22 ... Network 23 ... Area detection unit 24 ... Sorting system 25 ... Server 30 ... Transport surface 51, 52, 53 ... Inspection area 100 ... Sorting system 120 ... Input Means 130 ... Output means 141a-141d ... Claw portion 200 ... Control means 201 ... Imaging control means 202 ... Position shape identification means 203 ... Feature analysis means 204 ... Classification means 205 ... Identification information production means 207 ... Movement tracking means 210 ... Storage device 211 ... Multispectral imaging data storage means 212 ... Area detection data storage means 213 ... Color characteristic information storage means 214 ... Classification information storage means 215 ... Identification information storage means

Claims (6)

  1.  異なる形状を有する複数の電子部品屑の中から各電子部品屑の位置及び形状を識別し、各電子部品屑の位置情報と形状情報とを含む位置形状識別情報を得る位置形状識別工程と、
     各電子部品屑の特徴を少なくとも2以上解析し、特徴解析情報を得る特徴解析工程と、
     前記位置形状識別情報及び前記特徴解析情報に基づいて、同一形状で同一位置にある一の電子部品屑に対して関連付けられた2以上の特徴を用いて、各電子部品屑を予め定められた部品種毎に分類する分類工程と
     を含む電子部品屑の分類方法。
    A position-shape identification step of identifying the position and shape of each electronic component waste from a plurality of electronic component scraps having different shapes and obtaining position-shape identification information including position information and shape information of each electronic component waste.
    A feature analysis process that analyzes at least two features of each electronic component waste and obtains feature analysis information.
    Based on the position shape identification information and the feature analysis information, each electronic component scrap is defined in advance by using two or more features associated with one electronic component scrap having the same shape and the same position. A method for classifying electronic component waste, including a classification process for classifying by product type.
  2.  前記位置形状識別工程が、
     撮像エリア内の前記複数の電子部品屑に対して領域検出用光を照射して、領域検出用データを取得し、前記領域検出用データを用いて、各電子部品屑の位置情報と形状情報を含む位置形状識別情報を作製することを含む請求項1に記載の電子部品屑の分類方法。
    The position shape identification step
    The plurality of electronic component scraps in the imaging area are irradiated with region detection light to acquire region detection data, and the region detection data is used to obtain position information and shape information of each electronic component scrap. The method for classifying electronic component waste according to claim 1, which comprises producing position / shape identification information including.
  3.  前記特徴解析工程が、マルチスペクトル撮像手段を用いて、各電子部品屑に対して2以上のスペクトル情報を得ることを含む請求項1又は2に記載の電子部品屑の分類方法。 The method for classifying electronic component scraps according to claim 1 or 2, wherein the feature analysis step obtains two or more spectral information for each electronic component scrap using a multispectral imaging means.
  4.  前記特徴解析工程が、前記電子部品屑が有する特定の色彩と、前記電子部品屑の全面積に対して前記特定の色彩が占める面積の比を解析することを含む請求項1~3のいずれか1項に記載の電子部品屑の分類方法。 One of claims 1 to 3, wherein the feature analysis step includes analyzing the ratio of the specific color of the electronic component scraps to the area occupied by the specific color with respect to the total area of the electronic component scraps. The method for classifying electronic component scraps according to item 1.
  5.  前記異なる形状を有する複数の電子部品屑が、磁力選別機、色彩選別機、金属選別機、赤外線センサを含む光学式選別機、プラスチック選別機のいずれかを用いて選別処理を行った後の電子部品屑を含む請求項1~4のいずれか1項に記載の電子部品屑の分類方法。 The electrons after the plurality of electronic component scraps having different shapes are sorted by using any of a magnetic force sorter, a color sorter, a metal sorter, an optical sorter including an infrared sensor, and a plastic sorter. The method for classifying electronic component scraps according to any one of claims 1 to 4, which includes component scraps.
  6.  異なる形状を有する複数の電子部品屑の中から各電子部品屑の位置及び形状を識別し、各電子部品屑の位置情報と形状情報とを含む位置形状識別情報を得る位置形状識別工程と、
     各電子部品屑の特徴を少なくとも2以上解析し、前記位置形状識別情報に関連付けた特徴解析情報を得る特徴解析工程と、
     前記位置形状識別情報及び前記特徴解析情報に基づいて、同一形状で同一位置にある一の電子部品屑に対して関連付けられた2以上の特徴を用いて、各電子部品屑を予め定められた部品種毎に分類する分類工程と、
     前記分類工程の分類結果及び前記位置形状識別情報に基づいて、前記複数の電子部品屑の中から抽出すべき電子部品屑を抽出する抽出工程と
     を含む電子部品屑の処理方法。
    A position-shape identification step of identifying the position and shape of each electronic component waste from a plurality of electronic component scraps having different shapes and obtaining position-shape identification information including position information and shape information of each electronic component waste.
    A feature analysis step of analyzing at least two features of each electronic component waste and obtaining feature analysis information associated with the position shape identification information.
    Based on the position shape identification information and the feature analysis information, each electronic component scrap is defined in advance by using two or more features associated with one electronic component scrap having the same shape and the same position. Classification process to classify by type and
    A method for treating electronic component scraps, which includes an extraction step of extracting electronic component scraps to be extracted from the plurality of electronic component scraps based on the classification result of the classification step and the position and shape identification information.
PCT/JP2021/028211 2020-11-13 2021-07-29 Sorting method for electronic component scraps and processing method for electronic component scraps WO2022102176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020189777A JP2022078835A (en) 2020-11-13 2020-11-13 Classification method for electronic component scrap and processing method for electronic component scrap
JP2020-189777 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022102176A1 true WO2022102176A1 (en) 2022-05-19

Family

ID=81601049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028211 WO2022102176A1 (en) 2020-11-13 2021-07-29 Sorting method for electronic component scraps and processing method for electronic component scraps

Country Status (3)

Country Link
JP (1) JP2022078835A (en)
TW (1) TWI807375B (en)
WO (1) WO2022102176A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009435A (en) * 1999-06-30 2001-01-16 Hitachi Ltd Method and device for treating waste
JP2007505733A (en) * 2003-09-20 2007-03-15 キネテイツク・リミテツド Apparatus and method for classifying targets in a waste stream
US20170014868A1 (en) * 2015-07-16 2017-01-19 UHV Technologies, Inc. Material sorting system
US20190299255A1 (en) * 2018-03-27 2019-10-03 Huron Valley Steel Corporation Vision and analog sensing scrap sorting system and method
JP2020062633A (en) * 2018-10-19 2020-04-23 株式会社御池鐵工所 Waste sorting apparatus and waste sorting method
WO2020090941A1 (en) * 2018-10-31 2020-05-07 Jx金属株式会社 Composition analyzer of electronic/electrical equipment parts waste, treatment device of electronic/electrical equipment parts waste, and treatment method of electronic/electrical equipment parts waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009435A (en) * 1999-06-30 2001-01-16 Hitachi Ltd Method and device for treating waste
JP2007505733A (en) * 2003-09-20 2007-03-15 キネテイツク・リミテツド Apparatus and method for classifying targets in a waste stream
US20170014868A1 (en) * 2015-07-16 2017-01-19 UHV Technologies, Inc. Material sorting system
US20190299255A1 (en) * 2018-03-27 2019-10-03 Huron Valley Steel Corporation Vision and analog sensing scrap sorting system and method
JP2020062633A (en) * 2018-10-19 2020-04-23 株式会社御池鐵工所 Waste sorting apparatus and waste sorting method
WO2020090941A1 (en) * 2018-10-31 2020-05-07 Jx金属株式会社 Composition analyzer of electronic/electrical equipment parts waste, treatment device of electronic/electrical equipment parts waste, and treatment method of electronic/electrical equipment parts waste

Also Published As

Publication number Publication date
JP2022078835A (en) 2022-05-25
TWI807375B (en) 2023-07-01
TW202218757A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
TWI723604B (en) The composition analysis device of electronic and electrical equipment parts, the processing device of electronic and electrical equipment parts and the processing methods of electronic and electrical equipment parts
CN113710383B (en) Method and device for processing electronic/electric equipment component scraps
WO2019177176A1 (en) Method for processing electronic and electrical device component scrap
CA3090225C (en) Processing method for electronic/electric device component waste
WO2021201251A1 (en) Method for analyzing composition of electronic/electrical apparatus component layer, method for processing electronic/electrical apparatus component layer, device for analyzing composition of electronic/electrical apparatus component layer, and device for processing electronic/electrical apparatus component layer
WO2022102176A1 (en) Sorting method for electronic component scraps and processing method for electronic component scraps
KR102552541B1 (en) How to dispose of debris from electronic and electrical equipment parts
WO2022224478A1 (en) Electrical and electronic component scrap processing method, and electrical and electronic component scrap processing device
JP2022078833A (en) Processing method of electronic component waste, image analysis system of electronic component waste, and sorting system of electronic component waste
WO2021201250A1 (en) Composition analysis method for electronic/electrical equipment component waste, processing method for electronic/electrical equipment component waste, composition analyzer for electronic/electrical equipment component waste, and processing device for electronic/electrical equipment component waste
JP6914220B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP7123839B2 (en) Processing method of electronic and electrical equipment parts waste
JP2021186921A (en) Picking device for electronic part waste and processing method for electronic part waste
JP6885904B2 (en) How to dispose of scraps of electronic and electrical equipment parts
JP2021191578A (en) Treatment method for scrapped component of electronic-electric instrument
JP2019171343A (en) Processing method of electronic-electrical equipment component scrap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891424

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891424

Country of ref document: EP

Kind code of ref document: A1